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INTRODUCTION
The Federal Highway Administration (FHWA) and the transportation 
community have a longstanding goal to improve the performance 
and extend the life of transportation infrastructure. The Moving 
Ahead for Progress in the 21st Century Act emphasizes risk-based 
and performance-based requirements to plan and program the most 
efficient use of Federal transportation funds. FHWA issued a draft notice 
of proposed rulemaking in 2015 and a final ruling in 2017 to establish 
pavement performance measures, targets, and reporting.(1) The ruling 
defines targets using the performance metrics cracking (percent), rutting 
(inch), and international roughness index (IRI) (inches/mile) for flexible 
pavements. The ruling further defines cracking (percent), faulting (inch), 
and IRI for rigid pavements.(2)

State highway agencies (SHAs) establish performance targets and 
measure progress to assess whether they are meeting their targets; 
they also recognize that routinely collected condition assessment data 
are a lagging performance indicator. As advanced pavement design 
methods, sophisticated construction technologies, and digital data 
collection become the norm, quality assurance (QA) and construction 
data serve as leading indicators of pavement performance. Those 
indicators provide the basis for developing performance-related 
specifications (PRS) for QA and evaluate the impact of deviations 
from specifications during construction on long-term performance. 
Construction-stage data offer an opportunity to enhance an SHA's 
pavement management system (PMS).

This project evaluated whether QA data and other as-built construction 
data from four SHA databases have a strong correlation to pavement 
performance. The project explored different data integration and 
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statistical procedures required to improve performance 
prediction at both project and network levels. The goal 
was to develop practical recommendations and best 
practices to include these data within the pavement 
management decision-making framework. These 
data may provide a foundation to evolve, expand, 
and improve pavement testing and data processing 
techniques. As SHAs begin to adopt the framework, 
they will facilitate and encourage the development of 
pavement testing and data processing methodologies 
within each SHA.

Case studies demonstrate how using different types 
of construction and QA data can improve PMS 
performance forecasting and validate them as 
leading indicators of performance. This research 
yields recommendations and best practices to include 
SHA QA and construction data within the pavement 
management decision-making framework.

QA FOR PERFORMANCE PREDICTION  
WITH CONSTRUCTION DATA
The project team reviewed SHA specifications and 
published literature related to conventional QA 
procedures and innovative pavement evaluation 
technologies. QA data typically are available in 
either QA databases or SHA records. Many of these 
parameters—including gradation parameters, hot mix 
asphalt (HMA) volumetrics, density values (lab and 
field), layer thicknesses, binder type, portland cement 
concrete (PCC) strength, aggregate type, and PCC mix 
design index properties—are directly related to future 
pavement performance. Field data and mechanistic-
empirical models, such as the AASHTOWare® 
Pavement ME, demonstrate that relationship.(3) Table 1 
and table 2 summarize QA data from HMA and PCC 
pavement construction and related performance.

Table 1. Generally established relationships between QA parameter and flexible pavement 
structural performance.

Conventional QA Parameters Relationship to Performance

Original G*/sinδ at specified high pavement temperature.
Indicator of permanent deformation potential in HMA pavements.

RTFOT residue G*/sinδ at specified high pavement temperature. 

PAV residue G* sinδ at specified intermediate pavement 
temperature.

Indicator of load-associated cracking potential in HMA pavements.

PAV residue creep stiffness, S, at 10°C above the specified low 
pavement temperature.

Indicator of thermal cracking potential in HMA pavements.
PAV residue m-value at 10°C above the specified low pavement 
temperature.

Field HMA density, voids, and HMA thickness. Indicator of cracking and rutting/permanent deformation potential 
in HMA pavements.Mix-design gradation, volumetrics.

RTFOT = rolling thin film oven test; PAV = pressure aging vessel; G* = complex shear modulus; δ = phase angle;  
m = slope of the master curve at 60 s.

Table 2. Generally established relationships between QA parameter and rigid pavement structural performance.

Conventional QA Parameters Relationship to Performance

w/c ratio, cement content, fly ash replacement levels, air content, 
aggregate gradation, fineness modulus, unit weight, and aggregate 
absorption capacity.

Indicator of PCC strength and cracking/faulting potential.

PCC compressive/flexural strength, thickness. Indicator of cracking and faulting potential.

Aggregate type/CTE. Indicator of cracking due to thermal stresses.

Dowel bar diameter and alignment. Indicator of faulting potential.

Temperature and humidity at time of construction  
(in construction records).

Directly related to built-in temperature and moisture gradients  
that affect cracking.

CTE = coefficient of thermal expansion; w/c = water to cementious materials.
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Derived Parameters
Past studies derived engineering and performance 
parameters to characterize materials as a function of 
material index properties and mix-design variables.(4-8)

The derived parameters, based on laboratory test 
results and mechanistic-empirical models, are directly 
correlated to performance. The upside of those derived 
parameters is that they are developed as a function 
of multiple index properties that, in combination, can 
capture the collective effect of material properties 
and mix design, offering a stronger correlation to 
performance than individual QA material properties. 
For example, derived parameters include the dynamic 
modulus of HMA layer (figure 1), which is correlated 
to flexible pavement cracking and other distresses. The 
resistivity parameter (figure 2) is correlated to rutting. 
The creep compliance parameter (figure 3) is correlated 
to transverse cracking. Permeability (figure 4) is 
associated with stripping and other material issues. The 
derived parameters in figure 1 through figure 4 are a 
function of mix volumetrics, aggregate properties, binder 
properties, and in-place compaction measurements.

Where:

|E*| = dynamic modulus, 105 psi.

δ, α = mix-specific fitting parameters.

β, γ = mix-specific parameters representing shape of the 
sigmoidal function in figure 1.

tr = time of loading at the reference temperature.

Where:

δ, Gsb , and VMA relate to mix volumetrics.

Sa = specific surface of aggregate, a gradation 
parameter combining effect of three sieve sizes.

Where:

D1 and m relate to test temperature, mix volumetrics, 
and binder properties.

t = response time.

Where VTMEff = the effective air void content,  
a function of in-place air voids.

For this study, the project team used engineering 
relationships developed in previous studies and 
approaches adopted for aggregating or clustering 
QA materials data, either directly or in combination 
with other material properties and pavement design 
variables, to develop cluster parameters for use in 
predicting future pavement performance.

REVIEW OF STATE PRACTICES—QA  
AND PMS DATABASES
The project team surveyed SHAs during 2015 and 
2016 to collect QA and PMS database information 
and to assess their use for studying performance 
prediction. The SHAs’ QA testing programs varied 
in practice, ranging from the use of conventional 
tests to use of innovative testing procedures and 
intelligent construction technologies. The innovative 
testing procedures included the use of nondestructive 
technologies. Those devices provide results over either 
continuous coverage or larger sampling points in a 
rapid manner and enable contractors to effectively 
control the process in certain cases. The team reviewed 
specifications, QA practices, QA data collection, test 
data storage systems, PMS, condition data collection 
procedures, and PMS performance forecasting models. 
The interviews indicated the following:

• SHAs are not set up to fully automate QA and PMS 
data integration and thus directly integrate QA 
data variables into a PMS.

Figure 1. Equation. Estimation of HMA dynamic modulus.(4)

Figure 2. Equation. Resistivity parameter correlated to 
allowable traffic for rutting.(6,7)

Figure 3. Equation. Expression to determine  
creep compliance.(4)

Figure 4. Equation. Estimation of permeability based 
on mix gradation and volumetrics.(6)
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• SHAs acknowledge relationships between QA 
data variables and future pavement performance 
with empirical evidence.

• SHAs indicate that QA data can be further used 
when routinely updating construction specifications 
as well as in a PMS.

• SHAs expressed interest in bridging the gap 
between construction QA and PMS activities. The 
reasons for each SHA's interest may vary.

• SHAs recognize the increased scope for facilitating 
the integration process by using the enhancements 
in as-built data collection that are largely enabled 
by automation in construction technologies. Current 
practice does not permit the use of as-built records.

• SHAs vary in the extent of QA data maintained, the 
types of data collected, the extent of electronically 
accessible data, and the methods of storage. The 
efforts involved in assembling and integrating 
databases remain unique to each SHA.

• SHAs recognize that data integration that allows 
mapping performance to QA data by project or by 
location requires significant effort.

Based on information obtained about datasets that can 
potentially be used to establish and validate correlations 
between QA data and performance, the project team 
selected data from four SHAs for further analyses and 
performing case studies. The selection of those SHAs 
enabled a wide range of analyses of different pavement 

types, QA parameters, innovative technologies, 
supplementary database usage in the SHA, and levels 
and tiers of analyses.

DATA ANALYSES
The project conducted a preliminary analysis to verify  
if QA and other construction data can:

• be integrated into PMS databases based on 
location information.

• include parameters known to affect pavement 
performance.

• be used to calculate cluster parameters.

• show correlations with future distress and IRI 
development—thus, the data can serve as leading 
indicators of future pavement performance.

• be integrated into the SHA's PMS for improved 
pavement performance forecasting.

The project team completed both network- and project-
level analyses of three SHA databases to understand 
the impact of QA parameters on future pavement 
performance; the team conducted case studies using 
further data from those three SHAs and an additional 
SHA. Table 3 summarizes the performance indicators 
most viable for long-term prediction, based on available 
data for flexible and rigid pavements and the case 
studies used for each State. The team identified the 
QA parameters showing the strongest correlations to 
performance and having a significant impact on future 

Table 3. Summary of analysis types, performance prediction evaluations, and case studies.

State Rutting Faulting Cracking IRI Case Study

1

F, N, Q, A
F, N, Q, V
F, N, Q, D, A
F, N, Q, D, V
F, N, Q, D, A, T, C# 

—

F, N, Q, A
F, N, Q, V
F, N, Q, D, A
F, N, Q, D, V
F, N, Q, D, A, T, C# 

— Benefit of adding traffic and 
climate data.

2 F, N, Q, A
F, P, Q, R, W, A#

R, N, Q, A
R, P, Q, M, A#

F, N, Q, A
R, N, Q, A
F, P, Q, RW, A#

F, N, Q, A
R, N, Q, A

Correlate data from nontraditional 
QA/network-level tests to 
performance.

3+
F, N, Q, A
F, N, Q, D, A
F, N, Q, A

—
F, N, Q, A
F, N, Q, D, A
F, N, Q, A

— Implement improved prediction 
model in the DOT’s PMS.

4 F, P, Q, IC, A# — F, P, Q, IC, A# —
Demonstrate methods to 
“indirectly” link modern 
technologies to performance.

—No data.
# = in case study; + = State has functional and structural cracking in pavement management database; A = averages; C = climate data;  
D = QA derived parameters; DOT = department of transportation; F = flexible pavement type; IC = intelligent compaction data;  
M = MIT-SCAN; N = network-level analysis; P = project-level analysis; Q = traditional; QA data; R = rigid pavement type;  
RW = rolling weight deflectometer; T = traffic data; V = coefficient of variation.
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Table 4. Summary of HMA QA data variables included—and associated p-values—in cracking, rutting,  
and IRI prediction models.

HMA QA 
Variables

State 1 
HMA 

Cracking

State 2 
HMA 

Cracking

State 3 
HMA 

Cracking
State 1 
Rutting

State 2 
Rutting

State 3 
Rutting State 1 IRI State 2 IRI State 3 IRI

Percent passing 
¾-inch sieve 0.0254 — <0.0001 0.0925 — 0.0022 — — —

Percent passing 
no. 4 sieve <0.0001 — — — — — — — —

HMA percent 
passing no. 40 
sieve

— — — 0.0272 — — — — —

HMA percent 
asphalt binder — — — 0.0144 <0.0001 — — 0.0299 —

HMA bulk density 0.0008 — — — — — — —

HMA lab  
air voids — — 0.0001 0.0261 0.0318 — 0.1172 —

HMA in-place  
air voids 0.0018 — — 0.0313 — — — — —

Computed  
HMA E* <0.0001 — — 0.0005 — — — — —

Mix type  
(neat/RAP) — — 0.1222 — — — — — —

PG binder — — 0.1222 — — 0.0169 — — —

Traveling speed 
deflection, d — <.0001 — — <.0001 — — <.0001 —

—No data.
E* = dynamic modulus of HMA; RAP = reclaimed asphalt pavement.

performance. The analysis included models aligned with 
laboratory and field observations in past research studies 
using QA data items as individual variables and in data 
clusters.

SHAs need to overcome challenges posed by integrating 
multiple years of linked data across multiple databases. 
QA data within an SHA are stored in various unstructured 
and disconnected databases that are maintained by 
different departments and personnel. Assembling data 
from various stages of a project may require significant 
effort. The data are also archived for different periods. 
Some electronic data related to projects over a decade 
old have been converted to hard copies. The various QA 
data items were aggregated at different levels—from 
the whole project to specific locations within a project. 
The level of aggregation has a significant impact on the 
ability to use the data for performance forecasting. In 
addition to construction QA and PMS, databases were 
incorporated into integration procedures that correlate 
QA and PMS data with their referenced project and 
location linked.

The statistical procedures adopted included the  
following steps:

1. Review of data.

2. Development of simple linear regression models for 
forecasting future performance.

3. Statistical analysis of data to first, identify correlations 
between given distress and QA test data; second, 
develop a general linear model (GLM) for each 
model; and third, formulate the final model.

The set of significant variables (i.e., parameters with a 
p-value less than 15 percent) are tabulated in table 4 
and table 5 for HMA and PCC pavements respectively. 
The values are based on the steps listed above and 
the variables that were identified as having a strong 
correlation with pavement distress and IRI. The final 
research report describes the statistical models and 
provides the statistics associated with each model.(9)
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Table 5. Summary of PCC QA data variables included—and associated p-values—in cracking and faulting models.

PCC QA Variables JPCP Cracking (Fatigue) Faulting

w/c ratio 0.0009 —

PCC unit weight 0.0002 —

Coarse aggregate 
absorptivity — <.0001

Sand equivalent — <.0001

PCC 7-d  
compressive strength — 0.0075

MIT-SCAN 
(misalignment 
parameter, S) — <.0001

JPCP = joint plain concrete pavement.

Evaluation of Derived Parameters  
as Indicators of Performance
The statistical analyses performed using the derived 
parameters as model inputs significantly improved 
performance predictions. Table 6 summarizes the 
R2 obtained for the prediction models based on the 
conventional QA parameters directly obtained from 
State QA databases and for the models developed 
using the derived parameters. Based on goodness of fit, 
the following models improved in many cases: average 
cracking (remained the same), average rutting, and 
coefficient of variation (COV) of rutting in State 1; and 
structural cracking in State 3. The functional cracking 
model did not improve; derived parameters capture the 
material parameters affecting the structural cracking 
mechanism. 

CASE STUDIES
The project team considered a wide range of QA 
data elements during the statistical analyses. The case 
studies addressed additional considerations required 
for an SHA to integrate construction data with PMS. An 
SHA may decide to include other databases or select 
nontraditional QA tests and network-level tests and 
incorporate select parameters into its PMS.

Case Study with State 1 DOT—Using Traffic 
and Climate Data
State 1 DOT analyses predicted cracking and rutting 
performance using gradation, mix volumetrics, in-place 
density, and AASHTOWare Pavement ME level 
3-computed dynamic modulus parameters as significant 
independent variables. The traditional PMS model in an 
SHA PMS uses only age as a variable. This case study 
demonstrated the value of integrating other SHA data. 
State 1 analysis was extended to consider the impact of 
traffic and climate in addition to conventional QA and 
construction data, using the model form shown in figure 
5 for cracking. The revised model statistics resulted in 
a 45-percent increase in R2, a 17 percent decrease in 
COV, and an 18-percent decrease in standard error.

Table 6. Summary of goodness of fit 
using QA data and derived parameters.

State Model
R2 for 

Models with 
Conventional 

QA Data

R2 for Models 
with Derived 
Parameters

State 1 

Average cracking 42 42

COV cracking 40 59

Average rutting 27 46

COV rutting 26 25

State 3

Functional cracking 21 13

Structural cracking 36 45

Rutting 19 14

Figure 5. Equation. Modified version of PMS cracking 
prediction model form.
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Where:

a0 , an , ak , aj = regression coefficients.

AGE = pavement age in years.

CLIM = climate-related variables.

CRK = alligator fatigue cracking.

QA = QA variables.

Others = other variables, such as layer thickness.

Case Studies with State 2 DOT—Using 
Advanced Test Methods
Data from State 2 DOT were used to evaluate the 
correlation of a traveling speed deflection testing 
device—the rolling weight deflectometer-(RWD)
based structural condition monitoring data—to HMA 
performance, as well as data from MIT-SCAN-based 
dowel misalignment testing to joint faulting within 10 yr 
of construction.

A rehabilitation project from 2008 on a State highway in 
State 2 showed high levels of preoverlay distress along 
the entire segment. RWD test data soon after construction 
showed higher deflections and lower structural capacity 
on one segment of the rehabilitation project. Postoverlay 
fatigue, rutting, and IRI were higher from 2008 to 2013 
in this segment, correlating with a measurement from 
an innovative technology to field performance. After a 
second overlay in this segment in 2013, the distresses 
reported were uniform and low along the entire project. 
Statistical analysis used the model form in figure 6.

Figure 6. Equation. Model form to estimate  
distress or IRI.

Where:

Fault = average transverse joint faulting, inches.

S = dowel misalignment, mils.

α, β = regression coefficients.

Case Study with State 3 DOT—
Incorporating Performance Predictions  
into PMS
This case study demonstrated the ultimate application 
of the QA data-based performance predictions to PMS 
data. The study used performance forecasting curves for 
seven pavement families and demonstrated methods to 
incorporate data items identified as having a significant 
impact on pavement performance. The methodology in 
this case study followed these steps:

1. Identify the pavement type of interest and the 
performance criteria and determine existing PMS 
performance forecasting models for the identified 
pavement types of interest.

2. Determine which QA data items that affect 
performance can be used as leading indicators  
of performance. 

3. Develop correction factors for the performance 
forecasting models, using the QA data items 
identified as leading indicators, and adjust PMS 
model outputs as needed. 

4. Evaluate predictions of performance with correction 
factors and characterize improvements in goodness 
of fit and bias. The case study showed that the bias in 
the existing models was remedied significantly using 
the construction QA parameters.

This case study examined the forecasting models for 
structural cracking index based on QA data, laboratory 
air voids, HMA binder type, and percent passing ¾-inch 
sieve, and these variables were deemed significant. The 
R2 of the PMS model was 21.9 percent and showed 
significant bias in predictions based on hypothesis testing 
that slope = 0. An adjustment factor was developed as 
a function of binder type, air voids, and percent passing 
¾-inch sieve. The revised forecasting model reported R2 
was 50.0 percent and eliminated bias in the predictions.

Where:

Distress or IRI = fatigue cracking or rutting or IRI.

δ = maximum deflection class (<15 mils = low; >15 = 
high).

β0, β1 = regression coefficients.

A second case study with data from eight projects 
correlated dowel misalignment at the time of construction 
with performance 6 yr after construction, using the 
MIT-SCAN. A nonlinear model illustrated the measure 
of dowel alignment as a potential leading indicator of 
faulting development. The model form is presented in 
figure 7.

Figure 7. Equation. Faulting as a function of dowel 
misalignment.
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Case Study with State 4 DOT—Incorporating 
Data from Intelligent Construction
This case study determined whether measurements 
from new construction technologies, such as IC, can 
serve as indicators of key material properties, such as 
density, that are known to have a significant impact 
on pavement performance. When a relationship 
is established between HMA density and future 
pavement performance, then perhaps IC outputs can 
be incorporated into future pavement performance 
forecasting models and used effectively for PMS. The 
results from this case study were inconclusive.

CONCLUSIONS
The research showed promising results supporting the 
use of QA and construction data as leading indicators 
of performance prediction. The following are key 
conclusions:

1. Based on the review of SHA practices, States are 
not set up to directly correlate QA data with PMS 
condition data; however, an interest exists within 
SHAs to complement PMS activities with information 
from construction.

2. The enhancements in as-built data collection, largely 
enabled by automation in construction technologies, 
provide increased scope for facilitating the 
integration process.

3. The extent and types of material property data in 
databases vary among SHAs; each SHA uses unique 
prediction models. Individual analyses were required 
for each distress type to identify significant variables 
and develop performance models. Integration of 
QA databases requires significant effort and a 
customized effort for each SHA.

4. Statistical models can be developed for the 
prediction of all distress types identified in the FHWA 
ruling.(2) The following QA data, listed by distress 
type, were found to be significant:

a. Flexible pavement cracking—HMA aggregate 
gradation, binder type, air voids, density, 
modulus, or mix type (neat/RAP).

b. Flexible pavement rutting—HMA aggregate 
gradation, binder content, air voids, and 
modulus.

c. Flexible pavement IRI—HMA binder content  
and air voids (model minimally analyzed).

d. Rigid pavement cracking—PCC mix-design index 
properties, such as w/c materials content, and 
unit weight.

e. Rigid pavement faulting—PCC mix-design 
index properties, such as coarse aggregate 
absorptivity, sand equivalence, and PCC 7-d 
compressive strength.

6. Innovative technologies used in quality control, 
construction, and pavement evaluation have the 
potential to predict long-term performance.

7. The findings of this study are promising and suggest 
that QA data can be integrated into a State PMS to 
improve distress prediction models.

GUIDELINES FOR USING QA DATA AS 
LEADING INDICATORS IN PMS
The following factors shaped the development of these 
guidelines:

• States have made progress toward adopting 
digital data collection, narrowing the gap between 
construction, performance, and asset management. 
Efforts by States to implement AASHTOWare 
Pavement ME and PRS for construction provide 
the impetus for SHAs to set up comprehensive 
laboratory and field-testing programs to 
collect material test data directly related to 
pavement performance. 

• QA and construction data as leading indicators 
of performance can and should gain momentum 
through these efforts and support pavement 
management. Guidelines should be part of the 
progression toward the use of recent technologies 
to improve existing processes.

• SHAs all collect QA and pavement condition 
data. Data collection and use vary among SHAs. 
Guidelines are a set of unified and generalized 
recommendations.

• Recommendations do not identify the specific QA 
and construction parameters that will be significant 
for an SHA to develop performance prediction 
models; rather, the recommendations can inform 
guidelines for statistical modeling of data available 
to the SHA.

• SHAs are at various levels of advancement with 
their QA testing programs and construction quality 
database systems. The guidelines address all tiers 
of QA and construction programs. The guidelines 
support SHAs that will gradually scale up their QA 
and construction programs. QA and construction 
data are categorized under three tiers, shown in 
table 7.
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GUIDELINES FOR INTEGRATING QA AND 
CONSTRUCTION DATA INTO PMS
Figure 8 illustrates a framework for integrating QA and 
construction data with PMS. The guidelines are divided 
into three parts: recommendations for data collection; 
recommendations for data processing, conflation, and 
integration; and recommendations for performance 
prediction and integration into PMS.

Recommendations for Data Collection
SHA practices in QA and construction data collection 
have evolved over the years. The data collection 
recommendations cover best practices for handling 
legacy data and data from future projects (i.e., the 
testing parameters) as well as the considerations for 
integrating data into PMS.

Recommendations for Data Collected to Date in  

an SHA and Its Use—Legacy Data
Several years ago, as SHAs transitioned from manual 
to electronic data collection procedures, they designed 
and developed databases for each material type. Those 
databases stored test results using limited referencing 
parameters, and they provided project or contract 
information, route number(s), lot number, test date, and 
stationing. Linking databases using spatial mapping 
was a challenge; such efforts were mostly exploratory 

or for research needs. SHAs adopted alternatives to 
linking databases to combine QA and performance 
data by project or contract. Generally, legacy data 
are not amenable for integrating QA and performance 
databases by test location or at a project level. In the 
absence of suitable data collection methods, providing 
relative mapping across different referencing systems 
may be a challenge. Because SHAs cannot augment 
existing data to higher levels of data operability, they 
must consider alternatives to best use all data available 
and conflate QA performance datasets for immediate 
use in performance forecasting.

Recommendations for QA Data Collection on Future 

Projects—Future Data
This research provided two recommendations. First, 
for future data collection, every QA or construction 
data record must possess a global location referencing 
system. The Global Position System (GPS) location 
referenced must be accurate enough to enable 
identification of the specific location within a few inches, 
and every location on the project must be mapped to 
the associated data to enable direct correlation. All 
data collected at the time of construction or pavement 
evaluation must be mapped to a physical location on 
the highway; this practice associates every QA data 
record to a finite and a geospatially specific physical 
field location.

Table 7. Tiered QA and construction data.

Data Tier Examples of QA and Construction Data Under Each Tier Sources, File Formats/ 
Extensions

Tier I (traditional QA  
test data).

• HMA: density, AC content, voids, gradation, lift thickness, and other  
derived parameters.

• PCC: compressive strength flexural strength, air content, w/c ratio, SCM 
content, PCC thickness, CTE.

• Aggregate: gradation, moisture content, Subgrade resilient modulus, moisture 
content, fines content.

• Pavement: initial IRI
• 0.0009

Databases (ACCDB).
Spreadsheets (XLSX, CSV). 
Documents (PDF, TEXT).

Tier II (innovative 
QA test methods 
and construction 
technologies in  
recent use).

GPR-measured thickness, density measured with a nonnuclear gauge, modulus 
from nondestructive tests.

Hierarchical Data Format 
files, spreadsheets, and 
databases.Magnetic tomography-based scanning for dowel alignment and effective diameter.

IC, infrared in-place paving temperature, RWD/FWD from pavement evaluation.

Tier III
(emerging QA 
and construction 
technologies).

3D construction break lines and 3D construction surfaces, AMPT Sapp.

CAD data with the following 
file extensions: DWG, DXF, 
DGN, LandXML, and TXT. 
LiDAR data with the 
following file extensions: 
LAS, E57.
Spreadsheets and
databases.

AC = asphalt concrete; AMPT = asphalt mixture performance tester; FWD = falling weight deflectometer; GPR = ground-penetrating radar; 
Sapp = fatigue index parameter; SCM = supplementary cementitious materials; 3D = three dimensional; CAD = computer-aided design; 
LiDAR = light detection and ranging.
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The second recommendation is to align collection of 
QA data with PMS data. This recommendation may 
require equally distributing test sample locations within 
the construction project area to obtain QA data for 
each pavement management section. Datasets in which 
changes in performance are not supported by adequate 
QA data will result in analyses using project averages 
that negatively affect PMS reliability. When adopting 
these recommendations for QA data collection practices, 
an SHA can continue to use the testing and sampling 
program in existing specifications and then adopt new 
test methods in the future.

Recommendations for QA Data Elements to Be Collected 

for Future Projects
An SHA must consider an extensive number of QA test 
parameters when establishing QA test specifications that 
predict pavement management performance. See the full 
report, Quality Assurance Data Analysis as a Leading 
Indicator for Infrastructure Condition Performance 
Management, for a complete list of the test properties 
and associated national test standards for each material 
type studied.(9)

3D Construction Data Integration for PMS 

Performance Prediction
This research determined that the key parameter of 
interest from 3D construction data is the thickness 
parameter measured with full project coverage. These 
data may supplement the thickness that is measured 
in the field using traditional, location-based core 

test data. Contractors have been increasingly using 
automated machine guidance construction equipment 
for grading, trimming, and paving that accepts either 3D 
construction surfaces or 3D break lines to represent the 
pavement crown and edges. LiDAR data may provide 
a more accurate representation of each pavement 
structure layer.

Recommendations for Data Processing, Conflation,  

and Integration
The project team intends the recommendations in the 
report to provide SHAs with the information required for 
making informed decisions regarding data processing, 
assembly, and integration, internal or external to their 
current QA databases and PMS programs.

Data Conversion and Ingestion
The data conversion process is one of greatest 
challenges expected when incorporating QA and 
construction data-based performance models into 
PMS. The various data at each tier are available in 
many electronic formats as well as in hard copies. The 
data must be extracted from the files and then spatially 
aligned with the baseline roadway data.

Geospatial Alignment
Refer to construction and QA data by lot, station, or by 
GPS coordinate and then synthesize the data in a format 
in which they are geospatially aligned. Perform a spatial 
join or data conflation at any level of granularity by 
up-sampling or down-sampling data. 3D construction 

Figure 8. Illustration. Proposed integration of QA and construction data as leading indicators of performance for PMS.

Source:  FHWA.
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data are available only in GPS coordinates that can 
be tied only to a station identification by using the 
horizontal alignment of the roadway. Currently available 
geographic information system software can spatially 
join different data sources that are georeferenced; 
however, custom tools or scripts will be needed for 
spatial alignment of complex data.

Geospatial Referencing
For data referenced by GPS, convert datasets where 
necessary to ensure that data share the same GPS format 
and coordinate system. For example, convert the GPS 
format if two datasets share the same map projection but 
have different GPS formats.

Discrete vs. Continuous Data
Because of the way SHAs take measurements, develop 
processes to bin the data as needed into the baseline 
data. Binning for continuous data usually involves 
selecting a representative sample for each bin. Binning 
for discrete data may involve selecting a representative 
sample or interpolating discrete values between bins.

File Formats
When data are in various formats related to the 
collection tools or techniques, use conversion tools 
or processes to parse the relevant data or available 
metadata. Those conversion tools may be available from 
an open-source or commercial product, or the SHAs 
may develop the tools in house. If a data file format is 
proprietary and cannot be parsed using available tools 
or documentation, use the software to export the file from 
the proprietary format to some common interchange 
file format.

Data Inference
Under certain circumstances, the data may not be 
explicitly available but can be inferred from available 
construction information. Select procedures to use data 
from different functions of the QA program if those 
data are not already stored in the construction and QA 
databases.

Recommendations for Performance 
Prediction 
The statistical procedures include the following steps:

1. Review assembled and integrated PMS and QA 
test databases to ensure that they are accurate and 
reasonable and then estimate derived parameters 
from QA test data. 

2. Review and assemble supplemental databases, 
such as climate, traffic, and groundwater depth. 
The SHA must determine the specific climate and 
traffic parameters that will best explain performance 
characteristics and trends for each distress type.

3. Develop simple linear regression models for 
forecasting future pavement performance using time-
series (historical) and PMS distress (cracking, rutting, 
faulting, IRI) data. 

4. Estimate for each PMS section the baseline distress 
level, the distress measured and forecast at the end 
of a given pavement service life, about 10 to 15 yr. 

5. Perform statistical analysis, which involves the 
following:

a. Identify preliminary Pearson’s correlations 
between distress, IRI, and QA test data.

b. Develop general linear models relating distress 
or IRI, and QA test data using GLM and stepwise 
regression statistical techniques. Determine the 
overall model acceptance based on the values 
and criteria of various diagnostic statistics, 
including the overall model’s p-value; the 
Mallows coefficient, C (p); the predicted residual 
error sum of squares the predicted residual 
error sum of squares (commonly referred to 
as the PRESS statistic); and the coefficient of 
determination, R2. Include QA data variables 
for a specific individual model, selection, and 
acceptance based on the data variables’ 
significance level and variance inflation factor 
(VIF). The project team recommends using a 
significance level of less than 15 percent and VIF 
less than 10 percent.

c. Formulate the final model and then assess the 
model’s independent QA test data variables’ 
significance and sensitivity to the given 
distress. Select a robust model in this step with 
a significant validation of material behavior. 
Select the final model based on several factors, 
including diagnostic statistics (R2, root mean 
squared error/standard error, COV, VIF, and 
p-value) and the evaluation of the model’s 
reasonableness.

6. Develop suitable adjustment factors to the PMS 
models using this model and the parameters 
determined as significant to predict performance.
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