

Quality Volume Data Anytime & Anywhere: A Big Data Success Story Results from NREL/UMD/195 Corridor Coalition Research

Stanley E. Young

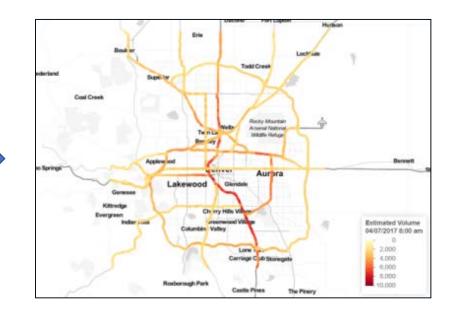
FHWA 2018 Highway Information Seminar Oct. 31, 2018

Why Do We Need More and Better Volume Data?

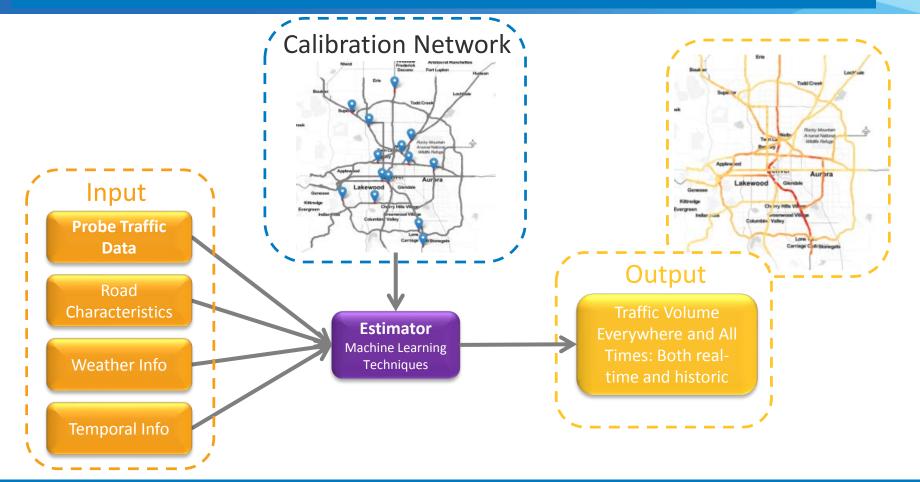
- Operation
 - Detect real-time traffic volume in the network
 - Traffic volume during inclement weather and special events
- Performance measure
 - Assess user costs
 - Utilization of existing capacity
- Economic and energy assessment
 - Estimate economic impact of congestion
 - Quantify VMT and energy use

Operations

Ubiquitous Traffic Volumes



Ubiquitous network observability


Best alternative

•Utilize and fuse existing high-quality yet sparse data with probe data to predict traffic volumes on each and every link of the road network

• Ideal but expensive to achieve with sensors

Proposed Solution

How Good is Good Enough?

MAPE is Volume Dependent!

Acceptable % Change

AADT Range	Decreasing (-)	Increasing (+)	
0 -19	-100%	400%	
20 - 49	-40%	50%	
50 - 99	-30%	40%	
100 - 299	-25%	30%	
300 - 999	-20%	25%	
1,000 - 4,999	-15%	20%	
5,000 - 49,999	-10%	15%	
50,000+	-10%	10%	

MNDOT Example

- Mean Absolute Percentage Error (MAPE)
 - Volume dependent estimate
 - 10-15% High Volume
 - 20-25% Mid Volume
 - 30-50% Low Volume (Mean Absolute Error may be appropriate)

- Statistician/ Planner
- R^2 Coefficient of Determination
 - >70% good >80% better >90% best

Highway Operations

- Error to Capacity (ETCR) or Max Flow (EMFR)
 - < 10% becomes useful < 5% is target</p>
 - {For highway operations, reflective of capacity constraint situations}

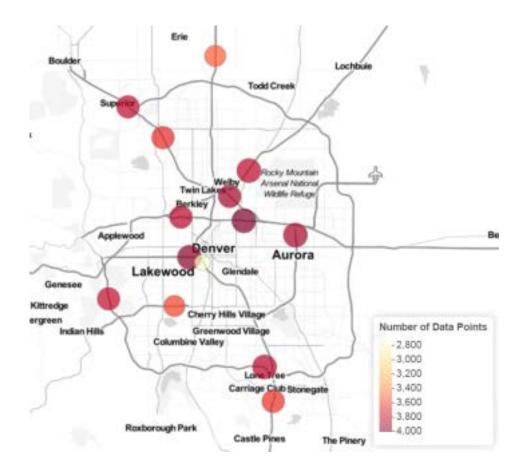
۲

۲

Volume Estimation on Freeways

Input Data

- CDOT continuous count stations (freeways) and 48-hour short-term counts (off-freeways)
 - Hourly volume, road class, number of lanes
- Weather Underground
 - Temperature, precipitation, visibility, fog, rain, snow daily (freeways) and hourly (off-freeways)
- TomTom GPS Data
 - Probe count key ingredient, speed, speed limit
- Temporal information
 - Month, day of week, hour of day


Calibrated to the 14 Continuous Count Stations in

Denver region

Data Points – Freeway Analysis

- Feb 1, 2017 April 30, 2017
- A total of 52,092 observations
- Ranges from 2800-4000 observations at each CC location
- Percentage of traffic covered by GPS probe data (ranges from 8%-12%)

Estimation Methodology

- Machine Learning: A subfield of computer science that gives computers the ability to learn from data without being explicitly programmed
 - Random Forest (RF)
 - Gradient Boost Machine (GBM)
 - Extreme Boost Machine (XGBoost)

- Advantages
 - Do not require detailed mathematical forms and assumptions on variable distributions
 - Suitable for capturing the underlying relationships among different variables in an environment of uncertainty
- Disadvantages
 - Interpretability of input variables ("black box")
 - Only predict within bounds of training no extrapolation

Model Training and Cross-Validation

- In each iteration
 - 13 stations are used for training
 - 1 station is used for validation
- Repeat this 14 times and report validation results for all 14 locations

 Accuracy metrics accrued from validation of 14 iterations (similar method used for off-freeway)

Volume Estimation Results

- Results exceed the survey expectation: ETCR<10%
- About 18% error relative to observed volume
- Representative results:

Model	MAPE	ETCR	R2	Training Time
XGBoost	17.7%	5.3%	0.91	13s

• Without Probe Data

Without	MAPE	ETCR	R ²
Probe Data	39.4%	12.4%	0.65

Estimation vs. Observation

Volume Estimation on Non-Freeways

Functional Classification of Roadways

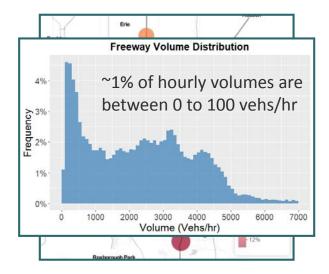
FHWA functional classification

(Freeways

- Interstates
- Other Freeways

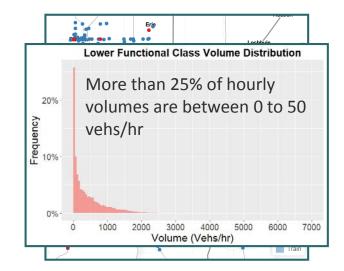
Lower Class Roads

- Principal Arterials
- Minor Arterials
- Major Collectors
- Minor Collectors
- Local Streets


Property	Lower Class Roads Freewa		
Percentage of Miles	98.5%	1.5%	
Percentage of Lane Miles	96.7%	3.3%	
Percentage of VMT	68.5%	31.5%	
Monitoring Method	Short-term counts	Continuous count stations & Short-term counts	

Data source: FHWA Highway Statistics 2013

Calibration / Validation Network


Freeway

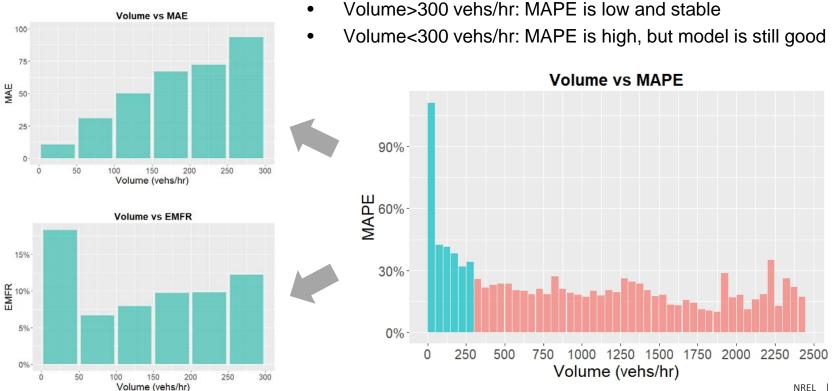
- 14 Continuous Count Stations
- Probe sample 8%-12% of trips

Off-Freeway

- 359 48-hour count locations
- Probe sample 3.1%-7.7% of trips (~6.4% mean)

Model Evaluation Criteria

- Mean Absolute Percentage Error (MAPE)
 - Reflect the absolute volume accuracy



- Coefficient of Determination (R^2)
 - Explanatory power of model

New Measures need for Off-Freeway Results

- Error to Maximum Flow Ratio (EMFR)
 - Reflect volume to capacity fidelity
- Mean Absolute Error (MAE)
 - Reflect the absolute error
 - Effective for low volume roads

MAPE of Different Volume Ranges

48-Hour Prediction on Test Locations

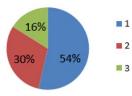
Principal Arterial Minor Arterial Station ID: 106501, MAPE=35.8%, MAE=68.2 Station ID: 900152, MAPE=24.8%, MAE=30.6 1200 400 XGBoost XGBoost Observed Observed 350 1000 300 Volume (vehs/hr) 800 (vehs/hr) 200 600 ne 150 400 100 200 50 0 08-21 23 08-22 05 08-22 11 08-22 17 08-22 23 08-23 05 08-23 11 08-23 17 08-23 23 06-07 23 06-06 23 06-07 05 06-07 11 06-07 17 06-08 05 06-08 11 06-08 17 06-08 23 Time Time **Major Collector** Local Street Station ID: 901909, MAPE=38.6%, MAE=3.1 Station ID: 106992, MAPE=29.4%, MAE=29.6 50 500 XGBoost XGBoost --- Observed Observed 400 40 Volume (vehs/hr) 00 00 Volume (vehs/hr) 10 100 09-13 02 09-13 08 09-13 14 09-13 20 09-14 02 09-14 08 09-14 14 09-14 20 08-09 23 08-10 05 08-10 11 08-10 17 08-10 23 08-11 05 08-11 11 08-11 17 08-11 23 Time Time

Aggregate Volume Measures - AADT

Florida Analysis – UMD Partner

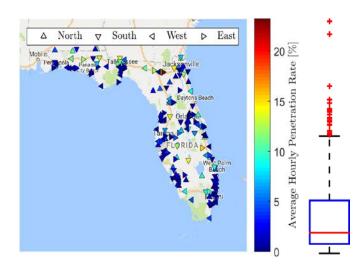
- Overview
 - Objectives
 - Volume estimation approach
- Florida case study
 - Dataset
 - Results
 - Statewide estimates
 - AADT/AAWDT
 - Truck Volumes
 - Flagging unusual behavior

- New Hampshire case study
 - Dataset
 - Results
 - Statewide estimates
 - AADT/AAWDT
 - Model transferability


- Summary / Next Steps
- Q & A

Florida Dataset (Q4 2016)

Data needed at all TMCs


- GPS probe data (INRIX)
 - 75M trips, 3.4B pts
 - Penetration rate: 2.1% median
 - Snapped to base map
- Probe speeds (HERE)
- Road characteristics
 - # lanes, speed limit, facility type, etc.
- Weather
- TTI hourly volume estimates

- 1: cars / light-duty trucks
- 2: medium-duty trucks
- 3: heavy-duty trucks

Data needed only at continuous count stations

- Ground truth count data (FDOT)
 - Used for model training / evaluation
 - Used to estimate probe penetration rate

Florida Results: Summary

Median Error Metrics by Scenario

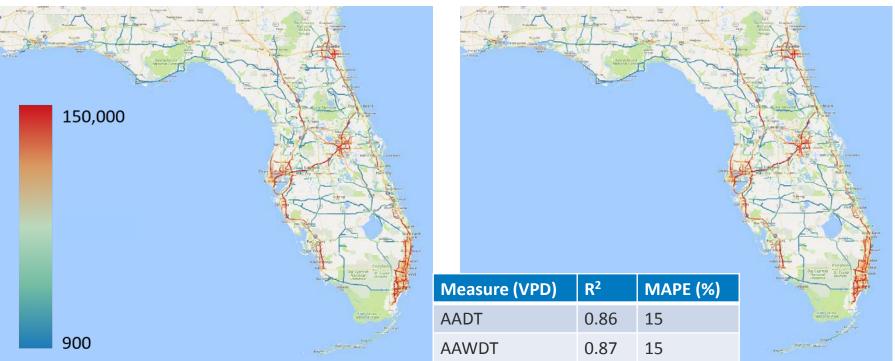
Road Classification	R2	MAPE (%)	EMFR (%)	Obs
FRC 1 (Interstates)	0.86	21	6	195704
Maryland (mostly FRC 1)	0.86	23	7	158040
FRC 2 (Other Freeways & Expressways)	0.82	26	7	370567
FRC 3 & 4 (Other principal & minor arterials)	0.83	33	7	128419
Hourly Volume (vph)	R2	MAPE (%)	EMFR (%)	Obs
0-1k	0.81	29	7	465591
1k-2k	0.86	22	6	164465
2k-3k	0.88	18	6	49221
3k+	0.87	19	6	15413
Avg probe counts / hr	R2	MAPE (%)	EMFR (%)	Obs
"Low" [0-6]	0.78	38	8	214557
"Medium" [6-17]	0.84	24	7	249730
"High" [17-145]	0.85	22	6	230403

\rightarrow Overall median error metrics:

- R2 = 0.83
- MAPE = 25%
- EMFR = 7%

Summary

Promising model performance, even over a variety of scenarios


Observations

- ↑ Road class = ↑ Accuracy
- \uparrow Avg. hourly volume = \uparrow Accuracy
- \uparrow Avg. hourly GPS counts = \uparrow Accuracy

Florida: AADT & AAWDT Estimation

AADT

AAWDT

Summary / Conclusions

- Volume estimation can be supported with a combination of:
 - Commercial Probe Data (Probe count & Speed/Travel Times)
 - Other road attribute data and weather
 - High confidence ground truth sensor for calibration and validation
- Machine learning provides rapid and sustainable calculation methods
- Probe data is key ingredient to accurately estimate traffic volumes
- Can be applied for both historical and real-time

On-going / Future Work

• Finishing up Phase I – Proof of Concept

- Results in CO, MD, FL, NH
- Established metrics and targets
- Methods scaled from freeways to local streets
- Phase II Prototype initiating in January 2019
 - Funded through Dept. of Energy Technology Commercialization
 - Colorado DOT collaborating (lead) state other states participating TomTom industry partner (possibility of other vendors)
 - Productize to standard specs and deliver data, real-time and horizontal
- FHWA/USDOT Pooled Fund Study sometime in 2019
 - Exploring Non-Traditional Methods to Obtain Vehicle Volume and Class Data

Contact us if interested!

Thank You!

Stanley E. Young National Renewable Energy Laboratory <u>Stanley.young@nrel.gov</u> 301-792-8180