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Preface  i 
 

Preface 
 
This Manual contains information related to the analysis and design of cast-in-place concrete 
box girder bridges prestressed with post-tensioning tendons.  The Manual is targeted at 
Federal, State and local transportation departments and private company personnel that may be 
involved in the analysis and design of this type of bridge. The Manual reviews features of the 
construction of cast-in-place concrete box girder bridges, material characteristics that impact 
design, fundamentals of prestressed concrete, and losses in prestressing force related to post-
tensioned construction.  Also presented in this Manual are approaches to the longitudinal and 
transverse analysis of the box girder superstructure.  Both single-cell and multi-cell box girders 
are discussed.  Design examples are presented in Appendices to this Manual.  The document is 
part of the Federal Highway Administration’s national technology deployment program and may 
serve as a training manual. 
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Chapter 1—Introduction 

The objective of this manual is to present design methodologies for cast-in-place concrete box 
girder bridges post-tensioned with internal post-tensioning tendons, within the framework of the 
AASHTO LRFD Bridge Design Specifications (2012).  The target audience for this manual is a 
graduate civil engineer with one year of bridge design experience.  The manual presumes that 
the target audience has been exposed to prestressed concrete concepts, but does not 
necessarily have prestressed concrete design experience. 

1.1   Historical Overview 

The origin of reinforced concrete bridge construction in the United States dates back to 1889 
with the construction of the Alvord Lake Bridge in San Francisco, California.  Though many 
advancements have been made, basic features of construction remain unchanged.  The work 
requires construction of formwork to contain and provide shape to the wet concrete.  Formwork 
is supported by falsework either resting on the ground or on prepared foundations, until the 
structure itself is self-supporting and formwork and/or falsework can be removed.  Unfortunately, 
bridges constructed with reinforced concrete are only economical for relatively short spans. 
Superstructure types include flat slabs, beam with slabs, and box girders.  At the time, longer 
spans were achieved by using arch construction. 

Reinforced concrete box girder bridge construction flourished in the western part of the United 
States as a result of economy and local contractor experience.  The California Department of 
Transportation (Caltrans) began constructing box girder bridges in the early 1950’s.  With the 
popularization of prestressed concrete technology in the early 1960’s, Caltrans realized further 
economy through the construction of many post-tensioned concrete box girder bridges.  
Refinements to post-tensioned box girder bridge construction continued throughout the United 
States in the second half of the 20th century.  Figure 1.1 shows two views of a cast-in-place 
post-tensioned box girder bridge. 

Figure 1.1 – Cast-in-Place Post-Tensioned Box Girder Bridge for the Metropolitan Atlanta 
Regional Transit Agency (MARTA) – under construction (left), completed (right) 
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Today, cast-in-place post-tensioned box girder construction is used throughout the United 
States.  The majority of this type of construction still occurs in western states, with much less 
frequency in other parts of the U.S.  Reasons for this are varied, but stem from historical and 
regional developments—steel bridge construction in the northeast, precast prestressed beams 
in southern states, cast-in-place box girders in the west, etc.  Though regional construction 
experience and expertise affect construction costs and consequently type selection, the need 
for further construction economy and alternate project delivery methods have led to a wider 
range of project specific bridge type evaluations. 
 
Figure 1.2 shows a chart of applicable span ranges for the major types of prestressed concrete 
bridges.  The span range for cast-in-place box girder construction is shown to vary from 100 feet 
to 250 feet.  The lower end of the span range represents simple span bridges, shallow box 
girder bridges with depths restricted by vertical clearances, or bridges following highly curved 
alignments.  The upper end of the span range represents continuous bridges, bridges with no 
restriction on box girder depth, or bridges on a tangent alignment.  Longer span lengths can be 
achieved by using a variable depth structure, with deeper sections at piers to resist high 
negative moment demands. 
 
The flexibility to accommodate a wide variety of span lengths and bridge geometries, over the 
most common range of highway bridge spans, is one of the excellent benefits of cast-in-place 
box girder construction.  Other significant benefits include internal redundancy (multiple load 
paths), torsional stiffness and strength, and construction economy less sensitive to overall 
bridge size and aesthetics. 
 
 

 
 

Figure 1.2 – Typical Span Ranges for Prestressed Concrete Bridge Types 
 
 
1.2   Typical Superstructure Cross Sections 
 
The superstructure cross sections of post-tensioned box girder bridges are typically multi-cell or 
single-cell box girders.  A typical cross section of multi-cell box girder bridge is shown in figure 
1.3.  Figure 1.4 shows a typical cross section for a single-cell box girder superstructure. 
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Figure 1.3 – Multi-Cell Box Girder Cross Section 

Figure 1.4 – Single-Cell Box Girder Cross Section 

The basic components of the cross section are: 

• Top slab—the entire width of concrete deck, including the portions between the webs
and the overhangs outside of the webs.

• Overhangs (cantilever wings)—the overhanging portion of the top slab.
• Webs—vertical or inclined, exterior or interior.
• Bottom slab.

Multi-cell girder cross sections as shown in figure 1.3 can be used for bridges of nearly any 
width, by varying the spacing between, and/or, changing the number of webs.  Widths of single-
cell box girders typically range from 25 feet to 60 feet, though there are single-cell box girder 
cross sections as wide as 80 feet.  This wide range of widths of single-cell box girders is 
achieved through the use of transverse post-tensioning within the top slab to control tensile 
stresses under the action of the permanent dead and live wheel loads plus impact effects. 

1.3   Longitudinal Post-Tensioning Layouts 

Cast-in-place box girder bridges are prestressed using post-tensioning tendons cast within the 
web concrete.  These tendons are usually draped following parabolic profiles as shown in figure 
1.5.  The tendon profiles are low in the cross section at the center of the span and rise in 
elevation at the ends of the span.  The vertical distance from the neutral axis of the bridge to the 
centroid of a post-tensioning tendon is called the tendon eccentricity (e).  The force in the 
tendon multiplied by the eccentricity forms the primary moment due to post-tensioning.  The 
primary moment, along with the axial compression induced by the post-tensioning, work to 
offset the longitudinal tensile stresses in the superstructure resulting from bridge self weight and 
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other applied loads.  Vertical components of the prestressing force can offset or add to the 
shear demand of the webs. 
 
Tendons for simple span bridges are grouped closely together at the bottom of the bridge web 
at mid-span to maximize tendon eccentricity.  The spacing of the tendons increases at the ends 
of the span to appropriately locate the post-tensioning anchorages. Post-tensioning anchorages 
are cast into diaphragms constructed at the ends of the spans.  The diaphragms, which are 
solid concrete sections, transfer and distribute the tendon forces acting on the anchorages to 
the typical cross section of the box girder. 
 
 

 
 

Figure 1.5 – Typical Post-Tensioning Tendon Layout for Simple Spans 
 
Continuous post-tensioned box girder construction is achieved by stressing long tendons that 
reach the full length of the continuous unit.  The tendons are anchored at either end of the unit 
with geometry similar to the ends of simple spans.  Within the spans of the continuous unit, the 
tendons drape with geometry similar to that shown in figure 1.6.  Tendon profiles are low in the 
section within the span and high in sections over interior piers.  Figure 1.7 shows the tendons in 
the webs in cross section view at mid-span and over the piers. 
 
 

 
 
 

Figure 1.6 – Tendon Layout for 4-Span Bridge, CIP on Falsework 
 
Primary moments resulting from the post-tensioning are the same in both simply supported and 
continuous structures.  In a continuous superstructure, however, restraint of end rotations by 
adjacent spans and monolithic columns cause the development of secondary moments due to 
the post-tensioning. For tendon profiles similar to those shown in figure 1.6, the secondary 
moments reduce the effect of primary moments at mid-span sections and add to the effect of 
the primary moments over the piers.  There are no secondary moments in a simply-supported 
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structure as the ends of the simple span are free to rotate and translate under the action of the 
post-tensioning. 

Figure 1.7 – Tendon Locations within Box Girder Cross Section 

In very unique cases, an alternate to full length tendons in continuous spans is staged 
construction using shorter tendons that overlap at the piers.  Figure 1.8 shows a concept of 
staged construction for the same four-span unit shown in figure 1.6.  This approach can produce 
savings in falsework and formwork, but these savings may be offset by an increase in tendon 
and anchorage cost and by a slower rate of construction, as each span must gain sufficient 
strength prior to stressing the post-tensioning.  The state of stress in bridges constructed in 
stages can be significantly different than those cast full length.  Design calculations should 
consider the changing structural system as construction progresses and appropriate long-term 
bridge behavior. 

Figure 1.8 – Possible Tendon Layout for Sequentially Cast Spans 
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1.4 Loss of Prestressing Force 

Post-tensioning tendon forces are established in design to provide precompression to offset 
undesirable tensile stresses in the concrete box girder.  The engineer conveys the tendon force 
requirements in the contract drawings as either the required jacking force at the end of the 
tendon or the final effective force at some point along the length of the tendon.  The differences 
between jacking forces and effective forces are called prestressing force losses.  Prestressing 
force losses can be grouped into two families: 1) losses related to the material properties of the 
concrete and prestressing steel, and 2) losses related to the mechanics of the post-tensioning 
system and tendon geometry.  These losses, summarized below, are presented in detail later in 
this Manual. 

Losses Related to Material Properties 
• Elastic shortening of concrete 
• Shrinkage of concrete
• Creep of concrete
• Relaxation of prestressing steel

Losses Related to Physical Characteristics 
• Duct friction due to curvature
• Wobble (unintentional friction)
• Wedge Set (or Anchor Set)

1.5 Post-Tensioning System Hardware 

1.5.1 Basic Bearing Plates 

A basic bearing plate is a flat plate bearing directly against concrete.  This includes square, 
rectangular, or round plates, sheared or torch cut from readily available steel plate.  Basic 
bearing plates are used in conjunction with galvanized sheet metal or plastic trumpets to 
transition from the strand spacing in the wedge plate to the duct (figure 1.9). 

Basic bearing plate anchorages should comply with the requirements of section 10.3.2 of the 
AASHTO LRFD Bridge Construction Specifications (3rd Edition with Interims through 2015). 

Figure 1.9 - Basic Bearing Plate Anchorage System 
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1.5.2 Special Bearing Plates or Anchorage Devices 
 
A special bearing plate or anchorage device is any anchorage hardware that transfers tendon 
force into the concrete but does not meet normal analytical design requirements for basic 
bearing plates.  Covered by this definition are devices having single or multiple plane bearing 
surfaces, and devices combining bearing and wedge plates in one piece.  These anchorages 
typically require increased confinement reinforcement and should be accepted on the basis of 
physical tests.  Figure 1.10 shows a cut-away view of a multi-plane anchorage system.  Figure 
1.11 shows the components of an anchorage system for a four strand tendon in flat duct, 
commonly used in slabs. 
 
 

 
 

Figure 1.10 – Multi-Plane Anchorage System (Courtesy of VSL) 
 

 

 
 

Figure 1.11 – Anchorage System for Flat Duct Tendon (Courtesy of DSI) 
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Use of a special bearing plate or anchorage device is acceptable if it complies with the testing 
requirements of section 10.3.2.3 of the AASHTO LRFD Bridge Construction Specifications. 
 
1.5.3 Wedge Plates 
 
Wedge plates, in conjunction with wedges, transfer the prestressing force in the strands to the 
anchorage.  Wedge plates should comply with “Guide Specifications for Grouted Post-
Tensioning, (PTI/ASBI M50.3-12, 2012)” section 4.3.2. 
 
1.5.4 Wedges and Strand-Wedge Connection 
 
Wedge performance is critical to the proper anchoring of strands.  Different wedges have been 
developed for particular systems and applications such that there is no single standard wedge. 
However, wedges for post-tensioning systems should have the following characteristics: 
 

• Wedge length at least 2.5 times the strand diameter. 
• Wedge angle of 5 to 7 degrees. 
• Internal serrated teeth for gripping the strand. 
• Case-hardened low carbon or alloy steel. 
• Two or three parts with a spring wire retainer clip or o-ring in a groove around the thick 

end of the wedge. 
 
Wedges are case hardened with a ductile core to bite into the strand and conform to the 
irregularity between the strand and wedge hole. In so doing, the surface of the wedge may 
crack. This is normally acceptable and does not affect performance so long as wedge sections 
do not break completely into separate pieces. Often, it is only the portion outside the retainer 
ring that cracks. 
 
Wedges should comply with “Guide Specifications for Grouted Post-Tensioning, (PTI/ASBI 
M50.3-12, 2012)” section 4.3.2. 
 
1.5.5 Permanent Grout Caps 
 
Permanent grout caps similar to those shown in figure 1.12 should be provided in accordance 
with Protection Levels specified in section 3.0 of “Guide Specifications for Grouted Post-
Tensioning, (PTI/ASBI M50.3-12, 2012).”  Project specific documents should specify when and 
where caps are required. 
 
Permanent grout caps should be made of a non-corrosive material such as fiber reinforced 
plastic or stainless steel. To ensure an enduring, maintenance-free, life of 75 years fiber 
reinforced plastic caps should contain an anti-oxidant additive with an environmental stress 
cracking endurance of 192 hours per ASTM D1693; stainless steel caps should meet the 
requirements of ASTM A240 Type 316. 
 
Grout caps shall meet the requirements of “Guide Specifications for Grouted Post-Tensioning, 
(PTI/ASBI M50.3-12, 2012)” section 4.3.3. 
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Figure 1.12 – Permanent Plastic Grout Caps (Courtesy of VSL) 
 
1.5.6 Ducts 
 
Ducts are used to form a continuous void through the concrete for later placement of the post-
tensioning tendon steel.  Originally, little attention was paid to the possible role of the duct as a 
barrier to corrosive agents.  Today, strong emphasis is placed on the quality, integrity and 
continuity of the duct as a corrosion barrier in itself.  This has resulted in a move toward the use 
of high density plastic ducts in some states.  Nevertheless, more traditional metal ducts are still 
used. 
 
1.5.6.1 Duct Size 
 
Section 5.4.6.2 of the AASHTO LRFD Bridge Design Specifications calls for the inside cross-
sectional area of the duct to be at least 2.0 times the net area of the strand tendon.  The one 
exception cited by AASHTO is in the case where the tendons are to be placed by the pull-
through method.  In this case, the inside duct area should be 2.5 times the net area of the 
strand tendon.  Section 4.3.5 of “Guide Specifications for Grouted Post-Tensioning, (PTI/ASBI 
M50.3-12, 2012)” standardizes the inside cross-sectional area of the duct to be at least 2.5 
times the net area of the strand tendon cross-sectional area. 
 
Oval “flat” ducts are commonly used for transverse tendons in deck slabs of concrete box 
girders.  These transverse tendons have typically been made of up to 4 strands of 15 mm (0.6 
in) diameter, though there are systems that will accept up to 5 strands.  The internal clear 
dimensions of oval duct for a four strand tendon should be a minimum of 25 mm (1 in) vertically 
and 75 mm (3 in) horizontally. 
 
1.5.6.2 Corrugated Steel Duct 
 
Ducts are spirally wound to the necessary diameter from strip steel with a minimum wall 
thickness of 0.45 mm (26-gauge) for ducts less than 66 mm (2-5/8 in) diameter or 0.6 mm (24-
gauge) for ducts of greater diameter.  The strip steel should be galvanized to ASTM 
A653/A653M with a coating weight of G90.  Ducts should be manufactured with welded or 
interlocking seams with sufficient rigidity to maintain the correct profile between supports during 
concrete placement (figure 1.13). Ducts should also be able to flex without crimping or 
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flattening. Joints between sections of duct and between ducts and anchor components should 
be made with positive, metallic connections that provide a smooth interior alignment with no lips 
or abrupt angle changes.  

 

 
 

Figure 1.13 – Corrugated Metal Duct 
 
1.5.6.3 Corrugated Plastic 
 
Corrugated plastic ducts, as shown in figure 1.14, are also used for tendons internal to the 
concrete.  These ducts should be seamless and fabricated from polyethylene or polypropylene 
meeting the requirements of section 4.3.5.2 of “Guide Specifications for Grouted Post-
Tensioning, (PTI/ASBI M50.3-12, 2012).” 

 

 
 

Figure 1.14 – Corrugated Plastic Duct 
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1.5.6.4 Plastic Fittings and Connections for Internal Tendons 

All plastic duct splices, joints and connections to anchorages should be made with couplings 
and connectors that produce a smooth interior duct alignment with no lips or kinks.  All fittings 
and connections between lengths of plastic duct and between ducts and steel components (e.g. 
anchors or steel pipe) should be made of materials compatible with corrugated plastic ducts.  
Plastic materials should contain antioxidant stabilizers and have an environmental stress 
cracking of not less than 192 hours as determined by ASTM D1693 “Standard Test Method for 
Environmental Stress-Cracking of Ethylene Plastics,” Condition C.  Duct tape should not be 
used to join or repair ducts or make connections.  See “Post-Tensioning Tendon Installation and 
Grouting Manual (2013),” available from the Federal Highway Administration, 
(http://www.fhwa.dot.gov/bridge/pt/) for further information on duct couplers. 
 
1.5.6.5 Grout Inlets, Outlets, Valves and Plugs 
 
Grout inlets, outlets, valves and plugs should be made of polypropylene or polyethylene meeting 
the requirements for plastic, corrugated ducts.  Grout inlets, outlets, valves and plugs shall meet 
the requirements of “Guide Specifications for Grouted Post-Tensioning, (PTI/ASBI M50.3-12, 
2012)” sections 4.3.12 and 4.4.4.  Figure 1.15 shows a graphic depiction of grout vents 
extending from an embedded duct. 
 
Tubes for inlets and outlets for strand tendons should have a minimum inside diameter of 20 
mm (3/4 in).  For bar tendons and for tendons comprising up to 4 strands, tubes should be at 
least 10 mm (3/8 in) internal diameter. Inlets and outlets should be closeable with suitable 
valves or plugs. For grouting of long vertical tendons, dual mechanical shut-off valves are 
usually necessary to facilitate intermediate stages of grouting and venting. 
 
Inlets and outlets should be arranged and attached to ducts, anchorages and grout caps in a 
manner that allows all air and water to escape in order to ensure that the system is completely 
filled with grout. (See chapter 4 of “Post-Tensioning Tendon Installation and Grouting Manual 
(2013)” for examples of locations of inlets and outlets.) 
 

 
 

Figure 1.15 – Typical High-Point Grout Vent 
 
1.5.7 Post-Tensioning Bars Anchor Systems 
 
Anchorage systems for post-tensioning bars are comprised of bearing plates and anchor nuts 
similar to the components shown in figure 1.16.  The anchorage system should comply with 
“Guide Specifications for Grouted Post-Tensioning, (PTI/ASBI M50.3-12, 2012)” section 4.3.2. 
 

http://www.fhwa.dot.gov/bridge/pt/
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Figure 1.16 – Post-Tensioning Bar Anchorage System (Courtesy of DSI) 
 
1.6 Overview of Construction 
 
1.6.1 Falsework 
 
Falsework is the structural system that supports the formwork onto which the concrete of the 
box girder will be cast.  Falsework systems can be comprised of prefabricated modular shoring 
towers comprising well-braced interlocking frames in a square or rectangular arrangement of 
four legs as shown in figure 1.17.  Multiple towers are located as necessary to support the 
falsework deck which in turn supports the superstructure formwork.  
 

 
 

Figure 1.17 – Modular Falsework Units for Cast-in-Place Construction 
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Main vertical falsework supports may also consist of a series of individual columns made of 
structural steel sections or heavy section lumber.  Poor ground conditions or the need to span 
an underlying roadway or waterway may limit the locations of falsework columns.  Fewer but 
larger falsework columns, along with larger falsework beams, may be used to provide the 
needed clearances during construction.  Figure 1.18 shows a network of falsework columns 
used to maintain navigational clearances during construction. 
 

 
 

Figure 1.18 – Steel Pipe Support Towers for Cast-In-Place Construction 
 
Depending on the nature of the site and the cost of temporary construction, falsework may be 
provided for the superstructure to be cast-in-place over the entire length of the bridge or 
continuous superstructure unit.  If these costs are prohibitive, it may be necessary to move 
falsework from span to span as each is constructed and made self-supporting, provided that 
appropriate engineering analysis of intermediate states of construction is performed.  In either 
case, careful consideration should be given to assuring that environmental clearances can be 
achieved for placing falsework. 
  
For further guidance with regard to the design and construction of falsework, refer to the 
following publications: 
 

• “Guide Design Specifications for Bridge Temporary Works”, (2008 Interim, AASHTO). 
• “Construction Handbook for Bridge Temporary Works”, (2008 Interim, AASHTO). 
• “Falsework Manual” (January 1988, Caltrans). 

 
1.6.2 Superstructure Formwork 
 
The falsework system provides supports for the superstructure formwork.  Formwork may be 
made from lumber and plywood or prefabricated modular forming systems. Accuracy to line, 
level and thickness is essential to ensure the correct final shape and size of concrete members. 
External surfaces are usually formed of a high quality, smooth and dense finished plywood, 
metal or any required aesthetic texture, as necessary. Internal surfaces should be within 
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tolerance but are usually of a lesser quality finish and forming material.  Figure 1.19 shows form 
components for a single-cell box girder bridge. 

 

 
 

Figure 1.19 – Web and Cantilever Wing Formwork for a Single-Cell Box Girder 
 
Box girder sections can be constructed in stages, beginning with the bottom slab, webs and 
finally the top slab, as shown in figure 1.20. In this Figure, the bottom slab for this portion of the 
bridge has been cast, web reinforcing and longitudinal ducts for post-tensioning tendons have 
been tied and portions of the webs have been cast. Supports for top slab forming are being 
placed in the portion where webs are complete. Many bridges combine the casting of the bottom 
slab and webs into one stage. 
 
Access to internal cells is usually necessary through diaphragms or manholes for future 
maintenance inspection which also provides a convenient way through which internal formwork 
can be removed after casting. Purpose-made, permanent, internal top slab soffit forms (lost 
deck forms) may remain in place provided that their weight and structural connectivity, if any, 
have been accounted for in the design. 

 

 
 

Figure 1.20 – Web Formwork for a Multi-Cell Box Girder 
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1.6.3 Reinforcing and Post-Tensioning Hardware Placement 
 
Reinforcing steel is placed in stages to coincide with the casting of the cross section 
components—i.e., bottom slab, webs, and top slab. Reinforcing should be detailed accordingly, 
giving attention to the location of bar splices to meet structural requirements and also facilitate 
forming and casting. Reinforcing steel should be installed to project construction tolerances.  
 
All post-tensioning ducts, anchorage components and anchorage reinforcement should be 
installed in conjunction with the reinforcement. It is preferable that reinforcement and post-
tensioning be designed and detailed free of conflicts. However, conflicts are not always evident 
in advance. Whenever a conflict is encountered between reinforcement and post-tensioning in 
the field, generally, the reinforcement should be adjusted locally as necessary to maintain the 
desired post-tensioning alignment. In cases of doubt, a decision should be sought from the 
Engineer of Record. 
 

 
 

Figure 1.21 – Web and Bottom Slab Reinforcing (left), Tying Post-tensioning Ducts in Webs (right) 
 
1.6.4 Placing and Consolidating Superstructure Concrete 
 
Box girder superstructures can be cast in either two or three stages.  When cast in two stages, 
the bottom slab and webs are poured at the same time.  This is followed by the casting of the 
top slab.  In three-stage casting the bottom slab, webs, and top slab are poured separately, with 
enough time between stages to permit sufficient concrete hardening.  Longitudinal construction 
joints are normally located in the webs a few inches above the top of the bottom slab (three-
stage casting) and a few inches above the top of the webs in the top slab fillets (two-stage and 
three-stage casting). This is mainly for convenience of construction and to provide a clean joint 
between components. In order to ensure proper structural integrity and function, joints should be 
prepared, cleaned and roughened prior to the next pour. This is usually sufficient for shear 
transfer. However, construction keyways may be necessary and should be shown on the plans 
where required.  An approach to three-stage casting is presented in the following paragraphs. 
 
The first stage of box girder construction is the casting of the bottom slab concrete.  Placing 
typically commences at one side (usually the low side of grade and superelevation) and 
continues from there across the width of the slab and along the length of the bridge as 
necessary. The new open end face of the slab concrete face is kept fresh to facilitate 
consolidation with each new load of concrete. Concrete is consolidated using vibratory tools and 
then struck off to elevation by hand or mechanical screeds, followed by a float finish.  
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When the bottom slab concrete has set and sufficiently hardened the webs are formed. Web 
concrete is then placed and consolidated.  The webs are placed in lifts of about two feet to 
control pressure on forms. Each fresh charge of concrete is consolidated and worked into the 
top of the previous lift—which must remain workable to receive the next load of concrete. 
Concrete in webs is typically consolidated by means of internal poker-type vibrators, though 
external form vibrators can be used. In the latter case, formwork must be sufficiently robust and 
braced to withstand the heavy vibration.  
 
The top slab of the box section is cast last. Depending upon the profile of draped tendons, ducts 
may rise into the top slab at piers. All top slab reinforcing and, if necessary, transverse post-
tensioning tendons must be in place and set to correct elevations and required clear covers 
before concrete is placed.  Ducts for longitudinal tendons should be checked for obstructions 
before the top slab concrete is placed.  Concrete is usually placed working across and 
longitudinally up hill. Slab concrete is consolidated, struck off to levels with screeds (figure 1.22) 
and usually floated to a final finish. Longitudinal or transverse traffic tines may be brushed or 
groove-cut into the deck surface after curing to improve vehicular traction. 
 
The preceding paragraphs describe pouring the superstructure in three phases.  Two-phased 
construction, in which bottom slab and webs are cast together, followed by the casting of the top 
slab, is also commonly used. 
 
Longitudinally, vertical construction joints may be needed at various locations in a span or 
superstructure in order to keep the total volume of concrete placed to an amount which can be 
delivered, placed, consolidated and finished within a given work period.  Vertical construction 
joints are typically not allowed in simple span bridges. 
 

 
 

Figure 1.22 – Placing Deck Concrete and Finishing with a Roller Screed 
 
1.6.5 Superstructure Curing 
 
Proper concrete set and sufficient strength is required prior to releasing forms before the next 
stage of casting and especially prior to imposing high local anchorage forces from post-
tensioning or releasing falsework.  
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For typical box girder construction, proper curing is accomplished using blankets, wet-burlap, 
moisture, fogging, and application of suitable curing compounds.  Monitoring of internal concrete 
temperature using thermocouples or other devices at suitable locations over the curing period 
can be helpful in some cases, particularly for thick members and large pours. It provides a 
record of curing and can help avoid potential difficulties from a too rapid rise or fall from the heat 
of hydration.  Protection of pours from adverse weather by enclosures and heating may be 
necessary in some situations (figure 1.23).  
 

 

 
 

Figure 1.23– Curing the Concrete Deck 
 
1.6.6 Post-Tensioning Operations 
 
Multi-strand tendons are the most frequent choice for main longitudinal tendons in bridges. All 
the strands of one longitudinal tendon are simultaneously tensioned using a multi-strand jack. 
The sequence of stressing tendons should be clearly shown on the contract plans or approved 
shop drawings and must be followed on site. 
 
Post-tensioning strands may be pushed or pulled through ducts to make a tendon.  Pushing 
should be done with care using a protective plastic or metal cap provided by the post-tensioning 
system supplier so that the strands do not get caught by or introduce damage to the duct.  
Sometimes it may be easier to pull the entire tendon bundle of strands through the duct together 
using a special steel wire sock or other device securely attached to the end of the bundle (figure 
1.24).  
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Figure 1.24– Bundled Tendon Prepared for Pulling 
 
When a multi-strand tendon is stressed from one end it is often referred to as “single” or “one- 
end” stressing to distinguish it from tendons stressed from both ends. When a bridge has a 
number of similar, and often symmetrical, tendons that need only be stressed from one end, 
“alternate end stressing” can be used to keep the overall post-tensioning effect as symmetric as 
possible. In this case, tendons are stressed from one end only, but from opposite, alternate, 
ends of the bridge for similar tendon profiles. 
 
When the tendons are very long, losses over the length of the tendon due to friction and wobble 
become large.  Stressing the tendon from the second end results in a higher force in the tendon 
than if only stressed from one end. This is typically called “double” or “two-end” stressing.  Also, 
for symmetrical tendons two-end stressing becomes effective when the effect of anchor set at 
the jacking end affects less than half of the tendon.  Stressing from the second end should not 
be done if the calculated elongation is less that the length of the wedge grip. Re-gripping in a 
portion of the old grip length should be avoided. 
 
It is important to also account for the staging of stressing across the width of the bridge.  
Individual tendon jacking forces (Pjack) must be selected to achieve a uniform distribution of 
stress across the width of the bridge. 
 

 
 

Figure 1.25– Stressing Post-Tensioning Tendons 
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1.6.7 Tendon Grouting and Anchor Protection 
 
After post-tensioning tendons have been installed and stressed, they must be properly grouted 
and anchorages sealed and protected to ensure long term durability.  Grouting should proceed 
as soon as possible after installation and stressing of the tendons.  Depending upon 
environmental conditions, temporary protection and sealing of open ducts may be necessary at 
anchorages, and temporary protection of the ends of the strands will be necessary.  

For comprehensive information on the installation, stressing, grouting and protection of post-
tensioning tendons and anchorages (including recommendations for the location of injection 
grout ports, vents, laboratory and field tests, quality control and records, etc.), refer to “Post-
Tensioning Tendon Installation and Grouting Manual (2013)” available from the Federal 
Highway Administration (http://www.fhwa.dot.gov/bridge/pt/). 

 

http://www.fhwa.dot.gov/bridge/pt/
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Chapter 2—Materials 
 
The primary materials needed for the design of cast-in-place post-tensioned box girders are: 
concrete, prestressing steel, and mild reinforcing.  This chapter presents the material 
characteristics for these three materials with respect to the design of this bridge type. 
 
2.1 Concrete 
  
2.1.1 Compressive Strength 
 
Compressive strength (f’c) is the characteristic that best gives an overall picture of the quality of 
a concrete.   
 
The basic components of concrete are Portland cement, aggregates (coarse and fine) of varied 
gradation, water, and admixtures.  Concrete sets and gains strength as a consequence of a 
hardening of the cement/water gel through the chemical reaction of hydration.  The ratio of 
water to cement (water/cement ratio) is an important factor of resulting concrete strength.  If too 
little water is used, not all of the cement will undergo hydration and the desired strength will not 
be obtained.  Excessive water leads to overly dispersed hardened cement particles, again 
leading to less than desired strength.  Water/cement ratios often range from 0.35 to 0.40. 
 
Freshly placed, unconsolidated concrete contains excessive and detrimental voids. 
Unconsolidated concrete, if allowed to harden, will be porous and will poorly bond to the 
reinforcement.  The resulting hardened concrete will have low strength, high permeability, and 
poor resistance to deterioration.  Freshly placed concrete should be consolidated if it is to have 
needed characteristics of structural concrete.  
 
Curing of the concrete is also important to producing high quality concrete.  The main purpose 
of curing is to prevent unnecessary moisture loss, especially in the first few days of the initial 
hydration and strength development. In addition to moisture loss, control of the concrete 
temperature during curing is important.  Hydration is an exothermic reaction, building up heat 
within the concrete member. This heat must be gradually dissipated in a controlled manner to 
offset excessive thermal gradients within the concrete that can lead to micro-cracking and 
diminished strength.   
 
Admixtures are incorporated into concrete mixes to enhance the qualities of the hardened 
concrete.  A controlled percentage (4–6 percent) of well-dispersed, microscopic air bubbles 
introduced by air-entraining agents enhances durability against freeze-thaw and improves 
workability for placement and consolidation.  Super-plasticizers improve workability, facilitating 
reduced water/cement ratios and enhanced strength.  Supplementary cementitious materials, 
such as pozzolans (most typically fly ash, silica fume, or granulated blast furnace slag), can be 
used in conjunction with or as a replacement to part of the cement to contribute to the properties 
of the hardened concrete.  While increasing certain characteristics, excessive or poorly matched 
admixtures can have a negative impact on the resulting concrete. 
 
Concrete compressive strength is determined by physical testing in accordance with AASHTO 
T22 (ASTM C39).  Tests are performed at a standardized age of 28 days by compression tests 
to failure of sample cylinders 6 inches in diameter and 12 inches in length. 
 
AASHTO LRFD Article 5.4.2.1 specifies that prestressed concrete shall not have a compressive 
strength less than 4.0 ksi.  Typical 28-day concrete compressive strength for cast-in-place post-
tensioned box girders range between 5.0 ksi to 6.0 ksi.  Higher strength concrete can be used, 
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but local thickening of concrete members, such as bottom slabs near piers to control 
compressive stresses, are generally more cost effective that the increased cost of higher 
strength concrete throughout the bridge.  In addition, higher strength concretes cast on site are 
more susceptible to environmental factors than high strength concrete produced in more 
controlled settings in casting yards. 
 
Guidance as to the type or “Class of Concrete” for various applications is provided in AASHTO 
LRFD Article 5.4.2.1. Concrete mix characteristics, including strength, minimum cement content, 
maximum water cement ratio, range of air content and coarse aggregate per class of concrete, 
are given in AASHTO LRFD Table C5.4.2.1-1.  
 
2.1.2 Development of Compressive Strength with Time 
 
Standardized testing classifies strength at an age of 28 days.  However, concrete continues to 
increase in strength over time.  The increase in concrete compressive strength acts to increase 
other material characteristics that are related to strength (tensile strength, modulus of elasticity, 
time-dependent effects, etc.).  As a result, it is important to be able to consider the change in 
concrete strength with time.  The AASHTO LRFD specifications do not specifically address this 
feature of concrete, but other codes do.  The Comite Euro-Intermationale du Beton/Federation 
International de la Precontrainte (CEB-FIP) Model Code (1990) provides the following 
relationship for the change in concrete compressive strength over time: 
 
 
(Eqn. 2.1)   
 
 

(Eqn. 2.2)   

 
 
 
Where, fcm = 28-day compressive strength 

fcm(t) = concrete compressive strength at time t 
βcc = time-dependent coefficient dependent on age of concrete 
t = age of concrete at which fcm(t) is computed (days) 
t1 = 1 day 
s = cement rate of hardening coefficient 

(0.20 for rapid hardening high strength concretes, 0.25 for normal and rapid 
hardening cement, 0.38 for slow hardening cements) 

 
Note that the 28-day compressive strength predicted by testing in accordance with the AASHTO 
LRFD specifications is used without modification in equation 2.1.  This is as opposed to using 
the 28-day strength plus 8 MPa as in other CEB-FIP equations. 
 
Figure 2.1 shows a plot of the ratio of concrete compressive strength to 28-day compressive 
strength (βcc) for normal hardening cement. 
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Figure 2.1 – Concrete strength gain with time 
 
2.1.3 Tensile Strength 
 
Concrete tensile strength greatly impacts prestressed concrete design as it forms the basis of 
the criteria for which post-tensioning force and layout is typically chosen.  AASHTO LRFD 
specifies concrete tensile stress in two different ways: Modulus of Rupture and Direct Tensile 
Strength.   
 
The Modulus of Rupture (fr) is defined as the tensile stress in concrete developed by concrete 
flexure.  For concrete compressive strengths up to 15 ksi and for normal-weight concrete, 
AASHTO LRFD Article 5.4.2.6 specifies the modulus of rupture in ksi to be: 
 

(Eqn. 2.3)   
 
The Modulus of Rupture is determined by standardized test AASHTO T97 (ASTM C78). 
 
The Direct Tensile Strength, also designated as fr, is specified in AASHTO LRFD Article 5.4.2.7.  
The commentary of this section specifies that for normal-weight concrete of compressive 
strengths up to 10 ksi, the direct tensile strength in ksi is: 
 
(Eqn. 2.4)   
 
Traditionally, testing for direct tensile strength is by the split cylinder tensile strength method 
performed in accordance with AASHTO T198 (ASTM C496).  However, pull out methods 
specified in ASTM C900 may also be used. 
 
The small difference in value between equations 2.3 and 2.4 is interesting to note.  Most 
research indicates that, depending on the strength of the concrete, the modulus of rupture is 
significantly greater than the direct tensile stress (as much as two times as large).  This is noted 
in the commentary to AASHTO LRFD Article 5.4.2.6., with rationale provided for the limit shown 
in equation 2.3.  Of more practical importance are the allowable stresses established at service 
limit states for the particular behavior.  For example, flexural tensile stresses in prestressed 
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concrete are most commonly limited to 40 percent of the modulus of rupture, where principal 
tensile stresses in webs of are limited to 50 percent of the direct tensile capacity of the concrete. 
 
2.1.4 Modulus of Elasticity 
 
The modulus of elasticity of a material, Ec, is the ratio of normal stress to corresponding strain in 
compression or tension.  The modulus of elasticity is an integral feature of the stiffness based 
methods used to analyze structures. The modulus of elasticity is a part of the characteristic 
member stiffnesses which populate element stiffness matrices.  Element stiffness matrices are 
transformed and assembled into a global stiffness matrix representing the entire structure.  
Member end (nodal) displacements are then computed by pre-multiplying the vector of applied 
fixed end member forces by the inverted stiffness matrix (or some more mathematically efficient 
matrix method).  Member end forces are then back-computed from the nodal displacements. 
 
Figure 2.2 shows a typical stress strain curve for concrete.  The relationship of stress to strain 
as shown in this Figure is highly non-linear.  However, within the range of stresses that define 
the service limit state for which bridges are designed, the relationship can be approximated by a 
linear relationship.  Figure 2.2 also shows a line whose slope is the modulus of elasticity for the 
linear range.  This modulus of elasticity is a secant modulus standardized by physical testing in 
accordance with ASTM C469.  The two points that define the secant modulus are a strain of 
50x10-6 (ε1) and corresponding stress f1, and a strain ε2 that corresponds to a stress of 0.4f’c. 
 

 
 

Figure 2.2 – Typical Stress-Strain Curve for Concrete 
 
AASHTO LRFD Article 5.4.2.4 provides the equation for the concrete modulus of elasticity.  This 
well-known equation, developed to fit physical testing, relates the modulus of elasticity of the 
concrete to the concrete unit weight and the concrete 28-day compressive strength.  Equation 
2.5 provides the equation for the modulus of elasticity in ksi: 
 

(Eqn. 2.5)   
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where, f’c = the 28-day compressive strength of concrete (ksi) 

wc = the unit weight of concrete (kcf) 
Κ1 = correction factor for aggregate (equal to 1 unless determined by physical 

test and approved by authority of jurisdiction) 
 
2.1.5 Modulus of Elasticity Variation with Time 
 
Though the CEB-FIP Model Code 1990 is being used to estimate time-dependent 
characteristics, the AASHTO LRFD specification equation for Modulus of Elasticity as provided 
in Article 5.4.2.4 is used to estimate the 28-day Modulus of Elasticity. 
 
The variation in Modulus of Elasticity with time is predicted by CEB-FIP Equations 2.1-57 and 
2.1-58: 

  
(Eqn. 2.6)   
 

(Eqn. 2.7)    

 
 
Where, Eci = the modulus of elasticity of concrete at an age of 28 days 

Eci(t) = the modulus of elasticity at time t 
βe = coefficient depending on age of concrete, t (days) 
βcc = coefficient defined by equation 2.2 

 
 
Figure 2.3 shows a plot of the ratio of concrete modulus of elasticity to 28-day compressive 
strength (βE) for normal hardening cement. 
 
 

 
 

Figure 2.3 – Concrete Modulus of Elasticity with Time 
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2.1.6 Poisson’s Ratio 
 
Poisson’s ratio of lateral to axial strain (µ) is prescribed in AASHTO LRFD Article 5.4.2.5 to be 
equal to 0.20.  
 
2.1.7 Volumetric Changes 
 
Volume changes in concrete arise from variations in temperature, shrinkage due to air-drying, 
and creep caused by sustained stress. These are influenced by environmental conditions such 
as temperature, humidity, and the maturity of the concrete, and by the time and duration of 
loading. Volume changes affect structural performance and must be properly accounted for 
when determining loss of prestress and long-term deflections. 
 
2.1.7.1 Coefficient of Thermal Expansion 
 
AASHTO LRFD Article 5.4.2.2 defines the coefficient of thermal expansion.  For normal weight 
concrete the coefficient of thermal expansion (α) is 6x10-6 per OF. 
 
2.1.7.2 Creep 
 
The creep of concrete is defined as the increase in concrete strain under a sustained stress.  
Figure 2.4 shows the influence of concrete creep on increased strain under the loading and 
unloading of a sustained load on a concrete element. 
 
 

 
 

Figure 2.4 – Creep of Concrete 
 
 
The concrete element is loaded at time t0 and strains in proportion to the Modulus of Elasticity 
developed at that time.  From time t0 to time t1, the concrete creeps under the action of the 
sustained stress.  At time t1 the stress is removed and there is an elastic recovery in strain.  The 
elastic recovery is less than the initial elastic strain because the Modulus of Elasticity has 
increased during the period of loading, as a function of concrete strength gain.  Further 
reduction in strain is found at times greater than t1.  This creep recovery strain is substantially 
smaller than the concrete creep, as it is proportional to the elastic recovery strain and occurs at 
a later age of the concrete’s life than the original loading.  At some time, the effects of creep 
recovery stop and the concrete element is left with a permanent residual strain. 
 
Creep characteristics can vary greatly as a function of the mix design, member thickness, 
environment, and nature of loading.  Some important factors influencing concrete creep are: 
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• Duration of Load—the longer the loading, the more creep realized. 
• Initial Stress Level – the greater the level of initial stress, the more the concrete will 

creep. 
• Concrete Age at Loading—the younger the concrete at loading, the more the 

concrete will creep. 
• Relative Humidity—the higher the relative humidity of the loading environment, the 

lower the concrete will creep. 
• Volume to Surface Ratio—the greater the volume to surface ratio, the less the 

concrete will creep. 
• Concrete Strength—the greater the concrete strength the lower the creep.   

 
Generally speaking, highway bridge loads are divided primarily into two types: permanent and 
live loads.  There are typically no live loads that remain on the bridge for extended durations.  
As a result the strain versus time relationship of figure 2.4 is modified to that of figure 2.5. 
 

 
 

Figure 2.5 – Creep of Concrete (with no long-duration transient loads) 
 
 
The AASHTO LRFD specifications permits three models for estimating time dependent behavior 
of these materials  Article 5.4.2.3.1 permits three methods of computing the time-dependent 
creep behavior of concrete when mix-specific creep data is not available.  The three methods 
permitted by code are: 
 

• AASHTO LRFD Article 5.4.2.3.2. 
• CEB-FIP Model Code. 
• ACI 209. 

 
The CEB-FIP Model Code 1990 is jointly produced by The Comite Euro-Intermationale du Beton 
(The Euro-International Committee for Concrete) and the Federation International de la 
Precontrainte (International Federation for Prestressing). The Model Code 1990 provides time-
dependent material characteristics for concrete and prestressing steel.  Along with its 
predecessor, the Model Code 1978, the CEB-FIP Model Code has been used extensively over 
the last 30 years in the United States for estimating the effects of material time-dependent 
behaviors. 
 
This Chapter provides the CEB-FIP Model Code (1990) time-dependent characteristics required 
for the analysis of prestressed concrete bridges.  These characteristics have been used in both 
of the example problems presented in this Manual.  The equation numbers presented in this 
Chapter are those of the CEB-FIP Model Code (1990). 
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Within the elastic range, the creep strain at time t for a constant stress applied at time t0 is given 
as: 

(Eqn. 2.8)   

 
Where, εcc = the creep strain at time t > t0 

Eci(t) = the modulus of elasticity of concrete at an age of 28 days 
sc(t0) = compressive stress applied at time t0 
f(t,t0) = the concrete creep coefficient 

 
The creep coefficient is the product of the notional creep coefficient f0(t,t0)  (sometimes called 
the ultimate creep coefficient) and a time dependent coefficient βc(t-t0).  
 
(Eqn. 2.9)   
 
Where, f(t,t0) = the creep coefficient0 

f0 = the notional creep coefficient 
βc = the coefficient to describe the development of creep with time after 

loading 
f(t,t0) = the concrete creep coefficient 

 
The notional creep coefficient is a function of relative humidity, notional thickness, concrete 
strength, and age since loading, as per the following relationships: 
 
 
 (Eqn. 2.10)   
 
with, 
 

(Eqn. 2.11)   

 

(Eqn. 2.12)   

 

(Eqn. 2.13)   

 
 
Where, RH = the relative humidity of the ambient environment (%) 

RHo = 100 percent 
fcm = the mean concrete compressive strength at 28 days (MPa) 
fcmo = 10 MPa  
t0 = age of concrete at loading (days) 
t1 = 1 day 
h0 = 100 mm 
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h = notional size of the member (mm) – see following equation where Ac is 
the cross section of the member and u is the perimeter in contact with the 
atmosphere. 

 
In these expressions, the mean concrete compressive strength is a fixed number greater than 
the minimum compressive strength: 
 
(Eqn. 2.14)   
 
where, fcm = mean compressive strength (MPa) 

fck = 28-day concrete compressive strength (MPa) 
∆f = 8 MPa 

 
and the notional thickness is expressed as: 
 

(Eqn. 2.15)   

 
 
where, Ac = cross-sectional area 

u = perimeter in contact with the atmosphere 
 
 
For a closed box shape, where the environment inside the box girder can be markedly different 
than that outside the girder, standard practice has been to compute the perimeter in contact with 
the environment (u) as the outside perimeter plus one half of the interior perimeter. 
 
The development of creep over time is given by: 
 

(Eqn. 2.16)   

 
with, 
 

(Eqn. 2.17)   

 
 
where, t1 = 1 day 

RHo = 100 percent 
h0 = 100 mm  

 
 
Figure 2.6 shows a plot of the development of creep over time for a relative humidity of 75 
percent and a notional thickness of 319 mm (conditions of examples 1 and 2 in this manual). 
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Figure 2.6 – Development of Concrete Creep with Time 
 
2.1.7.3 Shrinkage 
 
The total shrinkage strain at time t is calculated by: 
 
(Eqn. 2.18)   
 
Where, εcso = the notional shrinkage strain 

βs = coefficient to describe development of shrinkage with time 
t = age of concrete (days) 
ts = age of concrete at beginning of shrinkage (days) 
 
 

The notional shrinkage coefficient is determined by: 
 
(Eqn. 2.19)   
 
with, 
 
(Eqn. 2.20)   
 
 
where, fcm = the mean concrete compressive strength at 28 days (MPa) 

fcmo = 10 MPa  
βsc = coefficient dependent on type of cement 

(4 for slowly hardening cements, 5 for normal or rapid hardening 
cements, and 8 for rapid hardening high strength cements) 
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For relative humidity between 40 percent and 99 percent, 
 
(Eqn. 2.21)   
 
For relative humidity greater than 99 percent, 
 
 (Eqn. 2.22)   
 
where, 

(Eqn. 2.23)   

 
 
The development of shrinkage with time is: 
 

(Eqn. 2.24)   

 
 
Figure 2.7 shows a plot of the development of shrinkage over time for a relative humidity of 75 
percent and a notional thickness of 319 mm (conditions of examples 1 and 2 in this manual). 
 
 

 
 

Figure 2.7 – Development of Concrete Shrinkage with Time 
 
 
Shrinkage is primarily a result of sustained drying of the concrete as it is exposed to its 
surrounding environment. The majority of shrinkage occurs early in the life of the concrete, 
gradually slowing over time until ultimate shrinkage values are approached. This is seen in 
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figure 2.8, which plots the Time Development Factor (ktd) used to predict concrete shrinkage (as 
well as creep) over time as per as per AASHTO LRFD Articles 5.4.2.3.2 and 5.4.2.3.3. 
 
 

 
 

Figure 2.8 – Rate of Concrete Shrinkage over Time 
 
As with concrete creep, AASHTO LRFD Article 5.4.2.3.1 permits three methods of computing 
time-dependent shrinkage behavior.   It is important to note that the three methods should not 
be mixed.  Inappropriately combined, the effects of for creep and shrinkage could be 
significantly miscalculated. 
 
2.2 Prestressing Strands 
 
Strands for post-tensioning are made of high tensile strength steel wire conforming to ASTM 
A416.  A strand is comprised of 7 individual wires, with six wires helically wound to a long pitch 
around a center “king” wire.  Strand is most commonly available in two nominal sizes, 0.5 inch 
and 0.6 inch diameter, with nominal cross-sectional areas of 0.153 in2 and 0.217 in2, 
respectively.  Though the majority of post-tensioning hardware and stressing equipment is 
based on these sizes, the use of 0.62 inch diameter strand has been increasing. 
 
Strand size tolerances may result in strands being manufactured consistently smaller than, or 
larger than nominal values.  Recognizing this, “Acceptance Standards for Post-Tensioning 
Systems” (Post-Tensioning Institute, 1998) refers to the “Minimum Ultimate Tensile Strength,” 
which is the minimum specified breaking force for a strand.  Strand size tolerance may also 
affect strand-wedge action leading to possible wedge slip if the wedges and strands are at 
opposite ends of the size tolerance range. 
 
Strand conforming to ASTM A416 is relatively resistant to stress corrosion and hydrogen 
embrittlement due to the cold drawing process.  However, since susceptibility to corrosion 
increases with increasing tensile strength, caution is necessary if strand is exposed to corrosive 
conditions such as marine environments and solutions containing chloride or sulfate, phosphate, 
nitrate ions or similar.  Consequently, ASTM A416 requires proper protection of strand 
throughout manufacture, shipping and handling.  Protection during the project, before and after 
installation, should be specified in project drawings and specifications. 
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2.2.1 Tensile Strength 
 
All strands should be Grade 270 ksi low relaxation, seven-wire strand conforming to the 
requirements of ASTM A416 “Standard Specification for Steel Strand, Uncoated Seven Wire 
Strand for Prestressed Concrete.”  ASTM A416 provides minimum requirements for mechanical 
properties (yield, breaking strength, elongation) and maximum allowable dimensional 
tolerances.  The AASHTO LRFD specifications do recognize the use of Grade 250 ksi 
prestressing steel, but this material is almost never used in major bridge construction, and is not 
addressed in this manual. 
 
2.2.2 Modulus of Elasticity 
 
Figure 2.9 shows a stress-strain diagram for prestressing strand.  Up to a loading of 
approximately 90 percent of the ultimate strength of a strand, the stress-strain relationship is 
near linear.  The slope of this stress-strain curve in this region is the Modulus of Elasticity of the 
prestressing strand within the elastic limit.  AASHTO LRFD Article 5.4.4.2 specifies that the 
Modulus of Elasticity for prestressing strands to be used for design (Ep) is equal to 28,500 ksi. 
 
The AASHTO LRFD specifications do not provide a stress-strain relationship other than within 
the elastic range as defined by Ep.  The Precast Concrete Institute presents the stress-strain 
relationship up to the ultimate capacity of the strand.  For 270 ksi strand, the relationships 
presented by PCI are: 
 
For εps ≤ 0.0086,  
 
(Eqn. 2.25)   

 
For εps > 0.0086, 
 

(Eqn. 2.26)   

 
 
Figure 2.9 is a plot of the stress-strain diagram for prestressing strand using equations 2.25 and 
2.26.  The value of ultimate strain shown in figure 2.9 can vary with the source of the 
prestressing strand.  Care should be used in selecting an appropriate value if excessive strains 
are required to provide ultimate capacity of a member. 
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Figure 2.9 – Stress-Strain Diagram for Prestressing Strand (Courtesy PCI) 
 
2.2.3 Relaxation of Steel 
 
Relaxation of steel stress is a result of an increase in elongation over time while under an 
applied stress.  The loss in prestressing stress due to steel relaxation for low relaxation steel 
over a time interval from (t1) to (t) may be estimated as: 
 

(Eqn. 2.27)   

 
With, 
 

(Eqn. 2.28)   

 
And, 
 
(Eqn. 2.29)   
 
Where: fst=steel stress level at beginning of time interval from (t1) to (t) (psi) 

fsu* = average stress in prestressed reinforcement at ultimate load (psi) 
fy*=yield point stress of prestressing steel (psi) 
t = end of time interval (days) 
t1= beginning of time interval (days) 
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Equations 2.27, 2.28 and 2.29 can be found in Article 10.4.1 of the Guide Specifications for 
Design and Construction of Segmental Concrete Bridges (2nd Edition 1999, with 2003 Interim 
Revisions).  These equations do not appear in the AASHTO LRFD specifications in the form 
above, but are incorporated into predictions for prestressing force loss in AASHTO LRFD Article 
5.9.5.4.2c. 
 
2.2.4 Fatigue 
 
Tendons in prestressed concrete structures do not experience stress cycling significant enough 
to induce fatigue problems.  Fatigue in concrete bridges is a concern only in certain applications 
such as cable-stays in cable-stayed bridges where traffic loads significantly affect stress 
variations. 
 
2.3 Reinforcing Steel 
 
Reinforcing steel shall be in accordance with AASHTO LRFD Article 5.4.3. For this manual only 
reinforcing steel with a yield stress of 60 ksi is considered.  AASHTO LRFD Article 5.4.3.1 
permits the use of reinforcing steels with yield stresses greater than 60 ksi, up to 75 ksi, with the 
approval of the Owner.  The modulus of elasticity of the reinforcing steel is 29,000 ksi as per 
AASHTO LRFD Article 5.4.3.2. 
 
It is interesting to compare the stress-strain relationships for prestressing strands and mild 
reinforcing steel.  Figure 2.10 provides a combined plot of stress-strain relationships used in this 
manual.  
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Figure 2.10 – Comparison of Typical Stress-Strain Relationships for Prestressing 
Strand and Mild Reinforcing 
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Chapter 3—Prestressing with Post-Tensioning 
 
3.1 Introduction 
 
Prestressing is the application of compressive force to a concrete member in order to offset 
tensile stresses resulting from other applied loads.  Figure 3.1 illustrates the concept of 
prestressing for a simple span beam.  

 

 
 

Figure 3.1 – Prestressed Concrete Concepts 
 
Design of prestressed concrete involves optimizing member cross section and prestressing 
force and geometry to eliminate or offset concrete tension, enhance serviceability and reduce 
construction cost. 
 
Prestressing is typically applied by means of tensioning high-strength steel strands or bars to 
react against and compress the concrete member.  Prestressing concrete can be achieved in 
two ways: 
 

• Pre-tensioning – In pre-tensioned members strands are installed along the length of a 
casting bed and tensioned against restraining bulkheads before the concrete is cast. 
After the concrete has been placed, allowed to harden and gain sufficient strength, the 
strands are released and their force is transferred to the concrete member by bond.   

 
• Post-tensioning – Post-tensioned construction involves installing and stressing strand or 

bar tendons only after the concrete has been placed, cured and hardened.  Ducts are 
placed inside the concrete so that the tendons can be threaded through them after the 
concrete hardens.  Once in place, the tendons are tensioned by jacks and anchored 
against the hardened member using anchorage devices cast into the concrete.   

 
The content of this manual deals with the application of prestressing through post-tensioning. 
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3.2 Cross Section Properties and Sign Convention 
 
Depending on the approach taken to analyze a multiple-cell box girder bridge, cross section 
properties are computed for either the full box girder or idealized “line girders”.  Figure 3.2 
shows the girders for which cross section properties are typically computed:  the full box girder, 
an internal “girder line,” and an external “girder line.” 

 
 

 
 

Figure 3.2 – Cross Section Nomenclature and Sign Convention 
 
The cross section characteristics required for the analysis of the box girder are: 
 

A = Area of Box Girder or Girder Line (ft2) 
I = Moment of Inertia (ft4) 
c1 = Distance from Neutral Axis to top Fiber (ft) 
c2 = Distance from Neutral Axis to bottom fiber (ft) 

 
The cross sections are assumed to be symmetrical about their vertical axes, and the 
prestressing is symmetrically applied so that there is no biaxial bending.  Figure 3.2 also shows 
positive sign conventions for prestressing force (F), eccentricity of prestressing (e), and 
externally applied bending moments (M).  For the conventions of this Manual, compressive 
stresses in the concrete are positive (+) and tensile stresses in the concrete are negative (-). 
 
 
3.3 Stress Summaries in a Prestressed Beam  
 
Consider the flexure of a simply-supported concrete beam section under the action of its own 
self weight as shown in figure 3.3. Top and bottom stresses are determined according to elastic 
beam theory. The top of the beam is in compression; the bottom is in tension. For plain 
concrete, the tensile stress could exceed the modulus of rupture, crack, and possibly cause 
failure of the beam. 
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Figure 3.3 – Self Weight Flexure Stress in Simply-Supported Beam 
 
If a purely axial compressive stress is applied through prestressing along the neutral axis of the 
beam as shown in figure 3.4, the sum of compressive stress at the top of the beam is increased 
while the tension at the bottom of the beam is reduced.  The presence of a net bottom tension 
would indicate that the beam’s additional load carrying capacity is limited.  
 

 
 

Figure 3.4 – Self Weight Plus Uniform Axial Compression 
 
To improve the effects of the post-tensioning the elevation of the tendon is shifted vertically 
lower to make the prestressing force eccentric to the beam’s neutral axis (figure 3.5).  In this 
case, in addition to the self-weight stress and the axial prestress effect, the eccentricity causes 
a resisting flexural moment that induces compression in the bottom of the beam and tension in 
the top. 
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Figure 3.5 – Self Weight, Axial and Eccentric Prestress Stresses 
 
The summation of these three load effects (i.e. self-weight with axial and eccentric prestress) as 
shown in figure 3.5, results in compressive stress throughout the depth of the beam.  The 
additional compression at the bottom of the beam is available to offset tensile stresses caused 
by other load effects such as superimposed dead loads, highway traffic loadings, and 
temperature induced stresses. 
 
Service limit state design of prestressed concrete bridges involves the summing of stresses at 
cross sections throughout the bridge, and verifying that the resulting stress totals are within 
allowable limits.  In box girder bridges this also includes the summing of axial and shear 
stresses to verify principal tensile stresses in the webs are within limits. 
 
3.4 Selection of Prestressing Force for a Given Eccentricity 
 
Where service limit state flexural verification of prestressed members involves summing of 
stresses due to applied forces, it is often more convenient to work with internal forces and 
moments when designing prestressed members.  This section develops expressions for 
prestressing based on force and eccentricity. 
 
Stresses are determined at the extreme top and bottom fibers by the familiar equations: 
 

(Eqn. 3.1)   

 
 

(Eqn. 3.2)   
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These equations can be rearranged to express the required prestressing force as a function of 
the other equation variables. 
 
Consider first the prestressing requirements for the bottom stress.  The limiting prestressing 
force would be that which satisfies equation 3.2 when the bottom stress fb is set to a permissible 
concrete stress fa.  Making this substitution and multiplying equation 3.2 through by the cross 
section inertia and dividing by the distance from the neutral axis to the extreme bottom fiber the 
equation becomes: 
 

(Eqn. 3.3)   

 
This equation can be reduced further by noting that the left hand side of the equation is a 
bending moment that produces the permissible stress in the concrete at the bottom of the 
girder: 
 

(Eqn. 3.4)  
2

a
ab

f IM
c

=  

 
Equation 3.3 now becomes: 
 

(Eqn. 3.5)  
2

ab
FIM Fe M
Ac

= + −  

 
Further simplification is made by defining the dimensionless parameter:  
 

(Eqn. 3.6)   

 
The parameter ρ is termed the Efficiency of the cross section with regard to prestressing.  Cross 
section efficiencies for three typical shapes are shown in figure 3.6.  As seen in this figure, cross 
section efficiency increases as material is moved away from the neutral axis and is located in 
top and bottom flanges.   
 
 

 
 

Figure 3.6 – Efficiencies of Various Cross Sections 
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Recognizing that: 
 

(Eqn. 3.7)   

 
Equation 3.5 is now simplified to: 
 
(Eqn. 3.8)  1abM F c Fe Mρ= + −  
 
Solving for the prestressing force:  
 

(Eqn. 3.9)  
1

abM MF
c eρ
+

=
+

 

 
The numerator of this equation is the bending moment at the cross section under study, 
adjusted by the moment causing allowable stress.  The sign of Ma is established by the sign of 
the allowable stress at the section.  A permissible tension would cause Ma to be negative, 
reducing the required prestressing force.  A requirement for a residual compressive stress 
would cause Ma to be positive, increasing the required prestressing force. 
 
When Ma is established by the minimum allowable stress, equation 3.9 becomes the expression 
for minimum required prestress force.  When maximum permissible compressive stress is 
controlling, equation 3.9 becomes the expression for maximum permissible prestress force. 
 
This exercise can be repeated for limiting stress control at the top of a cross section.  In this 
case, equation 3.1 can be rearranged to find: 
 

(Eqn. 3.10)  
2

atM MF
e cρ

−
=

−
 

 
It is interesting to study equations 3.9 and 3.10 for additional implications.  Figure 3.7 shows the 
internal equilibrium expressed by equation 3.9 for a positive bending moment.  Figure 3.8 shows 
a similar diagram for the equilibrium expressed by equation 3.10. 
 

 
 

Figure 3.7 – Internal Equilibrium for Positive Bending. 
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Figure 3.8 – Internal Equilibrium for Negative Bending. 
 
 
Now consider the case of zero bending moment acting on the cross section.  Equation 3.9 
becomes: 
 
(Eqn. 3.11)   

 
This equation is satisfied in one of two conditions, either the prestressing force is equal to zero 
or: 
 
(Eqn. 3.12)   
 
Equation 3.12 shows that any prestressing force can be applied at a distance of ρc1 above the 
neutral axis with the result being zero stress at the bottom of the cross section.  Likewise, from 
equation 3.10: 
 
(Eqn. 3.13)   
 
Equation 3.13 shows that any prestressing force can be applied at a distance of ρc2 below the 
neutral axis with the result being zero stress at the top of the cross section.  Graphically, these 
two limiting eccentricities are seen in figure 3.9. 
 
Together, these limiting eccentricities define the upper and lower locations of the cross section 
kern—that portion of the cross section through which no tension occurs if the resultant 
compressive force is located therein.  Figure 3.10 shows the layout of the upper and lower kern 
for a cross section with bending about the horizontal axis.   Further analysis of the cross section 
could be undertaken to define the kern limits in any direction. 
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Figure 3.9 – Limiting Eccentricities for Zero Tension Under Axial Force Only 
 
 
 

 
 

Figure 3.10 – Kern of a Cross Section for Bending About the Horizontal Axis. 
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Example: Consider the line girder segment of a concrete box girder bridge shown in 
figure 3.11.  The girder is simply supported, with a span length of 120’.  In 
addition to the girder self weight, the girder is subjected to a uniformly 
distributed load of 1.0 kip/ft.  The concrete strength of the girder is 5000 psi.  
Determine the limiting values of prestressing for maximum and minimum 
stress at the top and bottom of the girder.  The maximum permissible 
compressive stress is 0.6f’c.  The minimum permissible tensile stress is 3√f’c. 
 
The section properties of the girder are: 
 

 
 

Figure 3.11 –Example Concrete I-Girders 
 
The efficiency of the cross section is: 
 
 
 
 
 
The moment required to produce the permissible tensile stress at the bottom-
most fiber of the girder is: 
 
 
 
 
 
The moment required to produce the permissible compressive stress at the 
bottom-most fiber of the girder with no axial force is: 
 
 
 
 
 
The moment required to produce the permissible tensile stress at the top-
most fiber of the girder is: 
 
 
 
 
 
 

149.55 0.6617
21.5(3.0247)(3.4753)

ρ = =
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The moment required to produce the permissible compressive stress at the 
top-most fiber of the girder is: 
 
 
 
 
 
The mid-span bending moment due to the applied load is: 
 
 
 
 
 
 
 
The minimum prestressing required to limit the bottom girder tension is: 
 
 
 
 
 
The maximum prestressing permissible to not overstress the bottom of the 
girder is: 
 
 
 
 
 
The maximum prestressing permissible to not exceed the minimum tension in 
the top of the girder is: 
 
 
 
 
 
The minimum prestressing permissible to not over compress the top of the 
girder is: 
 
 
 
 
 
 
Though the four limiting forces can be computed, the two limiting forces for 
top stress are not useful for this example.  For the case of the maximum top 
tension, the limiting prestress force causes the bottom of the beam to exceed 
the maximum compressive stress.  To reach the maximum top compression, 
the post-tensioning force would need to be negative.  As a result, for this 
example, the prestressing force can vary between 1397.4 kips and 5819.2 
kips without exceeding allowable stresses. 
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3.5 Permissible Eccentricities for a Given Prestressing Force 
 
Equations for determining prestressing force for a given eccentricity were developed in the 
previous section.  These equations can be used to solve for the prestressing force at a critical 
section.  With the required prestressing force established, the tendon profile must be 
established such that the stress limitations are respected along the entire length of the member.  
Permissible ranges of eccentricity as a function of prestressing force can be determined in a 
fashion similar to those of the previous section. 
 
Consider the condition of bottom stress in a simple span girder.  As in the previous Section, 
equation 3.2 was simplified to equation 3.8, which is repeated here: 
 
(Eqn. 3.8)  1abM F c Fe Mρ= + −  
 
Solving for the eccentricity results in: 
 

(Eqn. 3.14)  1
abM Me c

F
ρ+ = − 

 
 

 
When the controlling bottom stress is minimum stress then equation 3.14 becomes the 
expression for minimum eccentricity.  When the controlling bottom stress is compression, 
equation 3.14 is the expression for maximum eccentricity. 
 
Likewise, the eccentricity limits established by allowable stress at the top of the girder can be 
expressed as: 
 

(Eqn. 3.15)  2
atM Me c

F
ρ− = + 

 
 

 
When the controlling top stress is minimum stress then equation 3.15 becomes the expression 
for maximum eccentricity.  When the controlling bottom stress is compression, equation 3.15 is 
the expression for minimum eccentricity. 
 
Using equations 3.14 and 3.15 along with maximum and minimum allowable stresses, we can 
define ranges of eccentricity.  For stress control on the bottom of the girder: 
 

(Eqn. 3.16)  ( ) ( )
1 1

ab T ab CM M M M
c e c

F F
ρ ρ

+ +   
− ≤ ≤ −   

   
 

 
For stress control on the top of the girder: 
 

(Eqn. 3.17)  ( ) ( )
2 2

at C at TM M M M
c e c

F F
ρ ρ

− −   
+ ≤ ≤ +   

   
 

 
Where Mat represents the moment to cause the allowable tensile stress (or minimum 
compression), and Mac represents the moment to cause allowable compression. 



Post-Tensioned Box Girder Design Manual June 2016 

Chapter 3 – Prestressing with Post-Tensioning 47 of 389 

( )( ) 1314.5 ( ) 185902.0014 2.0014
1200 1200

M x M xe
 + − + − ≤ ≤ −   

  

( )( ) 1510.3( ) 21359 2.2996 2.2296
1200 1200

M xM x e
 − −−  + ≤ ≤ +  

   

Example: Consider the concrete line girder analyzed in the previous example. 
Determine the limits of permissible eccentricity at tenth points along the girder 
for a prestressing force of 1200 kips. 

Recall from the previous example: 

The kern of the cross section is defined by: 

The limits of eccentricity with regard to bottom of girder stress are defined as: 

The limits of eccentricity with regard to top of girder stress is defined as: 

For simple spans subjected to a uniform load: 

The resulting limiting eccentricities are: 

Table 3.1 – Limiting Eccentricities for Example Girder 

kL x M(x) 
Bottom Stress Top Stress 
emin emax emin emax 

0 0 0 -2.6275 6.8508 -7.8714 1.5805 
0.1 12 2737.8 -1.3237 8.1546 -6.5677 2.8842 
0.2 24 4867.2 -0.3097 9.1686 -5.5537 3.8982 
0.3 36 6388.2 0.4145 9.8928 -4.8294 4.6225 
0.4 48 7300.8 0.8491 10.3274 -4.3949 5.0570 
0.5 60 7605 0.9940 10.4723 -4.2500 5.2019 

( ) 18,590ab CM ft kips= −

( ) 1,314.5ab TM ft kips= − −

1 0.6617(3.0247) 2.0014cρ = =

2
( )

2 2
px pLxM x = − +

2 0.6617(3.4753) 2.2996cρ = =

( ) 1,510.3at TM ft kips= − −

( ) 21,359at CM ft kips= −

4.225 /p k ft=
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Graphically, these limiting eccentricities of this example are shown in figure 
3.12.  The tendon profile can lie within the shaded area in the sketch while 
respecting the minimum and maximum allowable flexural stresses in the 
girder. 
 

 
 

Figure 3.12 – Limiting Eccentricities for the Example Bridge 
 
 
 
3.6 Equivalent Forces Due To Post-Tensioning and Load Balancing 
 
Figure 3.13 shows a tendon profile that would satisfy the requirements permissible eccentricity 
in the previous example.   
 
 

 
 

Figure 3.13 – Parabolic Tendon Profile for a Simple Span Girder 
 
The profile of this tendon follows a parabolic trajectory, defined by the following equation for 
eccentricity: 

(Eqn. 3.18)   

 
The moment caused by the post-tensioning, assuming a constant force along the length of the 
tendon, would also be parabolic: 
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(Eqn. 3.19)   

 
The parabolic bending moment caused by the post-tensioning can be equated to the bending 
moment created by the application of a uniform load distributed over the span length.  For a 
load p, the simple span bending moment is: 
 

 (Eqn. 3.20)   

 
Equations 3.19 and 3.20 can be equated and the equivalent uniform load determined: 
 

(Eqn. 3.21)   

 
 

(Eqn. 3.22)   

 
 

(Eqn. 3.23)   

 
 
Figure 3.14 shows the parabolic tendon layout and the resulting equivalent forces acting on the 
concrete girder.  In this layout the tendon has no eccentricity at the ends of the span.  If there 
were eccentricities at the ends of the span, these would be represented by end moments equal 
to the prestressing force times the end eccentricity.  Note that the equivalent horizontal force in 
the lower diagram is made equal to the prestressing force.  This approximation is typically used 
for simplicity in hand calculation, as tendon profiles are flat and that at any location F ≈ Fcos(α), 
where α is the angle of the tendon relative to horizontal. 
 

 
 

Figure 3.14 – Equivalent Forces Resulting from Prestressing 
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Rearranging equation 3.22, we can find the prestressing force required to offset an applied 
uniformly distributed load.  The state of stress all along the length of the girder would be uniform 
compression over the depth of the girder (Fbalancing/Agirder). 
 

Eqn. 3.24  

 
Load balancing has great merit in some prestressed concrete members.  Most typically, 
however, the required quantity of prestressing is great, and cost effectiveness is found in 
reducing the applied prestressing to satisfy acceptable limits of tension in the concrete 
elements. 
 
 

Example: For the girder of the previous examples, compare the prestressing force 
required for minimum bottom tension at mid-span and the prestressing 
required to balance the total applied load of 4.225 k/ft. 
 
From Equation 3.9, the minimum prestressing force for the minimum bottom 
tension at mid-span is: 
 
 
 
 
 
 
The prestressing force required to balance the applied load is found from 
equation 3.24 
 
 
 
 
 
 
The post-tensioning force necessary to balance the applied loads is more 
than twice the force necessary to meet permissible tensile stress criteria. 
 

 
3.7 Post-Tensioning in Continuous Girders 
 
Up to this point we have been determining the values of prestressing force at cross sections and 
defining limits of eccentricities of tendons within simple span girders.  These girders are free to 
rotate at their ends under the action of the prestressing.  In continuous girders, adjacent spans 
restrain the rotations of each other.  These restraining actions produce continuity moments 
along the length of the continuous girder. 
 
Figure 3.15a shows a two-span girder, continuous over the middle support.  The profile of the 
two-span post-tensioning tendon is comprised of two, simple span parabolic shapes described 
in figure 3.13.  If the spans were simply supported, the two girders would deflect as in figure 
3.15b, with the end rotations shown.  Figure 3.15c shows the continuity moments produced to 
resist the simple span rotations.   
 

( )
( )

24.225 120
3042

8 2.5balancingF kips= =

( )
( )

1

7605 ( 1314.5) 1397.4
0.6617 3.0247 2.5

ab TM M
F kips

c eρ
+ + −

≥ = =
+ +



Post-Tensioned Box Girder Design Manual  June 2016 

Chapter 3 – Prestressing with Post-Tensioning  51 of 389  
 

 

 
 

 
Figure 3.15 – Restraining Moments in Continuous Girders 

 
 
The bending moment produced by the post-tensioning force acting at an eccentricity is called 
the primary moment due to the post-tensioning.  The continuity moments produced in the 
continuous girders as a result of restraining the individual spans under the action of the post-
tensioning are called the secondary moments due to post-tensioning. 
 
Figure 3.16 shows the primary, secondary, and the total moments caused by the post-
tensioning.  The primary moment diagram is the result of the parabolically draped post-
tensioning profile. The secondary moments are a result of restraining the rotations of the 
primary moment beam end rotations at the middle supports.  The Total post-tensioning moment 
is the sum of the primary and secondary moments at each section along the length of the 
bridge. 
 
It is interesting to consider the secondary moments as an effective adjustment to the tendon 
profile.  Dividing the secondary moment at any location by the post-tensioning force at that 
section establishes a change in eccentricity from the original tendon geometry.  Likewise, 
dividing the total prestressing moment by the axial force results in the effective eccentricity of 
the tendon profile. 
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Figure 3.16 – Prestressing Moments for a Two-Span Continuous Girder 
 
 
For the case of a structure symmetrical about the central support, the moments M21 and M23 
shown in figure 3.15 would be those that would restore the cross section at the middle support 
to vertical (no net rotation).  Considering the two span structure of the last section, the 
equivalent load of the tendon on the girder is a uniformly distributed load with a value of: 
 

(Eqn. 3.25)   

 
The simple beam end rotations caused by this uniform load are: 
 
 

(Eqn. 3.26)   
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The rotation at the end of a beam with constant cross section properties, under the action of an 
end couple, is: 
 

(Eqn. 3.27)   

 
By setting equations 3.26 and 3.27 equal to each other, the value of the continuity moment at 
the central support of the two span structure can be determined: 
 

(Eqn. 3.28)   

 
(Eqn. 3.29)   
 
 
The bending moment diagram for the combined effects of primary and secondary prestressing 
moments is shown in figure 3.17. 
 
 

 
 
 

Figure 3.17 – Total Prestressing Moments for a Two-Span Continuous Girder 
 
 
The impact of the secondary moments on the effective eccentricity for this example is: 
 

• The effective eccentricity at the mid-span of the spans is reduced by half to Femax/2. 
• Though the tendon profile has no real eccentricity at the central support, the effective 

eccentricity is equal to the maximum eccentricity at the center of the spans. 
 
Note:  The preceding discussion considers a two span continuous bridge with a constant and 
symmetric post-tensioning force.  In actual design there would be losses along the length of the 
tendon, and most likely, tendons of a two-span bridge would only be stressed from one end. 
See chapter 4 for a further discussion of post-tensioning losses 
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3.8 Tendon Profiles—Parabolic Segments 
 
In section 3.6, a parabolic tendon was introduced to offset the effects of uniformly distributed 
applied forces.  This is typically the case for cast-in-place concrete box girder bridges where the 
majority of the applied loads result from the uniformly distributed effects of girder self weight and 
barrier railing (DC), uniformly applied superimposed dead loads such as future wearing surfaces 
(DW) and the uniform load portion of the HL93 notional load.  Rather than express the parabolic 
layout over its full length, the tendon geometry is typically subdivided into parabolic half-
segments as shown in figure 3.18. 
 

 
 

Figure 3.18 – Tendon Profile Parabolic Segment 
 
The elevation of the tendon profile at a horizontal distance from the origin is given as: 
 

(Eqn. 3.30)   

 
The slope of the tendon profile is: 
 

(Eqn. 3.31)   

 
And the angle of the tendon profile at the end of the parabolic segment is: 
 

(Eqn. 3.32)   

 
The tendon profiles used for the two-span continuous girder in this Chapter were parabolically 
draped tendons similar to a simple span girder.  Though these profiles were useful to 
demonstrate principles of the development of secondary moments, they are not efficient with 
regard to design and construction of continuous box girder bridges.  The secondary moment in 
the positive bending region is excessive, and though effective eccentricity was developed over 
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the middle support, typically more effective eccentricity is needed to optimize post-tensioning 
quantities. 
 
Using parabolic segments, tendon profiles can be developed which improve post-tensioning 
effectiveness.  Figures 3.19 and 3.20 show the more typical layout of tendon profile for 
continuous bridges.  Figure 3.19 shows the profile for an end span of a continuous unit.  Figure 
3.20 shows the profile for an interior span. 
 
 

 
 

Figure 3.19 – Typical End Span Tendon Profile for Continuous Superstructures 
 
 
 
 

 
 

Figure 3.20 – Typical Interior Span Tendon Profile for Continuous Superstructures 
 
 
 
When using parabolic segments to define tendons, it is required to maintain tendon slopes at 
junctions between the parabolic segments.  Consider the common point of the parabolic 
segments within lengths b2 and b3 in figure 3.18.  From Equation 3.32: 
 

(Eqn. 3.33)   

And, 
 

(Eqn. 3.34)   
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Equating these two tendon slopes, we find relationships between parabolic segment run and 
rise: 

(Eqn. 3.35)   

 
 

Example: Using the two-span girder of the previous examples and the tendon profile 
shown in figure 3.21, compute the secondary moments for a post-tensioning 
force F. 

 
 

 
 

Figure 3.21 – Example Tendon Profile Parabolic Segments 
 

 
The horizontal run of the tendon profiles are given.  Complete the definition of 
the parabolic tendon segments by determining their rises.  The first parabolic 
segment terminates at the neutral axis, so by inspection h1=2.5’.  The rises of 
the second and third parabolic segments are found by observing that: 
 
 
 
Rearranging equation 3.35 leads to: 

 
 
 
 
Combining these expressions: 
 
 
 
 
Solving for h2: 
 
 
 
 
 
 
And h3: 
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End rotations are found by the conjugate beam method, in which the end 
reactions of the conjugate beam, loaded with the curvature diagram 
(moment/EI), are equal to the end rotations.  The bending moment for which 
rotations are to be computed is the primary prestressing moment.  
Prestressing force F, and beam stiffness, EI, are constant along the length of 
the structure in this example.  Figure 3.22 shows curvature diagram due to 
the post-tensioning tendon. 
 
 

 
 

Figure 3.22 – Curvature Diagram for Prestressing 
 
 
The forces acting on the conjugate beam are found by concentrating the 
curvature diagram into sections that can be easily expressed geometrically.  
For the tendon layout of this problem the curvature diagram is concentrated 
into four conjugate beam loads—the three parabolic segments and a 
rectangular segment which accounts for the fact that the transition between 
the positive and negative curvatures do not occur at the neutral axis.  Figure 
3.23 shows the four areas of concentrated curvature. 
 
 

 
 
 

Figure 3.23 – Curvature Diagram for Prestressing 
 
 
Working from left to right, the first load is the concentration of the first 
parabolic segment (A1): 
 
 
 
 
 

1
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The second parabolic segment (A2) is concentrated to: 
 
   
 
 
 
 
The third area, A3, is the rectangular area that when subtracted from A2 
results in the positive curvature between A4 and the neutral axis. 
 
 
 
 
 
The fourth load is: 
 
 
 
 
 
With the loads computed, the reaction on the conjugate beam can be found.  
Figure 3.24 shows the loaded conjugate beam 
 
 

 
 

Figure 3.24 – Loaded Conjugate Beam 
 
 

The reactions (end rotations) are: 
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As in the previous example, the secondary moment at the interior support is 
equal to the moment that restrains the rotation, returning the section to 
vertical. 
 
 
 
 
Solving for the secondary moment at the middle support (see Figure 3.16): 
 
 
 
 
It is interesting to compare the total prestressing moments in terms of 
effective eccentricity for this example (with parabolic segments and 
eccentricity at the middle pier) and the tendon profile shown in figure 3.17 
(single parabola over the span lengths, with no eccentricity at the middle 
pier). 
 
The effective eccentricities of this example at pier and mid-span are: 
 
 
 
The effective eccentricities for the tendon profile shown in Figure 3.17 are: 
 
 
  
The tendon profiles of this example are 20 percent more effective at the 
middle support and 50 percent more effective at mid-span 

 
 
 
Secondary moments for the two-span girder in this Section were readily computed because of 
the structure’s symmetry.  More complex structures require a generalized approach to 
determine secondary moments using hand calculations.  Appendix A of this manual presents a 
generalized flexibility-based hand method for solving continuous bridges.  The method begins 
with the determination of span end rotations under the action of the applied loads.  These end 
rotations are then used to determine continuity moments at the end of that span.  This 
procedure is performed for all loaded spans, and the results summed to complete the analysis. 
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Chapter 4—Prestressing Losses 
 
Post-tensioning tendon forces are established in design to provide precompression to offset 
undesirable tensile stresses in the concrete box girder.  The engineer conveys the tendon force 
requirements in the contract drawings as either the required jacking force at the end of the 
tendon or the final effective force at some point along the length of the tendon.  The differences 
between jacking forces and effective forces are the prestressing force losses.  Prestressing 
force losses can be grouped into two families: 1) instantaneous losses related to the mechanics 
of the post-tensioning system and tendon geometry, and 2) time-dependent losses related to 
the material properties of the concrete and prestressing steel.  The components of prestressing 
losses addressed in this chapter are: 
 

Instantaneous Losses 
• Duct friction due to curvature 
• Wobble (unintentional friction) 
• Wedge Set (or Anchor Set) 
• Elastic shortening of concrete 

Time-Dependent Losses 
• Shrinkage of concrete 
• Creep of concrete 
• Relaxation of prestressing steel 

 
4.1 Instantaneous Losses 
 
4.1.1 Friction and Wobble Losses (AASHTO LRFD Article 5.9.5.2.2b) 
 
Friction between the strands and duct during stressing is related to intended angular changes in 
the tendon geometry.  The top sketch in figure 4.1 shows the trajectory of a tendon within a 
desired duct profile.  As the tendon is stressed, friction where the tendon contacts the duct wall 
reduces the force in the tendon.  The friction coefficient (µ), defined to predict losses of this 
type, is a function of the duct material.  
 
Predicting friction losses along the length of a tendon using the friction coefficient alone has not 
proven to correlate well with field results.  Another coefficient of friction loss, wobble (K), is used 
to account for unintended friction between strand and duct as a result of unintended duct 
misalignments. The concept of duct wobble is shown in the bottom sketch of figure 4.1. 
 

 
 

Figure 4.1 – Friction and Wobble 
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The equation to predict losses due to friction and wobble is found by considering a small section 
of tendon following a circular path as shown in figure 4.2.   

Figure 4.2 – Section of Tendon with Radial Alignment 

The variables in figure 4.2 are defined as: 

dα = angle change 
dl = tendon length through angle dα 
F = is the force at the stressing end of the section of tendon 
dF = loss in tendon force P resulting from friction and wobble 
n = distributed radial force resisting the angle change of the tendon force. 
N = resultant of distributed radial force, n 
μ = friction coefficient 

For an infinitesimally small element of tendon, the vertical equilibrium can be expressed as: 

(Eqn. 4.1) 

Or, 

(Eqn. 4.2) 

For small angles, 

(Eqn. 4.3)  

And, 

(Eqn. 4.4)  

So that Equation 4.1 can be reduced to, 

(Eqn. 4.5)  
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Summing the forces horizontally,  

(Eqn. 4.6)   

 
Again, for small angles,  

(Eqn. 4.7)   

 
Equation 4.6 then reduces to, 
 
(Eqn. 4.8)   
 
Combining expressions 4.5 and 4.8, 
 
(Eqn. 4.9)   
 
We define the wobble coefficient, K, as a function of the prestressing force, per unit length, l, 
along the tendon so that the total loss in prestress force becomes: 
 
(Eqn. 4.10)   
 
The change in prestress force as a function of the original force is, 
 

(Eqn. 4.11)   

 
Which can be integrated, 
 

(Eqn. 4.12)   

To find,  

(Eqn. 4.13)   

 
which can be expressed as,  
 
(Eqn. 4.14)   
 
Or in terms of stress, 
 
 (Eqn. 4.15)   
 
Equation 4.15 relates tendon stress at a length along the tendon to the jacking force, tendon 
geometry, and the coefficients of friction and wobble.  Expressions similar to equation 4.15 are 
found in AASHTO LRFD Article 5.9.5.2.2. 
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Design example 1 (Appendix C) presents the design of a three-span cast-in-place box girder 
bridge with span lengths of 120’, 160’ and 120’.  The cross section of the box girder 
superstructure, shown in figure 4.3, has five webs, each containing three post-tensioning 
tendons, each comprised of 19, 0.6” diameter prestressing strands.   
 
 

 
 

 
Figure 4.3 – Cross Section of Superstructure for Design Example 1 

 
Figure 4.4 shows details of the tendon profiles of design example 1 in the end spans and center 
span.  The profiles follow a series of parabolic segments as defined in the previous chapter. The 
tendon elevations shown take into account the location of the strands within the ducts as shown 
in the detail of figure 4.3.  For this tendon size, a 1” offset from the center of the duct to the 
center of gravity of the strands is specified (AASHTO LRFD Article 5.9.1.6).  When the tendon is 
low at mid-spans, the strands are pulled to the top of the duct and are 1” above the center of 
gravity of the duct.  Over the piers the strands are pulled to the bottom of the duct and their cg is 
modeled 1” below the cg of the duct.  At points between the parabolic segments, the tendons 
are modeled at the cg of the duct. 
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Figure 4.4 – Tendon Profiles For Design Example 1 
 
 
Figure 4.5 shows the elevation of Tendon T2 only, highlighting the deviation angles that the 
tendon makes over the three spans.  Assuming that the tendon is stressed from the left end, 
End A in figure 4.5, the calculation of the force along the length of the tendon can be made 
using equation 4.14.  The coefficient of friction, μ, is assumed to be 0.25 (1/rad), and the wobble 
coefficient, k, is 0.0002 (1/ft). 
 

 
 

Figure 4.5 – Tendon T2 Profile and Angular Deviations 
 
 
The calculation of the force along the length of Tendon T2 is summarized in the table shown in 
table 4.1.  The steps taken to compute the values in this table are: 
 

1. Define points, in this case points 1 through 11, at the beginning and end of 
the tendon and at transitions between parabolic segments. 
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2. Compute the lengths and heights of the parabolic segments from the
tendon profile with appropriate adjustments for strand location within the
ducts.  The heights in this calculation are the absolute value of the
difference in dimensions from the bottom fiber to the tendon centroid.

3. Compute the angular deviation that the tendon makes through each
parabolic segment as computed using equation 3.32 from chapter 3.

4. Using equation 4.14 compute the incremental force coefficient as a fraction
of the force at the beginning of the parabolic segment. (Fi/F0).

5. Beginning with unit value at End A of the tendon, successively multiply the
incremental force coefficients to determine the cumulative force coefficients
at the end of each parabolic segment, in this case expressed as a fraction
of the jacking force.

6. Multiply each cumulative force coefficient by the jacking stress.  For this
example the jacking stress was 75 percent of the ultimate strength of the
tendon.

7. Find the tendon force along its length by multiplying the stress at that
location times the area of the tendon.  In this example the tendon is
comprised of 19, 0.6” diameter strands.  The area of the tendon is 0.217 x
19 = 4.123 in2.

Point b (ft) h (ft) 
Angular 

Deviation 
θ=2h/b (rad) 

Angular 
Force 

Coefficient 

Cumulative 
Force 

Coefficient 

Tendon 
Stress 
(ksi) 

Tendon 
Force 
(kips) 

1 0 0.0000 0.00000 0.0000 1.0000 202.50 835 
2 50 1.2500 0.05000 0.9778 0.9778 197.99 816 
3 55 2.4063 0.08750 0.9677 0.9461 191.59 790 
4 15 0.6563 0.08750 0.9754 0.9229 186.88 771 
5 20 0.9479 0.09479 0.9727 0.8977 181.78 749 
6 60 2.8438 0.09479 0.9649 0.8662 175.04 723 
7 60 2.8438 0.09479 0.9649 0.8358 169.25 698 
8 20 0.9479 0.08750 0.9727 0.8130 164.63 679 
9 15 0.6563 0.08750 0.9754 0.7930 160.58 662 
10 55 2.4063 0.05000 0.9677 0.7674 155.39 641 
11 50 1.2500 0.05000 0.9778 0.7503 151.93 626 

Table 4.1 – Tendon Loss Calculations – Friction and Wobble 

Figure 4.6 shows a graphical representation of the force along the length of Tendon T2 at full 
jacking force and with losses resulting from friction and wobble.  The force at the left end of the 
tendon is equal to the jacking force of 835 kips.  The force at the anchorage at End B is 626 
kips. 
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Though the radii within the parabolic segment are changing over their lengths, the tendon force 
is assumed to vary linearly over the length of the parabolic segment.  This results in the straight-
line representation shown in figure 4.6.   
 
It is important to note that the lengths used for computing losses for wobble in this example 
were the horizontal lengths of the parabolic segments.  This simplification is made because the 
horizontal projection of the tendon length is not significantly different from the actual tendon 
length for most cast-in-place box girder bridges.  When this assumption cannot be made, the 
losses should be computed along the length of the tendon. 
 
 

 
 

Figure 4.6– Tendon Loss Calculations – Friction and Wobble 
 
 
4.1.2 Elongation 
 
Post-tensioning tendons are stressed to a force chosen by the Engineer and presented in the 
contract drawings.  Hydraulic jacks used to stress the tendons are fitted with gauges that relate 
hydraulic pressure to stressing force.  Tendon elongations are measured during stressing as a 
secondary method of verifying force in the tendons. 
 
Elongations are computed by considering the average force over a length of tendon:  
 

(Eqn. 4.16)  i ave i
i

s s

F l
A E

∆ =  
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Where Fi ave is the average force over the length of tendon, li.  The total elongation is obtained 
by summing the increments of elongation for each portion of the tendon, based on the average 
of the force at the beginning and end of that portion: 

(Eqn. 4.17) i ave i
total

s s

F l
A E

∆ = ∑

The table presented in table 4.2 shows the average length of each parabolic segment for 
Tendon T2 of design example 1, the average force over that length (found as the average of the 
force at the beginning and end of the segment) , and the resulting elongation over each 
increment.  The total elongation is the sum of the column of incremental elongations. 

Point b (ft) Average 
Force (kips) 

Incremental 
Elongation (in) 

1 50 825.62 4.216 
2 55 803.13 4.511 
3 15 780.23 1.195 
4 20 760.00 1.552 
5 60 736.33 4.512 
6 60 710.51 4.354 
7 20 688.30 1.406 
8 15 670.43 1.027 
9 55 651.39 3.659 
10 50 633.55 3.235 

Total Elongation (in) 29.666 

Table 4.2– Tendon Elongation 

The area below the tendon force diagram in figure 4.7 represents the work done to elongate the 
tendon.  This work divided by the tendon area and modulus of elasticity of the prestressing steel 
is equal to the total tendon elongation as demonstrated in figure 4.8. 

4.1.3 Anchor Set 

When the jacking force is reached at End A, the wedges are made snug and the tendon force 
released.  The tendon draws the wedges, or seats them, into the wedge plate.  The amount of 
movement that the wedges undergo is referred to wedge or anchor set.  Values of anchor set 
vary with post-tensioning system, but typically vary from 1/4 to 3/8 of an inch.  Figure 4.7 shows 
a depiction of the wedges before and after anchor set. 

As the wedges are seated the tendon is shortened, reducing the tendon force. Often, only a 
portion of the length is affected as the work done in shortening the tendon is less than the work 
to elongate the tendon. Short tendons, however, requiring little elongation to achieve a desired 
force, can have the force affected along their entire length as a result of anchor set. 

Figure 4.8 shows the effect of an anchor set of 3/8 inches on the forces along the length of the 
Tendon T2 of design example 1 after stressing at End A.  The shaded area in figure 4.8 
represents the work performed during the anchor seating.  This area is determined by finding a 
point along the length of the tendon to a location where the anchor set does not impact the 
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tendon force (point of zero movement).  Working back from the tendon force from that point to 
the anchorage, the loss in tendon force is related to the geometry of the tendon, friction and 
wobble, just as when originally stressed.  A typical simplification is to mirror image the force loss 
diagram about a horizontal line passing through the point of zero movement. 

Figure 4.7– Anchor Set 

Figure 4.8 – Tendon Force Diagram after Anchor Set at End A 

The point of zero movement was determined by trial and error to be 90.87’ from the stressing 
end.  The convergence on these values was found by equating the shaded area in Figure 4.8, 
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(average changes in force x length along tendon) divided by the tendon cross-sectional area 
and modulus of elasticity, to the anchor set of 3/8”: 
 

(Eqn. 4.18)   

 
The maximum force in the tendon at the point of zero movement is 796.68 kips.  This force 
represents a stress in the tendon of 193.2 ksi, or 71.6 percent of GUTS, which is less that the 
permissible value of 74 percent specified by Table 5.9.3-1 of AASHTO LRFD Article 5.9.3.  The 
force at the anchorage at End A is 758.36 kips.  This force represents a stress of 183.9 ksi, or 
68.1 percent of GUTS, which is less than the permissible value of 70 percent specified in the 
same AASHTO LRFD Table. 
 
4.1.4 Two-End Stressing 
 
For tendons that are relatively short, or for longer tendons with small vertical draping, single end 
stressing may provide sufficient force throughout the bridge superstructure.  Stressing half of 
the tendons from their beginning and half from their end can help produce a more uniform level 
of force along the bridge. 
 
Long tendons that are continuous over multiple spans, where friction losses are high, can be 
stressed at both ends to significantly increase the prestressing force in the bridge.  The force in 
Tendon T2 of design example 1, which has been studied in the chapter, can be enhanced by 
this two-end stressing. 
 
After stressing from End A, the force in Tendon T2 was found to be 626 kips (See figure 4.7 and 
4.10).  When jacking at End B, the tendon will not begin to elongate until this level of load is 
reached.  The jack at End B will pick up load at 626 kips and continue to the final jacking force 
specified by the Engineer, which in this example is chosen to be 835 kips. 
 
From symmetry of the structure and tendon geometry, the force along the length of the tendon 
when stressed from End B at the right would be the mirror image of that for stressing at End A 
as shown in figure 4.6.  In this second stressing, however, the force along the tendon length 
would reduce as a result of friction and wobble, to a point where the force in the tendon is equal 
to the force from the first end stressing.  No elongation, and therefore no force increase, will 
occur past that point.  This is seen in figure 4.9, where the effects of stressing at End B elongate 
only the right half of the tendon.  The point of zero movement of the second stressing is at the 
centerline of the main span of the bridge, where the forces from stressing at End A and End B 
both equal 723 kips.  
 
The shaded area shown in figure 4.9 between the two tendon force diagrams is the work 
performed during the second stressing.  This area, divided by the cross-sectional area of the 
tendon and modulus of elasticity is equal to the elongation due to stressing the tendon at End B.  
For the case of Tendon T2 of design example 1, the elongation due to second stage stressing is 
2.3 inches. 
 
The final change in tendon force is a result of the anchor set at End B.  By symmetry of the 
tendon and jacking force, the resulting loss due to anchor set is the same as End A.  This loss 
and the final tendon force diagram after stressing both ends and anchor set at End B is shown 
in figure 4.10. 
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Figure 4.9 – Tendon Force Diagram after Stressing from End B 
 

 

 
 

Figure 4.10 – Final Tendon Force Diagram (After Anchor Set at End B) 
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4.1.5 Elastic Shortening (AASHTO LRFD Article 5.9.5.2.3b) 
 
Concrete box girder superstructures are post-tensioned with multiple tendons.  When the first 
tendon is stressed, it is pulled to the specified jacking force and seated.  The concrete box 
girder shortens as a function of the bridge length and axial stiffness.    
 
The superstructure is further compressed when the second tendon is stressed, and shortens in 
proportion to the newly applied force.  As the superstructure shortens, so does the tendon that 
was stressed first, reducing the force in that tendon.  Subsequently stressed tendons 
incrementally reduce the force in all previously stressed tendons, until the last tendon is 
stressed and seated with the specified jacking force. 
 
The difference between the sum of all tendon forces, as they have been affected by each other, 
and the total force, as if all tendons were stressed at the same time, is the instantaneous loss of 
prestress force due to elastic shortening. 
 
Consider a structure that is incrementally prestressed with multiple post-tensioning tendons.  
The tendons are straight with no eccentricity.  As the first tendon is stressed, the structure 
shortens an amount equal to: 
 

(Eqn. 4.19)   

 
Where, Δ1 = Shortening of the superstructure under the force of stressing Tendon 1 (in) 

F1 = Stressing force for Tendon 1 (kips) 
L = Length of bridge being prestressed (inches) 
Ac = Cross-sectional area of the box girder superstructure (in2) 
Eci = Modulus of Elasticity of the concrete at the time prestressing is applied (ksi) 

 
When the second tendon is stressed, the superstructure shortens more, and the first tendon 
shortens by the same amount.  The resulting shortening of the superstructure at this phase of 
construction is: 
 

(Eqn. 4.20)   

 
Where, Δ2 = Shortening of the superstructure under the force of stressing Tendon 2 (in) 

F2 = Stressing force for Tendon 2 (kips) 
ΔFp1 = Change in force in Tendon 1 under the action of stressing Tendon 2 
Ap1 = Cross-sectional area of Tendon T1 (in2) 
Eci = Modulus of Elasticity of the concrete at the time prestressing is applied (ksi) 
Ep = Modulus of Elasticity of the prestressing steel (ksi) 

 
Equation 4.20 can be rearranged to express the change in stress in Tendon 1 as Tendon 2 is 
stressed: 
 

(Eqn. 4.21)   
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Where, Δfp1 = Change in stress of Tendon 1 while stressing Tendon 2 (ksi) 
fcg2 = Stress at the center of gravity of the box girder superstructure as a result of 

stressing Tendon 2 (ksi) 
 
Equations 4.20 and 4.21 were developed for the special case of a concentrically prestressed 
member where the center of gravities of the concrete and tendons coincide.  More generally, the 
center of gravity of the post-tensioning is eccentric to the concrete superstructure center of 
gravity, and the stress is different from the axial value.  Taking this into consideration, the total 
change in prestressing force in terms of the total stress in the concrete caused by all tendons, 
the expression is that of AASHTO LRFD Equation 5.9.5.2.3b-1: 
 

(Eqn. 4.22)   

 
Where, ΔfpES = Change in stress of all tendons as a result of elastic shortening  (ksi) 

N = the number of identical prestressing tendons 
fcgp = sum of concrete stress at the center of gravity of the prestressing tendons due 

to the prestressing force after jacking and the self-weight of the member at the 
sections of maximum moment (ksi) 

 
Comments on fcgp: 
 
• This stress may be computed considering losses in prestressing stress due to friction, early 

portions of steel relaxation, and an estimate of elastic shortening itself. 
 

• Typically, all tendons are stressed prior to grouting.  The tendons are then all unbonded and 
fcgp should be calculated as an average stress at the level of the center of gravity of the 
prestressing steel, taken from several locations along the length of the bridge. 

 
 
4.2 Time-Dependent Losses 
 
Chapter 2 presented time-dependent characteristics for concrete and prestressing steel.  The 
equations presented in that Chapter are those presented in the CEB-FIP Model Code (1990).  
The CEB-FIP equations are beneficial for computerized analyses of bridges that use time steps 
to evaluate phased bridge construction.  The AASHTO LRFD Specifications provide equations 
for determining lump sum losses in prestressing.  These equations are useful for preliminary 
design of complex structures and for the final design of bridges where a phased construction 
analysis is not required. 
 
This section presents the AASHTO LRFD Specification equations for the refined lump sum 
approach for determining long term prestressing force losses.  These equation are used chapter 
5 for the preliminary design of the bridge of design example 1.  The design example uses a 
computerized analysis that incorporates the CEB-FIP equations. 
 
4.2.1 General (AASHTO LRFD Article 5.9.5.4.1) 
 
Predictions for time-dependent losses presented in the AASHTO LRFD specifications are 
tailored to superstructures made of pretensioned girders with deck slabs made continuous after 
girder placement.  The general equation for time-dependent losses is presented in AASHTO 
LRFD Equation 5.9.5.4.1-1: 
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(Eqn. 4.23)   

 
The subscripts for the various changes in prestress stress, Δfp, are: 
 

• id refers to losses that occur between transfer of pretensioning force to the girder and 
placement of the concrete deck. 

• df refers to losses that occur after deck placement (until final losses are realized). 
• SR, CR and R1 are losses associated with concrete shrinkage, concrete creep and 

prestressing steel relaxation between transfer of pretensioning force to the girder and 
placement of the concrete deck. 

• SD, CD and R2 are losses associated with concrete shrinkage, concrete creep and 
prestressing steel relaxation after deck placement. 

• SS is a gain in prestressing stress as a result of the shrinkage of the composite deck 
slab 

 
AASHTO LRFD Article 5.9.5.4.5 provides guidance for the application of the general equation 
for post-tensioned non-segmental girders.  Recognizing that application of the prestressing and 
engaging of the self weight of the cast-in-place box girder happen at the same time, the part of 
AASHTO LRFD Equation 5.9.5.4.1-1 concerned with the time from transfer to deck placement is 
to be taken as zero.  The construction of full cross sections of the box girders at the same time 
also causes the differential effects of the slab shrinkage relative to the webs and bottom slab 
also to be zero.  As a result, equation 4.23 can be reduced to: 
 
(Eqn. 4.24)   

 
The subscript df refers to all losses that occur from initial loading until all time-dependent losses 
are realized.  The remainder of this chapter presents the terms of equation 4.24 as applied to 
cast-in-place post-tensioned concrete box girders.  Some bridge owners offer simplified 
approaches to determining time-dependent losses.  Caltrans, for example, routinely forgoes 
detailed calculations and uses a lump sum loss of 20 ksi. 
 
 
4.2.2 Concrete Shrinkage (AASHTO LRFD Article 5.9.5.4.3a) 
 
The loss of prestress force resulting from shrinkage of the concrete superstructure is given by 
AASHTO LRFD Equation 5.9.5.4.3a-1 as: 
 
(Eqn. 4.25)   
 
The strain εbdf, is the shrinkage strain from the time of prestressing to final time as provided by 
AASHTO LRFD Equation 5.4.2.3.3-1: 
 
(Eqn. 4.26)    

 
The factors in Equation 4.26 are defined by AASHTO LRFD Equations 5.4.2.3.2-2, 5.4.2.3.3-2, 
5.4.2.3.2-4, and 5.4.2.3.2-5: 
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(Eqn. 4.27)    

 
(Eqn. 4.28)    
 

(Eqn. 4.29)    

 

(Eqn. 4.30)    

 
 
Where, H = relative humidity (%) 

ks = factor for the effect of the volume to surface ratio of the component 
khs = humidity factor for shrinkage 
kf = factor for the effect of concrete strength 
ktd = time development factor 
t = age of concrete at the end of shrinkage (days) 
V/S = volume-to-surface ratio (in.) 

 
The term Kdf is given by AASHTO LRFD Equation 5.9.5.4.3a-2 as: 
 

(Eqn. 4.31) 
2

1

1 1 1 0.7 ( , )
df

p ps c pc
b f i

ci c c

K
E A A e

Ψ t t
E A I

=
 

 + + +    
 

 

 
Where, epc = eccentricity of the prestressing force with respect to the center of gravity of the 

concrete box girder (in.), positive in typical construction where prestressing 
force is below the centroid of the section 

Ac = area of the gross section of the concrete box girder (in.2) 
Ic = moment of inertia of the gross section of the concrete box girder (in.4)  

 
The creep coefficient, ψb, is given by 5.4.2.3.2-1 as: 
 
(Eqn. 4.32) 0.118( , ) 1.9b f i s hc f td iΨ t t k k k k t −=  
 
Factors ks, kf, and ktd are defined above.  Factor khc is defined by AASHTO LRFD Equation 
5.4.2.3.2-3: 
 
 (Eqn. 4.33)   
 
Where, khc = humidity factor for creep 

ti = age of concrete at time of load application (days) 
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4.2.3 Concrete Creep (AASHTO LRFD Article 5.9.5.4.3b) 
 
The loss of prestress force resulting from the creep of concrete is defined by AASHTO LRFD 
Equation 5.9.5.4.3b-1:  
 

(Eqn. 4.34) ( , ) ( , ) ( , )p p
pCD cgp b f i b d i df cd b f d df

ci ci

E E
f f Ψ t t Ψ t t K f Ψ t t K

E E
 ∆ = − + ∆   

 
Deleting the terms that deal with time of transfer to time of deck placement, this equation can be 
simplified to: 

(Eqn. 4.35) ( , )p
pCD cgp b f i df

ci

E
f f Ψ t t K

E
∆ =  

 
Where, tf = final age of concrete (days) 
 
 
4.2.4 Steel Relaxation (AASHTO LRFD Article 5.9.5.4.3c) 
 
The loss of prestress force resulting from the creep of concrete is defined by AASHTO LRFD 
Equation 5.9.5.4.3c-1 for pretensioned conditions, which assigns half of the relaxation from time 
of transfer to deck placement, and half from deck placement to final time: 
 
(Eqn. 4.36)   
 
 
This is evaluated by considering AASHTO LRFD Equation 5.9.5.4.2c-1: 
 

(Eqn. 4.37)   

 
Where, fpt = stress in prestressing strands immediately after transfer, but not less than 

0.55fpy 
KL = 30 for low relaxation strands and 7 for other prestressing steels 

 
As an option to evaluating prestress relaxation by the equations above, the AASHTO LRFD 
specifications permits a value of ΔfpR1 equal to 1.2 ksi for low relaxation strand. 
 
Considering relaxation from stressing to final time, the relaxation in cast-in-place box girder 
construction should be equal to two times ΔfpR1, or 2.4 ksi. 
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Chapter 5—Preliminary Design 
 
5.1 Introduction 
 
Previous chapters in this manual have introduced cast-in-place box girder construction and 
post-tensioning concepts.  This chapter presents a preliminary design process for cast-in-place 
box girder bridge superstructures.  The goal of the preliminary design is to select a bridge 
layout, box girder superstructure cross section, and preliminary longitudinal post tensioning 
arrangement in sufficient detail to assure an efficient final design phase.  The flow chart shown 
in figure 5.1 outlines the steps of this preliminary design process. 
 
 

 
 

 
 

Figure 5.1 – CIP Box Girder Bridge Preliminary Design Flow Chart 
 
 
The method of presenting this preliminary design process is to discuss influencing factors, and 
then apply them to an example bridge structure.  Figure 5.2 shows an elevation view of a three 
span bridge that will be used to develop the preliminary design.   
 
 

 
 

 
Figure 5.2 – 3-Span Box Girder Bridge for Preliminary Design 
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This bridge is planned as a part of a new highway passing through a relatively flat, developed 
urban area.  The bridge is required to cross over an existing four-lane divided highway, with the 
travel lanes separated by 40’ and having required side clear zones of 32’.  Figure 5.3 shows the 
cross section of the existing highway lanes to be spanned. 
 
 

 
 

Figure 5.3 – Existing, At-Grade Highway Cross Section 
to Be Spanned by Proposed Bridge 

 
 
5.2 Establish Bridge Layout 
 
5.2.1 Project Design Criteria 
 
Each bridge design project comes with a set of jurisdictional, technical and site specific criteria 
that need to be considered in establishing the bridge layout.  Engineers and planners from 
various disciplines work to meet a wide range of owner requirements for the new facility.  The 
most common of these are: 
 

• Nature and function of the facility/geography to be spanned. 
• Site topography. 
• Required vertical and horizontal clearances. 
• Horizontal alignment, profile grade, and superelevation of the proposed bridge. 
• Number and widths of lanes and shoulders (highway bridges), dynamic clearance 

envelopes for trains (rail and transit bridges). 
• Subsurface and geotechnical investigations. 
• Environmental constraints. 
• Bridge and Site drainage. 
• Limits of Rights-of-Way. 
• Utility requirements/conflicts. 
• Permitting. 
• Maintenance of Traffic. 
• Applicable codes and regulations. 
 

Working within the framework of the project design criteria, the bridge engineer begins 
preliminary design by selecting the following: 
 

• Bridge type. 
• Pier and abutment locations, resulting in bridge span lengths and overall bridge length. 
• Length of bridge between expansion joints. 
• Superstructure cross section. 
• Pier and abutment types and dimensions. 
• Probable foundation types and sizes. 
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Bridge type selection studies are often performed before the preliminary design phase.  Various 
bridge types are compared using “order of magnitude” estimates, typically based on historic 
bridge cost information.  For the purpose of this manual, it is assumed that the preferred bridge 
type is a cast-in-place post-tensioned concrete box girder. 
 
5.2.2 Span Lengths and Layout 
 
In the example project considered in this chapter, the following information has been provided to 
the bridge engineer: 
 

• The bridge will lie on a tangent alignment, crossing the highway with zero skew. 
• No permanent new construction is permitted within the clear zones or in the median of 

the underlying highway. 
• Bridge depth should be minimized to reduce impacts on developed areas on either end 

of the bridge, height of fill, and length of retaining walls. 
• There are no environmental restrictions at the bridge site with regard to the permanent 

bridge and the falsework required to build the bridge. 
• The project lies within already procured right-of-way. 
• No utility conflicts or future needs have been identified. 
• A reduced vertical clearance of 14’-6” is permitted during construction. 
• Falsework must span the clear roadways of the underlying highway, with temporary 

supports permitted in the median. 
 
The out-to-out dimension of the clear zones of the highway being crossed is 152’.  This length is 
the minimum clear span of the bridge crossing required to clear the underlying highway.  With 
consideration for the width of supporting columns, a centerline-to-centerline span of 160’ is 
selected. 
 
A three-span continuous bridge is selected to minimize the depth of the superstructure of the 
example problem of this chapter.  For cast-in-place post-tensioned concrete structures, efficient 
end span to main span ratios range from 0.75 to 0.80. Spans as short as 40 percent (requiring 
uplift restraining abutments) and as much as 100 percent of the main span length can be 
accommodated with appropriate post-tensioning design.  For this example problem, an end 
span ratio of 0.75 is chosen.  Expansion joints will be placed at the abutments. 
 
The resulting span length and pier numbering for the example problem are shown in figure 5.4. 
 

 
 

Figure 5.4 –Span Layout for Preliminary Design Example 
 
 
Note: The example bridge analyzed in this chapter is supported at the piers and abutments by bearings.  
This facilitates demonstrating the preliminary design of the longitudinal post-tensioning.  Often, the 
interior piers are cast monolithically with the superstructure.  Chapter 7 presents considerations for 
design when monolithic construction is used. 
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5.3 Cross Section Selection 
 
5.3.1 Superstructure Depth 
 
Past editions of bridge design specifications presented depth to span ratios for various bridge 
types.  The current AASHTO LRFD requirements focus on selecting superstructure stiffness to 
meet deflection criteria.  AASHTO LRFD Article 2.5.2.6.3 does, however, present optional 
criteria for span-to-depth ratios for use if requested by the Owner. 
 
AASHTO LRFD Table 2.5.2.6.3-1 presents the following traditional minimum depths for constant 
depth cast-in-place prestressed concrete box girder superstructures as a function of span 
length.  For simple span girders the traditional minimum depth is: 
 
(Eqn. 5.1) 0.045 ( )D L simple spans=     
 
(Eqn. 5.2) 0.040 ( )D L continuous spans=     
 
Expressed in terms of span-to-depth ratio, these equations become: 
 

(Eqn. 5.3) 22 ( )L L simple spans
D

 = 
 

     

 

(Eqn. 5.4) 25 ( )L L continuous spans
D

 = 
 

    

 
Using the traditional span-to-depth ratio for continuous construction, the depth of the structure to 
begin preliminary design would be: 
 

 
 
For convenience, the bridge depth carried into preliminary design is 6’-6”. 
 
 
 
Note—Other Owner Requirements:  Occasionally, an Owner might require an internal minimum height 
within the concrete box girder for easy access of personnel and equipment for inspection and 
maintenance.  This can be the case for long bridges with limited points of access, allowing longitudinal 
access along the entire length of the bridge.  This can also be the case when the interior of the box girder 
is used to convey utilities such as power, water, and communications. 
 
 
5.3.2 Superstructure Width 
 
Highway and traffic studies performed for the example project have shown that the new bridge 
will carry three travel lanes in one direction only.  The lane widths for the bridge are 12’ and the 
two shoulder widths are 10’ each.  The Owner has standard concrete barrier railing that is 1’-9” 
wide.  The resulting width of roadway is 59’-6” is shown in figure 5.5. 
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Figure 5.5 –Bridge Width and Roadway Features 
 
 
5.3.3  Cross Section Member Sizes 
 
This section provides guidance for the initial sizing of the members that comprise the box girder 
cross section.  Members discussed are: 
 

• Cantilever Wings. 
• Webs. 
• Top Slab. 
• Bottom Slab. 

 
The last part of this section applies the guidance to the example problem being developed in 
this chapter. 
 
5.3.3.1 Width and Thickness of Cantilever Wing 
 
Side overhangs, or cantilever wings, provide both structural and aesthetic benefits.  Structurally, 
some length of overhang provides a development length for top slab reinforcing. Aesthetically, 
the cantilever wing presents a thin fascia and recesses the majority of the superstructure depth.  
Figure 5.6 shows a typical cantilever wing. 
 

 
 

Figure 5.6 –Cantilever Wing Dimensions 
 
 
Reinforced concrete cantilever wing lengths typically range from approximately 2’ to 8’ in length.  
Shorter lengths are controlled by the minimum length required to develop top slab and web 
reinforcing. Longer lengths can be achieved provided care is taken to assure durability by 
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controlling cracking under service level loadings. Transverse post-tensioning should be used to 
assure deck durability for cantilever wings greater than 8’.  
 
A reinforced concrete cantilever wing typically needs a minimum thickness of 8” to 9” at the wing 
tip beneath the traffic barrier. This thickness is related to the level of crash testing associated 
with the barrier being used. The thickness of the root of the cantilever wing varies with cantilever 
length.  The guidance provided in equation 5.5 and 5.6 may be used for initial box girder 
dimensioning. 
 
For cantilever lengths less than 5’ the root thickness can be approximated as: 
 

(Eqn. 5.5) (12)
5
c

c tip
Lt t= ≥  

 
For cantilever lengths between 5’ to 8’, the root thickness may be estimated as: 
 
(Eqn. 5.6) ( )12 5c ct L= + −  
 
where: Lc = length of the cantilever wing (ft) 

ttip = thickness of the cantilever wing tip (in) 
tc = thickness of the cantilever wing root (in) 

 
 
5.3.3.2 Individual and Total Web Thickness 
 
AASHTO LRFD Article 5.14.1.5.1c provides general criteria for the thickness of individual webs 
for box girder bridges: 
 

“The thickness of webs shall be determined by requirements for shear, torsion, concrete 
cover, and placement of concrete.” 

 
The commentary to this article provides more definitive guidance: 
 

“For adequate field placement and consolidation of concrete, a minimum web thickness 
of 8” is needed for webs without prestressing ducts; 12” is needed for webs with only 
longitudinal or vertical ducts; and 15” is needed for webs with both longitudinal and 
vertical ducts.  For girders over about 8’ in depth, these dimensions should be increased 
to compensate for increased difficulty of concrete placement.” 

 
The great majority of cast-in-place post-tensioned box girder bridges contain only longitudinal 
tendons.  As a result, the 12” minimum thickness for individual webs thickness should be used. 
 
Preliminary estimates of overall web thickness (number of webs at the selected thickness) are 
complicated by the various functions the webs play: 
 

• Resisting shear resulting from vertical loads and torsion. 
• Relationship between web spacing and top slab thickness. 
• Providing sufficient pathways for post-tensioning to achieve desired eccentricities. 

 
AASHTO LRFD does not provide a service limit state verification for shear stresses in webs.  
Approximated shear stresses can, however, help in the initial selection of total web thickness for 
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cast-in-place post-tensioned box girder bridges.  As a starting point for total web thickness, 
calculate the shear stress from dead loads as: 
 

(Eqn. 5.7) 
( )

0 max

2 0.8
DL

DL
total total

VQ p L
Ib hb

t = =  

 
 
Where, pDL = dead load of superstructure (kips/ft) 

Lmax = maximum span length in bridge (ft) 
h = depth of box girder superstructure (ft) 
btotal = total width of web at neutral axis (ft) 
Qo = first moment of the area above or below the neutral axis (ft) 

 
The dead load of the superstructure can be estimated by using characteristic average 
thicknesses (cross-sectional area divided by bridge width).  Multiplying the average thickness of 
the concrete cross section times the bridge width, times the unit weight of concrete produces 
the self weight of the bridge per foot of span length. The average thickness of cast-in-place box 
girder webs typically ranges from 1’-6” to 1’-9”. 
 
Including weights of barrier railing and wearing surface, the dead load per foot is: 
 
(Eqn. 5.8) ( )(0.15 )DL ave b wsp t B kcf p p= + +  
 
 
Where, tave = average superstructure thickness - equal to cross-sectional area divided by 

bridge width (ft)  
B = overall bridge width (ft) 
pb = weight of barriers (k/ft) 
pws = weight of wearing surface (k/ft) 

 
 
Solving for btotal, and defining an allowable dead load shear stress: 
 

(Eqn. 5.9) 
( )

max

2 0.8
DL

total
allow

p Lb
h t

=  

 
Limiting the allowable shear stress in Equation 5.9 to between 5√f’c and 7√f’c, typically produces 
a total web thickness that can be adequately reinforced in final design. 
 

 
Note: AASHTO LRFD specifies limits for principal tension at service limit state only for 
segmental box girder bridges.  Principal tension verifications of cast-in-place post-tensioned box 
girders do, however, have great merit. 

 
5.3.3.3 Top Slab Thickness 
 
Minimum thicknesses of decks are either directly or indirectly addressed by several Articles in 
AASHTO LRFD. 
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• AASHTO LRFD Article 9.7.1.1 states that, unless approved by the Owner, the minimum 
top slab thickness, excluding grinding and grooving, should be not less than 7”. 

 
• Cover requirements in AASHTO LRFD Article 5.12.3 imply that the minimum thickness 

should be increased by ½” to 7 ½”, if the bridge deck is exposed to deicing salts, tire 
studs, or chains. 

 
• AASHTO LRFD Article 5.14.1.5.1a provides three criteria for top slab thickness: 

 
− Requirements of AASHTO LRFD Section 9. 
− Sufficient to anchor and provide cover for transverse post-tensioning, if used. 
− Not less than the clear span between fillets, haunches, or webs divided by 20, 

unless transverse ribs or transverse post-tensioning are provided. 
 

• If the Empirical Design Method is used for the top slab, AASHTO LRFD Article 9.7.2.4 
requires that the ratio of effective length to top slab thickness be between 18.0 and 6.0, 
core depth of the reinforced slab not less than 4”, and effective lengths not greater than 
13.5’. 
 

• AASHTO LRFD Article 5.9.4.2.1 relates allowable compression limits to the slenderness 
ratio of the flanges of concrete box girders.  The typical compressive stress limit of 0.6f’c 
is reduced by a factor (ϕw) when the slenderness ratio as defined in AASHTO LRFD 
Article 5.7.4.7.1 is greater than 15.  The minimum reduction factor is 0.75. 

 
• Section 5.3.3.2 describes the relationship between web spacing and top slab thickness.  

Additionally, the commentary of AASHTO LRFD Article 4.6.2.2.1, in presenting load 
distribution equations for “girder lines” in beam-slab bridges, recommends that cell 
width-to-height ratios should be approximately 2:1. 
 

• AASHTO LRFD Article 2.5.2.6.2 provides limits on structure deflections if required by the 
Owner 
 

Considering all of these requirements, the tendency is for top slabs of cast-in-place post-
tensioned box girders to be on the more robust side of deck thicknesses.  Monolithic 
connections to the webs produce higher negative deck moments, which in turn produce 
increased demands on the top-level slab reinforcement. In general, durability of these integral 
decks can be improved by increasing cover.  However, excessive cover in thin slabs can be 
detrimental, as the larger covers can lead to larger crack widths. Increasing durability is better 
achieved by increasing the overall thickness of the slab while using appropriate concrete 
covers.   
 
As a rule of thumb for initial box girder dimensioning, the following range of clear span to deck 
thickness ratio may be used: 

(Eqn. 5.10) 14 17clear

slab

L
t

≤ ≤  

 
Expressing equation 5.10 in terms of the top slab thickness: 
 

(Eqn. 5.11) 
14 17
clear clear

slab
L Lt≥ ≥  
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The thickness of the top slab and clear span between webs or fillets are shown in figure 5.7. 
 

 
 

Figure 5.7 –Top Slab Span and Thickness 
 
 
Small fillets (3” to 4”), shown in detail A of figure 5.7, are recommended at the top of webs/top 
slab interface.  These fillets ease abrupt localized stresses and help facilitate placement and 
consolidation of concrete in the webs. 
 
Using longer slab haunches, as shown in figure 5.8, can help optimize top slab concrete 
quantities and achieve longer slab spans.  The haunch thickness at the face of the webs 
effectively accommodates negative flexure, while modifying the slab stiffness to help reduce the 
magnitude of positive moments.  The benefits of reduced concrete quantities are sometimes 
offset by increased forming and reinforcing cost required to achieve the haunches. 
 

 
 

Figure 5.8 –Top Slab with Haunches 
 
Transverse post-tensioning is typically required when clear spans in concrete box girder bridges 
are greater than 15’ or when cantilever wing lengths are greater than 8’.  The following 
adjustments to slab thicknesses should be considered for initial sizing when transverse post-
tensioning is used: 
 

• In order to accommodate post tensioning anchorages and local bursting reinforcement, 
use a cantilever wing tip of 9”. 

• For shorter cantilever wings, vary depth linearly from tip to root. 
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• For longer cantilever wings, maintain 9” thickness from tip for about 4’ to 6’, and then 
vary linearly to root. 

• Use a cantilever wing root thickness of 9” plus ½” for each foot of cantilever length.    
• Use a top slab haunch root thickness similar to the cantilever wing root. 
• Use top slab interior haunch widths that are approximately 20 percent to 30 percent of 

the clear span between the webs. 
• Do not require interior and exterior top slab haunches or fillets to be the same width. 
• Use an 8” minimum top slab thickness between haunches.  Increase the minimum top 

slab thickness as per equation 5.11. 
 
5.3.3.4 Bottom Slab Thickness 
  
AASHTO LRFD Article 5.14.1.5.1b provides criteria for the minimum thickness of bottom slabs: 
 

• Bottom slab minimum thickness of 5.5 inches. 
• The distance between fillets or webs of non-prestressed girders divided by 16 
• The clear span between fillets, haunches, or webs for prestressed girders divided by 30, 

unless transverse ribs are used 
 
The bottom slab between webs needs to be sufficient to carry its own self weight, superimposed 
loads such as utilities, while effectively participating in general bridge longitudinal and 
transverse behavior.  If the bottom slab is to accommodate top and bottom cover and four layers 
of reinforcing (longitudinal and transverse bars in a top and bottom mat), the practical minimum 
thickness is approximately 7”. 
 
 
Note: Additional thickness may be needed for clearances for longitudinal post-tensioning ducts if 
placed in the bottom slab itself.  Haunches at the webs can help provide extra clearance for 
such tendons, allowing for the remainder of the bottom slab to remain at a minimum thickness.  
Local effects of tendons in thin bottom slabs should be evaluated in final design for additional 
reinforcing needs. 
 
5.3.3.5 Member Sizes for Example Problem 
 
In this Section the guidelines for cross section member initial dimensioning are applied to the 
example problem being studied in this chapter. 
 
a. Cantilever Wings—Assume the use of a reinforced concrete deck with cantilever wing 

lengths of 4.75’. This leaves a 50’-0” top slab width between cantilever wings. 
 

b. Total Web Width and Spacing—Use an average cross section thickness of 1’-9”, two 
barrier rails at 0.45 k/ft each, and a 2” overlay at 1.4 k/ft.  The approximate dead load per 
foot of span is: 
 

1.75(59.5)(0.15 ) 0.9 1.4 17.9 /DLp kcf kips ft= + + =   
 
The total width of all webs for a shear stress of 0.158√f’c is: 
 

( ) ( )
17.9(160) 65

2 0.8(6.5) 0.158 5 12totalb inches= =  
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Using 0.221√f’c for the shear stress, the total of all web widths would be: 
 

( ) ( )
17.9(160) 46

2 0.8(6.5) 0.221 5 12totalb inches= =  

 
Using a minimum web thickness of each web to be 12”, the limits above would suggest 
either 5 or 4 webs.  The centerline spacing of 5 webs would be 49.5/4 = 12.375’.  The 
spacing for 4 webs would be 49.5/3 = 16.5’.  Use 5 webs to keep the top slab as a 
reinforced concrete member. 
 

c. Top Slab thickness—Using 5 webs of 1’ thickness and 3” fillets, the clear spacing 
between the webs would be 12’-4½” – 1’ – 6” = 10’-10½”.  The range of top slab 
thicknesses to start preliminary design would be: 
 

14 17
clear clear

slab
L Lt≥ ≥  

 
0.78' 0.64 'slabt≥ ≥  

 
Use a 9” top slab thickness for preliminary design. 

 
d. Bottom Slab Thickness—Use 7” to achieve cover and to fit mats of longitudinal and 

transverse reinforcing. 
 
Note: This Section presented information for the preliminary sizing of a multi-cell concrete box 
girder superstructure.  Dimensions for single cell box girders are similar to single cell segmental 
box girder.  Information related to the sizing of segmental box girders is presented in LRFD 
Article 5.14.2.3.10. 

 
Applying these initial dimensions with no interior haunches and making adjustments, such as 
sloping the outer webs, produces the preliminary design cross section shown in Figure 5.9. 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 5.9 – Example Cross Section Dimensions for Preliminary Design 
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5.4 Longitudinal Analysis 

5.4.1 Approach 

Longitudinal analyses can be performed by any number of computerized solutions specifically 
for post-tensioned structures.  General structural analysis programs can also be used with 
attentiveness to developing necessary load cases.  Hand calculations like the Method of Joint 
Flexibilities presented in this manual are equally appropriate for longitudinal analysis, especially 
during preliminary design. 

Analysis by the Method of Joint Flexibilities begins with the determination of span end rotations 
under the action of the applied loads.  These end rotations are then used to determine continuity 
moments at the end of that span.  This procedure is performed for all loaded spans, and the 
results summed to complete the analysis of the entire structure.  This method is particularly 
helpful in evaluating load effects where the curvature diagram is readily determined, as is the 
case of prestressing primary effects (Fe).  Appendix A of this manual presents the generalized 
flexibility-based hand method for solving continuous bridges. 

5.4.2 Analysis by Method of Joint Flexibilities 

The three-span example bridge being developed in this section is shown schematically in figure 
5.10.  The cross section of the superstructure of the box girder is shown in figure 5.9.   

        Figure 5.10 – Model of 3-Span Bridge for Example 1 

5.4.3 Span Properties and Characteristic Flexibilities 

The cross section properties of the box girder superstructure shown in figure 5.9 are: 

The characteristic flexibilities for the 120’ Span are (See appendix A equations A.9 and A.10): 

4

2

1

2

3
0

643.7

99.45
2.732
3.768
0.6288

118.1

I ft

A ft
c ft
c ft

Q ft

ρ

=

=
=
=
=

=

( )
120 0.06214

3 3 643.7
LEa Ec
I

= = = =
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The characteristic flexibilities for the 160’ Span are: 
 
 
 
 
 
 
 
 
 
Note: For numerical ease, the modulus of elasticity of the concrete has been factored out of the 
flexibility coefficients.  This will also be done for beam end rotation computations to produce a 
consistent solution. 

 
5.4.4 Analysis Left to Right 
 
Using equations A.28 and A.29 from appendix A: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.4.5 Analysis Right to Left  
 
Using equations A.28 and A.29 from appendix A: 
 
 
 
 
 
 
 
 
 

( )
120 0.03107

6 6 643.7
LEb
I

= = =

( )
160 0.08285

3 3 643.7
LEa Ec
I

= = = =

( )
160 0.041425

6 6 643.7
LEb
I

= = =

( )22

21/2
1/12
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0.06214 0.06214

0.06214
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= − = − =

+ + ∞

( )22

32/3
2/23

0.041425
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1/12K = ∞
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5.4.6 Carry-Over Factors  

For the Superstructure, using equations A.36 and A.37: 

5.5 Bending Moments  

Bending moments are computed for the following loadings: 

• Dead Load of Components (DC).
• Dead Load of Wearing Surface (DW).
• Live Loads (LL) – Truck and Uniform portions.
• Thermal Gradient (TG).
• Secondary Moments from Prestressing.

Several of these loadings are linearly scaled from the loading of a unit uniform load, which is 
solved first. 

5.5.1 Effect of a Unit Uniform Load 

The beam end rotations when loaded by a downward acting unit uniform load are: 

3

24i j
LE E

I
ω ω= − = −

( )22

23/2
3/32

0.041425
0.08285 0.07101

0.08285 0.06214
bk a

c K
= − = − =

+ +

2/21
1 0.071011

0.07101

K = =

12
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b
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f = − = − = −
+ +

23 32
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The beam characteristics of the 160’ center span is: 

The moments in Span 1 are: 

The end moments in Span 2 are: 

The end moments in Span 3 (by symmetry), 

The bending moments diagrams for the load in each span and the total of all moments is shown 
in figure 5.11. 

3120 111.9
24(643.7)i jE Eω ω= − = − = −

3160 265.1
24(643.7)i jE Eω ω= − = − = −

12 0.0M = ( ) ( )12
21 2

0.2333 111.9 840
.03107

M ft kips
b

f ω= − = − = − −

32 2 23 3
23 32

23 32

0.2857 265.1 0.2857(265.1) 1422
1 0.041425 1 0.2857(0.2857)

M M ft kips
b

f ω f ω
f f

   + − +
= = = = − −   − −  

43 0.0M =34 840M ft kips= − −

The beam characteristics of the 120’ end spans are: 
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Figure 5.11 – Moment Diagram for a Unit Uniform Load 
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5.5.2 Dead Load—DC (Self Weight and Barrier Railing) 
 
The gross area of the box girder superstructure is 99.45 ft2.  The unit weight of concrete for self 
weight computations is 150 lb/ft3.  The resulting weight per foot of superstructure is 14.92 kips/ft.  
The weight of each barrier railing is 0.45 kips/ft.  This results in a total dead load weight 15.82 
kips/foot.  Rounding up, use 16 kips/ft for finding bending moments.  The DC moments are 
found as a linear scaling of the effects of a unit uniform load shown in Figure 5.11. 
 
 

 
 
 

Figure 5.12 – Moment Diagram for Dead Load (DC) 
 
 
5.5.3 Dead Load—DW (Future Wearing Surface) 
 
The bridge is being designed to carry the weight of a 25 psf future overlay equal to 2” of 
concrete.  Multiplying by the width of the roadway between barriers, the resulting weight per foot 
is 1.4 kips per foot. The DW moments are found as a linear scaling of the effects of a unit 
uniform load shown in figure 5.11. 
 
 

 
 
 

Figure 5.13 – Moment Diagram for Dead Load (DW) 
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5.5.4 Live Load—LL 
 
Live load bending moments are computed for locations of maximum positive and negative 
moment.  The HL-93 notional load contains the design truck and design lane load components.  
These are computed separately and combined later to determine maximum live load effects.  
The moments presented in this section are for a single lane.  Total live load effects are 
calculated in section 5.5.4.5. 
 
5.5.4.1 Uniform Load Component 
 
The 0.64 kip/ft uniform lane load component of the AASHTO LRFD notional load can be applied 
in any combination of spans or partial spans to produce maximum and minimum effects.  Figure 
5.14 shows the bending moment envelope for the uniform load. 
 

 
 

Figure 5.14 – Uniform Live Load Moment Envelope 
 
5.5.4.2 Truck—Positive Moment in Span 1 or 3 
 
Moments from truck axle loads are computed by determining and summing end rotations of the 
various axles and then solving for continuity moments.  Figure 5.15 shows the end rotations for 
a beam subjected to a concentrated load.  The rotations are defined in equation 5.12 and 5.13. 
 
 
 
 
 
 
 
 

Figure 5.15 – Simple Beam Rotations for a Concentrated Load 
 
 

(Eqn. 5.12) ( )
6i
PabE L b

IL
ω = +  

 

(Eqn. 5.13) ( )
6j
PabE L a

IL
ω = +  
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The beam end rotation and end moment for the HL-93 design truck located 36’ from the 
Abutment 1 are: 
 
 
 
 
 
 
 
Figure 5.16 shows the bending moment for a single truck with back axle located 36’ from the 
beginning of the bridge. 
  
 

 
 

Figure 5.16 – Moment Diagram for HL-93 Design Truck in Span 1 (Positive Bending) 
 
 
5.5.4.3 Truck—Positive Moment in Span 2 
 
Figure 5.17 shows the bending moment for a single truck centered on Span 2. 
 
 

 
 

Figure 5.17 – Moment Diagram for HL-93 Design Truck in Span 2 (Positive Bending) 
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5.5.4.4 Truck—Negative Moment over Piers 
 
AASHTO LRFD Article 3.6.1.3.1 calls for 90 percent of two trucks to be applied to produce 
negative moment results in continuous spans.  Figure 5.18 shows the moment diagram for two 
HL-93 design trucks located about Pier 2 to generate maximum negative moment. 
 

 
 

Figure 5.18 – Moment Diagram for Two HL-93 Design Trucks about Pier 2 (Negative Bending) 
 
 
5.5.4.5 Live Load Moment Totals 
 
AASHTO LRFD Article 4.6.2 provides approximate methods for determining live load 
distributions within bridge superstructures.  AASHTO LRFD Article 4.6.2.2 provides live load 
distribution equations for beam-slab bridges.  One of two approaches may be taken for 
determining live load distribution factors for cast-in-place multi-cell box girders. The first 
approach applies the distribution factors to each “girder line” individually.  The effective cross 
section of each girder line consists of the web and the tributary areas of the top and bottom 
slabs.  Two designs are then made, one for the interior girders and one for the exterior girders. 
 
The second approach in applying the approximate method of live load distribution is the “whole-
width” method.  AASHTO LRFD Article 4.6.2.2.1 (paragraph 9) states: 
 

Cast-in-place multi-cell concrete box girder bridge types may be designed as whole-
width structures.  Such cross sections shall be designed for the live load distribution 
factors in Articles 4.6.2.2.2 and 4.6.2.2.3 for interior girders, multiplied by the number of 
girders, i.e., webs. 

 
AASHTO LRFD Table 4.6.2.2.1-1 identifies multi-cell box girder brides as cross section type “d”.  
AASHTO LRFD Table 4.6.2.2.2b-1 provides live load distribution factor equations as a function 
of cross section type.  For one design lane loaded, the equation for a type “d” section is: 
 

(Eqn. 5.14)   
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The equation for two or more design lanes loaded is: 
 

(Eqn. 5.15)   

 
 
where: DF = distribution factor 

L = length of span (ft) (60 ≤ L ≤ 240) 
Nc = number of cells (Nc ≥3; use Nc=8 if  Nc≥8) 
S = web spacing (ft) (7.0 ≤ S ≤ 13.0) 
 

For positive moment, negative moment, and shear, L is the length of the span being considered.  
For negative moment between points of contraflexure under uniform loading, L is the average 
length of two adjacent spans. 
 
In the case of the example problem being studied in this chapter, the distribution factors for two 
or more design lanes loaded govern over those for a one design lane loaded.  The distribution 
factors are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The number of design lanes is found from: 
 
(Eqn. 5.16)   
 
where: NL = number of lanes 

Nw = number of webs 
 
 
For the example problem: 
 
 
 
 
 
 
 
 
 

0.3 0.2513 12.25 1 0.909  (Positive Moments in End Spans)
4 5.8 120

DF     = =    
    

0.3 0.2513 12.25 1 0.874  (Negative Moments over Piers 2 and 3)
4 5.8 140

DF     = =    
    

0.3 0.2513 12.25 1 0.846  (Positive Moments in Middle Span)
4 5.8 160

DF     = =    
    

( )5 0.909 4.545     (Positive Moments in End Spans)LN = =

( )5 0.874 4.370     (Negative Moments over Piers 2 and 3)LN = =

( )5 0.846 4.230     (Positive Moments in Middle Span)LN = =
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The resulting bending moments for preliminary design, including dynamic load allowance 
(impact) in accordance with AASHTO LRFD Article 3.6.2.1 are: 
 
 
 
 
 
 
 
 
 
 
5.5.5 Thermal Gradient (TG) 
 
Continuous structures are subjected to stress distributions over the depth of the girder as a 
result of thermal gradients.  AASHTO LRFD Article 3.12.3 shows the temperature distribution 
which should be applied to the depth of a concrete box girder.  Preliminary design is simplified 
by assuming a 20 degree linear variation in temperature with depth for positive gradient, with 
the top slab 20 degrees warmer than the bottom slab.  The resulting deformations of a simple 
beam subjected to a linear gradient are shown in figure 5.19. 
 
 

 
 
 

Figure 5.19 – Simple Beam Subjected to 20°F Positive Linear Gradient 
 
 
The change in length of the top slab from the center of no movement (middle of beam) is equal 
to: 

(Eqn. 5.17)   

 
The coefficient of thermal expansion for concrete, α, in equation 5.17 is equal to 6x10-6.  For 
small changes in length the beam end rotations are equal to this change in length divided by the 
depth of the beam.  Considering our solution where E is included in the rotations,  
 
 

(Eqn. 5.18)   

 
 
 

( ) ( )( )4.545 1.33 1526 968 =13,624    (0.4167L Span 1)LL IM + = +

( ) ( )( )4.230 1.33 1657 1138 =14,136    (0.50L Span 2)LL IM + = +

( ) ( ) ( )( )0.9 4.370 1.33 1769 1448 = 14,948    (At P2 & P3)LL IM + = − + − −
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For the example bridge being analyzed, the end rotations for the end spans and center span 
are: 
 
 
 
 
 
 
 
 The bending moments associated with these rotations are shown in figure 5.20. 
 

 
 

Figure 5.20 – Moment Diagram for a 20°F Positive Linear Gradient 
 
 
5.5.6 Post-Tensioning Secondary Moments 
 
Bending moments for DC, DW, LL, and TG have been computed directly from the applied loads 
or imposed deformations.  Secondary moments from prestressing are, however, related to 
tendon geometries and prestressing forces, which are not yet determined.  Using parabolic 
segments developed in chapter 3, a tendon profile that represents the center of gravity of all 
tendons can be assumed.  The secondary moments can then be determined for a unit 
prestressing force (F=1 kip). 
 
Figure 5.21 shows the cross section of the example bridge studied in this chapter.  Detail A, 
detail B, and the position of the strands within the duct have been developed to find probable 
locations of tendons at the high and low points along their profiles.  Assuming that three tendons 
per web will be used, the middle tendon profile will represent the center of gravity of all three 
tendons. 

6120 '(6 10 )(20) (617,300) 683.8
2(6.5 ')i jE Eω ω

−×
= − = =

6160 '(6 10 )(20) (617,300) 911.7
2(6.5 ')i jE Eω ω

−×
= − = =
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Figure 5.21 – Possible Tendon Locations at Mid-Span at over the Piers 
 
 
For the cross section of the example problem, the distances from the neutral axis to the top and 
bottom most fibers of the beam are: 
 
 
 
 
The minimum and maximum eccentricities are: 
 

( )min 1
3 19 " 6 " 1" 1.29 ' 1.25'4 2e c use= − + + + = −    -  

 

max 2
3 17 " 6 " 1" 2.5 '4 2e c= − − − =  

 
Using the minimum and maximum eccentricities, the profile of the center of gravity (CG Profile) 
of the post-tensioning can be drawn.  Figure 5.22 shows the CG Profile for the end spans.  
Figure 5.23 shows the CG Profile for the middle span.  As a guide, the length of the parabolic 
segments at the piers is typically located from 0.10 to 0.15 of the span length.  The low point of 
maximum eccentricity in the end spans is typically located from 0.35 to 0.45 of the span length 
measured from the end of the bridge.  
 
 

 
 

Figure 5.22 – Center of Gravity Profile of Prestressing (End Spans) 

2 3.768'c =

1 2.732 'c =
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Figure 5.23 – Center of Gravity Profile of Prestressing (Middle Span) 
 
 
Conjugate beam loads can be determined from the profiles using the methodology presented in 
chapter 3.  Figures 5.24 and figure 5.25 show the conjugate beams and loads for a unit 
prestressing force (F=1). 
 
 

 
 

Figure 5.24 – Conjugate Beam and Loads (End Spans) 
 
 
 

 
 

Figure 5.25 –Conjugate Beam and Loads (Main Span) 
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The conjugate beam reactions are equal to the simple beam end rotations.  Continuity moments 
are found using these rotations flexibility analysis previously performed.  The resulting moments 
for each span and the total secondary prestress moments are shown in figure 5.26. 

Figure 5.26 – Secondary Prestressing Moments, M2(F) 

5.6 Required Prestressing Force After Losses 

In chapter 3 equations for determining post-tensioning requirements to limit tensile stresses in 
the concrete were developed.  Equations 3.9 and 3.10 took the form: 

(Eqn. 5.19) 
1

abM MF
c eρ
+

≥
+

(Eqn. 5.20) 
2

atM MF
e cρ

−
≥

−

The total bending moment, M, for checking tensile stresses is that corresponding to Service 
Level III.  Using the load factors in AASHTO LRFD Table 3.4.1-1, total bending moment is: 

(Eqn. 5.21) 20.8 0.5 ( )DC DW LL I TGM M M M M M F+= + + + +
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For convenience, equation 5.21 can be expressed as: 

 (Eqn. 5.22) 2 ( )sumM M M F= +

Msum in this equation is the sum of all bending moments except the secondary moments from 
prestressing.  Substituting equation 5.22 into equations 5.19 and 5.20: 

(Eqn. 5.23) 2

1

( )sum abM M F MF
c eρ

+ +
≥

+

(Eqn. 5.24) 2

2

( )sum atM M F MF
e cρ

+ −
≥

−

These equations can be rearranged to: 

(Eqn. 5.25) 
1 2

sum abM MF
c e Mρ

+
≥

+ −

(Eqn. 5.26) 
2 2

sum atM MF
e c Mρ

−
≥

− −

Table 5.1 shows the bending moments determined from the analyses presented earlier in this 
Chapter at three locations in the example bridge.  The locations chosen for review are the points 
of maximum positive flexure within the spans and the point of maximum negative bending over 
the piers. 

Section DC DW 0.8(LL+I) 0.5TG Msum M2 
0.3596 L1 14,896 1303 10,899* 1539 28,637 0.391(F) 

0.5 L2 18,848 1649 11,309 4279 36,085 1.087(F) 
Pier 2/3 -32,352 -2831 -11,959 -1284** -48,426 1.087(F) 

*The maximum moment at 0.4167L (top of Page 24 of 41) was used for this example.
**Negative thermal gradient is -0.3 of the positive moment (LRFD Artivle 3.12.3).

Table 5.1 – Moment Components of Service Level III Loading at Three Locations 

Assuming moderately corrosive conditions, AASHTO LRFD Table 5.9.4.2.2-1 states that the 
allowable stress in the concrete after all losses is 0.19√f’c, where f’c has the units of ksi.  This is 
equal to 6√f’c, where f’c has the units of psi.  The resulting moments producing allowable 
stresses are: 

'

2

0.19 ( ) 0.19 5(643.7) (144) 10,451
3.768

c
ab

f I
M ft kips

c
= − = − = − −

'

1

0.19 ( ) 0.19 5(643.7) (144) 14,415
2.732

c
at

f I
M ft kips

c
= − = − = − −
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The sign of these moments are consistent with the development of equations 3.9 and 3.10. 

Using equations 5.25 and 5.26, the minimum prestressing force requirements at the three 
sections studied, after all losses, are: 

. 
5.7 Prestressing Losses and Tendon Sizing for Final Design (Pjack) 

The required prestressing force at the center of the middle span is 8,172 kips.  Assuming three 
tendons in each of the five webs of the example problem cross section, the final post-tensioning 
force in each of the 15 tendons is 545 kips.  The number of prestressing strands required in 
these tendons is a function of the amount of instantaneous and long-term prestressing force 
loss.  Losses will be computed in accordance with the information presented in chapter 4. 

5.7.1 Losses from Friction, Wobble, and Anchor Set 

Using the CG Profile, the forces along the tendon after two-end stressing are computed.  The 
assumed values for friction, wobble coefficient, and anchor set are 0.25, 0.0002/ft, and 0.375”, 
respectfully.  The geometry required for determining the losses is shown in table 5.2.  The 
friction diagram, expressed in terms of stress is shown in figure 5.27.   

Point b (ft) h (ft) 
Angular 

Deviation 
θ=2h/b (rad) 

Angular 
Force 

Coefficient 

Cumulative 
Force 

Coefficient 

Tendon 
Stress 
(ksi) 

1 0 0.0000 0.00000 0.0000 1.0000 202.50 
2 50 2.5000 0.10000 0.9656 0.9656 195.54 
3 55 2.9464 0.10714 0.9629 0.9298 188.28 
4 15 0.8036 0.10714 0.9707 0.9025 182.76 
5 20 0.9375 0.09375 0.9729 0.8781 177.81 
6 60 2.8125 0.09375 0.9652 0.8475 171.62 
7 60 2.8125 0.09375 0.9652 0.8180 165.65 
8 20 0.9375 0.09375 0.9729 0.7959 161.16 
9 15 0.8036 0.10714 0.9707 0.7725 156.43 

10 55 2.9464 0.10714 0.9629 0.7439 150.63 
11 50 2.5000 0.10000 0.9656 0.7183 145.45 

Table 5.2 –Data for Friction Diagram for the CG Profile Tendon 

( )
( )

28,637 10,451
4,752 (0.3596L Span 1)

0.6288 2.732 2.5 0.391
F kips

+ −
= =

+ −

( )
( )

36,037 10,451
8,172 (0.5L Span 2)

0.6288 2.732 2.5 1.087
F kips

+ −
= =

+ −

48,426 ( 14,415) 7,227 (At Piers 2 and 3)
1.25 0.6288(3.768) 1.087

F kips− − −
= =

− − −
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Figure 5.27 – Friction Diagram for the CG Profile Tendon 
 
 
5.7.2 Losses from Elastic Shortening 
 
Equation 4.24, repeated here, presented the AASHTO LRFD equation for losses from elastic 
shortening. 

(Eqn. 5.27)   

 
Difficulty arises here, because the value of fcgp, the concrete stress at the center of gravity of the 
prestressing, is computed after jacking and before any long-term losses.  This requires an area 
of steel to be multiplied by the tendon stresses in figure 5.29, to produce a prestressing force by 
which concrete stresses can be computed. 
 
This difficulty is overcome by making an initial assumption of all losses equal to 20 ksi.  
Subtracting this from the tendon stress at the center of the middle span (171.62 ksi) produces 
an estimate of final stress in the tendon at this location of 151.62 ksi (56 percent of fpu).  The 
estimate of final force per strand in the tendon, using 0.6” diameter strands with an area of 
0.217 in2 is 32.9 kips.  Dividing the 550 kips per tendon by the force per strand results in 16.7 
strands required in each tendon.  Rounding up to 17 strands per tendon, forces after stressing 
can now be computed as the stresses in figure 5.29 times the tendon area of 0.217(17) = 3.689 
in2. 
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All of the post-tensioning tendons will be grouted within their ducts after installation and 
stressing.  During construction, however, tendons are unbonded when elastic shortening 
occurs, assuming all tendons are stressed in one phase of construction. 
 
AASHTO LRFD Article 5.9.5.2.3b states that: 

 
For post-tensioned structures with unbonded tendons, the fcgp value may be calculated as 
the stress at the center of gravity of the prestressing steel averaged along the length of 
the member. 

 
Concrete stresses will be computed at four locations along the bridge and then a weighted 
average will be used for fcgp.  The equation used for computing the concrete stress is: 
 

(Eqn. 5.28)   

 
where: MSW = bending moment from self weight only (ft-kips) 
 
At end of bridge: 

9,976 100.3
99.45cgpf ksf= =  

 
At the point of maximum eccentricity in Span 1 and 3 
 

210,362 10,362(2.5) 14,058(2.5) 150.2
99.45 643.7 643.7cgpf ksf= + − =  

 
Over Piers 2 and 3 
 

210,113 10,113(1.25) 30,532(1.25) 66.9
99.45 643.7 643.7cgpf ksf= + − =  

 
At the center of the middle Span 
 
 
 
 
 
Using a straight-line average between the stresses at these locations, the average stress in the 
tendon is 106.4 ksf or 0.74 ksi. The loss associated with elastic shortening, using a concrete 
strength at the time of stressing of 4 ksi, is then: 
 
 
 
 
 
5.7.3 Losses from Concrete Shrinkage 
 
The loss of prestress force resulting from shrinkage of the concrete superstructure is given by 
AASHTO LRFD Equation 5.9.5.4.3a-1 as: 

29,497 9,497(2.5) 17,788(2.5) 118.6
99.45 643.7 643.7cgpf ksf= + − =

15 1 2,8500 (.74) 2.6
2(15) 3,834pESf ksi−

∆ = =
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(Eqn. 5.29) 

The strain εbdf, is the shrinkage strain from the time of prestressing to final time as provided by
AASHTO LRFD Equation 5.4.2.3.3-1: 

(Eqn. 5.30) 

The factors in Equation 4.25 are defined by AASHTO LRFD Equations 5.4.2.3.2-2, 5.4.2.3.3-2, 
5.4.2.3.2-4, and 5.4.2.3.2-5.  Evaluating these for the example problem: 

( )1.45 0.13 1.45 0.13 12.57 .18 1.0)  (  s
Vk Use
S

 = − = − = − 
 

(2.00 0.014 ) (2.00 0.014(75)) 0.95hsk H= − = − =  

'
5 5 1

1 41f
ci

k
f

= = =
++

 

'
10,000 0.996

61 4(5) 10,00061 4td
ci

tk
f t

   
= = =   − +− +   

 

This results in a shrinkage strain of: 

3(1.0)(0.95)(1.0)(0.996)0.48 10 0.000454bdfε −= × =

Evaluation of the transformed section coefficient Kdf requires computing the creep coefficient: 

0.118( , ) 1.9b f i s hc f td it t k k k k t −Ψ =

1.56 0.008 1.56 0.008(75) 0.96hck H= − = − =

0.118( , ) 1.9(1.0)(0.96)(1.0)(0.996)(28) 1.226b f it t −Ψ = =  

The transformed section coefficient is then: 

2

1

1 1 1 0.7 ( , )
df

p ps c pc
b f i

ci c c

K
E A A e

Ψ t t
E A I

=
 

 + + +    
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[ ]
2

1 1.054
28500 55.335 99.45(2.5)1 1 1 0.7(1.226)
3834 99.45(144) 643.7(144)

dfK = =
 

+ + + 
 

 

 
Multiplying the components of equation 5.29, the loss of prestress stress resulting from the 
shrinkage of concrete is: 
 

0.000454(28500)(1.054) 13.6pSDf ksi∆ = =  
 
 
5.7.4 Losses from Concrete Creep 
 
The loss of stress in the prestressing steel resulting from the creep of concrete is: 
 

28500( , ) (.66)(1.226)(1.054) 6.3
3834

p
pCD cgp b f i df

ci

E
f f Ψ t t K ksi

E
∆ = = =  

 
 
5.7.5 Losses from Steel Relaxation 
 
Using the AASHTO LRFD permissible value for low relaxation steel, the loss of prestressing 
stress is resulting from relaxation of the prestressing steel is: 
 

2.4pRf ksi∆ =  
 
 
5.7.6 Total of Losses and Tendon Sizing 
 
The total loss of prestressing force after jacking is the sum of elastic shortening, shrinkage, 
creep and relaxation: 
 

2.6 13.6 6.3 2.4 24.9pf ksi∆ = + + + =  
 
The resulting stress in the prestressing steel at the center of the middle span is then: 
 

171.62 24.9 146.72pf ksi= − =  
The resulting force in a 0.6” diameter strand would be 31.9 kips.  The number of strands in the 
15 tendons, based on the force requirement at the center of Span 2 of 8,172 kips, would be 
17.2.  Therefore, use 18 strand tendons in final design.  The jacking stressed assumed in the 
loss calculations was 75 percent of the ultimate strength of the strand.  The resulting jacking 
force (Pjack) for each tendon would be 791 kips. 
 
5.8 Service Limit State Stress Verifications 
 
This Section presents stress summaries for important load cases at service limit states.  
Flexural stresses are verified after the tendons are stressed and before grouting, after the 
bridge is open to traffic and before long-term losses, and the bridge in operation after long-term 
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losses have occurred.  A verification of principal stresses in the webs is made with the bridge in 
operation and after long-term losses have occurred. 
 
5.8.1 Service Flexure—Temporary Stresses (DC and PT Only) 
 
Longitudinal stresses in the concrete superstructure are verified at three locations along the 
bridge.  The stresses are being verified after all post-tensioning tendons are stressed, but 
before grouting.  The assumption for this example is that there is insufficient bonded mild 
reinforcing in the precompressed tensile zone to permit tension during this phase.  Applied 
bending moments are taken from table 5.1.  
 
Three post-tensioning tendons in each of the five webs of the box girder are stressed.  Each of 
the tendons contains 18, 0.6” diameter strands.  Tendon forces at the three study sections are 
based on stresses shown in figure 5.27, reduced for elastic shortening losses of 2.6 ksi as 
computed in section 5.7.2. 
 
The allowable concrete stresses in the concrete before losses are presented in AASHTO LRFD 
Article 5.9.4.1.  For a 28-day concrete strength of 5 ksi the allowable stresses are: 
 

'0.60 0.60(4) 2.4 345.6 ( )a cif f ksi ksf compression= = = =     
 

0.0af ksf (no tension when not considering bonded reinforcing)=     
 
At the point of maximum eccentricity in Span 1 and 3 
 

10,819 10,819(2.5)(2.732) 19,126(2.732) 75.2
99.45 643.7 643.7TOPf ksf= − + =  

 
10,819 10,819(2.5)(3.768) 19,126(3.768) 155.2
99.45 643.7 643.7BOTf ksf= + − =  

 
Over Piers 2 and 3 
 

10,556 10,556( 1.25)(2.732) 20,879(2.732) 73.5
99.45 643.7 643.7TOPf ksf− −

= − + =  

 
10,556 10,556( 1.25)(3.768) 20,879(3.768) 151.1
99.45 643.7 643.7BOTf ksf− −

= + − =  

 
At the center of the middle Span 
 

9,903 9,903(2.5)(2.732) 29,613(2.732) 120.2
99.45 643.7 643.7TOPf ksf= − + =  

 
9,903 9,903(2.5)(3.768) 29,613(3.768) 71.2
99.45 643.7 643.7BOTf ksf= + − =  
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The concrete stresses in the box girder superstructure are within permissible AASHTO LRFD 
limits.  Stresses over Piers 2 and 3 could have been checked at the face of the support. 

5.8.2 Service Limit State III Flexure Before Long-Term Losses 

Longitudinal stresses in the concrete superstructure are verified at three locations along the 
bridge.  The stresses are being verified when the bridge is first open to traffic.  The assumption 
for this example is that there is insufficient bonded mild reinforcing in the precompressed tensile 
zone to permit tension during this phase.  Applied bending moments are taken from table 5.1.  

Three post-tensioning tendons in each of the five webs of the box girder are stressed.  Each of 
the tendons contains 18, 0.6” diameter strands.  Tendon forces at the three study sections are 
based on stresses shown in figure 5.27, reduced for elastic shortening losses of 2.6 ksi as 
computed in section 5.7.2. 

The allowable concrete stresses in the concrete before losses are presented in AASHTO LRFD 
Article 5.9.4.2.  For a 28-day concrete strength of 5 ksi the allowable stresses are: 

'0.6 0.6(1)(5) 3.0 432.0a w cf f ksi ksff= = = =    (compression)  

'0.19 0.19 5 0.425 61.2a cf f ksi ksf= − = − = − = −    (tension)  

At the point of maximum eccentricity in Span 1 and 3 

10,819 10,819(2.5)(2.732) 32,867(2.732) 133.5
99.45 643.7 643.7TOPf ksf= − + =

10,819 10,819(2.5)(3.768) 32,867(3.768) 74.7
99.45 643.7 643.7BOTf ksf= + − =

Over Piers 2 and 3 

10,556 10,556( 1.25)(2.732) 36,952(2.732) 5.3
99.45 643.7 643.7TOPf ksf− −

= − + =

10,556 10,556( 1.25)(3.768) 36,952(3.768) 245.2
99.45 643.7 643.7BOTf ksf− −

= + − =

At the center of the middle Span 

9,903 9,903(2.5)(2.732) 46,850(2.732) 193.3
99.45 643.7 643.7TOPf ksf= − + =

9,903 9,903(2.5)(3.768) 46,850(3.768) 29.7
99.45 643.7 643.7BOTf ksf= + − = −

The concrete stresses in the box girder superstructure are within permissible AASHTO LRFD 
limits.  Stresses over Piers 2 and 3 could have been checked at the face of the support. 
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Longitudinal stresses in the concrete superstructure are verified at three locations along the 
bridge.  The stresses are being verified when the bridge is first open to traffic.  The assumption 
for this example is that there is insufficient bonded mild reinforcing in the precompressed tensile 
zone to permit tension during this phase.  Applied bending moments are taken from table 5.1.  

Three post-tensioning tendons in each of the five webs of the box girder are stressed.  Each of 
the tendons contains 18, 0.6” diameter strands.  Tendon forces at the three study sections are 
based on stresses shown in figure 5.27, reduced by long-term losses of 24.9 ksi as computed in 
section 5.7.6.   

The allowable concrete stresses in the concrete before losses are presented in AASHTO LRFD 
Article 5.9.4.2.  For a 28-day concrete strength of 5 ksi the allowable stresses are: 

'0.6 0.6(1)(5) 3.0 432.0a w cf f ksi ksff= = = =    (compression)  

'0.19 0.19 5 0.425 61.2a cf f ksi ksf= − = − = − = −    (tension)  

At the point of maximum eccentricity in Span 1 and 3 

9,513 9,513(2.5)(2.732) 32,357(2.732) 132.0
99.45 643.7 643.7TOPf ksf= − + =

9,513 9,513(2.5)(3.768) 32,357(3.768) 45.5
99.45 643.7 643.7BOTf ksf= + − =

Over Piers 2 and 3 

9,249 9,249( 1.25)(2.732) 38,372(2.732) 20.8
99.45 643.7 643.7TOPf ksf− −

= − + = −

9,249 9,249( 1.25)(3.768) 38,372(3.768) 249.9
99.45 643.7 643.7BOTf ksf− −

= + − =

At the center of the middle Span 

8,596 8,596(2.5)(2.732) 45,429(2.732) 188.0
99.45 643.7 643.7TOPf ksf= − + =

8,596 8,596(2.5)(3.768) 45,429(3.768) 53.7
99.45 643.7 643.7BOTf ksf= + − = −

The concrete stresses in the box girder superstructure are within permissible AASHTO LRFD 
limits. (Stresses checked over Piers 2 and 3 could have been checked at the face of 
the supporting pier.) 

 5.8.3 Service Limit State III Flexure After Long-Term Losses 
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5.8.4 Principal Tension in Webs after Losses 

AASHTO LRFD does not require principal tension verifications at service limit states for 
concrete box girders other than those built segmentally.  These verifications are, however, 
useful for preliminary design, as an indicator whether the webs are sized appropriately.  It is 
strongly recommended that principal tension be verified in cast-in-place concrete box girder 
construction when the box girder has only two webs. 

Consider the cross section 0.72h (4.68’) to the left of Pier 2 in Span 2.  The shear forces 
acting are: 

16(80 4.68) 1,205DCV kips= − =  
1.4(80 4.68) 105DWV kips= − =

(1 ) 53LL laneV kips=

(1 ) 68LL truckV kips=
1.33(68) 53 143LL IV kips+ = + =

The live load distribution for shear is found by AASHTO LRFD Table 4.6.2.2.3a-1 for cross 
section type d and two or more design lanes loaded: 

0.1 0.10.9 0.912.25 78 1.157
7.3 12( ) 7.3 12(160)
S dDF

L
      = = =      

      
 

5(1.157) 5.785L wN N DF= ⋅ = =  

(0.8)5.785(143) 662LL IV kips+ = =

( )
( )

( )2 2

2 0.93752 4.68 0.0219 1.26
20

h x rad deg
b

θ
−

= = = − = −

( )9,249sin 1.26 203PV kips= − = −

( )1205 105 662 203 1769V kips= + + + − =∑
The stresses acting on an element at the neutral axis are: 

9,249 93.00
99.45x ksfs = =

0.0ys =

( ) 1,769(118.1) 64.91
( ) 643.7(5)xy

V Q ksf
I B

t = = =
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( )
2 2

22 93.00 64.91 79.85
2 2

x
xyR ksfs t   = + = + =     

max 126.35
2

x R ksfs
s = + =

' '
min 33.35 231.6 3.28 ( )

2
x

c cR ksf psi f f in psis
s = − = − = − = −

The Mohr’s Circle representation of stress at this location is then: 

Figure 5.28 – Mohr Circle for Location of Maximum Shear in Middle Span 

The maximum principal tension of -44 ksf is greater than what would be allowable for a 
segmental box girder, but does reflect a level of stress that can be adequately reinforced during 
final design. 

5.9 Optimizing the Post-Tensioning Layout 

Section 5.6 of this chapter showed the determination of the required post-tensioning forces at 
three sections in the example three-span bridge.  The three final forces computed were: 

• 4743 kips at 0.4167L of Spans 1 and 3.
• 8256 kips at mid-span of Span 2.
• 7169 kips over Piers 2 and 3.

The large disparity in the required post-tensioning force in the end spans versus the middle 
span indicates that some optimization of the post-tensioning layout is warranted.  Decreasing 
the maximum positive eccentricity in Spans 1 and 3 will increase the post-tensioning demand 
Chapter 5 – Preliminary Design  112 of 369 

The features of Mohr’s Circle with these stresses are: 
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those spans.  In Span 2, however, the effect of reducing the maximum positive eccentricity in 
Spans 1 and 3 will reduce the secondary moments, and the post-tensioning demand in that 
span.  

Figure 5.29 shows a revised center of gravity post-tensioning layout for the end spans of the 
example bridge.  The tendons have been raised to 2 feet from the bottom of the bottom slab. 
The resulting maximum positive eccentricity is 1.738’.  The maximum eccentricity at the interior 
piers is unchanged. 

Figure 5.29 – Revised Center of Gravity Profile of Prestressing (End Spans) 

Revised conjugate beam loads are determined from the revised profiles.  Figure 5.30 shows the 
updated conjugate beams and loads in the end spans for a unit prestressing force (F=1).  The 
conjugate beam loads for the middle span are unchanged. 

Figure 5.30 –Revised Conjugate Beam and Loads (End Spans) 

The updated secondary prestress moments are shown in Figure 5.31. 
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Figure 5.31 –Revised Secondary Prestressing Moments, M2(F) 

 
The minimum prestressing force requirements at the three sections studied, after all losses, are 
then: 
 

( )
( )

28,637 10,451
5,633 (0.3596L Span 1)

0.6288 2.732 2.5 0.316
F kips

+ −
= =

+ −
 

 
( )

( )
36,037 10,451

7,662 (0.5L Span 2)
0.6288 2.732 2.5 0.8785

F kips
+ −

= =
+ −

 

 
48,426 ( 14,415) 7,501 (At Piers 2 and 3)

1.25 0.6288(3.768) 0.8785
F kips− − −

= =
− − −

 

 
 
These force requirements are compared to those shown at the top of page 29 of 41.  Raising 
the eccentricity in the side spans decreases the overall post-tensioning demand by 510 kips, or 
approximately 6 percent. 



Post-Tensioned Box Girder Design Manual June 2016 

Chapter 6 – Substructure Considerations 115 of 369 

Chapter 6—Substructure Considerations 

6.1 Introduction 

Chapter 5 presented an approach to the preliminary design of cast-in-place post-tensioned box 
girder bridges.  The approach was demonstrated by considering a three-span box girder bridge. 
To focus on superstructure concepts, the three-span example bridge was supported by bearings 
at the piers and abutments.  Often, however, the supporting columns are cast integrally with the 
box girder superstructure.  When this is the case, the analysis and design of the bridge should 
include the flexural stiffness of the supporting substructure. 

This chapter presents bending moments for the same three-span example bridge of chapter 5, 
with the exception that the piers are integral with the superstructure.  Figure 6.1 shows an 
elevation view of the example bridge.  Figure 6.2 shows a cross section of the bridge supported 
at each pier with two 6’ diameter columns.  For this example, each column is supported by a 7’ 
diameter drilled shaft, with an equivalent length to fixity of 10’.  The flexibility analysis for this 
structure is provided in appendix A, beginning on page 25 of 33. 

Figure 6.1 –Example CIP Box Girder Bridge Elevation 

Figure 6.2 –Bridge Cross Section at Piers 
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6.2 Bending Moments Caused by Unit Effects 
 
6.2.1 Effect of a Unit Uniform Load 
 
 

 
 

Figure 6.3 – Effect of a Unit Uniform Load 
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6.2.2 Effect of a Unit Lateral Displacement (Side-Sway Correction) 

Figure 6.4 – Effect of a Unit Lateral Displacement (Side-sway Correction) 

6.2.3 Effect of a Unit Contraction 

Figure 6.5 – Effect of a Unit Contraction 
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6.3 Dead Load—DC (Self Weight and Barrier Railing) 
 
 

 
 

Figure 6.6 – Effect of Dead Load (DC) 
 
 
6.4 Dead Load—DW (Future Wearing Surface) 
 
 

 
 

Figure 6.7 – Effect of Dead Load (DW) 
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6.5 Live Load—LL (Lane and Truck Components) 

6.5.1 Envelope of Uniform Load Component 

Figure 6.8 – Uniform Live Load Moment Envelope 

6.5.2 Truck—Positive Moment in Span 1 or 3 

Figure 6.9 – Moment Diagram for HS20 Truck in Span 1 or 3 
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6.5.3 Truck—Positive Moment in Span 2 
 

 
 

Figure 6.10 – Moment Diagram for HS20 Truck in Span 2 
 
 
 
6.5.4 Truck—Negative Moment over Piers 
 

 
 

Figure 6.11 – Moment Diagram for Two HS20 Trucks about Pier 2 
 
 
 
6.6 Post-Tensioning Secondary Moments—Unit Prestressing Force 
 
Secondary moments from post-tensioning for the framed structure will be different from those of 
a similar bridge supported by bearings.  The shortening of the superstructure under the 
prestressing induces bending moments in the columns which are distributed throughout the 
framed structure.  The Flexibility Method solution for the frame considers a single rotational 
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degree of freedom at each member end.  As a result, the effect of the axial shortening needs to 
be added to the flexural results to find the total secondary moments. 

The top diagram in figure 6.12 shows the secondary moments considering the rotational 
restraint provided by the columns.  The second diagram shows the secondary moments 
resulting from a unit force shortening the bridge.  These moments are found by multiplying the 
results for the unit contraction (figure 6.5) times the shortening of the span between the columns 
under the action of a unit force, which is predicted as: 

The modulus of elasticity is taken from equation 2.5 for a 28-day strength of 5 ksi and a unit 
weight of 150 lb/ft3. 

Figure 6.12 – Secondary Prestressing Moments, M2(F) 

The component of the secondary moment resulting from axial shortening is slightly 
overestimated in this case as it does not consider the shear forces attracted by the columns. 
This approximation is not the case in a stiffness or flexibility solutions that consider rotational 
and displacement degrees of freedom simultaneously.  The approximation could be refined by 
an iterative approach where the column top lateral displacement under the shear force is made 

6(1)(80) 1.3031 10
(99.45)(617300)

PL
AE

−∆ = = = ×
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equal to the shortening of the span under the unit force, less the column shear force.  For this 
example, the refinement reduces the secondary moments from axial shortening by about 4 
percent. 
 
 
6.7 Thermal Gradient (TG)—20°F Linear 
 
 

 
 

Figure 6.13 – Moment Diagram for a 20°F Positive Linear Gradient 
 
 
 
6.8 Moments Resulting from Temperature Rise and Fall 
 
6.8.1 Temperature Rise—40°F Uniform Rise 
 
 

 
 

Figure 6.14 – Moment Diagram for 40° Temperature Rise 
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6.8.2 Temperature Fall—40°F Uniform Fall 
 
 

 
 

Figure 6.15 – Moment Diagram for 40° Temperature Fall 
 
 
6.9 Moments Resulting from Concrete Shrinkage 
 
Bending moments are produced in the rigid frame as the superstructure concrete shrinks and 
displaces the tops of the columns toward the center of stiffness of the structure. These bending 
moments can be estimated by factoring the load case for unit contraction (figure 6.5) by the pier 
top displacements.  For the example structure, by inspection of its symmetry, the center of 
stiffness is located at the center of the middle span. 
 
The shrinkage strain can be computed using the CEB-FIP Model Code presented in chapter 2.  
The total shrinkage strain at time t is calculated by: 
 
 
 
With, 
 
 
And, 
 
 
 
The values for the beta terms are computed first: 
 
 
 
 
 
 
 
 
 
 
 

( , ) ( )cs s cso s st t t tε ε β= −

( )cso s cm RHfε ε β=

6( ) [160 10 (9 / )] 10s cm sc cm cmof f fε β −= + − ×

1.55 1.55(0.5781) 0.8961RH sRHβ β= − = − = −

3 3751 1 0.5781
100sRH

o

RH
RH

β
   = − = − =   

  

5scβ =
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Assuming day 10,000 to be the day when the concrete shrinkage is assumed to end, and 
considering the outside perimeter and half of the inside perimeter in computing the notional 
thickness (perimeter = 189.83’): 

Substituting these values into the equations for concrete strain: 

The resulting pier top deflection is: 

The resulting bending moment diagram is: 

Figure 6.16 – Moment Diagram for Concrete Shrinkage 

The bending moment diagram in figure 6.16 assumes that the same concrete mix is used for the 
superstructure and the substructure.  Also, these results assume that the concrete of the 

0.5
1

2
1

( ) /( )
350( / ) ( ) /

s
s s

o s

t t tt t
h h t t t

β
 −

− =  
+ − 

0.5

2
(10000 1) /1(10000 1) 0.8585

350(319.36 /100) (10000 1) /1sβ
 −

− = = + − 

6( ) [160 10(5)(9 42.47 /10)] 10 0.0003977s cmfε −= + − × =

( ) 0.0003977( 0.8961) 0.0003564cso s cm RHfε ε β= = − = −

( , ) ( ) 0.0003564(0.8585) 0.0003060cs s cso s st t t tε ε β= − = − = −
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superstructure and substructure is poured at the same time (has the same age).  Variations in 
these, or other, assumptions will impact the resulting bending moments.  For example, the 
bending moments will increase if the columns are poured in advance of the superstructure, 
given that they are made of the same concrete.  Oppositely, the bending moments will decrease 
if a lower strength of concrete is used in the columns, reducing their stiffnesses. 

6.10 Moments Resulting from Concrete Creep 

Cast-in-place post-tensioned concrete bridges will creep under the action of the permanently 
applied loads (typically self weight and post-tensioning).  The bending moments determined in 
the elastic structure are compatible with member end rotations.  These member end rotations 
will grow as a function of concrete creep, but no redistribution of bending moments will occur, as 
no new end restraints are applied, and the stiffness of the members, though changing with time, 
are relatively the same.  Rotations and deflections will increase, but no change in bending 
moments. 

Likewise, no creep moments will develop as a result of the continued top of pier displacement 
as a result of concrete creep.  Lateral deflections will increase with no increase or decrease of 
bending moments.  There will be a lessening of the prestressing force as the span shortens 
which will be opposite in direction to the moments produced during the axial shortening of the 
bridge during stressing. 

Creep moments related to member end rotations will develop to reduce deformations induced 
by concrete shrinkage. These moments can be estimated as a percentage of the moments due 
to shrinkage, that percentage being a function of concrete creep characteristics.   

A creep coefficient can be computed using the CEB-FIP Model Code presented in chapter 2. 
The relationship of creep strain to elastic strain is given by: 

Where, 

The notional creep coefficient is: 

With, 

And, 

0 0( ) ( )RH cmf tf f β β=

1/3 1/3
1 / 1 75 /1001 1 1.3691
0.46( / ) 0.46(319.36 /100)

o
RH

o

RH RH
h h

f − −
= + = + =
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0 0.2 0.2
0 1

1 1( ) 0.4884
0.1 ( / ) 0.1 (28 /1)

t
t t

β = = =
+ +

),()(),( 0
0 tt

E
ttt
ci

c
occ fsε =

)(),( 000 tttt c −= βff
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The development of creep over time is given by: 

With, 

And, 

And, 

Solving for the creep coefficient: 

The creep moment acts to reduce the moments induced by shrinkage.  Consider the total strain 
under a sustained load. 

This expression can be rearranged to: 

1875 319.36150 1 1.2 250 150 1 1.2 250 801
100 100H

o o

RH h
RH h

β
       = + + = + + =      

        

0.3 0.3
0 1

0
0 1

( ) / (10000 1) /1( ) 0.9771
( ) / 801 (10000 1) /1c

H

t t tt t
t t t

β
β

   − −
− = = =   + − + −  

150 1 1.2 250 1500H
o o

RH h
RH h

β
   = + + ≤  
   

0.3
0 1

0
0 1

( ) /( )
( ) /c

H

t t tt t
t t t

β
β

 −
− =  + − 

0 0 0( , ) ( ) 1.7197(0.9771) 1.6804ct t t tj j β= − = =

0 0
0

( ) ( ) ( , )c c
total elastic cc

ci ci

t t t t
E E

s sε ε ε j= + = +

( )1
'

c c
total

ci ciE E
s sε j= + =

And, 

0.5
5.3 5.3β ( fcm ) 2.5718

( fcm / fcmo )0.5 (42.47 /10)
= = =

f = RHf β ( cm ) (βf t0 0 ) =1.3691(2.5718)(0.4884) =1.7197
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Expressed in terms of bending moment, the total moment of shrinkage and the creep related to 
shrinkage is: 

Solving for the creep moment: 

For the example problem considered, the creep moment is estimated by the linear scaling of the 
shrinkage bending moment diagram. 

The bending moments resulting from creep of the concrete related to shrinkage are shown in 
figure 6.17. 

Figure 6.17 – Moment Diagram for Concrete Creep 

Additional creep bending moments, in addition to those related to concrete shrinkage, can 
be generated in cast-in-place post-tensioned bridges even though the statical scheme 
remains unchanged.  These creep moments occur when relative creep characteristics of 
superstructure and substructure concrete are different, whether by being of different mix 
designs or of different casting dates.  For example, if the substructure of the example bridge 
were made of the same concrete, but cast at a date earlier than the superstructure, the older 
substructure would resist the creep of the younger superstructure concrete.  The moments to 
be considered in calculating this creep moment would be the summation of permanent loads 
(DC and PT).  The moments would be estimated by scaling the sum of the permanent loads 
by a relative ratio of remaining creep coefficients of the two concretes. 

( )
'

1
ci

ci
EE

j
=

+

( )1
sh

total sh cr
MM M M

j
= + =

+

( )
11

1cr shM M
j

 
= − −  + 

0.6269cr shM M= −

Where E’ci is an effective modulus of elasticity equal to the 28-day modulus adjusted by the 
creep coefficient, 
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6.11 Bending Moments Summaries 

This Section presents bending moment diagrams for the two example bridges, one on bearings 
and one with integral piers.  The moments were determined by Flexibility Analysis.  The 
analysis for the bridge on bearings is found in chapter 5, section 5.4.2.  The analysis for the 
bridge with integral piers is found in section A.13 of appendix A. 

The “maximum” moments in the side spans are found at the location of maximum load under 
self weight.  The location of the truck component of the live loads is the same within the 
spans of both the bridge on bearings and the bridge with integral piers.  Though both a 
slightly larger truck component and therefore overall live load moment may be found, the 
values in figure 6.18 were chosen for the comparative exercise in this Chapter. (See section 
5.5.4.5 for the number of design lanes.) 

Load 
Span 1 (“max”) CL Span 2 CL Pier 
Brg Fixed Brg Fixed Brg Fixed 

kL 0.3596L1 0.3677L1 0.5L2 0.5L2 0.0L2 0.0L2 
DC 14896 15570 18800 17920 -32352 -33280
DW 1303 1362 1649 1568 -2831 -2912
LLu 923 781 1138 898 -1448 -1548
LLt 1475 1381 1657 1408 -1769 -1820
NL 4.544 4.544 4.229 4.229 4.372 4.372

0.8(LL+I) 10487 9516 11306 9374 -11964 -12493
0.5GR 1539 1811 4279 3957 -1284 -1187

M2 0.3159F 0.1796F 0.8785F 1.0736F 0.8785F 1.0736F 
Tr 0 1777 0 -2417 0 -2417
Tf 0 -1777 0 2417 0 2417
SH 0 -2265 0 3080 0 3080
CR 0 1427 0 -1940 0 -1940

Table 6.1 – Bending Moments for Bridge on Bearings and Bridge with Fixed Piers 

6.12 Post-Tensioning Force Comparison (after all losses, with thermal effects) 

6.12.1 Side Span Positive Bending 

For the bridge on bearings: 

For the bridge with integral piers: 

( )
( )

28,225 10,451
5,607

0.6288 2.732 1.768 0.316
F kips

+ −
= =

+ −

( )
( )

29198 10,451
5,914

0.6288 2.732 1.768 0.316
F kips

+ −
= =

+ −
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For the bridge on bearings: 

For the bridge with integral piers: 

6.12.3 Negative Bending at Piers 

For the bridge on bearings: 

For the bridge with integral piers: 

( )
( )

36,034 10,451
7,661

0.6288 2.732 2.5 0.8785
F kips

+ −
= =

+ −

( )
( )

36,376 10,451
7,763

0.6288 2.732 2.5 0.8785
F kips

+ −
= =

+ −

48,431 ( 14,415) 7,563
1.25 0.6288(3.768) 0.8785

F kips− − −
= =

− − −

51,149 ( 14,415) 8,167
1.25 0.6288(3.768) 0.8785

F kips− − −
= =

− − −

6.12.2 Middle Span Positive Bending 
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Chapter 7—Longitudinal Analysis & Design 

7.1 Introduction 

The longitudinal analysis and design of post-tensioned concrete box girder bridge 
superstructures in accordance with AASHTO LRFD specifications culminates in the verification 
of superstructure cross sections at service and strength limit states.  The loads for which the 
cross sections are verified under the various limit states are those determined by linear elastic 
analysis methods factored to achieve a desired reliability in design.  Included in these elastic 
analyses is the appropriate consideration for the time-dependent characteristics of the 
superstructure concrete and post-tensioning. 

Computerized solutions for post-tensioned structures are available from a number of software 
developers.  These computer programs are typically based on either two or three-dimensional 
finite element methods using beam/column elements in the elastic range.  Built around the finite 
element solutions are material characteristics that, through a series of time updates, allow the 
incorporation of effects such as concrete creep, concrete shrinkage, and relaxation of the post-
tensioning.  Most of these computer programs also allow for the input of post-tensioning 
tendons by geometric definition.  The geometric definitions are transformed internally within the 
software into loads applied to the bridge model.  Complete packages can include automatic 
generation of AASHTO LRFD live loads and limit state combinations to expedite cross section 
verifications. 

Not having specialized software does not leave the engineer without the means to analyze and 
design post-tensioned concrete bridges.  Hand calculations like those presented in this Manual, 
or those using general frame analysis software are adequate analysis tools for many bridges. 
More rigor is required in developing these analyses, but often they disclose valuable insights 
into the behavior of the bridge.  The effects of post-tensioning are determined by applying 
equivalent loads to the stiffness based solution.  The results are the total prestressing effects, 
from which primary effects are subtracted to find the secondary effects.  Alternatively, flexibility 
solutions can produce secondary effects directly, which are then added to the primary effects to 
determine the total prestressing effects.  Time-dependent effects of the concrete and 
prestressing steel are estimated by code equation and then applied in the form of forces or 
displacements to determine their effect on the bridge.  This can be done conservatively by 
applying ultimate values at one time, or applying them incrementally to better estimate the 
diminishing of these effects as time progresses. 

This manual utilizes both computer programs specifically developed to facilitate post-tensioned 
concrete bridge design along with supplementary hand calculations to verify limit states.  The 
computer programs used are Bridge Designer 2 (BD2) and Bridge Designer 3 (BD3) by 
Interactive Design Systems.  BD2, a two-dimensional analysis package, was used in the 
preparation of design example 1 provided in appendix C of this manual.  Design example 2, 
provided in appendix D, uses BD3, a three-dimensional solution.  The general-purpose finite 
element analysis program LARSA was used in design example 2 for the development of live 
load effects on the two-cell curved structure. 

7.2 Modeling Concepts 

Stiffness based finite element analyses model complex force-displacement behavior of a 
structure by dividing it into an assemblage of smaller members interconnected at nodes.  Nodal 
locations are chosen so that a finite number of independent degrees of freedom will, with 
desired accuracy, capture the displacement characteristics of the structure.  Relative 
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displacements of member connected nodes are established by idealized force-displacement, or 
“stiffness”, characteristics of the smaller finite members. The needed sophistication of stiffness 
characteristics for members in a finite element analysis is related to sophistication of force-
displacement results needed for subsequent member design.  Two-dimensional and three-
dimensional beam-column elements represented by classic stiffness characteristics are 
elements with appropriate sophistication for the design of most cast-in-place box girder bridges. 

7.2.1 Straight Bridges Supported on Bearings 

The longitudinal design of straight concrete box girder superstructures can be made using two-
dimensional analyses supplemented with hand calculations to estimate force effects out of the 
plane of the analysis.  Figure 7.1 shows the elevation of a bridge similar to the one presented in 
design example 1 in appendix C.  The bridge shown in figure 7.1 is different from the design 
example in that the superstructure is not integral with the piers, but rests on bearings.  The 
cross section of this bridge, shown in figure 7.2, is the same as for design example 1. 

Figure 7.1 – Example Straight Bridge on Bearings 

Figure 7.2 – Box Girder Superstructure Cross Section 

7.2.1.1 Nodes 

Figure 7.3 shows one layout for a two-dimensional model representation of the three-span 
bridge in figure 7.1.  Nodes are defined by coordinates in an orthogonal coordinate system, 
such as x-coordinates in the longitudinal direction and y-coordinates in the vertical direction. 

Longitudinally, nodes were first located at support locations and at even increments along the 
length of the bridge.  The number of nodes defined along each span is the decision of the 
analyst, but should be sufficient to allow the analysis software member definitions to accurately 
model bridge behavior.  A typical nodal spacing of 10’ was used for the bridge model shown in 
figure 7.3.  Additional nodes (3, 15, 17, 22, 35, and 47) were added for ease in using the results 
of the analysis.  These nodes coincide with the design cross section for shear (d or h/2 from the 
centerline of pier, depending on the approach in finding nominal capacity).   Two other nodes (1 
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and 49) were added behind the first and last bearing locations to facilitate the modeling of post-
tensioning consistent with end anchor details 
 
Nodes shown in figure 7.3 are defined vertically at the center of gravity of the superstructure 
cross section. The vertical location of the nodal coordinates changes with variations in cross 
section such as when a bottom slab is thickened near a pier to control compressive stresses, or 
in a variable depth structure used in longer spans.  The vertical locations of the nodes are not 
adjusted for the profile of the bridge, except in the most extreme conditions.  There are other 
bridge types, such as cable-stayed bridges, where horizontal forces are sufficiently large as to 
impose significant deck bending because of profile changes. 
 
The analysis model is simply supported at all bearing locations in the vertical direction.  A 
horizontal support is provided at Node 2 to assure model stability.  Interior piers and bearing 
stiffnesses could be added to this model if the of long-term effects of concrete creep and 
shrinkage and prestressing steel relaxation are desired in the piers.  Their effect is typically 
small on the results for the design of the superstructure (see chapter 6).  If the bearings are 
flexible, such as for laminated elastomeric bearings, the horizontal stiffness can be input as a 
constraint between pier top and the superstructure.  Rotational stiffnesses of these bearings 
should not be accounted for in the model.  The very large rotational stiffnesses of these 
bearings rely on large vertical loads to remain active without uplift.  The result is an 
inappropriately large attraction of bending moment to the pier if modelled, approaching that of 
integral piers.  A rotationally free connection is more appropriate. 
 

 
 

Figure 7.3 – Two-Dimensional Analysis Model 
 
7.2.1.2 Elements 
 
Nodes in the two-dimensional analysis model of the straight bridge are connected by idealized 
beam-column elements defined by appropriate stiffness matrices.  Figure 7.4 shows a typical 
stiffness matrix for a beam element connecting nodes that have three degrees of displacement 
freedom (vertical, horizontal, and rotational). 
 
Figure 7.4 shows that the information necessary to define the behavior of the beam-column 
element connecting two nodes includes: 
 

• Cross-Sectional Characteristics—Area and Moment of Inertia about the horizontal axis 
passing through the centroid of the cross section.  Typically the gross cross section 
characteristics of the concrete girder are considered.  There may be instances where the 
cross-sectional area of the ducts is great enough to impact analysis results.  When this 
happens, the net cross section should be used for superstructure construction and 
tendon stressing, and the gross properties used for loads applied after the tendons are 
grouted. 
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• Modulus of Elasticity—For the purposes of the verification of Service and Strength Limit 
States, cast-in-place post-tensioned bridges are analyzed with fully elastic behavior 
(LRFD C4.5.1).  Within these elastic analyses, however, the time-dependent behaviors 
of concrete and prestressing steel must be incorporated (LRFD 4.5.2.2).  Time-
dependent behavior is most typically captured in commercially available software by a 
series of time updates, where changes in concrete dimension are estimated over a time 
step.  Typically, the modulus of elasticity is based on the 28-day strength of the concrete 
(see chapter 2). 

 

 
 

Figure 7.4 –Typical Element Stiffness Matrix for a Plane Frame Member with 3DOF Nodes 
 
For the cross section shown in figure 7.2, the cross section characteristics are: 
 

 
 

Figure 7.5 –Cross Section Properties for the Box Girder shown in Figure 7.2 
 
End and pier diaphragms are used at the supports to transmit shear forces from the webs to the 
supports and to stiffen the box girder with regard to torsion.  End and pier diaphragms are 
typically solid sections of the bridge with small openings to allow for access between the spans 
after construction.  It is important to incorporate the weight of these diaphragms into the design 
of the bridge.  However, members containing small length diaphragms (up to approximately the 
depth of the box girder superstructure) should not be represented with cross section properties 
including the diaphragms.  The typical cross section properties should be used for these 
members.  Longer diaphragms could warrant a change in cross section characteristics. 
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7.2.1.3 Post-Tensioning 
 
The effects of the post-tensioning tendons are modeled within the software as an equivalent set 
of forces acting on the elements of the bridge.  Most post-tensioned bridge analysis software 
packages use a graphical interface so that the tendons can be defined by their desired 
geometry.  Internal to the program, the geometry is used to compute fixed end element forces 
which then become the post-tensioning load case within the program.  When loaded with the 
equivalent loads, the results are the combination of primary and secondary post-tensioning 
moments.  The secondary moments are then determined by subtracting the primary moment, 
from the input tendon geometry, from the total post-tensioning moments. 
 
The effect of time-dependent deformations of the concrete and steel are incorporated through 
time-steps where the long-term deformations are used to change the post-tensioning forces 
along the length of the tendons.  Iterative solutions are often used to have the assumed and 
final time-depended deformations converge over each time step.   
 
General purpose software analysis packages without the capability to define post-tensioning 
tendons geometrically, or to track and update forces with time, can be used for the final design 
of cast-in-place bridge superstructures.  An equivalent force approach could be taken with code 
predicted changes in the post-tensioning forces in order to capture appropriately long-term 
behavior.  Design Aids 11.1.4 and 11.1.5 in chapter 11 of the Precast/Prestressed Concrete 
Institute Design Handbook, 7th Edition, are good resources for determining equivalent 
prestressing loads. 
 
 
7.2.2 Straight Bridges with Integral Piers 
 
The superstructure of the straight bridge modeled in section 7.2.1 is the same superstructure 
used in design example 1 in appendix C without integral piers.  The cross section of the bridge 
used in design example 1 with integral piers is shown in figure 7.6.  The integral pier shown 
consists of twin circular pier columns, each supported by a single drilled shaft foundation. 
 

 
 

Figure 7.6 – Cross Section of Design Example 1 Bridge at the Piers 
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Figure 7.7 shows the model for the bridge with integral piers.  The layout of nodes and members 
in the superstructure are the same as those for the straight bridge on bearings (section 7.2.1). 
 

 
 

Figure 7.7 – Two-Dimensional Analysis Model with Integral Piers 
 
Details of the modeling of the pier and foundation elements are shown in figure 7.8: 
 

 
 

Figure 7.8 – Detail of Model at Pier 
 
The model shown in figure 7.7 differs from that of figure 7.3 in three ways: 
 
Pier Elements—The piers are modeled as the combination of the pier shaft properties 
participating in the longitudinal flexure of the bridge superstructure.  In this example, the piers 
are modeled with twice the area and twice the inertial of two 6’-diameter pier columns. 
 
Foundation Stiffnesses—In this example problem, the drilled shaft foundations are represented 
by two 7’-diameter concrete drilled shafts in the same way the piers were modeled.  An 
equivalent member length to a point of fixity determined by soil-pile interaction was used to 
locate Node 101 relative to Node 102.  Depending on the computer program used, the 
foundation could also be modeled with a user defined stiffness matrix determined by a study of 
soil-pile interaction. 
 
Rigid Members—Members from the superstructure center of gravity to the top of the pier have 
been added.  This element, modeled as rigid, facilitates the direct output of force and moment 
results at the tops of the piers.  The rigid extensions at the end bents are added for dimensional 
consistency with the pier modeling. 
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7.2.3 Curved Bridges 
 
LRFD Article 4.6.1.2.3 provides guidelines for including horizontal bridge curvature in the 
analysis and design of concrete girder bridges.  Three categories of consideration, related to the 
ratio of span length to horizontal curve radius expressed in terms of span length central angle, 
are presented in the LRFD.  The parameters for the evaluation are shown in figure 7.9 
 
 

 
 

Figure 7.9 – Curved Bridge of Design Example 2 
 
The three categories for consideration of horizontal curvature in LRFD are: 
 
• Central Angle ≤ 12 degrees—A bridge whose largest span length has a central angle not 

greater than 12 degrees (L/R ≤ 0.2) may be designed as straight.  No consideration for 
bridge curvature is necessary for the longitudinal design of the concrete box girder 
superstructure. 

 
• 12 degrees < Central Angle ≤ 34 degrees—A bridge whose largest span has a central angle 

greater than 12 degrees (L/R ≤ 0.2) and not greater than 34 degrees (L/R ≤ 0.6) must 
include the horizontal curvature of the bridge in analysis and design.  The analysis may be 
comprised of idealized beam-column elements defined between nodes at the center of 
gravity of the cross sections as it follows the horizontal curve.  The girder elements may 
themselves be straight between nodes and should include stiffness characteristics that 
relate forces and displacements in 6 degrees of freedom (three translational and three 
rotational).  The maximum length of the straight girder elements between nodes shall be 
such that the central angle between adjacent nodes shall not exceed 3.5 degrees (Lnodes/R≤ 
0.06). The assemblage of these elements is sometimes referred to as a spine beam. 

 
• Central Angle > 34 degrees—A bridge whose largest span has a central angle greater than 

34 degrees (L/R ≤ 0.6) shall be analyzed by a proven three-dimensional analysis method 
such as: grillages, folded plates, finite strips, or shell element finite elements. 

 
The bridge presented in design example 2 in appendix D is a three span bridge with the same 
span lengths as the bridge presented in design example 1 in appendix C.  Different from design 
example 1, however, is that the design example 2 bridge lies on a horizontal alignment with a 
radius of 600’ over the full length of the bridge.  Figure 7.10 shows the bridge of design example 
2.  The span lengths of the bridge are 120’, 160’, and 120’.  The central angles of the spans are 



Post-Tensioned Box Girder Design Manual  June 2016 

Chapter 7 – Longitudinal Analysis & Design  137 of 369  
 

11.5 degrees, 15.3 degrees, and 11.5 degrees.  The central angle of the middle span is such 
that a curved girder analysis comprised of straight beam elements is appropriate.  The model 
used in design example 2 is shown in figure 7.11. 
 

 
 

Figure 7.10 – Design Example 2 Bridge 
 
 

 
 

Figure 7.11 – 3D Model for Bridge in Design Example 2 
 
The bridge of design example 2 is also different from that of design example 1 in that it is 
supported by three bearings at the piers and abutments.  Figure 7.12 shows a cross section of 
the bridge at the pier.  Figure 7.13 shows the layout of nodes and members at the piers.  Rigid 
elements are used to replicate the rigidity that the superstructure diaphragms add at the pier.  
Other rigid members are used to account for the thickness of the substructure members and 
output convenience. 
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Figure 7.12 – Cross Section of Design Example 2 Bridge at the Piers 
 
 

 
 

 
Figure 7.13 – 3D Model for Bridge in Design Example 2 at the Piers 

 
Computerized stiffness solutions of three-dimensional spine girders that incorporate bridge 
curvature represent the members with element stiffness matrices similar to those of two-
dimensional analyses. Two additional cross section characteristics are required to define these 
members: the moment of inertia about the element vertical axis (for transverse flexure), and the 
torsional constant, J, that is used to model the element torsional stiffness.   
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Torsional moments applied to closed cross sections such as concrete box girder bridges are, in 
the first order, resisted by a flow of shear around the perimeter of the closed section. Figure 
7.14 shows a single cell box girder subjected to a torsional moment Mt. The shear flow around 
the box girder is defined by the variable “q”, with units force per length. 
 

 
 

Figure 7.14 –Torsion in a Single Cell Box Girder 
 
Appendix B to this manual presents a detailed development of the torsional behavior of closed, 
hollow cross sections.  From that development, the shear flow is found to be constant around 
the closed section and related to the torsional moment by: 
 

(Eqn. 7.1)   

 
Where A0 is the area enclosed within a perimeter defined by the median lines of the closed 
section elements (webs, top slab, and bottom slab).  The corresponding shear stress in the 
members of the closed section is found by dividing the shear flow by the member thickness: 
 

(Eqn. 7.2)   

 
The torsional constant for the single cell closed hollow section is: 
 

(Eqn. 7.3)   

 
The denominator in equation 7.3 is the integral of length along the median perimeter divided by 
the thickness of the members comprising the closed hollow section.  For box girder cross 
sections where the members are distinct and linear, equation 7.3 can be written as: 
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(Eqn. 7.4)   

 
Where, the closed loop integral is replaced with a discrete summation. 
 
For cross section comprised of multiple closed hollow cells, torsional moments are resisted by 
shear flow around all of the cells.  Figure 7.15 shows the equilibrium of external torsional 
moment and internal shear flow in a two-cell box girder superstructure. 
 

 
 

Figure 7.15 –Torsion in a Two-Cell Box Girder 
 
The torsional moment is in equilibrium with the sum of the shear flows multiplied by their 
enclosed medial area: 

(Eqn. 7.5)   

 
Evaluation of the shear flow in each cell must include the effects of the shear flow in adjacent 
cells, as influenced by members that are shared in common.  Equations B.44 in appendix B 
shows the relationship between cross section rotation of a single box girder cell and shear flow: 
 

(Eqn. 7.6)   

 
Including the effects of shear flow in common members, equation 7.6 can be expressed for 
each cell of the box girder as: 
 

(Eqn. 7.7)   

(Eqn 7.8)   
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Compatibility of deformations requires that the rotations of the individual cells are equal to each 
other and are equal to the rotation of the cross section, so that: 
 
 (Eqn. 7.9)   
 
Equations 7.7 and 7.8 can be written as a system of simultaneous equations which include the 
equality of equation 7.9: 
 
(Eqn. 7.10)   
 
(Eqn. 7.11)   
 
Where the shape constants (d) of the expression are: 
 

(Eqns. 7.12)    

 
Solution for the shear flows in equations 7.10 and 7.11 can be made in terms of the cross 
section rotation.  The relationship between applied torsional moment and cross section rotation 
is developed in appendix B as: 
 
 (Eqn. 7.13)   
 
Equilibrium between applied torsional moment and shear flow in the cells (equation 7.5) can be 
expressed for the two-cell box girder as: 
 
 (Eqn. 7.14)   
 
Equating equations 7.13 and equation 7.14 leads to the calculation of the torsional constant for 
the cross section. 
 
 

Example:  Consider the cross section of design example 1 in appendix C.  The 
dimensions of the cross section, enclosed cell areas for torsion, and idealized thin wall 
member thickness and lengths are shown in figure 7.16. 
 
The system of simultaneous equations that needs to be solved for the four-cell box 
girder is: 
 
 
 
 
 
 
 
 
 
 
 

1 1 12 2 13 3 14 4 1( ) ( ) ( ) ( ) 2 oq q q q GAd d d d θ+ + + =

21 1 2 2 23 3 24 4 2( ) ( ) ( ) ( ) 2 oq q q q GAd d d d θ+ + + =

31 1 32 2 3 3 34 4 3( ) ( ) ( ) ( ) 2 oq q q q GAd d d d θ+ + + =

41 1 42 2 43 3 4 4 4( ) ( ) ( ) ( ) 2 oq q q q GAd d d d θ+ + + =
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Figure 7.16 – Cross Section of Bridge in Example 1, Appendix C 
 
 
These equations are modified to discount the influence of cells that are not adjoining: 
 
 
 
 
 
 
 
 
 
Using the cross section geometry, and noting symmetry, the shape constants are: 
 
 
 
 
 
 
 
 
 
Again noting the symmetry of the section, the system of four simultaneous equations can 
be reduced to two equations: 

1 4 45.46d d= =

2 3 49.00d d= =

12 21 23 32 34 43 5.833d d d d d d= = = = = = −

1 1 12 2 1( ) ( ) 0 0 2 oq q GAd d θ+ + + =

21 1 2 2 23 3 2( ) ( ) ( ) 0 2 oq q q GAd d d θ+ + + =

32 2 3 3 34 4 30 ( ) ( ) ( ) 2 oq q q GAd d d θ+ + + =

43 3 4 4 40 0 ( ) ( ) 2 oq q GAd d θ+ + + =

1 4q q= 2 3q q=
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Or, 
 
 
 
 
From which, 
 
 
 
 
 
 
 
Considering equilibrium, and symmetry: 
 
 
 
 
 
 
 

 
 
7.2.4 Other Three-Dimensional Analyses 
 
Bridges containing spans with large central angles (> 34 degrees) are one type of concrete box 
girder superstructure that requires analysis by methods beyond three-dimensional frame (spine 
beam) analyses.  There are other concrete box girder bridge types that warrant more rigorous 
three-dimensional analyses, the two most common of these are: 
 
• Bridges with Variable Skew Supports—Bridges, straight or curved, with orientation of 

supports different from right angles to supported cross sections are said to have skewed 
supports.  Bridges with skew supports exhibit different distributions of flexural stresses and 
shear forces than those in similar bridges with radial supports.  LRFD Article 4.6.2.2 
presents live load distribution factor corrections for bridges with consistently skewed 
supports. Special modeling is required to capture flexure and shear behavior when adjacent 
skewed supports are significantly different.   

 
• Two-Cell Box Girder Bridges—The LRFD live load distribution equations do not address 

bridges with less than three cells.  Bridges with two cells require additional analysis to 
determine the distribution of live load effects with the box girder superstructure.  These 
bridges may be straight or curved, and with or without skew supports. 

 
The most common methods of analyzing the bridge types described above are by grillage or 
shell finite elements.  Grillage methods subdivide the box girder cross section into a series of 
longitudinal and transverse three-dimensional beam elements with characteristics such, that 

1 1 12 2 1( ) ( ) 2 oq q GAd d θ+ =

21 1 2 2 23 2 2( ) ( ) ( ) 2 oq q q GAd d d θ+ + =

1 245.46( ) 5.833( ) 128.84q q Gθ− =

1 2 25.833( ) 49.00( ) 5.833( ) 142.92q q q Gθ− + − =

1 20.8823q q=

2 3.759q Gθ=

1 3.317q Gθ=

( )1 1 2 22 2 2t o oM GJ A q A qθ= = +

( ) ( )2 2 64.42 3.317 2 71.46 3.759GJ Gθ θ = + 
41929.2J ft=
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when analyzed together, replicate bridge deck behavior with appropriate accuracy.  Figure 7.17 
shows the development of nodal locations for a grillage analysis of the superstructure of design 
example 2 in appendix D. Figure 7.18 shows a perspective of a grillage model for that bridge.   
 

 
 
 

Figure 7.17 – Grillage Model Development for Design Example 2 
 
 
 

 
 
 

Figure 7.18 – Grillage Model Design Example 2 
 
Grillage methods of analysis are relatively easy to develop using general purpose three-
dimensional analysis software.  The quality of the results of the analysis, however, can vary 
significantly depending on the distribution of members in the grillage.  Chapter 5 of E.C. 
Hambly’s book “Bridge Deck Behavior” (1998 reprint of the 1991 2nd Edition, ISBN 0-419-17260-
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2) is an excellent reference to consult when developing a grillage analysis of a concrete box 
girder bridge. 
 
Finite element methods of analyzing box girder superstructures are typically performed using 
three-dimensional shell elements.  For this manual, shell elements are defined as those that 
exhibit in-plane membrane behavior and out-of-plane flexure and shear behavior.  Finite 
element methods using shell elements model the continuum of the bridge, reducing the 
influence of mesh choices in grillage methods.  That is not to say that they are free from 
inappropriate modeling choices, such as inappropriate element aspect ratios or ineffective 
model discretization. Thus, care must be taken hen developing the model. Many FEM software 
packages have powerful graphical modeling interfaces and/or allow for ease in importing model 
geometry developed in a CAD environment. 
 
Figure 7.19 shows the cross section of the finite element model that was used to find live load 
distribution factors for the bridge in design example 2 in appendix D.  The model was generated 
by copying elements along the 600’ horizontal curve radius to produce one foot long elements 
along the centerline of the bridge. 
 
 

 
 

 
Figure 7.19 – Cross Section of Shell Element FEM Model for Design Example 2 

 
The reader is encouraged to read NCRP Report 620 “Development of Design Specifications for 
Horizontally Curved Concrete Box-Girder Bridges” (2008) for further information regarding the 
analysis and design of curved box girder bridges. 
 
7.3 Strength Limit Verification—Flexure 
 
Cross sections along the length of the box girder superstructure must satisfy LRFD flexural 
requirements at strength limit states.  The number of cross sections verified should sufficiently 
capture the effects of support conditions, individual span lengths within continuous units, 
changes in post-tensioning tendon geometry, and cross section changes, if present.   
 
The basic equation for factored flexural resistance of a cross section in a box girder bridge is 
presented in LRFD Equation 5.7.3.2.1-1. 
 
(Eqn. 7.15)   
 
Where, Mr = factored flexural resistance 

Mn = nominal flexural resistance 
ϕ = resistance factor as specified in Article 5.5.4.2 

 
Expressing this relationship in terms of the fundamental equation of LRFD (Equation 1.3.2.1-1) 
results in: 
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(Eqn. 7.16)   
 
Where, Mi = bending moment resulting from a force effect or superimposed deformation 

γi = load factor 
ƞi = load modifier relating to ductility, redundancy, and operational classification 

 
Load factors for the various force effects and superimposed deformations are found in LRFD 
Article 3.4.1.  The majority of the load factor information is found in Tables 3.4.1-1, 3.4.1-2, and 
3.4.1-3. 
 
The load modifier (ƞ) is defined in LRFD Equations 1.3.2.1-2 and 1.3.2.1-3.  Both of these 
equations contain a form of the following expression: 
 
(Eqn. 7.17)   
 
Where, ƞD = factor relating to ductility 

ƞR = factor relating to redundancy 
ƞI = factor relating to importance 

 
For strength limit verifications, each of these three factors vary between 0.95 and 1.05 
depending on conditions described in Articles 1.3.3, 1.3.4, and 1.3.5.  For concrete post-
tensioned box girder bridges designed in accordance with LRFD Specifications and typical 
operational importance, the load modifiers are: 
 
(Eqns. 7.18)   
 
A load modifier related to redundancy (ƞR) equal to 1.0 is valid for both simple span and 
continuous concrete post-tensioned box girder bridges.  Though simple span girders do not 
exhibit an external redundancy with regard to longitudinal flexure, there are multiple internal 
load paths to justify increasing load effects. 
 
Equation 7.16 can then be modified to: 
 
(Eqn. 7.19)   
 
 
7.3.1 Factored Loads for Longitudinal Flexure 
 
Loads for bridge design specified by the LRFD Specifications are described in Article 3.3.2.  
Those loads that act to produce bending moments in the superstructure of a concrete box girder 
bridge are: 
 

• DC = dead load of structural components and nonstructural components 
• DW = dead load of wearing surface and utilities 
• LL = vehicular live load 
• IM = vehicular dynamic allowance 
• PS = secondary moments from post-tensioning 
• CR = bending moments caused by concrete creep 
• SH = bending moments caused by concrete shrinkage 
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• TU = bending moment caused by uniform temperature rise or fall 
• TG = bending moments caused by thermal gradient (positive or negative) 

Dynamic load allowances are defined in AASHTO LRFD Article 3.6.2.  Load effects caused by 
the application of truck and tandem loads are to be increased by a dynamic load allowance 
equal to: 

(Eqn. 7.20) 
331 1.33

100
Dynamic Load Allowance  = + = 

 
 

Moments PS, CR, SH, and TU are defined in Article 3.12 as force effects due to superimposed 
deformations.  The secondary post-tensioning moments (PS) are those caused by the 
restraining effect of adjacent spans and integral substructures (see section 6.6).  Considering 
construction of complete continuous units in a single phase, the moments caused by concrete 
creep, concrete shrinkage, and uniform thermal changes are induced only when the 
substructure is integral with the superstructure.  The shortening/extension of the bridge deck 
displaces the piers, which in turn, induces bending moments in the superstructure (see sections 
6.8, 6.9, and 6.10).  For typical bridges on bearings, moments produced by concrete creep, 
concrete shrinkage and uniform temperature change are equal to zero. 

The LRFD Specifications define five strength limit state load combinations (Strength I through 
Strength V).  Of these five load combinations, those with wind (Strength III and Strength V) are 
not likely to govern with regard to maximum superstructure bending moment.  The three 
remaining strength load combinations can be expressed as:  

Strength I: (Eqn. 7.21) 

Strength II: (Eqn. 7.22) 

Strength IV: (Eqn. 7.23) 

For bridges on bearings, these simplify to: 

Strength I: (Eqn. 7.24) 
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Strength II: (Eqn. 7.25) 

Strength IV: (Eqn. 7.26) 

The Strength II limit state is intended for special owner-specified design vehicles and/or permit 
vehicles use to evaluate bridges.  These vehicles vary with transportation agencies.  The 
engineer should consult individual agency requirements and ensure that the newly designed 
bridge adequately carries these vehicles.  For this manual, the information presented uses the 
LRFD design notional loading in the Strength I and Strength IV limit states. 

Example: Using the three-span bridge in example 1 found in appendix C, whose 
analysis model is shown in figure 7.7, compute factored bending moments at 
selected locations within the bridge. 

The bending moment results from analysis by the BD2 computer program in 
units of foot-kips are: 

 
 

Table 7.1 – Example Bridge 1 Bending Moments (ft-kips) 

Using the load factors of equation 7.21 and 7.23 the factored moment 
combinations for Strength Limit States I and IV are: 

Table 7.2 – Example Bridge 1 Bending Moments (ft-kips)

Loading 0.42L Span 1 
Node 8 

1.0L Span 1 
Left of 

Node 16 

0.0L Span 2 
Right of 
Node 16 

0.5L Span 1 
Node 25 

DC 15,125 -26,585 -29,178 17,761 
DW 1,339 -2,353 -2,583 1,572 
LL+I 12,306 -11,348 -13,778 11,795 
TU 2,165 -5,067 -2,622 2,622 
PS 1,964 4,594 9,834 9,799 
CR 1,161 2,717 -1,543 -1,543
SH -2,642 -6,181 3,618 3,618 

Strength 
Case 

0.42L Span 1 
Node 8 

1.0L Span 1 
Left of 

Node 16 

0.0L Span 2 
Right of 
Node 16 

0.5L Span 1 
Node 25 

I 44,016 -58,023 -53,861 58,386 
IV 26,262 -44,811 -37,044 42,185 
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7.3.2.1 Strain Compatibility 

LRFD Article 5.7.3 provides guidance and requirements for the design of prestressed concrete 
flexural members at strength limit states.  Equations leading to the computation of flexural 
resistance for both rectangular sections and t-beam sections are presented in LRFD Article 
5.7.3.  This manual presents the more general approach presented in Article 5.7.3.2.5, in which 
strain compatibility throughout the depth of the member is considered for determining internal 
forces under ultimate conditions. 

Consider the rectangular prestressed concrete beam shown in figure 7.20.  The beam, with 
height of h and width of b, is reinforced with a single layer of prestressing steel with a total area 
of steel equal to Aps, located a distance dp from the extreme compression fiber.  The bending 
moment Mn is the nominal resistance of the cross section in flexure.  The nominal flexural 
resistance is produced by the internal couple of compression in the concrete and tension in the 
prestressing steel, acting along their lines of action.    

Figure 7.20 – Flexural Resistance by Strain Compatibility 

Figure 7.20 shows a strain diagram over the depth of the member.  LRFD Article 5.7.2 provides 
guidelines for establishing the strain diagram: 

• The diagram is linear over the depth of the beam.
• The diagram passes through a neutral axis at depth (c) from the extreme compression

fiber.
• The ultimate strain in the concrete (εcu) at the extreme compression fiber is equal to

0.003 in/in.

It is important to note that the prestressing steel only provides resistance in the internal 
equilibrium shown in figure 7.20.  This is different from considering the prestressing force as a 
load effect in the summation of stresses at service limit states.  The difference is seen in the 
strain in the prestressing steel at nominal flexural resistance.  The strain on which the stress in 
the prestressing steel is computed is the sum of the strain at the effective level of stress in the 
prestressing plus the change in strain resulting from strain compatibility.  This can be expressed 
as: 

(Eqn. 7.27) 

7.3.2 Flexural Resistance 
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Where the change in strain is provided by similar triangles: 

(Eqn. 7.28) 

7.3.2.2 Material Stresses and Internal Forces 

Figure 7.20 also shows the stress and resultant forces developed in the cross section at 
nominal resistance.  The compressive force in the concrete is found by integrating concrete 
stresses from the neutral axis to the extreme compression fiber.  Forces in the prestressing 
steel are found by multiplying the stress in the steel times the area of the reinforcing steel. 
Material stress-strain relationships, such as those presented in chapter 2 of this manual, for 
both concrete and reinforcing steel are required to compute these internal forces.  

To simplify the computation of the resultant compressive force in the concrete, the LRFD 
Specifications permit the use of an equivalent rectangular stress block (Whitney’s Stress Block). 
Details of the rectangular stress block as defined in LRFD Article 5.7.2.2 are shown in figure 
7.21.  

Figure 7.21 – Rectangular Stress Block to Represent Concrete Compression 

The actual distribution of concrete stress is replaced by a constant stress equal to 85 percent of 
the 28-day concrete strength.  The depth of the block (a), measured from the extreme 
compression fiber, is taken as a percentage of the neutral axis depth (c): 

(Eqn. 7.29) 

Where, εps = strain in prestressing steel (in/in) 
εpe = effective strain in prestressing at time of loading (in/in) 
Δεps = change in strain in prestressing as a result of loading (in/in) 
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The relationship between the depth of the stress block and the neutral axis depth is a function of 
concrete strength. The parameter β1 is taken as 0.85 for concrete strengths equal to, or less 
than, 4.0 ksi.  For greater strengths the parameter is reduced at a rate of 0.05 per 1.0 ksi 
increase in concrete strength above 4.0 ksi, with a lower bound of 0.65.  In equation form this is 
expressed as: 
 

(Eqn. 7.30)  
 

 

The computation of the resultant tensile force in the prestressing steel also relies on a 
representation of the material’s stress-strain relationship.  Figure 7.22 shows the comparison of 
typical stress strain relationships for mild reinforcing and prestressing strand presented in figure 
2.10 of this manual.   
 
 

 
 

Figure 7.22 – Comparison of Typical Stress-Strain Relationships for Prestressing 
Strand and Mild Reinforcing 

 
Mild reinforcing exhibits a bilinear relationship with a well-defined yield strain.  The relationship 
of strains and stresses in the prestressing steel are assumed linear for stresses up to 90 
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percent of the ultimate strength of the strand.  Beyond this level of stress the relationship is 
highly nonlinear.   

LRFD Article 5.7.3.1 provides an equation to determine the stress in the prestressing steel at 
nominal resistance for cross sections where it is appropriate to lump the prestressing steel into 
a single level (as shown in figure 7.20) and where the effective stress in prestressing steel is not 
less than 50 percent of specified tensile strength of the prestressing steel. The LRFD 
expression for stress in the prestressing steel under these conditions is: 

(Eqn. 7.31) 

Where, fps = average stress in prestressing steel at nominal resistance (ksi) 
fps = specified tensile strength of prestressing steel (ksi) 
c = depth from extreme compression fiber to the neutral axis (in) 
dp = depth from extreme compression fiber to the centroid of the steel (in) 

The parameter k in equation 7.31 relates the stress in the prestressing steel to the type of 
prestressing steel that is being used.  This variation is related to the ratio of the yield stress of 
the prestressing steel to its specified tensile strength: 

(Eqn. 7.32) 

LRFD Table C5.7.3.1.1-1 provides values for the ratio of stresses in equation 7.32.  The great 
majority of prestressing steel used for cast-in-place concrete box girder construction is low 
relaxation steel with a specified tensile strength of 270 ksi.  The corresponding values from 
Table C5.7.3.1.1-1 are: 

(Eqns. 7.33) 

So that for 270 ksi, low relaxation steel, 

(Eqn. 7.34) 

When the arrangement of prestressing steel is such that the steel cannot be lumped into a 
single layer, another relationship between prestressing steel strain and stress must be used.  
An often used source for estimating the stress in the prestressing steel is found in the 
Precast Concrete Institute Design Manual.  Figure 7.23 shows a reproduction of the 
stress-strain relationship presented in Design Aid 11.2.5 of the PCI Design Handbook, 6th 
Edition. 
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Up to a strain of 0.0086, the stress in the prestressing steel varies linearly as a function of the 
modulus of elasticity of the steel—in this case 7-wire strand.  This level of strain corresponds to 
a stress of approximately 90 percent of the specified strength of the strand for the case of 270 
ksi steel.  When the strain in 270 ksi steel is greater than 0.0086 the relationship between stress 
and strain is: 

(Eqn. 7.35) 

Figure 7.23 –Stress-Strain Relationships for Prestressing Strand (PCI Design Handbook, 6th Ed.)
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7.3.2.3 Internal Equilibrium 

With material strains and stresses computed, the internal equilibrium of the cross section 
is considered.  For the beam shown in figure 7.20, with a single layer of prestressing 
reinforcing, the horizontal equilibrium is expressed as: 

(Eqn. 7.36) 

The condition of a net horizontal force is met through the choosing of the correct neutral axis 
depth.  When the condition is met, the flexural resistance of the cross section can be found by 
summing moments about the centroid of the resultant concrete force: 

(Eqn. 7.37) 

The equation above considers the fundamental case of one layer of prestressing.  Post-
tensioned concrete box girder bridges may have post-tensioning tendons that need to be 
considered at individual levels.  In addition, this method of construction also provides for 
longitudinal mild reinforcing in the top and bottom slabs that can provide additional flexural 
resistance.  Figure 7.24 shows a cross section with these additional elements. 

Figure 7.24 – Flexural Resistance with Multiple Layers of Prestressing Steel and Mild Reinforcing 

Horizontal equilibrium for the cross section in figure 7.24 can be written as: 

(Eqn. 7.38) 

The nominal resistance can be found by summing moments about the top of the beam: 

(Eqn. 7.39) 

( ) ( ) ( )( )' ' ': ' 0.85 0.85
2n ps ps ps s s s s s c s c
aM M A f d A f d A f f d f ba  = + − − −  

 
∑ ∑ ∑ ∑
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The reduction of stress in the compressive reinforcement is a subtraction from the concrete 
stress block that occupies the same area as the compressive reinforcing.  It is accounted for 
with the compressive reinforcing for computational ease.  With the flexural resistance computed, 
the conditions of equation 7.19 must be met, expressed here as: 

 (Eqn. 7.40) 

7.3.3 Resistance Factors (ϕ) 

Resistance factors (ϕ), sometimes referred to as capacity reduction factors, for prestressed 
concrete members vary as a function of the controlling behavior of the member with regard to 
specific compression and tension limits.  For compression controlled behavior, the resistance 
factor is 0.75.  For tension controlled behavior the resistance factor is 1.0.  Between code 
specified limitations in strain that define the limits of this behavior, the resistance factor is taken 
as a linear ratio between 0.75 and 1.0 (see figure 7.25) defined in LRFD Equation 5.5.4.2.1-1: 

(Eqn. 7.41) 

Where, εt = net tensile strain in the extreme tension steel at nominal resistance 
εcl = compression-controlled strain limit in the extreme tension steel 
εtl = tension-controlled strain limit in the extreme tension steel 

Figure 7.25 – Transition of Resistance Factors from 
Compression Controlled to Tension Controlled 

The commentary to Article 5.5.4.2 includes a discussion of cross sections reinforced with a 
combination of prestressed reinforcing and mild reinforcing.  With regard to resistance factor, a 
cross section is considered as being prestressed when mild reinforcing is used to provide 
additional flexural capacity, provided that the cross section was designed as a prestressed 
section under service limit state requirements. 

Some discernment is required when selecting the resistance factors for prestressed concrete 
members.  For the vast majority of superstructure flexure cases for cast-in-place box girder 
Chapter 7 – Longitudinal Analysis & Design  
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bridges, the resistance factor will be equal to 1.0.  This should not be inferred, however, 
because of the initial level of strain in the prestressing steel.  The tensile-controlled 
strain limit of 0.005 would represent a stress in the prestressing steel of 142.5 ksi, using 
a modulus of elasticity of the steel of 28,500 ksi.  This is less than the effective stresses in the 
tendons under service limit state conditions.  What should be considered is the change in 
prestressing strain in the calculation of flexural resistance.  When the change of strain is 
greater than 0.005, the resistance factor of 1.0 is appropriate.  Again, this is the case 
for the great majority of prestressed concrete superstructures. 

7.3.4 Limits of Reinforcing 

LRFD Article 5.7.3.3.2 provides minimum reinforcement requirements for prestressed concrete 
members at strength limit states.  Two criteria are presented to assure that the flexural 
resistance is greater than the cracking strength of the cross section, avoiding possible brittle 
failures.  In equation form, the minimum reinforcing in the cross section must be greater than the 
lesser of: 

 (Eqn. 7.42) 

Or, 

(Eqn. 7.43) 

Where Mcr is the cracking moment of the cross section.  The cracking strength is determined by 
LRFD Equation 5.7.3.3.2-1.   

(Eqn. 7.44) 

This equation accommodates cross sections made of flexural members made composite with a 
concrete deck slab.  The equation can be simplified for concrete box girder bridges with 
monolithically cast cross sections (Sc/Snc=1) to:  

(Eqn. 7.45) 

Where, γ1 = flexural cracking variability factor (= 1.6 for non-segmental bridges) 
γ2 = prestress variability factor (= 1.1 for bonded tendons) 
γ3 = ratio of yield strength to ultimate strength (= 1.00 for prestressed bridges) 
S = cross section modulus corresponding to the extreme fiber for which the 

cracking moment is being computed. 
fcpe = compressive stress in concrete due to effective prestressing forces 

only(after all losses) at extreme fiber of section where tensile stress is 
caused by external applied loads (ksi) 

Mdnc = total unfactored dead load moment acting on the monolithic or 
noncomposite section (kip-in) 

Using the applicable values for the gamma coefficients (γ), the resulting equation is then: 
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The modulus of rupture to be used in computing the rupture moment in these equations is found 
in LRFD Article 5.4.2.6.  For normal weight concretes with a 28-day strength less than 15.0 ksi, 
the rupture stress is: 

(Eqn. 7.47) 

Example: Using the three-span bridge in the previous example, find the moment 
controlling the LRFD minimum reinforcement requirements at the Pier 1. 

The factored moment at the left of Node 25 in the previous example was: 

The stress at the extreme fiber under the action of the prestressing only is 
(See example 1 in appendix C): 

The modulus of rupture is: 

The resulting cracking moment at this location is: 

This moment is compared to 13 percent of the governing factored moment: 

As this moment is larger than the cracking moment, the resistance of the 
cross section must be: 

Note that change in the sign convention of the example problem to an 
absolute value of the moments for calculating resistance requirements. 

58,023uM ft kips= − −

( ) ( )( ) 643.71.6 77.3 1.1 174.8 74,445
2.732crM ft kips = + = − 

 

174.8cpef ksf=

( )0.24 5.0 144 77.3rf ksf= =

1.33 1.33 58,023 77,171uM ft kips= − = −

77,171rM ft kips≥ −

 (Eqn. 7.46) 
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Figure 7.26 shows a flow chart that describes the verification of a prestressed concrete cross 
section at strength limit state for flexure.  Two iterative loops are embedded in the flow chart. 
The inner loop is for the appropriate selection of the depth of the neutral axis, which converges 
when horizontal equilibrium of the cross section is reached.  The outer loop is for the verification 
that the reduced nominal capacity is greater than the factored loads.  Mild reinforcing can be 
considered to add needed flexural capacity.  Additional prestressing steel can be added as long 
as service limit state verifications remain valid.  If these two approaches do not lead to sufficient 
flexural capacity, more significant changes, such as increased depth of the cross section, may 
be required. 

Figure 7.26 – Flow Chart for Verification of Flexure at the Strength Limit State 

7.3.5 Procedure 
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Example: Using the three-span bridge in the previous example, verify the flexure 
strength limit state at the mid-span of the 160’ central span. 

Figure 7.27 shows the cross section of the box girder bridge of this example 
along with the idealized cross section with regard to longitudinal flexure. 
Figure 7.28 shows the location of the 15 (3 per web), 19-strand tendons at 
mid-span. 

Figure 7.27 – Idealized Cross Section For Longitudinal Flexure 

Figure 7.28 – Location of Prestressing Reinforcing in Idealized Cross Section 

Parameters: 
f’c = 5.0 ksi 
bts = 714” 
bw = 62.8” 



Post-Tensioned Box Girder Design Manual June 2016 

Chapter 7 – Longitudinal Analysis & Design 160 of 369 

dp = 78”-7.75”-6.5”-1” = 62.75” 
Aps = 15(19*0.217) = 61.845 in2 

The factored moment at Node 25 in the previous example was: 

Determine the moment for minimum reinforcing based on the lesser of the 
cracking moment or 133 percent of the factored moment. 

The stress at the extreme fiber under the action of the prestressing only is 
(See example 1 in appendix C): 

The modulus of rupture is: 

The resulting cracking moment at this location is: 

This moment is compared to 133 percent of the factored moment or: 

The cracking moment of 52,146 ft-kips is less than the increased factored 
moment and is the moment required for minimum reinforcing.  This minimum 
moment is less than the factored moment of 58,386 ft-kips, so the design 
moment is the factored moment. 

The depth of the neutral axis from the extreme compression fiber (top of top 
slab at this cross section) is determined by iteration and axial force 
equilibrium checks.  After some iteration, assume a neutral axis depth of 6.86 
inches: 

The ratio of depth of the rectangular stress block to the neutral axis is: 

So that the depth of the rectangular stress block is: 

58,386uM ft kips= −

( ) ( )( ) 643.71.6 77.3 1.1 165.06 52,146
3.768crM ft kips = + = − 

 

165.1cpef ksf=

1.33 77,653uM ft kips= −

( )0.8 6.86 5.488a inches= =

6.86c inches=

( )1 0.85 0.05 5.0 4.0 0.8β = − − =

( )0.24 5.0 144 77.3rf ksf= =



Post-Tensioned Box Girder Design Manual June 2016 

Chapter 7 – Longitudinal Analysis & Design 161 of 369 

The change in the prestressing steel strain is: 

Assuming an effective strain in the prestressing steel of 63 percent of the 
ultimate strength of the strand, the total strain in the prestressing steel is: 

Using equation 7.35 of this Manual for determining stress in the prestressing 
steel: 

The force in the prestressing is: 

The force in the rectangular compression block is: 

The summation of the forces in the cross section are essentially zero, so the 
nominal flexural resistance can be found by summing moments about the 
center of the compression block: 

The level of change in stress in the strands is such that the section is 
compression controlled, so that the resistance factor is 1.0.  The reduced 
nominal capacity is such that the strength limit state is satisfied: 

Example: Determine the nominal flexural capacity of the cross section of the previous 
example considering mild reinforcing in the bottom slab.  Use No. 4 bars top 
and bottom of the bottom slab at a spacing of 12 inches. 

The area of mild reinforcing is: 

62.750.003 1 0.02444 /
6.86ps in inε  ∆ = − = 

 

( )0.63 270
0.02444 0.03041 /

28,500ps in inε
 

= + = 
 

0.04270 268.29
0.03041 0.007psf ksi= − =

−

( )268.29 61.845 16,592psF kips= =

( ) ( )0.85 5.0 714 5.488 16,653c psF kips F= = ≈

5.488 1: 16,592 62.75 82,968
2 12nM M ft kips  = − = −  

  
∑

( )58,386 1.0 83,096 83,096≤ =

( )( )2 244 2 0.2 17.6sA in in= =
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The yield strain of the mild reinforcing is equal to: 

60 0.00207 /
29,000s in inε = =  

By inspection, the yield strain will be reached for reinforcing located in the 
bottom slab of this example problem.  Assuming a neutral axis depth of 7.27”, 
the depth of the rectangular stress block is: 

Checking equilibrium in the cross section: 

Summing moments about the top of the cross section: 

 

This represents an increase in nominal flexural capacity of 7 percent. A 
similar example could be performed including the top slab longitudinal 
reinforcing.  The location of the steel relative to the resulting neutral axis does 
not significantly increase positive flexural capacity for this cross section. 

( )0.8 7.27 5.816a inches= =

62.750.003 1 0.02289 /
7.27ps in inε  ∆ = − = 

 

( )0.63 270
0.02289 0.02886 /

28,500ps in inε
 

= + = 
 

0.04270 268.17
0.02886 0.007psf ksi= − =

−

( )268.17 61.845 16,585psF kips= =

( ) ( ) ( ): 0.85 5.0 714 5.816 16,585 60.0 17.6 7.7 0.0F kips− − = ≈∑

( ) ( ) ( )( )( ) 5.816 1: 16,585 62.75 1,056 74.5 0.85 5 714 5.816
2 12nM M     = + −     

    
∑

89,005nM ft kips= −
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7.4 Strength Limit Verification—Shear 
 
The verification of the webs of post-tensioned concrete box girder bridge superstructures at 
strength limit states requires the combination of several analyses and design steps.  LRFD 
Article 5.8.1.5, repeated below, defines the scope of verifying the webs of curved box girder 
superstructures. 
 

5.8.1.5—Webs of Curved Post-Tensioned Box Girder 
Bridges 

Curved post-tensioned box girders having an overall 
clear height, hc, in excess of 4 ft shall be designed for 
the following combined effects before and after losses: 

• The combined effects of global shear resulting from 
vertical shear and torsion, 

• Transverse web regional bending resulting from 
lateral prestress force, and 

• Transverse web bending from vertical loads and 
transverse post-tensioning. 

 
Though Article 5.8.1.5 lists the design components for curved box girder bridges, the webs of all 
box girder bridges must be designed for the first and third bulleted items – global shear and 
transverse flexure. 
 
The transverse analysis and design of concrete box girder bridges (bulleted item 3) is presented 
in chapter 8 of this manual.  Chapter 9, section 9.1 of this manual presents information related 
to regional bending in the webs.  This section of the manual presents information related to the 
evaluation of the effects of global shear resulting from shear and torsion.     
 
7.4.1 LRFD Design Procedures for Shear and Torsion 
 
The AASHTO LRFD specifications specifies two design procedures (models) for verifying shear 
at strength limit states.  These two models are the Sectional Model, presented in LRFD Article 
5.8.3, and the Strut-and-Tie Model, detailed in LRFD Article 5.6.3.  The application of these 
methods is determined by the behavior of the member in the region being verified.  The LRFD 
Specifications defines two behavioral regions: 
 
• Flexural Regions (LRFD Article 5.8.1.1)-Locations in reinforced or prestressed concrete 

members where plane sections can be assumed to remain plane under loading.  In flexural 
regions the response of the section depends only upon the sectional force effects—moment, 
shear, axial load, and torsion—and not on how the force effects are introduced into the 
member. 
 

• Regions near Discontinuities (LRFD Article 5.8.1.2)—Locations where the assumptions of 
plane sections remaining plane cannot be appropriately applied.  Examples of these regions 
are locations of abrupt change in cross section, openings, dapped ends, deep beams, and 
corbels.   

 
The LRFD Specifications, with the limitations presented in paragraph 2 of LRFD Article 5.8.1.1, 
state that either the Sectional Model or the Strut-and-Tie Model can be used to verify shear at 
strength limit states in flexural regions.  The commentary presented in LRFD Article C5.8.1.1 
states that design using the Strut-and-Tie Model generally produces designs that are less 
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conservative than those designed using the Sectional Model.  The LRFD Specifications require 
that the Strut-and-Tie Method be used for the design of regions near discontinuities. 
 
The behavior of post-tensioned concrete box girder bridges, with regard to shear associated 
with the longitudinal superstructure design, are consistent with the LRFD definition of a flexural 
region.  As a result, this manual presents information related to the Sectional Model design 
procedure. 
 
 
7.4.2 General Requirements 
 
Cross sections along the length of the superstructure must satisfy LRFD requirements for shear 
and torsion at strength limit states.  LRFD Article 5.8.2.1 provides equations that define the 
resistance with regard to shear and torsion with respect to cross section nominal capacities.  
The resistance with regard to shear is provided in LRFD Equation 5.8.2.1-2: 
 
(Eqn. 7.48)   
 
Where, Vr = factored shear resistance 
 Vn = nominal shear resistance 
 ϕ = resistance factor as specified in Article 5.5.4.2 
 
Extending this equation with regard to applied loads, the resistance with regard to shear must 
be greater than the summation factored load effects: 
 
 (Eqn. 7.49)   
 
Where, Vi = shear resulting from a force effect or superimposed deformations 

γi = load factor applicable to force effect or superimposed deformations 
 
An equation similar equation 7.15 is provided for torsion in LRFD Equation 5.8.2.1-1: 
 
(Eqn. 7.50)  r nT Tf=  
 
Where, Tr = factored torsional resistance 
 Tn = nominal torsional resistance 
 ϕ = resistance factor as specified in Article 5.5.4.2 
 
Again, extending this equation with regard to applied loads, the torsional resistance must be 
greater than the summation of the factored torsional effects: 
 
(Eqn. 7.51)   
 
Where, Ti = torsional moment resulting from a force effect or superimposed deformation 

γi = load factor applicable to force effect or superimposed deformation 
 
When the factored torsional moment is small with regard to the torsional moment required to 
crack the cross section, the effects of torsion do not need to be considered in the verification of 
the box girder webs.  LRFD Equation 5.8.2.1-3 requires that if the factored torsional moment is 
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greater than or equal to one fourth of the torsional cracking moment, the effects of torsion must 
be considered in the design. 
 
Minimum shear and torsion resistance is ensured through the requirement for minimum 
transverse reinforcing in LRFD Article 5.8.2.5. 
 
7.4.3 Sectional Model Nominal Shear Resistance 
 
Shear design of reinforced and prestressed concrete girders in the AASHTO LRFD 
specifications in flexural regions has long been based on a truss analogy.  Figure 7.29 shows a 
typical parallel chord truss for a constant depth beam.  The beam is loaded with a concentrated 
vertical load at mid-span.  The vertical force is carried to the supports through successive 
inclined compression struts.  Vertical tension members lift the vertical component at the bottom 
of a diagonal strut to the top of the adjacent inclined strut.  The horizontal component of the 
diagonal strut is held in equilibrium by the compressive forces in top chord members and tensile 
forces in the bottom chord members. 
 

 
 

Figure 7.29 – Web Width based on Horizontal Widths 
 
Using truss analogies for shear design of reinforced concrete beams has its origins in the 
beginning of the last century.  Early applications used shear reinforcing to carry the entire shear 
forces predicted in the vertical tension members of the truss.  Orientation of the inclined 
compressive struts (θ) for these early solutions was typically 45 degrees from horizontal. 
 
Later testing of concrete beams reinforced using truss analogies revealed shear strengths 
greater than that provided by the reinforcing alone (Vs in LRFD).  The additional shear 
resistance was observed to be a somewhat complex combination of behaviors that were a 
function of the magnitude and nature of beam cracking under ultimate loads.  Tests of this 
nature led to the empirical development of a shear resisting mechanism associated with the 
girder concrete (Vc in LRFD). 
 
Still later work in the 1980’s advanced the estimation of the concrete contribution from a purely 
empirically based solution to a more analytical approach using the Modified Compression Field 
Theory (MCFT).  The MCFT methods still have an empirical component, but one based only on 
the nature of reinforced webs to resist in-plane forces.  The LRFD Specifications provide both 
empirically based and MCFT based methods for determining the component of shear resistance 
provided by the girder concrete. 
 
The nominal shear resistance of a reinforced or prestressed concrete member with transverse 
reinforcing is presented as the lesser of that predicted by LRFD Equations 5.8.3.3-1 and 
5.8.3.3-2: 
 
(Eqn. 7.52)   
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(Eqn. 7.53)   
 
Where, Vc = shear resistance provided by the cross section concrete 
 Vs = shear resistance provided by transverse reinforcing 
 Vp = shear resistance provided by the component of the effective prestressing 

force in the direction of the applied shear 
 bv = the effective web width (LRFD Article 5.8.2.9) 
 dv  = the effective shear depth (LRFD Article 5.8.2.9) 
 
The three components of resistance will be discussed in the following sections.  This section 
continues by providing more detail with regard to girder dimensions to be used for shear design. 
 
7.4.3.1 Effective Web Width 
 
LRFD Article 5.8.2.9 defines the effective web width as being measured parallel to the neutral 
axis.  A literal interpretation of this article is depicted in figure 7.30 for the cross section of 
design example 1.  The widths of all webs in this cross section, vertical and inclined, are 12 
inches perpendicular to their axes.  A horizontal cut along the neutral axis would cross the 
vertical webs with their 12-inch widths.  The horizontal cut through the inclined webs would see 
horizontal widths, bh, equal to 13.42 inches for a web slope of 2:1.  The total web width along 
the horizontal cut is then 62.84 inches. 
 

 
 

Figure 7.30 – Web Width based on Horizontal Widths 
 
Unfortunately, the web width computed above is inconsistent with the internal equilibrium of 
shear flow around the cross section with regard to the inclined webs.  Consider the cross 
section of the single cell box girder with inclined webs shown in figure 7.31.  A shear force, V, is 
applied to the cross section.  The inclination of the webs requires that the sum of the shear flow 
in the inclined webs is: 
 

(Eqn. 7.54)   

 
The vector summation of this force and a horizontal force in the top slab resolves to one half of 
the applied shear force.   
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Figure 7.31 – Shear Flow in Single Cell Box Girder 
 
 
The resulting shear stress acting on the web is then: 
 

(Eqn. 7.55)   

 
Noting that: 
 
(Eqn. 7.56)   

 
Reduces Equation 7.55 to: 
 

(Eqn. 7.57)   

 
Thus, vertical shear forces are related to web widths perpendicular to their inclined axes.  
Extending these considerations to the cross section shown in figure 7.30, it can be argued that 
the appropriate web width should be 60 inches as opposed to the 62.84 inches of width along a 
horizontal cut through the webs.  Using the horizontal width would lead to limit state verifications 
that are approximately 5 percent unconservative.  By comparison, the verifications of the single 
cell box girder, using a similar web slope, would be unconservative by 11 percent.  The 
engineer should give appropriate consideration to the web width used for each cross section. 
 
In addition to the previous discussion, the effective web width must include reductions in width 
to account for ducts embedded in the webs.  Figure 7.32 shows one web of the box girder of 
design example 1.  Also shown is the shear stress distribution for a given vertical shear force 
and a detail of the flow of shear around ducts.  To accommodate the shear flow concentrations, 
LRFD Article 5.8.2.9 requires a subtraction of one half of the duct diameter for loads applied to 
the bridge when the duct is ungrouted and a subtraction of one fourth of the diameter for loads 
applied after the duct is grouted. 
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Figure 7.32 – Shear Stress and Shear Flow Around Ducts 
 
 
7.4.3.2 Effective Shear Depth 
 
The effective depth for shear, dv, is required to be at least equal to the distance between the 
centroids of compression in the concrete and tension in the tensile elements.  Figure 7.33 
shows one of the webs of the cross section of the box girder of design example 1 at one of the 
interior supports.  The centroid of the compression in the concrete was determined as the center 
of gravity of the stress block at nominal loading.  The corresponding tension force passes 
through the center of gravity of the post-tensioning tendons. 

 
 

 
 

Figure 7.33 –Effective Depth for Shear Calculations 
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The minimum effective shear is depth can be found as the nominal moment capacity of the 
section divided by either the internal compressive or tensile force: 
 

(Eqn. 7.58)   

 
The effective shear depth need not be taken less than 90 percent of the depth measured from 
the extreme compression fiber to the centroid of the prestressing steel, de, or 72 percent of the 
overall depth of the box girder. 
 
7.4.4 Shear Resistance from Concrete (Vc) 
 
The LRFD Specifications provide three different methods for determining the concrete 
contribution of shear resistance in reinforced and prestressed concrete members in flexural 
regions.  Method 1 and Method 2 are based on the Modified Compression Field Theory.  
Method 3, included in AASHTO LRFD specifications for many years, is more empirically derived 
from shear testing of prestressed girders.  The applicability of the three methods is: 
 
• Method 1 (LRFD Article 5.8.3.1)—for non-prestressed members. 
 
• Method 2 (LRFD Article 5.8.3.4.2 or LRFD Appendix B5)—for both prestressed and non-

prestressed members, with or without shear reinforcing. 
 
• Method 3 (LRFD Article 5.8.3.4.3)—for both prestressed and non-prestressed concrete 

members where there is no net axial tensile load and minimum shear reinforcing is provided. 
 
Since the concern of this manual is post-tensioned concrete box girder bridges, this section 
presents the LRFD requirements for Methods 2 and 3.  (Method 1, though not a focus of this 
manual, can be viewed as a special case within Method 2.)  
 
 
7.4.4.1 Method 2 (Simplified MCFT) 
 
Method 2 for computing the contribution of the concrete to cross section nominal shear 
resistance is based on design procedures derived from the Modified Compression Field Theory.  
Three primary parameters are used to evaluate concrete shear resistance in this method: 
 

θ = angle, from horizontal, of the inclination of the diagonal compressive strut 
 β = factor indicating ability of diagonally cracked concrete subjected to in-plane 

shear and normal stresses to transmit tension.   
 εx = longitudinal strain in the web of the member 
 
These three parameters are interdependent in the MCFT, with no direct solution available for 
the wide range of possible girder variables.  As a result, the first implementation of MCFT in 
LRFD presented an iterative approach to evaluating these parameters.  This iterative approach 
is now provided in LRFD Appendix B5 of LRFD.  Beginning in 2008, LRFD offered a simplified, 
non-iterative solution for these parameters.  This simplified approach is presented in the 
Manual. 
 
The LRFD application of MCFT is based on a set of assumptions in modeling actual girder 
shear behavior.   The top of figure 7.34 depicts a portion of a box girder cross section and 
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shows shear stress distributions, longitudinal strains and principal compressive stress 
trajectories.  The bottom of figure 7.34 shows the LRFD behavior assumed in design 
procedures using MCFT.  Three significant assumptions are: 
 

• The distribution of shear stress over the depth of the section is taken as the value at 
mid-depth of the girder using MCFT methods and the computed longitudinal strain at 
mid-depth.  Shear stresses are uniformly distributed over the rectangular area that has a 
height of dv and width of bv, as calculated in the previous sections.   

• The direction of principal compressive stresses remains constant over the height dv. 
• The web is modeled by one biaxial member. 

 
 

 
 

Figure 7.34 –Actual vs. MCFT Girders 
 
In the LRFD approach to MCFT shear design, the sectional forces shown in the bottom right of 
figure 7.34 are placed in equilibrium with forces in an idealized model comprised of compression 
and tension flanges and the web. The forces in these three elements are calculated as follows: 
 

• The sectional bending moment, Mu, is the resisted force in the flanges multiplied by the 
lever arm, dv, between them. 

• The sectional axial force, Nu, is resisted by forces in the flanges, one-half assumed to be 
carried by each flange. 

• The sectional shear force, Vu, is resisted by the inclined compression strut force, D, 
which is resolved into horizontal and vertical components.  The vertical component of the 
force is equal to the factored sectional shear force less the value of any vertical 
component of prestressing acting at the section.  The horizontal component is resisted 
by tension in the flanges. 
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Figure 7.35 – MCFT Forces and Longitudinal Strain 
 
The assumed resistance equilibrium for Method 2 is shown above in figure 7.35. Evaluating 
these forces acting at the center of the tensile force, allows the computation of the strain in the 
tensile element, εs, which is needed to evaluate the beta and theta terms.  The strain is 
predicted by LRFD Equation 5.8.3.4.2-4: 
 

(Eqn. 7.59)   

 
Where, fpo = average stress in prestressing steel or 0.7fpu  
 
An important difference between the simplified and iterative MCFT approaches in Method 2 is 
seen in equation 7.59.  The longitudinal strain, εs, at the level of the tensile force is used for the 
simplified approach.  The iterative approach presented in LRFD Appendix B5 uses the average 
longitudinal strain in the section.  A longitudinal strain of εs/2 is used, which assumes that the 
strain at the level of the center of compression is small. 
 
Equation 7.59 includes another adjustment to produce the simplified version of Method 2.  By 
equilibrium, the horizontal component of the compressive strut force divided into the two flanges 
should be: 
 
(Eqn. 7.60)   

 
The simplified Method 2 fixes the angle θ in this equation such that its cotangent is equal to 2.0 
(θ ≈ 26.6º).  This reduces the equation for horizontal components in the flanges to: 
 
(Eqn. 7.61)  

 
 
In using equation 7.61 the following considerations should be applied: 

• The absolute value of the factored moment, │Mu│, acting with the factored shear, Vu, 
should not be taken less than │Vu – Vp │multiplied by the shear depth, dv. 
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• The areas of reinforcing bars and prestressing steel not fully developed at the cross 
section under consideration should be reduced in proportion to their lack of full 
development. 

• If the longitudinal strain, es, calculated by equation 7.61 is negative, it can either be 
taken equal to zero or recomputed by equation 7.61 where the denominator is replaced 
with (EsAs + EpAps + EcAc).  Ac in this revised denominator is the area of concrete on the 
flexural side of the member.  However, εs should not be taken less than -0.4 x 10-3. 

• If the axial tension is large enough to crack the flexural compression face of the section, 
the value calculated by equation 7.61 should be doubled. 

• β and θ may be calculated with values of εs larger than that predicted by equation 7.61.  
However, es should not be taken greater than 6.0 x 10-3. 

 
With the sectional forces resolved into the idealized cross section and the longitudinal strain 
computed, the shear resistance contributed by the concrete can be determined.  LRFD Article 
5.8.3.3 defines this contribution for the simplified form of Method 2: 
 

(Eqn. 7.62)   
 
The parameter β, for the simplified approach, is defined in LRFD Article 5.8.3.4.2.  When the 
minimum required web (transverse) reinforcing is provided, β is defined as: 
 

(Eqn. 7.63)   

 
In most cases, the transverse requirements at the critical sections of post-tensioned concrete 
box girders will require more than the minimum shear reinforcing requirements.  This reinforcing 
is often used throughout the span to simplify the tying of reinforcing steel.  The spacing of this 
reinforcing could be increased where demand is lower, even to that less than the minimum 
requirements.  In this case, the LRFD Specifications provides an equation for β when the 
minimum amount of transverse reinforcing is not provided.  In all cases, the minimum transverse 
reinforcing spacing requirements must be met. 
 
Note:  It is interesting to be aware of the forms that AASHTO LRFD equations take as a result of 
using consistent units.  In the case of equation 7.62 the units are ksi for the concrete strength 
and inches for bv and dv.  The parameter β has no units.  Historically, the concrete contribution 
to shear resistance was first expressed as a function of the concrete strength in psi.  Later, this 
contribution was defined as a multiple of the square root of the concrete strength (again in psi), 
with that multiple typically ranging between a factor of 2 and 4.  This multiple is now expressed 
as the β term, with the constant of 0.0316 added for consistent units of ksi.  Though more 
cumbersome in appearance, it may be that equation is better understood from the historical 
perspective as: 
 
 
 
The concrete strength term in the last expression of this equation is in psi.  The engineer is 
encouraged to consider other LRFD equations of similar form in order to retain the historical 
development of the code. 
 
 
 

( )' ' 10.0316
1000c c v v c v vV f b d f b dβ β  

= =  
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7.4.4.2 Method 3 (Historical Empirical) 
 
Past editions of the AASHTO Standard Specifications for Bridge Design included an approach 
to shear design based on the nature of girder cracking initiation.  Figure 7.36 shows a portion of 
a continuous concrete girder with zones that generally define two types of shear cracks and 
their typical general locations.  At the ends of girders and near points of contraflexure girder 
bending is small and web cracking initiates by principle tensile stresses in the webs large 
enough to crack the concrete.  In regions of significant flexure girders can crack vertically on the 
tension faces as a result of longitudinal flexural stresses greater than the tensile capacity of the 
concrete.  If cracking continues into the webs, the effect of shear stresses in these regions can 
change the direction of these cracks in the webs to be inclined shear cracks. 
 

 
 

Figure 7.36 – Types and Locations of Reinforced and Prestressed Girder Cracking 
 
The contribution of the concrete in Method 3 is different depending on the type of cracking likely 
to be found.  Two resistance expressions, one for each type of cracking, are defined in LRFD 
Article 5.8.3.4.3.  This article requires that concrete resistance for each expression be 
evaluated, and the lesser of the two be used for design. 
 
In regions of web shear cracking, the expression for the shear capacity of the concrete is 
determined from LRFD Equation 5.8.3.4.3-3: 
 

(Eqn. 7.64)    

 
Where: fpc =  compressive stress at the center of gravity of the cross section after all losses 

(ksi) 
 
The first term of equation 7.64 represents, in the form of a shear force, a principle tension in the 
web required to offset the axial compression from the post-tensioning and a conservative 
estimate of the tensile strength of the concrete.  This combination of terms was empirically 
derived.  The second term of equation 7.64 represents the vertical component of the post-
tensioning at the section.  When equation 7.64 governs the evaluation of the concrete 
resistance, Vp in equation 7.52 (LRFD Equation 5.8.3.3-1) is set equal to zero. 
 
In regions of flexure-shear cracking, the expression for the shear capacity of the concrete is 
determined from LRFD Equation 5.8.3.4.3-1: 
 

(Eqn. 7.65)   
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Where: Vd =  shear force at section do to the unfactored combination of DC and DW (kips) 
Vi =  factored shear force at section due to externally applied loads occurring 

simultaneously with Mmax (kips) 
Mcre =  moment causing flexural cracking moment at section due to externally 

applied loads (kip-in) 
Mmax =  moment causing flexural cracking moment at section due to externally 

applied loads (kip-in) 
 
The second and third terms of equation 7.65 represent a shear force consistent with a bending 
moment that causes cracking at the section.  The first term of equation 7.65 is an empirically 
derived expression that accounts for an increase concrete resistance developed as the flexure 
crack transforms into a shear crack. 
 
7.4.5 Shear Resistance from Transverse (Web) Reinforcing Steel (Vs) 
 
The contribution to the nominal shear capacity of a cross section from transverse (web) 
reinforcing is based on the number and orientation of the transverse reinforcing relative to the 
design length of shear crack. Figure 7.37 shows a portion of a girder cracked by shear.  The 
reinforcing in this figure is oriented vertically and is spaced along the length of the girder at a 
spacing s.  At each bar location there is a resisting force equal to the area of the reinforcing 
times the yield strength.  (The area of reinforcing would be the total of all bars in all webs for a 
multi-cell box girder where a spine beam analysis and global forces are used without distinction 
for specific distribution factors to the webs.) 
 
Whether Method 2 (Simplified MCFT) or Method 3 (Historical Empirical) are used to determine 
the contribution of the concrete in resisting shear, the shear depth, dv, multiplied by the 
cotangent of the inclination of the diagonal strut is used to determine the number of bars 
participating to resist shear at the section. 
 

 
 

 
Figure 7.37 – Contribution of Shear Reinforcing to Nominal Shear Resistance 

 
The general expression for the shear contribution of the transverse reinforcing is determined by 
LRFD Equation 5.8.3.4.3-3: 
 

(Eqn. 7.66)   
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Where: Av =  area of transverse reinforcement within distance s (in2)  
fy  =  minimum yield strength of reinforcing bars (ksi) 
dv = effective shear depth, taken as the distance between the resultants of the 

tensile and compressive forces due to flexure; it need not be taken less than 
the greater of 0.9de or 0.72h, where de is the distance from the extreme 
compression fiber to the centroid of the tensile force in the tensile 
reinforcement, and where h is the overall depth of the member (in) 

s  =  spacing of reinforcing bars (in) 
θ  =  angle of inclination of diagonal compressive stresses (degrees) 
α  =  angle of inclination of the transverse reinforcing from the longitudinal 

reinforcing 
 
When the transverse reinforcing is placed vertically (α = 90º as shown in figure 7.37), equation 
7.66 simplifles to: 

(Eqn. 7.67)   

 
The angle θ that defines the orientation of the diagonal compressive strut is calculated 
differently in Method 2 and Method 3.  When Method 2 is used, the inclination of the 
compressive strut is equal to: 
 
(Eqn. 7.68)   
 
When Method 3 is used to determine concrete resistance, one of two values for the inclination 
of the compressive strut, in terms of its cotangent, must be used.  If the resistance determined 
by web cracking (Vcw) is greater than that determined by flexure-shear cracking (Vci), the 
cotangent of the inclination of the compressive strut is taken as: 
 
(Eqn. 7.69)   
 
When Vci is greater than Vcw the cotangent of the inclination of the compressive strut is taken as: 
 

(Eqn. 7.70)   

 
 
7.4.6 Shear Resistance from Vertical Component of Effective Prestressing (Vp)  
 
The shear resistances provided by components of the effective prestressing force in tendons 
are determined from the geometry of the tendons.  For the relatively small variations in tendon 
profiles in cast-in-place concrete box girder superstructures, the contribution of the prestressing 
to shear resistance can be taken as: 
 
(Eqn. 7.71)  

 
 
Where: ω =  the angle of the tendon at the cross section relative to horizontal (degrees) 
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Depending on the tendon geometry, the component in the direction of the applied shear can 
increase or reduce nominal cross section resistance.  Tendon components acting against the 
applied shear force will increase cross section resistance.  Tendon components acting with the 
applied shear force will decrease cross section resistance.  Remember that Vp is equal to zero 
when using Method 3 for determining the concrete shear contribution. 
 
Figure 7.38 shows a simple span post-tensioned beam with a parabolic tendon profile originally 
presented in figure 3.13. 
 

 
 

Figure 7.38 – Simple Span Beam with Parabolically Draped Tendon 
 
The eccentricity of the tendon along the length of the tendon was found to be: 
 

(Eqn. 7.71)   

 
The slope of the tendon profile is found by taking the derivative of the equation for eccentricity: 
 

(Eqn. 7.72)   

 
The maximum vertical component of the prestressing force, also the resistance provided by the 
prestressing, is the maximum shear times the effective prestressing force: 
 

(Eqn. 7.73)   

 
Figures 7.39 and 7.40 show typical draped tendon profiles typically used for continuous post-
tensioned box girder bridges.  These tendon profiles were previously presented in figures 3.19 
and 20. The profiles of these tendons were developed as parabolic segments with slopes 
compatible with adjacent parabolic segments at their joining.  

 

 
 

Figure 7.39 – Typical Tendon Profile for an End Span of a Continuous Unit 
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Figure 7.40 – Typical Tendon Profile for an Interior Span of a Continuous Unit 

The definition of the parameters of the parabolic segments, presented in chapter 3, is shown in 
figure 7.41. 

Figure 7.41 – Tendon Profile Parabolic Segment 

The elevation of the tendon profile at a horizontal distance from the origin is given as: 

(Eqn. 7.74) 

The slope of the tendon profile is: 

(Eqn. 7.75) 

And the angle of the tendon profile at the end of the parabolic segment is: 

(Eqn. 7.76) 

7.4.7 Longitudinal Reinforcing 

Regardless of the method used for determining the contribution of the concrete in resisting 
shear, sufficient tensile capacity in the longitudinal reinforcing is required to appropriately 
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develop the shear capacity of the cross section.  That is to say, the horizontal component of the 
compression strut in the web has to be resisted by longitudinal tension reinforcement.  LRFD 
Article 5.8.3.5 provides the requirements for the tensile force: 
 

(Eqn. 7.77)   

 
Where: Vs = shear resistance provided by the transverse reinforcing, except that Vs shall 

not be taken greater than Vu /ϕ  
 
If this inequality is not met, either the transverse or the longitudinal reinforcement must be 
increased. 
 
 
7.4.8 Torsion Reinforcing 
 
When torsional forces are large enough to warrant inclusion in design (LRFD Article 5.8.2.1), 
the transverse reinforcing provided in the webs shall be the sum of that required for shear and 
for that required for the concurrent torsion.  The nominal torsional resistance is presented in 
LRFD Article 5.8.3.6.2: 
 

(Eqn. 7.78) 
2 coto t y
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A A f
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Where: Ao =  area enclosed by the shear flow path around the box girder (in2)  

At  =  total area of transverse torsion reinforcing in the exterior web of the box 
girder (in2) 

 
The LRFD Specifications also include requirements for the longitudinal reinforcing when torsion 
is included in the design.  For box girders, the longitudinal reinforcing for torsion, in addition to 
that required for flexure, is: 
 

(Eqn. 7.79) 
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A f

=  

 
Where: ph =  perimeter of the centerline of the transverse reinforcement located in the 

outer most webs and top and bottom slabs (in)  
 
The longitudinal reinforcing is to be distributed around the outer-most webs and top and bottom 
slab of the box girder. 
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Chapter 8—Transverse Analysis 
 
8.1 Introduction 
 
The cross section of a concrete box girder bridge is designed to resist bending moments acting 
transverse to the longitudinal direction of the bridge span.  Transverse analyses are preformed 
to evaluate transverse bending moments resulting from both permanent and live loads.  
Permanent loads include self weight, barrier rails, sidewalks, wearing surfaces, and utilities that 
may be attached inside or outside of the box girder superstructure. Live loads are comprised of 
the AASHTO LRFD Design Truck and Design Tandem, located in design lanes arranged to 
produce maximum bending moments at critical sections.  Figure 8.1 shows typical box girder 
superstructures, applied loads and likely critical sections.  The results of the transverse analysis 
are used to design the transverse reinforcing and post-tensioning (if required) of the cantilever 
wings, top slab, webs, and bottom slab. 
 
 

 
 
 

Figure 8.1 – Concrete Box Girder Cross Sections and Loads 
 
 
8.2 Methods of Analysis 
 
The magnitude and distribution of transverse bending moments due to permanent and live loads 
vary along the length of a span as a function of the deflection behavior of the box girder.  Near 
supports, where girder deflections are restrained, localized bending moments remain relatively 
concentrated.  Within the span, general longitudinal deflections reduce maximum transverse 
moments as they are distributed along a greater portion of the span. 
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AASHTO LRFD provides for three levels of analysis for determining transverse design 
moments: 
 

• Empirical Method—This method, presented in LRFD Article 9.7, presents required top 
slab reinforcing for bridges meeting the criteria of Article 9.7.2.4.  No guidance for 
reinforcing or forces in the remainder of the cross section are presented.  The use of this 
method of analysis is not recommended for concrete box girders presented in this 
manual. 
 

• Approximate Method—Article 4.6.2 presents an approximate method of analysis in 
where the deck is subdivided into strips perpendicular to the supporting elements 
(webs).  Internal forces are determined first by structural analysis of a unit width of 
transverse cross section and then by dividing these force and moment results by the 
width of the strip to determine forces per foot along the superstructure. 

 
• Refined Method—Article 4.6.3 permits the use of refined transverse analyses by 

methods listed in Article 4.4.  One typical approach is to use three-dimensional finite 
elements methods with sufficient load cases to generate an envelope of transverse 
design moments.  Most often, however, the practicality of detailing and constructing 
superstructures with uniform reinforcing and post-tensioning details typically overrides 
small quantity savings that refined methods offer. 

 
This manual uses the Approximate Method for transverse analysis of the concrete box girder 
cross section, with additional considerations.  Multi-cell box girder bridges with three or more 
cells and with web spacing not greater than 15 feet use the LRFD strip method to determine 
transverse moments resulting from concentrated wheel loads.  Single-cell or dual-cell box 
girders, and multi-cell box girders with web spacing greater than 15 feet use a refined approach 
(as presented in section 8.5) to account for longitudinal distribution of concentrated wheel loads 
in determining the transverse live load moments.  Live load moments are then combined with 
moments resulting from uniformly repeating loads for design. 
 
 
8.3 Applicable AASHTO LRFD Specifications 
 
AASHTO LRFD Articles governing the design of the concrete box girder cross sections are 
found in four different Sections of the code.  The following subsections summarize the most 
relevant of these articles to facilitate transverse analysis and design. 
 
 
8.3.1 Section 9—Deck and Deck Systems 
 
Section 9 provides general guidance for the design of bridge decks.  Requirements related to 
different design limit states are provided in Article 9.5: 
 

9.5.2—Service Limit States 
 
At service limit states, decks and deck systems 
shall be analyzed as fully elastic structures and 
shall be designed and detailed to satisfy the 
provisions of sections 5, 6, 7, and 8. … 
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9.5.3—Fatigue and Fracture Limit State 
 
Fatigue need not be investigated for : 
 
• Concrete decks, … 

 
9.5.4—Strength Limit States 
 
At strength limit states, decks and deck systems 
may be analyzed as either elastic or inelastic 
structures and shall be designed and detailed to 
satisfy the provisions of sections 5, 6, 7, and 8. … 

 
9.5.5—Extreme Event Limit States 
 
Decks shall be designed for force effects 
transmitted by traffic and combination railings using 
loads, analysis procedures, and limit states 
specified in section 13. … 

 
Article 9.6 presents requirements particular to the analysis of bridge decks: 

 
9.6.1—Method of Analysis 
 
Approximate elastic methods of analysis specified 
in Article 4.6.2.1, refined methods specified in 
Article 4.6.3.2, or the empirical design of concrete 
slabs specified in Article 9.7 may be used for 
various limit states as permitted in Article 9.5. 
 
9.6.2—Loading 
 
Loads, load positions, tire contact area, and load 
combinations shall be in accordance with the 
provisions of section 3. 
 

Article 9.7 contains requirements particular to concrete deck slabs: 
 
9.7.1.1—Minimum Depth and Cover 
 
Unless approved by the owner, the depth of a 
concrete deck, excluding any provision for grinding, 
grooving, and sacrificial surface, should not be less 
than 7.0 in. 
 
Minimum cover shall be in accordance with the 
provisions of Article 5.12.3. 
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8.3.2 Section 3—Loads 
 
Section 3 presents the various loadings and load combinations for bridge design.  Article 
3.6.1.3.3 directs that only the design axles (comprised of wheel loads) of the HL93 and design 
tandem need be used in transverse design: 
 

3.6.1.3.3- Design Loads for Decks, Deck Systems, 
and the Top Slabs of Box Culverts 
 
…Where the approximate strip method is used to 
analyze decks and top slabs of culverts, force 
effects shall be determined on the following basis: 
 
• Where the slab spans primarily in the 

transverse direction, only the axles of the 
design truck of Article 3.6.1.2.2 or design 
tandem of Article 3.6.1.2.3 shall be applied to 
the deck slab or the top slab of box culverts. … 

 
Wheel loads shall be assumed to be equal within 
an axle unit, and amplification of the wheel loads 
due to centrifugal and braking forces need not be 
considered for the design of decks. 

 
The live loads of the Design Truck and Design Tandem are shown in adjacent lanes in figure 
8.2. 
 

 
 

Figure 8.2 – AASHTO LRFD Design Truck and Design Tandem 
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Location of the applied wheel loads are in accordance with Article 3.6.1.3: 
 

3.6.1.3—Application of Design Vehicular Live 
Loads 
 
….Both the design lanes and the 10 ft loaded width 
in each lane shall be positioned to produce extreme 
force effects.  The design truck or tandem shall be 
positioned transversely such that the center of any 
wheel load is not closer than: 
 
For the design of the deck overhang—1.0 ft from 
the face of the curb or railing, and… 
 
For the design of all other components—2.0 ft from 
the edge of the design lane. … 

 
Figure 8.3 shows an example loading with two lanes placed at the left side of a box girder cross 
section developed in chapter 5 (also design example 1 in appendix C).  In this figure, the left 
most truck is located for design of the overhang.  Respecting that, trucks are positioned within 
10’ loaded widths, and that loaded width is located within in the 12’ lane, the left wheel of the 
adjacent truck is positioned no closer than 7’ to the right wheel of truck on the left. 

 
 

 
 

Figure 8.3 – Transverse Truck Placement 
 
When web spacing is small, the application of the wheel loads as uniform pressures, as 
opposed to concentrated loads, can impact the top slab bending moments.  The 16 kip HL93 
truck wheel loads or 12.5 kip tandem wheel load may be distributed in accordance with Article 
3.6.1.2.5: 
 

3.6.1.2.5—Tire Contact Area 
 
The tire contact area of a wheel consisting of one 
or two tires shall be assumed to be a single 
rectangle, whose width is 20.0 in and whose length 
is 10.0 in… 
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Figure 8.4 shows the tire contact area in the transverse direction of a concrete box girder 
bridge.  The load width at the center of gravity of the top slab is equal to the 20” transverse tire 
contact dimension, further distributed at 45 degrees on either side over half of the slab 
thickness.  The resulting loaded width is 20” plus the slab thickness. 
 

 
 

Figure 8.4 – Tire Contact Area in the Transverse Direction 
 
An optional vertical design load for the overhanging slab (cantilever wing) of the box girder is 
provided in Article 3.6.1.3.4.  This loading is shown in figure 8.5 
 

3.6.1.3.4—Deck Overhang Load 
 
For the design of deck overhangs with a cantilever, 
not exceeding 6.0 ft from the centerline of the 
exterior girder to the face of a structurally 
continuous concrete railing, the outside row of 
wheel loads may be replaced with a uniformly 
distributed line load of 1.0 klf intensity, located 1.0 ft 
from the face of the railing. 
 
Horizontal loads on the overhang resulting from 
vehicle collisions with barriers shall be in 
accordance with the provisions of section 13. 

 
 

 
 

Figure 8.5 – Alternate Vertical Loading for Overhang Design 
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8.3.3 Section 4—Analysis 
 
This manual uses the Approximate Method, or Strip Method, of analysis for the design of the 
transverse cross section of concrete box girder superstructures.  Article 4.6.2 presents guidance 
for this analysis approach. 
 

4.6.2.1—Decks 
 
An approximate method of analysis in which the 
deck is subdivided into strips perpendicular to the 
supporting components shall be considered 
acceptable for decks other than: 
 
• Fully filled and partially filled grids for which the 

provisions of Article 4.6.2.1.8 shall apply, and 
• Top slabs of segmental concrete box girders for 

which the provisions of 4.6.2.9.4 shall apply. 
 
Where the strip method is used, the extreme 
positive moment in any deck panel between girders 
shall be taken to apply to all positive moment 
regions.  Similarly, the extreme negative moment 
over any beam or girder shall be taken to apply to 
all negative moment regions. 

 
Figure 8.6 shows a perspective of the four-cell box girder developed in chapter 5 (design 
example problem 1, appendix C). 
 

 
 

Figure 8.6 – Perspective of Multi-cell Box Girder 
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Figure 8.7 shows the transverse strip used for computing the longitudinal distribution of 
concentrated wheel loads. 
 

 
 

Figure 8.7 – Transverse Strip for Approximate Design Method 
 
Figure 8.8 shows an example loading of the Design Truck in two lanes positioned to the left of 
the roadway width as depicted in cross section view in figure 8.3. 
 
 

 
 

Figure 8.8 – Transverse Strip subjected to two Design Trucks as per Figure 8.3 
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The longitudinal length of the transverse strip is specified in Article 4.6.2.1.3: 

4.6.2.1.3—Width of Equivalent Interior Strips 

The width of the equivalent strip of a deck may be 
taken as specified in Table 4.6.2.1.3-1. … 

…The equivalent strips for decks that span 
primarily in the transverse direction shall not be 
subject to width limits.… 

Equations for the width of the transverse strip in the longitudinal direction from Table 4.6.2.2.1-1 
for cast-in-place concrete box girder bridges are: 

(Eqn. 8.1) 45.0 10 ( )W X Overhang= +  

(Eqn. 8.2) 26.0 6.6 ( )W S Positive Moment= +  

(Eqn. 8.3) 48.0 3.0 ( )W S Negative Moment= +

Where, S = spacing of supporting components (ft) 
X = distance from load to point of support (ft) 
W = width of transverse strip in the longitudinal length of transverse strip (in) 

Article 4.6.2.1.7 requires that the transverse cross section of the box girder bridge be modeled 
for frame action.   

4.6.2.1.7—Cross-Sectional Frame Action 

Where decks are an integral part of box or cellular 
cross sections, flexural and/or torsional stiffnesses 
of supporting components of the cross section, i.e., 
the webs and bottom flange, are likely to cause 
significant force effects in the deck.  Those 
components shall be included in the analysis of the 
deck. 

If the length of a frame segment is modeled as the 
width of an equivalent strip, provisions of Articles 
4.6.2.1.3, 4.6.2.1.5, and 4.6.2.1.6 may be used. 

Article 4.6.2.1.6 presents that the critical sections for negative moments and shear of concrete 
box girders (Section Type “d” in Table 4.6.2.2.1-1) is at the face of the supporting component, 
the webs. 

4.6.2.1.6—Calculation of Force Effects 

…The design section for negative moments and 
shear forces, where investigated, may be taken as 
follows: 
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• For monolithic construction, closed steel boxes, 
closed concrete boxes, open concrete boxes 
without top flanges, and stemmed precast 
beams, i.e., cross sections (b), (c), (d), (e, (f), 
(g), (h), (i), and (j) from Table 4.2.6.2.2.1-1, at 
the face of the supporting component.  

 
 

8.3.4 Section 13—Railing 
 
Article 13 presents requirements for the design of overhangs (cantilever wings) with regard to 
vehicle crash loadings on barriers.  The intent of the specifications is that overhangs have 
sufficient strength such that the barrier fails first with respect to the design forces.  Article 
A13.4.1 presents two design cases to assure this intention is achieved.  The third design case 
presented in this Article is the case of normal traffic loading. 
 

A13.4.1—Design Cases 
 
Bridge deck overhangs shall be designed for the 
following design cases considered separately: 
 
Design Case 1: the transverse and longitudinal 

forces specified in Article A13.2 
—Extreme Event Load 
Combination II limit state 

 
Design Case 2: the vertical forces specified in 

Article A13.2—Extreme Event 
Load Combination II limit state 

 
Design Case 3: the loads, specified in Article 

3.6.1, that occupy the 
overhang—Load Combination 
Strength I limit state 

 
For Design Case 1 and 2, the load factor for dead 
load, γP, shall be taken as 1.0. 

 
Extreme Event Load Combination II for the design of the overhang with regard to vehicle 
collision can be reduced to: 
 
(Eqn. 8.4) 1.0 1.0 0.5( ) 1.0uM DC DW LL IM CV= + + + +  
 
Two cross sections of the overhang should be verified at this limit state: 1) at the face of the 
barrier and 2) at the root of the cantilevering overhang.  The first section is subject to a small 
portion of overhang slab, the weight of the barrier rail, and collision forces.  The second section 
includes the remainder of the overhang self weight and vertical wheel loads along the cantilever 
length.  Figure 8.9 shows these two critical sections for the cross section of the overhang to be 
designed for the overhang presented for the cross section developed in chapter 5. 
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Figure 8.9 – Critical Sections for Overhang Design to Develop Barrier Railing 

Design loads and dimensional considerations for Design Load Cases 1 and 2 specified in Article 
A13.4.1 are presented in Article A13.2.  The magnitude of the loads and dimensional 
considerations are a function of the crash testing rating of the barrier railing used on the bridge. 
The superstructures of the design examples in this manual use concrete parapet type barrier 
railing with a TL-4 crash test rating.  Design forces for this railing are taken from Table A13.2-1: 

Design Forces and Designations TL-4 Crash Test Level 
Ft Transverse (kips) 54.0 
FL Longitudinal (kips) 18.0 
Fv Vertical (kips) Down 18.0 
Lt and LL (ft) 3.5 
Lv (ft) 18.0 
He (min)(in.) 32.0 
Minimum H Height of Rail (in.) 32.0 

Table 8.1 – Railing Loads for TL-4 Barrier (from AASHTO LRFD Table A13.2-1) 

There are some interesting considerations with regard to the application of Articles A13.4.1 and 
A13.2: 

• Design Load Case 2 has implications with regard to Post-and-Beam railings, but will not
govern for overhangs with concrete parapet barriers.

• The longitudinal loads shown in Table A13.2-1 also have implications with regard to
Post-and-Beam railings, but are not meaningful with regard to bridges with concrete
parapet barriers away from railing ends.

• Loads from Table A13.2-1 applied over the specified lengths plus a distribution of 45
degrees over the height of the barrier.  This results in a width of application of the forces
in Table A13.2-1 (also table 8.1) of the specified length plus twice the height of the
barrier railing.

Articles A13.4.2 and A13.4.3 present alternate design approaches to Design Case 1 for bridges 
that use concrete parapet and post-and-beam rail.  Article A13.4.2 is presented here for the very 
common concrete parapet type of barrier rail. 

Article A13.4.2—Decks Supporting Concrete 
Parapet Railings 
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For Design Case 1, the deck overhang may be 
designed to provide a flexural resistance, Ms in kip-
ft/ft  which, acting coincident with the tensile force T 
in kip/ft, specified herein, exceeds Mc of the 
parapet at its base.  The axial tensile force, T, may 
be taken as: 
 

(Eqn. 8.5) 
2

w

c

RT
L H

=
+

 

 
Where, 
 
Rw = parapet resistance specified in Article 

A13.3.1(kips) 
Lc = critical length of the yield line failure pattern 

(ft) 
H = height of wall (ft) 
T = tensile force per unit of deck length (kip/ft) 

 
Design of the deck overhang for the vertical forces 
specified in Design Case 2 shall be based on the 
overhanging portion of the deck. 

 
The parapet resistance, Rw, and critical length Rw, are taken from Article A13.3.1 
 

(Eqn. 8.6) 
22 8 8

2
c c

w b w
c t

M LR M M
L L H

  
= + +  −  

 

 

(Eqn. 8.7) ( )2 8
2 2

b wt t
c

c

H M ML LL
M

+ = + + 
 

 

 
Where, 
 

Ft = transverse force specified in Table A13.2-1 assumed to be acting at top of a 
concrete wall (kips) 

H = height of wall (ft) 
Lc = critical length of yield line failure pattern (ft) 
Lt = longitudinal length of distribution of impact force Ft (ft) 
Rw = total transverse resistance of the railing (kips) 
Mb = additional flexural resistance of beam in addition to Mw, if any, at top of wall (ft-k) 
Mc = flexural resistance of cantilevered walls about an axis parallel to the longitudinal 

axis of the bridge (kip-ft/ft) 
Mw = flexural resistance of the wall about its vertical axis (kip-ft/ft) 
 
 

8.4 Strip Method Analysis for a Multi-Cell Box Girder Superstructure 
 
This section presents the transverse analysis of the four-cell box girder used in the preliminary 
design presented in chapter 5 and in example problem 1 presented in appendix C. 
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8.4.1 The Transverse Model 
 
The transverse analysis of the cross section shown in figure 8.9 is a two-dimensional solution 
that can be performed using either a 2D or 3D general-purpose frame analysis program.  The 
three-dimensional analysis will typically require additional support conditions out of the model 
plane to provide needed analytical stability. 
 
The analysis performed is a linear elastic analysis utilizing gross section properties of the 
concrete cross section.  The top slabs, bottom slabs, webs, and overhangs are modeled as 
beam elements with depths equal to their representative thicknesses.  The width of the beam 
elements “out of the plane of the page” is set equal to 1.0’.  Node locations are provided at 
intersections of elements, changes in transverse member thickness, changes in transverse 
member orientation, and for convenience at locations of desired output.   
 
Vertical support of the cross section model is with rigid supports at the bottom of the webs 
(Article 4.6.2.1.6 Paragraph 1).  A horizontal support is placed rigidly to restrain the transverse 
movement of the bottom slab.  A second horizontal support is provided to restrain the frame 
against side-sway, which better represents the torsional stiffness of the box girder with regard to 
transverse displacements. 
 
Figure 8.10 shows the development of the cross section from transverse dimensions, to 
idealized members to the computer nodal analysis model for the cross section of Design 
Example 1. 
 
 

 
 
 

Figure 8.10 – Developing the Two-Dimensional Transverse Model 
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8.4.2 Transverse Bending Moment Results 
 
Loads that uniformly repeat along the span can be applied directly to the analytical model 
without consideration for longitudinal distribution.  These loads include self weight and 
superimposed dead loads such as barrier railing, wearing surfaces, and suspended utilities.   
 
Figure 8.11 shows the bending moments from the self weight of the cross section.  The analysis 
software used developed the applied loads internally based on the member cross section 
dimensions and the unit weight of the concrete.  Figure 8.12 shows the effect of barrier railing 
weight 0.45 kips/foot, applied at the center of gravity of the barrier cross section.  Figure 8.13 
shows the bending moments resulting from the application of a 25 psf (or 25plf in the unit width 
model) wearing surface. 
 
Small bending moments in webs and bottom slab members are not shown in some of the 
figures of this Section for clarity. 
 
 

 
 

Figure 8.11 – Transverse Self Weight Moments (ft-kip/ft) 
 
 

 
Figure 8.12 – Transverse Barrier Railing Moments (ft-kip/ft) 

 
 
 

 
 

Figure 8.13 – Transverse Wearing Surface Moments (ft-kips/ft) 
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Live load moments are determined by positioning both the Design Truck and Tandem wheel 
loads in position to produce maximum transverse moments.  Figures 8.14, 8.15 and 8.16 show 
the results of three load cases for the Design Truck.  Figure 8.14 shows the position of one truck 
to produce maximum negative transverse bending at the inside face of the outer webs.  Figure 
8.15 shows two trucks positioned to produce maximum transverse negative moment at interior 
webs.  Figure 8.16 shows the load case producing maximum positive moment in the top slab. 

Figure 8.14 – Maximum Negative Design Truck Moment in Outer Web 

Figure 8.15 – Maximum Negative Design Truck Moment at Inner Web 

Figure 8.16 – Maximum Positive Design Truck Moment in Top Slab 
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8.4.3 Transverse Design Moments 
 
Moment results for live load cases need to be magnified for impact and multiple presence 
factors, and then divided by the longitudinal length of the strips, W, based on equations 8.1, 8.2 
and 8.3. 
 
(Eqn. 8.8) 45.0 10 45.0 100 65" 5.42 'W X= + = + = =  
 
(Eqn. 8.9) ( )26.0 6.6 26.0 6.6 12.25 106.85" 8.90 'W S= + = + = =  
 
(Eqn. 8.10) ( )48.0 3.0 48.0 3.0 12.25 84.75" 7.06 'W S= + = + = =  
 
Bending moment results from the transverse analysis of example problem 1 at critical nodes in 
foot-kips/foot are: 
 

Node Type Self Weight Barrier Wearing 
Surface Live Load 

3 Overhang (Neg) -1.76 -1.97 -0.15 -32.00 
13 Top Slab (Pos) 0.69 0.0 0.15 27.00 
15 Top Slab (Neg) -1.06 0.0 -0.24 -36.42 

 
Table 8.2 –Transverse Bending Moment Results from Frame Analysis 

 
Live Load bending moments are magnified by vehicle impact and multi-presence factors, and 
divided over their associated strip width. 
 
The negative live load moment in the overhang at the face of the web is: 
 

 (Eqn. 8.11) 
( )( )

max
1.33 1.2 32

9.42
5.42

ft kM
ft

− − −
= = −  

 
It is interesting to note the magnitude of the overhang moment with regard to the moment 
caused by a 1 kip/foot load acting 1’ from the face of the railing as permitted by Article 3.6.1.3.4.  
This moment would be approximately 1/3 of the moment predicted by the strength method: 
 

(Eqn. 8.12) ( )( )max 1.33 1.2 2.0 3.19 ft kM
ft

− −
= − = −  

 
The top slab maximum positive live load moment: 
 

(Eqn. 8.13) 
( )( )

max
1.33 1.2 27.00

4.84
8.90

ft kM
ft
−

= =  

 
The negative live load moment in the top slab at the face of the middle web: 
 

(Eqn.8.14) 
( )( )

max
1.33 1.0 36.42

6.86
7.06

ft kM
ft

− − −
= = −  
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The resulting factored moments for the AASHTO LRFD Strength I case are then: 
 

(Eqn. 8.15) ( ) ( ) ( )3 1.25 1.76 1.97 1.5 .15 1.75 9.42 21.37 ft kM
ft
−

= − − + − + − = −  

(Eqn. 8.16) ( ) ( ) ( )13 1.25 0.69 0 1.5 .15 1.75 4.84 9.56 ft kM
ft
−

= + + + =  

(Eqn. 8.17) ( ) ( ) ( )15 1.25 1.06 0 1.5 .24 1.75 6.86 13.69 ft kM
ft
−

= − − + − + − = −  

The three critical cross sections are designed for the amount of required reinforcing per foot 
along the length of the bridge.  Reinforcing for the maximum positive and maximum negative 
ultimate moments is used in each slab and over each web.  Additional reinforcing may be 
required over the outer webs in order to develop the capacity of the barrier when subjected to 
vehicle collision forces. 
 
 
8.5 Top Slab Transverse Bending Moment Results for a Single-Cell Box Girder 
 
8.5.1 Introduction 
 
Section 8.2 of this Manual presented limitations on the use of the LRFD Approximate Method for 
certain concrete box girder cross sections.  The method can produce unconservative results 
when applied directly to single-cell girders, dual-cell girders, and multi-cell box girders with web 
spacing greater than 15 feet.  Using a refined approach to account for longitudinal distribution of 
concentrated wheel loads in determining the transverse live load moments can produce the 
needed conservatism. 
 
The approach taken is the same as specified in Article 4.6.2.9.4 for concrete box girders built 
segmentally.  Differences in transverse behavior does not lie in the method of construction, but 
the fact that the majority of box girder bridges built segmentally are constructed with 2 webs 
(single cell) or 3 webs (dual cell), resulting in significant slab spans for most common roadway 
widths. 
 
Figure 8.17 shows the cross section of a single-cell box girder that will be analyzed in this 
Section with regard to transverse flexure.   
 

 
 

Figure 8.17 – Typical Single-Cell Box Girder Cross Section Defined at Mid-Span 
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Figure 8.18 shows a perspective of a span with the cross section under consideration.  As 
before, a typical cross section with a unit length is identified in the span for a two-dimensional 
analysis in the plane of the cross section.  The extracted typical section for analysis is shown in 
figure 8.19.   

 
 

Figure 8.18 – Typical Single-Cell Box Girder Span with Cross Section Defined at Mid-Span 
 

 
 

Figure 8.19 – One Foot Section of Typical Cross Section 
 
The typical cross section is modeled using beam elements in a general two-dimensional 
structural analysis program.  Figure 8.20 shows the transition from typical cross section, to 
idealized beam members, to a node and element layout for a typical analysis model.  Special 
transverse modeling considerations include: 
 
a. The model shown in figure 8.20 shows beam elements extending to nodes at the top of 

web/cantilever/top slab intersection and the bottom of web/bottom slab intersection.  
Often, designers will model a portion of these intersecting members as rigid elements, as 
the size of the connection can be significant with regard to member length. 
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b. Many precast single-cell box girder cross sections include linear or circular fillets at the 
cantilever/top of web and top slab/top of web connections.  The choice of the critical 
sections for design of flexure at these sections is left to the discretion of engineer 
considering the particular geometry of the cross section. 

 
c. Vertical supports are placed under the webs as shown in the bottom sketch of figure 8.20.  

One horizontal support is required for model stability.  A second horizontal support has 
been added to restrain side-sway of the two-dimensional model.  This support helps 
account for the torsional rigidity of the box girder in the actual three-dimensional structure.  
This second horizontal support can be problematic for some load cases such as 
transverse post-tensioning.  Use and placement of the second support is left to the 
discretion of the engineer. 

 

 
 

Figure 8.20 – Developing the Two-Dimensional Transverse Model 
 
 
8.5.2 Analysis for Uniformly Repeating Loads 
 
Transverse bending moments for loads that repeat uniformly along the span can be determined 
directly from the two-dimensional analysis mode.   Self weight bending moments can typically 
be generated internally by the analysis software once the unit weight of the concrete has been 
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defined.  The per-unit length values of superimposed dead loads are applied directly to the two-
dimensional analysis model as either concentrated or distributed loads. 
 
The typical cross section shown in figure 8.20 was analyzed for the following loads: 
 

Self Weight: Concrete unit weight = 150 lb/ft3  
Barrier Railing: p = 0.420 kips/ft (8” from edge of the cantilevers) 
Future Wearing Surface: 2” concrete, p = .025 kips/ft/ft 

 
 
The transverse bending moments resulting from these three load cases are shown in figure 
8.21.   
 
 

 
 
 

Figure 8.21 – Transverse Bending Moments for Uniformly Repeating Loads 
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8.5.3 Analysis for Concentrated Wheel Live Loads 
 
Figure 8.22 shows the perspective of a single-cell box girder superstructure loaded with the 
Design Truck portion of the HL-93 notional load.  Travel lanes, and the trucks/tandems within 
the lanes, are positioned in number and location in accordance with AASHTO LRFD 
requirements to produce maximum transverse bending moments at critical sections.  The 
appropriate multi-presence factor of AASHTO LRFD Article 3.8.1.1.2 should be considered in 
choosing the number of design lanes to apply for a given critical section.  Truck/tandem 
locations within the lanes should be in accordance with AASHTO LRFD Article 3.8.1.3.1. 
 
Transverse bending moments resulting from the application of concentrated loads in the span 
are determined in a three step process: 
 

1. Determine maximum transverse bending moments at critical sections of the 
cantilever wing and top slab considering these members as separate three-
dimensional, fixed-end slab structures.   

 
2. Use the two-dimensional model to distribute “fixed-end” slab moments around the 

cross section model. 
 
3. Sum the fixed-end moments and redistributed moments to determine live load 

moments for design. 
 
The fixed-end slab structures are typically analyzed using finite element methods or other tools 
such as influence surfaces.  When modeled using finite elements, the slab structures are 
supported by full restraints at their intersection with the top of the webs.  The longitudinal length 
of the slab structure should be sufficient to not impact transverse bending behavior.  Slabs with 
shorter spans may warrant the application of wheel loads as surface loads.  The areas over 
which the loads are distributed are the AASHTO LRFD Tire Contact Area (AASHTO LRFD 
Article 3.8.1.2.5) projected to the center of gravity of the top slab using a 45 degree distribution 
in both longitudinal and transverse directions.  Bending moments computed in the examples 
included in this Section use influence surfaces and consider only the HL93 Design Truck.  

 

 
Figure 8.22 – Truck Loads on a Single-Cell Box Girder Span 
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8.5.4 Live Load Moments in Cantilever Wings. 
 
The maximum fixed-end moment in the cantilever wing is determined by positioning the HL93 
Truck one foot away from the face of the barrier railing in accordance with AASHTO LRFD 
Article 3.8.1.3.1.  Figure 8.23 shows this loading on the cross section being analyzed.  Figure 
8.24 shows an influence surface for negative moment at the root of the cantilever, along the 
centerline of the influence surface.  This figure also shows the location of wheel loads to 
produce the maximum fixed-end moment in the cantilever slab. The unfactored negative 
maximum bending moment found using this cantilever influence surface is 15.2 ft-kips without 
impact.   
 

 
 
 

Figure 8.23 – Truck Location for Maximum Transverse Bending Moment at Root of Cantilever 
 

 
 

Figure 8.24 – Loaded Influence Surface for the Cantilever Wing. 
 
Transverse bending moments in the other members of the cross section resulting from live load 
in the cantilever are determined by applying the cantilever moment to the cantilever/top 
slab/web intersection in the two-dimensional model.  Figure 8.25 shows the distribution of 15.2 
ft-kip cantilever moment around the cross section.  Superimposing the cantilever moments with 
the distributed moments produces the final transverse bending moment diagram shown in figure 
8.26. 
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Figure 8.25 – Distribution of Cantilever Live Load Moments in the Cross Section 
 
 

 
 

Figure 8.26 – Final Bending Moments for Live Load in Cantilever 
 
The shape of the bending moment diagram in the loaded cantilever wing is approximate, as the 
influence surface used only provides the bending moment at the root of the cantilever.  Plate 
solutions using finite element methods could be used to produce moments along the loaded 
cantilever. 
 
 
8.5.5 Negative Live Load Moments in the Top Slab. 
 
Negative live load moments in the top slab require positioning the Design Truck/Tandem for 
maximum negative effect at the end of the isolated top slab structure.  In the cross section being 
studied, the maximum negative moment at the left end of the top slab is produced by locating 
one truck in the top slab and adding the effect of one truck in the cantilever wing.  Figure 8.27 
shows the locations of these two travel lanes.  This loading arrangement can be evaluated as a 
superposition of the moments due to a truck in the cantilever shown in figure 8.24 and moments 
resulting from the single truck located between the webs as shown in figure 8.28 and figure 
8.29. 
 
The fixed-end moments for the top slab plate structure are determined using influence surfaces 
for a doubly fixed plate.  Figure 8.28 shows the influence surface for the maximum negative 
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moment at the left end of the slab (10.3 ft-kips).  Figure 8.29 shows the inverted influence 
surface used to compute the corresponding moment at the right end of the slab (5.1 ft-kips).   
 

 
 

Figure 8.27 – Truck Location for Maximum Transverse Bending Moment at Middle of Top Slab 
 

 
Figure 8.28 – Influence Surface for Maximum Negative Bending at the Left End of the Top Slab. 

 

 
Figure 8.29 – Influence Surface for Maximum Negative Bending at the Right End of the Top Slab. 
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The two fixed-end moments can be “released” on the cross section by applying them as 
concentrated moments at the cantilever/top slab/web intersection.  Figure 8.30 shows the 
results of the application of the concentrated couples on the two-dimensional analysis model.  
The concentrated couples, though applied as external loads, are actually internal fixed-end 
moments.  When applied as external loads with signs opposite to the internally fixed-end 
moments, the moments in the unloaded members (webs and bottom slab) are the final 
moments due to the loading.  The moments in the top slab represent the differential moments in 
the loaded member in moving from fixed-end conditions to the actual flexibility of the box girder.  
The final bending moment diagram, shown in figure 8.31, is determined by reducing the fixed-
end moments by these differential moments. 
 
The total negative moment at the left end of the top slab for Design Trucks arranged in two 
lanes as shown in figure 8.27 are found by summing the maximum moment from the distributed 
cantilever moment (figure 8.26) and the moment resulting from the truck in the top slab (figure 
8.31).  The moment at the left end of the top slab is: 
 
(Eqn. 8.18) 3.95 8.09 12.04negM ft kips= + = −  
 
The results of this analysis are valid only at the location of know fixed moments and their 
redistributed differential moments.  The shape of the top slab bending moment between the two 
known extremity moments is not an exact representation, but general in nature.  Efforts have 
been made in past practice to develop approaches using equivalent forces in equilibrium with 
the extremity moments to determine bending moments within the top slab for a given loading.  
The results of these methods do not prove accurate or necessary for the design of the top slab. 
 
 

 
 

Figure 8.30 – Distribution of Fixed-End Live Load Moments for Maximum Negative Moment Case 
 
 

 
 

Figure 8.31 – Summed Live Load Moments for the Maximum Negative Moment Case 
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8.5.6 Positive Live Load Moments at Centerline of the Top Slab. 
 
Positive live load moments at the centerline of the top slab are computed in a fashion similar to 
the negative moments at the ends of the slab, with one additional initial step.  An influence 
surface for moment at the center of the isolated top slab structure, or a finite element model, is 
first used to determine the arrangement of loads to produce maximum positive moment.  Fixed-
end negative moments are then determined for this load arrangement and distributed around 
the cross section.  The final positive moment at the centerline of the slab is the positive moment 
in the fixed-end top slab structure, increased by the release of the end moments. 
 
Figure 8.32 shows the load arrangement for maximum positive bending moment at the center of 
the top slab.  Figure 8.33 shows an influence surface for the maximum positive transverse 
bending moment at the center of the top slab for this loading arrangement.  The value of this 
bending moment with fixed-end supports is 3.88 ft-kips. The fixed-end bending moments at the 
ends of the top slab structure for the same loading arrangement are 12.0 ft-kips at the left end 
and 11.1 ft-kips at the right end. 
 

 
 

Figure 8.32 – Live Load Position for Maximum Positive Bending 
 
These fixed-end moments are released on the cross section as presented in the previous 
Section.  Figure 8.34 shows the differential moments, and figure 8.35 shows the summed 
values.   The release of the fixed-end moments shifts the bending moment diagram in the top 
slab, increasing the bending moment at the centerline of the top slab.   The fixed-end centerline 
moment increases from 3.88 ft-kips/ft to 5.08 ft-kips/ft.  Again, the shape of the top slab bending 
moment diagram between known locations is only an approximation. 
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Figure 8.33 – Maximum Positive Moment in the Top Slab for Fixed-End Conditions 
 
 
 
 

 
 
 

Figure 8.34 – Distribution of Fixed-End Live Load Moments for Maximum Negative Moment Case 
 
 
 

 
 
 

Figure 8.35 – Summed Live Load Moments for the Maximum Positive Moment Case 
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8.6 Transverse Post-Tensioning 
 
8.6.1 Transverse Post-Tensioning Tendon Layouts 
 
The cantilever wings and top slab of single-cell box girder superstructures are typically 
prestressed transversely with post-tensioning to offset tensile stresses resulting from permanent 
and live loads.  Narrow precast box girders with widths of 16’ or less, often used for single track 
transit systems, may not greatly benefit from transverse post-tensioning.  Rails that carry normal 
operating train loads can be positioned adjacent to the webs, limiting top slab bending moments 
to values small enough to not require transverse post-tensioning. 
 
LRFD Article 5.14.2.3.10a provides minimum cantilever wing and top slab thicknesses for 
segmental construction.  Cast-in-place box girders with cross sections similar to segmentally 
constructed bridges should follow these provisions.  The 15 foot top slab span length limitation 
for requiring transverse post-tensioning should be the total length from face of web to face of 
web (top slab with haunches). 
 
Figure 8.35 shows a typical transverse post-tensioning tendon layout for the typical section 
studied in this section.  The transverse tendons are typically comprised of 3 or 4 strands, either 
0.5” or 0.6” diameter each, placed in oval shaped “flat” ducts.  The profile of the tendons varies 
to provide needed eccentricity over the webs and at the centerline of the top slab.  The 
perspective view in figure 8.35 shows three transverse tendons in a section of a single cell box 
girder superstructure.   
 
 

 
 

Figure 8.36 – Typical Transverse Tendon Layout. 
 
 
 
8.6.2 Required Prestressing Force 
 
The selection of the required prestressing force on a unit length basis is made by summing the 
moments at critical sections, evaluating each section’s prestressing requirement, and choosing 
the greatest required force. AASHTO LRFD Service I is the appropriate limit state for transverse 
prestressing design based on permissible concrete tension (AASHTO LRFD Article 3.4.1).  The 
load factors for permanent and live loads at this limit state are equal to 1.0. 
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Considering the example presented in this section, the summary of moments at the three 
sections studied are: 

Section Root of 
Cantilever 

Edge of Top 
Slab CL of Top Slab 

Self Weight -8.19 -8.64 1.52 
Barrier Railing -4.34 -0.79 -0.43

Wearing Surface -1.52 -1.21 0.34 
Live Load -15.2 -12.04 5.08 

Multi-Presence 1.20 1.00 1.00 
Dynamic Allowance (IM) 1.33 1.33 1.33 
Total Service I Moment -38.4 -24.7 8.19 

Table 8.3 –Transverse Bending Moment Results from Frame Analysis 

The equations governing post-tensioning selection are: 

(Eqn. 8.19) 
2

( )aM MF negative moment
c eρ

− +
≥

−

(Eqn. 8.20) 
1

( )aM MF positive moment
c eρ
−

≥
+

Where: M = Total applied service load moment 
Ma = Moment causing allowable tensile stress  
c1 = Distance from neutral axis to extreme top fiber 
c2 = Distance from neutral axis to extreme bottom fiber 
ρ = Cross section efficiency = 1/3 for a rectangular section 
e = Tendon eccentricity considering location of strands within the duct 

The moment causing allowable tensile stress (Ma) is equal to the allowable tensile stress (fa) 
multiplied by the section modulus (S=bh2/6 for a rectangular section), or: 

(Eqn. 8.21) 
2

6a a
hM f

 
=  

   

The allowable transverse flexural stress in the top slab of a single-cell box girder is equal to 
0.0948√f’c.  Using 6 ksi concrete, the allowable stress would be 0.232 ksi (33.4 ksf).  Solving for 
the prestress force requirements: 
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Section Root of 
Cantilever 

Edge of Top 
Slab CL of Top Slab 

Moment -38.4 -24.7 8.19 
h/2 = c1=c2 0.87 0.87 0.369 

Efficiency (ρ) 1/3 1/3 1/3 
Eccentricity (e) -0.60 -0.60 0.19 

Moment Causing fa -18.9 -18.9 4.12 
Required PT Force/ft 24.2 8.8 13.0 

Table 8.4 –Transverse Bending Moment Results from Frame Analysis 

Considering the limited example presented in this section, the governing cross section for 
required prestress force is the root of the cantilever.  The prestress force required at this section 
is 24.2 kips/foot. 

The final selection of the number and size of the post-tensioning tendons requires a study to 
determine the final force in the tendons.  This work must include initial losses caused by friction, 
wobble and anchor set, and long term losses resulting from concrete creep and shrinkage, as 
well as prestressing steel relaxation.  Secondary post-tensioning effects must be included when 
present.  Several commercially available software packages include modeling of the actual 
geometry of post-tensioning tendons, automatic generation of internal forces due to tendon 
stressing, losses during stressing, and long-term, time-dependent loss calculations. 

Depending on the tendon profile in the top slab, the flexural restraint provided by the webs can 
result in secondary prestressing moments.  These moments should be included in the 
summation of service limit state moments when determining the required prestressing force. 
The final value of the secondary moments is a function of the resulting prestress demand, 
thwarting a direct solution and slightly complicating the final prestress force.  For the example in 
this section, a concordant tendon profile that produced no secondary moments was used. 

The selection of the required prestress force satisfies just a part of the design requirements for 
the cross section.  Other tasks that need to be performed include: 

• Tensile and compressive stress checks at all sections of the cantilever wings and top
slab to verify appropriate service limit states.

• Reinforcing requirement checks in the top slab to verify appropriate strength limit states.
• Transverse bending moments in the webs combined with shear reinforcing requirements

to select final web reinforcing.

8.6.3 Transverse Post-Tensioning Tendon Placement and Stressing 

Figures 8.37 and 8.38 show various photographs of the installation and stressing of the 
transverse top slab tendons in the casting yard.  Figure 8.37 shows the placement of the 
transverse flat duct within the reinforcing cage after positioning into the casting machine. 
Transverse ducts pass over the longitudinal tendons of this cantilever bridge and are connected 
to the anchorages which are fixed to the cantilever wing bulkhead during the concrete pour. 
The ducts shown are plastic (typically polypropylene) which provide an important layer of 
corrosion protection to the transverse post-tensioning strands.  Vertical grout inspection ports 
are located at the top of the anchorages to permit post-grouting inspections within the tendon. 
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Figure 8.37 – Transverse Duct Placement in Casting Machine 
 
The photograph on the left of figure 8.38 shows the stressing of a four strand transverse tendon 
using a mono-strand stressing ram.  The photograph of the right is a close-up of the transverse 
tendon anchorage and wedge block after stressing the two central strands.  Following stressing 
and verification of tendon elongations by the Resident Engineer and/or Engineer of Record, 
strand “tails” are cut off, permanent grout caps are placed over the anchorages, the tendons are 
grouted, anchorage block-outs are filled with concrete, and protective coatings are applied. 
 

 

 
 

Figure 8.38 – Mono-Strand Stressing of a 4 Strand Tendon (left). 
 Anchorage After Stressing 2nd Strand (right). 
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Chapter 9—Other Design Considerations 

9.1 Effects of Curved Tendons 

Alignments of post-tensioning tendons change direction as they pass through curved ducts cast 
into the surrounding concrete.  Figure 9.1 shows two common forms of tendon path deviations 
used in post-tensioned concrete superstructures.  The top of figure 9.1 shows a parabolic 
tendon deviation commonly used for vertical deviations in cast-in-place box girder bridges. 
Parabolic deviations exert a uniform load along the horizontal projected length of the tendon 
deviation.  This uniform force is a function of tendon force, deviation length and tendon 
eccentricity.  The bottom of figure 9.1 shows a tendon deviated along a circular arc.  The force 
exerted by the tendon is a radial force proportional to tendon force and inversely proportional to 
the radius of the circular deviation.  Circular arc deviations are often used in anchorage blisters 
and at deviations of external tendons.   

Figure 9.1 – Curved Tendon Deviations 

Tendons with circular geometry also occur in webs of cast-in-place box girder bridges that curve 
to follow a horizontal circular alignment.  Figure 9.2 shows a perspective of a section of curved 
multi-cell box girder superstructure.  Radial forces inversely proportional to the radii of a 
particular web act towards the center of curvature as the tendons rise and fall along their vertical 
parabolic profile.  The radial forces vary in each web as a function of web radius. 

Figure 9.2 – Tendons in Curved Superstructures 
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The horizontal forces per unit length of superstructure load the webs of box girder bridges 
causing transverse bending moments that may increase the required amount of transverse 
reinforcing steel.  The lateral tendon forces also cause local stresses in the webs that can lead 
to cover spalling and tendon pull-out.  Figure 9.3 shows the deflected shape of a multi-cell box 
girder subjected to lateral loading resulting from tendons following horizontal curvature. 
 
 

 
 
 

Figure 9.3 – Cross Section of Multi-Cell Box Girder with Lateral Tendon Loads 
 
This Section addresses the design requirements for the radial effects associated with curved 
tendons in webs.  Requirements for this subject are found in LRFD Article 5.10.4.3 which is a 
part of a larger LRFD Article 5.10.4 - Tendon Confinement. 
 
9.1.1 In-Plane and Out-of-Plane Forces 
 
The LRFD Specifications delineate between in-plane and out-of-plane effects when providing 
design requirements for the effects of curved tendons.  The direction of in-plane and out-of-
plane forces can change along the length of a tendon.  Figure 9.4 shows a post-tensioning 
tendon that deviates direction through two circular curves.  Curve 1 of the tendon lies in the Y-Z 
plane.  In-plane forces for the tendon in this location would be forces whose components act in 
the Y and/or Z direction.  Out-of-plane forces for this portion of the tendon would be those acting 
in the ±X direction.  After exiting Curve 1, the tendon deviates around Curve 2 which lies in the 
X-Y plane.  In-plane forces for this curve lie in the XY plane.  Out-of-plane forces for this curve 
act in the ±Z direction.  
 

 
 

Figure 9.4 – Tendon Plane of Curvature 
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In-plane force in a region of circular curvature, presented in LRFD Article 5.10.4.3.1a, is shown 
in equation 9.1: 
 

(Eqn. 9.1) u
u in

PF
R− =  

 
Where, Fu-in = the in-plane deviation force per unit length of tendon 

Pu = the factored tendon force = 1.2 times Pjack (LRFD Article 3.4.3.2) 
R = the in-plane radius of curvature of the tendon 

 
Out-of-plane forces acting transverse to in-place forces are the result of the spreading of the 
strands as they bear on the inside face of curved circular ducts.  Figure 9.5 shows a section (at 
a profiled tendon high point) of a web of a concrete box girder bridge with a tendon curving to 
produce a downward in-plane curvature.  When the tendon is stressed, the strands are drawn to 
the bottom of the duct where they create lateral stresses within the concrete. 
 

 
 

 
Figure 9.5 – In-Plane and Out-of-Plane Tendon Forces 

 
In-plane force in a region of circular curvature, presented in LRFD Article 5.10.4.3.2, is shown in 
equation 9.2: 

(Eqn. 9.2) u
u out

PF
Rπ− =  

 
Where, Fu-out = the out-of-plane force per unit length of tendon 

Pu = the factored tendon force = 1.2 times Pjack (LRFD Article 3.4.3.2) 
R = the in-plane radius of curvature of the tendon 

 
Tendons in cast-in-place concrete box girder bridges are primarily placed to follow a series of 
parabolic curves in the vertical direction.  These tendons produce in-plane forces in a plane 
defined by the vertical direction and the longitudinal axis of the bridge.  At the same time, these 
tendons can be in webs that are cast to follow a horizontal bridge curvature, producing 
simultaneously acting in-plane forces in a horizontal plane.  In theory, the in-plane force effects 
should be verified for both sets of in-plane forces.  In reality, the in-plane forces in the vertical 
direction in webs of concrete box girder bridges are resisted by significant concrete as to negate 
concerns.  For bridges following horizontal alignments with large radius curves, the in-plane 
forces acting transverse to the webs typically have only the web concrete cover acting to resist 
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tendon pullout.  Supplemental duct ties are used to resist the in-plane forces for more tightly 
curved bridges. 

9.1.2 AASHTO LRFD Design Approach 

The requirements of LRFD Article 5.10.4.3 address the design of in-plane and out-of-plane force 
effects of post-tensioning tendons within webs of single-cell and multi-cell concrete box girder 
bridges.  This manual presents these requirements in a slightly different arrangement as those 
presented in LRFD Article 5.10.4.3: 

• Regional Effects—Flexure of the transverse cross section of the box girder
superstructure, referred to in LRFD Specifications as Regional Bending (5.10.4.3.1d)

• Local Effects—Local flexure and shear behavior at locations of ducts and duct stacks in
the webs.  This includes Shear Resistance to Pull-out (5.10.4.3.1b) and Cracking of
Cover Concrete (5.10.4.3.1c)

• Out-of-Plane Force Effects (5.10.4.3.2)

9.1.3 Regional Effects—Transverse (Regional) Bending 

Consider the hypothetical case of a tendon following a circular arc within a concrete member 
whose area is concentrated as to be completely coincident with the tendon.  Figure 9.6 shows 
this hypothetical case with the tendon shown separated from the concrete for clarity.  The 
curved stressed tendon produces an inward radial force.  The concrete is placed in compression 
at the tendon anchorages and its curvature induces an outwardly resisting radial load equal and 
opposite to the tendon force.  The radial forces negate each other and the curved concrete 
member only shortens under the prestressing force. 

Figure 9.6 – Hypothetical Concrete Member Completely Coincident with a Tendon 

Figure 9.7 shows a tendon following a circularly curving plate with a height of hc.  In this case, 
the post-tensioning tendon and area of the concrete member being prestressed are not 
coincident.  The radial force produced by the post-tensioning tendon is equal to the tendon force 
divided by the radius of the curved member.  Circumferential compression is produced in the 
curved plate that is in equilibrium with the prestressing force.  This circumferential compression 
is distributed over the height of the plate and produces a distributed pressure in the plate radial 
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to the plate curvature.  The member will shorten under the action of the prestressing force, but 
as the radial distributed force of the tendon is not coincident with the radial pressure produced in 
the concrete, the plate will bend radially. 

Figure 9.7 – Post-Tensioning a Curved Plate 

The curved plate shown in figure 9.7 is free to deflect radially under the applied post-tensioning.  
The top and bottom of the plate will tend to deflect radially outward from the center of curvature, 
while deflections would tend to be inward at the elevation of the post-tensioning tendon.  In 
concrete box girder construction the tops and bottoms of webs are restrained by their monolithic 
connections with the top and bottom slabs, producing transverse restraining moments as shown 
in figure 9.8. 

Figure 9.8 – Web Flexure Restrained by Top and Bottom Slabs 
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Transverse moments (Regional Bending in LRFD Article 5.10.4.3.1d) must be evaluated and 
combined with other transverse moments and shear requirements to determine the appropriate 
amount and placement of transverse reinforcing.  The transverse moments from the in-plane 
radial forces could be determined by either a 2-dimensional analysis of a unit length of 
transverse cross section (as in chapter 8) or a more complex 3-dimensional finite element 
analysis.  The LRFD Specifications offers a simplified approach to evaluating these transverse 
moments in the webs of box girder bridges.  This approach first considers the web to be simply 
supported at its connection with the top and bottom slab, and loaded at mid-height of the web.  
A continuity factor is then applied to express end moments as a percentage of the maximum 
positive transverse bending moment in the simply supported beam. 
 
Figure 9.9 shows a comparison of the LRFD simplified approach to moments developed by 
more detailed analysis performed on a transverse cross section of a box girder bridge.  In the 
detailed analysis, the bending moments can be seen as the superposition of the concentrated 
post-tensioning force and the resisting radial force in the compressed concrete web.  Figure 9.9 
shows these component loads and their summation.  The LRFD simplified approach is shown at 
the left of figure 9.9.  The effects of the radial force produced in the compressed concrete web 
are not considered in the LRFD simplified approach. 
 

 
 

Figure 9.9 – Web Transverse (Regional) Bending Moments 
 
 
The factored moment in using the LRFD simplified approach is: 
 

(Eqn. 9.3) 
4

cont u in c
u

F hM f −=  

 
Where, ϕcont = continuity factor = 0.6 for interior webs and 0.7 for exterior webs 

hc = span of the web between the top and bottom slabs, measured along the 
axis of the web 

 
The span of the web for equation 9.3 is shown in figure 9.10.  Only components of forces acting 
to produce bending in the direction transverse to the axis of the web needs to be considered.  
Though the height of the inclined outer web is taller than the vertical interior web in figure 9.10 
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by one over the cosine of the web slope, the force transverse to the web axis is the in-plane 
force multiplied by the cosine of the web slope.  These two negate each other such that the 
regional bending in the outer web is only different from the inner web by the difference of the 
radii of the two webs. 
 
 

 
 

Figure 9.10 – Web Height for Equation 9.3 
 
 
9.1.4 Local Shear and Flexure in Webs 
 
The webs of concrete box girder bridges must be verified with regard to local shear pull-out and 
flexure of cover concrete in the vicinity of ducts and duct banks.  Figure 9.11 shows one interior 
web of a post-tensioned box girder bridge that contains three post-tensioning tendons arranged 
in a duct stack.  The detail to the right in figure 9.11 is an enlargement of the duct stack.  The 
dimensions shown are defined as: 
 

dduct = outside diameter of the post-tensioning tendon duct (in) 
dc = cover of the duct on towards the direction of curvature (in) 
sduct = clear distance between tendon ducts in the vertical direction (in) 
hds = height of the duct stack (in) 
tw = web width (in) 

 
Ducts are considered stacked for flexure of the concrete cover when the clear distance between 
ducts (sduct) is less than 1.5 inches.  For shear resistance calculations, duct stacks include clear 
spacings greater than the diameter of the ducts. 

 
 

Figure 9.11 – Parameters for Local Shear and Flexure Design 
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9.1.4.1 Shear Resistance to Pull-out 
 
In-plane tendon forces may cause tendons to pull-out of the webs towards the center of box 
girder curvature unless they are sufficiently embedded in web concrete or tied back to 
transverse reinforcing within the web.  Resistance to tendon pull-out is provided by the shear 
capacity of the concrete in the webs on the side of the ducts towards the center of box girder 
curvature.  The LRFD Specifications define the shear resistance as: 
 
(Eqn. 9.4) r nV Vf=  
 
In which the nominal capacity is defined by:  
 
(Eqn. 9.5) 0.15 'n eff ciV d f=  
 
Where, Vn = nominal shear resistance of two shear planes per unit length (kips/in) 

ϕ = resistance factor for shear = 0.75 
f’ci = concrete strength at time of prestressing (ksi) 
deff = one-half of the effective length of the failure plane in shear and tension for a 

curved element (in)  
 

The length of the shear failure plane (deff) varies as a function of the clear spacing (sduct) 
between the tendons in a duct stack.  For duct clear spacings less than the diameter of the duct 
(sduct< dduct), the effective length of the failure plane is defined by equation 9.6.  The effective 
length of the failure plane for this case is shown in Figure 9.12.  The detail to the left in figure 
9.12 shows the special case of zero duct spacing.  The detail to the right shows the general 
case for equation 9.6. 
 

(Eqn. 9.6) 
4
duct

eff c
dd d= +  

 
 

 
 

Figure 9.12 – Effective Length of Failure Plane for Equation 9.6 
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When the duct spacing is greater than or equal to the duct diameter, the definition of the 
effective length of the failure plane changes.  In this case, the lesser value of equation 9.7 and 
9.8 is used for deff.  These two equations are shown graphically in figure 9.13. 
 

(Eqn. 9.7) 
2
duct

eff w
dd t= −  

 

(Eqn. 9.8) 
4 2

ductduct
eff c

sdd d= + + ∑  

 
 
 

 
 

Figure 9.13 – Effective Length of Failure Plane for Equations 9.7 and 9.8 
 
 
Procedure for verifying resistance to shear pull-out: 
 

• Compute the factored in-plane force for all tendons in a web (equation 9.1). 
• Compute the effective length of the failure plane for shear by equation 9.6, 9.7 or 9.8. 
• Compute the shear resistance using equations 9.3 and 9.4. 
• If the factored in-plane force is greater than the shear resistance, provide duct ties and 

stirrup similar to those shown in LRFD Figure C5.10.4.3.1b-1. 
• As web radii vary, preform for each web in the cross section. 

 
9.1.4.2 Cracking of Concrete Cover 
 
Excessive in-plane force in a duct stack can cause cracking of the concrete cover.  This 
cracking can negatively impact the long-term durability of the web and post-tensioning system.  
The LRFD Specifications requires a calculation of flexural stresses in an idealized beam of 
concrete cover that spans the duct stack as shown in figure 9.14.  This calculation is required 
when the clear spacing between ducts is less than 1.5 inches.  These flexural stresses are 
combined with flexural stresses from regional bending moments for evaluation. 
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Figure 9.14 – Local Bending Moments for Evaluating Cracking of Concrete Cover 
 
The bending moments in the beam of concrete cover are those of a fixed end beam subjected 
to a uniform load over its length.  The magnitude of the uniform load is equal to the summation 
of the factored in-plane forces divided by the duct stack height.  The resulting end and mid-point 
bending moments are: 

(Eqn. 9.9) 

2

12

u in
ds

ds
end

F
h

h
M

− 
 
 =

∑
 

 
 

(Eqn. 9.10) 
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The stresses from the local and regional bending in the web are computed and compared to a 
permissible cracking stress given as: 
 
(Eqn. 9.11) ( )0.85 0.24 'cr r cif f ff= =  

 
Procedure for verifying cracking of concrete cover: 
 

• Compute the factored in-plane force for all tendons in a web (equation 9.1). 
• Compute local bending moments from equations 9.9 and 9.10. 
• Compute the stresses in the beam of concrete cover. 
• Combine stresses resulting from regional bending with those from local bending. 
• Compare the stresses to the permissible cracking stress from equation 9.11 
• If the stresses are greater than the permissible cracking stress, provide duct ties and 

stirrup similar to those shown in LRFD Figure C5.10.4.3.1b-1 (Caltrans recommends 
duct ties when the bridge horizontal radius is less than 800’). 

• As web radii vary, preform for each web in the cross section. 
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9.1.5 Out-of-Plane Force Effects 
 
Equation 9.2 defines the out-of-plane force effects resulting from the vertical deviation of post-
tensioning tendons.  For straight bridges, the requirements of equations 9.3 and 9.4 should be 
met with regard to out-of-plane forces, or duct ties should be provided.  In bridges with 
horizontal curvature, the out-of-plane force effects should be added to the in-plane force effects 
for the design procedures described in sections 9.1.3 and 9.1.4 of this manual. 
 
 
9.2 End Anchorage Zones 
 
The anchorages of the post-tensioning tendons for cast-in-place box girder bridges are typically 
located at the end of continuous units of the superstructure.  Figure 9.15 shows details 
commonly found at the end of post-tensioned box girder bridge. 
 
 

 
 

Figure 9.15 – Details of End of Post-Tensioned Box Girder Bridge 
 

The LRFD Article 5.10.9 provides design direction for the development of post-tensioning 
tendon anchorage zones.  The concentrated force applied through the anchorage causes 
bursting forces in a local zone directly behind the anchorage.  The post-tensioning forces are 
further distributed through a general zone until the beam behavior is achieved.  The resistances 
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required in the local and general zones are determined by strut-and-tie modeling.  Figure 5.16 
shows a side elevation of one web of a post-tensioned concrete box girder bridge, possible 
strut-and-tie modeling, and end zone reinforcing steel.   
 

 
 

Figure 9.16 – End Zone Design Development 
 
The specifics of designing anchorage zones are not presented in this manual.  The reader is 
directed to FHWA Publication No. FHWA-NHI-07-035 “Load and Resistance Factor Design 
(LRFD) for Highway Superstructures”, Volume 3 “Concrete Bridge Superstructure Design”, 
Section 2.6.4 “Post-Tensioning Anchor Zones” for more detailed design information.  Another 
excellent resource is Caltran’s Memo To Designers 11-25 Anchorage Zone Design (October 
2012). This document can be found at: http://www.dot.ca.gov/hq/esc/techpubs/manual/ 
bridgemanuals/bridge-memo-to-designer/page/Section%2011/11-25.pdf 
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9.3 Diaphragms at Supports 
 
Box girder sections at piers, expansion joints and abutments contain diaphragms to stiffen and 
strengthen the typical cross section and to transfer loads from the superstructure to the 
supporting substructure.  Diaphragms work to transfer shear forces in the webs to the bridge 
bearings, stiffen the box girder with regard to torsion, and provide a location for anchoring post-
tensioning tendons.  This section develops basic load carrying considerations for diaphragm 
design. 
 
9.3.1 Single-Cell Box Girder Transfer of Vertical Shear to Bearings 
 
Figure 9.17 shows a fundamental arrangement of a vertical web box girder supported by 
bearings on a pier.  In this arrangement, the pier is sufficiently wide to allow the bearings to be 
placed directly below the axes of the vertical webs.  The diaphragm in this arrangement sees no 
force under the action of vertical loads. 
 

 
 

Figure 9.17 – Concentric Web/Bearing Orientation 
 
Using the diaphragm to transfer vertical forces, the bearings spacing may be reduced and the 
width of the pier cap greatly reduced.  This narrowing of the pier cap provides significant cost 
reduction and can greatly enhance aesthetics.  Figure 9.18 shows this bearing configuration for 
the case of the vertical web box girder.  Using strut and tie modeling, the horizontal forces 
developed by the eccentricity of the web to the bearing can be computed.  Though occurring 
over some depth of the box girder, the transverse reinforcing or post-tensioning used to resist 
the horizontal forces is typically placed near the top of the diaphragm, detailed to fully develop 
the width of the webs. 
 

 
 

Figure 9.18 – Eccentric Web/Bearing Orientation 
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In addition to horizontal transverse tensions, figure 9.19 shows two other force transfer 
mechanisms that need to be investigated when the line of action of the web is eccentric to the 
bearings.  Shear friction at the interface of the web and diaphragm, as shown in the sketch on 
the left in figure 9.19, should be evaluated and reinforced for in accordance with AASHTO LRFD 
requirements.  Locally, web reinforcing at the bottom of the web is subjected to a direct tension 
(seen to the right in figure 9.19) that should be included in the web reinforcing selection at the 
piers and abutments. 
 

 
 

Figure 9.19 –General Shear Friction and Localized Direct Tension 
 
Further cost savings and improved aesthetics are achieved in box girder construction through 
the use of inclined webs.  Figure 9.20 shows the impact on transverse horizontal forces when 
inclined webs are used.  The combination of web slope and bearing offset work to increase 
transverse horizontal force in the diaphragm. 
 

 
 

Figure 9.20 – Vertical Force Transfer with Inclined Webs 
 
As with the case of the vertical web box girders, the bearing spacing can be further reduced in 
bridges with inclined webs to again reduce substructure costs and improve aesthetics.  Figure 
9.21 depicts a box girder with significant eccentricity between the web line of action and 
bearings.  In this instance, transverse post-tensioning is used to “lift” the web forces to the top of 
the diaphragm where they are then transferred to the bearings. 
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Figure 9.21 – Transverse Post-Tensioning in Diaphragms 

9.3.2 Single-Cell Box Girder Transfer of Torsion to Bearings 

Forces acting on the superstructure eccentric to the center of torsion will produce torsional 
moments in the box girder superstructure (see appendix B for further information).  The torsional 
moments are resisted in shear flow around the closed box section.  The shear flow and resulting 
shear stress due to torsion are given by: 

(Eqn. 9.12) 
2

t

o

Mq
A

=

(Eqn. 9.13) 
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t
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i o i

Mq
t A t

t = =

Where: Mt = applied torsional moment (force-length) 
Ao = area bounded by the median line of the wall thickness 
ti = Thickness of the ith member of the cross section (length) 
q = shear flow (force/length) 
τ i = shear stress in the ith member of the cross section (force/length2) 

Figure 9.22 shows the concept of shear flow and the limits of Ao.  The equations presented 
here, along with those typically used for the torsional stiffness of a box girder superstructure, are 
simplified from more complete expressions that include the effect of the cantilever wings. 
Generally speaking, for most box girder bridges, this behavior is small and may be neglected. 

Figure 9.22 – Shear Flow Resulting from Torsional Forces 
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Torsional moments along a span are transferred to the substructure at the bearings.  The shear 
flow in the top slab caused by the torsional moment reaction produces a horizontal force in the 
top slab as shown in figure 9.22.  Diaphragms located at the piers are detailed to resist the 
horizontal force in the top slab, and maintain the integrity of the transverse cross section of the 
superstructure.  Figure 9.23 and figure 9.24 show two common configurations of torsion 
resisting diaphragms.  The diaphragm in figure 9.23 resists torsion in an “A-shaped” 
configuration, while figure 9.24 resists torsion in a “V-shaped” layout.  The tension and 
compression components are evaluated by strut-and-tie models.  Tension forces are resisted by 
either mild reinforcing or inclined post tensioning.  Compressive forces are verified to establish 
minimum torsion diaphragm concrete dimensions. 

Figure 9.23 - A-shaped Torsion Diaphragm 

Figure 9.24 – V-shaped Torsion Diaphragm 

9.3.3 Multi-Cell Box Girder Diaphragms 

Diaphragms of multi-cell box girder bridges are often solid sections within the box girder, with 
longitudinal thickness sufficient to accept and develop the reinforcing from integrally cast 
columns. If no access is provided through the diaphragm generally access hatches have to be 
provided in the soffitt of each box cell for each span. Transverse span-to-depth ratios of the 
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diaphragms between supporting columns is usually such that a strut-an-tie analysis is 
appropriate for determining reinforcing. 

Figure 9.25 shows one possible strut-and-tie layout for the diaphragms of the bridge of design 
example 1 in appendix C.  The forces applied to this model are the summation of shear forces in 
the webs.  The web forces are applied in halves at the top and bottom of the struts aligned with 
the webs.  (This loading pattern is discussed in a 2007 Transportation Research Board article 
entitled “LRFD Design of Integral Bent Caps” by Zayati, Ibrahim and Hida.)  In this example the 
diaphragm is simply supported for simplicity of computing the support reactions and member 
forces. 

Figure 9.25 – Possible Strut-and-Tie Layout for Diaphragm of Design Example 1 

Figure 9.26 shows another possible strut-and-tie layout for the diaphragms of the bridge of 
design example 1.  The alignment of members near the center of compression and tension 
zones in the columns allow for the monolithic connection behavior of the columns to be 
captured. 

Figure 9.26 – Strut-and-Tie Layout Considering Monolithic Column Connection 
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Appendix A—Analysis of Two-Dimensional 
Indeterminate Structures by the Flexibility Method 

1. Introduction

Analysis of continuous bridge superstructures is primarily preformed using stiffness based 
computer solutions that solve the following general equation: 

(Eqn. A.1) [ ] [ ][ ]F K X=

Where: [F] = vector of forces 
[K] = global structure stiffness matrix
[X] = vector of nodal displacements/rotations

The similar general expression in terms of the structure flexibility is: 

(Eqn. A.2)  [ ] [ ][ ]X D F=

Where: [D] = global structure flexibility matrix 

The development of computerized stiffness solutions, over computerized flexibility solutions, 
grew as a result of several factors.  Stiffness solutions lent themselves to more efficient 
programming, an important feature in the early days of computing where CPU costs were very 
expensive.  Stiffness methods also fit well with the predominant hand method of solving 
indeterminate structures, e.g. the Hardy Cross Method of Moment Distribution. 

Hand solutions for solving indeterminate structures by flexibility methods have also been in use 
for some time.  Calperyron produced his Theorem of Three Moments in the 1850’s.  However, a 
generalized flexibility method of indeterminate structural analysis, complementary to Moment 
Distribution, was not generally a part of the American engineer’s educational experience. 

Flexibility solutions of indeterminate structures did, however, continue to develop outside of the 
U.S.  In the 1960’s, Muller and Mathivat summarized a general flexibility method called the 
Method of Joint Flexibilities (or the Flexibility Method).   

Both the Method of Moment Distribution and the Flexibility Method rely on the same basic 
assumptions of linear elastic behavior, generalized beam deflection equations, and 
superposition.  In practice the two methods are easily understood and have their own 
advantages: 

Moment Distribution—Distributing fixed end moments to find final continuity moments. 
Flexibility Method—Restraining simple span rotations to find final continuity moments. 

The Flexibility Method is a very useful tool when coupled with numerical techniques for finding 
simple beam end rotations, such as the Conjugate-Beam Method or Newmark’s Method of 
Numerical Integration.  This is especially true for determining continuity bending moments such 
as secondary moments due to post-tensioning, where simple span rotations can be quickly 
found by equivalent loading or integration of the curvature diagram defined by Fe/EI.  

The Flexibility Method presented in this appendix is that similar to that produced by Muller and 
Mathivat.  This method will serve as the basic analysis method for this Manual. 
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2. Definition of the Problem 
 
Consider a continuous beam defined by members spanning between supports as shown in 
figure A.1.  Nodes are located at the supports and are lettered g through n.  Span ij defines 
them member that spans between nodes i and j.  Nodes i and j, along with the other nodes of 
the structure, are fixed against displacement but are free to rotate.  This one-degree of freedom 
per node indeterminate structure is to be analyzed to by determining member end (continuity) 
moments.   
 
The top diagram in figure A.1 shows the continuous beam subjected to the load p(x) in Span ij.  
This load produces shear forces and bending moments in the continuous beam as shown in the 
second and third diagrams in figure A.1.  The shear forces vary in Span ij because of the loads 
present in that span.  The shear forces in the adjacent unloaded spans are constant and only a 
function of making equilibrium within the member end moments.  Likewise, the bending 
moments in Span ij are related to the continuity moments and loading within that span, where 
the moments in adjacent unloaded spans are only related to the member end moments. 
 
 

 
 

 
Figure A.1 – Continuous Beam Load, Shear and Moment Diagrams 

 
The Flexibility Method is used to solve for continuity moments in each individually loaded span.  
Loaded members are first isolated from the structure and end moments determined based on 
known flexibilities of adjacent restraining spans.  The continuity moments are distributed 
throughout the adjacent spans with distribution and carry-over factors.  The complete analysis of 
a structure loaded in multiple spans is then solved by summing continuity moments of the 
individual spans. 
 
 
3. Sign Convention 
 
Positive sign conventions for the Flexibility Method presented in this appendix are shown in 
figure A.2.  Positive bending moments cause tensile stresses on the bottom of the beam (beam 
designer’s sign convention).  Positive rotations at the ends of the beams are counter-clockwise. 
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Figure A.2 – Bending Moment and Rotation Sign Convention 

4. Simple Span Beam Characteristics

Figure A.3 shows a simple span beam subjected to a bending moment, M(x), and resulting end 
rotations ωi and ωj. 

Figure A.3 – Equations for End Rotations of Simple Beams. 

The end rotations of simple span beams can be expressed by Bresse’s formulae: 

(Eqn. A.3) 
0

1 ( )
L

i
M L x dx

L EI
ω = − −∫

(Eqn. A.4) 
0

1 L

j
Mx dx

L EI
ω = ∫

Simple span beam characteristics for the Flexibility Method are defined as the rotations of the 
beam ends under the action of unit moments applied at the beam ends, as shown in figures A.4 
and A.5. 

Figure A.4 – Bending Moment Diagram for Unit Moment at Node i. 
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Figure A.5 – Bending Moment Diagram for Unit Moment at Node j. 

 Applying a unit moment at node i results in the rotations: 

(Eqn. A.5)  
2

2
0

1 ( )L

i
L x dx a

EIL
ω −

= − =∫

(Eqn. A.6) 2
0

1 ( )L

j
x L x dx b

EIL
ω −

= =∫

Applying a unit moment at node j results in the rotations: 

(Eqn. A.7) 
2

2
0

1 L

j
x dx c
EIL

ω = =∫

(Eqn. A.8) 2
0

1 ( )L

i
x L x dx b

EIL
ω −

= − = −∫

Coefficients a, b, and c are the simple span beam characteristics required in the Flexibility 
Method.  The coefficients are always positive and graphically expressed these coefficients are: 

Figure A.6 – Simple Span Beam Characteristics 
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(Eqn. A.9) 

(Eqn. A.10) 

5. Definition of Support Flexibility and Member Flexibility Coefficients

The development of the Flexibility Method begins with isolating the individual spans and defining 
their behavior as a function of the span characteristics and the rotational restraints offered by 
adjacent spans.  Consider Span ij which is defined between nodes i and j as shown in figure 
A.7.  Span ij is part of an indeterminate planar structure as previously described.  Other
members are connected to nodes i and j in this structure are Span ih and Span jm.

Figure A.7 – Span ij in a Continuous Structure. 

If Span ij was simply supported it would deflect freely and the rotations of the extremities would 
be the simple span rotations ωi and ωj shown in the second sketch of figure A.7.  The adjacent 
connecting members, Span ih and Span jm, restrain these rotations, producing moments Mi 
and Mj.  The simple span rotations caused by the continuity moments Mi and Mj are αi and αj.  
The final end rotations are the values θi and θj which represent the difference between the 
simple span rotations resulting from loads (ω) and the simple span rotations resulting from 
continuity moments (α). 

For a beam with constant inertia: 
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Assuming linear elastic behavior and non-deformable connections between the members, Span 
ij behaves as if each extremity was restrained by a rotational spring simulating the actual 
connecting members, Span ih and Span jm.  The isolated Span ij with equivalent end rotational 
springs is shown in figure A.11. 

 
 

 
 

Figure A.8 – Isolating Span ij 
 
The coefficients Ki/ij and Kj/ij, are called the Support Flexibility Constants, and represent the 
flexibilities that the Span ij feels as a result of its connectivity with the adjacent spans.  The 
flexibility of a support is a positive number varying between zero and infinity (0 and ∞).  The 
constants are equal to zero when the end of the beam is completely fixed.  A simply supported 
beam end has a support flexibility constant of infinity. 
 
The relationship between end rotations and end moments are: 
 
 /i i i ijM Kθ =  
(Eqns. A.11) 
 /j j j ijM Kθ = −  
 
The support flexibilities Ki/ij and Kj/ij are related to the flexibility of the adjacent spans connected 
to Span ij at nodes i and j.  Figure A.9 shows the unloaded adjacent spans with compatible 
rotations θi and θj, subjected to the end moments mi and mj.  Figure A.10 isolates the two 
adjacent members Span hi and Span jm.  The coefficients kih/i and kjm/j, are called the member 
flexibility constants of the adjacent member spans.  They are defined by the span characteristics 
and the support flexibilities at the far ends of the spans. 

 
 

 
 

 
Figure A.9 – Compatible rotations of adjacent members 
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Figure A.10 – Adjacent Member Flexibilities 
 
 
The relationship between end rotations and end moments are: 
 
 /i i hi im kθ =  
(Eqns. A.12) 
 /j j jm jm kθ = −   
 
Setting equations A.11 and A.12 equal to each other we see that: 
 
 / /i ij hi iK k=  
(Eqns. A.13) 
 / /j jm jm jK k=  
 
The equality of the support flexibilities with the adjacent member flexibilities, as shown in 
equations A.13, are true for the case of continuous beams with only one span framing into Span 
ij.  When several members frame into nodes i and j, the summation of moments result in: 
 

(Eqn. A.14) 
/ /

i i
i i

h j h ji ij hi i

θ θM m
K k≠ ≠

= = =∑ ∑  

 

(Eqn. A.15) 
/ /

j j
j j

m i m ij ij jm j

θ θ
M m

K k≠ ≠

= − = = −∑ ∑  

 
 
From these expressions, the general relationships between support and adjacent beam end 
flexibilities are: 
 

 
/ /

1 1

h ji ij hi iK k≠

= ∑  

(Eqns. A.16) 
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6. Relationship between Support Flexibility Constants and Continuity Bending 
Moments 

 
The next step in the development of the Flexibility Method is to express continuity bending 
moments as a result of restraining side spans in relation to the flexibilities that those spans 
provide through Support Flexibility Constants. 
 
By superposition, we define the final rotations in the continuous beam as the summation of the 
simple span rotations under the action of the applied loads and the rotations resulting from the 
continuity moments: 
 i i iθ ω α= +  
(Eqns. A.17) 
 j j jθ ω α= +  
 
Knowing beam characteristics for Span ij (a, b, and c) the rotations of the simple span beam 
resulting from the continuity moments can be written as: 
 
 i i jaM bMα = − −  
(Eqns. A.18) 
 j i jbM cMα = +  
 
Combining equations A.17 and A.18 the final rotations are: 
 
 i i i jaM bMθ ω= − −  
(Eqns. A.19) 
 j j i jbM cMθ ω= + +  
 
Recalling that the final rotations in the continuous beam are also defined to be equal to the 
continuity moment times the support flexibility constant (equation A.11), we can write: 
 
 /i ij i i i jK M aM bMω= − −  
(Eqns. A.20) 
 /j ij j j i jK M bM cMω− = + +  
 
Solving for the continuity moments Mi and Mj we find: 
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(Eqns. A.21) 
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For the special case of a beam fixed against rotations at both ends, Ki/ij and Kj/ij equal zero, 
and: 

2
i j

i
c b

M
ac b
ω ω+

=
−

(Eqns. A.22) 

2
i j

j
b a

M
ac b
ω ω+

= −
−

 

Comparing equations A.21 and A.22, the elastically restrained span is equivalent to a perfectly 
fixed span having the effective flexibilities of: 

/' i ija a K= +

(Eqns. A.23) 'b b=

/' j jic c K= +

For a span perfectly fixed and with constant inertia, the coefficients of flexibility are equal to 
those of equations A.9 and A.10 and equations A.21 can be reduced to: 

( )2 2i i j
EIM
L

ω ω= +  

(Eqns. A.24) 

( )2 2j i j
EIM
L

ω ω= − +  

7. Relationships between Support Joint Flexibilities and Member End Flexibilities

Determining the support constants Ki/ij and Kj/ji requires the determination of the member end 
flexibilities kih/i and kjm/j of the members connecting the Span ij to the structure.  Consider Span 
hi which is to the left of Span ij.   

Figure A.11 – Member End Flexibility for Span hi 

Apply a moment mi at the i end of Span ih.  The resulting end moments in relation to end 
rotations are: 
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 /h h hi hK mθ =  
(Eqns. A.25) 
 /i hi i ik mθ =  
 
The end rotations in terms of the beam characteristics are: 
 
 h h iam bmθ = − −  
(Eqns. A.26) 
 i h ibm cmθ = +  
 
Equating equations A.25 and A.26: 
 
 /h hi h h iK m am bm= − −  
(Eqns. A.27) 
 /hi i i h ik m bm cm= +  
 
Solving for khi/i: 
 

(Eqn. A.28)   

 
If we perform the same analysis for Span jm, which is to the right of Span ij, we can solve for 
kjm/j: 
 

(Eqn. A.29)   

 
 
In developing a solution for all spans of the structure, we will require the member end flexibilities 
at either end of each span.  For convenience, therefore, we will write the relationships between 
member end flexibility and support flexibility in a more generic form in terms of Span ij: 
 

(Eqn. A. 30) 
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ij i
j ij

bk a
c K

= −
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(Eqn. A. 31) 
2

/
/

ij j
i ij

bk c
a K

= −
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Consider two special conditions of known boundary conditions: 
 

a. For a member simple supported at the i end, the flexibility of the support Ki/ij is equal to 
infinity and the member end flexibility reduces to: 
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(Eqn. A.32)   
 

b. When the i end of the member is fixed, the flexibility of the support Ki/ij is equal to zero 
and the member flexibility becomes: 

 

(Eqn. A.33)   

 
 
8. Carry Over Factors 
 
In the previous section we developed the member end flexibilities as a function of beam 
characteristics and the support flexibility at the other end of the beam.  The top of figure A.12 
shows this modeling for Span ij.  The bottom figure shows the moment diagram when there are 
no loads in the span.  It is convenient to express the ratio of the moment at the i end of Span ij 
to the moment at the j end.  For this reason, we define the Carry Over Factor as the ratio of mi 
to mj. 
 

 
 

Figure A.12 – Carry Over Factor from j to i 
 
Equating the end rotations at i to those of the restraining side span to the left of i: 
 
(Eqn. A.34)   
 
Rearranging and combining like terms: 
 
 (Eqn. A.35)   

 
 
From this we can define the Carry Over Factor from i to j: 
 

(Eqn. A.36)   
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Considering Span in the opposite direction, as if it were a member restraining the right end of a 
loaded span, we would find: 
 

(Eqn. A.37)   

 
Consider two special conditions of known boundary conditions: 
 

a. For a member simple supported at the i end, the flexibility of the support Ki/ij is equal to 
infinity and the Carry Over Factor is equal to zero.  This is intuitive, as there is no 
adjacent member connected at i to attract any bending moment. 

 
b. When the both ends of the member are fixed, the flexibility of the supports is equal to 

zero and the Carry Over Factors are: 
 

 ij
b
c

f = −  

(Eqns. A.38) 

 ji
b
a

f = −  

 
If this span has constant inertia over its length: 

 

(Eqn. A.39)  
1
2ij jif f= = −  

 
 
9. Continuity Moments Expressed by Carry Over Factors 
 
The Carry Over Factors developed in the previous section can be substituted into the 
relationships for bending moment as a function of beam characteristics and joint support 
flexibilities (equations A.21) to produce the following simplified expressions: 
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(Eqn. A.40) 
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For a symmetric span symmetrically loaded,  
 
(Eqn. A.41)   
 
 



Post-Tensioned Box Girder Design Manual  June 2016 

Appendix A – Flexibility Method  239 of 369  
 

 

 
1

1
ji ij

i
ij ji

M
b

f f
ω

f f

 +
= −   − 

 

(Eqns. A.42) 
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For a symmetric span, symmetrically loaded, with symmetrical support flexibilities, 
 
 / /i ij j ijK K=  
(Eqns. A.43) 
 ij jij f f= =  
 
  

(Eqn. A.44) 
1i jM M

b
f ω

f
 

= = − + 
 

 
 
For a span hinged at support i, 
 
 0f =  
(Eqns. A.45) 
 0ijM =  
 

(Eqn. A.46)   

 
 
10. Distribution Coefficients of Moments at Nodes. 
 
In equations 14, 15 and 16 of section 5, we considered the development of the support 
flexibilities when multiple members frame into node i and all work to restrain Span ij.  Bending 
moments developed by the restraining members must be distributed between the elements 
which frame together at node i.  

 

 
 

Figure A.13 – Moment Equilibrium at Node i 
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(Eqn. A.47)  
 
(Eqn. A.48)  
 

(Eqn. A.49)  

 
Remembering that stiffnesses are the inverse of flexibility 
 

(Eqn. A.50)   

 
The distribution of bending moments at nodes is therefore, proportional to the relative stiffness 
of the elements framing at joint i. 
 
 
11. Solving the Structure 
 
We have seen that any Span ij is defined by the member characteristics and the Support 
Flexibilities Ki/ij and Kj/ij.  The span is first isolated from the structure and analyzed for the 
applied loads to determine continuity moments.  The distribution of the continuity moments to 
other elements framing into the supports is made in proportion to their relative stiffnesses using 
distribution factors.  The moments at the far end of adjacent spans is found through the carry-
over factors. 
 
For plane frame structures (open systems) the solution begins at a known boundary condition, 
such as and end span whose extremity is free to rotate. The needed coefficients are then 
determined first working left to right from the known boundary condition at the left, and then 
work right to left from the known boundary condition at the right. 
 
In the case of closed systems, such as the cross section of a box girder bridge, the 
determination of the support flexibilities can be made by successive approximations of one 
support and then calculating the others in order.  Typically, few analyses around closed 
structure are required to have the assumed value converge to that derived by the analysis. 
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12. Summary of Equations 
 
 
Support Flexibilities: 

(Eqn. A.51)    

(Eqn. A.52)   

 
Member Flexibilities: 

(Eqn. A.53)   

(Eqn. A.54)   

 
 
Carry-Over Factors: 

(Eqn. A.55)   

 

(Eqn. A.56)   

 
 
End Moments of the Loaded Span:  
 

(Eqn. A.57)  
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(Eqn. A.58)  
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Distribution Factors: 

(Eqn. A.59)  // /
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13. Example – Flexibility Analysis of a 3 Span Continuous Beam 
 
The three-span example bridge being developed in this Section is shown schematically in figure 
A.14.  The cross section of the superstructure of the box girder is shown in figure 5.9 in chapter 
5 of this manual.   
 
 

 
 
 

Figure A.14 – Model of 3-Span Bridge for Example 1 
 
 

13.1 Span Properties and Characteristic Flexibilities 
 
The cross section properties of the box girder superstructure shown in figure 5.9 in chapter 5 of 
this manual are: 
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The characteristic flexibilities for the 120’ Span are: 
 
 
 
 
 
 
 
 
 
The characteristic flexibilities for the 160’ Span are: 
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13.2 Analysis Left to Right 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13.3 Analysis Right to Left  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13.4 Carry-Over Factors  
 
For the Superstructure: 
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13.5 Effect of a Unit Uniform Load 

The beam end rotations when loaded by a downward acting unit uniform load are: 

The beam characteristics of the 120’ end spans are: 

The beam characteristics of the 160’ center span is: 

The moments in Span 1 are: 

The end moments in Span 2 are: 

The other end moments in Span 2 and 3 are known by symmetry: 

The bending moments diagrams for the load in each span and the total of all moments is shown 
in figure 5.11. 
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Figure A.15 – Moment Diagram for a Unit Uniform Load 
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14. Frames Braced Against Side-Sway 
 
The previous analysis considered a three-span beam horizontally restrained by a hinged 
support at the left end of the beam.  Now consider a framed structure where the beam in 
integrally connected to supporting columns as shown in figure A.16.  The columns, designated 
by the node number of the beam at the top of the column and the letter at the base of the 
column, are fixed at the base. 
 

 
 

Figure A.16 – Moment Diagram for a Unit Uniform Load 
 
Figure A.17 shows and individual column, applied pier top forces Q and M, and the resulting 
pier top rotations and deflections.  Column characteristic flexibilities are required in order to 
define top of pier lateral and rotational flexibilities. 
 

 
 

Figure A.17 – Cantilever Column 
 
 
The general equations for pier top displacements are: 
 

(Eqns. A.60)   
 
 
For a moment M applied at the top of the pier: 
 

(Eqns. A.61)   
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For a force Q applied at the top of the pier: 

(Eqns. A.62) 

For unit forces and moments the rotations and displacements become the pier flexibilities 
summarized as: 

(Eqns. A.63) 

The equations describing the rotation and deflection at the top of the pier are expressed as: 

(Eqn. A.64)  

(Eqn. A.65)  

For the case of a framed braced against side-sway, the lateral deflection equals zero: 

(Eqn. A.66)  

(Eqn. A.67) 

Substituting equation A.67 into A.64:

 (Eqn. A.68)  

Rearranging terms: 

(Eqn. A.69) 

From which we define the pier top rotational flexibility as: 

(Eqn. A.70) 

We can also compute a carry-over factor from the top to the bottom of the pier by considering 
equilibrium: 

 (Eqn. A.71) 
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Substituting equation A.67 into A.71: 
 

(Eqn. A.72)   

 

(Eqn. A.73)   

 
For a pier of constant inertia: 
 

(Eqn. A.74)   

 
 
With the pier top rotational flexibility and the carry-over factor from the top to the bottom of the 
pier, the framed structure braced against side-sway can be solved. 
 
 
15. Multiple Pier Elements 
 
The flexibility of the supporting piers can vary with height.  Gradual variations, such as linear 
tapers of pier width are accounted for in the development of basic flexibility characteristics 
beginning with equation A.60.  Abrupt changes in column properties or where foundation 
elements are modeled with equivalent vertical members, as shown in figure A.18, are treated 
using the following relationships: 
 
 
(Eqn. A.75)   
 
(Eqn. A.76)   
 
(Eqn. A.77)   
 
 

 
 

Figure A.18 – Column with Multiple Elements 
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16. Side-Sway Correction 
 
Figure A.19 shows the lateral displacement for a column rigidly connected to superstructure 
girder. 

 
 

Figure A.19 – Column in a Rigid Frame 
 
For a unit lateral displacement, the general equations of deflection given in equations A.66 and 
A.67 become: 
 
(Eqn. A.78)   
 
(Eqn. A.79)   
 
Where K is the joint flexibility provided by the restraining superstructure: 
 

(Eqn. A.80)  /

/ /

1
1 1j jn

ij j jk j

K

k k

=
+

 

 
Solving equation A.78 for Q, substituting the results into equation A.79, and rearranging, the 
moment at the top of the pier from the unit lateral displacement is: 
 

(Eqn. A.81)   

 
Solving for the shear in the column: 
 

(Eqn. A.82)   

 
By equilibrium, the moment at the bottom of the column is: 
 
 (Eqn. A.83)   
 
Side-sway corrections are made by restraining shears for the frame braced against side-sway 
and then applying the release of the sway by adding the moments due to side-sway scaled to 
have equity with the base shear. 
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17. Example Problem with Side-Sway 
 
The three-span bridge being designed in example 1 is shown schematically in figure A.20.  The 
piers consist of two, 6’ diameter columns at supports B and C.  Each concrete column is 
supported by a 7’ diameter drilled shaft.  The equivalent length of drilled shaft based on the soil 
characteristics at this site has been determined to be 10’.  The modulus of elasticity of all 
concrete is assumed constant for this example. 
 
 

 
 

Figure A.20 – Model of 3-Span Bridge for Example 1 
 
17.1 Span Properties and Characteristic Flexibilities 
 
The moment of inertia for the superstructure is: 
 
 
 
The characteristic flexibilities for the 120’ Span are: 
 
 
 
 
 
 
 
 
The characteristic flexibilities for the 160’ Span are: 
 
 
 
 
 
 
 
 
17.2 Column and Drilled Shaft Characteristic Flexibilities 
 
The gross moment of inertias for the 7’ diameter drilled shafts and the 6’ diameter columns are 
(2 columns at each support): 
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The characteristic flexibilities for the 10’ Drilled Shafts are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The characteristic flexibilities for the 20’ Columns are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The combined flexibilities for the column/drilled shaft foundations at the top of the rigid 
connection at the center of gravity of the bridge deck are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The combined pier top flexibilities when sidesway is restrained are: 
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17.3 Analysis Left to Right 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17.4 Analysis Right to Left  
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17.5 Carry-Over Factors  
 
For the Superstructure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the Substructure: 
 
 
 
 
 
17.6 Distribution Factors  
 
Moment at 2 end of member 21: 
 
 
 
 
 
 
 
 
 
 
 
 
Moment at 2 end of member 23: 
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Moment at 3 end of member 32 (by symmetry): 
 
 
 
 
 
Moment at 3 end of member 34 (by symmetry): 
 
 
 
 
 
The distribution of moments at the top of Column 2B to the adjacent spans are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For a moment at the top of Column 3C (by symmetry): 
 
 
 
 
 
17.7 End Moments for Unit Uniform Load  
 
The beam end rotations when loaded by a downward acting unit uniform load are: 
 
 
 
 
 
The beam characteristics of the 120’ end spans are: 
 
 
 
 
 
The beam characteristics of the 160’ center span is: 
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The moments in Span 1 are: 
 
 
 
 
 
 
 
 
The end moments in Span 2 are: 
 
 
 
 
 
 
The end moments in Span 3 (by Symmetry), 
 
 
 
 
17.8 Distribute End Moments across the Structure  
 
Carry-Over Factors are applied to compute the moments at the adjacent supports. 
 
Load in Span 1: 
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Load in Span 3: 
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17.9 Effect of a Unit Uniform Load  
 
 

 
 
 

Figure A.21 – Moment Diagram for a Unit Uniform Load 
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17.10 Side-Sway Correction  
 
For a unit lateral displacement of a top of the piers (see appendix A): 
 
 
 
 
 
 
 
 
 
From the analysis above: 
 
 
 
 
 
 
 
From which we derive: 
 
 
 
 
 
And the distribution factors for moments in the piers: 
 
 
 
 
 
 
 
The bending moment and shear force developed at the top of each pier as each pier is 
displaced a unit dimension while the second pier is stationary are: 
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Figure A.22 shows the distribution of the bending moments around the frame for Pier 2B, Pier 
3C, and the sum of the bending moments for a unit side-sway.  The base shear created for this 
unit side-sway is: 
 
 
 
 
 
Side-sway corrections are made by restraining shears for the frame braced against side-sway 
and then applying the release of the sway by adding the moments due to side-sway scaled to 
have equity with the base shear. 
 
 

 
 

 
Figure A.22 – Moment Diagram for a Unit Lateral Side-Sway 
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Appendix B—Torsion 
 
This Appendix presents information related to the torsional characteristics of box girder bridges.  
A review of torsion in a solid circular bar is first presented to establish basic concepts.  This 
information is then extended to the torsional behavior of a thin wall closed shape, specifically, 
the single-cell box girder.  Lastly, torsional characteristics of multiple-cell box girders are 
presented. 
 
1. Torsion in a Circular Shaft 
 
The circular shaft is unique with regard to torsion in that the relationship between torsional 
moment and rotation can be determined directly from kinematics, equilibrium, and constitutive 
laws.  Consider a circular shaft shown in figure B.1 with length L and outside radius R.  Radius r 
denotes the location of point p within the cross section of the bar.  The bar is assumed to be 
comprised of a perfectly elastic, homogeneous and isotropic material.  The circular bar is 
subjected to an externally applied torsional moment Mt at one end which is resisted by an equal 
and opposite torsional moment at the opposite end.  The application and restraint of the 
torsional moments is such that regions of discontinuity in torsional deformations are not created 
at the ends of the bar.  The resulting nature of torsional deformation is constant throughout the 
length of the bar. 
 
 

 
 

 
Figure B.1 – Circular Bar Subjected to Torsional Moment 

 
 
Concepts of equilibrium and compatibility of deformations are investigated to determine how a 
series of points within a cross section displace under the action of a torsional moment.  Figure 
B.2 presents the circular bar of figure B.1 subdivided into distinct segments of length ∆x.  
Equilibrium requires that when the segments of the beam in figure B.2 are separated, the 
externally applied torsional moment, Mt, must be acting equally and oppositely at either end of 
all segments.   
 
As the same torsional moment is applied to each segment, each segment will deform in the 
same manner.  The kinematics of the individual segments must be such that there is 
compatibility of the shape of radial lines when the segments are reassembled.  Figures B.3, B.4, 
and B.5 kinematically consider three different options for the deformations of radial lines.  In all 
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cases, the twist on the exterior surface of the bar in these three figures is equal.  The plane 
ABCD defines a plane through the center of the bar. 
 
 
 

 
 

 
Figure B.2 – Segmented Circular Bar 

 
 
Figure B.3 shows a non-linear deformation of radial lines in which the rate of displacement 
diminishes with distance from the center of twist.  The deformed lines B’C’ and A’D’ in both 
element i and i+1 are consistent for the direction of the applied torsional moments.  Inspection 
of the deformed radial lines at the interface of segments i and i+1 reveals that geometric 
compatibility will not allow the reassembly of the two segments when a differential rotation is 
applied to align point E’ to B’ and point H’ to C’. 
 
 
 

 
 

Figure B.3 – Kinematic Study 1 
 
 
Figure B.4 shows a second form of non-linear deformation of radial lines in which the rate of 
displacement increases with distance from the center of twist.  As with the previous case, the 
radial lines at the interface of segments i and i+1 cannot be re-joined while respecting geometric 
compatibility. 
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Figure B.4 – Kinematic Study 2 
 
 
Figure B.5 presents a third alternative of the deformed shape of radial lines within cross 
sections of the circular bar.  In this alternative, the rate of displacement is constant across the 
diameter of the bar.  The resulting shape B’C’ and A’D’ is linear.  A rigid body rotation of the i+1 
segment allows it to be rejoined to the ith segment. 
 
 
 

 
 
 

Figure B.5 – Kinematic Study 3 
 
 
The linear displacement of radial lines within the cross sections of a circular bar has important 
implications.  Figure B.6 shows a circular bar subjected to a torsional moment.  The figure 
shows a radial plane abcd and the deformed plane a’b’c’d’.  The maximum rotation at the end of 
the beam is denoted f.  The previous kinematic study indicates that f varies linearly along the 
length of the bar.  A rate of change of twist, θ, can be defined as: 
 
 

(Eqn. B.1)  
L
fθ =   
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Figure B.6 – Linear Twisting of the Circular Bar 

 
 
Shear strain, γ, is also shown in figure B.6.  It is defined as the circumferential displacement of a 
point in a cross section divided by the length of the bar to the cross section under consideration.  
The maximum shear strain, on the outer surface of the bar, at the end of the bar is: 
 

(Eqn. B.2)    

 
The linear displacement radial lines of the cross section coupled with the assumed material 
characteristics imply a linear distribution of shear stress within the cross section of the bar as 
shown in figure B.7.  Equilibrium within the bar requires that, for small rotations, longitudinal 
shear stresses in the bar are also present.  Shear stress on an element of the exterior surface of 
the bar is shown in figure B.7.  Shear stresses are zero along the center of twist and maximum 
at the exterior radius of the bar. 
 

 
 

Figure B.7 –Shear Stresses and Shear Strains in the Circular Bar 
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Continuing with the development of relationships between applied torsional moment and 
resulting rotations, consider a distinct element of length dx of the bar shown in figure B.8. 
 

 

 
 

Figure B.8 – Element of the Circular Bar 
 
Previously defined equations can be rewritten for the element of the bar shown in figure B.8.  
The rate of twist becomes: 

(Eqn. B.3)   

 
And the strain is defined as: 

(Eqn. B.4)   

 
It can also be seen in figure B.8 that the displacement ds over the length dx is equal to: 
 
(Eqn. B. 5)   
 
Substituting equation B.5 into equation B.4, 
 

(Eqn. B.6)  

 
Substituting equation B.3 into equation B.6, 
 
(Eqn. B.7)   
 
This equation says that the shear strain at any distance from the center of twist is the rate of 
twist multiplied by the radial distance, with a maximum shear strain at the outer surface of the 
circular bar. 
 
Considering now the linear elastic behavior of the bar, the shear stress shown in figure B.7 is 
related to strain by Hooke’s Law: 
 
(Eqn. B. 8)   
 
Substituting the expression for shear strain in equation B.7 into equation B.8 we find: 
 
(Eqn. B. 9)   
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Consider the equilibrium between the externally applied torsional moment and the resisting 
shear stress in the plane of a cross section within the bar.  As shown in figure B.8, call the shear 
stress acting over a small element of surface area dA a force dV.  The magnitude of the force is: 
 
(Eqn. B. 10)  
 
The element of torsional moment caused by the force dV is 
 
(Eqn. B. 11)   
 
Integrating the incremental torsional moments over the cross sectional area yields 
 
(Eqn. B. 12)   

 
Or, 
 
(Eqn. B.13)   

 
The integral represents a cross section characteristic known as the torsional constant J: 
 
(Eqn. B. 14)  

 
For the unique case of the circular bar, the torsional constant equals the polar moment of 
intertia: 
 
(Eqn. B.15)  

 
For a solid circular shaft the polar moment of inertia is: 
 

(Eqn. B.16)   

 
So, we relate the torsional moment to rotation as follows: 
 
(Eqn. B.17)   
 

(Eqn. B.18)   

 

(Eqn. B.19)  

 
The shear stress becomes: 

(Eqn. B.20)   
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The relationships between torsional moment, rotation, and shear stress are consistent with 
those found by a Saint Venant Semi-Inverse solution incorporating Prandtl’s Stress Function to 
more easily address boundary conditions.  The fundamental assumptions of Saint Venant 
Torsion are: 
 

• Cross sections of the bar are assumed to rotate as rigid bodies. 
• Warping of the cross sections is not restricted, but warping at any point in the cross 

section is constant along the length of the bar. 
 

 
2. Torsion in a Closed Thin-Walled Shaft 
 
The approach taken for developing torsional characteristics of the circular bar are extended to a 
hollow closed shaft as shown in figure B.9.  The length of the shaft is L and the thickness of the 
wall of the shaft is t. The derivation of the torsional constant for the thin-walled shaft is based on 
Saint Venant shear and the assumption that the wall thickness is small compared to the overall 
dimensions of the cross section. 
 

 
 

Figure B.9 –Closed Thin-Wall Shaft 
 
 
The torsional moment applied to the closed thin-wall shaft will produce shear stress around 
shaft’s the cross section.  Figure B.10 shows an element of the shaft shown in figure B.9 with 
length dx.  It is convenient to define a system of coordinates where the local x axis is oriented in 
the direction of the global X axis, the s axis is tangential to the centerline of the wall at any 
location within the cross section, and the n axis is normal to the local tangent.  The shear 
stresses produced by the torsional moment on the cross section are then labeled τxs. 
 
It is also convenient, for reasons about to be seen, to introduce the concept of shear flow, q.  
The shear flow is an expression of the shear stress integrated over the thickness of the wall. 
 
 

(Eqn. B.21)   

 
Assuming a linear variation in shear stress across the wall thickness, the expression for shear 
flow becomes: 
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(Eqn. B.22)  

 
Where the shear stresses in equation B.22 are the shear stresses at the inner face and outer 
face of the wall.  The assumption of a thin wall simplifies this equation to an expression where 
the shear stress is assumed constant over the thickness of the wall: 
 
(Eqn. B.23)   
 
In each of these expressions the wall thickness t is assumed to be variable along the s axis. 
 
Figure B.10 includes a segment of the hollow cross section, of width dx and length ds, subjected 
to the incremental forces of shear flow.  Tangential shear flow is labeled qxs.  Equilibrium of the 
segment requires the presence of incremental shear flow forces in the longitudinal direction, 
labeled qsx.  As there is no net longitudinal force applied to the shaft, equilibrium of the segment 
in the longitudinal direction also requires that the incremental shear flow forces qsx must be 
equal and opposite.  Satisfaction of these two conditions of equilibrium means, that while shear 
stresses vary as a function of wall thickness at the point where shear stresses are being 
considered, shear flow is constant around the hollow thin-walled cross section.   
 
 

 
 

Figure B.10 – Segment of Closed, Thin-Wall Shaft 
 
The shear flow around the cross section must be in equilibrium with the applied torsional 
moment.  Figure B.11 shows an end view of the cross section of the hollow thin-walled shaft 
with an applied torsional moment Mt. 
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Figure B.11 – Equilibrium in the Cross Section of the Thin Wall Closed Shaft 

The tangential force caused by the shear flow over ds is: 

(Eqn. B. 24)  

The torsional moment caused by this force is: 

(Eqn. B. 25) 

The dimension h is the perpendicular distance from the line of action of dV to the center of 
rotation.  Define a differential area dA as the triangle enclosed by rays from the center of 
rotation to the beginning and end of element ds.  The area of the triangle is: 

(Eqn. B.26)  

Solving equations B.24 and B.25 for (h)ds and setting them equal to each other produces: 

(Eqn. B.27) 

Or, 

(Eqn. B. 28) 

The torsional moment is found by integrating this equation around the median line of the wall 
thickness: 

(Eqn. B.29) 2 ( )tM q dA q h ds= =∫ ∫ 
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(Eqn. B. 30) 

Where Ao is the area bounded by the median line of the wall thickness.  This expression can be 
written into two other convenient forms: 

(Eqn. B.31) 

(Eqn. B.32) 

Consider now the kinematics of an element on the wall of the thin tube.  Figure B.10 also 
includes a sketch of the deformation of an element of the hollow thin-walled shaft.  The torsional 
load leads to displacements of the element in the x direction (u) and s direction (v).  The shear 
strain in this element is defined as: 

(Eqn. B.33) 

Where, 

(Eqn. B.34) 

Applying Hooke’s Law, shear stress divided by the shear modulus can be substituted for strain: 

(Eqn. B.35) 

This equation can be rearranged to solve for the axial displacement du: 

(Eqn. B.36) 

As there is no longitudinally applied load, equilibrium with the applied external forces requires 
that the sum of all longitudinal displacements must be equal to zero, or: 

(Eqn. B.37) 0du =∫
Equation B.36 can be substituted into equation B.37 to give: 

(Eqn. B.38) 0xs dv ds
G dx

t − = 
 ∫

Or, 
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For small angles, the tangential displacement dv is also equal to the differential twist multiplied 
by the perpendicular dimension from the center of twist, h: 
 
(Eqn. B. 39)   
 
Inserting equation B.39 into B.38 and rearranging: 
 

(Eqn. B.40) ( )xs dds h ds
G dx

t f
=∫ ∫ 

 

  
Substituting the rate of twist as defined in equation B.3 into this expression yields: 
 

(Eqn. B.41) ( )xs ds h ds
G

t
θ=∫ ∫ 

 

 
Twice the area enclosed by the centerline of the wall thickness can be substituted for the 
integral on the right side of this expression to produce: 
 

(Eqn. B.42) 2xs
ods A

G
t

θ=∫  

  
The shear stress in the integral on the left side of this expression can be replaced with the shear 
flow divided by the wall thickness.  Multiplying both sides of the resulting equation by the shear 
modules produces: 
 

(Eqn. B.43) 2
( ) o
dsq GA

t s
θ=∫  

  
This equation can be rearranged to produce a relationship between the rate of twist and shear 
flow: 
 

(Eqn. B.44) 
2 ( )o

q ds
GA t s

θ = ∫  

 
The work developed in this and the previous section resulted in two expressions for the torsional 
moment.  equation B.17 and B.30 state: 
 
 
(Eqns. B.17 and B.30)            
 
 
 
Equating these two equations and solving for the rate of twist produces: 
 

(Eqn. B. 45)   

 
Now equations B.44 and B.45 can be set equal to each other: 
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(Eqn. B.46) 2
2 ( )

o

o

qA q ds
GJ GA t s

= ∫

And finally, the torsional constant for the hollow thin-walled shaft can be determined: 

(Eqn. B.47) 
24

( )

oAJ ds
t s

=

∫

For concrete box girder sections, the closed loop integral in the denominator of equation B.47 is 
often more conveniently expressed as a discrete summation.  The equation for the torsion 
constant then becomes: 

(Eqn. B.48) 

Where, si is the length, and ti the thickness of, each of the n individual elements comprising the 
closed cross section. 

Example 1:  Consider the cross section of a single-cell box girder used in chapter 8, 
Transverse Analysis.  The dimensions of the cross section are shown in figure B.12. 
Figure B.13 shows the idealized thin wall members of the box along with their lengths 
and average thicknesses. 

Figure B.12 –Example Single Cell Box Girder 



Post-Tensioned Box Girder Design Manual  June 2016 

Appendix B - Torsion  272 of 369  
 

 
 

Figure B.13 – Idealized Thin-Walled Members 
 
The coordinates of points 1 through 8 are shown in table B.1.  The dimensions of the 
thin wall members and a computation of equation B.48 denominator is shown in table 
B.2. 
 
 

Point x y 
1 4.75 8.4583 
2 10.6326 7.9598 
3 7.7545 0.7646 
4 4.3306 0.375 
5 -4.3306 0.375 
6 -7.7545 0.7646 
7 -10.6326 7.9598 
8 -4.75 8.4583 

 
Table B.1 – Coordinates of Points Defining the Thin-Walled Section 

 
 

Element S (ft) t (ft) s/t 
8-1 9.5 0.75 12.667 
1-2 5.904 1.245 4.742 
2-3 7.749 1.333 5.813 
3-4 3.446 1.606 2.146 
4-5 8.661 0.75 11.548 
5-6 3.446 1.606 2.146 
6-7 7.749 1.333 5.813 
7-8 5.904 1.245 4.742 

  
Sum 49.617 

 
Table B.2 – Thin-Walled Section Member Dimensions 

 
The results for the area enclosed by the mid-line of the thin-walled section and the 
summation of member lengths divided by their average thicknesses are: 
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Note that the cantilever wings do contribute to the torsional constant for the cross section shown 
in figure B.13.  This value of this contribution is, however, small with regard to the contribution of 
the closed cell, and is typically not considered.  In an instance where it was considered, thin 
open appendages to a closed cell would add torsional constant with the equation for a thin cross 
section which is: 
 

(Eqn. B.49)   

 
The total torsional constant would then be: 
 

(Eqn. B.50)   

 
Where m is the number of open appended thin wall sections with depth bk and thickness tk.  For 
the example problem above, the average thickness of the cantilever wings is 1.035’ and the 
length of the cantilever is 10.952’.  The resulting contribution of the torsional constant is: 
 
 
 
 
 
 
This value represents approximately 0.5 percent of the torsional constant of the closed section. 
 
3. Torsion Multi-Cell Box Girder 
 
Torsional moments applied to box girder cross sections comprised of multiple closed cells will 
be resisted by the sum of shear flows around the individual cells.  Compatibility of deformation 
of the cross section requires that all cells will rotate the same amount when loaded in torsion.  
This is based on the assumption that the width of the cross section is small with regard to the 
span length.  Care should be taken when the ratio of span length to box girder width is less than 
four.  In wide bridges, torsional moments tend are often resisted by differential bending in the 
outer webs. 
 

2
44(144.68) 1687.5

49.617
J ft= =

2144.68oA ft=

8

1
49.617i

i i

s ft
t=

=∑

3
410.952(1.035)2 8.095

3
J ft

 
= = 
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Figure B.14 shows a typical two-cell box girder superstructure cross section. The applied 
torsional moment, Mt, is resisted by the sum of torsional moments in each of the cells.  The 
moments in the cells produce shear flows q1 in Cell 1 and q2 in Cell 2. 
 
 

 
 

Figure B.14 – Two-Cell Box Girder Superstructure 
 
 
In the previous section the relationship between applied torsional moment and shear flow in a 
single-cell closed shape was presented in equation 30: 
 
(Eqn. B.30)   
 
For the case of a two-cell structure, this relationship becomes: 
 
(Eqn. B.51)   
 
Or, for any number of cells: 
 

(Eqn. B.52)   

 
Equation B.44, repeated below, presents an expression for the rate of twist as a function of the 
member dimensions: 
 

(Eqn. B.44) 
2 ( )o

q ds
GA t s

θ = ∫  

   
As the shear flows from adjacent cells will impact the shear flow of a particular cell in members 
that are shared in common, a statically indeterminate solution is required to solve for the 
individual shear flows. 
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The rotations of the two cells are expressed as the net shear flows: 
 

(Eqn. B.53) 1 1 2
1 12

1
2 ( ) ( )o

ds dsq q
GA t s t s

θ
 

= −  
 

∫ ∫

 

 

(Eqn. B.54) 2 2 1
02 21

1
2 ( ) ( )

ds dsq q
GA t s t s

θ
 

= −  
 

∫ ∫

 

 
Where, the open integral portions in the equations are the shear flow in the common members 
multiplied by the lengths of the adjoining sections divided by their thicknesses. 
 
Compatibility of deformations requires that: 
 
(Eqn. B. 55)   
 
This allows us to rewrite equations B.53 and B.54 as: 
 
(Eqn. B. 56)   
 
(Eqn. B. 57)   
 
 
Where the shape constants are defined as, 
 

(Eqn. B.58) 1
1 ( )

ds
t s

d = ∫  

   
 

(Eqn. B.59) 2
2 ( )

ds
t s

d = ∫  

 
And, 
 

(Eqn. B.60)  12 21
12 ( )

ds
t s

d d= = − ∫  

 
 

(Eqn. B.61)  11 12 1

221 2 2
2 o

o

Aq
G

Aq
d d

θ
d d

    
=     

     
 

 
The shear flows, q1 and q2, can be solved in terms of the constant Gθ.  The torsional constant 
can then be found remembering the relationship between torsional moment and rate of twist 
presented in equation B.17 and repeated here: 
 
(Eqn. B. 17)   
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Example 2:  Determine the torsional constant, J, for the cross section of the two-cell box 
girder shown in figure B.15. 
 

 

 
 

 
Figure B.15 –Example Two-Cell Box Girder 

 
Evaluating the shape constants: 
 
 
 
 
 
 
Equations B.56 and B.57 become 
 
 
 
 
 
 
 
 
 

1 2 45.456d d= =

12 21 5.833d d= = −

1 245.456( ) 5.833( ) 128.84q q Gθ− =

1 25.833( ) 45.456( ) 128.84q q Gθ− + =
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From which the shear flows are solved in terms of Gθ: 
 
 
 
 
Considering torsional equilibrium: 
 
 
 
Or, 
 
 
 
 
From which the torsional constant is found: 
 
 
 
The symmetry of this two-cell box girder cross section would, by inspection, would lead 
to the conclusion that there is no net shear flow in the center web.  The result is that the 
torsional constant for this special condition would be the same as if the center web did 
not exist.  Computing the torsional constant from equation B.47 verifies this condition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 3:  Consider the cross section of a four-cell box girder shown in figure B.16. 
Figure B.16 also shows the idealized thin wall members of the box along with their 
lengths and average thicknesses. 
 
The system of simultaneous equations that needs to be solved for the four-cell box 
girder is: 
 
 
 
 
 
 
 
 
 

1 2 3.2516q q Gθ= =

1 1 2 22 2t o oM GJ A q A qθ= = +

( ) ( )2 64.42 3.2516 2 64.42 3.2516GJ Gθ θ = + 

4837.9J ft=

2128.84oA ft=

8

1
79.26i

i i

s ft
t=

=∑

( )22
44 128.844 837.9

79.26
( )

oAJ ftds
t s

= = =

∫

1 1 12 2 13 3 14 4 1( ) ( ) ( ) ( ) 2 oq q q q GAd d d d θ+ + + =

21 1 2 2 23 3 24 4 2( ) ( ) ( ) ( ) 2 oq q q q GAd d d d θ+ + + =

31 1 32 2 3 3 34 4 3( ) ( ) ( ) ( ) 2 oq q q q GAd d d d θ+ + + =

41 1 42 2 43 3 4 4 4( ) ( ) ( ) ( ) 2 oq q q q GAd d d d θ+ + + =



Post-Tensioned Box Girder Design Manual  June 2016 

Appendix B - Torsion  278 of 369  
 

 
 

 
 
 

Figure B.16 –Example Four-Cell Box Girder 
 
These equations are modified to discount the influence of cells that are not adjoining: 
 
 
 
 
 
 
 
 
 
From the cross section geometry, and noting symmetry: 
 
 
 
 
 
 
 
 
 
 

1 4 45.46d d= =

2 3 49.00d d= =

12 21 23 32 34 43 5.833d d d d d d= = = = = = −

1 1 12 2 1( ) ( ) 0 0 2 oq q GAd d θ+ + + =

21 1 2 2 23 3 2( ) ( ) ( ) 0 2 oq q q GAd d d θ+ + + =

32 2 3 3 34 4 30 ( ) ( ) ( ) 2 oq q q GAd d d θ+ + + =

43 3 4 4 40 0 ( ) ( ) 2 oq q GAd d θ+ + + =

1 4q q= 2 3q q=
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Based on the symmetry of the section, the system of four simultaneous equations 
reduces to two: 
 
 
 
 
 
 
Or, 
 
 
 
 
 
From which, 
 
 
 
 
 
 
 
Considering equilibrium: 
 
 
 
 
 
 
 
 
 
 
Comparing this to the torsional characteristic of the outside perimeter of the bridge only: 
 
 
 
 
 
 
 
 
 
 
 
This represents a 0.6 percent increase in torsional characteristic. 
 
 

21 1 2 2 23 2 2( ) ( ) ( ) 2 oq q q GAd d d θ+ + =

1 245.46( ) 5.833( ) 128.84q q Gθ− =

1 2 25.833( ) 49.00( ) 5.833( ) 142.92q q q Gθ− + − =

1 20.8823q q=

2 3.759q Gθ=

1 3.317q Gθ=

1 1 2 22 2t o oM GJ A q A qθ= = +

( ) ( )2 2 64.42 3.317 2 71.46 3.759GJ Gθ θ = + 

41929.2J ft=

41919.4J ft=

2271.76oA ft=

8

1
153.91i

i i

s ft
t=

=∑
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Example 1—Multi-Cell Box Girder Bridge 
 
1. Introduction 
 
This example demonstrates the use of the AASHTO LRFD Design 
Specifications in the design of a cast-in-place, post-tensioned concrete, multi-
cell box girder bridge. The design of the supporting substructure is not included 
in this manual. 
 
The bridge considered in this example is shown in figure C.1.  The length of the 
three-span bridge from the centerline of the bearings at the abutments is 400’, 
comprised of 120’ side spans and a 160’ center span.   The bridge is straight, 
following a tangent alignment, and has no skew.  In elevation, the bridge is 
symmetrical in all ways about the centerline of the center span. 

 

 
 

Figure C.1 – Elevation of Example 1 Bridge 
 
Figure C.2 shows a transverse cross section taken through the bridge.  The 4-
cell box girder bridge carries three 12’ wide traffic lanes, two 10’ shoulders, and 
two 1’-9” barriers, for a total out-to-out width of 59’-6”.  
 

 
 

Figure C.2 – Cross Section through Example 1 Bridge 
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Pier 2 and Pier 3 are each comprised of two cylindrical columns with a 
diameter of 6’-0”.  The columns are cast monolithic with the superstructure.  
The columns are 20’ in height, measured from the top of foundations to the 
base of the superstructure. The foundations consist of 7’-0” diameter mono-
shafts supporting each of the columns.  For this example, it is assumed that the 
supporting soil provides an equivalent point of fixity 10’ below the top of the 
mono-shafts for all force effects. The distance from the base of the 
superstructure to the point of fixity is 30’. 
 
Summary of Bridge Geometry: 
 

Bridge length between abutment bearings = 400’ 
Span arrangement = 120’-160’-120’  
Roadway Width (3-12’ lanes, 2-10’ shoulders) = 56’-0” 
Width of Barrier Railing = 1’-9” 
Overall Bridge Width = 59’-6” 
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2. Material Characteristics 
 
2.1. Concrete 
 
The initial and 28-day concrete strengths for the superstructure and 
substructure are: 
 
 
 
 
 
The unit weight of the concrete is defined below.  Note that the unit weight 
used for the self-weight calculations includes an additional weight for the 
reinforcement. 
 
 
 
 
 
The modulus of elasticity for normal weight concrete, where wc = 0.145 kcf, can 
be taken as: 
 
 
 
 
 
2.2 Reinforcing Steel 
 
The yield strength and modulus of elasticity are: 
 
 
 
 
 
2.3 Prestressing Steel 
 
The 0.6 inch diameter low-relaxation prestressing strand is used in this 
example with the following properties: 
 
 
 
 
 
 
 
 
 

3500 3.5
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c

f psi ksi
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′ = =
′ = =
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[3.5.1] 

[C5.4.2.4-1] 

[5.4.3] 

[5.4.4] 
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3. Cross Section Properties

The typical cross section dimensions are shown in figure C.3.  The cross 
section dimensions are constant over the length of the bridge: 

Figure C.3 – Cross Section Dimensions 

The properties of the typical superstructure cross section are: 

A = cross sectional area = 99.45 ft2 
Ix = moment of inertia = 643.75 ft4 
H = height of section = 6.5 ft 
c1 = top of section to centroid = 2.732 ft 
c2 = bottom of section to centroid = 3.768 ft 

The gross section properties of the substructure elements are used in this 
design example: 

Ac = area for two columns = 56.55 ft2 
Ixc = moment of inertia for two columns = 127.24 ft4 
Ap = area for two monoshafts = 76.97 ft2 
Ixp = moment of inertia for two monoshafts = 235.72 ft4 
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4. LRFD General Design Equation

The AASHTO LRFD Design Specification’s general design equation is: 

where, 

ηi = load modifying factor for ductility, redundancy, and operational 
importance 

γ i = load factor 
Qi = force effect 
f = resistance factor 
Rn = nominal resistance 
Rr = factored resistance 

The load modifier, ηi, takes on two forms. The first is for loads in which a 
maximum value of γ i is appropriate, the second is in which a minimum value of 
γ i is appropriate. 

where, 

ηD = ductility factor 
ηR = redundancy factor 
ηI = operational importance factor 

Since the purpose of this example is to illustrate a conventional design on a 
typical bridge, 

Note that the load modifying factors are project and design specific and may 
not equal 1.0 in actual designs. 

[1.3.2.1-1] 

[1.3.2.1-2], 
[1.3.2.1-3] 

[1.3.3], 
[1.3.4], 
[1.3.5] 
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5. Live Load Distribution Factors

The AASHTO LRFD Design Specifications provide live load distribution tables 
that can be used on structures that meet the requirements of section 4.6.2.2. 
There are two methods of applying the live load distribution factors to 
cast-in-place multi-cell box girders. The first method is to apply the distribution 
factors to each web as an individual girder. According to the AASHTO LRFD 
specifications, the “notional shape” of the web and the tributary areas of the top 
and bottom slabs shall be taken to form a girder. This method would have two 
designs, one for the interior girders and one for the exterior girders. 

The second method is the “whole-width” method. A cast-in-place multi-cell box 
girder bridge may be designed as a whole-width structure using the live load 
distribution factors for interior girders multiplied by the number of webs in the 
cross section. This is the method chosen for this design example. 

Note that in the development of the distribution factor equations the multiple 
presence factors were considered and included. 

Live Load Distribution Factor variables: 

L = length of span (ft)* 
DF = distribution factor 
NL = number of lanes 
Nw = number of webs = 5 
Nc = number of cells = 4 
S = web spacing (ft) = 12.25 ft 
d = depth of beam (in) = 78 in 

* For positive moment, negative moment, and shear, L is the length of the span
for the section considered. For negative moment between points of
contraflexure under uniform loading, L is the average length of two adjacent
spans.

Distribution of live loads for moment in interior beams: 

– One design lane loaded

0.450.351 11.75
3.6 c

SDF
L N

   = +    
    

0.35 0.45

 2 
12.25 1 11.75 0.467

3.6 160 4Span MDF ±
    = + =    
    

0.35 0.45

 1 & 3 
12.25 1 11.75 0.517

3.6 120 4Spans MDF ±
    = + =    
    

0.35 0.45

 2 & 3 
12.25 1 11.75 0.490

3.6 140 4Piers MDF −
    = + =    
    

[C3.6.1.1.2] 

[4.6.2.2] 

[c4.6.2.2.1-1] 

[4.6.2.2.2b-1] 
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– Two or more design lanes loaded (note these factors control over one lane)

Number of lanes for whole width section 

Distribution of live loads for shear in interior beams: 

– One design lane loaded

– Two or more design lanes loaded (note these factors control over one lane)

[4.6.2.2.3a-1] 

0.3 0.2513 1
5.8c

SDF
N L

    =     
   

0.3 0.25

 1 & 3 
13 12.25 1 0.909
4 5.8 120Spans MDF ±

    = =    
    

0.3 0.25

 2 & 3 
13 12.25 1 0.874
4 5.8 140Piers MDF −

    = =    
    

0.3 0.25

 2 
13 12.25 1 0.846
4 5.8 160Span MDF ±

    = =    
    

L wN N DF= ⋅

  1 & 3 5 0.909 4.544L Spans MN ± = ⋅ =

  2 & 3 5 0.874 4.372L Piers MN − = ⋅ =

  2 5 0.846 4.229L Span MN ± = ⋅ =

0.6 0.1

9.5 12
S dDF

L
   =    
   

0.6 0.1

 1 & 3
12.25 78 0.870

9.5 12 120SpansDF    = =   ⋅   
0.6 0.1

 2
12.25 78 0.846

9.5 12 160SpanDF    = =   ⋅   

0.9 0.1

7.3 12
S dDF

L
   =    
   

0.9 0.1

 1 & 3
12.25 78 1.190

7.3 12 120SpansDF    = =   ⋅   
0.9 0.1

 2
12.25 78 1.157

7.3 12 160SpanDF    = =   ⋅   
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Number of lanes for whole width section 

L wN N DF= ⋅

  1 & 3 5 1.190 5.952L SpansN = ⋅ =

  2 5 1.157 5.783L SpanN = ⋅ =
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6. Modeling, Analysis and Results

Figure C.4 – Self Weight and Component Bending Moments 

Figure C.5 – Future Wearing Surface Bending Moments 
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Figure C.6 – Concrete Creep Bending Moments 

Figure C.7 – Concrete Shrinkage Bending Moments 
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Figure C.8 – Live Load Envelope Bending Moments 

Figure C.9 – Initial Post-Tensioning Bending Moments 
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Figure C.10 – Bending Moments for Post-Tensioning Losses 

Figure C.11 –Final Post-Tensioning Moments 
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7. Flexural Design

There are two flexural designs required by the AASHTO LRFD specifications 
for prestressed concrete: flexural designs at the Service Limit State and at the 
Strength Limit State. 

7.1 Service Limit State 

There are two load combinations for the Service Limit State: Service I and 
Service III. The Service I load combination is used to check against maximum 
allowable compression in the superstructure and Service III is used to check 
against maximum allowable tension. 

Load Combination 
Limit State DC DW CR+SH PS TU TG LL+I 

Service I 1.0 1.0 1.0 1.0 1.0 0.5 1.0 
Service III 1.0 1.0 1.0 1.0 1.0 0.5 0.8 

Table C.1 – Service Limit State Load Factors 

The maximum allowable compressive stresses are: 

• 0.6 f’ci  for temporary stresses at the time of tendon stressing.
• 0.45 f’c  due to prestressing and permanent loads after all time dependent

effects and losses.
• 0.6 f’c  due to prestressing, permanent, and transient loads after all time

dependent effects and losses.

The maximum allowable tensile stresses are: 

• 0.24√ f’ci (ksi)  for temporary stresses at the time of tendon stressing
(7.5√ f’ci  for units in psi).

• 0.019√ f’c (ksi)  for stresses after all time dependent effects and losses
(6√ f’c  for units in psi).

Temporary initial stress check: 

The controlling point for compressive stresses is located in the bottom of the 
section at the down-station face of the diaphragm at Pier 2 (node 249). 

( ) 1.0 1.0 155.6 1.3i btm initialf DC PS ksf ksf= + = − + −

( ) 112.8 194.3 81.5i topf ksf ksf ksf= + − = −

 81.5 7.5 3500 443.7 63.9i topf ksf psi psi ksf= − < = =

 156.9 0.6 3.5 2.1 302.4i btmf ksf ksi ksi ksf= − > − ⋅ = − = −

[3.4.1] 

[3.4.1-1] 

[5.9.4] 
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Final compression stress check, permanent loads: 
 
The controlling point is located in the bottom of the section at the downstation 
face of the diaphragm at Pier 2 (node 249). 
 
 
 
 
 
 
 
 
Final compression stress check, all loads: 
 
The controlling point is located in the bottom of the section at the downstation 
face of the diaphragm at Pier 2 (node 249). Use Service I load combination. 
 
 
 
 
 
 
 
 
Final tensile stress check, all loads: 
 
The controlling point is located in the top of the section at the midspan of 
Span 2 (node 266). Use Service III load combination 
 
 
 
 
 
 
 
 
The table below contains a summary of the stress checks every ten feet along 
the superstructure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( ) 1.0 1.0 1.0 1.0p btmf DC DW CR SH PS= + + + +

( )   1.0 0.5 1.0f comp btm p btmf f TU TG LL I= + + + +

( )  190.7 29.7 0.5 15.2 60.1 288.1f comp btmf ksf= − − + ⋅ − − = −

  288.1 0.6 5 3.0 432f comp btmf ksf ksi ksi ksf= − > − ⋅ = − = −

( )   1.0 0.5 0.8f tension top p topf f TU TG LL I= + + + +

  112.8 10.0 11.5 26.2 174.8 21.5 0.5 46.1 0.8 43.5f tension topf = + − + − + + ⋅ + ⋅

  42.1 6 5000 424.3 61.1f tension topf ksf psi psi ksf= < = =

155.6 ( 13.8) (15.9 36.2) ( 1.0) 190.7p btmf ksf= − + − + − + − = −

  190.7 0.45 5 2.25 324f tension topf ksf ksi ksi ksf= − > − ⋅ = − = −
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> -0.6 f'ci > -0.45 f'c
Service I > -0.6 

f'c 
Service III < 6 √f'c 

Node Distance Bottom Top Bottom Top 
Bottom Top Bottom Top 

Min Min Max Max 
(ft) (ksf) (ksf) (ksf) (ksf) (ksf) (ksf) (ksf) (ksf) 

150 0 
151 2.5 -146.4 -87.0 -130.4 -79.0 -137.8 -138.7 -122.0 -62.0
152 10 -138.0 -94.2 -119.1 -88.3 -128.3 -165.8 -93.3 -68.1
154 20 -130.4 -101.3 -109.0 -97.0 -120.9 -193.1 -64.7 -73.1
156 30 -126.5 -105.8 -103.9 -102.4 -119.9 -212.5 -45.2 -74.4
158 40 -126.1 -107.6 -103.7 -103.8 -125.5 -223.2 -33.5 -72.0
160 50 -129.1 -107.1 -108.2 -102.1 -136.3 -226.9 -30.9 -66.2
162 60 -133.3 -105.7 -115.6 -98.1 -149.6 -224.9 -35.3 -58.1
240 70 -136.0 -105.6 -123.4 -94.3 -163.3 -219.2 -44.1 -50.5
242 80 -135.0 -105.8 -129.5 -89.4 -175.6 -209.2 -54.6 -41.5
244 90 -131.6 -106.3 -135.3 -83.3 -187.3 -194.9 -68.3 -31.7
246 100 -127.7 -107.2 -142.4 -76.5 -202.9 -180.0 -83.6 -19.2
248 110 -129.9 -103.3 -156.8 -63.9 -233.7 -161.9 -102.9 3.4 
249 117 -156.9 -81.5 -190.7 -37.2 -288.1 -135.6 -135.7 42.1 
250 120 
251 123 -134.4 -91.2 -137.4 -63.4 -237.9 -150.8 -89.7 7.1 
252 130 -99.1 -114.3 -96.6 -90.7 -177.1 -172.3 -55.2 -31.8
254 140 -82.9 -122.8 -70.6 -106.6 -129.2 -195.2 -21.5 -60.4
256 150 -85.7 -119.2 -63.4 -110.4 -112.7 -207.9 -4.5 -69.6
258 160 -87.1 -116.7 -56.6 -113.8 -99.9 -220.4 12.4 -76.4
260 170 -87.4 -115.0 -50.6 -116.8 -90.7 -231.7 27.5 -81.3
262 180 -86.7 -114.1 -45.5 -119.2 -83.3 -240.6 39.8 -85.0
264 190 -85.1 -113.7 -41.2 -120.8 -77.2 -246.3 48.6 -87.7
266 200 -83.2 -113.6 -38.5 -121.3 -72.8 -248.0 52.6 -89.2
336 210 -85.1 -113.7 -41.2 -120.8 -77.2 -246.3 48.6 -87.7
338 220 -86.7 -114.1 -45.5 -119.2 -83.3 -240.6 39.8 -85.0
340 230 -87.4 -115.0 -50.6 -116.7 -90.7 -231.6 27.5 -81.2
342 240 -87.1 -116.7 -56.6 -113.8 -99.9 -220.4 12.4 -76.4
344 250 -85.7 -119.2 -63.4 -110.4 -112.7 -207.9 -4.5 -69.6
346 260 -82.9 -122.8 -70.5 -106.6 -129.1 -195.2 -21.4 -60.4
348 270 -99.1 -114.3 -96.5 -90.7 -177.0 -172.3 -55.1 -31.8
349 277 -134.4 -91.2 -137.4 -63.4 -237.9 -150.8 -89.7 7.1 
350 280 
351 283 -156.9 -81.5 -190.7 -37.2 -288.1 -135.6 -135.7 42.1 
352 290 -129.9 -103.3 -156.7 -63.9 -233.6 -161.9 -102.8 3.4 
354 300 -127.7 -107.2 -142.3 -76.5 -202.8 -180.0 -83.5 -19.2
356 310 -131.6 -106.3 -135.3 -83.3 -187.3 -194.9 -68.3 -31.7
358 320 -135.0 -105.8 -129.5 -89.4 -175.6 -209.2 -54.6 -41.5
360 330 -136.0 -105.6 -123.4 -94.2 -163.3 -219.1 -44.1 -50.4
362 340 -133.3 -105.7 -115.7 -98.1 -149.7 -224.9 -35.4 -58.1
440 350 -129.1 -107.1 -108.3 -102.1 -136.4 -226.9 -31.0 -66.2
442 360 -126.1 -107.6 -103.7 -103.7 -125.5 -223.1 -33.5 -71.9
444 370 -126.5 -105.8 -104.0 -102.3 -120.0 -212.4 -45.3 -74.3
446 380 -130.4 -101.3 -109.1 -96.9 -121.0 -193.0 -64.8 -73.0
448 390 -138.0 -94.2 -119.3 -88.1 -128.5 -165.6 -93.5 -67.9
449 397.5 -146.4 -87.0 -130.6 -78.8 -138.0 -138.5 -122.2 -61.8
450 400 

Table C.2 – Service Limit State Flexural Verifications 
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[3.4.1] 

[3.4.1-1] 

[1.3.2.1-1], 
[5.7.3.2], 
[5.7.3.3.2] 

 [5.7.3.3.2] 

7.2 Strength Limit State 

There is one basic load combination used to check the Strength Limit State for 
cast-in-place segmental superstructure: Strength I. 

Table  C.3 – Strength Limit State Load Factors 

Where, PS represents the secondary moment caused by post-tensioning (note, 
it does not include the primary moment due to post-tensioning) 

The factored flexural resistance, Mr, must be greater than the Strength I load 
combination, Mu (ultimate moment), and the minimum reinforcement 
requirement. The minimum reinforcement requirement states that the flexural 
resistance must at least equal to 1.33Mu or the cracking moment, Mcr, 
whichever is less. This can be summarized by the following equation: 

7.2.1 Factored Design Moment 

The location with the largest demand to capacity ratio, d/c, is the negative 
moment at the downstation face of the diaphragm at Pier 2 (node 249). The 
summation of the Strength I load combination is:  

Minimum reinforcement calculation 

Load Combination 
Limit State DC DW CR+SH PS TU TG LL+I 

Strength I 1.25 1.5 1.0 1.0 0.5 0.0 1.75 

( )( )max ,min 1.33 ,r n u u crM M M M Mf= ≥

58024uM ft kips→ = − −

1.33 77171uM ft kips= − −

( )3 1 2cr r cpe cM f f Sγ γ γ = + 

26585DCM ft kips= − −
2353DWM ft kips= − −

2717 6181 3464CR SHM ft kips+ = − = − −
4594PSM ft kips= −

5067TUM ft kips= − −

11348LL IM ft kips+ = − −
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 [5.7.3.2.2-1] 

 [5.7.3.2.2] 

 [5.7.3.1.1-3] 

 [C5.7.3.1.1-1] 

where, 

The absolute value of the cracking moment is less than the absolute value of 
1.33Mu, and this value is greater than the absolute value of the factored 
moment, Mu. Thus, the design moment is Mcr. 

7.2.2 Factored Flexural Resistance 

The nominal flexural resistance for flanged sections: 

For rectangular sections, bw = b making the second part of the above equation 
drop to zero. Note that the equation is modified from AASHTO LRFD 
neglecting the contributions from mild reinforcement. 

The nominal moment calculated at the downstation face of the diaphragm at 
Pier 2 (node 249). The following can be obtained from the section dimensions: 

where, 

2

3

1.1

7.5 5000 530 76.4

235.6
r

c

f psi psi ksf

S ft

γ =

= = =

=

1

3

1.6
1.0

174.8cpef ksf

γ
γ

=
=

=

74099crM ft kips→ = − −

( )0.85
2 2 2

f
n ps ps p c w f

ha aM A f d f b b h
   ′= − + − −  

   

( )

1

0.85

0.85

ps pu c w f

pu
c w ps

p

A f f b b h
c f

f b kA
d

β

′− −
=

′ +

2 25 3 19 0.217 61.845

270

5
44.5 534
5.2361 62.833
7

0.28
5.03625 60.435

ps

pu

c

w

f

p

A in in
f ksi
f ksi
b ft in
b ft in
h in
k
d ft in

= ⋅ ⋅ ⋅ =

=

′ =
= =
= =
=

=
= =

1a cβ=
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 [5.7.2.2] 

 [5.7.3.1] 

 [5.5.4.2] 

 

 

Solve for c and determine if the section is rectangular or T-section. 

If the value of a ≤ hf, then the section is rectangular, otherwise it is considered a 
T-section.

Therefore, this is a T-section. 

The average stress in prestressing steel: 

The resistance (reduction) factor: 

Calculate the flexural resistance, fMn, for negative bending. 

( )( )1

0.85, 4
0.85 0.05 4 , 4 8
0.65, 8

c

c c

c

f ksi
ksi f ksi ksi f ksi

f ksi
β

′ ≤
 ′ ′= − − < <
 ′ ≥

( )( )1 0.85 0.05 5 4 0.80ksi ksi ksiβ = − − =

( )2

2

61.845 270 0.85 5 534 62.833 7
9.2132700.85 5 0.80 62.833 0.28 61.845

60.435

in ksi ksi in in in
c inksiksi in in

in

⋅ − ⋅ −
= =

⋅ ⋅ ⋅ + ⋅

0.80 9.213 7.370 0.6142 7 0.5833fa in in ft h in ft= ⋅ = = > = =

9.2131 270 1 0.28 258.475
60.435ps pu

p

c inf f k ksi ksi
d in

   = − = − =       

0.75 0.583 0.25 1 1.0

60.4350.583 0.25 1 1.0
9.213

1.0

pd
c

f

f

f

 
≤ = + − ≤ 

 
 = + − > 
 

→ =

( )

2 0.614261.845 258.475 5.03625
2

1.0
0.6142 0.58330.85 5 534 62.833 7

2 2

n

ftin ksi ft
M

ft ftksi in in in
f

  ⋅ −  
  = − ⋅

  + ⋅ − −  
  

75814nM ft kipsf = − −
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Therefore, the flexural resistance is greater than the flexural demand: 

The demand to capacity ratio, d/c: 

The above calculations show that the down station face of the diaphragm at 
Pier 2 (node 249) is adequately designed for the flexural demand at that 
location. 

The table below contains a summary of the flexural strength design checks at 
typical critical locations along the superstructure. 

n crM Mf ≥

75814 74099ft kips ft kips− > −

1.0d c ≤

74099 0.977 1.0
75814

ft kips
ft kips

− −
= <

− −
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Node 160 249 251 266 349 351 440 
Location ~ 0.4 L Pier 2 0.5 L Pier 3 ~ 0.6 L 
Distance (ft) 50 117 123 200 277 283 350 

        
DC (ft-kips) 15125 -26585 -29178 17761 -29178 -26585 15125 
DW (ft-kips) 1339 -2353

 
-2583 1572 -2583 -2353

 
1339 

CR (ft-kips) 1161 2717 -1543
 

-1543
 

-1543
 

2717 1161 
SH (ft-kips) -2642

 
-6181

 
3618 3618 3618 -6181

 
-2642

 PS (ft-kips) 1964 4594 9834 9799 9836 4595 1966 

TU 
Rise (ft-kips) 2165 5067 -2622

 
-2622

 
-2622

 
5067 2165 

Fall (ft-kips) -2165 -5067
 

2622 2622 2622 -5067
 

-2165

LL+I 
Min (ft-kips) -2264

 
-11348 -13778 -1530

 
-13778 -11348 -2264

 Max (ft-kips) 12306 14 2438 11795 2438 14 12306 

          Mu 
Min (ft-kips) 16354 -58024 -51237 32445 -51234 -58022 16355 
Max (ft-kips) 44017 -33074 -25482 58387 -25479 -33072 44018 

       1.33Mu 
Min (ft-kips) 

 

-77171 -68145

 

-68141 -77169

 
Max (ft-kips) 58542 

  

77655 

  

58544 

Mcr 
Min (ft-kips) 

 

-74099 -78573

 

-78573 -74099

 
Max (ft-kips) 57672 52147 57691 

     
Design 
Moment 

Min 

 

Mcr 1.33Mu 

 

1.33Mu Mcr 

 
Max 

 

Mcr 

  

Mu 

  

Mcr 
Min (ft-kips) 

 

-74099 -68145

 

-68141 -74099

 
Max (ft-kips) 57672 58387 57691 

          fMn 
Min (ft-kips) -27327

 
-75814

 
-75622

 
-11740

 
-75622

 
-75814

 
-27327

 Max (ft-kips) 67604 18917 19105 81151 19105 18917 67604 

      d/c ratio 
Min 

 

0.977 0.901 

 

0.901 0.977 

 Max 0.853 0.719 0.853 

Table C.4 – Flexural Strength Design Verifications 
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n uV Vf ≥

 [5.8.2.1] 

 8.
 

Shear and Torsion Design – Strength Limit State
 

 Like the flexural design, the Strength I Limit State load combination is used for 
the shear and torsion design. It can be found in table 4.2-1 in section 4. 

 The factored shear resistance must be greater than the Strength I load 
combination, Vu (ultimate shear). 

 
 
 
 8.1 Torsion Members 

 According to the AASHTO LRFD specifications, torsion may not be neglected if: 

 
 
 
 where, 

 
 
 
 
 
 However, by inspection, torsion need not be investigated for this design 
example. Due to the bridge being straight, live loading is the only cause for 
torsion. No dead, miscellaneous, or other loads cause torsion in the 
superstructure. As outlined above in section 2 of this design example, this 
bridge meets the requirements to utilize the live load distribution tables in the 
AASHTO LRFD specifications. 

 Torsional effects are inherently included in the distribution factor equations. 
The purpose of a live load distribution factor is to capture the maximum 
possible vertical shear load on a web due to live loading. This can be done by 
altering the number of specified live loads and its transverse position on the 
cross section to create the maximum shear effect on the web of interest. 
Torsion affects the vertical shear loads in the webs and is subsequently 
captured by this process. 

 Therefore, torsion may be neglected in the following calculations of the shear 
design. See design example 2 for a procedure of designing for torsional effects. 

 8.2 Factored Design Shear 

 The AASHTO LRFD specifications specifies that the critical section for shear 
design can be located a distance dv from the support or point of discontinuity. 
The highest shear demand and critical section is located just upstation to 
Pier 2, a distance dv (4.68 ft) from the diaphragm (node 252) (see section 8.3 
for calculation of dv). 

 

0.25u crT Tf>

2

0.125 1
0.125

cp pc
cr c

c c

A f
T f

p f
′= +

′
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2985.08uV kips→ =

n c sV V V= +

 [5.8.3.3] 

 [5.8.3.4.3] 

 [5.8.3.4] 

The summation of the Strength I load combination is: 

where, 

VPS = the shear due to secondary post-tensioning effects 

8.3 Factored Shear Resistance 

A prestressed concrete beam fails under shear along diagonal cracks. There 
are two types of diagonal cracks that form: Type I and Type II. The first type is 
known as flexure-shear cracks and the second as web-shear cracks. The 
flexure-shear cracks start as a nearly vertical flexural cracks on the tension 
face that later, under a shear demand, spread into diagonal shear cracks 
toward the compression face. Flexure-shear cracks are common in beams with 
low prestressing force near midspan. Web-shear cracks form near the neutral 
axis of the section in the web and spread diagonally. This type of cracking is 
caused by tension in the web called principal tensile stresses and can be found 
near supports. 

The AASHTO LRFD specification states the nominal shear resistance to be the 
following: 

The shear resistance may be determined using one of three methods outlined in 
the AASHTO LRFD specification. Method 1 is for nonprestressed sections only. 
Method 2 is the general procedure for prestressed and nonprestressed 
members. And Method 3 is the simplified procedure for prestressed and 
nonprestressed members. 

This design example uses the Simplified Procedure outlined in the AASHTO 
LRFD specifications. The concrete contribution, Vc, of the nominal shear 
resistance is the minimum of Vci and Vcw, the flexure-shear resistance and 
web-shear resistance respectively. 

The nominal shear resistance to combined flexure and shear can be obtained 
from the following equation (units in kips and in): 

1143.92
101.25

0
801.89

DC

DW

CR SH PS TU

LL I

V kips
V kips
V V V
V kips

+

+

=
=

= = =
=

( )min ,c ci cwV V V=

0.02ci c v v oV f b d V′= +
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 [5.8.3.4.3-1] 

 [5.8.2.9] 

 [5.8.2.9] 

 [C5.8.2.9-1] 

 [5.8.2.9-2] 

 The above equation can be separated into two parts. The second term, Vo, is 
the shear that occurs at the section when a flexural crack forms. The first term 
is an empirical formula that represents the additional shear force required to 
transform the flexural crack into an inclined shear crack. 

 The second term is often separated into two parts as follows: 

 where, 

Vd = unfactored dead loads (DC + DW) 
Mcre = the moment required to crack the section above the dead loads 
Mmax = the maximum factored moment less the unfactored dead loads 
Vi = the factored shear concurrent to the maximum moment less the 

dead load 

 Therefore, the nominal shear resistance to combined flexure and shear and its 
lower limit can be written (units in kips and in): 

 The effective web width, bv, is the sum of the web widths less ¼ the diameter of 
the grouted ducts or ½ the diameter of the ungrouted ducts: 

 The effective shear depth, dv, can be defined by: 

 where, 

cre
o d cr d i

max

MV V V V V
M

= + = +

0.02 0.06cre
ci c v v d i c v v

max

MV f b d V V f b d
M

′ ′= + + ≥

( )5 1.0 5 0.25 0.375 4.53125vb ft ft ft= ⋅ − ⋅ ⋅ =

max ,0.9 ,0.72n
v e
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Md d h
A f

 
=   
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2
2
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⋅ ⋅
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1143.92 101.25 1245.17d DC DWV V V kips= + = + =

The unfactored dead load, Vd, is: 

The factored maximum moment (negative flexure near pier) and the shear that 
acts concurrent to the moment from externally applied loads (Mmax and Vi 
respectively) are: 

Note that Mmax and Vi contain the secondary post-tensioning effects. 

As defined above, Mcre is the moment required, above that caused by dead 
loads, to crack the section. Before looking at the code equation, it is known that 
the moment required to crack a concrete section is: 

where: 

S = section modulus 
fr = modulus of rupture, or the stress at which the concrete cracks 
PPT = axial force from post-tensioning (including secondary effects) 
A = cross sectional area 

Therefore, when the section cracks in flexure, the applied factored moments 
must equal the cracking moment. 

Knowing: 

where, 

MPS = moment from secondary post-tensioning effects 
MP = moment primary post-tensioning effects 

41624 ( 25746) 15878
889.16

max u d u DC DW

i

M M M M M ft kips
V kips

+= − = − = − − − = − −
=

PT
cr r

PM S f
A

 = + 
 

1.25 1.5 0.5 1.75PT
r DC DW CR SH PT TU LL I

PS f M M M M M M
A + +

 + = + + + + + 
 

1.25 1.5 0.5 1.75u DC DW CR SH PS TU LL IM M M M M M M+ += + + + + +
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233501.0 1.0
15878

cre

max

M
M

≤ → >

 [5.8.3.4.3-2] 

 [5.4.2.6] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Therefore, the equation for the cracking moment, Mcre, is written as: 

 
 
 
 
 where, 

 
 
 
 
 
 
 
 
 
 
 at the top of the section. 

 
 
 
 
 
 
 
 
 For the Vci equation to apply, the following must be true: 

 
 
 
 
 The purpose of the Vci equation is to determine the concrete’s resistance to a 
flexural shear crack. If, in this case, the section does not crack in flexure, Vci 
does not apply and Vcw controls. 
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( )0.06 0.30cw c pc v v pV f f b d V′= + +

0.90
60yf ksi

f =
=

 [5.8.3.4.3-3] 

 [C5.8.2.3] 

 [C5.8.3.3-1] 

[5.5.4.2.1], 
[5.8.3.4.3-4] 

The nominal shear resistance to excessive principal tension is: 
 
 
 
 
The compressive stress at the centroid of the section, fpc, is: 
 
 
 
 

The vertical component of the prestressing force, Vp, is as follows (positive 
when resisting the applied shear): 
 
 
 
 
Therefore: 
 
 
 
 
 
section is: 
 
 
 
 

The shear reinforcement required to provide the above shear resistance is: 
 
 
 
 
 
where, 
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2
25 2 0.31 4.13

9 12v
inA in ft

ft
⋅ ⋅

= =

 [5.8.2.5-1] 

Divided evenly among the 5 webs: 

The minimum required reinforcement for the entire cross section is: 

Therefore, use #5 bars spaced at 9 inches on each face of each web. 

The table below contains a summary of the shear strength design at every 20 
feet. Note that #4 bars at 12 inches is the lowest reinforcement used. This is 
due to engineering judgment. 

Node Distance Vu Vc Vs req 
Av req 
per 
web 

Bar 
Area @ 

Av prov 
per 
web 

(ft) (kips) (kips) (kips) (in²/ft) (in²) (in) (in²/ft) 
150 0 
152 7.18 1946 1434 728 0.288 0.20 12 0.40 
154 20 1456 1330 288 0.114 0.20 12 0.40 
158 40 726 979 0 0.000 0.20 12 0.40 
162 60 -1059 1244 0 0.000 0.20 12 0.40 
242 80 -1768 1576 389 0.154 0.20 12 0.40 
246 100 -2465 1875 865 0.342 0.20 12 0.40 
248 112.32 -2882 1508 1694 0.670 0.31 9 0.83 
250 120 
252 127.68 2985 1382 1935 0.765 0.31 9 0.83 
254 140 2576 1851 1011 0.400 0.20 12 0.40 
258 160 1902 1601 512 0.203 0.20 12 0.40 
262 180 1229 1286 79 0.031 0.20 12 0.40 
266 200 569 1027 0 0.000 0.20 12 0.40 
338 220 -1229 1286 79 0.031 0.20 12 0.40 
342 240 -1902 1601 512 0.203 0.20 12 0.40 
346 260 -2576 1852 1011 0.400 0.20 12 0.40 
348 277.32 -2985 1382 1934 0.765 0.31 9 0.83 
350 280 
352 292.68 2882 1508 1694 0.670 0.31 9 0.83 
354 300 2465 1875 864 0.342 0.20 12 0.40 
358 320 1768 1576 388 0.154 0.20 12 0.40 
362 340 1059 918 0 0.000 0.20 12 0.40 
442 360 -726 1161 0 0.000 0.20 12 0.40 
446 380 -1456 1330 288 0.114 0.20 12 0.40 
448 392.82 -1946 1434 728 0.288 0.20 12 0.40 
450 400 

Table C.5 – Summary of Shear Design at Strength Limit State 

20.77vA in ft=

2
2

_ 2

4.53125 1440.0316 0.0316 5 0.77
60

v
v min c

y

b ft inA f ksi in ft
f ksi ft

′≥ = ⋅ =



Post-Tensioned Box Girder Design Manual  June 2016 

Appendix C – Design Example 1  307 of 369  
 

VQ
Ib

t =

 [5.8.5] 

2 2cos sinx ys s α s α= +

( )1 sin 2
2 y xt s s α= −

9. Principal Tensile Stresses 
 
The AASHTO-LRFD Design Specifications state that the principal stresses in 
the webs shall be analyzed for all segmental bridges. It does not give direction 
on non-segmental concrete box girder bridges. However, it is a good design 
check and the calculation of principal stresses is included in this example. 
 
The principal tensile stresses shall be calculated using the long-term residual 
axial stress and the maximum shear stress. The Service III Limit State load 
combination is used for both axial and shear stresses. The load combination 
can be found in table 4.1-1 in section 4. 
 
The thermal gradient loading is not considered in the calculation of principal 
stresses. The purpose of thermal gradient is to check longitudinal stresses 
under special thermal effects. Axial stresses resulting from temperature and 
live loading are also not included since they are not long-term loadings. 
 
The critical section with the maximum principal tensile stress is located just 
upstation to Pier 2, a distance of dv (4.68 ft) from the diaphragm (node 252). 
See section 5 above for the calculation of dv. 
 
From general mechanics of materials, the shear stress can be taken as: 
 
 
 
 
where, 
 

V = vertical shear in section 
 = VDC +VDW +VPS +VCR+SH +VTU +0.8·VLL+I 
 = 1526 kips 
Q = first moment of the area = 118.12 ft3 
I = section moment of inertia = 643.75 ft4 
b = Σ web widths less ¼ duct Ø = 4.53125 ft 

 
 
 
 
 
 
9.1 Mohr’s Circle 
 
The Mohr’s circle is a graphical representation of the state of plane stress at a 
given point. The abscissa and ordinate represent the normal and shear stress 
components respectively. Below is a graph of Mohr’s circle and points M, N, 
and C. 
 
 
 
 
 
 

3

4

1526 118.12 61.81
643.75 4.53125

kips ft ksf
ft ft

t ⋅
→ = =

⋅
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93.52x DC DW PS CR SH ksfs s s s s += + + + = −

0ys =
61.81xy ksft = −

 
 

Figure C.12 – Mohr’s Circle 
 
 
The normal stress at point M is the axial stress on the section at the neutral 
axis. The stresses used  
 
 
 
 
 
 
The Mohr’s circle representation of this state of stress is: 
 

 
 

 
Figure C.13 – State of Stress at Node 252 
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 [5.9.4.2.2-1] 

For the case of no vertical compression (sy=0), the radius, R, of Mohr’s circle 
can be expressed as: 

The maximum permissible principal tension is 3.5√f’c (psi) (0.110√f’c for units in 
ksi). 

The table below contains a summary of the principal tension check at a 
distance dv (4.68 ft) from each diaphragm. These are the critical locations for 
each span in this example. Note that this is not always true for every bridge or 
bridge type. 

Node Distance 
t s 

s/2 Radius smax √f’cMin Max COG 
(ft) (ksf) (ksf) (ksf) (ksf) (ksf) (ksf) 

150 0 
152 7.18 7.1 32.9 -101 -50.5 60.3 9.8 0.96 
248 112.32 -56.4 -27.2 -103 -51.3 76.2 24.9 2.45 
250 120 
252 127.68 33.8 61.8 -94 -46.8 77.5 30.7 3.02 
348 277.32 -61.8 -33.8 -94 -46.8 77.5 30.7 3.02 
350 285 
352 292.68 27.2 56.3 -103 -51.3 76.2 24.9 2.45 
448 392.82 -32.9 -7.1 -101 -50.5 60.3 9.8 0.96 
450 400 

Table C.6 – Principal Tensile Stress Summary 

( )
2

22 246.76 61.81 77.50
2

x
xyR ksfs t = + = − + = 

 

max 46.76 77.50 30.74
2

x R ksfss→ = + = − + =

max 30.74 213.5 3.02  ( ) 3.5  ( )c cksf psi f psi f psis ′ ′= = = ≤

5000cf psi′ =
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( )min 1.33 ,r u crM M M≥

 [5.8.1.5] 

 [5.12.3] 

 [4.6.2] 
 [4.6.2.1.7] 

 [5.7.3.3.2] 

10. Transverse Design 
 

The transverse design of a multicell concrete box girder bridge may be split into 
four sections: the deck design, overhang design, web design, and bottom slab 
design. Web bending need only be considered for curved post-tensioned box 
girder bridges with a depth of more than 4 feet. Since this example is straight 
and has relatively short bay widths, transverse web bending may be neglected. 
 
The three sections below are designed with mild reinforcement. Therefore, the 
transverse reinforcement is the cover steel, or the outer layer of reinforcement. 
The longitudinal mild reinforcement will be placed inside the transverse 
reinforcement for temperature and shrinkage effects. 
 

The distance, d, from the compression face to the center of the tension 
reinforcement is dependent on the concrete cover. The following are the 
minimum covers used for this example: 
 

Deck surface = 2.5 in 
Exterior other than above = 2.0 in 
Interior other than above = 1.5 in 

 
 
10.1 Deck Design 
 

This example uses the Approximate Method outlined in the AASHTO LRFD 
specifications. A cross-sectional frame model one foot in length is used to 
determine the design loads per unit length for the deck. This type of model 
captures the flexural and torsional stiffnesses of the supporting webs and 
bottom slab in a multi-cell box girder. 
 
One or more axles (representing lanes of traffic) are placed on the deck and 
moved transversely to maximize the moments. The minimum distance between 
the wheels of two adjacent axles is four feet. The resulting moments are 
divided by the strip width calculated from AASHTO LRFD Table 4.6.2.1.3-1 to 
obtain the live load moment per unit length of bridge. 
 
10.1.1 Minimum Reinforcing 
 
As shown previously in the Flexural Strength section of this example, the 
design moment is: 
 
 

 
 
 
And the cracking moment is: 
 
 
 
 
 
 

3 1cr r cM f Sγ γ=
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1.25 1.5 1.75u DC DW LL IM M M M += + +

[4.6.2.1.3-1] 

 where, 

 10.1.2 Negative Moment (max) @ 6 inches from CL of web 

 Strength I load combination 

 The moment due to live loading is: 

 Therefore, 

 Considering the minimum reinforcement requirement above: 

( )
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0.69
0.15

DC

DW

M ft kips ft
M ft kips ft

= −
= −

[5.7.3] 

[4.6.2.1.3-1] 

 The following formulae are needed to determine the required flexural 
reinforcement: 

 
 
 
 
 
 
 
 
 
 
 Manipulation of the above formulae gives the required area of flexural 
reinforcement: 

 
 
 
 
 where, 

 
 
 
 
 
 
 
 
 
 
 
 Therefore, use #5 bars at 6 inches. 

 
 10.1.3 Positive Moment @ CL of interior cell 

 Strength I load combination 

 
 
 
 
 The moment due to live loading is: 
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24.90
45.54
0

c

w

b

M ft kips ft
M ft kips
M

= −
= −
=

[A13.4] 

[3.4.1-1] 

 Therefore, 

 
 
 Considering the minimum reinforcement requirement above: 

 
 
 Therefore with d = 7 in: 

 
 
 For simplicity, use the same reinforcement used in the top: #5 bars at 6 inches 

 
 10.2 Overhang (Wing) Design 

 The deck overhang, or wing, must be designed to resist the maximum of three 
design cases given in Section A13. According to the AASHTO LRFD 
specifications, the flexural resistance, Ms, of the wing shall exceed. 

 •
 
The transverse vehicular collision forces under Extreme Event II load

 combination limit state.
 •

 
The vertical vehicular collision force forces under Extreme Event II load

 combination limit state.
 •

 
The loads that occupy the overhang under the Strength I load

 combination limit state.
 

 Load Combination 
Limit State DC DW CR+SH LL+I CT 

Extreme Event II 1.0 1.0 1.0 0.5 1.0 
Strength I 1.25 1.5 1.25 1.75 0 

 Table C.7 – Load Factors for Overhang Design 

 This design example does not cover the design of a barrier. Instead, It is 
assumed that a 32” tall barrier of test level TL-4 is used. It has a self-weight of 
0.45 kips/ft and its center of gravity is located 1’-0” from its inside face. The 
three moment capacities (horizontal moment, vertical moment, and additional 
beam moment respectively) needed in the following calculations are given as: 

 
 
 
 
 
 See Figure CA13.3.1-1 in the AASHTO LRFD Design Specifications for a 
depiction of each moment. 

9.56uM ft kips ft→ = −

u crM M≥

20.31sA in ft=
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( )

( )

1
2

1

1.75

0.75 0.150 0.1125
1.75 1.750.25 1 0.150 0.0121
4.75 2

l ft
w ft kcf klf

ftW ft ft kcf kips−

=

= =

= ⋅ ⋅ =

1

2
1 1 1

2 3slab
wl W lM = +

[A13.4.2] 

Figure C.14 – Overhang Design Sections 

 The above figure shows the two sections that need to be designed for this 
example. The first section will include design cases 1 and 2. The second 
section will include all three design cases. 

10.2.1 Section 1: Overhang design at the face of the barrier 

 
Case 1: 

 
For design case 1, overhang, or wing, of a box girder bridge must be design to 
simultaneously exceed the moment capacity, Mc, at the barrier’s base as well 
as the tensile force, T, from the barrier. In other words, it must be designed to 
resist railing collision forces given in section A13. 

 Calculate the dead load moments: 

 
 where, 

( )
1

20.1125 1.75 0.0121 1.75 0.18
2 3slab

klf ft kips ftM ft kips ft⋅
→ = − − = − −

( )
1

0.45 1.0 0.45barrierM kips ft ft kips ft= − = − −

0.45 0.18 0.63DCM ft kips ft→ = − − = − −
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2
w

c

RT
L H

=
+

2 2 2
u

s s y
M a h aM A f d T
f

   ≤ = − − −   
   

[A13.4.2-1] 

[A13.3.1-2] 

[A13.3.1-1] 

 
 Extreme Event II load combination: 

 
 
 
 
 Tensile force from the barrier is defined as: 

 
 
 
 where, 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 Calculate the factored flexural resistance, fMs. It can be seen from the figure 
and calculations below that the collision tensile force, T, decreases the moment 
resistance of the section. 

 

 
 Figure C.15 – Equilibrium at Strength Limit State 

 
 Take Moment about the compression force, C. 
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[A13.3.1-1] 

and, 

Therefore, 

Plug a into the moment equation above and solve for the required area of 
reinforcement, As, where: 

Assume the bottom reinforcement carries half of the collision tensile force. 

Use #7 bars at 6 inches for the top reinforcement and #4 bars at 12 inches for 
the bottom. 

Case 2: 

According to AASHTO, a vertical downward force of 18 kips is to be distributed 
over 18 ft of the TL-4 barrier. This equates to 1 klf. If we assume this load acts 
at the center of gravity of the barrier, the moment it produces on the overhang 
is 1 ft–kips / ft. Note that this moment is less than the effects in design case 1 
and we may skip this design case. 

Case 3: 

Note that design case 3 does not include any loads that are not included in 
design case 1. Therefore, we may neglect this case at this section. 
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1

2

1
2

24.90 8.24 17.53
2 tan 30 8.24 2 3 tan 30

11.33 8.24 7.98
2 tan 30 8.24 2 3 tan 30
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c

c

c

M L ft kips ft ftM ft kips ft
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T L kips ft ftT kips
L x ft ft

− ⋅
= = = −

+ ° + ⋅ ⋅ °

⋅
= = =

+ ° + ⋅ ⋅ °

10.2.2 Section 2: Overhang design at the outside face of the web 

 Case 1: 

 Figure C.16 – Length of Loaded Areas 

 As depicted in the figure above, loads distribute over larger lengths the farther 
the section is from the load application. Assume the distribution length, Lc, 
increases at a 30° angle. 
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( )0.025 3 0.5 3 0.1125DWM ksf ft ft ft kips ft= − ⋅ ⋅ = − −

 Calculate the dead load moments: 

 
 
 
 where, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The moment due to 25 psf wearing surface is: 

 
 
 
 The moment due to live loading is: 

 
 

 
 Figure C.17 – Live Load on Overhang 
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( ) ( ) ( )
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1.0 1.0 0.5
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[3.6.1.1.2-1] 

[3.4.1-1] 

 where, 

m = multiple presence factor = 1.2 
P = AASTHO Truck wheel load = 16 kips 
x = distance from load to support = 2 ft 
ws = width of equivalent strip (in) = 45 + 10x 

 Extreme Event II load combination: 

 Case 2: 
 Note that design case 2 at this section is similar to section 1 and does not need 
to be investigated. 

 Case 3: 
 Strength I load combination: 

 Note that the collision tensile force is less at section 2 than at section 1, the 
moment is of equivalent magnitude, and the section is much greater in depth. 
Therefore the same reinforcement may be used for the entire overhang. 

 Verify the area of reinforcement, As, required. Use the same moment equation 
used at Section 1 where: 

1.2 16 2 7.09
45 12 10 12 45 12 10 2 12LL

mPx kips ftM ft kips ft
ft x ft ft

⋅ ⋅
→ = − = − = − −

+ + ⋅

60 5
0.90 12
12 12 2.5 0.5 1 9.0
7.98 25.57 306.84

y c

u

f ksi f ksi
b in

h in d in
T kips M ft kips ft in kips ft

f
′= =

= =
= = − − ⋅ =
= = − = −

20.74sA in ft→ =

( ) ( ) ( )
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2

2

2 1 2

  

  

  

  

1.25 1.5 1.75

1.25 3.21 1.5 0.1125 1.75 1.33 7.09

20.68
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u Strength I
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u u u Strength I

M M M M

M
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M M M
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1.25 1.25 0.55 0.69u DCM M ft kips ft= = ⋅ = −

 10.3 Bottom Slab Design 

10.3.1 Minimum Reinforcement Cracking Moment 

10.3.2 Negative Moment 

Considering the minimum reinforcement requirement above: 

Using the same formula presented in section 7.1 above, solve for required 
negative area of reinforcement for negative flexure where d = 5 in: 

10.3.3 Positive Moment 

Considering the minimum reinforcement requirement above: 

Solve for required area of reinforcement for positive flexure where d = 4.5 in: 

10.3.4 Minimum reinforcement for shrinkage and temperature: 

where, 

( )2

3 1

1 7
0.67 1.6 0.53 4.64

6cr r c

ft in
M f S ksi ft kipsγ γ= = ⋅ ⋅ ⋅ = −

( )1.25 1.25 0.84 1.05u DCM M ft kips ft= = − = − −

u crM M≤

( )1.33 1.05 1.40uM ft kips ft→ = − = − −

20.06sA in ft=

u crM M≤

1.33 0.69 0.92uM ft kips ft→ = ⋅ = −

20.05sA in ft=

( )

2 20.11 0.60
1.30

2

s

s
y

in ft A in ft
bhA

b h f

≤ ≤

≥
+

11.25 135
7
60

y

b ft in
h in
f ksi

= =
=
=

2
sAs ≥ 0.07 in2 ft → ≥A 0.11in ft
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Therefore, the minimum required reinforcement for shrinkage and temperature 
controls. Notice that this requires a minimum of # 3 bars spaced at 12 inches. 
This is very light. 

Due to engineering experience and judgment, use #5 bars at 12 inches for the 
top of the bottom slab and #4 bars at 12 inches for the bottom. 
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Example 2—Curved Two-Cell Box Girder Bridge 
 
1. Introduction 
 
This Design example is a curved, 3-span concrete box girder with three webs.  
The top slab of the bridge is 47’-6” wide, with a travelled way dimension of 44’-
0”, between the faces of the curbs.  The span lengths are 120’-0”, 160’-0”, and  
120’-0” measured along the centerline of the bridge.  The radius of curvature of 
the centerline of bridge is 600’-0”.  It is assumed that the substructure supports 
are bearings on individual columns beneath each web at the piers and similar 
bearings beneath each web at the abutments.  As a result, the substructure 
effectively provides full vertical and torsional fixity at each pier and abutment, 
while allowing longitudinal movement, so that thermal rise and fall, creep, and 
shrinkage shortening do not have an appreciable effect on the superstructure. 
 
The bridge is assumed to require the following concrete covers to the 
reinforcing: 
 
• 2 ½ inches—Top of top slab. 
• 2 inches—Other external surfaces. 
• 1 ½ inches—Internal surfaces. 
 
It is assumed to be located in a moderate corrosion environment. 
 
The spacing of the three, 1’-0”-thick, vertical webs is 16’-0”.  The bottom slab is 
thus 33’-0” wide.  Also, the cantilevers of the top slab, beyond the centerline of 
the exterior webs, are 7’-6”.  The top slab is thickened at the web locations, and 
is assumed to be transversely post-tensioned, as discussed in section 2. 
 
Figure D.1 shows a perspective of the bridge studied in this design example.   
 
 

 
 

Figure D.1 – Curved Bridge of Design Example 2 
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An elevation view of the bridge for this design example is shown in figure D.2. 
 
 

 
 
 

Figure D.2 – Elevation of Example 2 Bridge 
 
Figure D.3 shows a transverse cross section taken through the bridge.  The 2-
cell box girder bridge carries two 12’ wide traffic lanes, two 10’, and 1’-9” 
barriers, for a total out-to-out width of 47’-6”.  
 
 

 
 

Figure D.3 – Cross Section through Example 2 Bridge 
 

 
Pier 2 and Pier 3 are each comprised of two cylindrical columns 6’-0” in 
diameter connected by a transverse pier cap.  The box girder superstructure is 
supported by bearings placed on the pier cap.  The columns are 20’ in height, 
measured from the top of foundations to the base of the superstructure. The 
foundations for this design example consist of 7’-0” diameter mono-shafts.  For 
this example, it is assumed that the supporting soil provides an equivalent point 
of fixity 10’ below the top of the mono-shafts for all force effects. The distance 
from the base of the superstructure to the point of fixity is 30’.   
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2. Material Characteristics

2.1. Concrete 

The initial and 28-day concrete strengths for the superstructure and 
substructure are: 

The unit weight of the concrete is defined below.  Note that the unit weight 
used for the self-weight calculations includes an additional weight for the 
reinforcement. 

The modulus of elasticity for normal weight concrete, where wc = 0.145 kcf, can 
be taken as: 

2.2 Reinforcing Steel 

The yield strength and modulus of elasticity are: 

2.3 Prestressing Steel 

The 0.6 inch diameter low-relaxation prestressing strand is used in this 
example with the following properties: 

[3.5.1] 

[C5.4.2.4-1] 

[5.4.3] 

[5.4.4] 
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3. Cross Section Properties

The typical cross section dimensions are shown in figure D.4.  The cross 
section dimensions are constant over the length of the bridge: 

Figure D.4 – Cross Section Dimensions 

The properties of the typical superstructure cross section are: 

A = cross sectional area = 73.36 ft2 
Ix = moment of inertia = 572.7 ft4 
H = height of section = 7.0 ft 
yct = top of section to centroid = 2.255 ft 
ycv = bottom of section to centroid = 4.745 ft 

The gross section properties of the substructure elements are used in this 
design example: 

Ac = area for two columns = 56.55 ft2 
Ixc = moment of inertia for two columns = 127.24 ft4 
Ap = area for two monoshafts = 56.55 ft2 
Ixp = moment of inertia for two monoshafts = 127.24 ft4 
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4. LRFD General Design Equation

The AASHTO LRFD Design Specification’s general design equation is: 

where, 

ηi = load modifying factor for ductility, redundancy, and operational 
importance 

γ i = load factor 
Qi = force effect 
f = resistance factor 
Rn = nominal resistance 
Rr = factored resistance 

The load modifier, ηi, takes on two forms. The first is for loads in which a 
maximum value of γ i is appropriate, the second is in which a minimum value of 
γ i is appropriate. 

where, 

ηD = ductility factor 
ηR = redundancy factor 
ηI = operational importance factor 

Since the purpose of this example is to illustrate a conventional design on a 
typical bridge, 

Note that the load modifying factors are project and design specific and may 
not equal 1.0 in actual designs. 

[1.3.2.1-1] 

[1.3.2.1-2], 
[1.3.2.1-3] 

[1.3.3], 
[1.3.4], 
[1.3.5] 



Post-Tensioned Box Girder Design Manual June 2016 

Appendix D – Design Example 2 327 of 369 

5. Transverse Design

The transverse analysis for this structure was accomplished using the method 
described under LRFD 4.6.2.9.4.  This method is a simple way to accurately 
calculate the contribution of the webs and bottom slab to the top slab bending, 
as well as calculate the web and bottom slab bending.  For the top slab, which 
is a transversely prestressed member, both service and strength limit states are 
checked.  The webs and bottom slab, which are not prestressed transversely, 
are designed at the strength limit state as reinforced members. Because the 
superstructure is symmetrical, the results will be reported for half the top and 
bottom slabs, the center web, and one exterior web. 

Figure D.5 shows the transverse model of the bridge, made for the BDII 
program, a program that allows the post tensioning tendons to be input and 
calculates the time-dependent effects of creep and shrinkage.  The properties 
of this model assume it is 1’-0” long.  The transverse post-tensioning is 1-0.6” 
dia. strand in the 1’-0” long model, which equates to 4-strand tendons spaced 
at 4’-0” along the bridge. 

Figure D.5 – Frame Model for Transverse Analysis 

Seven live load cases were developed by positioning trucks on the cross 
section to maximize the following moments: 

• Negative Moment, Node 3
• Positive Moment, Node 6
• Negative Moment, Node 4
• Negative Moment, Node 8
• Negative Moment, Node 5
• Negative Moment, Node 7
• Negative Moment, Node 2

In this example, all of the maximum moments were created by a single truck on 
the cross section, due to the 1.2 multiple presence factor for a single lane from 
LRFD 3.6.1.1.2.  Because a single truck produces the maximum top slab 
moments, the positions of the trucks which maximize the negative moment at 
nodes 3, 4, and 8 also produce maximum bending in the adjacent webs. 

Influence surfaces are then used to calculate the Fixed End Moments at the 
end of each slab span for each load case. Also, the maximum moment for a 
beam with fixed ends at nodes 5, 6, and 7 were determined when those were 
the nodes of interest. 

[3.6.1.1.2] 



Table D.1 – Fixed End Moments for Maximum Flexure at Node 6 

The BDII transverse plane frame model is loaded with the fixed end moments 
at Nodes 4 and 8 in order to determine their redistribution as a result of the 
flexibility of the adjoining top slab.  The result of interest due to this load case is 
only the redistributed moment at Node 6, which is +0.6 ft-kips/ft.  

The design positive Live Load Moment at Node 6 is then: 

5.1+  0.6 =  5.7 ft − kips / ft

Similarly, the maximum Live load effects are found on other nodes in the cross 
section and are shown in table D.2.  Note that for the top and bottom slabs, 
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Once these fixed end moments are calculated for each load case, they are 
input into the BDII model, which calculates the redistributed moments for each 
load case.  The redistributed moments are then added to the moments with 
fixed ends to calculate the final live load moments at a node. 

The step-by-step process of calculating the positive bending (tension on the 
bottom) live loads at Node 6 will be shown as an example: 

The loading producing maximum positive bending at Node 6 is shown in figure 
D.6.

Figure D.6 – Load Location for Maximum Positive Flexure at Node 6 

Then, influence surfaces are used to calculate the values of the fixed end 
moments at Nodes 4 and 8 for this loading, as well as the moment with fixed 
ends at Node 6.  These moments at Points 4,6,and 8 are shown in the 
following table: 

Node FEM 
(ft-kips) 

4 -14.1
6 5.1 
8 6.3 
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positive moments create tension on the bottom. For the webs, positive 
moments create tension on the inside of the exterior webs and the right side of 
the center web.  Also, an influence surface was unavailable for Node 2, so a 
plate model of the cantilever overhang was created, and truck wheels were 
placed on the model to give the maximum live load moment at that node. 

Node MLL + 
(ft-kips) 

MLL – 
(ft-kips) 

1 0.0 0.0 
2 n/a -3.7
3 n/a -9.5
4 n/a -12.4
5 n/a -3.1
6 5.7 n/a 
7 n/a -3.3
8 n/a -12.9
21 0.1 -0.1
22 0.3 -0.5
23 0.1 -0.3
24 0.0 -0.3
25 0.5 -0.4
32 0.5 -1.0
33 4.6 -7.6
34 6.7 -11.0
35 1.2 -1.2
36 6.4 -6.4
37 9.9 -9.9

Table D.2 – Design Live Load Moments 

Once the Live load moments are calculated, they are combined with dead load 
and PT forces in service and strength load groups. 

Service Load Groups for Top Slab 

Because the top slab is a prestressed member, the Service Limit State that 
must be checked at the time of tendon stressing and after all losses have 
occurred. The Service I load combination is used to check both the allowable 
tension and compression for transverse analysis, using only the truck loads, 
and no lane loads. 

The Service I load factors simplify to those shown in table D.3 for this structure. 

Table D.3 – Service Limit State Load Factors 

Load 
Combination DC DW CR + SH PS LL+I 

Service I 1.0 1.0 1.0 1.0 1.0 

[3.4.1] 
[4.6.2.9.4] 
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The maximum allowable compressive stresses are: 
• 0.6 f’ci  for temporary stresses at the time of tendon stressing.
• 0.45 f’c  due to prestressing and permanent loads after all time dependent

effects and losses.
• 0.6 f’c  due to prestressing, permanent, and transient loads after all time

dependent effects and losses.

The maximum allowable tensile stresses are: 

• 0.24√ f’ci (ksi)  for temporary stresses at the time of tendon stressing
(7.5√ f’ci  for units in psi).

• 0.0948√ f’c (ksi)  for stresses after all time dependent effects and losses
(3.0√ f’c  for units in psi).

Temporary Initial Stress Check 

The top slab stresses at stressing of PT are shown below in table D.4.  With 
6ksi concrete, the allowable stress in compression is -518ksf, and the allowable 
tension stress is +33ksf.  The reported stresses are well below these limits. 

Node f top 
(ksf) 

f bot 
(ksf) 

1 0.0 0.0 
2 -56.3 -45.3
3 -61.4 -9.2
4 -78.3 8.4 
5 -79.5 -33.9
6 -20.9 -92.6
7 -65.3 -47.8
8 -69.6 -0.4

Table D.4 – Top Slab Stresses at Stressing of PT 

Stresses After All Time Dependent Losses 

The stresses due to dead load, PT, creep, and shrinkage after all losses are 
shown in table D.5. 

[5.9.4] 
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Node f top 
(ksf) 

f bot 
(ksf) 

1 0.0 0.0 
2 -31.0 -63.4
3 -39.0 -26.7
4 -66.9 2.8 
5 -67.4 -36.7
6 -21.4 -82.7
7 -61.1 -42.7
8 -62.2 -2.0

Table D.5 – Top Slab Stresses due to DC, DW, CR, SH after all losses 

Combining the stresses from table D.5, above, with those from the Live load 
design moments shown in table D.2 yields the following final stresses, shown in 
table D.6 below: 

Node 
Max Tension Max Compression 
f top 
(ksf) 

f bot 
(ksf) 

f top 
(ksf) 

f bot 
(ksf) 

1 0.0 0.0 0.0 0.0 
2 8.5 -63.4 -31.0 -102.9
3 9.6 -26.7 -39.0 -75.3
4 -3.5 2.8 -66.9 -60.6
5 -25.6 -36.7 -67.4 -78.5
6 -21.4 -5.8 -98.3 -82.7
7 -16.6 -42.7 -61.1 -87.2
8 3.8 -2.0 -62.2 -68.0

Table D.6 – Top Slab Stresses From Service I (Compression) and 
Service III (Tension) Load Combinations 

Strength Limit State for Transverse Analysis 

All members must be designed for the Strength Limit State.  For the top slab, 
this amounts to a check for the post-tensioning layout determined in the 
Service Limit State design.  For the bottom slab, reinforcing will be determined 
based on this work.  The required web reinforcing for bending will be 
determined in this stage, but will eventually be combined with that required for 
longitudinal shear and torsion. 

The Strength I load factors simplify to those shown in table D.7 for this 
structure. 
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Table D.7 – Strength I Load Factors for Transverse Analysis 

The ultimate applied moments are calculated from the output of the BDII 
program (for all except live loads) and the live load moments shown in table 
D.2.  Once combined using the above load factors, the ultimate moments for
each node in the cross section are as shown in table D.8

Node Mu + 
(k-ft) 

Mu – 
(k-ft) 

1 0.0 0.0 
2 -4.3 -10.7
3 -8.6 -25.2
4 -1.7 -23.4
5 0.6 -4.8
6 12.4 2.5 
7 0.6 -5.2
8 -2.1 -24.7
21 -0.8 -1.1
22 0.4 -1.0
23 1.5 0.8 
24 -1.9 -2.4
25 -2.1 -3.7
32 2.7 0.0 
33 12.7 -8.6
34 17.9 -13.1
35 2.1 -2.1
36 11.2 -11.2
37 17.3 -17.3

Table D.8 – Ultimate Moments for Transverse Design 

The ultimate resistance of the top slab will be calculated separately from the 
resistance of the bottom slab and webs.  As mentioned previously, the Strength 
Limit State calculations of the prestressed top slab serve as a check of the 
Service Level design.  However, for the webs and bottom slab, reinforcing 
requirements will be determined using this Strength Limit State design. 

Top Slab Resistance 

The top slab resistance is calculated using LRFD 5.7.3 

Load 
Combination DC DW CR + SH PS LL+I 

Strength I 1.25 1.5 1.0 1.0 1.75 

[3.4.1] 

0.28k =

1 0.75β =

[C5.7.3.1.1-1] 

[5.7.2.2] 
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Table D.9 presents the ultimate capacity of the top slab. In the table, the 
neutral axis and the stress in the prestressing at ultimate are calculated using 
5.7.3.1.1-4 and 5.7.3.1.1-1, respectively.  The ultimate capacity is calculated 
using 5.7.3.2.2-1, without considering mild reinforcing (though it could be 
considered, if necessary). 

Table D.9 – Ultimate Capacity of the Top Slab  

The minimum reinforcing provisions of 5.7.3.3.2 should be satisfied, as well.  In 
this case, φMn is greater than 1.33·Mu in all cases, thus 5.7.3.3.2 is satisfied.  
The comparison is shown in table D.10. 

Node φMn 
(k-ft) 

1.33•Mu 
(k-fft) 

1 18.3 0.0 
2 -20.1 -14.3
3 -40.2 -33.6
4 -40.2 -31.1
5 -16.0 -6.4
6 23.4 16.5 
7 -16.0 -6.9
8 -40.2 -32.8

Table D.10 –  φMn vs. 1.33·Mu 

Node H 
(in) 

dp 
(in) 

c 
(in) 

fps 
(ksi) φ φMn 

(k-ft) 
1 9.00 4.50 1.18 250.1 1.00 18.3 
2 9.00 4.86 1.19 251.5 1.00 -20.1
3 13.00 9.02 1.23 259.7 1.00 -40.2
4 13.00 9.02 1.23 259.7 1.00 -40.2
5 8.00 4.00 1.17 247.9 1.00 -16.0
6 8.00 5.56 1.20 253.7 1.00 23.4 
7 8.00 4.00 1.17 247.9 1.00 -16.0
8 13.00 9.02 1.23 259.7 1.00 -40.2

20.217psA in=

0.583 0.25 1td
c

f  = + − 
 

84.7rf ksf=[5.4.2.6] 

[5.7.3.3.2] 

[5.5.4.2] 

[5.7.3.3.22] 

[5.7.3] 
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Required Reinforcing in Bottom Slab and Webs 

The bottom slab reinforcing is sized for 1.33·Mu to accommodate minimum 
reinforcing requirements. However, since the web reinforcing will ultimately be 
combined with the longitudinal shear reinforcing and regional bending 
reinforcing from post-tensioning (see section 6), the minimum reinforcing 
requirements will be satisfied for the webs. table D.11 shows positive bending 
reinforcement requirements, and table D.12 shows negative bending 
requirements. 

Node As/s 
(in2/ft) 

d 
(in) 

a 
(in) φ 

φMn 
(+) 

(k-ft) 

1.33∙ Mu
(k-ft) 

Bo
tto

m
 S

la
b 21 N/A 9.625 0.00 0.9 N/A N/A 

22 0.030 4.625 0.03 0.9 0.6 0.5 
23 0.095 4.625 0.09 0.9 2.0 2.0 
24 N/A 4.625 0.00 0.9 N/A N/A 
25 N/A 9.625 0.00 0.9 N/A N/A 

Ex
t. 

W
eb

s 32 0.060 10.125 0.06 0.9 2.7 N/A 
33 0.283 10.125 0.28 0.9 12.7 N/A 
34 0.400 10.125 0.39 0.9 17.9 N/A 

In
t. 

W
eb

 35 0.047 10.125 0.05 0.9 2.1 N/A 
36 0.248 10.125 0.24 0.9 11.2 N/A 
37 0.388 10.125 0.38 0.9 17.3 N/A 

Table D.11 – Positive Bending Reinforcement, Bottom Slab and Webs 

Node As/s 
(in2/ft) 

d 
(in) 

a 
(in) φ φMn (-) 

(k-ft) 
1.33∙ Mu

(k-ft) 

Bo
tto

m
 S

la
b 21 0.035 9.625 0.03 0.9 -1.5 -1.5

22 0.070 4.625 0.07 0.9 -1.4 -1.3
23 N/A 4.625 0.00 0.9 N/A N/A 
24 0.155 4.625 0.15 0.9 -3.2 -3.2
25 0.115 9.625 0.11 0.9 -5.0 -4.9

Ex
t. 

W
eb

s 32 0.010 10.125 0.00 0.9 0.0 N/A 
33 0.190 10.125 0.19 0.9 -8.6 N/A 
34 0.292 10.125 0.29 0.9 -13.1 N/A 

In
t. 

W
eb

 35 0.047 10.125 0.05 0.9 -2.1 N/A 
36 0.248 10.125 0.24 0.9 -11.2 N/A 
37 0.388 10.125 0.38 0.9 -17.3 N/A 

Table D.12 – Negative Bending Reinforcement, Bottom Slab and Webs 

[5.8.1.5] 

[5.7.3] 

[5.7.3] 
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The controlling amounts of reinforcing are highlighted in the above tables.  For 
positive bending in the bottom slab, the point at the center of the bottom slab 
controls.  Likewise, for negative moment in the bottom slab, the locations near 
the center web control.  In all cases, the required reinforcing in the bottom slab 
is less than 0.2 in2/ft, which means #4 bars at 1’-0” spacing will be adequate.   

The web reinforcing for bending is controlled by the reinforcing at the top of the 
web, as expected.  The reinforcing required for bending in the center web is 
symmetrical. Also, note that more reinforcing is required on the inside faces 
than is required on the outside faces of the exterior webs.  This web reinforcing 
demand will be added to that required for shear and torsion as well as regional 
bending later in the calculations. 

Overhang Design 

The deck overhang of a box girder bridge must be designed to withstand 
impact on the barrier and to withstand normal (Strength 1) traffic loads, though 
not concurrently.  There are three design cases given in LRFD A13.4.1.  Case 
1 includes lateral load on the barrier which produces moment and tension in 
the overhang.  Case 2 is a vertical impact on the barrier, and Case 3 is the 
design accomplished in section 2, with wheel loads on the deck.   

Case 1: 

The strength of the deck must simultaneously exceed the moment capacity, 
Mc, of the barrier as well as the tensile force, T, from the barrier. The flexural 
resistance, Ms, of the overhang is designed using the Extreme Event II load 
combination limit state shown below: 

Load Combination 
Limit State DC DW CR+SH PS TU TG LL+I 

Extreme Event II 1.0 1.0 1.0 1.0 0 0 0.5 

Table D.13 – Extreme Event II Load Factors 

Typically, barriers are standard designs, and for this problem, a TL-4, 32 inch 
high barrier will be used. The three moment capacities needed in the following 
calculations are given as: 

Also given are the weight of the barrier at 0.45kips/ft and its center of gravity, 
1’-0” from its inside face. 

For this bridge, the capacity of the slab must be checked at three locations: 
• At the inside face of the barrier.
• At the point where the slab bottom surface changes slope (Node 2 in the

transverse model).
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• At the face of the web (Node 3 in the transverse model). 
 
 

Case 1, Inside Face of Barrier: 
 
1.75ft from the end of the slab: 
• PT is at the center of the slab at this location. 
• Slab is 9 inches thick. 
• Top cover is 2.5 inches to the longitudinal (top layer) of reinforcing, which 

is #5 bars. 
 
Calculate the dead load moments: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Tensile force from the barrier is defined as: 
 
 
 
 
where, 
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The reinforcing required to carry the tension will be split between the top and 
bottom layers.  The amount required for tension is: 

2
11.3

1 0.104
2 2 0.9 60s

y

kips
T ftA in ft
f ksif

= ⋅ = =
⋅ ⋅

Use #4 at 1’-0” transverse in the bottom = 0.2in2/ft. 

For bending, try #5’s and #4’s alternated, each at 1’-0”, along with the post-
tensioning (4 strand tendons spaced at 4’-0”).  Subtract the amount of 
reinforcing required for tension in the top layer. 

Case 1, Node 2: 

4.75 ft from the end of the slab: 
• PT is 5.07 in above the bottom of the slab at this location.
• Slab is 9 in thick.
• Assume distribution length, Lc, increases at a 30 degree angle.
• Ignore vertical live load during an impact event.

Calculate the dead load moments: 

2
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Calculate the impact forces: 

For tension, required As per layer is 0.08in2/ft.  The #4’s at 1'-0" standard 
transverse reinforcing satisfies this demand, at 0.2in2/ft. 

Recalling from section 2 the capacity at Node 2 for transverse bending using 
the post-tensioning only, 

φMn=Mu for the post-tensioning alone.  Thus, the #5’s may be cut off near 
Node 2.  Run half of the #5’s 1ft beyond Node 2, and cut the others at Node 2. 

Case 1, Face of Web (Node 3): 

Impact reinforcing at the face of the web is acceptable by inspection, since it 
was acceptable at Node 2, the #5’s at 1’-0” are continuous, the PT continues to 
move up, and the overhang continues to deepen, all while the applied moment 
continues to spread and decrease.   

Case 2: 

Case 2 does not control, since the Fv=18kip vertical load distributed over 
Lv=18ft does not control over a wheel load in the overhang or Case 1. 
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Longitudinal Slab and Web Reinforcing 

The top and bottom slabs act as one-way members, carrying forces in the 
transverse direction.  A summary of the reinforcing to this point is: 

• Top slab, top, transverse reinforcing: #4 at 1’-0”, with additional #5 at 1’-0”
in overhang.

• Top slab, top longitudinal reinforcing: #5 at 1’-0” except over the piers,
where additional #5 at 1’-0” are used for negative moment capacity.

• Bottom slab, transverse reinforcing: #4 at 1’-0”, top and bottom.

It remains to calculate the bottom longitudinal reinforcing for the top slab and 
both mats of longitudinal reinforcing for the bottom slab, as well as the 
longitudinal reinforcing in the webs.  In each case, the reinforcing is controlled 
by temperature and shrinkage requirements. 

For the top slab, bottom mat, using the thickest portion of the slab: 

where, 

Use #4 bars at 1’-0”, which is 0.2 in2/ft. 

For the bottom slab, the results will be lower.  However, use #4 bars at 1’-0”, 
which is 0.2 in2/ft for the longitudinal reinforcing in each face. 

Similarly, for the longitudinal reinforcing in the webs, which are 1’-0” thick, 

Use #4 bars at 1’-0”, As=0.2 in2  /ft.  

47.5 570
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6. Live Load Distribution

LRFD 4.6.2.2.1 discusses the conditions for calculation of distribution factors. 
It is found that this cross section does not meet the requirements for use of 
4.6.2.2.2, since the number of cells (Nc) is less than 3, and the spacing of the 
of the webs (S) is greater than 13ft.  Thus, the number of lanes of live load for 
design is calculated by creating a finite element model of the bridge, as 
discussed in AASHTO LRFD Article 4.6.3.   

The model finite element model uses plates for the top and bottom slabs, rigidly 
connected to beams representing the webs of the box girder.  It is loaded with 
live load in positions to create maximum moments and shears for the following 
locations, for both the center and exterior webs: 

• End Span—Maximum Positive Bending.

• Center Span—Maximum Positive Bending.

• End Span and Center Span—Maximum Negative Bending.

• End Span—Shear at Abutment.

• End Span—Shear at Pier.

• Center Span—Shear at Pier.

The effects for one, two and three lanes loaded are studied, each with the 
appropriate multiple presence factors applied.  In interpreting results for the 
finite element model, it is important to determine how much of the top and 
bottom slabs are attributed to each web by calculating the amount of top and 
bottom slab that creates the same center of gravity for each web as for the 
entire cross section.   

The results show that for bending, 3 lanes loaded creates the maximum 
longitudinal bending in each web for each case, while for shear, 2 lanes loaded 
creates maximum shear in each web for each case. 

These results were compared to a single lane loaded on a straight bridge, to 
calculate the number of lanes carried by each web for each case.  Table D.14 
shows the results of the bending investigation, and table D.15 shows the 
results for shear. 

Center Web Exterior Web 
End 

Span (+) 
Center 

Span (+) Negative End 
Span (+) 

Center 
Span (+) 

0.91 0.91 0.93 0.86 0.87 

Table D.14 – Number of Lanes per Web - Bending 

[4.6.2.2.1] 

[4.6.2.2.2] 
[4.6.2.2.3] 

[4.6.3] 

[3.6.1.1.2-1] 
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Center Web Exterior Web 
End Span 
@ Abut. 

End Span 
@ P1 

Span 2 
@ P1 

End Span 
@ Abut 

End Span 
@ P1 

Span 2 
@ P1 

1.30 1.20 1.18 1.24 1.11 1.14 

Table D.15 – Number of Lanes per Web - Shear 

 
All of the results are fairly consistent for bending, with the largest number of 
lanes carried by the center web in negative bending.  Therefore, this analysis 
uses 3x0.93=2.79 lanes of live load for bending, including the 0.85 multiple 
presence factor.  This is an increase of 9.4 percent over the 3 lanes times 0.85 
multiple presence factor the bridge can carry according to LRFD, where 
3x0.85=2.55 lanes.   

 
For shear, two different values are chosen, because the variation among the 
cases is greater than it is for bending.  At the abutments (and in the ends of the 
end spans), a value of 1.30 lanes per web is used, for a total of 3x1.30=3.9 
lanes.  At other locations, a value of 1.20 lanes per web is used, for a total of 
3x1.20=3.6 lanes.   

 
Note that the bridge can be loaded in the longitudinal model without regard to 
live load torsion, since torsion is implicitly included in the above loadings. 

 7.

 

Modeling

 As discussed in the introduction, this example has supports beneath each web, 
which are considered to fix the bridge for superstructure torsion and transverse 
displacement, but it is free to shorten and lengthen.  Thus, the superstructure 
can be separated from the substructure for analysis purposes.   

 
Once the total number of design lanes is known, the bridge can be modeled as 
a spine beam with straight segments along the curve for all types of loads. 

 
The curvature is within the limits discussed in LRFD 4.6.1, since the largest 
central angle is as follows, and is less than the 34° limit: 

 Where the span length along the centerline of the box is 160ft, and the radius 
 of the centerline is 600ft. 

For Dead Loads and PT, the bridge is modeled in a three-dimensional program 
t hat allows the actual curved geometry to be modeled, as well as the input of 
the post-tensioning tendons along their paths, and calculates their effects, 
including time-dependent changes.  The model is made up of straight 
segments, with nodes every 5 ft, beginning at the centerline of 
bearings at the abutments.  It has the properties of the gross cross 
section.    

[3.6.1.1.1] 
[3.6.1.1.2] 

160 0.2667 15.27
600

ftCentralAngle rad
ft

= = = °

[4.6.3.4] 

[4.6.1.2.3] 
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The post-tensioning modeled is three, 19 x 0.6” strand tendons per 
web, draped so that they are low at the midspan and high at the piers.  
At the abutments, the tendons are spread to allow room for the 
anchorages, but otherwise, they are parallel, with 2” clear between the ducts. 

It should be noted that for this type of bridge a time-dependent program is not 
necessary, and LRFD 5.9.5 may be used to estimate the post-tensioning 
losses. 

Live loads, which cannot be run in the time-dependent program, are calculated 
using a separate three-dimensional finite element program, with the same 
spine beam type layout as the one used for dead load.  Several cases were 
run, representing the above-calculated numbers of lanes.   

Member forces and stresses were then taken from these two models to 
check Service and Strength Load Groups for flexure and shear. 

8. Flexural Design

There are two flexural designs required by the AASHTO LRFD specifications 
for prestressed concrete: flexural designs at the Service Limit State and at the 
Strength Limit State. 

8.1 Service Limit State 

There are two load combinations for the Service Limit State: Service I and 
Service III. The Service I load combination is used to check against maximum 
allowable compression in the superstructure and Service III is used to check 
against maximum allowable tension. Table D.16 shows the Service I and 
Service III load combinations.   

Table D.16 – Service Load Combinations 

The maximum allowable compressive stresses are: 

• 0.6 f’ci  for temporary stresses at the time of tendon stressing.
• 0.45 f’c  due to prestressing and permanent loads after all time dependent

effects and losses.
• 0.6 f’c  due to prestressing, permanent, and transient loads after all time

dependent effects and losses.

The maximum allowable tensile stresses are: 
• 0.24√ f’ci (ksi)  for temporary stresses at the time of tendon stressing

(7.5√ f’ci  for units in psi).

Load 
Combination DC DW CR + 

SH PS TG LL+I 

Service I 1.0 1.0 1.0 1.0 .0.5 1.0 
Service III 1.0 1.0 1.0 1.0 0.5 0.8 

[5.9.5.4.1] 

[3.4.1] 

[3.4.1-1] 

[5.9.4] 
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• 0.019√ f’c (ksi)  for stresses after all time dependent effects and losses
(6√ f’c  for units in psi).

Temporary Initial Stress Check: 

At the time the post-tensioning is stressed, the controlling point for compressive 
stresses is located in the bottom of the section at the centerline of the pier 
(Node 26).   

It should be noted that though there is a diaphragm at this section (which 
changes the section properties), the longitudinal stresses do not typically have 
room to spread significantly through the diaphragm.  Thus, the typical section 
properties are used, and the stresses are taken at the centerline of the pier. 
However, they are conservatively taken for the peak moment at this location. 
That peak moment does not exist in reality, since the bearing has a length. 
Thus, if stresses due to the peak moment become critical, that bearing length 
can be accounted for and the design moments reduced somewhat. 

At Node 26, 

At the time the post-tensioning is stressed, the output from the analysis shows 
there is no tension in the bridge. 

Stresses after All Losses: 

The controlling tension and compression in a post-tensioned structure is 
generally always after all long term losses have occurred.  The relaxation of the 
post-tensioning, as well as shortening due to creep and shrinkage typically 
cause increases in tension at the top of the bridge over the piers, and at the 
bottom of the bridge at midspan.  The compression at the bottom of the soffit at 
the piers typically increases over time, as well. 

This effect can be seen in table D.17, which summarizes all dead load plus 
post-tensioning effects at the two midspan nodes as well as at the centerline of 
pier, both when the structure is opened to traffic as well as when all losses 
have taken place.  The other loads remain constant over time, unless a future 
wearing surface is added, which will increase the differences between the 
stresses at the times shown. 

( )1.0btmf DC PS= +

133.4 0.6 4.0 2.4 345.6btmf ksf ksi ksi ksf= − > − ⋅ = − = −
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Table D.17 – Change in Superstructure Stresses over Time 

 

At the bottom at the centerline of pier (which is a compression point) the 
compression increases over time.  At the other locations, which are checked 
against allowable tension, the compression decreases over time. 

 

After all losses have occurred, the controlling point for compression is located 
in the bottom of the section at the center line of the pier (Node 26). 

 
 
 

This is the same stress as shown in the above table.  

 
 

 
 
 

Final Compression Stress Check, All Loads: 

 

The controlling point is again located at the bottom of the section at the pier 
(Node 26). Use Service I load combination. 

 
 
 
 
 
 
 

Final Tensile Stress Check, All Loads: 

 

The controlling point is located in the bottom of the section at the midspan of 
Span 2 (node 42). Use Service III load combination: 

 
 
 
 
 
 

Node Location 

Σ (DL + PT) 
Open to 
Traffic 
(ksf) 

After All 
Losses 

(ksf) 
12 Bottom, in End Span -88.4

 

-81.4

 

26 Top, at Pier -35.9

 

-28.8

 

26 Bottom, at Pier -163.8

 

-164.9

 

42 Bottom, in Main Span -48.3

 

-40.9

 

( )1.0btmf DC DW CR SH PS= + + + +

164.9 0.45 6 2.7 388.8btmf ksf ksi ksi ksf= − > − ⋅ = − = −

( )1.0 0.5btmf DC DW CR SH PS LL I TG= + + + + + + + ⋅

241.0 0.6 6 3.6 518.4btmf ksf ksi ksi ksf= − > − ⋅ = − = −

( ) ( )1.0 0.5 0.8btmf DC DW CR SH PS TG LL I= + + + + + ⋅ + +

35.4 6 6000 465 67btmf ksf psi psi ksf= < = =
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The table below contains a summary of the stress checks every ten feet along 
the superstructure. 

Node Distance 

Initial > -
345.6ksf 

Permanent >   -
518.4ksf Service I > -0.6 fc 

Service III > 
6

Bottom 
(ksf) 

Top 
(ksf) 

Bottom 
(ksf) 

Top 
(ksf) 

Bottom 
(ksf) 

Top 
(ksf) 

Bottom 
(ksf) 

Top 
(ksf) 

2 0 -116.8 -73.2 -111.1 -64.1 -111.0 -122.3 -45.5 -118.0
4 10 -110.8 -78.7 -96.4 -75.6 -100.3 -150.5 -54.7 -83.5
6 20 -107.3 -82.5 -86.3 -83.9 -94.4 -172.1 -60.6 -57.4
8 30 -106.2 -84.6 -80.6 -89.2 -93.8 -187.3 -63.0 -39.7
10 40 -107.2 -85.2 -79.0 -91.6 -97.3 -196.5 -62.5 -29.8
12 50 -109.8 -84.7 -81.4 -91.2 -104.7 -199.9 -59.2 -27.2
14 60 -111.5 -84.9 -86.2 -89.2 -114.6 -199.1 -54.4 -30.4
16 70 -111 -86.2 -91.6 -86.9 -125.0 -195.3 -49.2 -36.8
18 80 -106.5 -87.9 -95.7 -83.7 -134.1 -188.3 -43.2 -44.9
20 90 -100.9 -90.2 -99.4 -79.6 -142.9 -177.8 -36.1 -55.6
22 110 -95 -92.7 -104.6 -74.4 -153.3 -164.4 -28.0 -69.8
24 100 -110.1 -80.3 -116.9 -64.4 -173.8 -147.4 -13.3 -89.7
26 120 -105.6 -80.8 -164.9 -28.8 -241.0 -113.4 33.0 -135.3
28 130 -75.2 -98.9 -105.8 -66.9 -161.3 -150.1 -16.4 -77.9
30 140 -73.2 -98.5 -79.2 -82.7 -118.8 -172.6 -41.0 -43.5
32 150 -75 -96.3 -69.4 -88.2 -99.5 -186.7 -51.8 -23.8
34 160 -75.7 -94.7 -60.9 -93.0 -88.7 -200.4 -57.9 -4.9
36 170 -75.5 -93.8 -53.6 -97.0 -80.5 -212.1 -62.4 11.2 
38 180 -74.5 -93.3 -47.6 -100.0 -74.5 -220.6 -65.4 23.6 
40 190 -73.1 -93.1 -43.2 -101.9 -70.0 -225.8 -67.3 31.9 
42 200 -73.5 -93.1 -40.9 -102.6 -67.7 -227.5 -68.0 35.4 
44 210 -74.9 -93.3 -43.6 -101.9 -70.4 -225.6 -67.3 31.4 
46 220 -75.8 -93.8 -48.1 -100.0 -74.8 -220.5 -65.4 23.2 
48 230 -75.9 -94.8 -54.0 -97.0 -80.8 -212.1 -62.5 10.8 
50 240 -75.1 -96.4 -61.3 -93.1 -88.9 -200.5 -58.0 -5.2
52 250 -73.3 -98.7 -69.7 -88.3 -99.8 -186.9 -52.0 -24.1
54 260 -75.2 -99.2 -79.4 -82.8 -118.7 -172.8 -41.3 -43.6
56 270 -105.6 -81.1 -106.0 -67.1 -161.3 -150.4 -16.7 -77.9
58 280 -110.2 -80.5 -165.0 -29.1 -241.0 -113.7 32.7 -135.4
60 290 -95.1 -92.9 -117.0 -64.7 -173.9 -147.7 -13.6 -89.8
62 300 -101.1 -90.3 -104.7 -74.7 -153.5 -164.6 -28.1 -69.9
64 310 -106.7 -88 -99.6 -79.8 -143.2 -177.9 -36.2 -55.8
66 320 -111.2 -86.3 -95.9 -83.9 -134.5 -188.3 -43.2 -45.3
68 330 -111.6 -84.9 -91.6 -86.9 -125.1 -195.4 -49.2 -36.8
70 340 -109.9 -84.7 -86.3 -89.3 -114.7 -199.2 -54.5 -30.3
72 350 -107.2 -85.2 -81.5 -91.2 -104.7 -199.8 -59.2 -27.4
74 360 -106.2 -84.6 -79.0 -91.6 -97.2 -196.4 -62.5 -29.9
76 370 -107.3 -82.5 -80.6 -89.2 -93.8 -187.2 -63.0 -39.8
78 380 -110.8 -78.8 -86.4 -83.9 -94.4 -172.2 -60.6 -57.4
80 390 -116.7 -73.3 -96.5 -75.6 -99.4 -150.6 -55.2 -83.3
82 400 0 0 -111.3 -64.2 -109.1 -122.4 -46.7 -118.1

Table D.18 – Stress Summaries 
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8.2 Strength Limit State 

There is one load combination used to check the strength limit state: Strength I. 

Load 
Combination DC DW CR + SH PS LL+I 

Strength I 1.25 1.5 1.0 1.0 1.75 

Table D.19 – Strength Limit State Design Factors 

The factored flexural resistance, Mr, must be greater than the Strength I load 
combination, Mu (ultimate moment), and the minimum reinforcement 
requirement. The minimum reinforcement requirement states that the flexural 
resistance must at least equal 1.33Mu or the cracking moment, Mcr, whichever 
is less. This can be summarized by the following equation (using absolute 
values): 

Factored Design Moment 

The critical location is the negative moment at the centerline of Pier 2 (Node 
26). The summation of the Strength I load combination is: 

Minimum reinforcement calculation 

where, 

( )( )max ,min 1.33 ,r n u u crM M M M Mf= ≥

22324.6
4057.5
21 0 21

6068.9
9593.2

DC

DW

CR SH

PS

LL I

M ft kips
M ft kips
M ft kips
M ft kips
M ft kips

+

+

= − −
= − −

= + = −
= −

= − −

44690.2uM ft kips→ = − −

( )3 1 2cr r cpe cM f f Sγ γ γ = + 

1.33 59438.0uM ft kips⋅ = − −

1

3

1.6
1.0

160.2 
cpef ksf

γ
γ

=
=

=

[3.4.1] 

[1.3.2.1-1] 
[5.7.3.2] 

[5.7.3.3.2] 

[3.4.1] 

[5.7.3.3.2] 
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Therefore, at this location, the design moment is 1.33·Mu. The absolute value 
of 1.33·Mu is less than the absolute value of Mcr, and this value is greater than 
the absolute value of the factored moment, Mu.

Factored Flexural Resistance 

Nominal moment calculations will be shown at the critical location. First, the 
nominal moment capacity, Mn, will be calculated using prestressing only.  If 
necessary, non-prestressed reinforcing will then be added to increase the 
capacity. 

First, LRFD Equation 5.7.3.1.1-4 will be checked, to see if the section is 
rectangular or flanged, as discussed in LRFD 5.7.2.2.  The following are known 
from the cross section dimensions, concrete strength, and post-tensioning 
layout at Node 26: 

Using these values in equation 5.7.3.1.1-4, 
 

and 

which is less than the bottom slab thickness of 7in, so the section can be 
treated as rectangular, and equation 5.7.3.1.1-4 is the correct one to use to 
determine the neutral axis location. 

Next, we use equation 5.7.3.1.1-1 to find the stress in the prestressing at 
ultimate, and obtain: 

Before the capacity is calculated, find φ. 

2

3

1.1

7.5 6000 588.2 84.7

200.5
r

c

f psi psi ksf

S ft

γ =

= = =

=

62504crM ft kips→ = − −

1 0.75β =

270puf ksi=237.1PSA in= 33b ft=67.5Pd in=

0.28k =

0.85 5.44a c in= ⋅ =

6.4c in=

262.8psf ksi=

0.583 0.25 1 1.0td
c

j  = + − ≤ 
 

[5.7.2.2] 
C5.7.3.1.1-1] 

[5.5.4.2] 
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where, 

Knowing these values, we now use equation 5.7.3.2.2-1 to calculate the 
moment capacity φMn, and obtain: 

Comparing φMn to the design moment of 1.33·Mu, we find that the calculated 
capacity is too low.  Thus, we will determine if reasonable amount of mild 
reinforcing over the pier can increase the capacity sufficiently. 

Try longitudinal #5 bars at 6 inch spacing in the top of the deck. The total 
number of bars is 95.  Recalculate the above values, incorporating this 
reinforcing.  The values of c, fps, and φ need to be checked before entering 
equation 5.7.3.2.2-1. 

And the increased capacity, accounting for mild reinforcing is 
 

Which is greater than the design moment of 

The following table contains a summary of the flexural strength design checks 
at typical critical locations along the superstructure. 

67.5t pd d in= =

1.0j =

52279nM ft kipsj = − −

2 295 0.31 29.45s
inA inbar= ⋅ =

60sf ksi=

Recalculating c and checking for rectangular behavior, 

                                           c = 7.6in
and

                                a = 0.85c = 6.46in

Thus, the section still behaves as rectangular. Continuing, 

261.5psf ksi= 1.0j =

63715nM ft kipsj = − −

1.33 59438.0uM ft kips⋅ = − −



Post-Tensioned Box Girder Design Manual June 2016 

Appendix D – Design Example 2 349 of 369 

Table D.20 – Factored Moments 

9. Web Design

Critical Section: 

For shear and torsion design, it is unnecessary to calculate shear and torsion 
values closer than dv to supports.  LRFD 5.8.2.9 states 

Where, 

Near the abutments, it is clear that dv=0.72h, since the post-tensioning is not 
near the extremities of the beam. Near the piers, we will calculate dv using the 
properties at the centerline of the pier, for the purposes of determining where 

max ,0.9 ,0.72n
v e

s y ps ps

Md d h
A f A f

 
=   ⋅ + ⋅ 

ps ps p s y s
e

ps ps s y

A f d A f d
d

A f A f
+

=
+

[5.8.3.2] 

[5.8.2.9] 

[5.8.2.9-2] 

the critical section is located.  We know the following values from the ultimate 
moment calculations: 

Node 12 26 42 
Location ~0.4 L Pier 2 0.5 L 
Distance (ft) 50 120 200 

DC (ft-kips) 9962.5 -22324.6 12949.7 
DW (ft-kips) 1810.7 -4057.5 2353.6 
CR (ft-kips) 9.0 21.0 21.1 
SH (ft-kips) 0.0 0.0 0.0 
PS (ft-kips) 2522.4 6068.9 6082.5 

LL+I (ft-kips) 8448.2 -9593.2 9323.9 

Mu (ft-kips) 32485.0 -44690.2 42138.1 

1.33Mu (ft-kips) 43205.0 -59438.0 56043.6 
Mcr (ft-kips) 44047.2 -62507.7 41781.8 

Design Moment 1.33Mu 1.33Mu Mu 
(ft-kips) 43205.0 -59438.0 42138.1 

φMn (ft-kips) 47323.7 -63714.7 55027.4 
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Thus, the critical section could be taken as far away as 5.55 ft from the support. 
However, it is conservative to take the critical section closer to the support 
(since the section properties are constant and shear typically dominates the 
design over torsion), and there is a node at 5.00 ft.  So, the critical section will 
be taken at 5.0 ft from the pier and abutments. 

Since shear and torsion combine in an exterior web, they must be considered 
together.  However, to this point, torsion has only been implicitly considered in 
the calculation of the number of design lanes performed in section 3.  In that 
section, loads were placed on the bridge that maximized the shear in the center 
and exterior webs.  The interior web controlled, and the number of lanes taken 
by the center web was multiplied by the number of webs to give a conservative 
number of design lanes for the bridge; 3.9 lanes near the abutments and 3.6 
lanes elsewhere.  These lanes are placed along the centerline of the bridge in 
the spine model. 

LRFD 5.8.2.1 provides a formula that calculates whether torsion needs to be 
considered in the design.  If this formula shows that torsion needs to be 
considered, we will calculate the required shear and torsion reinforcing for two 
cases, and use the most conservative design:   

1) Maximum torsion on the bridge with its concurrent shear from a load
case that is derived from the standard LRFD Loading.

2) Maximum shear as calculated in section 3, along with its concurrent
torsion (if torsion needs to be considered for this case).

Determine the number of lanes that produce the maximum torsion for Case 1), 
above.  Using the description of lanes and the transverse placement of loads in 
LRFD 3.6.1.1 and 3.6.1.2: 

• Eccentricity for 1 Lane = 17 ft.
• Eccentricity for 2 Lanes = 11 ft.
• Eccentricity for 3 Lanes = 5 ft.

67.5Pd in=237.1psA in= 261.5psf ksi=

229.45sA in= 60sf ksi= 80.5sd in=

63715nM ft kips= − − 7h ft=

1 66.67n
v

s y ps ps

Md in
A f A f

= =
⋅ + ⋅

2 0.9 66.0v ed d in= =

3 0.72 60.5vd h in= =

[C5.8.2.1] 

[3.6.1.1] 
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The controlling case is found by using number of lanes and multiple presence 
factors: 

Thus, two Lanes controls for maximum torsion. 

The finite element spine model is then used to compute the live load shear and 
torsion for two lanes positioned as close to the barrier as possible.  The time 
dependent model gives dead load and PT forces and stresses.  Once these are 
known, Tu and Tcr can be calculated and LRFD 5.8.2.1 can be entered to find 
whether torsion is critical for Case 1).   

Constants used include the following: 

The following table shows the calculation of Tcr and compares it to Tu 
according to LRFD 5.8.2.1-3.  Tu is calculated according to LRFD 3.4.1.  The 
two locations where torsion must be considered, shown in bold, are near the 
piers in the center span. 

Node fpc 
(ksf) 

Tcr 
(k-ft) 

T DC 
(k-ft) 

T DW 
(k-ft) 

T CR 
(k-ft) 

T PT 
(k-ft) 

T LL+I 
k-ft)

Tu 
(k-ft) 

0.25φTcr 
(k-ft) 

3 83.7 27647 555.0 100.9 0.0 225.2 2904 6153 6221 
7 85.3 27820 340.9 62.0 -0.1 217.5 2316 4789 6259 

11 86.8 27980 11.6 2.1 -0.3 164.4 1594 2971 6296 
14 88.0 -28108 -222.3 -40.4 -0.6 93.4 1135 1740 -6324
17 89.0 -28215 -376.0 -68.3 -0.9 -8.2 -1605 -3390 -6348
21 87.2 -28023 -349.2 -63.5 -1.4 -191.6 -2242 -4649 -6305
25 85.1 -27798 -75.4 14.0 -2.1 -414.6 -2811 -5410 -6255
27 83.6 27636 398.3 72.4 2.6 699.8 3218 6940 6218 
31 80.9 27343 690.6 125.5 1.9 536.9 2760 6420 6152 
35 79.6 27200 596.8 108.5 1.1 373.7 2248 5218 6120 
39 78.3 27057 264.0 48.0 0.4 191.4 1692 3554 6088 
42 77.4 -26957 -53.9 -9.8 -0.1 42.8 1274 2190 -6065

Table D.21 – Verification of Torsion Considerations 

1 1 17 1.2 20.4Lane Ln ft Ln ft= ⋅ ⋅ = ⋅

2 2 11 1.0 22Lanes Ln ft Ln ft= ⋅ ⋅ = ⋅

3 3 5 0.85 12.75Lanes Ln ft Ln ft= ⋅ ⋅ = ⋅

0.9j =

0.25 12 0.25 4.5 10.875vb web duct in in inf= − ⋅ = − ⋅ =

2203.2oA ft=

[5.5.4.2.1] 

[5.8.2.9] 

[5.8.2.1] 

[5.8.2.1-4] 
[3.4.1] 

[3.6.1.2] 
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Thus, we can develop a load case that requires that torsion be considered for 
at least some locations in the structure.  As previously stated, the reinforcing 
for this load case will be compared to that required for Case 2) at node 27, 
where the difference between the applied torsion and the limit is greatest, 
according to the above table. 

Shear reinforcing for these two cases will be calculated using the simplified 
procedure of LRFD 5.8.3.4.3. 

Case 1), Node 27: 

The Governing equation for shear says the capacity, which is made up of the 
strength of concrete plus reinforcing, must be greater than the factored load, or, 

And 

where 

and 

Vci relates to the tendency of flexure cracks to become shear cracks, and 
involves the following terms: 

• Mmax, which is the ultimate moment under the maximum bending load
case minus the bending due to unfactored dead load.  For this load case,
the live load moments are taken from the Case 1) loading, which is two
lanes placed with as much eccentricity as possible.

• Vi, which is the shear concurrent with Mmax.

• Mcre, which is the moment, in addition to unfactored dead load moment,
required to bring the flexural stress up to the code defined cracking
stress, as defined in LRFD Equation 5.8.3.4.3-2.

u
n c s

VV V V
j

= + ≥

( )min ,c ci cwV V V=

max

0.02 0.06i cre
ci c v v d c v v

V MV f b d V f b d
M

′ ′= + + ≥

( )0.06 0.30cw c pc v v pV f f b d V′= + +

[5.8.3.4.3] 

[5.8.3.4.3-1 

[5.8.3.4.3-3] 

[5.8.3.3] 
[5.8.3.4.3] 

[5.8.3.4.3-2] 
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• Vd, which is the unfactored dead load shear.

• bv and dv, which have been previously defined.

Vcw relates to the tendency of the web to crack from principal tension: 

• fpc is the compressive stress in the section at the center of gravity.

• Vp is the shear from post-tensioning.

• bv and dv are as previously defined.

Calculate Vci: 

And, 

For Vcw: 

And 

Thus, 

The applied shear, Vu, is calculated from applied dead and live loads for Case 
1): 

Node V DC
(k) 

V DW 
(k) 

V CR+SH 
(k) 

V PT sec 
(k) 

V LL+I 
(k) 

Vu 
(k) 

27 825.3 150.0 0.0 0.0 287.0 1758.8 

max 14322u DC DWM M M M ft kips= − − = −

950.4iV k= 975.3dV k=

24290.0creM ft kips= −

0.20 70.5r cf f ksf′= =

157.0cpef ksf=

2683.8ciV k=

83.5pcf ksf=

801.0cwV k=

801.0c cwV V k= =

 [3.4.1] 

Table D.22 – Ultimate Shear at Node 27 
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The required shear strength from reinforcing is: 

Using LRFD Equation 5.8.3.3-4 for Vs, and realizing that the reinforcing will be 
placed at 90° to the longitudinal axis: 

To find the required reinforcing, solve the above for Av/s, using known values. 

Where 

 

solving, 

Since there are 3 webs, and each web has 2 faces, this equates to 
0.373in2/ft·face. 

For Case 1, the reinforcing for torsion must now be calculated. Note that the 
following equation gives the reinforcing required in one outside web: 

From the previous calculations in this section, at Node 27: 

1758.8 801.0 1153.2
0.9

u
s c

V kipsV V kips kips
j

= − = − =

( )cotv y v
s

A f d
V

s
θ

=

cot
v s

y v

A V
s f d θ

=

1153.2sV kips= 60yf ksi= 0.72 60.5vd h in= =

cot 1.0 3 1.7pcf
f c

θ
 

= + =  ′ 

2 2

0.18687 2.24vA in in
s in ft

= =

02 cotv yu
n

A A fTT
s

θ
j

= =

6940uT ft kips= − 20 203.2A ft=

[5.8.3.3-1] 

 [5.8.3.3-4] 

 [5.8.3.4.3-4] 

 [5.8.3.6.2-1] 

cotθ =1.7 j = 0.9
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Now, summing the required reinforcing, the critical exterior web would require: 

For Case 1). Note that the reinforcing in the exterior webs would be made 
equal to this minimum, while the interior web could use 0.373 in2/face, for a 
total of 2.61 in2/ft in the bridge 

Case 2), Node 27: 

Case 2) utilizes the load distribution calculated in section 3, with the live load 
placed along the centerline of the bridge, as explained in that section.  Thus, 
the only torsion is due to the fact that the bridge is curved. 

All permanent load effects are the same for the two cases so only the live load 
varies between the two cases.  The table below shows that torsion need not be 
explicitly considered with Case 2). 

Node fpc 
(ksf) 

Tcr 
(k-ft) 

T DC 
(k-ft) 

T DW 
(k-ft) 

T CR 
(k-ft) 

T PT 
(k-ft) 

T LL+I 
k-ft)

Tu 
(k-ft) 

0.25φTcr 
(k-ft) 

3 83.7 27647 555.0 100.9 0.0 225.2 694 2284 6221 
7 85.3 27820 340.9 62.0 -0.1 217.5 565 1725 6259 

11 86.8 27980 11.6 2.1 -0.3 164.4 288 685 6296 
14 88.0 -28108 -222.3 -40.4 -0.6 93.4 -83 -390 -6324
17 89.0 -28215 -376.0 -68.3 -0.9 -8.2 -214 -957 -6348
21 87.2 -28023 -349.2 -63.5 -1.4 -191.6 -290 -1233 -6305
25 85.1 -27798 -75.4 14.0 -2.1 -414.6 -140 -736 -6255
27 83.6 27636 398.3 72.4 2.6 699.8 242 1732 6218 
31 80.9 27343 690.6 125.5 1.9 536.9 478 2427 6152 
35 79.6 27200 596.8 108.5 1.1 373.7 469 2104 6120 
39 78.3 27057 264.0 48.0 0.4 191.4 303 1124 6088 
42 77.4 -26957 -53.9 -9.8 -0.1 42.8 145 215 -6065

2

2

6940 0.185
0.9 2 203.2 60 1.7

vA ft kips in
s ft ksi ft web

−
= =

⋅ ⋅ ⋅ ⋅ ⋅

2

2 20.185
0.373 0.465

2

in
in inft web

faceft face ft face
web

⋅+ =
⋅ ⋅

 [5.8.3.6.1] 

 [3.4.1] 
[5.8.2.1] 

Table D.23 – Verification of Torsion Considerations 

And we can calculate Av/s for one web as: 



Post-Tensioned Box Girder Design Manual June 2016 

Appendix D – Design Example 2 356 of 369 

max 14266.5u DC DWM M M M ft kips= − − = −

For Node 27 we find: 

Vci, Case 2): 

 

And, 

Vcw is the same as for Case 1), and 

The applied shear, Vu, is: 

Node V DC 
(k) 

V DW 
(k) 

VCR+SH 
(k) 

V PT sec 
(k) 

V LL+I 
(k) 

Vu 
(k) 

27 825.3 150.0 0.0 0.0 510.8 2150.5 

Table D.24 – Shear at Node 26 

The required shear strength from reinforcing is: 

 

Using LRFD Equation 5.8.3.3-4 for Vs, and realizing that the reinforcing will be 
placed at 90° to the longitudinal axis: 

Solving the above for Av/s, using known values: 

950.4iV k= 975.3dV k= 0.20 70.5r cf f ksf′= =

24290.0creM ft kips= −157.0cpef ksf=

 [5.8.3.4.3-1] 

2399.1ciV kips=

801.0c cwV V kips= =

2150.5 801.0 1588.4
0.9

u
s c

V kipsV V kips kips
j

= − = − =

( )cotv y v
s

A f d
V

s
θ

=

21588.4 12
3.1

60 60.5 1.7
v

inkips
A inft
s ksi in ft

⋅
= =

⋅ ⋅

 [5.8.3.4.3-3] 

 [3.4.1] 

 [5.8.3.3-1] 

 [5.8.3.3-4] 
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 Thus, at Node 27, the total amount of shear and torsion reinforcing in the 
bridge is equal to 2.61in2/ft for Case 1), and 3.1in2/ft for Case 2).  Of the two 
nodes that required investigation of torsion under Case 1), the worst case did 
not control over Case 2), and it will be conservative to design the structure 
using the forces developed under section 3, as in Case 2. 

9.1 Shear Design 

Shear will be investigated at discreet points along the bridge.  The symmetry of 
the spans will be considered, and only half of the bridge will be reported. 
Points for investigation are chosen at distances that would be meaningful for 
changes in shear reinforcing, in this case, at about 20 ft. 

Dead Load and Post-Tensioning values are from the 3D, time-dependent 
model, and live load is from the spine beam and load cases discussed in 
section 3 and Case 2), above.  The table below shows the calculation of Vu. 
Note that only shear due to secondary PT moments is considered. 

Node Distance 
(ft) 

V DC 
(k) 

V DW 
(k) 

V 
CR

 
(k) 

V PT

sec

 
(k) 

V LL+I 
(k) 

Vu 
(k-ft) 

3 5 419.5 76.2 0.2 50.6 443.4 1465.3 
7 25 199.4 36.2 0.2 50.6 326.3 925.3 

11 45 -20.7

 

-3.8

 

0.2 50.6 223.4 410.3 
14 60 -185.8 -33.8

 

0.2 50.6 -241.3 -654.1

 
17 75 -350.8 -63.8

 

0.2 50.6 -305.2 -1017.5
21 95 -570.9

 

-103.8

 

0.2 50.6 -396.5

 

-1512.4

 
25 115 -791.0

 

-143.8

 

0.2 50.6 -484.6

 

-2001.6

 
27 125 825.3 150.0 0.0 0.0 510.8 2150.5 
31 145 605.2 110.0 0.0 0.0 428.7 1671.8 
35 165 385.1 70.0 0.0 0.0 344.7 1189.6 
39 185 165.1 30 0.0 0.0 262.7 711.0 
42 200 0.0 0.0 0.0 0.0 201.2 352.1 

Table D.25 – Ultimate Shear Forces 

Calculate Vci: 

 
Using the same methodology and constants as above, the calculation of Vci at 
the nodes is shown in the table below. Note that the absolute values of Mcre, 
Mmax, Vi, and Vd are used in the calculation of Vci. 

Applied Shear: 

 

 [3.4.1] 

 [5.8.3.4.3-1] 
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Node fcpe 
(ksf) 

Mdnc
(k-ft) 

S 
(ft3) 

Mcre 
(k-ft) 

Mmax 
(k-ft) 

Vi
(k) 

Vd 
(k) 

Vci 
(k) 

3 122.0 2608.0 138.2 23997.2 3784.7 748.3 495.9 5337.2 
7 154.8 9939.6 138.2 21205.3 15077.2 517.4 235.8 1060.2 

11 166.9 12058.3 138.2 20764.6 20283.6 259.8 -24.3 386.9 
14 160.3 10225.4 138.2 21674.7 20570.5 -30.6 -219.3 348.2 
17 133.6 5460.7 138.2 22756.7 18048.5 -186.8 -414.4 746.6 
21 104.2 -5446.8 200.5 29591.6 -6688.1 -248.1 -674.5 1868.9 
25 157.5 -21547.3 200.5 24176.8 -14600.3 -708.7 -934.6 2204.8 
27 157.0 -21339.8 200.5 24290.0 -14266.5 779.5 975.3 2399.1 
31 107.4 -4411.7 200.5 31273.5 -1720.3 446.7 715.2 8933.2 
35 110.2 7318.0 138.2 17661.0 19847.7 525.4 455.1 1019.4 
39 145.4 13837.2 138.2 16014.0 25570.1 320.6 195.1 492.5 
42 151.7 15303.4 138.2 15411.9 26834.7 -42.1 0.0 290.1 

Table D.26 – Concrete Shear Capacity, Vci 

Calculate Vcw: 

The calculation of Vcw is performed, again, with the same constants as were 
used for the calculations performed at Node 27, above.  Vp is the shear due to 
primary and secondary PT forces, and typically increases the capacity Vcw. 

Table D.27 – Concrete Shear Capacity, Vcw 

The final table repeats Vci and Vcw, calculates Vc, and calculates the required 
reinforcing in in2/ft.  Note that at Nodes 7, 11, and 42, the minimum reinforcing 
value controls. 

Node Fpc
(ksf) 

Vp
(k) 

Vcw 
(k) 

3 83.6 -279.8 913.5 
7 85.2 -136.9 777.3 

11 86.8 12.2 658.9 
14 88.0 171.3 822.9 
17 88.9 356.0 1011.5 
21 87.2 589.6 1237.9 
25 85.1 264.8 904.5 
27 83.5 -167.7 801.0 
31 80.8 -594.8 1217.1 
35 79.6 -372.7 989.9 
39 78.3 -157.1 768.8 
42 77.4 0.0 608.2 

 [5.8.3.4.3-3] 

[5.8.3.4.3] 
[5.8.3.3-4] 
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Node Vci
(k) 

Vcw 
(k) 

Vc 
(k) cotθ 

Req’d 
Vs 
(k) 

Req’d 
Av/s 

(in2/ft) 
3 5337.2 913.5 913.5 1.7 714.7 1.4 
7 1060.2 777.3 777.3 1.7 250.8 0.5 

11 386.9 658.9 386.9 1.0 69.0 0.5 
14 348.2 822.9 348.2 1.0 378.5 1.3 
17 746.6 1011.5 746.6 1.0 383.9 1.3 
21 1868.9 1237.9 1237.9 1.7 442.6 0.8 
25 2204.8 904.5 904.5 1.7 1319.6 2.5 
27 2399.1 801.0 801.0 1.7 1588.4 3.1 
31 8933.2 1217.1 1217.1 1.7 640.5 1.3 
35 1019.4 989.9 989.9 1.7 331.9 0.7 
39 492.5 768.8 492.5 1.0 297.5 1.0 
42 290.1 608.2 290.1 1.0 101.1 0.5 

Table D.28 – Required Web Reinforcing for Shear 

9.2 Regional Web Bending 

LRFD 5.8.1.5 states that webs shall be reinforced for vertical shear and torsion, 
regional web bending, and transverse web bending due to vertical loads.  The 
above Shear Design section calculated the reinforcing required from shear. 
Section 2 calculated the reinforcing required from web bending. What remains 
is to calculate the reinforcing required from regional web bending. 

Regional web bending is bending that places tension and compression on the 
inside and outside faces of the webs, due to the radius of the bridge and, thus, 
the curvature of the tendons.  It is partially resisted by the longitudinal 
compression in the web, which bends the web in the opposite direction. 
However, the resistance from the longitudinal compression is not accounted for 
in the following, since it is not mentioned in the AASHTO LRFD Bridge Design 
Specifications. 

The regional web bending will be calculated using LRFD 5.10.4.3.1d.  The 
values used will be those when the bridge is first opened to traffic, as that is the 
earliest time the web will be subjected to all three effects – shear, transverse 
bending, and regional bending.  Thus, the design will be conservative because 
shear and transverse bending are taken when they are most critical (after all 
losses), and regional web bending is taken when it is most critical (at opening 
to traffic). 

Observing the maximum force in the post-tensioning tendons at the time the 
bridge is opened to traffic, from the time-dependent program output: 

[5.8.1.5] 

6800kips kipsPpt = = 2266.7
3webs web

Calculating values for the webs, with the radius of the inside web equal to 584 
ft, and the load factor of 1.2, 

[3.4.3] 



Post-Tensioned Box Girder Design Manual June 2016 

Appendix D – Design Example 2 360 of 369 

For exterior webs, 

For the interior web, 

No indication of a difference between positive and negative moments is given 
in LRFD, so the assumption is that these values apply to both.  For the exterior 
webs, these regional forces work in the same direction, so they put the inside 
face in tension on one web, and the outside in tension on the other.  The 
effects of transverse bending are not symmetrical on these webs, so the 
regional bending forces will be used as both positive and negative at all 
locations. 

Table D.29 below shows the ultimate moments and required reinforcing for the 
general web bending due to the curved PT tendons: 

Node 
Positive Moment Negative Moment 
Mu (+) 
(k-ft) 

As/s 
(in^2/ft) 

Mu (-) 
(k-ft) 

As/s 
(in^2/ft) 

32 3.3 0.072 -3.3 0.072 
33 3.3 0.072 -3.3 0.072 
34 3.3 0.072 -3.3 0.072 
35 0.0 0.000 -3.9 0.085 
36 3.9 0.085 0.0 0.000 
37 0.0 0.000 -3.9 0.085 

Table D.29 - Regional Web Bending Due to PT Moments 
And Required Reinforcing 

9.3 Total Web Reinforcing 
The reinforcing for shear, transverse bending due to vertical loads, and regional 
web bending due to PT will now be combined to find the total reinforcing 
required in the webs.  The shear reinforcing requirements vary along the 
bridge, and the bending reinforcing requirements vary from web to web and 
vertically along each web, as well as from face to face in each web.  Also, the 
live loading that produces maximum shear in a given web will not 
produce  maximum  bending.  The  converse  is  also  true,  as  a  single  truck 

1.2 2266.7 4.66
584u in

kips kipsF
ft ft−

⋅
= = 4.75ch ft=

0.6 4.66 4.75
3.32

4u

kips ft
ft kipsftM

ft

⋅ ⋅
−

= =

0.7 3.32 3.87
0.6u

ft kipsM
ft

− = = 
 

[5.10.4.3.1a] 

[5.10.4.3.1d] 

[5.7.3.1] 
[5.7.3.2] 
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produces maximum web bending, but that loading produces shears that 
are approximately one-third of the maximum shear design case.  The only 
constant amount is for the regional bending from PT lateral forces, 
because LRFD 5.10.4.3.1d presents only one formula.  As the tendons travel 
up and down the webs, this value would also change.  Thus, there are 
many variables to accommodate in calculating web reinforcing. 

It remains to the engineer to select web reinforcing that is efficient, not only in 
material price but also to place.  Too much variation in shear reinforcing 
(from web to web, top to bottom or face to face) presents opportunities for 
incorrect placement.  Placing the same reinforcing in each web is logical, as is 
using the same reinforcing in each face of each web, because a single U-
shaped bar can be used for reinforcing, in this case.  This will also provide the 
same reinforcing from top to bottom in each web. 

As discussed above, the exact amount of reinforcing used at each location 
would be very cumbersome to calculate, as each bending case would have a 
corresponding shear reinforcing requirement, and vice-versa.  Thus, it is simple 
to use a method that relates only to the maximums required.  The following 
combination formula has proven to simplify the calculations and be 
conservative. 

Where, 

• V = shear reinforcing required at a given location
• B = maximum transverse bending reinforcement at a given face and

height
• P = regional web bending from PT loads
• A = area of reinforcing to use

The design zones along the bridge are simplest to quantify if the locations and 
shear reinforcing requirements from Section 6.1 are recalled. In the table 
below, Node 2 is the abutment, Node 26 is the pier, and Node 42 is the 
centerline of Span 2.  Note that the values shown are for the entire bridge width 
(three webs, with two faces each): 

[5.8.1.5] 

( )max 0.5 ,0.5 ,0.7( )A V B P V B P V B P= + + + + + +
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Node Distance 
(ft) 

Req’d 
Av/s 

(in2/ft) 
3 5 1.4 
7 25 0.5 

11 45 0.5 
14 60 1.3 
17 75 1.3 
21 95 0.8 
25 115 2.5 
27 125 3.1 
31 145 1.3 
35 165 0.7 
39 185 1.0 
42 200 0.5 

Table D.30 – Shear Reinforcing Requirements 

Using the values from the above table, the design regions chosen are 
expressed in the following table: 

Design 
Region 

Begin 
Distance 

End 
Distance 

Shear 
Reinforcing 

1 B/B 25 1.4 
2 25 45 0.5 
3 45 75 1.3 
4 75 120 2.5 
5 120 145 3.1 
6 145 185 1.3 
7 185 M/S 1.0 

Table D.31 – Shear Reinforcing Design Regions 

In the above table, B/B refers to Begin Bridge and M/S refers to Midspan of 
Span 2. 

For each region above, the transverse bending and regional web bending must 
be added, in accordance with the combination formula. 

The table below recalls and summarizes the reinforcing requirements for 
positive and negative bending in the webs due to transverse bending and 
regional bending from PT, found in sections 2 and 6.2.  The node 
numbers refer to the transverse analysis model.  Note that the reinforcing 
shown is for one face of a web. 
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Table D.32 – Web Bending Reinforcing Requirements 

As an example, the reinforcing in Region 1 would be calculated as in the 
following, for each face of each web: 

Then, the combination formula yields, at the exterior webs, at the top of the 
web (Node 34), for positive bending: 

The maximum of: 

So, at this location, the design would require 0.589in2/ft on each of the six 
faces. 

Likewise, at the interior web, at the top of the web(Node 37), for negative 
bending: 

Node 

T ransverse Regional 
Positive 

As/s 
(in2/ft) 

Negative 
As/s 

(in2/ft) 

Positive 
As/s 

(in2/ft) 

Negative 
As/s 

(in2/ft) 

Ex
t. 

W
eb

s 32 0.060 0.010 0.072 0.072 
33 0.283 0.190 0.072 0.072 
34 0.400 0.292 0.072 0.072 

In
t. 

W
eb

s 35 0.047 0.047 0.000 0.085 
36 0.248 0.248 0.085 0.000 
37 0.388 0.388 0.000 0.085 

2

21.4
0.233

6

in
inftV

faces ft face
= =

⋅

2 2 2 2

1 0.233 0.5 0.400 0.072 0.505in in in inA
ft ft ft ft

= + ⋅ + =

2 2 2 2

2 0.5 0.233 0.400 .072 0.589in in in inA
ft ft ft ft

= ⋅ + + =

2 2 2 2

3 0.7 0.233 0.400 .072 0.515in in in inA
ft ft ft ft

 
= + + = 
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And the design value would be 0.590in2/ft.  Since these two values are in the 
same design region, 0.590in2/ft would control and would become the design 
value for that region, if there were no other locations which required more 
reinforcing. 

Similarly, using the combination formula to calculate the reinforcing 
requirements for both positive and negative moment at each point in exterior 
and interior webs for each design region leads to the following web reinforcing 

Design 
Region Required 

Distance Use 
Provided 

Reinforcing 
(in2/ft) 

1 0.590 #5@6” 0.620 
2 0.515 #5@7” 0.531 
3 0.581 #5@6” 0.620 
4 0.696 #5@5” 0.744 
5 0.796 #6@6” 0.880 
6 0.581 #5@6” 0.620 
7 0.556 #5@6” 0.620 

Table D.33 – Final Web Reinforcing at Each Face of Each Web 

9.4 Principal Tension 

The LRFD Design Specifications state that the principal stresses in the webs 
shall be analyzed for all segmental bridges. It does not give direction on non-
segmental concrete box girder bridges. However, it is a good design check and 
the calculation of principal stresses is included in this example, because such a 
check will help prevent web cracking at the service level. 

The principal tensile stresses are calculated using the long-term residual axial 
stress and the maximum shear stress. The Service III Limit State load 
combination is used for both axial and shear stresses. 

2 2 2 2

1 0.233 0.5 0.388 0.085 0.512in in in inA
ft ft ft ft

= + ⋅ + =

2 2 2 2

2 0.5 0.233 0.388 .085 0.590in in in inA
ft ft ft ft

= ⋅ + + =

2 2 2 2

3 0.7 0.233 0.388 .085 0.520in in in inA
ft ft in ft

 
= + + = 

 

[5.7.3.1] 
[5.7.3.2] 

[5.8.5] 
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The critical section with the maximum principal tensile stress is located just 
upstation of Pier 2, a distance of dv (approximately 5.0 ft) from the diaphragm 
(Node 27). See section 5 above for the calculation of dv.  In this case, as 
discussed in section 6, torsion need not be included.  However, the principal 
tension will be calculated at the critical location including torsion, as an 
example of how to calculate the effects of torsion. 

Shear Stress from Vertical Shear 

From general mechanics of materials, the shear stress can be taken as: 

where, 

V  = vertical shear in section 
= VDC +VDW +VPS +VCR+SH +0.8•VLL+I 
= 1216.3 kips 

Q = first moment of the area = 96.0 ft3 
I = section moment of inertia = 572.7 ft4 
b = web width less ¼ duct Ø = 0.906 ft 
nw = number of webs = 3 

This calculation assumes that the shear effects all webs equally, and is 
conservative due to the fact that the load distribution in section 3 calculated the 
largest load to one web (the center one, in this case) then applied this value to 
all the webs to get the total load on the bridge. 

Shear Stress from Torsion 

According to section 6, torsion need not be included in this design. 
Calculations are presented here as an example only.  

In a box girder, St. Venant Torsion (the dominant effect) produces shear in the 
exterior webs.  In one exterior web it adds to the vertical shear, and in the other 
it subtracts from it.  On the interior webs, the shears from this torsion cancel. 
Typically, when torsion is included, it is calculated in the critical web and the 
required reinforcing is used in all webs for simplicity of placement. 

Mechanics of materials gives the shear flow around a box as: 

where, T = Torsion at the section 
= TDC +TDW +TPS +TCR+SH +0.8•TLL+I 
= 1366.5 ft-kips 

w

VQ
Ibn

t =

2 o

Tq
A

=

[C5.8.2.1] 

3

4

1216.3 96.0 75.0
572.7 0.906 3

kips ft ksf
ft ft

t ⋅
→ = =

⋅ ⋅
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Ao = as defined in LRFD 5.8.2.1 = 203.2ft2 

This value has units of force per unit length, and represents the force acting 
along the web.  To calculate the shear stress in the web, simply divide by the 
effective thickness of the web, bv: 

In this case, the shear stress due to torsion, 3.7ksf, is about 5 percent of the 
shear stress due to vertical shear, 75.0 ksf.  

Mohr’s Circle 

Using Mohr’s circle, the principal tension can be calculated at the neutral axis: 

The normal stress at Node 27 is: 

From Mohr’s circle, the radius, R, and then the principal stress, sp, can be 
calculated with and without torsion. 

With torsion, 

Without torsion, 

2

1366.5 3.36
2 203.2T

ft kips kipsq
ft ft

−
→ = =

⋅

3.36
3.7

0.906
T

T
v

kips
q ft ksf
b ft

t = = =

83.5DC DW PS CR SH ksfs s s s s −
+= + + + =

( ) ( )
2

22 241.75 78.7 89.1
2 TR ksfs t t − = + + = + = 

 

41.75 89.1 47.4
2p R ksfss −→ = + = + =

41.75 85.8 44.1
2p R ksfss −→ = + = + =

( ) ( )
2

22 241.75 75.0 85.8
2 TR ksfs t t − = + + = + = 
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At this location, both with and without torsion included, the principal tension is 
greater than the allowable.  In order to reduce the principal tension, several 
options are available: 
• Increase the axial stress by adding post-tensioning.
• Increase the thickness of the webs locally.
• Increase the strength of the concrete.

Of the above solutions, locally thickening the webs is the simplest for a cast-in-
place structure.  The webs can be tapered from 1 ft thick at 10 ft from the pier 
to 1’-6” at the pier.  Thus, at 5 ft from the pier, they will be 1’-3” thick, with 
bv=1.156 ft. 

The revised section properties at Nodes 27 and 25, with 1’-3” thick webs are: 
A  =  96.0 ft3 
Q  =  96.0 ft3 
I    =  572.7 ft4 
B   =  0.906 ft 

Recalculating the principal tension with the revised section at the critical 
location shows that the principal tension is now below the required value.  Note 
that for such a modest, localized web thickening, it is unnecessary to 
recalculate the remainder of the design values. 

The table below contains a summary of the principal tension check at the same 
locations that were used for shear.  Torsion is not explicitly included. 

Table D.34 – Results of Principal Tension Check 

Node bv t θ Radius θp √f’c

(ft) (ksf) (ksf) (ksf) (ksf) (psi) 
3 0.906 35.2 -83.6 54.7 12.9 1.15 
7 0.906 22.2 -85.2 48.1 5.4 0.49 

11 0.906 10.3 -86.8 44.6 1.2 0.11 
14 0.906 14.9 -88.0 46.4 2.4 0.22 
17 0.906 18.7 -88.9 48.2 3.8 0.34 
21 0.906 24.8 -87.2 50.1 6.6 0.59 
25 1.156 51.1 -83.1 65.9 24.3 2.22 
27 1.156 58.8 -79.2 70.9 31.3 2.85 
31 0.906 28.6 -80.8 49.5 9.1 0.81 
35 0.906 22.1 -79.6 45.5 5.7 0.51 
39 0.906 15.3 -78.3 42.0 2.9 0.26 
42 0.906 9.9 -77.4 39.9 1.3 0.11 

0.110 ' ( ) 3.5 ' ( ) 39 ( )c cf ksi f psi ksf for 6000 psi concrete= =

However, the maximum allowable principal tension is: 
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9.5 Longitudinal Shear Reinforcing 

The longitudinal reinforcing required for shear is calculated using values 
already known from the calculations.  The table below shows that the 
prestressing alone is sufficient. 

Node Mu 
(k-ft) 

dv 
(ft) 

Vu 
(k) 

Vp 
(k) 

Vs 
(k) Cotθ 

Required 
Apsfps 

(k) 

Provided 
Apsfps 

(k) 
3 6393 5.04 1465.3 279.8 714.7 1.7 2964 9741 
7 25017 5.04 925.3 136.9 250.8 1.7 6285 9790 
21 12135 5.04 1512.4 589.6 442.6 1.7 3922 9640 
25 36148 5.04 2001.6 264.8 1319.6 1.7 9412 9748 
27 35606 5.04 2150.5 167.7 1588.4 1.7 9506 9748 
31 6132 5.04 1671.8 594.8 640.5 1.7 2807 9649 

Table D.35 – Verification of Longitudinal Shear Reinforcing 

9.6 Duct Pull-Out 

Ducts are assumed to be supported in the center of a web.  Thus, the cover to 
the ducts, dc, in these calculations is 3.75 inches. It is also assumed that the 
tendons are stressed to 75 percent of their capacity, when the concrete 
strength is 4500 psi.  The center-to-center spacing of the ducts is 6.5 inches, 
and the clear space between ducts is 2 inches.   

Out-of-plane forces must also be added to Fu-in.  The minimum radius on a 
tendon occurs on the lowest tendon as it crosses the pier, and the average 
radius in that region is 162.2 ft. The out-of-plane force 

Post-tensioning ducts in curved webs apply lateral pressure to the webs.  In 
addition to the regional web bending discussed earlier, local forces must also 
be addressed. 

[5.8.3.5] 

[5.10.4.3] 

0.15n eff ciV d fj j ′= ⋅
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4eff
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in
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2

1.2 0.75 3 19 0.217 270
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584 12
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u in
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−

⋅ ⋅ ⋅
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⋅
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Thus, since Fu-TOTAL is less than φVn, no ties are necessary. 

The 2 inch clear duct spacing must also be checked against the in-plane radius 
of the vertical duct curvature, to insure that stressing a tendon does not cause 
a shear failure that crushes an adjacent duct. Using the previous value of 
R=162.2 ft, 

Thus, the 2 inch clear spacing between ducts will not require additional ties. 

u
u out

PF
Rπ− =

( )
2

1.2 0.75 3 19 0.217 270
0.48

162.2 12
u out

instr ksi kipsstrF in inft
ft

π
−

⋅ ⋅ ⋅
= =

⋅ ⋅

0.428 0.48 0.91u TOTAL u in u out
kips kips kipsF F F
in in in− − −= + = + =

4.52 3.125
4eff
ind in in= + =

0.75 0.15 3.125 4.5 0.75n
kipsV in ksi
in

j = ⋅ ⋅ ⋅ =

( )
2

1.2 0.75 19 0.217 270
0.51

162.2 12
u in
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ft

−
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= =

⋅

[5.10.4.3.1d] 


	Preface
	Table of Contents
	26TList of26T Figures
	List of Tables
	Chapter 1—Introduction
	1.1   Historical Overview
	1.2   Typical Superstructure Cross Sections
	1.3   Longitudinal Post-Tensioning Layouts
	1.4 Loss of Prestressing Force
	1.5 Post-Tensioning System Hardware
	1.5.1 Basic Bearing Plates
	1.5.2 Special Bearing Plates or Anchorage Devices
	1.5.3 Wedge Plates
	1.5.4 Wedges and Strand-Wedge Connection
	1.5.5 Permanent Grout Caps
	1.5.6 Ducts
	1.5.6.1 Duct Size
	1.5.6.2 Corrugated Steel Duct
	1.5.6.3 Corrugated Plastic
	1.5.6.4 Plastic Fittings and Connections for Internal Tendons
	1.5.6.5 Grout Inlets, Outlets, Valves and Plugs

	1.5.7 Post-Tensioning Bars Anchor Systems

	1.6 Overview of Construction
	1.6.1 Falsework
	1.6.2 Superstructure Formwork
	1.6.3 Reinforcing and Post-Tensioning Hardware Placement
	1.6.4 Placing and Consolidating Superstructure Concrete
	1.6.5 Superstructure Curing
	1.6.6 Post-Tensioning Operations
	1.6.7 Tendon Grouting and Anchor Protection


	Chapter 2—Materials
	2.1 Concrete
	2.1.1 Compressive Strength
	2.1.2 Development of Compressive Strength with Time
	2.1.3 Tensile Strength
	2.1.4 Modulus of Elasticity
	2.1.5 Modulus of Elasticity Variation with Time
	2.1.6 Poisson’s Ratio
	2.1.7 Volumetric Changes
	2.1.7.1 Coefficient of Thermal Expansion
	2.1.7.2 Creep
	2.1.7.3 Shrinkage


	2.2 Prestressing Strands
	2.2.1 Tensile Strength
	2.2.2 Modulus of Elasticity
	2.2.3 Relaxation of Steel
	2.2.4 Fatigue

	2.3 Reinforcing Steel

	Chapter 3—Prestressing with Post-Tensioning
	3.1 Introduction
	3.2 Cross Section Properties and Sign Convention
	3.3 Stress Summaries in a Prestressed Beam
	3.4 Selection of Prestressing Force for a Given Eccentricity
	3.5 Permissible Eccentricities for a Given Prestressing Force
	3.6 Equivalent Forces Due To Post-Tensioning and Load Balancing
	3.7 Post-Tensioning in Continuous Girders
	3.8 Tendon Profiles—Parabolic Segments

	Chapter 4—Prestressing Losses
	4.1 Instantaneous Losses
	4.1.1 Friction and Wobble Losses (AASHTO LRFD Article 5.9.5.2.2b)
	4.1.2 Elongation
	4.1.3 Anchor Set
	4.1.4 Two-End Stressing
	4.1.5 Elastic Shortening (AASHTO LRFD Article 5.9.5.2.3b)

	4.2 Time-Dependent Losses
	4.2.1 General (AASHTO LRFD Article 5.9.5.4.1)
	4.2.2 Concrete Shrinkage (AASHTO LRFD Article 5.9.5.4.3a)
	4.2.3 Concrete Creep (AASHTO LRFD Article 5.9.5.4.3b)
	4.2.4 Steel Relaxation (AASHTO LRFD Article 5.9.5.4.3c)


	Chapter 5—Preliminary Design
	5.1 Introduction
	5.2 Establish Bridge Layout
	5.2.1 Project Design Criteria
	5.2.2 Span Lengths and Layout

	5.3 Cross Section Selection
	5.3.1 Superstructure Depth
	5.3.2 Superstructure Width
	5.3.3  Cross Section Member Sizes
	U5.3.3.1 Width and Thickness of Cantilever Wing
	U5.3.3.2 Individual and Total Web Thickness
	U5.3.3.3 Top Slab Thickness
	U5.3.3.4 Bottom Slab Thickness
	U5.3.3.5 Member Sizes for Example Problem


	5.4 Longitudinal Analysis
	5.4.1 Approach
	5.4.2 Analysis by Method of Joint Flexibilities
	5.4.3 Span Properties and Characteristic Flexibilities
	5.4.4 Analysis Left to Right
	5.4.5 Analysis Right to Left
	5.4.6 Carry-Over Factors

	5.5 Bending Moments
	5.5.1 Effect of a Unit Uniform Load
	5.5.2 Dead Load—DC (Self Weight and Barrier Railing)
	5.5.3 Dead Load—DW (Future Wearing Surface)
	5.5.4 Live Load—LL
	U5.5.4.1 Uniform Load Component
	U5.5.4.2 Truck—Positive Moment in Span 1 or 3
	U5.5.4.3 Truck—Positive Moment in Span 2
	U5.5.4.4 Truck—Negative Moment over Piers
	U5.5.4.5 Live Load Moment Totals

	5.5.5 Thermal Gradient (TG)
	5.5.6 Post-Tensioning Secondary Moments

	5.6 Required Prestressing Force After Losses
	5.7 Prestressing Losses and Tendon Sizing for Final Design (Pjack)
	5.7.1 Losses from Friction, Wobble, and Anchor Set
	5.7.2 Losses from Elastic Shortening
	5.7.3 Losses from Concrete Shrinkage
	5.7.4 Losses from Concrete Creep
	5.7.5 Losses from Steel Relaxation
	5.7.6 Total of Losses and Tendon Sizing

	5.8 Service Limit State Stress Verifications
	5.8.1 Service Flexure—Temporary Stresses (DC and PT Only)
	5.8.2 Service Limit State III Flexure Before Long-Term Losses
	5.8.3 Service Limit State III Flexure After Long-Term Losses
	5.8.4 Principal Tension in Webs after Losses

	5.9 Optimizing the Post-Tensioning Layout

	Chapter 6—Substructure Considerations
	6.1 Introduction
	6.2 Bending Moments Caused by Unit Effects
	6.2.1 Effect of a Unit Uniform Load
	6.2.2 Effect of a Unit Lateral Displacement (Side-Sway Correction)
	6.2.3 Effect of a Unit Contraction

	6.3 Dead Load—DC (Self Weight and Barrier Railing)
	6.4 Dead Load—DW (Future Wearing Surface)
	6.5 Live Load—LL (Lane and Truck Components)
	6.5.1 Envelope of Uniform Load Component
	6.5.2 Truck—Positive Moment in Span 1 or 3
	6.5.3 Truck—Positive Moment in Span 2
	6.5.4 Truck—Negative Moment over Piers

	6.6 Post-Tensioning Secondary Moments—Unit Prestressing Force
	6.7 Thermal Gradient (TG)—20 F Linear
	6.8 Moments Resulting from Temperature Rise and Fall
	6.8.1 Temperature Rise—40 F Uniform Rise
	6.8.2 Temperature Fall—40 F Uniform Fall

	6.9 Moments Resulting from Concrete Shrinkage
	6.10 Moments Resulting from Concrete Creep
	6.11 Bending Moments Summaries
	6.12 Post-Tensioning Force Comparison (after all losses, with thermal effects)
	6.12.1 Side Span Positive Bending
	6.12.2 Middle Span Positive Bending
	6.12.3 Negative Bending at Piers


	Chapter 7—Longitudinal Analysis & Design
	7.1 Introduction
	7.2 Modeling Concepts
	7.2.1 Straight Bridges Supported on Bearings
	7.2.1.1 Nodes
	7.2.1.2 Elements
	7.2.1.3 Post-Tensioning

	7.2.2 Straight Bridges with Integral Piers
	7.2.3 Curved Bridges
	7.2.4 Other Three-Dimensional Analyses

	7.3 Strength Limit Verification—Flexure
	7.3.1 Factored Loads for Longitudinal Flexure
	7.3.2 Flexural Resistance
	7.3.2.1 Strain Compatibility
	7.3.2.2 Material Stresses and Internal Forces
	7.3.2.3 Internal Equilibrium

	7.3.3 Resistance Factors (ϕ)
	7.3.4 Limits of Reinforcing
	7.3.5 Procedure

	7.4 Strength Limit Verification—Shear
	7.4.1 LRFD Design Procedures for Shear and Torsion
	7.4.2 General Requirements
	7.4.3 Sectional Model Nominal Shear Resistance
	7.4.3.1 Effective Web Width
	7.4.3.2 Effective Shear Depth

	7.4.4 Shear Resistance from Concrete (Vc)
	7.4.4.1 Method 2 (Simplified MCFT)
	7.4.4.2 Method 3 (Historical Empirical)

	7.4.5 Shear Resistance from Transverse (Web) Reinforcing Steel (Vs)
	7.4.6 Shear Resistance from Vertical Component of Effective Prestressing (Vp)
	7.4.7 Longitudinal Reinforcing
	7.4.8 Torsion Reinforcing


	Chapter 8—Transverse Analysis
	8.1 Introduction
	8.2 Methods of Analysis
	8.3 Applicable AASHTO LRFD Specifications
	8.3.1 Section 9—Deck and Deck Systems
	8.3.2 Section 3—Loads
	8.3.3 Section 4—Analysis
	8.3.4 Section 13—Railing

	8.4 Strip Method Analysis for a Multi-Cell Box Girder Superstructure
	8.4.1 The Transverse Model
	8.4.2 Transverse Bending Moment Results
	8.4.3 Transverse Design Moments

	8.5 Top Slab Transverse Bending Moment Results for a Single-Cell Box Girder
	8.5.1 Introduction
	8.5.2 Analysis for Uniformly Repeating Loads
	8.5.3 Analysis for Concentrated Wheel Live Loads
	8.5.4 Live Load Moments in Cantilever Wings.
	8.5.5 Negative Live Load Moments in the Top Slab.
	8.5.6 Positive Live Load Moments at Centerline of the Top Slab.

	8.6 Transverse Post-Tensioning
	8.6.1 Transverse Post-Tensioning Tendon Layouts
	8.6.2 Required Prestressing Force
	8.6.3 Transverse Post-Tensioning Tendon Placement and Stressing


	Chapter 9—Other Design Considerations
	9.1 Effects of Curved Tendons
	9.1.1 In-Plane and Out-of-Plane Forces
	9.1.2 AASHTO LRFD Design Approach
	9.1.3 Regional Effects—Transverse (Regional) Bending
	9.1.4 Local Shear and Flexure in Webs
	9.1.4.1 Shear Resistance to Pull-out
	9.1.4.2 Cracking of Concrete Cover

	9.1.5 Out-of-Plane Force Effects

	9.2 End Anchorage Zones
	9.3 Diaphragms at Supports
	9.3.1 Single-Cell Box Girder Transfer of Vertical Shear to Bearings
	9.3.2 Single-Cell Box Girder Transfer of Torsion to Bearings
	9.3.3 Multi-Cell Box Girder Diaphragms


	Appendix A—Analysis of Two-Dimensional
	Indeterminate Structures by the Flexibility Method
	1. Introduction
	2. Definition of the Problem
	3. Sign Convention
	4. Simple Span Beam Characteristics
	5. Definition of Support Flexibility and Member Flexibility Coefficients
	6. Relationship between Support Flexibility Constants and Continuity Bending Moments
	7. Relationships between Support Joint Flexibilities and Member End Flexibilities
	8. Carry Over Factors
	9. Continuity Moments Expressed by Carry Over Factors
	10. Distribution Coefficients of Moments at Nodes.
	11. Solving the Structure
	12. Summary of Equations
	13. Example – Flexibility Analysis of a 3 Span Continuous Beam
	13.1 Span Properties and Characteristic Flexibilities
	13.2 Analysis Left to Right
	13.3 Analysis Right to Left
	13.4 Carry-Over Factors
	13.5 Effect of a Unit Uniform Load

	14. Frames Braced Against Side-Sway
	15. Multiple Pier Elements
	16. Side-Sway Correction
	17. Example Problem with Side-Sway
	17.1 Span Properties and Characteristic Flexibilities
	17.2 Column and Drilled Shaft Characteristic Flexibilities
	17.3 Analysis Left to Right
	17.4 Analysis Right to Left
	17.5 Carry-Over Factors
	17.6 Distribution Factors
	17.7 End Moments for Unit Uniform Load
	17.8 Distribute End Moments across the Structure
	17.9 Effect of a Unit Uniform Load
	17.10 Side-Sway Correction


	Appendix B—Torsion
	1. Torsion in a Circular Shaft
	2. Torsion in a Closed Thin-Walled Shaft
	3. Torsion Multi-Cell Box Girder

	Example 1—Multi-Cell Box Girder Bridge
	1. Introduction
	2. Material Characteristics
	2.1. Concrete
	2.2 Reinforcing Steel
	2.3 Prestressing Steel

	3. Cross Section Properties
	4. LRFD General Design Equation
	5. Live Load Distribution Factors
	6. Modeling, Analysis and Results
	7. Flexural Design
	7.1 Service Limit State
	7.2 Strength Limit State
	7.2.1 Factored Design Moment
	7.2.2 Factored Flexural Resistance


	8. Shear and Torsion Design – Strength Limit State
	8.1 Torsion Members
	8.2 Factored Design Shear
	8.3 Factored Shear Resistance

	9. Principal Tensile Stresses
	9.1 Mohr’s Circle

	10. Transverse Design
	10.1 Deck Design
	U10.1.1 Minimum Reinforcing
	U10.1.2 Negative Moment (max) @ 6 inches from CL of web
	U10.1.3 Positive Moment @ CL of interior cell

	10.2 Overhang (Wing) Design
	U10.2.1 Section 1: Overhang design at the face of the barrier
	U10.2.2 Section 2: Overhang design at the outside face of the web

	10.3 Bottom Slab Design
	U10.3.1 Minimum Reinforcement Cracking Moment
	U10.3.2 Negative Moment
	U10.3.3 Positive Moment
	U10.3.4 Minimum reinforcement for shrinkage and temperature:



	Example 2—Curved Two-Cell Box Girder Bridge
	1. Introduction
	2. Material Characteristics
	2.1. Concrete
	2.2 Reinforcing Steel
	2.3 Prestressing Steel

	3. Cross Section Properties
	4. LRFD General Design Equation
	5. Transverse Design
	6. Live Load Distribution
	7. Modeling
	8. Flexural Design
	8.1 Service Limit State
	8.2 Strength Limit State

	9. Web Design
	9.1 Shear Design
	9.2 Regional Web Bending
	9.3 Total Web Reinforcing
	9.4 Principal Tension





