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1.0 INTRODUCTION 

 

This design example presents an alternative design to that presented in Design Example 2A. 

Specifically, the design of a continuous steel I-beam bridge is presented using a rolled wide-

flange beam, as an alternative to the preceding welded plate girder design. The Seventh Edition 

of the AASHTO LRFD Bridge Design Specifications [1], referred to herein as AASHTO LRFD 

(7
th

 Edition, 2014), is the governing specification and all aspects of the provisions applicable to 

I-beam design (cross-section proportion limits, constructibility, serviceability, fatigue, and 

strength requirements) are considered. Furthermore, the optional moment redistribution 

specifications given in Appendix B6 of AASHTO LRFD are invoked. In addition to the beam 

design, the design of the concrete deck is also included. A basic wind analysis of the structure is 

also presented. 
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2.0 DESIGN PARAMETERS 

 

The purpose of this example is to illustrate the design of a tangent two-span continuous 

composite bridge having equal spans of 90.0 feet with rolled wide-flange beams using the 

moment redistribution procedures outlined in Appendix B6 of AASHTO LRFD. The bridge 

cross-section (see Figure 1) has four rolled wide-flange beams spaced at 10.0 feet with 3.5 foot 

overhangs providing for a 34.0 feet roadway width. The reinforced concrete deck is 8.5 inches 

thick, including a 0.5 inch integral wearing surface and a 2.0 inch haunch. 

 

The framing plan for this design example (see Figure 2) has cross-frames spaced at 30 feet near 

the abutments and 15 feet near the pier.  The spacing of the cross-frames is governed by 

constructibility requirements in regions of positive bending and moment redistribution 

requirements in regions of negative bending.  

 

ASTM A709, Grade 50W is used for all structural steel and the concrete is normal weight with a 

28-day compressive strength, f′c, of 4.0 ksi. The concrete slab is reinforced with nominal Grade 

60 reinforcing steel.  

 

The design specifications are the AASHTO LRFD Bridge Design Specifications, Seventh Edition. 

Unless stated otherwise, the specific articles, sections, and equations referenced throughout this 

example are contained in these specifications.  

 

The beam design presented herein is based on the premise of providing the same beam design for 

both the interior and exterior beams. Thus, the design satisfies the requirements for both interior 

and exterior beams. Additionally, the beams are designed assuming composite action with the 

concrete slab. 

 

 
Figure 1  Sketch of the Typical Bridge Cross Section 
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Figure 2  Sketch of the Superstructure Framing Plan 
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3.0 BEAM ELEVATION 

 

The beam elevation, shown in Figure 3, has section transitions at 30% of the span length from 

the interior pier. The design of the beam from the abutment to a location 63.0 feet into each span 

is primarily based on positive bending moments; thus, these sections of the beam are referred to 

as either the “positive bending region” or “Section 1” throughout this example. Alternatively, the 

beam geometry at the pier is controlled by negative bending moments; consequently the region 

of the beam extending 27.0 feet on either side of the pier will be referred to as the “negative 

bending region” or “Section 2”.  

By iteratively selecting various rolled wide-flange beams from the standard shapes available, the 

selected rolled wide-flange section shown in Figure 3 was determined to be the most economical 

selection for this example. 

 
 

Figure 3  Sketch of the Beam Elevation 
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4.0 LOADS 

 

This example considers all applicable loads acting on the superstructure including dead loads, 

live loads, and wind loads as discussed below. In determining the effects of each of these loads, 

the approximate methods of analysis specified in Article 4.6.2 are implemented. 

 

4.1 Dead Loads 

 

As discussed in the Steel Bridge Design Handbook Design Example 2A, the bridge dead loads 

are classified into two categories: dead load of structural components and non-structural 

attachments (DC), and dead load of wearing surface and utilities (DW).  

 

Load factors of 1.25 and 1.00 are used for DC at the Strength and Service Limit States, 

respectively. For DW, a load factor of 1.50 is used at the Strength Limit State and a load factor 

of 1.00 is used at the Service Limit State. 

 

4.1.1 Component Dead Load (DC) 

 

As discussed in Example 2A, the component dead load is separated into two parts: dead loads 

acting on the non-composite section (DC1) and dead loads acting on the long-term composite 

section (DC2). DC1 is assumed to be carried by the steel section alone. DC2 is assumed to be 

resisted by the long-term composite section, which consists of the steel beam plus an effective 

width of the concrete slab when the beam is in positive bending, and the beam plus the 

longitudinal steel reinforcing within the effective width of the slab when the beam is in negative 

bending at the strength limit state.  At the fatigue and service limit states, the concrete deck may 

be considered effective in both negative and positive bending for loads applied to the composite 

section if certain conditions are met.  

DC1 includes the beam self-weight, weight of the concrete slab (including the haunch and deck 

overhang taper if present), deck forms, cross-frames, and stiffeners. The unit weight for steel 

(0.490 k/ft
3
) used in this example is taken from Table 3.5.1-1, which provides approximate unit 

weights of various materials. Table 3.5.1-1 also lists the unit weight of normal weight concrete as 

0.145 k/ft
3
; the concrete unit weight is increased to 0.150 k/ft

3
 in this example to account for the 

weight of the steel reinforcement within the concrete. The dead load of the stay-in-place forms is 

assumed to be 15 psf. To account for the dead load of the cross-frames, stiffeners and other 

miscellaneous steel details, a dead load of 0.015 k/ft is assumed. It is also assumed that these 

dead loads are equally distributed to all beams as permitted by Article 4.6.2.2.1 for the line-

girder type of analysis implemented herein. Thus, the total DC1 loads used in this design are as 

computed below.  

Slab = (8.5/12) x (37) x (0.150)/4     = 0.983 k/ft 

Haunch = (2-1.22)(15.8)/144 x 0.150     = 0.013 k/ft 

Overhang taper = 2 x (1/2) x (3.5-7.9/12) x (2/12) x 0.150/4  = 0.018 k/ft 

Beam         = 0.215 k/ft 
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Cross-frames and misc. steel details     = 0.015 k/ft 

Stay-in-place forms = 0.015 x (30-3 x (15.8/12))/4   = 0.098 k/ft 

Total DC1        = 1.342 k/ft 

DC2 is composed of the weight from the barriers, medians, and sidewalks. No sidewalks or 

medians are present in this example and thus the DC2 weight is equal to the barrier weight alone. 

The barrier weight is assumed to be equal to 520 lb/ft. Article 4.6.2.2.1 specifies that when 

approximate methods of analysis are applied DC2 may be equally distributed to all beams or, 

alternatively, a larger proportion of the concrete barriers may be applied to the exterior beam 

which represents a more realistic distribution of these loads acting out on the deck overhangs. In 

this example, the barrier weight is equally distributed to all beams, resulting in the DC2 loads 

computed below. 

Barriers = (0.520 x 2)/4 = 0.260 k/ft 

DC2    = 0.260 k/ft 

 

4.1.2 Wearing Surface Dead Load (DW) 

 

Similar to the DC2 loads, the dead load of the future wearing surface is applied to the long-term 

composite section and is assumed to be equally distributed to each girder. A future wearing 

surface with a dead load of 25 psf is assumed. Multiplying this unit weight by the roadway width 

and dividing by the number of girders gives the following. 

 

Wearing surface = (0.025) x (34)/4  = 0.213 k/ft 

 

DW      = 0.213 k/ft 

 

4.2 Vehicular Live Loads 

 

4.2.1 General Vehicular Live Load (Article 3.6.1.2)  

 

The AASHTO vehicular live loading is designated as the HL-93 loading and is a combination of 

the design truck or tandem plus the design lane load. The design truck, specified in Article 

3.6.1.2.2, is composed of an 8-kip lead axle spaced 14 feet from the closer of two 32-kip rear 

axles, which have a variable axle spacing of 14 feet to 30 feet. The transverse spacing of the 

wheels is 6 feet. The design truck occupies a 10 feet lane width and is positioned within the 

design lane to produce the maximum force effects, but may be no closer than 2 feet from the 

edge of the design lane, except for the design of the deck overhang.  

 

The design tandem, specified in Article 3.6.1.2.3, is composed of a pair of 25-kip axles spaced 4 

feet apart. The transverse spacing of the wheels is 6 feet. 
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The design lane load is discussed in Article 3.6.1.2.4 and has a magnitude of 0.64 klf uniformly 

distributed in the longitudinal direction. In the transverse direction, the load occupies a 10 foot 

width. The lane load is positioned to produce extreme force effects, and therefore, need not be 

applied continuously. 

 

For both negative moments between points of contraflexure and interior pier reactions a special 

loading is used. The loading consists of two design trucks (as described above but with the 

magnitude of 90% the axle weights) in addition to 90% of the lane loading. The trucks must have 

a minimum headway of 50 feet between the two loads. The live load moments between the 

points of dead load contraflexure are to be taken as the larger of the moments caused by the HL-

93 loading or the special loading. 

 

Live load shears are to be calculated only from the HL-93 loading, except for interior pier 

reactions, which are to be taken as the larger of the reactions due to the HL-93 loading or the 

special loading. 

 

The dynamic load allowance, which accounts for the dynamic effects of force amplification, is 

only applied to the truck portion of the live loading, and not the lane load. For the strength and 

service limit states, the dynamic load allowance is taken as 33 percent, and for the fatigue limit 

state, the dynamic load allowance is taken as 15 percent.  

 

4.2.2 Optional Live Load Deflection Load (Article 3.6.1.3.2)  

 

The loading for the optional live load deflection criterion consists of the greater of the design 

truck, or 25 percent of the design truck plus the lane load. A dynamic load allowance of 33 

percent applies to the truck portions (axle weights) of these load cases. During this check, all 

design lanes are to be loaded, and the assumption is made for straight-girder bridges that all 

components deflect equally. 

 

4.2.3 Fatigue Load (Article 3.6.1.4) 

 

For checking the fatigue limit state, a single design truck with a constant rear axle spacing of 30 

feet is applied.  

 

4.3 Wind Loads 

 

Article 3.8.1.2 discusses the design horizontal wind pressure, PD, which is used to determine the 

wind load on the structure. The wind pressure is computed as follows: 

 
2

10,000

DZ
D B

V
P P  Eq. (3.8.1.2.1-1) 

 

where: PB =  base wind pressure of 0.050 ksf for beams (Table 3.8.1.2.1-1) 

    

 VDZ =  design wind velocity at design elevation, Z (mph) 
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In this example it is assumed the superstructure is less than 30 feet above the ground, at which 

the wind velocity is prescribed to equal 100 mph, which is designated as the base wind velocity, 

VB. With VDZ equal to the base wind velocity of 100 in Eq. 3.8.1.2.1-1 the horizontal wind 

pressure, PD, is determined as follows. 

 
2100

0.050 0.050ksf
10,000

DP    

 

4.4 Load Combinations 

 

The specifications define four limit states: the service limit state, the fatigue and fracture limit 

state, the strength limit state, and the extreme event limit state. The subsequent sections discuss 

each limit state in more detail; however for all limit states the following general equation from 

Article 1.3.2.1 must be satisfied, where different combinations of loads (i.e., dead load, wind 

load) are specified for each limit state. 

 

DR IΣi Qi≤ Rn = Rr 

 

where: 

  

 D  = Ductility factor (Article 1.3.3) 

 R = Redundancy factor (Article 1.3.4) 

 I = Operational importance factor (Article 1.3.5) 

 i = Load factor 

 Qi = Force effect 

  = Resistance factor 

 Rn = Nominal resistance 

 Rr = Factored resistance 

 

The factors relating to ductility and redundancy are related to the configuration of the structure, 

while the operational importance factor is related to the consequence of the bridge being out of 

service. The product of the three factors results in the load modifier, and is limited to the 

range between 0.95 and 1.00. In this example, the ductility, redundancy, and operational 

importance factors are each assigned a value equal to one. The load factors are given in Tables 

3.4.1-1 and 3.4.1-2 of the specifications and the resistance factors for the design of steel 

members are given in Article 6.5.4.2. 

 

When evaluating the strength of the structure during construction, the load factor for construction 

loads, for equipment and for dynamic effects (i.e. temporary dead and/or live loads that act on 

the structure during construction) is not to be taken less than 1.5 in the Strength I load 

combination (Article 3.4.2).  Also, the load factor for any non-integral wearing surface and 

utility loads may be reduced from 1.5 to 1.25 when evaluating the construction condition. The 

load factor for wind may be reduced to not less than 1.25 when checking the Strength III load 

combination during construction (Article 3.4.2).  Also, for evaluating the construction condition, 

the load factor for temporary dead loads that act on the structure during construction is not to be 
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taken less than 1.25 and the load factor for any non-integral wearing surface and utility loads 

may be reduced from 1.5 to 1.25. 

 

Article 3.4.2.1 further states that unless otherwise specified by the Owner, primary steel 

superstructure components are to be investigated for maximum force effects during construction 

for an additional load combination consisting of the applicable DC loads and any construction 

loads that are applied to the fully erected steelwork.  For this additional load combination, the 

load factor for DC and construction loads including dynamic effects (if applicable) is not to be 

taken less than 1.4.  For steel superstructures, the use of higher-strength steels, composite 

construction, and limit-states design approaches in which smaller factors are applied to dead load 

force effects than in previous service-load design approaches, have generally resulted in lighter 

members overall.  To ensure adequate stability and strength of primary steel superstructure 

components during construction, an additional strength limit state load combination is specified 

for the investigation of loads applied to the fully erected steelwork (i.e., for investigation of the 

deck placement sequence and deck overhang effects). 
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5.0 STRUCTURAL ANALYSIS 

 

The AASHTO LRFD (7
th

 Edition, 2014) allows the designer to use either approximate (e.g., line 

beam) or refined (e.g., grid or finite element) analysis methods to determine force effects; the 

acceptable methods of analysis are detailed in Section 4 of the specifications. In this design 

example, the line beam approach is employed to determine the beam moment and shear 

envelopes. Using the line beam approach, vehicular live load force effects are determined by first 

computing the force effects due to a single truck or loaded lane and then multiplying these forces 

by multiple presence factors, live-load distribution factors, and dynamic load factors as detailed 

below. 

5.1 Multiple Presence Factors (Article 3.6.1.1.2) 

 

Multiple presence factors account for the probability of multiple lanes on the bridge being loaded 

simultaneously. These factors are specified for various numbers of loaded lanes in Table 

3.6.1.1.2-1 of the specifications. There are two exceptions when multiple presence factors are not 

to be applied. These are when (1) distribution factors are calculated using the tabulated empirical 

equations given in Article 4.6.2.2 as these equations are already adjusted to account for multiple 

presence effects and (2) when determining fatigue truck moments, since the fatigue analysis is 

only specified for a single truck. Thus, for the present example, the multiple presence factors are 

only applicable when distribution factors are computed using the lever rule or the special 

analysis for the exterior girders at the strength and service limit states as demonstrated below. 

5.2 Live-Load Distribution Factors (Article 4.6.2.2) 

 

The distribution factors approximate the amount of live load (i.e., fraction of a truck or lane load) 

distributed to a given beam. These factors are computed based on a combination of empirical 

equations and simplified analysis procedures. Empirical equations are provided Article 4.6.2.2.1 

of the specifications and are specifically based on the location of the beam (i.e. interior or 

exterior), the force effect considered (i.e., moment or shear), and the bridge type. These 

equations are valid only if specific parameters of the bridge are within the ranges specified in the 

tables given in Article 4.6.2.2.1. For a slab-on-stringer bridge, as considered in the present 

example, the following criteria must be satisfied: the beam spacing must be between 3.5 and 16.0 

feet, the slab must be at least 4.5 inches thick and less than 12.0 inches thick, the span length 

must be between 20 and 240 feet, and the cross section must contain at least 4 beams. Because 

all of these requirements are satisfied, a refined analysis is not necessary and the computation of 

distribution factors using the approximate methods of Article 4.6.2.2 follows.  

Distribution factors are a function of the beam spacing, slab thickness, span length, and the 

stiffness of the beam. Since the stiffness parameter depends on the beam geometry that is not 

initially known, the stiffness term may be assumed to be equal to one for preliminary design. In 

this section, calculation of the distribution factors is presented based on the beam geometry 

previously shown in Figure 3. It is noted that due to the uniform cross-section of the beam, the 

distribution factors are also uniform along the beam length. However, this is not always the case 

and separate calculations are typically required for the distribution factors for each unique cross-

section.  
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5.2.1 Interior Beam - Strength and Service Limit State 

 

For interior beams, the distribution factor at the strength and service limit states is determined 

based on the empirical equations given in Article 4.6.2.2.2. The stiffness parameter, Kg, required 

for the distribution factor equations is computed as follows. 

 

Kg = n(I + Aeg
2
)       Eq. (4.6.2.2.1-1) 

 

where: 

 

 n  = modular ratio = 8 

 I = moment of inertia of the steel beam = 16,700 in.
4
 for the rolled beam 

 A = area of the steel beam = 63.4 in.
2
 for the rolled beam 

 eg = distance between the centroid of the girder and centroid of the slab 

 

The required section properties of the girder (in addition to other section properties that will be 

relevant for subsequent calculations) are determined as follows (refer to Figure 4): 

 

eg = 19.50 + (2 - 1.22) + 4 = 24.28 in. 

 

Kg = n(I + Aeg
2
) = 8(16,700 + 63.4(24.28)

2
) = 432,604 in.

4
 

 

 

 
Figure 4  Rolled Beam Cross Section 

 

 

5.2.1.1 Bending Moment 

 

The empirical equations for distribution of live load moment at the strength and service limit 

states are given in Table 4.6.2.2.2b-1. Alternative expressions are given for one loaded lane and 

multiple loaded lanes, where the maximum of the two equations governs as shown below. It is 
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noted that the maximum number of lanes possible for the 34 foot roadway width considered in 

this example is two lanes. 

0.10.4 0.3

3
0.06

14 12

g

s

KS S
DF

L Lt

    
      

     
(for one lane loaded) 

where: S =  beam spacing (ft) 

  

 L =  span length (ft) 

  

 ts  =  slab thickness (in.) 

  

 Kg  =  stiffness term (in.
4
) 

 

 
0.10.4 0.3

3

10 10 432,604
0.06 0.501

14 12(90)(8.0)
DF

L

    
      

     
lanes 

0.10.6 0.2

3
0.075

9.5 12

g

s

KS S
DF

L Lt

    
      

     
(for two or more lanes loaded) 

  
723.0

8.090.012.0

432,604

90.0

10.0

9.5

10.0
0.075DF

0.1

3

0.20.6



























 lanes (governs) 

5.2.1.2 Shear 

The empirical equations for distribution of live load shear in an interior beam at the strength and 

service limit states are given in Table 4.6.2.2.3a-1. Similar to the equations for moment given 

above, alternative expressions are given based on the number of loaded lanes. 

0.36
25

S
DF   (for one lane loaded) 

10
0.36 0.760

25
DF     lanes 

2

0.2
12 35

S S
DF

 
    

 
(for two or more lanes loaded) 

2
10 10

0.2 0.952
12 35

DF
 

    
 

lanes (governs) 
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5.2.2 Exterior Girder – Strength and Service Limit States 

 

Distribution factors for the exterior beam at the strength and service limit states are based on the 

maximum of: (1) a modification of the empirical equations for interior beams given above, (2) 

the lever rule, or (3) a special analysis assuming the entire cross-section deflects and rotates as a 

rigid cross-section.  

5.2.2.1 Bending Moment 

Lever Rule: 

As specified in Table 4.6.2.2.2d-1, the lever rule is one method used to determine the distribution 

factor for the exterior beam for the case of one-lane loaded. The lever rule assumes the deck is 

hinged at the interior beam, and statics is then employed to determine the percentage of the truck 

weight resisted by the exterior beam, i.e., the distribution factor, for one loaded lane. It is 

specified that the truck is to be placed such that the closest wheel is two feet from the barrier or 

curb, which results in the truck position shown in Figure 5 for the present example. The 

calculated reaction of the exterior beam is multiplied by the multiple presence factor for one lane 

loaded, m1, to determine the distribution factor. 

DF = 
1

10 6
0.5 0.5 m

10

  
  

  
 

 

m1 = 1.20 (from Table 3.6.1.1.2-1) 

 

DF = 0.7 x 1.2 = 0.840 lanes 

 

 
Figure 5  Sketch of the Truck Location for the Lever Rule 

 

Modified of Interior Girder Distribution Factor: 

For the case of two or more lanes loaded, Table 4.6.2.2.2d-1 gives a modification factor that is to 

be multiplied by the interior beam distribution factor to determine the exterior beam distribution 

factor. The modification factor for moment is given by the following equation. 
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0.77
9.1

ed
e

 
   

 
 

where:  

 

 de =  the distance between the exterior beam and the interior of the barrier or curb (ft.) 

    

 de =  2.0 ft 

 

2
0.77 0.990 1.0

9.1
e

 
    

 
 

Multiplying the modification factor by the interior beam distribution factor for two or more lanes 

loaded gives the following: 

DF = 0.990(0.723) = 0.716 lanes 

Special Analysis: 

The special analysis assumes the entire bridge cross-section behaves as a rigid cross-section 

rotating about the transverse centerline of the structure and is discussed in the commentary of 

Article 4.6.2.2.2d. The reaction on the exterior beam is calculated from the following equation. 

2

L

b

N

extL

N

b

X eN
R

N
x


 



       Eq. (C4.6.2.2.2d-1) 

where: 

  

 NL = number of lanes loaded 

 

 Nb = number of beams or girders 

 

Xext = horizontal distance from center of gravity of the pattern of girders to the exterior 

girder (ft.) 

 

e  = eccentricity of a design truck or a design lane load from the center of gravity of 

the pattern of girders (ft.) 

 

x  = horizontal distance from the center of gravity of the pattern of girders to each 

girder (ft.) 

 

Figure 6 shows the truck locations for the special analysis. It is shown that the maximum number 

of trucks that may be placed on half of the cross-section is two. Thus, the calculation of the 

distribution factors using the special analysis procedure proceeds as follows beginning with the 

calculations for one loaded lane (the appropriate multiple presence factors, MPF, that are applied 

in each case are shown): 
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DF =m1(R1) (one lane loaded) 

2 2

1 (15)(12)
1.2 0.732

4 2(15) 5
DF

 
   

 
 lanes  (Note, MPF = 1.2) 

Similarly, for two loaded lanes the distribution factor is computed as follows: 

DF =m2(R2) (two lanes loaded) 

2 2

2 (15)(12 0)
1.0 0.860

4 2((15) 5 )
DF

 
   

 
 lanes (governs)  (Note, MPF = 1.0) 

Comparing the four distribution factors computed above for moment in the exterior beam, it is 

determined that the controlling distribution factor is equal to 0.860 lanes, which is determined 

based on the special analysis procedure considering two lanes loaded. Compared to the interior 

beam distribution factor for moment, which was computed to be 0.723 lanes, it is shown that the 

exterior beam distribution factor is larger, and thus, the exterior beam distribution factor controls 

the bending strength design at the strength and service limit state. 

 
Figure 6  Sketch of the Truck Locations for the Special Analysis 

 

5.2.2.2 Shear 

The distribution factors computed above using the lever rule, approximate formulas, and special 

analysis are also applicable to the distribution of shear.  

 

Lever Rule: 

The above computations demonstrate that the distribution factor for shear for one-lane loaded is 

equal to 0.840 lanes based on the lever rule. 

 

DF = 0.840 lanes  
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Modified of Interior Girder Distribution Factor: 

For the case of two or more lanes loaded, the shear modification factor is computed using the 

following formula: 

10.0

d
0.60e e  

0.800
10.0

2
0.60e   

Applying this modification factor to the previously computed interior beam distribution factor 

for shear for two or more lanes loaded gives the following: 

DF = 0.800(0.952) = 0.762 lanes 

Special Analysis: 

It was demonstrated above that the special analysis yields the following distribution factors for 

one lane and two or more lanes loaded, respectively: 

DF = 0.732 lanes for one lane loaded 

DF = 0.860 lanes for two lanes loaded (governs) 

Thus, the controlling distribution factor for shear in the exterior beam is 0.860 lanes, which is 

less than that of the interior beam. Thus, the interior beam distribution factor of 0.952 lanes 

controls the shear design. 

5.2.3 Fatigue Limit State 

 

As stated in Article 3.6.1.1.2, the fatigue distribution factor is based on one lane loaded, and does 

not include the multiple presence factor, since the fatigue loading is specified as a single truck 

load. Because the distribution factors calculated from the tabulated empirical equations 

incorporate the multiple presence factors, the fatigue distribution factors are equal to the strength 

distribution factors divided by the multiple presence factor for one lane loaded, as described 

subsequently. 

 

5.2.3.1 Bending Moment 

It was determined above that the governing distribution factor for moment at the strength and 

service limit states was equal to 0.840 lanes, which was based on one loaded lane (the lever rule). 

Dividing this value by the multiple presence factor gives the following distribution factor for 

fatigue moment. 

0.840
0.700

1.20
DF    lanes (exterior girder) 
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5.2.3.2 Shear 

From review of the shear distribution factors computed above for the strength and service limit 

states, it was determined that the maximum distribution factor for one-lane loaded was equal to 

0.840 lanes, which was based on the lever rule. Thus, the distribution factor for fatigue shear is 

equal to 0.840 lanes divided by the multiple presence factor for one-lane loaded of 1.2. 

0.840
0.700

1.20
DF    lanes 

5.2.4 Distribution Factor for Live-Load Deflection 

 

Article 2.5.2.6.2 states that all design lanes must be loaded when determining the live load 

deflection of the structure. In the absence of a refined analysis, for straight-girder bridges, an 

approximation of the live load deflection can be obtained by using a distribution factor computed 

assuming that all beams deflect equally with the appropriate multiple presence factor applied. 

The controlling case occurs when two lanes are loaded, and the calculation of the corresponding 

distribution factor is shown below. 

2
1.0 0.500

4

L

b

N
DF m

N

   
     

  
lanes 

The governing live load distribution factors based on the maximum distribution factors of the 

interior and exterior girder are provided in Table 1. 

 

Table 1  Governing Live Load Distribution Factors 

 
 

5.3 Dynamic Load Allowance 

 

The dynamic effects of the truck loading are taken into consideration by the dynamic load 

allowance, IM. The dynamic load allowance, which is discussed in Article 3.6.2 of the 

specifications, accounts for the hammering effect of the wheel assembly and the dynamic 

response of the bridge. IM is only applied to the design truck or tandem, not the lane loading. 

Table 3.6.2.1-1 specifies IM equal to 1.33 for the strength, service, and live load deflection 

evaluations, while IM of 1.15 is specified for the fatigue limit state. 
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6.0  ANALYSIS RESULTS 

 

6.1 Moment and Shear Envelopes 

 

Figures 7 through 10 show the moment and shear envelopes for this design example, which are 

based on the data presented in Tables 2 through 8. The live load moments and shears shown in 

these figures are based on the controlling distribution factors computed above.  For loads applied 

to the composite section, the envelopes shown are determined based on the composite section 

properties assuming the concrete deck to be effective over the entire span length. 
.  

As previously mentioned, the live load in the positive bending region between the points of dead 

load contraflexure is the result of the HL-93 loading. In the negative bending region between the 

points of dead load contraflexure, the moments are the larger of the moments due to the HL-93 

loading and the special negative-moment loading, which is composed of 90 percent of both the 

truck-train moment and lane loading moment.  

 

 
Figure 7  Dead and Live Load Moment Envelopes 
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Figure 8  Dead and Live Load Shear Envelopes 

 

 
Figure 9  Fatigue Live Load Moments 
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Figure 10  Fatigue Live Load Shears 

 

Table 2  Unfactored and Undistributed Moments (kip-ft) 
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Table 3  Unfactored and Undistributed Live Load Moments (kip-ft) 

 
 

Table 4  Strength I Load Combination Moments (kip-ft) 

 
 

Table 5  Service II Load Combination Moments (kip-ft) 
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Table 6  Unfactored and Undistributed Shears (kip) 

 
 

Table 7  Unfactored and Undistributed Live Load Shears (kip) 

 
 

Table 8  Strength I Load Combination Shear (kip) 
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6.2 Live Load Deflection 

 

As indicated in Article 3.6.1.3.2, control of live-load deflection is optional. Evaluation of this 

criterion is based on the flexural rigidity of the short-term composite section and consists of two 

load cases: deflection due to the design truck and deflection due to the design lane plus 25 

percent of the design truck. The dynamic load allowance of 33 percent is applied to the design 

truck load only for both loading conditions. The load is distributed using the distribution factor 

of 0.500 lanes calculated earlier. 

The maximum deflection due to the design truck is 1.114 inches.  Applying the impact and 

distribution factors gives the following deflection for the design truck load case. 

LL+IM = 0.500 x 1.33 x 1.114 = 0.741 in. (governs) 

The maximum deflection due to the lane loading only is 0.578 inches. Thus, the deflection due to 

25% of the design truck plus the lane loading is equal to the following: 

LL+IM = 0.500 (1.33 x 0.25 x 1.114 + 0.578) = 0.474 in.  

Thus the governing deflection, equal to 0.741 inches, will subsequently be used to assess the 

beam design based on the live-load deflection criterion. 
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7.0 LIMIT STATES 
 

As discussed previously, there are four limit states applicable to the design of steel I-girders. 

Each of these limit states is described below. 
 

7.1 Service Limit State (Articles 1.3.2.2 and 6.5.2) 
 

The intent of the Service Limit State is to ensure the satisfactory performance and rideability of 

the bridge structure by preventing localized yielding. For steel members, these objectives are 

intended to be satisfied by limiting the maximum levels of stress that are permissible. The 

optional live-load deflection criterion is also included in the service limit state and is intended to 

ensure user comfort. 
 

7.2 Fatigue and Fracture Limit State (Article 1.3.2.3 and 6.5.3) 
 

The intent of the Fatigue and Fracture Limit State is to control crack growth under cyclic 

loading. This is accomplished by limiting the stress range to which steel members are subjected. 

The permissible stress range varies for various design details and member types. The fatigue 

limit state also restricts the out-of-plane flexing of the web. Additionally, fracture toughness 

requirements are stated in Article 6.6.2 of the specifications and are dependent on the 

temperature zone. 
 

7.3 Strength Limit State (Articles 1.3.2.4 and 6.5.4) 
 

The strength limit state ensures the design is stable and has adequate strength when subjected to 

the highest load combinations considered. The bridge structure may experience structural 

damage (e.g., permanent deformations) at the strength limit state, but the integrity of the 

structure is preserved. 

 

The suitability of the design must also be investigated to ensure adequate strength and stability 

during each construction phase. The deck casting sequence has a significant influence on the 

distribution of stresses within the structure. Therefore, the deck casting sequence should be 

considered in the design and specified on the plans to ensure uniformity between predicted and 

actual stresses. In addition, lateral flange bending stresses resulting from forces applied to the 

overhang brackets during construction should also be considered during the constructibility 

evaluation. 
 

7.4 Extreme Event Limit State (Articles 1.3.2.5 and 6.5.5) 
 

The extreme event limit state is to ensure the structure can survive a collision, earthquake, or 

flood. The collisions investigated under this limit state include the bridge being struck by a 

vehicle, vessel, or ice flow. This limit state is not addressed in this design example. 
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8.0 SAMPLE CALCULATIONS 

 

This section presents the calculations necessary to evaluate the preliminary beam design for 

adequate resistance at the strength, service, and fatigue limit states. Adequate strength of the 

bridge in its final condition and at all stages of the construction sequence is verified.  The 

optional moment redistribution specifications are utilized. Other design components presented 

include the concrete deck design. The moment and shear envelopes provided in Figures 7 

through 10 are employed for the following calculations. 

8.1 Section Properties 

 

The section properties are first calculated as these properties will be routinely used in the 

subsequent evaluations of the various limit states. The structural slab thickness is taken as the 

slab thickness minus the thickness of the integral wearing surface (8 inches) and the modular 

ratio is taken as 8 in these calculations. Because the section is prismatic, the effective flange 

width and section properties are constant along the length of the beam. However, separate 

calculations are necessary for the computation of the plastic moment and yield moment 

depending on if the section is in negative bending or positive bending.  

8.1.1 Effective Flange Width (Article 4.6.2.6) 

 

Article 4.6.2.6 of the specifications governs the determination of the effective flange width of the 

concrete slab, where alternative calculations are specified for interior and exterior beams. The 

effective flange width for interior beams is one-half the distance to the adjacent girder on each 

side of the component. 

For the interior beams in this example, beff is then computed as follows. 

in. 120.0
2

120

2

120
beff   

The effective flange width for exterior beams is determined as one-half the distance to the 

adjacent girder plus the full overhang width. 

For the exterior beams, beff is then computed as. 

in. 102.042
2

120
beff   

 

Because the effective width is smaller and the moment distribution factor is greater for the 

exterior beam, the moment design is controlled by the exterior beam. 

8.1.2 Elastic Section Properties 

 

As discussed above, the elastic section properties that are to be considered in the analysis of the 

beam vary based on the loading conditions. The section properties for the steel section (beam 

alone) are used in the constructibility evaluation. In positive bending, live loads are applied to 
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the full composite section, termed the short-term composite section, where the modular ratio of 8 

is used in the computations. Alternatively, dead loads are applied to what is termed the long-term 

composite section. The long-term composite section is considered to be comprised of the full 

steel beam and one-third of the concrete deck to account for the reduction in strength that may 

occur in the deck over time due to creep effects. This is accounted for in the section property 

calculations through use of a modular ratio equal to 3 times the base modular ratio, or 24. The 

section properties for the short-term and long-term composite sections are thus computed below 

(Tables 9 through 11).  In negative bending, the applicable section at the strength limit state 

consists of the steel beam in addition to the longitudinal steel reinforcement in the concrete deck. 

The section properties of the W40x215 beam are as follows. 

 INA = 16,700 in
4
 

 dTOP OF STEEL = 19.50 in.  STOP OF STEEL = 
16,700

19.50
 = 856.4 in.

3
 

 dBOT OF STEEL = 19.50 in.  SBOT OF STEEL = 
16,700

19.50
 = 856.4 in.

3
 

Table 9  Short Term Composite (n) Section Properties 
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Table 10  Long Term Composite (3n) Section Properties 

 
 

 

Table 11  Steel Section and Longitudinal Reinforcement Section Properties 

 
 

The section modulus to the top layer of the longitudinal steel reinforcement is computed as 

follows. 

SREIN.=  21,851 / (26.03 – 3.28) = 960.5 in.
3
 

 

8.1.3 Plastic Moment 

 

8.1.3.1 Positive Bending 

 

The plastic moment Mp is the resisting moment of an assumed fully yielded cross-section and 

can be determined using the procedure outlined in Table D6.1-1 as demonstrated below. The 

longitudinal deck reinforcement is conservatively neglected in these computations. The forces 
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acting in the slab (Ps), compression flange (Pc), web (Pw), and tension flange (Pt) are first 

computed. 

Ps = 0.85f’cbsts = 0.85(4.0)(102.0)(8)  =  2,774 kips 

Pc = Fycbctc  = (50)(15.8)(1.22)   =  964 kips 

Pw = FywDtw = (50)(36.56)(0.65)   =  1,188 kips 

Pt = Fytbttt  = (50)(15.8)(1.22)  =  964 kips 

The forces within each element of the beam are then compared to determine the location of the 

plastic neutral axis (PNA). If the following equation is satisfied then the PNA is in the web. 

t w c sP P P P    

964 + 1,188   964 + 2,774 

2,152   3,738  

Therefore, the PNA is not in the web and the following equation is evaluated to determine if the 

PNA is in the top flange. 

t w c sP P P P    

964 + 1,188 + 964   2,774 

3,116   2,774  

Therefore, the plastic neutral axis is in the top flange and y  is computed using the following 

equation. 

1
2

c w t s

c

t P P P
y

P

   
   
   

 

in. 0.22
964

774,2964188,1

2

1.22
y 







 








  

The plastic moment is then calculated using the following equation. 

   
22

2

c
p c s s w w t t

c

P
M y t y P d P d Pd

t

      
  

 

The distances from the PNA to the centroid of the compression flange, web, and tension flange 

(respectively) are as follows. 

ds = 0.22 + 8.0/2 + 2 – 1.22 = 5.00 in. 
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dw = 1.22 – 0.22 + 36.56/2 = 19.28 in. 

dt = 1.22 – 0.22 + 36.56 + 1.22/2 = 38.17 in. 

Substitution of these distances and the above computed element forces into the Mp equation 

gives the following. 

   
22964

(0.35) 1.22 0.35 (2,557)(5.13) (1,188)(19.15) (964)(38.04)
2(1.22)

pM       
 

 

 
              17.3896428.19188,100.5774,222.022.122.0

22.12

964
M

22

p 







  

Mp = 73,985 kip-in = 6,165 k-ft 

8.1.3.2 Negative Bending 

Similar to the calculation of the plastic moment in positive bending, Table D6.1-2 is used to 

determine the plastic moment for the negative bending section as demonstrated below. The 

concrete slab is neglected in the computation of the strength of the negative bending region due 

to the low tensile strength of concrete. The force acting in each element of the beam is first 

computed. 

Pc = Fycbctc = (50)(15.8)(1.22) = 964 kips 

Pw = FywDtw = (50)(36.56)(0.65) = 1188 kips 

Pt = Fytbttt = (50)(15.8)(1.22) = 964 kips 

Prb = FyrbArb = (60)(3.27) = 196 kips 

Prt = FyrtArt = (60)(6.53) = 392 kips 

As before, the relative forces in each member are used to determine the location of the plastic 

neutral axis. Because the following equation is satisfied, it is determined that the PNA is in the 

web. 

Pc + Pw ≥ Pt + Prb + Prt = 964 + 1188 ≥ 964 + 196 + 392 

2152 > 1552, therefore, the plastic neutral axis is in the web. 

The plastic neutral axis location is then computed by the following equation. 

36.56 964 964 392 196
1 1 9.23in.

2 2 1,188

c t rt rb

w

P P P PD
y

P

          
          
      

 

Mp is then computed as follows. 
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   
22

2

w
p rt rt rb rb t t c c

P
M y D y P d P d Pd P d

D

       
  

 

where: 

drt =  9.23 + 2 + 8 – 2.25 = 16.98 in. 

drb =  9.23 + 2 + 1.25 = 12.48 in. 

dt = 9.23 + 1.22/2 = 9.84 in. 

dc = 36.56 – 9.23 + 1.22/2 = 27.94 in. 

   
221,188

(9.23) 36.56 9.23 (392)(16.98) (196)(12.48) (964)(9.84) (964)(27.94)
2(36.56)

pM        
 

 

Mp = 59,042 kip-in = 4,920 k-ft 

8.1.4 Yield Moment 

8.1.4.1 Positive Bending 

 

The yield moment, which is the moment causing first yield in either flange (neglecting flange 

lateral bending), is determined according to the provisions specified in Section D6.2.2 of the 

specifications. This computation method for the yield moment recognizes that different stages of 

loading (e.g. composite dead load, non-composite dead load, and live load) act on the beam 

when different cross-sectional properties are applicable. The yield moment is determined by 

solving for MAD using Equation D6.2.2-1 (given below) and then summing MD1, MD2, and MAD, 

where, MD1, MD2, and MAD are the factored moments applied to the noncomposite, long-term 

composite, and short-term composite section, respectively. 

M D1 2M D M
F AD

yf   
S NC S LT S ST

 Eq. (D6.2.2-1) 

Due to the significantly higher section modulus of the short-term composite section about the top 

flange, compared to the short-term composite section modulus taken about the bottom flange, the 

minimum yield moment results when using the bottom flange section moduli. 

Computation of the yield moment for the bottom flange is thus demonstrated below. First the 

known quantities are substituted into Equation D6.2.2-1 to solve for MAD.  

        













17110701

1212050112147251

4856

12761251
0150

,

M

,

..

.

.
. AD  

MAD = 38,145 k-in. = 3,179 k-ft. 
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My is then determined by applying the applicable load factors and summing the dead loads and 

MAD. 

My = 1.25(761) + 1.25(147) + 1.50(121) + 3179 Eq. (D6.2.2-2) 

My = 4,496 k-ft 

8.1.4.2 Negative Bending 

The process for determining the yield moment of the negative bending section is similar to the 

process for the positive bending section. The one difference is that, since the composite short-

term and the composite long-term bending sections are both composed of the steel section and 

the longitudinal reinforcing steel, the section modulus is the same for both the short-term and 

long-term composite sections. 

As discussed above when computing the yield moment in positive bending, the yield moment is 

the minimum of the moment which causes yielding on the compression side and the moment 

which causes yielding on the tension side. Because, for negative bending, the section modulus 

values taken about the top and bottom of the beam are nearly equal to one another, it is not clear 

which yield moment value will control. Thus, the moments causing first yield in both 

compression and tension are computed below. The moment causing yielding in the compression 

flange is first computed based on Equation D6.2.2-1. 

M D1 2M D M
F AD

yf   
S NC S LT S ST

 Eq. (D6.2.2-1) 

(1.25)(1,359)(12) (1.25)(263)(12) (1.50)(216)(12)
(50)

856.4 959 959

ADM
    

MAD = 17,290 k-in. = 1441 k-ft. 

Myc = (1.25)(1,359) + (1.25)(263) + (1.50)(216) + 1441 

Myc = 3793 k-ft. (governs) 

The specifications indicate that for regions in negative flexure, Myt is to be taken with respect to 

either the tension flange or the longitudinal steel reinforcement, whichever yields first.  

Therefore, compute Myt for both and use the smaller value.   

The moment which causes yielding in the tension flange is computed as follows: 

        













1347

M

1347

122161.50122631.25

856.4

121,3591.25
1.050 AD  

MAD = 27,454 k-in. = 2,228 k-ft 

Myt = (1.25)(1,359) + (1.25)(263) + (1.50)(216) + 2,228 = 4,639 k-ft 
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The moment which causes yielding in the longitudinal steel reinforcement is computed as 

follows.  It is necessary to recognize that there is no non-composite moment acting on the 

longitudinal steel reinforcement, and that Fy should be taken as 60 ksi. 

1 2D D AD
yf

NC LT ST

M M M
F

S S S
    Eq. (D6.2.2-1) 

Fyf = Fy = 60 ksi   MD1 = 0 k-ft 

     













960.5

M

960.5

122161.50122631.25
01.006 AD  

MAD = 49,797 k-in. = 4,150 k-ft 

Myt = (1.25)(263) + (1.50)(216) + 4,150 = 4,803 k-ft 

Therefore, the top flange yields before the longitudinal reinforcement, and Myt = 4,639 k-ft. 

For the whole section, the compression flange governs, thus My = Myc = 3,793 k-ft. 

8.2 Exterior Beam Check: Section 2 

This design example illustrates the use of the optional moment redistribution procedures given in 

Appendix B6 of the specifications, where moment is redistributed from the negative bending 

region to the positive bending region; therefore the negative bending region will be checked first 

in order to determine the amount of moment that must be redistributed to the positive bending 

region. 

8.2.1 Strength Limit State (Article 6.10.6) 

8.2.1.1 Flexure  

The strength requirements for negative flexure are given by Article 6.10.8, Appendix A6, or 

Appendix B6 at the option of the Engineer. Article 6.10.8 limits the maximum capacity to the 

yield moment of the section. Alternatively, Appendix A6 permits beam capacities up to Mp and 

may be used for beams having a yield strength less than or equal to 70 ksi and a compact or non-

compact web, which is defined by Equation A6.1-1. Appendix B6 utilizes the moment capacities 

predicted from either Article 6.10.8 or Appendix A6 and allows up to 20% of the moment at the 

pier to be redistributed to positive bending sections. It is demonstrated below that Appendix A6 

is applicable for this example. Therefore, the moment capacity of the section is first computed 

based on these strength prediction equations as presented below.  

8.2.1.2 Flexural Resistance (Appendix A6)  

In order to evaluate the above flexural requirements, the flexural resistances based on buckling 

of the compression flange and yielding of the tension flange are evaluated in this section. The 

applicability of Appendix A6 for this design example is first evaluated below. The requirement 

that the nominal yield strength must be less than 70 ksi is easily evaluated.  
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50 70yfF ksi ksi   (satisfied) 

The web slenderness requirement is evaluated using Equation A6.1-1. 

2
5.7c

w yc

D E

t F
  Eq. (A6.1-1) 

As computed above the elastic neutral axis is located 22.78 in. from the bottom of the composite 

negative bending section. Subtracting the bottom flange thickness gives the web depth in 

compression in the elastic range (Dc) as computed below. 

Dc = 22.78 – 1.22 = 21.56 in. 

Substituting the applicable values into Equation A6.1-1 shows that the equation is satisfied. 

 
27.13734.66

50

00029
75

650

56.212


,
.

.
 (satisfied) 

0.3
yc

yt

I

I
  Eq. (A6.1-2) 

yc ytI I  

1 0.3  (satisfied) 

Thus, Appendix A6 is applicable. Use of Appendix A6 begins with the computation of the web 

plastification factors, as detailed in Article A6.2 and calculated below.  

( )

2

cp

cp

pw D

w

D

t
 , Eq. (A6.2.1-1) 

where: 

























c

cp

rw2

yh

p

yc

)pw(D
D

D
λ

0.09
MR

M
0.54

F

E

λ
cp

 Eq. (A6.2.1-2) 

The hybrid factor, Rh, is determined from Article 6.10.1.10.1, and is 1.0 for this example since 

the since the section is a homogeneous section. Therefore, λpw(Dcp) is computed as follows: 

   

0.417
21.56

27.33
137.27  64.62

0.09
1237931.0

59,042
0.54

50

29000

λ
2)pw(Dcp





















  
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The web depth in compression at Mp is computed by subtracting the previously determined 

distance between the top of the web and the plastic neutral axis from the total web depth. 

Dcp = (39.00 – 2(1.22)) – 9.23 = 27.33 in. 

The web slenderness classification is then determined as follows. 

   
264.6λ84.09

0.65

27.332

t

D2
)pw(D

w

cp

c
  (not satisfied) 

As shown, the section does not qualify as compact. However, it was previously demonstrated, 

when evaluating the Appendix A6 applicability that the web does qualify as non-compact. 

Therefore, the applicable web plastification factors for non-compact web sections are used and 

are determined as specified by Eqs. A6.2.2-4 and A6.2.2-5:  

( )

( )

1 1 c

c

w pw Dh yc p p

pc

p rw pw D yc yc

R M M M
R

M M M

 

 

    
      

      

 Eq. (A6.2.2-4) 

where )D(pw c
 = limiting slenderness ratio for a compact web corresponding to  2Dc/tw 

( ) ( )c cp

c
pw D pw D

cp

D

D
 

 
  

 
 

 Eq. (A6.2.2-6) 

  50.98
27.33

21.56
64.621λ )pw(Dc





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


  

   
     123793
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123793
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
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




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
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


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Rpc = 1.244 ≤ 1.297 

Rpc = 1.244 

 

 

1 1 c

c

w pw Dh yt p p
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p rw yt ytpw D

R M M M
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 (A6.2.2-5) 
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Rpt = 1.050 ≤ 1.061 

Rpt = 1.050 
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The flexural resistance based on the compression flange is determined from Article A6.3 and is 

taken as the minimum of the local buckling resistance from Article A6.3.2 and the lateral 

torsional buckling resistance from Article A6.3.3. To evaluate the local buckling resistance, the 

flange slenderness classification is first determined, where the flange is considered compact if 

the following equation is satisfied: 

pff λλ   

where: 
15.8

6.48
2 2(1.22)

fc

f

fc

b

t
     Eq. (A6.3.2-3) 

29,000
0.38 0.38 9.15

50
pf

yc

E

F
     Eq. (A6.3.2-4) 

6.48 9.15f pf     (satisfied) 

Therefore, the compression flange is considered compact, and the flexural capacity based on 

local buckling of the compression flange is governed by Equation A6.3.2-1. 

Mnc = Rpc Myc = (1.244)(3,793) = 4,718 k-ft Eq. (A6.3.2-1) 

Similarly, to evaluate the compressive flexural resistance based on lateral-torsional buckling, the 

unbraced length must be first classified. Unbraced lengths satisfying the following equation are 

classified as compact. 

b pL L  Eq. (A6.3.3-4) 

where: Lb = (15.0) (12.0) = 180 in. 

p t

yc

E
L r

F
  

where: rt = effective radius of gyration for lateral torsional buckling (in.) 

1
12 1

3

fc

t

c w

fc fc

b
r

D t

b t


 
  

 

 Eq. (A6.3.3-10) 

15.8
4.092in.

1 (21.56)(0.65)
12 1

3 (15.8)(1.22)

tr  
 
 

 
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29,000
4.092 98.55

50
pL    

Therefore, Lb > Lp. (not compact) 

Because the unbraced length does not satisfy the compact limit, the non-compact limit is next 

evaluated. 

p b rL L L   

where: Lr =  limiting unbraced length to achieve the nominal onset of yielding in either 

flange under uniform bending with consideration of compression flange 

residual stress effects (in.) 

    

2

1.95 1 1 6.76
yr xc

r t

yr xc

F S hE J
L r

F S h E J

 
    

 
 Eq. (A6.3.3-5) 

where: Fyr =  smaller of the compression flange stress at the nominal onset of yielding of 

either flange, with consideration of compression flange residual stress 

effects but without consideration of flange lateral bending, or the specified 

minimum yield strength of the web 

 

 J = St. Venant torsional constant 

 

 h = depth between the centerline of the flanges 

 

min 0.7 , ,xt
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xt in 1113.4
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xc in 3.109
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(3793)(12)
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
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Fyr = min (35,61.2, 50) > 0.5(50) 

Fyr = 35.0 ksi > 25.0 ksi      (satisfied) 
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J  Eq. (A6.3.3-9)  
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J = (1/3) [(36.56)(0.65)
3
 + (15.8)(1.22)

3
 (0.951) + (15.8)(1.22)

3
 (0.951)] = 21.53 in.

4
 

1.22 1.22
36.56 37.78

2 2
h      in. 

 
  

  
  

408.9
21.5329,000

37.78910.335
6.7611

37.78910.3

21.53

35

29,000
4.0921.95L

2

r 







  

Lb = 180 ≤ Lr = 408.9 (satisfied) 

Therefore, the unbraced length is classified as non-compact and the lateral torsional buckling 

resistance is controlled by Eq. A6.3.3-2 of the Specifications.  

1 1
yr xc b p

nc b pc yc pc yc

pc yc r p

F S L L
M C R M R M

R M L L

   
      

      

 Eq. (A6.3.3-2) 

where: Cb = moment gradient modifier (discussed in Article A6.3.3) 

2

1 1

2 2

1.75 1.05 0.3 2.3b

M M
C

M M

   
      

   
 Eq. (A6.3.3-7) 

 

where:  M1 = Mo when the variation in moment between brace points is concave 

Otherwise:  

 

 M1 =  2Mmid – M2   M0     Eq. (A6.3.3-12) 

 

 Mmid = major-axis bending moment at the middle of the unbraced length 

 

 M0 = moment at the brace point opposite to the one corresponding to M2 

 

 M2 = largest major-axis bending moment at either end of the unbraced length 

causing compression in the flange under consideration 

 

For the critical moment location at the interior pier, the applicable moment values are as follows. 

M2 = 5367 k-ft   M1 = 2Mmid – M2 ≥ M0 

M0 = 2126 k-ft   M1 = 2(3502) – (5367) = 1637 ≤  2126 

Mmid = 3502 k-ft  M1 = 2126 k-ft 
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2
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1.75 1.05 0.3 1.38 2.3
5367 5367

bC
   

       
   

 

(35.0)(910.3) 180 98.55
(1.38) 1 1 (1.249)(3793) (1.249)(3793)

(1.249)(3793)(12) 410.7 98.55
ncM

    
       

   
 

 
  

   
  )1.244(3793(3793)1.244

98.55408.9

98.55801

12(3793)1.244
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
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
  

Mnc = 5,764 k-ft ≤ 4,718 k-ft 

Mnc = 4,718 k-ft 

If the computed Mnc had been less than RpcMyc in this case, then the equations of Article D6.4.2 

could have alternatively been used to potentially obtain a larger resistance.  As previously stated, 

the flexural capacity based on the compression flange is the minimum of the local buckling 

resistance and the lateral torsional buckling resistance, which in this design example are equal. 

Mnc = 4,718 k-ft 

Multiplying the nominal moment capacity by the applicable resistance factor gives the following. 

fMnc = (1.0)(4,718) 

fMnc = 4,718 k-ft 

The moment capacity is also evaluated in terms of the tensile moment capacity. For a 

continuously braced tension flange at the strength limit state, the section must satisfy the 

requirements of Article A6.1.4. 

u f pt ytM R M  Eq. (A6.1.4-1) 

Therefore, the factored moment resistance as governed by tension flange yielding is expressed by 

the following. 

f Mnt = fRptMyt = (1.0)(1.050)(4,639) = 4,871 k-ft  

8.2.1.3 Factored Moment 

At the strength limit state, the design moment is equal to the sum of the factored vertical bending 

moments applied from forces such as dead loads and vehicular loads. In addition, one-third of 

the factored lateral bending moment induced by loads such as wind loads must also be added for 

discretely braced flanges. These design moments must be less than the moment resistance of the 

section. For the present design example, these requirements are expressed by Eqs. A6.1.1-1 and 

A6.1.4-1. 
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1

3
u xc f ncM f S M   (A6.1.1-1) 

u f pt ytM R M  (A6.1.4-1) 

Equation A6.1.1-1 requires that the vertical bending moment plus one-third of the lateral bending 

moment be less than the nominal moment resistance of the compression flange and is applicable 

for sections with discretely braced compression flanges (i.e., the bottom flange in Section 2). 

Equation A6.1.4-1 is intended to prevent yielding of the tension flanges and is applicable to 

continuously braced tension flanges (i.e. the top flange in Section 2), where lateral bending 

effects are not applicable. 

Furthermore, at the Strength limit state there are five load combinations to consider. The three 

load combinations applicable to the superstructure elements in this design example are as 

follows: 

Strength I = 1.25DC + 1.5DW + 1.75(LL+I) 

Strength III = 1.25DC + 1.5DW + 1.4WS 

Strength V = 1.25DC + 1.5DW + 1.35(LL+I) + 0.4WS 

At the location of peak negative moment (e.g, the pier), the DC and DW moments are given in 

Table 2. 

DC = -1359 – 263 = -1,622 k-ft 

DW = -216 k-ft 

From Table 3, the controlling LL+I moment is -1,723 k-ft. 

LL+I = -1,723 k-ft 

The horizontal pressure applied by the wind load loads was previously determined to be 0.050 

ksf. It is assumed in this example that this pressure acts normal to the structure. The procedure 

given in Article C4.6.2.7.1 is then used to determine the force effects caused by the wind 

loading. It is required that the wind force per unit length of the bridge must exceed 0.3 kips/ft. 

Multiplying the design pressure by the exposed height of the superstructure, assuming a 42 in. 

parapet height, gives the following: 

FD = (0.050)(39 - 1.22 + 2 + 8.5 + 42)/12 

FD = 0.376 k/ft > 0.3 

Therefore, the design wind pressure exceeds the minimum required design pressure. It may be 

assumed that the wind pressure acting on the parapets, deck, and top half of the beam is resisted 

by diaphragm action of the deck for members with cast-in-place concrete or orthotropic steel 
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decks. The beam must then only resist the wind pressure on the bottom half of the beam. This 

force is expressed by Eq. C4.6.2.7.1-1. 

2

DP d
W


  Eq. (C4.6.2.7.1-1) 

where:  =  1.0      

 

 PD = 0.050 ksf 

 

 d = beam depth = 39.0 in = 3.25 ft 

 

  = varies depending on limit state 

 

    
k/ft 0.08125γ

2

3.250.050γ1.0
W   

The maximum flange lateral bending moment is then computed according to Eq. C4-9. 

2 2(0.08125 )(15)
1.828

10 10

b
w

WL
M


   k-ft Eq. (C4.6.2.7.1-2) 

Consideration should also be given to increasing the wind load moments to account for second-

order force effects, as specified in Article 6.10.1.6, through application of the amplification 

factor. However, no increase is required for tension flanges, so the amplification factor is 

negligible in this case. Lateral bending forces due to the wind loading are then determined by 

dividing Mw by the section modulus of the bottom flange. 

 
2

(1.828 )12
0.432

(15.8) (1.22) / 6

w
l

M
f

S


   ksi 

As specified in Article 6.10.1.6, the flange lateral bending stresses must not exceed 60% of the 

flange yield strength. Thus, for this example fl must be less than or equal to 30 ksi, which is 

easily satisfied for the above lateral stress of 0.432 considering the maximum load factor is 1.4, 

which results in a maximum lateral bending stress of 0.60 ksi. 

The controlling strength limit state can now be determined based on the above information. For 

the Strength I load combination, the design moments are as follows. 

Mu =1.25(1622) + 1.5(216) + 1.75(1723) = 5,367 k-ft (governs) 

1

3
u xcM f S = 5,367 + 0 (wind loads not considered) 

1

3
u xcM f S = 5,367 k-ft (governs) 
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For the Strength III load combination, wind load is incorporated and the design moments are 

equal to the following: 

Mu =1.25(1622) + 1.5(216) = 2,352 k-ft 

1

3
u xcM f S = 2352 + (1/3)(0.432)(1.4)(910.3)(1/12) = 2,367 k-ft 

Lastly, the design moments computed using the Strength V load combination are equal to the 

following: 

Mu = 1.25(1622) + 1.5(216) + 1.35(1723) = 4,678 k-ft 

1

3
u xcM f S = 4678 + (1/3)(0.432)(0.4)(910.3)(1/12) = 4,682 kip-ft 

Reviewing the factored moments for each load combination computed above, it is determined 

that the Strength I moments govern for this example and that the design moment for both 

compression flange and tension flange resistances is equal to 5,367 k-ft. 

Comparing this design moment to the moment capacities computed above shows that moment 

redistribution will occur as the governing resistance of the section (based on the compression 

flange) is less than the applied moment. Hence, the requirements of Appendix B6 are now used 

to evaluate the moment capacity of the negative bending section. 

8.2.1.4  Moment Redistribution (Appendix B6) 

Article B6.2 defines the applicability of the optional Appendix B6 provisions. Specifically, the 

provisions may only be applied to straight continuous span I-section members whose bearing 

lines are not skewed more than 10 degrees from normal and along which there are no staggered 

(or discontinuous) cross-frames. The specified minimum yield strength of the section must not 

exceed 70 ksi. In addition, the section must satisfy the web proportion (Article B6.2.1), 

compression flange proportion (Article B6.2.2), section transition (Article B6.2.3), compression 

flange bracing (Article B6.2.4), and shear (Article B6.2.5) requirements discussed below. 

Equations B6.2.1-1, B6.2.1-2, and B6.2.1-3 specify the web proportion limits that must be 

satisfied.  

150
w

D

t
  Eq. (B6.2.1-1) 

36.56
56.25 150

0.65w

D

t
    (satisfied) 

ycw

c

F

E
8.6

t

D2
  Eq. (B6.2.1-2) 
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2(21.56) 29,000
66.34 6.8 163.8

0.65 50
    (satisfied) 

0.75cpD D  Eq. (B6.2.1-3) 

27.33 0.75(36.56) 27.42cpD     (satisfied) 

Section B6.2.2 requires that the following two compression flange proportion limits be satisfied. 

0.38
2

fc

fc yc

b E

t F
   Eq. (B6.2.2-1) 

15.8 29,000
6.48 0.38 9.15

2(1.22) 50
    (satisfied) 

4.25
fc

D
b   Eq. (B6.2.2-2) 

36.56
15.8 8.60

4.25
fcb     (satisfied) 

The compression flange bracing distance must satisfy:  

1

2

0.1 0.06 t
b

yc

r EM
L

M F

  
   

  
 Eq. (B6.2.4-1) 

2,126 (4.092)(29,000)
180.0 0.1 0.06 180.9

5,367 50
bL

  
     

  
 (satisfied) 

Additionally, the applied shear under the Strength I loading must be less than or equal to the 

shear buckling resistance of the beam as specified by. 

v crV V  Eq. (B6.2.5-1) 

where: Vcr = shear buckling resistance (kip) 

 Vcr = CVp (for unstiffened webs) Eq.(6.10.9.2-1) 

 Vp = plastic shear force (kip) 

 Vp = 0.58 FywDtw Eq. (6.10.9.2-2) 
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C = ratio of the shear buckling resistance to the shear yield strength 

determined as specified in Article 6.10.9.3.2, with the shear buckling 

coefficient, k, taken equal to 5.0 

Equations are provided for computing the value of C based on the web slenderness of the beam. 

If the web slenderness satisfies the following equation, C is equal to 1.0. 

36.56 (29,000)(5)
1.12 56.25 1.12 60.31

0.65 50w yw

D Ek

t F
      (satisfied) 

C = 1.00 

The shear buckling resistance is then computed as follows. 

(1.00)(0.58)(50)(36.56)(0.65)cr pV CV   

689Vcr  kips 

339 kips (1.0)(689) 689 kipsv crV V     (satisfied) 

The provisions of Article B6.2.1 through B6.2.6 are satisfied for this section. Therefore, 

moments may be redistributed in accordance with Appendix B6.  

Once it is determined that Appendix B6 is applicable, the effective plastic moment is then 

determined in order to evaluate if the section satisfies the design requirements. The effective 

plastic moment (Mpe) may be determined based on either the equations given in Article B6.5 or 

the refined procedure given in Article B6.6. In either case, Mpe is a function of the geometry and 

material properties of the section.  

When using the Mpe equations in Article B6.5, alternative equations are provided for beams that 

satisfy the requirements for enhanced moment rotation characteristics, i.e., beams classified as 

ultracompact sections. To be classified as ultracompact, the beam must either: (1) contain 

transverse stiffeners at a location less than or equal to one-half the web depth from the pier, or 

(2) satisfy the web compactness limit given by Eq. B6.5.1-1. 

2
2.3

cp

w yc

D E

t F
  Eq. (B6.5.1-1) 

2(27.33) 29000
84.1 2.3 55.4

0.65 50
    (not satisfied) 

Therefore, the section does not satisfy the web compactness limit and, because the section uses 

an unstiffened web, the beam does not satisfy the transverse stiffener requirement. Thus, the 

beam is not considered to be ultracompact and the applicable Mpe equation at the strength limit 

state is Equation B6.5.2-2. 
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2.63 2.3 0.35 0.39
fc yc fc yc

pe n n

fc fc fc fc

b F b FD D
M M M

t E b t E b

 
     
  

 Eq. (B6.5.2-2) 

47184718
8.15

56.36

29000

50

22.1

8.15
39.0

8.15

56.36
35.0

29000

50

22.1

8.15
3.263.2 








peM  

Mpe = 5,042 ≤ 4,718  

Mpe = 4,679 k-ft 

The redistribution moment, Mrd, for the strength limit state is taken as the larger of the values 

calculated from Equations. B6.4.2.1-1 and B6.4.2.1-2.  

1

3
rd e l xc f peM M f S M    Eq. (B6.4.2.1-1) 

1

3
rd e l xt f peM M f S M    Eq. (B6.4.2.1-2) 

where: Me = vertical bending moment at the pier due to the factored loads  

Since the lateral bending stresses are negligible for this example, the previous equations reduce 

to the following equation. 

rd e peM M M   

If this redistribution moment is less than 20 percent of the elastic moment, as specified by Eq. 

B6.4.2.1-3, the strength requirements at the pier are satisfied. 

0 0.2rd eM M   Eq. (B6.4.2.1-3) 

Therefore, the redistribution moment is computed as follows, which is shown to satisfy the 20% 

limit. 

Mrd = |Me| - fMpe = 5,365 - (1.0)(4,718) 

Mrd = 649 k-ft = 12.1% Me ≤ 20% Me 

Therefore, the negative bending region of the beam satisfies the strength limit state requirements 

when the effective plastic moment equations given in Appendix B6 are used to evaluate the 

girder capacity.. 

It is noted that moment redistribution may also be utilized at the service limit state. However, as 

demonstrated below, the stress requirements at the service limit state are satisfied based on the 

elastic stresses, and therefore, moment redistribution is not employed at the service limit state in 

this design example. 
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8.2.1.5 Shear (6.10.6.3) 

As computed above the shear resistance of the negative bending region is governed by Article 

6.10.9.2 because the beam is comprised of an unstiffened web, i.e., no transverse stiffeners are 

provided. The shear resistance of the section was previously calculated to be. 

689 kipsn cr pV V CV    Eq. (6.10.9.2-1) 

The applied shear at the pier at the strength limit state was previously given in Table 8 as 339 

kips.  Thus, the shear requirements are satisfied.  

339 kips (1.0)(689) 689 kipsv crV V     (satisfied) 

8.2.2 Constructibility (Article 6.10.3) 

Article 2.5.3 requires that the engineer design bridge systems such that the construction is not 

difficult and does not result in unacceptable locked-in forces. In addition, Article 6.10.3 states 

the main load-carrying members are not permitted to experience nominal yielding or rely on 

post-buckling resistance during the construction phases. The sections must satisfy the 

requirements of Article 6.10.3 at each construction stage. The applied loads to be considered are 

specified in Table 3.4.1-1 and the applicable load factors are provided in Article 3.4.2.  

The beams are considered to be non-composite during the initial construction phase. The 

influence of various segments of the beam becoming composite at various stages of the deck 

casting sequence is then considered. The effects of forces from deck overhang brackets acting on 

the fascia beams are also included in the constructibility checks.  

8.2.2.1 Flexure (Article 6.10.3.2) 

In regions of negative flexure, Eqs. 6.10.3.2.1-1, 6.10.3.2.1-2 and 6.10.3.2.2-1 specified in 

Article 6.10.3.2, which are to be checked for critical stages of construction, generally do not 

control because the sizes of the flanges in these regions are normally governed by the design 

checks at the strength limit state.  Also, the maximum accumulated negative moments from the 

deck-placement analysis in these regions, plus the negative moments due to the steel weight, 

typically do not differ significantly from (or may be smaller than) the calculated DC1 negative 

moments ignoring the effects of the sequential deck placement.  The deck-overhang loads do 

introduce lateral bending stresses into the flanges in these regions, which can be calculated and 

used to check the above equations in a manner similar to that illustrated later on in this example 

for Section 1. Wind load, when considered for the construction case, also introduces lateral 

bending into the flanges.   

 

When applying Eqs. 6.10.3.2.1-1, 6.10.3.2.1-2 and 6.10.3.2.2-1 in these regions, the bottom 

flange would be considered to be a discretely braced compression flange and the top flange 

would be considered to be a discretely braced tension flange for all constructibility checks to be 

made before the concrete deck has hardened or is made composite.  The nominal flexural 

resistance of the bottom flange, Fnc, for checking Eq. 6.10.3.2.1-2 would be calculated in a 

manner similar to that demonstrated below for Section 1. For the sake of brevity, the application 
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of Eqs. 6.10.3.2.1-1, 6.10.3.2.1-2 and 6.10.3.2.2-1 to the construction case for the unbraced 

lengths adjacent to Section 2 will not be shown in this example.  

 

Note that for sections with slender webs, web bend-buckling should always be checked in 

regions of negative flexure according to Eq. 6.10.3.2.1-3 for critical stages of construction.  In 

this example, however, Section 2 is not a slender-web section. 

 

8.2.2.2 Shear (Article 6.10.3.3) 

The required shear capacity during construction is specified by Eq. 6.10.3.3-1. The unstiffened 

shear strength of the beam was previously demonstrated to be sufficient to resist the applied 

shear under the strength load combination. Therefore, the section will have sufficient strength for 

the constuctibility check. 

v crV V  Eq. (6.10.3.3-1) 

8.2.3 Service Limit State (Article 6.10.4) 

Permanent deformations are controlled under the service limit state. Service limit state checks for 

steel I-beam bridges are specified in Article 6.10.4. 

Permanent deformations that may negatively impact the rideability of the structure are controlled 

by limiting the stresses in the section under expected severe traffic loadings. Specifically, under 

the Service II load combination, the top flange of composite sections must satisfy  

0.95f h yff R F  Eq. (6.10.4.2.2-1) 

Because the bottom flange is discretely braced, lateral bending stresses are included in the design 

requirements for the bottom flange, which are given by Eq. 6.10.4.2.2-2 as follows: 

0.95
2

l
f h yf

f
f R F   Eq. (6.10.4.2.2-2) 

At the service limit state, the lateral force effects due to wind loads and deck overhang loads are 

not considered. Therefore, for bridges with straight, non-skewed beams such as the case in the 

present design example the lateral bending stresses are taken equal to zero and Eq. 6.10.4.2.2-2 

reduces to Eq. 6.10.4.2.2-1. 

For sections satisfying the requirements of Article B6.2, Appendix B6 permits the redistribution 

of moment at the service limit state before evaluating the above equations.  As demonstrated 

previously, Section 2 satisfies the requirements of Article B6.2.  Article B6.5.2 specifies the 

effective plastic moment to be used at the service limit state as follows: 

2.90 2.3 0.35 0.39
fc yc fc yc

pe n n

fc fc fc fc

b F b FD D
M M M

t E b t E b

 
     
  

 Eq. (B6.5.2-1) 



 47 

15.8 50 36.56 15.8 50 36.56
2.90 2.3 0.35 0.39 4737 4737

1.22 29000 15.8 1.22 29000 15.8
peM

 
     
 

 

6341 4737peM    

Mpe = 4,737 k-ft 

Mpe = 4,737 k-ft > Mu = 4,078 k-ft  

Because the effective plastic moment is greater than the maximum factored moment for the 

Service II load combination, it is assumed that there is no moment redistribution at this limit 

state. The elastic stresses under the Service II load combination are therefore computed using the 

following equation assuming no moment redistribution: 

 1 2 1.3DC DC DW LL IM
f

nc lt st

M M M M
f

S S S




    

For members with shear connectors provided throughout their entire length that also satisfy the 

provisions of Article 6.10.1.7, and where the maximum longitudinal tensile stresses in the 

concrete deck at the section under consideration caused by the Service II loads are smaller than 

2fr, Article 6.10.4.2.1 permits the concrete deck to also be considered effective for negative 

flexure when computing flexural stresses acting on the composite section at the service limit 

state.  fr is the modulus of rupture of the concrete specified in Article 6.10.1.7. 

 

Separate calculations (not shown) were made to ensure that the minimum longitudinal 

reinforcement (determined previously) satisfied the provisions of Article 6.10.1.7 for both the 

factored construction loads and the Service II loads.  Check the maximum longitudinal tensile 

stresses in the concrete deck under the Service II loads at Section 2.  The longitudinal concrete 

deck stress is to be determined as specified in Article 6.10.1.1.1d; that is, using the short-term 

modular ratio n = 8.  Note that only DC2, DW and LL+IM are assumed to cause stress in the 

concrete deck.  

 

ksi48.00.424.0f24.0f '
cr   

 

        
ksi  0.96)48.0(22fksi 34.1

)8(371,40

1230.13723,13.12160.1263-1.01.0
f rdeck 


  

 

Therefore, since the concrete deck may not be considered effective in tension at Section 2, the 

Service II flexural stresses will be computed using the section consisting of the steel girder plus 

the longitudinal reinforcement only for loads applied to the composite section. 

The stress in the compression flange is thus computed as follows. 

        
ksi 06.35

959

1217231.3

959

12216263

856.4

121359
ff 


  
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Then comparing this stress to the allowable stress shows that Equation 6.10.4.2.2-1 is not 

satisfied. 

ff  = 53.06 ksi > 0.95RhFyf = 0.95(1.0)(50) = 47.5 ksi (NOT satisfied)** 

**Revision Note (2015).  The check of the deck stress in tension at the service limit state against 

the limit of 2fr above was not in the AASHTO LFRD Specifications when this design example 

was originally written.  However, in accordance with the current AASHTO LRFD (7
th

 Edition), 

the deck stress in tension is to be checked against the limit of 2fr at the service limit state.  As 

shown above because the 2fr limit is exceeded, the concrete deck may not be considered effective 

in tension at Section 2 at the service limit state when checking the flange stresses.  The check of 

Equation 6.10.4.2.2-1 above shows that the factored stress exceeds the factored resistance by 

nearly 12 percent.  This exceedance is NOT acceptable in design.  Calculations not presented 

herein show that increasing the beam section to a W40x249 provides a cross-section that would 

satisfy this design check as well as the other design checks illustrated in this example.   

However, for the sake of continuity of this Steel Bridge Design Handbook design example as it 

relates to this current and past revisions, the W40x215 beam section is not changed, and all 

calculations herein are illustrated using this beam section.  This particular design check and 

specification change also shows that the designer needs to be aware of specification changes and 

how they may affect a design and perhaps future load ratings. 

Similarly, the computation of the stress in the tension flange is computed as follows. 

        
ksi 26.34

1,347

1217231.3

1,347

12216263

856.4

121359
ff 


  

Thus, it is demonstrated that Equation 6.10.4.2.2-1 is satisfied for the tension flange. 

ff  = 43.26 ksi ≤ 0.95RhFyf = 0.95(1.0)(50) = 47.5 ksi (satisfied) 

The compression flange stress at service loads is also limited to the elastic bend-buckling 

resistance of the web by Equation 6.10.4.2.2-4. 

c crwf F  Eq. (6.10.4.2.2-4) 

where: fc =  compression-flange stress at the section under consideration due to the 

Service II loads calculated without consideration of flange lateral bending 

    

 Fcrw =  nominal elastic bend-buckling resistance for webs with or without 

longitudinal stiffeners, as applicable, determined as specified in Article 

6.10.1.9 

 

From Article 6.10.1.9, the bend-buckling resistance for the web is determined using the 

following equation. 
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





















0.7

F
 ,FRmin

t

D

0.9Ek
F

yw

ych2

w

crw  Eq. (6.10.1.9.1-1) 

where: k = bend-buckling coefficient =
 

2

9

/cD D
 Eq. (6.10.1.9.1-2) 

As specified in Article D6.3.1, the depth of web in compression for composite sections in 

negative flexure where the concrete deck is not considered to be effective in tension at the 

service limit state is to be calculated for the section consisting of the steel girder plus the 

longitudinal reinforcement. 

                  Dc = 22.78 – 1.22 = 21.56 in. 

Therefore, k and Fcrw are computed as follows. 

 
88.25

36.5621.56

9
k

2
  

ksi50F Rksi5.213

0.65

36.56

)(25.88)0.9(29,000
F ych2crw 










  

It can then be demonstrated that Eq. 6.10.4.2.2-4 is satisfied as shown below. 

fc = |-53.06| ksi > Fcrw = 50.0 ksi (NOT satisfied)** 

**Revision Note (2015).  The web bend buckling factor resistance is exceeded by 6 percent, 

which is considered to be unacceptable .  The reader should refer to the discussion earlier in this 

section regarding a change in the AASHTO LRFD specifications regarding the effective deck 

assumption and the cross-section properties used for computing the factored stress.  In a true 

design, a larger beam section should be considered so that this check is satisfied.  However, for 

the sake of continuity of this Steel Bridge Design Handbook design example as it relates to this 

current and past revisions, the W40x215 beam section is not changed, and all calculations herein 

are illustrated using this beam section.   

8.2.4 Fatigue and Fracture Limit State (Article 6.10.5) 

The fatigue and fracture limit state incorporates three distinctive checks: fatigue resistance of 

details (Article 6.10.5.1), which includes provisions for load-induced fatigue and distortion-

induced fatigue, fracture toughness (Article 6.10.5.2), and a special fatigue requirement for webs 

(Article 6.10.5.3). The first requirement involves the assessment of the fatigue resistance of 

details as specified in Article 6.6.1 using the appropriate fatigue load combination specified in 

Table 3.4.1-1 and the fatigue live load specified in Article 3.6.1.4. The fracture toughness 

requirements in Article 6.10.5.2 are essentially material requirements. The special fatigue 
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requirement for the web controls the elastic flexing of the web to prevent fatigue cracking. The 

factored fatigue load for this check is to be taken as the Fatigue I load combination specified in 

Table 3.4.1-1. 

8.2.4.1 Load Induced Fatigue (Article 6.6.1.2) 

Article 6.10.5.1 requires that fatigue be investigated in accordance with Article 6.6.1. Article 

6.6.1 requires that the live load stress range be less than the nominal fatigue resistance. The 

nominal fatigue resistance, (ΔF)n,  varies based on the fatigue detail category and is computed 

using Eq. 6.6.1.2.5-1 for the Fatigue I load combination and infinite fatigue life; or Eq. 6.6.1.2.5-

2 for Fatigue II load combination and finite fatigue life. 

   THn ΔFΔF   Eq. (6.6.1.2.5-1) 

 
3

1

n
N

A
ΔF 








   Eq. (6.6.1.2.5-2) 

where: N = (365)(75)n(ADTT)SL  Eq. (6.6.1.2.5-3) 

 A = constant from Table 6.6.1.2.5-1  

 n = number of stress range cycles per truck passage taken from Table 

6.6.1.2.5-2  

 (ADTT)SL = single-lane ADTT as specified in Article 3.6.1.4  

 (F)TH = constant-amplitude fatigue threshold taken from Table 6.6.1.2.5-3  

The fatigue resistance  of the base metal at the weld joining the cross-frame connection plate to 

the flanges of the beam at the cross-frame located 15 feet from the pier is evaluated below. From 

Table 6.6.1.2.3-1, it is determined that this detail is classified as a fatigue Detail Category C′. 

The constant-amplitude fatigue threshold, (F)TH,  for a Category C′ detail is 12.0 ksi (see Table 

6.6.1.2.5-3).  

For this example, an (ADTT)SL of 800 trucks per day is assumed.   Since this (ADTT)SL exceeds 

the value of 745 trucks per day specified in Table 6.6.1.2.3-2 for a Category C′ detail, the 

nominal fatigue resistance for this particular detail is to be determined for the Fatigue I load 

combination and infinite fatigue life using Eq. 6.6.1.2.5-1.  Therefore: 

    ksi 12.00 THn FF  

The applied stress range is taken as the stress range resulting from the fatigue loading (shown in 

Figure 9), with a dynamic load allowance of 15 percent applied, and distributed laterally by the 

previously calculated distribution factor for fatigue.  

According to Article 6.6.1.2.1, for flexural members with shear connectors provided throughout 

their entire length and with concrete deck reinforcement satisfying the provisions of Article 
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6.10.1.7, flexural stresses and stress ranges applied to the composite section at the fatigue limit 

state at all sections in the member may be computed assuming the concrete deck to be effective 

for both positive and negative flexure.  Shear connectors are assumed provided along the entire 

length of the girder in this example.  Separate computations (not shown) were made to ensure 

that the longitudinal concrete deck reinforcement satisfies the provisions of Article 6.10.1.7.  

Therefore, the concrete deck will be assumed effective in computing all dead load and live load 

stresses and live load stress ranges applied to the composite section in the subsequent fatigue 

calculations. 

 

The provisions of Article 6.6.1.2 apply only to details subject to a net applied tensile stress.  

According to Article 6.6.1.2.1, in regions where the unfactored permanent loads produce 

compression, fatigue is to be considered only if this compressive stress is less than the maximum 

tensile stress resulting from the Fatigue I load combination specified in Table 3.4.1-1. Note that 

the live-load stress due to the passage of the fatigue load is considered to be that of the heaviest 

truck expected to cross the bridge in 75 years.  At this location, the unfactored permanent loads 

produce tension at the top of the girder and compression at the bottom of the girder.  In this 

example, the effect of the future wearing surface is conservatively ignored when determining if a 

detail is subject to a net applied tensile stress. 

At the bottom of the top flange the applied stress range is computed as follows: 

   
      











 





40,371

22.152.412762

40,371

22.152.412178
50.1Δfγ  

(f) = 0.65 ksi ≤ (F)n = 12.00 ksi  (satisfied) 

At the top of the bottom flange: 

        ksi11.5
700,16

)22.150.19)(12)(389(
f 1DC 


  

 

        ksi80.0
925,29

)22.198.27)(12)(75(
f 2DC 


  

 

        Ʃ = -5.11 + -0.80 = -5.91 ksi 

  

ksi64.2
371,40

)22.148.34)(12)(178(5.1
f IMLL 


  

ksi64.2ksi91.5      fatigue does not need to be checked 

Therefore, it is demonstrated that the applied stress range in the top and bottom flanges is 

acceptable. 
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8.2.4.2 Distortion Induced Fatigue (Article 6.6.1.3) 

A positive connection is to be provided for all transverse connection-plate details to both the top 

and bottom flanges to prevent distortion induced fatigue.  

8.2.4.3 Fracture (Article 6.6.2) 

The appropriate Charpy V-notch fracture toughness, found in Table 6.6.2-2, must be specified 

for main load-carrying components subjected to tensile stress under the Strength I load 

combination. 

8.2.4.4 Special Fatigue Requirement for Webs (Article 6.10.5.3) 

Article 6.10.5.3 requires that the shear force applied due to the unfactored permanent loads plus 

the factored fatigue loading (i.e. the Fatigue I load combination) must be less than the shear-

buckling resistance of interior panels of stiffened webs.  

u crV V  Eq. (6.10.5.3-1) 

However, designs utilizing unstiffened webs at the strength limit state, as is the case here, 

automatically satisfy this criterion. Thus, Eq. 6.10.5.3-1 is not explicitly evaluated herein. 

8.3 Exterior Girder Beam Check: Section 1 

8.3.1 Strength Limit State 

8.3.1.1 Flexure (Article 6.10.6.2) 

For compact sections in positive bending, Equation 6.10.7.1.1-1 must be satisfied at the strength 

limit state.  

1

3
u l xt f nM f S M   (6.10.7.1.1-1) 

8.3.1.1.1 Flexural Resistance (6.10.7.1) 

To calculate the flexural resistance at the strength limit state, the classification of the section 

must first be determined. The following requirements must be satisfied for a section in positive 

bending to qualify as compact: 

Fy = 50 ksi   70 ksi (satisfied) 

36.56
56.25 150

0.65w

D

t
    (satisfied) 

2 2(0) 29,000
0 3.76 3.76 90.55

0.4375 50

cp

w yc

D E

t F
      Eq (10.6.2.2-1) (satisfied) 
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Therefore, the section is compact, and the nominal flexural resistance is based on Article 

6.10.7.1.2, where the moment capacity of beams satisfying Dp≤0.1Dt is given by Eq. 6.10.7.1.2-1 

and by Eq. 6.10.7.1.2-2. for those beams violating this limit. 

Mn = Mp Eq. (6.10.7.1.2-1) 

1.07 0.7
p

n p

t

D
M M

D

 
  

 
 Eq. (6.10.7.1.2-2) 

Dp is the distance from the top of the concrete deck to the neutral axis of the composite section at 

the plastic moment and is computed as follows. The plastic neutral axis was determined 

previously to be located 0.22 in. from the top of the top flange.  Therefore:. 

Dp = 8 + 2 – 1.22 + 0.22 = 9.00 in. 

The total depth of the composite beam, Dt, is equal to the following. 

Dt = 8 + 2 + 36.56 + 1.22 = 47.78 in. 

Therefore, Dp is greater than 10% of Dt as computed below and the nominal flexural capacity is 

therefore determined using Equation 6.10.7.1.2-2. 

Dp = 9.00 > 0.1Dt = 0.1(47.78) = 4.78 (not satisfied) 

1.07 0.7
p

n p

t

D
M M

D

 
  

 
 Eq. (6.10.7.1.2-2) 

ft-k 8475,
78.47

00.9
7.007.16165Mn 








  

Since the span under consideration and all adjacent interior-pier sections satisfy the requirements 

of Article B6.2 (as determined previously), Mn is not limited to 1.3RhMy according to Eq. 

6.10.7.1.2-3 in this case. 

 

8.3.1.1.2 Factored Positive Bending Moment 

In order to determine if the above determined moment resistance of 5,784 k-ft is adequate, the 

maximum value of  (Mu + flSxt/3) must be determined, according to Eq. 6.10.7.1.1-2. Therefore 

the value of  (Mu + flSxt/3)  resulting from each of the three strength load combinations 

applicable to this design example is now computed. As previously discussed during the 

evaluation of the negative bending resistance of the beam, the load factors for each of the 

applicable load combinations are as follows: 

Strength I = 1.25DC + 1.5DW + 1.75(LL+I) 

Strength III = 1.25DC + 1.5DW + 1.4WS 
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Strength V = 1.25DC + 1.5DW + 1.35(LL+I) + 0.4WS 

The location of the maximum positive moment is at 36 ft from the abutments. The DC and DW 

moments at this location are given in Table 2 and are equal to the following: 

DC = 761 +147 = 908 k-ft 

DW = 121 k-ft 

From Table 3, the controlling LL+I moment is 1664 k-ft. 

LL+I = 1664 k-ft 

The unfactored moment (flSx) due to wind load loads was previously determined to be 1.828 k-ft. 

Mw  = 1.828 k-ft 

Consideration should also be given to increasing the wind load moments to account for second-

order force effects, as specified in Article 6.10.1.6, through application of the amplification 

factor. However, no amplification is required for tension flanges and the compression flange is 

continuously braced in positive bending, so the amplification factor is negligible in this case. 

Lateral bending stresses due to the wind loading are then determined by dividing Mw by the 

section modulus of the bottom flange. 

2

(1.828)12
0.432ksi

(15.8) (1.22) / 6

w
l

M
f

S
    

As specified in Article 6.10.1.6, the flange lateral bending stresses must not exceed 60% of the 

flange yield strength. Thus, for this example fl must be less than or equal to 30 ksi, which is 

easily satisfied by the above lateral bending stress. The maximum lateral bending stress is 

obtained by multiplying fl by the maximum wind load factor of 1.4, which is less than the 

allowable stress of 30 ksi. 

(1.4)(0.432) = 0.6048 ksi < 30 ksi (satisfied) 

The controlling strength limit state can now be determined based on the above information. For 

the Strength I load combination, the design moments are as follows: 

Mu =1.25(908) + 1.5(121) + 1.75(1664) =4,229 k-ft 

1

3
u xcM f S = 4,229 + 0 (wind loads not considered) 

1

3
u xcM f S = 4,229 k-ft (governs) 



 55 

For the Strength III load combination, wind load is incorporated and the design moments are 

equal to the following: 

Mu = 1.25(908) + 1.5(121) = 1,317 k-ft 

1

3
u xcM f S = 1317 + (1/3)(0.432)(1.4)(1,070)(1/12) 

1

3
u xcM f S = 1,335 k-ft 

Lastly, the design moments computed using the Strength V load combination are equal to the 

following: 

Mu = 1.25(908) + 1.5(121) + 1.35(1664) = 3,563 k-ft 

1

3
u xcM f S = 3,563 + (1/3)(0.432)(0.4)(1070)(1/12) 

1

3
u xcM f S = 3,568 k-ft 

Reviewing the factored moments for each load combination computed above, it is determined 

that the Strength I moments govern for this example and that the factored design moment is 

equal to 4,229 k-ft. 

8.3.1.1.3 Redistribution Moment 

The redistribution moment must then be added to the above elastic moments. It was previously 

determined that the redistribution moment at the pier at the (governing) Strength I load 

combination is equal to 630 k-ft. Because the redistribution moment varies linearly from zero at 

the end-supports to a maximum at the interior pier, the redistribution moment at 36 ft from the 

abutment is simply computed as follows. 

Mrd= 
36

90

 
 
 

(630) = 0.4(630) = 252 k-ft. 

The total design moment is then the sum of the redistribution moment and the elastic moment. 

Mu = 4,229 + 252 = 4,481 k-ft. 

8.3.1.1.4 Flexural Capacity Check 

The design moment of 4,481 k-ft is then compared to the factored resistance of 5,784 k-ft, which 

shows that the positive bending capacity of the beam is sufficient. 

Mu = 4,481 k-ft ≤ fMn = (1.0)(5,784) = 5,784 k-ft (satisfied) 
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8.3.1.1.5 Ductility Requirement 

Sections in positive bending are also required to satisfy Eq. 6.10.7.3-1, which is a ductility 

requirement intended to prevent premature crushing of the concrete slab. 

Dp ≤ 0.42Dt (6.10.7.3-1) 

Dp = 9.00 in. ≤ 0.42(47.78) = 20.07 in. (satisfied) 

8.3.1.2 Shear (Article 6.10.3.3) 

The shear requirements at the strength limit state were previously shown to be satisfied. 

8.3.2 Constructibility (Article 6.10.3) 

8.3.2.1.1 Deck Placement Analysis  

In regions of positive flexure, temporary moments that the non-composite girders experience 

during the casting of the deck can sometimes be significantly higher than those which may be 

calculated based on the final conditions of the system. An analysis of the moments during each 

casting sequence must be conducted to determine the maximum moments in the structure acting 

on the non-composite girders in those regions. The potential for uplift during the deck casting 

should also be investigated.  Wind load should not be considered in conjunction with the casting 

of the deck. 

Figure 11 depicts the casting sequence assumed in this design example. As required in Article 

6.10.3.4, the loads are applied to the appropriate composite sections during each casting 

sequence. For example, it is assumed during Cast One that all sections of the girder are non-

composite. Similarly, the dead load moments due to the steel components are also based on the 

non-composite section properties. However, to determine the distribution of moments due to 

Cast Two, the short-term composite section properties are used in the regions of the girders that 

were previously cast in Cast One, while the non-composite section properties are used in the 

region of the girder where concrete is cast in Cast Two. The moments used in the evaluation of 

the constructibility requirements are then taken as the maximum moments that occur on the non-

composite girder during any stage of construction, i.e., the sum of the moments due to the steel 

dead load and the first casting phase or the sum of the moments due to the steel dead load and 

both casting phases. Additionally, while not required, the dead load moment resulting from 

applying all dead load at once (i.e. without consideration of the sequential placement) to the non-

composite section (DC1) is also considered. 
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Figure 11  Deck Placement Sequence 

 

The results of the deck placement analysis are shown in Table 12 where the maximum dead load 

moments in the positive bending region acting on the non-composite section is indicated by bold 

text. Note that because of the deck-casting sequence chosen for this particular example, the 

maximum positive bending moment acting on the non-composite section is not caused by the 

sequential deck placement (i.e. Cast One).  Therefore, the DC1 moment of 761 kip-ft at Section 

1, ignoring the effect of the sequential deck placement, will be used in the subsequent 

constructibility design checks. 

Table 12  Moments from Deck Placement Analysis (kip-ft) 

 

Because the shear requirements during construction are automatically satisfied for beams with 

unstiffened webs, only the evaluation of the flexural requirements is presented herein.  

Article 6.10.1.6 states that when checking the flexural resistance based on lateral torsional 

buckling, fbu is to be taken as the largest compressive stress in the flange under consideration, 

without consideration of flange lateral bending, throughout the unbraced length. When checking 

the flexural resistance based on yielding, flange local buckling or web bend buckling, fbu is to be 

taken as the stress at the section under consideration. The maximum factored flexural stress due 

to the deck casting sequence is calculated below. 
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Because the section modulus with respect to the top flange is the same as the section modulus 

with respect to the bottom flange at this phase of construction, fbu is the same for both flanges 

and is equal to the following: 

     

      For Strength I: 

ksi33.13
4.856

)12)(761)(25.1(0.1
fbu   

      For the Special Load Combination (Article 3.4.1.2): 

ksi93.14
4.856

)12)(761)(4.1(0.1
fbu   

8.3.2.1.2 Deck Overhang Loads 

The loads applied to the deck overhang brackets induce torsion on the fascia girders, which 

introduces flange lateral bending stresses. This section illustrates the recommended approach to 

estimate these lateral bending stresses.  

The deck overhang bracket configuration assumed in this example is shown in Figure 12. 

Typically the brackets are spaced between 3 and 4 feet, but the assumption is made here that the 

loads are uniformly distributed, except for the finishing machine. Half of the overhang weight is 

assume to be carried by the exterior girder, and the remaining half is carried by the overhang 

brackets. 

 

Figure 12  Deck Overhang Bracket Loads 

 

The following calculation determines the weight of the deck overhang acting on the overhang 

brackets. 
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   
 
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15.8/2

12
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3.5

2
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1500.5P 








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


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




























  

The following is a list of typical construction loads assumed to act on the system before the 

concrete slab gains strength. The magnitudes of load listed represent only the portion of these 

loads that are assumed to be applied to the overhang brackets. Note that the finishing machine 

load shown represents one-half of the finishing machine truss weight. 

 Overhang Deck Forms: P = 40 lb/ft 

 Screed Rail:   P = 85 lb/ft 

 Railing:   P = 25 lb/ft 

 Walkway:   P = 125 lb/ft 

 Finishing Machine:  P = 3,000 lb 

The lateral force acting on the beam section due to the overhang loading is computed as follows: 

tanF P   

where: α = 45 degrees 

F = P tan 45 

F = P 

The equations provided in Article C6.10.3.4 to determine the lateral bending moment can be 

employed in the absence of a more refined method. From the article, the following equation 

determines the lateral bending moment for a uniformly distributed lateral bracket force: 

2

12

l b
l

F L
M   

where: Ml =  lateral bending moment in the top flange due to the eccentric loadings 

from the form brackets 

 Fl =  statically equivalent uniformly distributed lateral force due to the 

factored loads 

 Lb =  The unbraced length of the section under consideration = 15 ft (at the 

location of maximum negative bending) 

Thus, the lateral moment due to the component (overhang) dead load is equal to the following. 
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  
kips-ft 53.51

12

300.207
M

2

l   

The flange lateral bending stresses due to the component dead load are then determined by 

dividing the lateral bending moment by the section moduli of the flanges, which in this case are 

equal for the top and bottom flanges. 

2

15.53(12)
3.67

1.22(15.8) / 6
l

M
f ksi

S
    

Similarly, the lateral moment and lateral bending stress due to the construction dead loads are 

computed as follows. 

2(.275)(30)
20.63k-ft

12
lM    

2

20.63(12)
4.88 ksi

1.22(15.8) / 6
l

M
f

S
     

Note that the lateral moment contribution due to the construction loads and component loads is 

separated due to the alternative load factors applied to the different load types.  

The equation which estimates the lateral bending moment due to a concentrated lateral force at 

the middle of the unbraced length is: 

8

l b
l

PL
M   

where: Pl =  statically equivalent concentrated force placed at the middle of the 

unbraced length 

The unfactored lateral bending moment and lateral bending stress due to the finishing machine 

are then equal to the following. 

(3)(30)
11.25k-ft

8
lM    

2

11.25(12)
2.66 ksi

1.22(15.8) / 6
l

M
f

S
     

For simplicity, the largest values of fl within the unbraced length (computed above) will be used 

in the design checks, i.e., the maximum value of fl within the unbraced length is conservatively 

assumed to be the stress level throughout the unbraced length. 

Article 6.10.1.6 specifies the process for determining the lateral bending stress. The first-order 

lateral bending stress may be used if the following limit is satisfied. 
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1.2 b b
b p

bm

yc

C R
L L

f
F

  Eq. (6.10.1.6-2) 

where: Lp =  limiting unbraced length from Article 6.10.8.2.3 of the Specifications 

 Cb =  moment gradient modifier 

 Rb =  web load-shedding factor 

 Fyc =  yield strength of the compression flange 

Cb is the moment gradient modifier specified in Article 6.10.8.2.3.  Separate calculations show 

that fmid/f2 > 1 in the unbraced length under consideration.  Therefore, Cb must be taken equal to 

1.0.   

 

According to Article 6.10.1.10.2, the web load-shedding factor, Rb, is to be taken as 1.0 when 

checking constructibility.  

Calculate Lp: 

      Dc = 19.50 – 1.22 = 18.28 in. 

  
 

.in15.4

)22.1(8.15

)65.0(28.18

3

1
112

8.15

tb

tD

3

1
112

b
r

fcfc
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t 




























  

  .in0.100
50

000,29
)15.4(0.1

F

E
r0.1L

yc
tp                                 Eq. (6.10.8.2.3-4) 

Thus, Eq. 6.10.1.6-2 is evaluated as follows. 

.in6.219
5093.14

)0.1)(0.1(
)0.100(2.1.in360Lb 


  

Because Eq. 6.10.1.6-2 is not satisfied, Article 6.10.1.6 requires that second-order elastic 

compression-flange lateral bending stresses be determined.  The second-order compression-

flange lateral bending stresses may be determined by amplifying first-order values (i.e. f1) as 

follows: 

 

 11

cr

bu
ff

F

f
1

85.0
f  





















   Eq. (6.10.1.6-4) 
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or: 11 ff)AF(f    

 

where AF is the amplification factor and Fcr is the elastic lateral torsional buckling stress for the 

flange under consideration specified in Article 6.10.8.2.3 determined as: 

 

 
2

t

b

2
bb

cr

r

L

ERC
F
















   Eq. (6.10.8.2.3-8) 

 ksi04.38

15.4

)12(30

)000,29()0.1(0.1
F

2

2

cr 











  

 

Note that the calculated value of Fcr for use in Eq. 6.10.1.6-4 is not limited to RbRhFyc. 

 

The amplification factor is then determined as follows: 

 

 For Strength I: 

 

 ok0.131.1

04.38

33.13
1

85.0
AF 













 


  

 

 For the Special Load Combination specified in Article 3.4.2.1: 

 

 ok0.140.1

04.38

93.14
1

85.0
AF 













 


  

 

AF is taken equal to 1.0 for tension flanges. 

  

8.3.2.1.3 Strength I 

The lateral bending stresses for the Strength I load combination are computed as follows.  As 

specified in Article 3.4.2.1, the load factor for construction loads and any associated dynamic 

effects is not to be taken less than 1.5 for the Strength I load combination. 

Dead loads: 

P = [1.25(207) + 1.5(40 + 85 + 25 + 125)] = 671.3 lbs/ft. 

F = Fl = P = 671.3 lbs/ft. 
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  
ftkip35.50

12

306713.0

12
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M

22
b 


  

The flange lateral bending stresses due to the component dead load are then determined by 

dividing the lateral bending moment by the section moduli of the flanges, which in this case are 

equal for the top and bottom flanges. 

ksi90.11
6)8.15(22.1

)12(35.50

S

M
f

2





  

Finishing machine load: 

P = [1.5(3,000)] = 4,500 lbs. 

F = Pl = P = 4,500 lbs. 

  
ftkip88.16

8

305.4

8

LP
M b  

  

ksi99.3
6)8.15(22.1

)12(88.16

S

M
f

2





  

Total: 

Top flange:    fl = (11.90 + 3.99)(AF) = (11.90 + 3.99)(1.31) = 20.82 ksi 

Bot. flange:    fl = (11.90 + 3.99)(AF) = (11.90 + 3.99)(1.0) = 15.89 ksi 

8.3.2.1.4 Special Load Combination (Article 3.4.2.1) 

The computation of the lateral bending stresses for the special load combination specified in 

Article 3.4.2.1 is demonstrated below.  

Dead loads: 

   ft/lbs8.6741252585402074.1P   

ft/lbs8.674PFF    

  
ftk61.50

12

306748.0

12

LF
M

22
b 


  

ksi96.11
6)8.15(22.1

)12(61.50

S

M
f

2





  
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Finishing machine load: 

P = [1.4(3,000)] = 4,200 lbs. 

F = Pl = P = 4,200 lbs. 

  
ftkip75.15

8

302.4

8

LP
M b  

  

ksi72.3
6)8.15(22.1

)12(75.15

S

M
f

2





  

Total: 

Top flange:    fl = (11.96 + 3.72)(AF) = (11.96 + 3.72)(1.40) = 21.95 ksi 

Bot. flange:    fl = (11.96 + 3.72)(AF) = (11.96 + 3.72)(1.0) = 15.68 ksi 

According to Article 6.10.1.6, the lateral bending stresses (after amplification) must be less than 

60 percent of the yield stress of the flange under consideration. It is shown above that the lateral 

bending stresses are highest in the top flange under the Special Load Combination, and highest in 

the bottom flange under the Strength I load combination. Thus, evaluation of Eq. 6.10.1.6-1 for 

the Strength I load combination is shown below. 

0.6l yf F  (6.10.1.6-1) 

Top flange:         fl = 21.95 ksi < 0.6Fyf = 30 ksi (satisfied) 

Bottom flange:   f = 15.89 ksi < 0.6Fyf = 30 ksi                                  (satisfied) 

8.3.2.2 Flexure (Article 6.10.3.2) 

During construction, both the compression and tension flanges are discretely braced. Therefore, 

Article 6.10.3.2 requires the non-composite section to satisfy Eqs. 6.10.3.2.1-1, 6.10.3.2.1-2, and 

6.10.3.2.1-3, which ensure the flange stress is limited to the yield stress, the section has sufficient 

strength under the lateral torsional and flange local buckling limit states, and web bend buckling 

does not occur during construction, respectively.  

First, determine if the non-composite section satisfies the noncompact slenderness limit as 

follows: 

2
5.7c

w yc

D E

t F
  Eq. (6.10.6.2.3-1) 

 
50

000,29
7.5

65.0

28.182
  
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56.25 < 137.27  (satisfied)  

The section is nonslender (i.e. the section has a compact or noncompact web).  Therefore, Eq. 

6.10.3.2.1-3 (web bend-buckling) need not be checked. 

8.3.2.2.1 Compression Flange: 

Flange nominal yielding:   

fbu + fl ≤ ϕfRhFyc   Eq. (6.10.3.2.1-1) 

Since the section under consideration is homogeneous, the hybrid factor, Rh, is 1.0, as stated in 

Article 6.10.1.10.1. Thus, Eq. 6.10.3.2.1-1 is evaluated as follows: 

         For Strength I: 

)50)(0.1)(0.1(82.2033.13   

ksi50ksi15.34   (satisfied) 

         For the Special Load Combination (Article 3.4.2.1): 

)50)(0.1)(0.1(95.2193.14   

ksi50ksi88.36   (satisfied) 

Flexural Resistance:   

1

3
bu l f ncf f F   Eq. (6.10.3.2.1-2) 

As specified in Article 6.10.3.2.1, the nominal flexural resistance of the compression flange, Fnc, 

is to be determined as specified in Article 6.10.8.2.  For sections in straight I-girder bridges with 

compact or noncompact webs, the lateral torsional buckling resistance may be taken as Mnc 

determined as specified in Article A6.3.3 (Appendix A6) divided by the elastic section modulus 

about the major axis of the section to the compression flange, Sxc.   As mentioned in Article 

C6.10.3.2.1, this may be useful for sections in bridges with compact or noncompact webs having 

larger unbraced lengths, if additional lateral torsional buckling resistance is required beyond that 

calculated based on the provisions of Article 6.10.8.2.  However, for this particular example, the 

increased lateral torsional buckling resistance obtained by using the provisions of Article A6.3.3 

is not deemed to be necessary.  Thus, the provisions of Article 6.10.8.2.3 will be used to compute 

the lateral torsional buckling resistance for this check.   

First, calculate the local buckling resistance of the top (compression) flange. Determine the 

slenderness ratio of the top flange: 
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fc

fc
f

t2

b
    Eq. (6.10.8.2.2-3) 

 

 
 

5.6
22.12

8.15
f   

 

Determine the limiting slenderness ratio for a compact flange (alternatively, see Table 

C6.10.8.2.2-1): 

 

 
yc

pf
F

E
38.0   Eq. (6.10.8.2.2-4) 

 

 2.9
50

000,29
38.0pf   

 

Since f < pf, 

 

 ychbnc FRRF                                                                                        Eq. (6.10.8.2.2-1) 

 

As specified in Article 6.10.3.2.1, in computing Fnc for constructibility, the web load-shedding 

factor Rb is to be taken equal to 1.0 because the flange stress is always limited to the web bend-

buckling stress according to Eq. 6.10.3.2.1-3.  Therefore, 

 

   ksi00.50)50)(0.1)(0.1(F FLBnc   

 

For Strength I: 

 

         FLBncfbu Ff
3

1
f    

       

)satisfied(ksi00.50ksi27.20

ksi00.50)00.50(0.1F

ksi27.20ksi
3

82.20
ksi33.13f

3

1
f

FLBncf

bu





 

 

 

For the Special Load Combination specified in Article 3.4.2.1: 

 

       FLBncfbu Ff
3

1
f    
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       

)satisfied(ksi00.50ksi25.22

ksi00.50)00.50(0.1F

ksi25.22ksi
3

95.21
ksi93.14f

3

1
f

FLBncf

bu





 

 

 

Next, determine the lateral torsional buckling resistance of the top (compression) flange within 

the unbraced length under consideration.  The limiting unbraced length, Lp, was computed earlier 

to be 100.0 in. or 8.33 ft.  The effective radius of gyration for lateral torsional buckling, rt, for the 

non-composite section was also computed earlier to be 4.15 inches.  

 

Determine the limiting unbraced length, Lr: 

 

 
yr

tr
F

E
rL    Eq. (6.10.8.2.3-5) 

 

where: ywycyr FF7.0F   

 

 ksi50ksi0.35)50(7.0Fyr        ok 

 

Fyr must also not be less than 0.5Fyc = 0.5(50) = 25.0 ksi  ok. 

 

Therefore: ft27.31
0.35

000,29

12

)15.4(
Lr 


  

 

Since Lp = 8.33 feet < Lb = 30.0 feet < Lr = 31.27 feet, 

 

 ychbychb
pr

pb

ych

yr
bnc FRRFRR

LL

LL

FR

F
11CF 














































  Eq. (6.10.8.2.3-2) 

 

As discussed previously, since fmid/f2 > 1 in the unbraced length under consideration, the 

moment-gradient modifier, Cb, must be taken equal to 1.0.  Therefore, 

 

          ksi50)50)(0.1(0.1ksi83.35)50)(0.1(0.1
33.827.31

33.80.30

)50(0.1

0.35
110.1Fnc 




























   ok 

 

For Strength I: 

 

     LTBncfbu Ff
3

1
f    
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     

)satisfied(ksi83.35ksi27.20

ksi83.35)83.35(0.1F

ksi27.20ksi
3

82.20
ksi33.13f

3

1
f

LTBncf

bu





 

 

 

For the Special Load Combination specified in Article 3.4.2.1: 

 

      LTBncfbu Ff
3

1
f    

 

      

)satisfied(ksi83.35ksi25.22

ksi83.35)83.35(0.1F

ksi25.22ksi
3

95.21
ksi93.14f

3

1
f

LTBncf

bu





 

 

 

8.3.2.2.2 Tension Flange: 

Flange Nominal Yielding:  

bu l f h ytf f R F   Eq. (6.10.3.2.2-1) 

         For Strength I: 

)50)(0.1)(0.1(89.1533.13   

ksi50ksi22.29   (satisfied) 

         For the Special Load Combination (Article 3.4.2.1): 

)50)(0.1)(0.1(68.1593.14   

ksi50ksi61.30   (satisfied) 

8.3.3 Service Limit State (Article 6.10.4) 

Service limit state requirements for steel I-girder bridges are specified in Article 6.10.4. The 

evaluation of the positive bending region based on these requirements follows. 

8.3.3.1 Elastic Deformations (Article 6.10.4.1) 

Since the bridge is not designed to permit pedestrian traffic, the live load deflection will be 

limited to L/800. It is shown below that the maximum deflection along the span length using the 

service loads and a line girder approach is less than the L/800 limit. It is noted, however, that the 

application of this requirement is optional. 

 = 0.741 in. < L/800 = (90 x 12 ) / 800 = 1.35 in. 
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8.3.3.2 Permanent Deformations (Article 6.10.4.2) 

To control permanent deformations, flange stresses are limited according to Eq. 6.10.4.2.2-1 as 

follows:  

Ff ≤ 0.95RhFyf (6.10.4.2.2-1) 

where: 1 2 1.3DC DC DW LL IM
f

nc lt st

M M M M
f

S S S




    

The stress in the compression flange at the critical positive bending location is then computed as 

follows based on the moment values given in Tables 2 and 3. 

        
ksi 75.14

8932

1216643.1

2716

12121147

856.4

12761
f f 


  

Thus, the requirements of Eq. 6.10.4.2.2-1 are satisfied for the compression flange. 

   ksi 47.50500.195.0FR95.0ksi 75.41f yfhf   (satisfied) 

Similarly, the stress in the tension flange is as follows (f is equal to zero in this case). 

        
ksi 84.35

1171

1216643.1

1070

12121147

856.4

12761
f f 


  

Thus, the service requirements for the tension flange are also satisfied. 

   ksi 47.50500.195.0FR95.0ksi 84.35f yfhf   

For composite sections in positive flexure, since the web satisfies the requirement of Article 

6.10.2.1.1 (i.e. D/tw  150) such that longitudinal stiffeners are not required, web bend-buckling 

under the Service II load combination need not be checked at Section 1. Thus, all service limit 

state requirements are satisfied. 

 

8.3.4 Fatigue and Fracture Limit State (Article 6.10.5) 

8.3.4.1 Load Induced Fatigue (Article 6.6.1.2) 

The fatigue calculation procedures in the positive bending region are similar to those previously 

presented for the negative bending region. In this section the fatigue requirements are evaluated 

for the flange welds of a cross-frame connection plate located 30 feet from the abutment.  

From Table 6.6.1.2.3-1, it is determined that this detail is classified as a fatigue Detail Category 

C'. The constant-amplitude fatigue threshold, (F)TH, for a Category C' detail is 12 ksi (see Table 

6.6.1.2.5-3). 
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For this example, an (ADTT)SL of 800 trucks per day is assumed.   Since this (ADTT)SL exceeds 

the value of 745 trucks per day specified in Table 6.6.1.2.3-2 for a Category C′ detail, the 

nominal fatigue resistance for this particular detail is to be determined for the Fatigue I load 

combination and infinite fatigue life using Eq. 6.6.1.2.5-1.  Therefore: 

     ksi 12.00ΔFΔF THn   Eq. (6.6.1.2.5-1) 

Again, as discussed previously, the concrete deck will be assumed effective in computing all 

dead load and live load stresses and live load stress ranges applied to the composite section in the 

subsequent fatigue calculations. 

 

At this location, the unfactored permanent loads produce compression at the top of the girder and 

tension at the bottom of the girder.  In this example, the effect of the future wearing surface is 

conservatively ignored when determining if a detail is subject to a net applied tensile stress. 

Bottom of Top Flange: 

 

        ksi76.9
700,16

)22.150.19)(12)(743(
f 1DC 


  

 

        ksi57.0
925,29

)22.102.11)(12)(144(
f 2DC 


  

 

        Ʃ = -9.76 + -0.57 = -10.33 ksi 

  

ksi16.0
371,40

)22.152.4)(12(1075.1
f IMLL 


  

ksi16.0ksi33.10      fatigue does not need to be checked 

Top of Bottom Flange: 

   
      








 





40,371

22.148.3412107

40,371

22.148.3412519
50.1Δfγ  

(f) = 9.28 ksi ≤ (F)n = 12.00 ksi (satisfied) 

8.3.4.2 Special Fatigue Requirement for Webs (Article 6.10.5.3) 

As discussed previously, the following shear requirement must be satisfied at the fatigue limit 

state:  

v crV V  Eq. (6.10.5.3-1) 

However, this design utilizes an unstiffened web. Therefore, this limit does not control and is not 

explicitly evaluated. It has been demonstrated that the beam satisfies all the design requirements. 
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8.4 Deck Design 

The following section will illustrate the design of the deck by the Empirical Deck Design 

Method specified in Article 9.7.2. This design process recognizes the strength gained by complex 

in-plane membrane forces forming an internal arching effect (see Commentary to Article 

9.7.2.1). 

To be able to use the Empirical Deck Design Method, certain design conditions must first be 

met, as specified in Article 9.7.2.4. It is also specified that four layers of minimum isotropic 

reinforcement are to be provided as specified in Article 9.7.2.5.  

The Empirical Deck Design Method does not apply for the design of the deck overhang (see 

Article 9.7.2.2), which must be designed by traditional design methods. 

8.4.1 Effective Length (Article 9.7.2.3) 

For the Empirical Design Method, the effective length is taken equal to the distance between the 

flange tips, plus the flange overhang, taken as the distance from the extreme flange tip to the face 

of the web. The effective slab length must not exceed 13.5 feet. Figure 13 illustrates the effective 

slab length. 

    eff

12 0.4375
L 10.0 12.0 12.0 112.78in. 162.0in.

2

 
    

 
 (satisfied) 

 
Figure 13 Effective Slab Length for Deck Design   

 

8.4.2 Design Conditions (Article 9.7.2.4) 

Specific design conditions must be met in order to use the Empirical Deck Design Method. The 

deck must be fully cast-in-place and water cured. The deck must also maintain a uniform cross 

section over the entire span, except in the locations of the haunches located at the beam flanges. 

Concrete used for the deck must have a specified 28-day compressive strength greater than or 

equal to 4.0 ksi. The supporting beams must be made of either steel or concrete, and the deck 

must be made composite with the beams. A minimum of two shear connectors at 24.0 inch 
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centers must be provided in the negative moment regions of continuous steel superstructures. In 

addition the following requirement must be satisfied: 

eff

s

L
6.0 18.0

t
   

where: Leff =  effective slab length (Article 9.7.2.3) 

    

 ts =  the structural slab thickness, which is the total thickness minus integral 

wearing surface (Article 9.7.2.6), and must be greater than 7 inches 

 

st 8.0 in.  7.0 in.   (satisfied) 

112.78
14.10 18.0

8.0
   (satisfied) 

The deck overhang beyond the centerline of the outside beam must be at least 5.0 times the depth 

of the slab. 

  5.0 8.0 40.0in.  42.0 in.   (satisfied) 

The core depth of the slab must not be less than 4.0 inches. An illustration of the core depth is 

shown in Figure 14. 

Assuming a 2-inch cover on the top and a 1-inch cover on the bottom of the slab  

  5.0 in. > 4.0 in. (satisfied) 

 
Figure 14 Core Depth of the Concrete Slab 

 

8.4.3 Positive Flexure Reinforcement Requirements 

Article 9.7.2.5 specifies that four layers of isotropic reinforcement be provided. The 

reinforcement is to be provided in each face of the slab, with the outermost layers placed in the 

direction of the effective length. 
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8.4.3.1 Top Layer (Longitudinal and Transverse) 

The top layers are required to have a minimum reinforcement area of 0.18 in.
2
/ft., with the 

maximum spacing permitted to be 18 inches. 

Using No. 5 bars with a cross-sectional area of 0.31 in.
2
, the required spacing is: 

  

 
 

0.31 12
s 20.67in. 18 .0 max.

0.18
    

Use a 12-inch spacing to match that of the negative flexure region as determined below. 

8.4.3.2 Bottom Layer (Longitudinal and Transverse) 

Bottom layers of reinforcement are required to have a minimum reinforcement area of 0.27 

in.
2
/ft., with the maximum spacing permitted to be 18 inches.  

Using No. 5 bars with a cross-sectional area of 0.31 in.
2
, the required spacing is: 

  

 
 

0.31 12
s 13.78in. 18 .0 max.

0.27
    

Therefore, use a 12-inch spacing in both of the bottom layers to match that of the negative 

flexure region as determined below. 

8.4.4 Negative Flexure Reinforcement Requirements 

Article 6.10.1.7 states that in regions of negative flexure the total cross sectional area of the 

longitudinal reinforcement shall not be less than 1 percent of the total cross sectional area of the 

concrete deck. The slab thickness is taken to be 8.0 inches; therefore, the minimum area of 

longitudinal reinforcement is: 

Min. area of longitudinal reinforcement = (8.0)(0.01) = 0.08 in.
2
/in. 

The reinforcement used to satisfy this requirement shall have a minimum yield strength no less 

than 60 ksi and should have a size not exceeding No. 6 bars. The bars should be placed in two 

layers that are uniformly distributed across the deck width, with two thirds in the top layer and 

the remaining one third in the bottom layer. Bar spacing should not exceed 12.0 inches center-to-

center.  

8.4.4.1 Top Layer (Longitudinal) 

Minimum Areinf =   22
0.08 0.05in. /in.

3

 
 

 
 

Use No. 6 bars (A=0.44 in.
2
) at 12-0 inch spacing with No. 5 bars (A = 0.31 in.

2
) at 12-inch 

spacing: 
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2 2

reinf

0.44 0.31
A 0.06in. /in. 0.05in. /in.

12 12
     (satisfied) 

8.4.4.2 Bottom Layer (Longitudinal) 

Minimum Areinf =   21
0.08 0.03in. /in.

3

 
 

 
 

Use No. 5 bars (A=0.31 in.
2
) at 12.0-inch spacing with No. 4 bars (A = 0.20 in.

2
) at 12-inch 

spacing: 

2 2

reinf

0.31 0.20
A 0.04in. /in. 0.03in. /in.

12 12
     (satisfied) 

8.4.4.3 Top and Bottom Layer (Transverse) 

The transverse reinforcing steel in both the top and bottom layers will be No. 5 bars at 12.0- inch 

spacing (Figure 15), the same as the positive flexure regions. 

 

Figure 15 Deck Slab in Negative Flexure Region of the Beam 
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