National Travel Time Data Processing and Utilization

Wenjing Pu
Highway Information Seminar
November 13, 2017

Office Organizational Chart

Outline

1. National Performance Management Research Data Set (NPMRDS)
2. NPMRDS for PM3 (System Performance, Freight, and CMAQ)
3. NPMRDS for Other Applications

Part 1
 NPMRDS

Topics

Overview

- Access to NPMRDS
- Data Structure
- Speed/travel time (.csv)
- TMC Identification (.csv)
- TMC shapefile
- NPMRDS/HPMS Conflations
U.S. Department of Transportation

Federal Highway Administration
Office of Highway Policy Information

What is NPMRDS?

- A package of vehicle probe data procured by FHWA
- $1^{\text {st }}$ procurement (NPMRDS v1): July 2013
- $2^{\text {nd }}$ procurement (NPMRDS v2): April 2017
- Archived travel time and speed; AADT (if available) is conflated from HPMS
- Resolution: 5-minute intervals on over 400,000 TMC segments
- Coverage: National Highway System, 26 border crossings
- Travel time and speed by vehicle type:
- Passenger vehicles
- Trucks
- All (passenger vehicles and trucks)

NPMRDS: v1 vs. v2

	V1	V2
Data Vendor	HERE	UMD-INRIX-TTI-KMJ-IDAX
Temporal resolution	5-minute	5-, 10-, 15-, 60-minute

Quick Start Guide

How do I access the NPMRDS?

Step 1 - Sign the Data Sharing Agreement
Before anyone can access the National Performance Metrics Research Data Set (NPMRDS), your organization must execute a data sharing agreement. If you are a public agency, an individual authorized to execute the agreement can sign on behalf of your agency. Afterward, everyone within that agency will be granted access via his or her account. If you are a consultant or contractor, the agency you are working for must execute a data sharing agreement, then your organization must a separate data sharing agreement. Afterward, you will be granted access.
The data sharing agreement can be found here: https://npmrds.ritis.org/dsa
Questions regarding the data sharing agreement can be sent to npmrds@ritis.org

Step 2 - Create a RITIS Account

Access to NPMRDS is granted via a RITIS account. If you do not have one and your organization has executed a data sharing agreement, you can request a RITIS account here: https://www.ritis.org/register/ Note: it may take up to two days to process your request.

For the new NPMRDS, every user at an organization must have his or her own RITIS account. Shared logins will not be permitted.

Questions regarding RITIS accounts can be sent to: npmrds@ritis.org

$$
\mathrm{R}_{\text {ITIS }}^{\prime \prime}
$$

NOTE: Vendors will need to verify your completion of Step 2 prior to agency receiving access. (This is not immediate, as it requires staff verification.)

Step 1 needs to be completed once per organization, only.
Step 2 must be completed by every individual that will access the NPMRDS.

NPMRDS ANALYTICS ■■■■■■■■

Quick Start Guide

Step 3 - Accessing the Data

Step 4 - Massive Data Downloader

The Massive Data Downloader is the interface for customizing data parameters and downloading your data.

Data can be customized by geography, dates, days of the week, times of day, modes, and averaging methods.

Monthly data will be available on the fifth business day of the following month
(e.g. July 2017's data will be available on August 7, 2017).

Please see the NPMRDS tutorials at https://npmrds.ritis.org for more in-depth guides for usage.

Please contact npmrds@ritis.org for support, questions, or concerns.

Live Demo

https://npmrds.ritis.org

- NPMRDS FAQs
- NPMRDS Descriptive Metadata Document (.pdf)
- Massive Data Downloader
- NPMRDS Coverage Map
- NPMRDS Shapefiles

Interpreting TMC Codes

Internal and External TMC Paths

"P" = Northbound or Westbound, internal segments
" N " = Southbound or Eastbound, internal segments
" + " = Northbound or Westbound, external segments
"-" = Southbound or Eastbound, external segments

TMC Lengths

NPMRDS v2 TMC Lengths

401,000 TMCs, Average length $=1.2$ Miles

TMCs on NHS

NPMRDS Coverage for NHS

- NHS Roads not in TMC Shapefile
- NHS roads not coded with TMC
- NHS roads coded with TMC but not in TMC shapefile
- NPMRDS TMC Shapefile
- Not NHS roads
- NHS roads
- A TMC is partially NHS
- No speed/travel time data in a year
- Few speed/travel time observations in a year

Example of Data Downloaded

- Beltway-20170821-0827.zip
- Beltway-20170821-0827.csv (8 variables)
- TMC_Identification.csv (35 variables)
- Contents.txt (descriptive texts)
- Shapefile: https://npmrds.ritis.org/analytics/shapefiles

Speed/Travel Time

(Beltway-20170821-0827.csv; 8 variables)

datasource	tmc_code	measurem ent_tstam p	speed	Average speed	refer ence _spe ed	travel_ time_s econds	data de nsity
NPMRDS (Trucks and passenger vehicles)	110P15983	$\begin{array}{r} 8 / 21 / 2017 \\ 0: 00 \end{array}$	58	63	69	86.59	A
NPMRDS (Trucks and passenger vehicles)	110+17034	$\begin{array}{r} 8 / 21 / 2017 \\ 0: 00 \end{array}$	62	66	75	35.52	A
NPMRDS (Trucks and passenger vehicles)	110P17035	$\begin{array}{r} 8 / 21 / 2017 \\ 0: 00 \end{array}$		64	75		
NPMRDS (Trucks and passenger avehicles)	110-04627	$\begin{array}{r} 8 / 21 / 2017 \\ 0: 00 \end{array}$	- 59	59	65	39.61	A

Speed/Travel Time Variables 1-4

Field Name	Type	Example	Data Field Description
datasource	Text	NPMRDS (Passenger vehicles)	The data set this record comes from. This field is only included in Massive Data Downloader exports when choosing to merge the data sets into a single CSV file.
tmc_code	Text	107-12541	The unique 9-digit value identifying the TMC segment.
measurement _tstamp	Date	$\begin{gathered} 5 / 1 / 2017 \\ \text { 12:00:00 } \\ \text { AM } \end{gathered}$	Date of data record, in "MM/DD/YY HH:NN:SS A" format. The date is in the local time of TMC segment to which the record pertains.
speed	Number	40	Speed is recorded in mph as an integer. The harmonic average speed for all reporting vehicles on the segment.

Speed/Travel Time Variables 5-6

| Field Name | Type | Example | Data Field Description |
| :---: | :---: | :---: | :---: | :---: |
| average_speed | Number | 45 | The historical average speed for
 the roadway segment for that hour
 of the day and day of the week in
 miles per hour. |
| reference_speed | Number | 50 | The calculated "free flow" mean
 speed for the roadway segment in
 miles per hour. This attribute is
 calculated based upon the 85th-
 percentile point of the observed
 speeds on that segment for all |
| | | | time periods, which establishes a
 reliable proxy for the speed of
 traffic at free-flow for that
 segment. |

Speed/Travel Time Variables 7-8

Field Name	Type	Example	Data Field Description
travel_time_mi nutes	Number	3	Travel time recorded in minutes as an integer. It is the ratio between the segment length and the harmonic average speed for all reporting vehicles on the segment.
data_density	Text	C	Data density indicator, where: A $=1$ to 4 reporting vehicles B $=5$ to 9 reporting vehicles C $=10$ or more reporting vehicles

TMC Table (1/4)

(TMC_Identification.csv)

datasource	tmc	roaddirection		intersection
NPMRDS (Passenger vehicles)	$\begin{aligned} & 110+0 \\ & 4621 \end{aligned}$	$1-$	CLOCKWISE	MD-355/WISCONSIN AVE/EXIT 34
NPMRDS (Passenger vehicles)	$\begin{aligned} & \text { 110P0 } \\ & 4621 \end{aligned}$	495	CLOCKWISE	MD-355/WISCONSIN AVE/EXIT 34
NPMRDS (Passenger vehicles)	$\begin{aligned} & 110+0 \\ & 4622 \end{aligned}$	$1-$	CLOCKWISE	MD- 185/CONNECTICUT AVE/EXIT 33
NPMRDS (Passenger vehicles)	$\begin{aligned} & 110 \mathrm{PO} \\ & 4622 \end{aligned}$	$1-$	CLOCKWISE	MD- 185/CONNECTICUT AVE/EXIT 33

TMC Table (2/4)

(TMC_Identification.csv; 35 variables)

state	county	zip	start_la titude	start_Ion gitude	end_lat itude	end_Ion gitude	miles
			39.0179	77.1035	39.016	77.0992	0.260
MD	MONTGOMERY	20814	902	57	3226	484	715
			39.0163	77.0992	39.015	77.0973	0.108
MD	MONTGOMERY	20814	226	484	7582	526	982
			39.0157	77.0973	39.005	77.0815	1.159
MD	MONTGOMERY	20814	582	526	0902	75	969
			39.0050	77.0815	39.005	77.0740	0.409
MD	MONTGOMERY	20815	902	75	8568	168	751

TMC Table (3/4)

(TMC_Identification.csv; 35 variables)

road_ timezone_ order name	tmcli near	borde frc r set	$\begin{aligned} & \text { f_sys } \\ & \text { tem } \end{aligned}$	urban code	$\begin{aligned} & \text { _facilt } \\ & \text { ype } \end{aligned}$	struct ype	thrul anes	route_ numb
America/N 1ew_York	110	1 N	1	92242	2	0	7	495
America/N 2ew York	110	1N		92242	2	0	8	495
America/N 3ew_York	110	1N		92242	2	0	8	495
America/N 4ew York	110	1N		92242	2	0	8	- 495

TMC Table (4/4)
 (TMC_Identification.csv; 35 variables)

route sign	route qual	altrten ame	aadt	$\begin{aligned} & \text { aadt_si } \\ & \text { ngl_ } \end{aligned}$	$\begin{aligned} & \text { aadt_co } \\ & \text { mbi } \end{aligned}$		nhs pct	strhnt _typ	strhn _pct	
2	1	495	5128749	5563	5142		100	1	100	
2	1	495	212690	12422	5871		100	1	100	
2	21	495	212690	12422	587		100	1	100	
2	21	495	5220218	13155	5819		100	1	100	

TMC Variables

No. TMC Original	No. Conflated HPMS
1 datasource	18 border_set
2 tmc	19 f_system
3 road	20 urban_code
4 direction	21 faciltype
5 intersection	22 structype
6 state	23 thrulanes
7 county	24 route_numb
8 zip	25 route_sign
9 start_latitude	26 route_qual
10 start_longitude	27 altrtename
11 end_latitude	28 aadt
12 end_longitude	29 aadt_singl
13 miles	30 aadt_combi
14 road_order	31 nhs
15 timezone_name	32 nhs_pct
16 tmclinear	33 strhnt_typ
17 frc	34 strhnt_pct
	35 truck

TMC Original Variables: 1-5

Attribute Label	Attribute Description
datasource	The data set this record comes from. This field is only included in Massive Data Downloader exports when choosing to merge the data sets into a single CSV file.
tmc	The unique 9-digit value identifying the TMC Segment. The roadway number, for TMC Segments on numbered roadways.
direction	the route number or common name of the roadway
intersection	the cross street and/or interchange associated with the TMC segment

TMC Original Variables: 6-12

Attribute Label	Attribute Description
state	the postal abbreviation of the state to which the TMC Segment is assigned County name
county	Zip code
ip	the latitude of the beginning of the TMC segment
start_latitude	
start_longitude the longitude of the beginning of the TMC segment	
end_latitude	the latitude of the end of the TMC segment
end_longitude	the longitude of the end of the TMC segment

TMC Original Variables: 13-17

| Attribute Label | \quad Attribute Description |
| :--- | :--- | | miles | the length of the TMC segment
 a numerical value indicating in what order the TMC segment
 would be encountered when traveling downstream relative
 to the other TMC segments on the same road |
| :--- | :--- |
| Timezone_name Local time zone name | |\quad| a reference to the "Linear TMC" that includes the TMC |
| :--- |
| Segment. Typically, several TMC Segments are part of a Linear |
| TMC, which usually represents a road corridor through a |
| single county. The purpose of this column is to provide |
| assistance for filtering and locating TMC Segments and |
| simplifying the process of linking consecutive TMC Segments. |

Conflated HPMS Variables: 18-19

Attribute Label	Attribute Description
Border_set	a code to indicate whether the TMC path is within a 5-mile radius of the FHWA-designated US-Canada and US-Mexico border crossings (Y=Yes, N=No)
F_system	The FHWA-approved Functional Classification System code. If multiple HPMS segments with different attribute values are assigned to a single TMC path, the value for the highest functional class (minimum code value) is assigned. 1. Interstate 2. Principal Arterial - Other Freeways and Expressways 3. Principal Arterial - Other 4. Minor Arterial 5. Major Collector 6. Minor Collector 7. Local

Conflated HPMS Variables: 20-21

Attribute Label	Attribute Description
urban_code	The U.S. Census Urban Area Code. If multiple HPMS segments with different attribute values are assigned to a single TMC path, the predominant value by length is assigned. < 999998 - The US Census Urban Area code 99998 - Small Urban Sections 99999 - Rural Area Sections
faciltype	The operational characteristic of the roadway. If multiple HPMS segments with different attribute values are assigned to a single TMC path, the predominant value by length is assigned. 1. One-Way Roadway 2. Two-Way Roadway 3. Ramp 4. Non Mainline 5. Non Inventory Direction 6. Planned/Unbuilt

Conflated HPMS Variables: 22-23

structype Code for roadway section that is a bridge, tunnel or causeway. If multiple HPMS segments with different attribute values are assigned to a single TMC path, the predominant value by length is assigned.

1. Bridge
2. Tunnel
3. Causeway
thrulanes The number of lanes designated for through-traffic in BOTH TRAVEL DIRECTIONS. If multiple HPMS segments with different attribute values are assigned to a single TMC path, the predominant value by length is assigned.

Conflated HPMS Variables: 24-27

Attribute Label	Attribute Description
route_numb	The signed route number. If multiple HPMS segments with different attribute values are assigned to a single TMC path, the predominant value by length is assigned.
route_sign	Code for the type of route signing. If multiple HPMS segments with different attribute values are assigned to a single TMC path, the predominant value by length is assigned.
route_qual	Code for the route signing descriptive qualifier. If multiple HPMS segments with different attribute values are assigned to a single TMC path, the predominant value by length is assigned.
altrtename	A familiar, non-numeric designation for a route. If multiple HPMS segments with different attribute values are assigned to a single TMC path, the predominant value by length is assigned.

Conflated HPMS Variables: 28-30

Attribute Label	Attribute Description
aadt	Annual Average Daily Traffic. If multiple HPMS segments with different attribute values are assigned to a single TMC path, the length-weighted average is assigned.
aadt_single	Annual Average Daily Traffic for single-unit trucks and buses. If multiple HPMS segments with different attribute values are assigned to a single TMC path, the length-weighted average is assigned.
addt_combi	Annual Average Daily Traffic for Combination Trucks. If multiple HPMS segments with different attribute values are assigned to a single TMC path, the length-weighted average is assigned.

Conflated HPMS Variables: 31-33

Attribute Label	Attribute Description
nhs	Code for a roadway that is a component of the National Highway System (NHS). If multiple HPMS segments with different attribute values are assigned to a single TMC path, the predominant "on-NHS" value (i.e., 1 through 9) by length is assigned.
nhs_pct	The percentage of the TMC path length that is designated as NHS by HPMS (applicable when multiple HPMS segments assigned to a single TMC path).
strhnt_typ	Code for a roadway section that is a component of the Strategic Highway Network (STRAHNET). If multiple HPMS segments with different attribute values are assigned to a single TMC path, the predominant value by length is assigned.

Conflated HPMS Variables: 34-35

Attribute Label	Attribute Description
strhnt_pct	The percentage of the TMC path length that is designated as STRAHNET by HPMS (applicable when multiple HPMS segments assigned to a single TMC path). This attribute value is calculated by the NPMRDS Development Team and is not an HPMS attribute.
Code for a roadway section that is a component of the truck National Truck Network (NTN) as defined by 23 CFR 658 . If multiple HPMS segments with different attribute values are assigned to a single TMC path, the predominant value by length is assigned	

Use Linear Reference System (LRS) to Link NPMRDS TMC and HPMS

Table 4.1: HPMS Sections File Structure

	Field Number	Field Name
Section	1	Year_Record
	2	State_Code
	3	Route_ID
	4	Begin_Point
	5	End_Point
	6	Data_Item
	7	Section_Length
	8	Value_Numeric
	9	Value_Text
	10	Value_Date
	11	Comments (Optional)

Italicized fields are used to report values and additional information pertaining to the data item (in Field 6).

TMC LRS Table

year_r ecord	stat e_c ode	route_i d	$\begin{aligned} & \text { begin_po } \\ & \text { int } \end{aligned}$	$\begin{aligned} & \text { end_poi } \\ & \text { nt } \end{aligned}$	data ite m	secti on_le ngth	$\frac{\mathrm{val}}{\substack{\mathrm{n} \\ \hline \\ \hline \\ \hline}}$	lue um ic	value_text	valu e_da te	com men ts
2015	37	$\begin{aligned} & 10000 \\ & 02610 \end{aligned}$	28.574	29.167	TMC	0.593		0	125-05197		
2015	37	$\begin{aligned} & 10000 \\ & 02610 \end{aligned}$	25.3522	28.0122	TMC	2.66		0	125-05198		
2015	37	$\begin{aligned} & 10000 \\ & 02610 \end{aligned}$	20.7391	24.8473	TMC	$\begin{array}{r} 4.108 \\ 2 \end{array}$		0	125-05199		
2015	37	$\begin{aligned} & 10000 \\ & 02610 \end{aligned}$	19.2246	20.5218	TMC	$\begin{array}{r} 1.297 \\ 2 \\ \hline \end{array}$		0	125-05200		
2015	37	$\begin{aligned} & 10000 \\ & 02610 \end{aligned}$	0	0.3336	TMC	$\begin{array}{r} 0.333 \\ 6 \end{array}$		0	125-10243		
2015	37	$\begin{aligned} & 10000 \\ & 02610 \end{aligned}$	28.0122	28.244		$\begin{array}{r} 0.231 \\ 8 \end{array}$		0	125N05198		

After TMC is Linearly Referenced to Route ID

- Any HPMS data items can be linked to TMC
- Other linearly referenced data can be linked to TMC
- Facilitate a whole new level of integration and application of TMC-based vehicle probe data
- NPMRDS v2
- Other vehicle probe data
- Linearly referenced TMCs will be available by March 2018

Part 2
 NPMRDS FOR PM3

Upcoming FHWA Guidance

- HPMS Field Manual Supplemental Guidance
- Report PM3 Metrics and related data into HPMS
- FHWA Operating Procedure for Processing Travel Time Based and Percent Non-SOV Travel Measures
- Methods to calculate PM3 Measures
- FHWA guidance on handling NPMRDS and other required data
- FHWA guidance on submitting State Biennial Performance Report
- Others

TPM Performance Measures

Safety	490.207			Number of fatalities	1
			(2)	Rate of fatalities per 100 million Vehicle Miles Traveled (VMT)	2
			(3)	Number of serious injuries	3
			(4)	Rate of serious injuries per 100 million VMT	4
			(5)	Number of non-motorized fatalities and non-motorized serious injuries	5
Pavement	490.307	(a)	(1)	Percentage of pavements of the Interstate system in Good condition	6
			(2)	Percentage of pavements of the Interstate system in Poor condition	7
			(3)	Percentage of pavements of the non-Interstate NHS in Good condition	8
			(4)	Percentage of pavements of the non-Interstate NHS in Poor condition	9
Bridge	490.407	(c)		Percentage of NHS bridges classified as in Good condition	10
				Percentage of NHS bridges classified as in Poor condition	11
Reliability	490.507	(a)		Percent of person-miles traveled on the Interstate that are reliable	12
			(2) P	Percent of person-miles traveled on the non-Interstate NHS that are reliable	13
GHG		(b)		Percent change in tailpipe CO_{2} emissions on the NHS compared to CY 2017	14
Freight	490.607			Truck Travel Time Reliability (TTTR) Index	15
CMAQ - Congestion	490.707	(a)		Annual Hours of Peak Hour Excessive Delay (PHED) Per Capita	16
		(b)		Percent of Non-Single Occupancy Vehicle (SOV) Travel	17
CMAQ - Emissions	490.807			Total Emissions Reduction	18

[^0]
NPMRDS Supports Four PM3 Measures

- Reliability (2)
- Percent of person-miles traveled on the Interstate that are reliable
- Percent of person-miles traveled on the non-Interstate NHS that are reliable
- Freight (1)
- Truck Travel Time Reliability (TTTR) Index
- CMAQ Peak Hour Excessive Delay (PHED)(1)
- Annual Hours of PHED Per Capita

Summary of Travel Time Based 4 Measures

Measure	Applicability	If NPMRDS Used	Metrics to HPMS by 6/15/2018	State to Set Targets by 5/20/2018
Reliability Interstate	Mainline Interstate	"All Vehicle", 15-minute	$\begin{aligned} & \text { LOTTR (}=80^{\text {th }} \\ & \text { TT } \left./ 50^{\text {th }} \text { TT }\right) \end{aligned}$	2-year, 4 -year
Reliability - Non-Interstate NHS	Mainline nonInterstate NHS	"All Vehicle", 15-minute	$\begin{aligned} & \text { LOTTR }\left(=80^{\text {th }}\right. \\ & \left.\mathrm{TT} / 50^{\text {th }} \mathrm{TT}\right) \end{aligned}$	4-year
Freight	Mainline Interstate	"Truck" (use "All Vehicle" if "Truck" not available), 15-minute	$\begin{aligned} & \mathrm{TTTR}=\left(95^{\text {th }}\right. \\ & \left.\mathrm{TT} / 50^{\text {th }} \mathrm{TT}\right) \end{aligned}$	2-year, 4 -year
PHED	Mainline NHS in applicable Urbanized Area	"All Vehicle", 15-minute	Total PHED in person-hours	4-year

MPO and State TPM Reporting

2018 Timeline

Travel Time Related Metrics to HPMS by June 15, 2018

Performance Measures	Segment-Level Performance Metrics	Number of Metrics*
Reliability (Interstate, nonInterstate NHS)	$\left.\begin{array}{l}\text { 1. LOTTR } \\ \text { 2. } 80^{\text {th }} \text { Travel Time } \\ \text { 3. } 50^{\text {th }} \text { Travel Time }\end{array}\right] \times 4$ time 4. Directional AADT 5. Occupancy factor	14
Freight	$\left.\begin{array}{l}\text { 1. TTTR } \\ \text { 2. } 95^{\text {th }} \text { Travel Time } \\ \text { 3. } 50^{\text {th }} \text { Travel Time }\end{array}\right] \times 5$ time	15
PHED	1. PHED	1

Reliability

- Interstate Travel Time Reliability Measure: Percent of person-miles traveled on the Interstate that are reliable
- Non-Interstate Travel Time Reliability Measure: Percent of person-miles traveled on the nonInterstate NHS that are reliable

Data Requirements: Reliability

Relevant Data

- Travel times
- NHS travel time segments

Data Source(s)

- National Performance Management Research Data Set (NPMRDS), OR
- Equivalent data set
- AADT/volumes
- Annual traffic volume (AADT x 365)
- Occupancy factors
- Highway Performance Monitoring System (HPMS)

Applicable Time Periods: Reliability

Full Year (Jan 1-Dec 31)

Weekdays
(Mon - Fri)

Total Four Time Periods

Calculate LOTTR Metric

- Download "all vehicle" 15-minute travel time data from NPMRDS v2
- Group data into 4 time periods for each TMC
- Weekday 6:00-10:00 am
- Weekday 10:00 am-4:00 pm
- Weekday 4:00-8:00 pm
- Weekend 6:00 am-8:00 pm
- Rank travel times in each group to obtain $80^{\text {th }}$ and $50^{\text {th }}$ travel times for each TMC
- LOTTR $=80^{\text {th }}$ travel time $/ 50^{\text {th }}$ travel time for each TMC

Level of Travel Time Reliability (LOTTR) Metric (Example)

$\frac{\text { Longer Travel Time (80th) }}{\text { Normal Travel Time (50th) }}=\frac{\# \text { seconds }}{\# \text { seconds }}=$ Level of Travel Time Reliability Ratio

Monday - Friday (Single Segment, Interstate Highway System)	Lem -10 am	LOTTR $=\frac{44 \mathrm{sec}}{35 \mathrm{sec}}=1.26$

HPMS Submittal: Reliability

Starting in 2018, State DOTs report LOTTR metrics and the corresponding $80^{\text {th }}$ and $50^{\text {th }}$ percentile times for each time period and directional AADT for each reporting segment by June 15 of each year, for the previous year's measures

Calculating Travel Time Reliability Measures (Example)

Freight

- Freight Reliability Measure: Truck Travel Time Reliability (TTTR) Index
- The sum of maximum TTTR for each reporting segment, divided by the total Interstate system miles

Data Requirements: Freight Reliability

Relevant Data

- Truck travel times
- Interstate travel time segments

Data Source Options

- NPMRDS, OR
- Equivalent data set

Applicable Time Periods: Freight

Full Year (Jan 1-Dec 31)

Weekdays (Mon-Fri)	Weekends
$6-10 a m$	6am - $8 p m$
$10 \mathrm{am}-4 \mathrm{pm}$	
$4-8 \mathrm{pm}$	
Overnight (all days) $8 p m-6 a m$	
Total Five Time Periods	

Calculate TTTR Metric

- Download "truck" and "all vehicle" 15-minute travel time data from NPMRDS v2
- If "truck" speed is empty, use "all vehicle" value, if available
- Group data into 5 time periods for each TMC
- Weekday 6:00-10:00 am
- Weekday 10:00 am-4:00 pm
- Weekday 4:00-8:00 pm
- Everyday Overnight 8:00 pm-6:00 am
- Weekend 6:00 am-8:00 pm
- Rank travel times in each group to obtain $95^{\text {th }}$ and $50^{\text {th }}$ travel times for each TMC
- TTTR $=95^{\text {th }}$ travel time $/ 50^{\text {th }}$ travel time for each TMC

Freight Reliability Metric (Example)

$\frac{\text { Longer Truck Travel Time (95th) }}{\text { Normal Truck Travel Time (50th) }}=\frac{\# \text { seconds }}{\# \text { seconds }}=$ Truck Travel Time Reliability (TTTR) Ratio

Truck Travel Time Reliability (TTTR)

(Single Segment, Interstate Highway System)

Monday - Friday	$6 \mathrm{am}-10 \mathrm{am}$	TTTR $=\frac{72 \mathrm{sec}}{50 \mathrm{sec}}=1.44$
	$\frac{10 \mathrm{am}-4 \mathrm{pm}}{4 \mathrm{pm}-8 \mathrm{pm}}$	TTTR $=1.39$
	$6 \mathrm{am}-8 \mathrm{pm}$	TTTR $=1.49$
Overnight	$8 \mathrm{pm}-6 \mathrm{am}$	TTTR $=1.31$
Maximum TTTR		TTTR $=1.20$

HPMS Submittal: Freight

Starting in 2018, State DOTs report TTTR metrics and the corresponding $95^{\text {th }}$ and $50^{\text {th }}$ percentile times for each time period and each reporting segment by June 15 of each year, for the previous year's measures

Calculating Freight Reliability Measure (Example)

$$
\text { TTTR Index }=\frac{\sum \text { All segment length weighted TTTR }}{\sum \text { All serment lengths }}
$$

Segment length (mi.)

$$
\text { TTTR Index }=\frac{11.25}{8.000 \mathrm{mi}}=1.41
$$

Measure: TTTR Index, full extent of the Interstate system

Peak Hour Excessive Delay (PHED)

- Annual Hours of Peak Hour Excessive Delay (PHED) Per Capita

Applicability: PHED

- Areas with the following criteria:

Area Characteristics

- Designated urbanized area,
- Contains NHS mileage, AND
- Population over 200,000*

Nonattainment or Maintenance

 Area- ozone $\left(\mathrm{O}_{3}\right)$,
- carbon monoxide (CO), OR
- particulate matter (PM_{10} or $\mathrm{PM}_{2.5}$)
- All MPOs and State DOTs that have NHS mileage that overlaps with an applicable urbanized area must coordinate on a single, unified target and report on the measures.
* Phase In: For the first performance period only, the population criteria applies to urbanized areas with populations over 1 million.

Data Requirements: PHED

Relevant Data

- Urbanized Area Boundary
- Reporting Segment Length

Data Source Options

- US Decennial Census
- HPMS
- NPMRDS, OR
- Equivalent data set
- Travel Time in 15-minute - NPMRDS, OR
intervals
- Hourly Traffic Volume
- Equivalent data set
- Hourly continuous traffic volume counts, OR
- Derived from AADT reported to the HPMS
- Annual Vehicle Classification for Buses, Trucks, and Cars
- Annual Vehicle Occupancy
- Annual traffic volume counts, OR
- AADT, AADT single unit, and AADT combination as reported to the HPMS
- Data provided by FHWA, OR
- Alternative estimate that is more specific

Calculate PHED Metric

- Download "all vehicle" 15-minute travel time data from NPMRDS v2
- Only for Peak Period (weekday 6-10 am; weekday 3-7 pm or 4-8 pm)
- Determine threshold for excessive delay for each (TMC) segment
- 20 mph , or 60% of posted speed limit, whichever is greater
- Covert threshold speed to threshold travel time
- Calculate travel time segment delay
- NPMRDS travel time - threshold travel time (>=0)
- Convert the travel time segment delay to person-hours
- Hourly volume $\div 4$ (to get vehicle hours of delay)
- Average Vehicle Occupancy (to get person-hours of delay)
- Weighted average of occupancy factors for cars, buses, and

PHED Metric (Example)

0.500 Mile Reporting Segment

Calculating PHED Measure (Example)

4.46M person-hours excessive delay 1.05 M urbanized area population
= 4.3 hours per capita
Measure: Peak hour excessive delay per capita

Part 3
 NPMRDS FOR OTHER APPLICATIONS

Applications

- Interstate Speed Profiles based on NPMRDS 2016 data
- Event analysis based on vehicle probe data
- Others
- NPMRDS and safety datasets
- NPMRDS to improve MOVES and Noise modeling
- NPMRDS to improve travel demand models
- NPMRDS to improve transit modeling

2016 Interstate Speed Profiles: Average Speed

Speed by Hour of the Day

—Urban, Weekday ---Urban, Weekend —Rural, Weekday Rural, Weekend

Hourly Speed Pattern by Day of the Week - Urban

 Federal Highway Administration

Hourly Speed Pattern by Day of the Week - Rural

Peak Hour Speed by Month

Traffic before Thanksgiving

Hourly Travel Time Index (TTI) on Area Freeways in the Days Before Memorial Day Weekend

http://www.tpbne.ws/featured/hitting-the-road-for-memorial-day-think-twice-before-leaving-thursday-afternoon/

Traffic Impact of WMATA SafeTrack Short-Term Rail Repair, 2016

http://www.tpbne.ws/featured/how-safetrack-has-impacted-traffic-on-area-roadways-so-far/
http://www.tpbne.ws/featured/get-
ready-for-traffic-to-pick-back-up-as-part-of-september-shock/

Daily Morning Traffic Conditions in August and September 2015

National Capital Region
Transportation Planning Board

Morning Travel Delay Consistently Jumps by 15-45\% Between August and September Each Year

A Day without Metro (1/2)

Regional Core Hourly Travel Time Index (TTI)
Day of the Shutdown vs. Typical Conditions

The regional core includes the District of Columbia, Arlington, and Alexandria.
—Typical conditions
——March 16
http://www.tpbne.ws/uncategorized/a-day-without-metro-meant-worse-traffic-for-some-but-not-others/

A Day without Metro (2/2)

Inbound Travel Times on Freeways Inside the Beltway
During the AM Peak Hour (7:00-8:00 AM)

http://www.tpbne.ws/uncategorized/a-day-without-metro-meant-worse-traffic-for-some-but-not-others/

Congestion Dashboard

https://www.mwcog.org/congestion/

Planning Time Index on the Interstate System Total AM Peak (6:00-10:00 am) and PM Peak (3:00-7:00 pm)

Questions and Comments

Wenjing Pu
1200 New Jersey Ave. SE
Washington DC 20590
202-366-5024
Wenjing.Pu@dot.gov

[^0]: U.S. Department of Transportation Federal Highway Administration Office of Highway Policy Information

