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GLOSSARY 
 
Basin: Depressed or partially enclosed space. 
 
Customary Units (CU): Foot-pound system of units also referred to as English units. 
 
Depth of Flow: Vertical distance from the bed of a channel to the water surface. 
 
Design Discharge: Peak flow at a specific location defined by an appropriate return period to 
be used for design purposes. 
 
Freeboard: Vertical distance from the water surface to the top of the channel at design 
condition. 
 
Hydraulic Radius: Flow area divided by wetted perimeter. 
 
Hydraulic Roughness: Channel boundary characteristic contributing to energy losses, 
commonly described by Manning’s n. 
 
Normal Depth: Depth of uniform flow in a channel or culvert. 
 
Riprap: Broken rock, cobbles, or boulders placed on side slopes or in channels for protection 
against the action of water. 
 
System International (SI): Meter-kilogram-second system of units often referred to as metric 
units. 
 
Uniform flow: Hydraulic condition in a prismatic channel where both the energy (friction) slope 
and the water surface slope are equal to the bed slope. 
 
Velocity, Mean: Discharge divided by the area of flow. 
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CHAPTER 1: ENERGY DISSIPATOR DESIGN 

Under many circumstances, discharges from culverts and channels may cause erosion 
problems.  To mitigate this erosion, discharge energy can be dissipated prior to release 
downstream.  The purpose of this circular is to provide design procedures for energy dissipator 
designs for highway applications.  The first six chapters of this circular provide general 
information that is used to support the remaining design chapters.  Chapter 1 (this chapter) 
discusses the overall analysis framework that is recommended and provides a matrix of 
available dissipators and their constraints.  Chapter 2 provides an overview of erosion hazards 
that exist at both inlets and outlets.  Chapter 3 provides a more precise approach for analyzing 
outlet velocity than is found in HDS 5.  Chapter 4 provides procedures for calculating the depth 
and velocity through transitions.  Chapter 5 provides design procedures for calculating the size 
of scour holes at culvert outlets.  Chapter 6 provides an overview of hydraulic jumps, which are 
an integral part of many dissipators. 

For some sites, appropriate energy dissipation may be achieved by design of a flow transition 
(Chapter 4), anticipating an acceptable scour hole (Chapter 5), and/or allowing for a hydraulic 
jump given sufficient tailwater (Chapter 6).  However, at many other sites more involved 
dissipator designs may be required.  These are grouped as follows: 

• Internal Dissipators (Chapter 7) 

• Stilling Basins (Chapter 8) 

• Streambed Level Dissipators (Chapter 9) 

• Riprap Basins and Aprons (Chapter 10) 

• Drop Structures (Chapter 11) 

• Stilling Wells (Chapter 12) 

The designs included are listed in Table 1.1.  Experienced designers can use Table 1.1 to 
determine the dissipator type to use and go directly to the appropriate chapter.  First time 
designers should become familiar with the recommended energy dissipator design procedure 
that is discussed in this chapter. 

Most of the information presented has been taken from the literature and adapted, where 
necessary, to fit highway needs.  Recent research results have been incorporated, wherever 
possible, and a field survey was conducted to determine States' present practice and 
experience. 

1.1 ENERGY DISSIPATOR DESIGN PROCEDURE 
The designer should treat the culvert, energy dissipator, and channel protection designs as an 
integrated system.  Energy dissipators can change culvert performance and channel protection 
requirements.  Some debris-control structures represent losses not normally considered in the 
culvert design procedure.  Velocity can be increased or reduced by changes in the culvert 
design.  Downstream channel conditions (velocity, depth, and channel stability) are important 
considerations in energy dissipator design.  A combination of dissipator and channel protection 
might be used to solve specific problems. 
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Table 1.1. Energy Dissipators and Limitations 

Allowable Debris 1 

Chapter Dissipator Type 

Froude 
Number7 

(Fr) 
Silt/ 

Sand Boulders Floating Tailwater 
(TW) 

4 Flow transitions na H H H Desirable 
5 Scour hole na H H H Desirable 
6 Hydraulic jump > 1 H H H Required 
7 Tumbling flow2 > 1 M L L Not needed
7 Increased resistance3 na M L L Not needed

7 USBR Type IX baffled 
apron < 1 M L L Not needed

7 Broken-back culvert > 1 M L L Desirable 
7 Outlet weir 2 to 7 M L M Not needed
7 Outlet drop/weir 3.5 to 6 M L M Not needed

8 USBR Type III stilling 
basin 4.5 to 17 M L M Required 

8 USBR Type IV stilling 
basin 2.5 to 4.5 M L M Required 

8 SAF stilling basin 1.7 to 17 M L M Required 

9 CSU rigid boundary 
basin < 3 M L M Not needed

9 Contra Costa basin < 3 H M M < 0.5D 
9 Hook basin 1.8 to 3 H M M Not needed

9 USBR Type VI impact 
basin4 na M L L Desirable 

10 Riprap basin < 3 H H H Not needed
10 Riprap apron8 na H H H Not needed
11 Straight drop structure5 < 1 H L M Required 
11 Box inlet drop structure6 < 1 H L M Required 
12 USACE stilling well na M L N Desirable 

1Debris notes: N = none, L = low, M = moderate, H = heavy 
2Bed slope must be in the range 4% < So < 25% 
3Check headwater for outlet control 
4Discharge, Q < 11 m3/s (400 ft3/s) and Velocity, V < 15 m/s (50 ft/s) 
5Drop < 4.6 m (15 ft) 
6Drop < 3.7 m (12 ft) 
7At release point from culvert or channel 
8Culvert rise less than or equal to 1500 mm (60 in) 
na = not applicable. 

 

The energy dissipator design procedure, illustrated in Figure 1.1, shows the recommended 
design steps.  The designer should apply the following design procedure to one drainage 
channel/culvert and its associated structure at a time.   

Step 1. Identify and Collect Design Data.  Energy dissipators should be considered part of 
a larger design system that includes a culvert or a chute, channel protection 
requirements (both upstream and downstream), and may include a debris control 
structure. Much of the input data will be available to the energy dissipator design 
phase from previous design efforts.  
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a. Culvert Data:  The culvert design should provide:  type (RCB, RCP, CMP, etc); 
height, D; width, B; length, L; roughness, n; slope, So; design discharge, Q; 
tailwater, TW; type of control (inlet or outlet); outlet depth, yo; outlet velocity, 
Vo; and outlet Froude number, Fro.  Culvert outlet velocity, Vo, is discussed in 
Chapter 3.  HDS 5 (Normann, et al., 2001) provides design procedures for 
culverts. 

b. Transition Data:  Flow transitions are discussed in Chapter 4.  For most 
culvert designs, the designer will have to determine the flow depth, y, and 
velocity, V, at the exit of standard wingwall/apron combinations. 

 

Figure 1.1. Energy Dissipator Design Procedure 

c. Channel Data:  The following channel data is used to determine the TW for 
the culvert design: design discharge, Q; slope, So; cross section geometry; 
bank and bed roughness, n; normal depth, yn = TW; and normal velocity, Vn.  
If the cross section is a trapezoid, it is defined by the bottom width, B, and 
side slope, Z, which is expressed as 1 unit vertical to Z units horizontal 
(1V:ZH).  HDS 4 (Schall, et al., 2001) provides examples of how to compute 
normal depth in channels.  The size and amount of debris should be 
estimated using HEC 9 (Bradley, J.B., et al., 2005).  The size and amount of 
bedload should be estimated. 

d. Allowable Scour Estimate:  In the field, the designer should determine if the 
bed material at the planned exit of the culvert is erodible. If it is, the potential 
extent of scour should be estimated: depth, hs; width, Ws; and length, Ls.  
These estimates should be based on the physical limits to scour at the site.  
For example, the length, Ls, can be limited by a rock ledge or vegetation.  
The following soils parameters in the vicinity of planned culvert outlets should 

Step 1. Identify Design Data

Step 2. Evaluate Velocities

Step 3. Evaluate Outlet
Scour Hole

Step 4. Design Alternative
Energy Dissipators

Step 5. Select Energy
Dissipator

Step 1. Identify Design Data

Step 2. Evaluate Velocities

Step 3. Evaluate Outlet
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Step 4. Design Alternative
Energy Dissipators

Step 5. Select Energy
Dissipator
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be provided.  For non-cohesive soil, a grain size distribution including D16 and 
D84 is needed.  For cohesive soil, the values needed are saturated shear 
strength, Sv, and plasticity index, PI. 

e. Stability Assessment:  The channel, culvert, and related structures should be 
evaluated for stability considering potential erosion, as well as buoyancy, 
shear, and other forces on the structure (see Chapter 2).  If the channel, 
culvert, and related structures are assessed as unstable, the depth of 
degradation or height of aggradation that will occur over the design life of the 
structure should be estimated.  

Step 2. Evaluate Velocities.  Compute culvert or chute exit velocity, Vo, and compare with 
downstream channel velocity, Vn.  (See Chapter 3.)  If the exit velocity and flow 
depth approximates the natural flow condition in the downstream channel, the 
culvert design is acceptable.  If the velocity is moderately higher, the designer can 
evaluate reducing velocity within the barrel or chute (see Chapter 3) or reducing 
the velocity with a scour hole (step 3).  Another option is to modify the culvert or 
chute (channel) design such that the outlet conditions are mitigated.  If the velocity 
is substantially higher and/or the scour hole from step 3 is unacceptable, the 
designer should evaluate energy dissipators (step 4).  Definition of the terms 
“approximately equal,” “moderately higher,” and “substantially higher” is relative to 
site-specific concerns such as sensitivity of the site and the consequences of 
failure.  However, as rough guidelines that should be re-evaluated on a site-
specific basis, the ranges of less than 10 percent, between 10 and 30 percent, and 
greater than 30 percent, respectively, may be used. 

Step 3. Evaluate Outlet Scour Hole.  Compute the outlet scour hole dimensions using the 
procedures in Chapter 5. If the size of the scour hole is acceptable, the designer 
should document the size of the expected scour hole for maintenance and note the 
monitoring requirements. If the size of the scour hole is excessive, the designer 
should evaluate energy dissipators (step 4). 

Step 4. Design Alternative Energy Dissipators.  Compare the design data identified in step 
1 to the attributes of the various energy dissipators in Table 1.1.  Design one or 
more of the energy dissipators that substantially satisfy the design criteria.  The 
dissipators fall into two general groups based on Fr: 

1. Fr < 3, most designs are in this group 

2. Fr > 3, tumbling flow, USBR Type III stilling basin, USBR Type IV stilling basin, 
SAF stilling basin, and USBR Type VI impact basin  

Debris, tailwater channel conditions, site conditions, and cost must also be 
considered in selecting alternative designs. 

Step 5. Select Energy Dissipator.  Compare the design alternatives and select the 
dissipator that has the best combination of cost and velocity reduction.  Each 
situation is unique and the exercise of engineering judgment will always be 
necessary.  The designer should document the alternatives considered.  

1.2 DESIGN EXAMPLES 
The energy dissipator design procedure is best illustrated by applying it and the material 
presented in the energy dissipator design chapters to a series of design problems.  These 
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examples are intended to provide an overview of the design process.  Pertinent chapters should 
be consulted for design details.  The two design examples illustrate the process for cases where 
the Froude number is greater than 3 with a defined channel (tailwater) and less than 3 without a 
defined channel (no tailwater), respectively.  

Design Example: RCB (Fr > 3) with Defined Downstream Channel (SI) 
Evaluate the outlet velocity from a 3048 mm x 1829 mm RCB and determine the need for an 
energy dissipator. 

Solution 
Step 1. Identify Design Data.  

a.  Culvert Data:  Type, D, B, L, n, So, Q, TW, Control, yo, Vo, Fro 

 RCB, D = 1.829 m, B = 3.048 m, L = 91.44 m, n = 0.012 

 So = 6.5%, Q = 11.8 m3/s, TW = 0.579 m, inlet control 

 Elevation of outlet invert = 30.48 m 

 yo = 0.457 m, Vo = 8.473 m/s, Fro = 4  

b. Transition Data:  y and V at end of apron, Chapter 4 

 The standard outlet with 45° wingwalls is an abrupt expansion. Since the 
culvert is in inlet control, the flow at the end of the apron will be supercritical:  
y = yo = 0.457 m and V = Vo = 8.473 m/s 

c. Channel Data:  Q, So, geometry, n, z, b, yn, Vn, debris, bedload 

 Q = 11.8 m3/s, So = 6.5%, trapezoidal, 1:2 (V:H), b = 3.048 m, n = 0.03 

 yn = 0.579 m, Vn = 4.846 m/s 

 Graded gravel bed with no boulders, little floating debris 

d. Allowable Scour Estimate:  hs, Ws, Ls, D16, D84, σ, Sv, PI 

 Scour hole should be contained within channel Ws = Ls = 3.048 m and should 
be no deeper than 1.524 m. This allowable estimate can be obtained by 
observing scour holes in the vicinity.  

e. Stability Assessment: 

 The channel, culvert, and related structures are evaluated for stability 
considering potential erosion, as well as buoyancy, shear, and other forces 
on the structure.  If the channel, culvert, and related structures are assessed 
as unstable, the depth of degradation or height of aggradation that will occur 
over the design life of the structure should be estimated.  In this case, the 
channel appears to be stable.  No long-term degradation or head cutting was 
observed in the field. 

Step 2. Evaluate Velocities. 

Since Vo = 8.473 m/s is much larger than Vn = 4.846 m/s, increasing culvert n is not 
practical.  Determine if a scour hole is acceptable (Step 3) or design an energy 
dissipator (Step 4). 
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Step 3. Evaluate Outlet Scour Hole. 

hs, Ws, Ls, Vs from Chapter 5.  If these values exceed allowable values in step 1, 
protection is required. 

 ye = 0.835 m, hs = 2.530 m, Ws = 15.850 m, Ls = 21.640 m, Vs = 737 m3  

 Scour appears to be a problem and consideration should be given to reducing the 
Vo = 8.473 m/s to the 4.846 m/s in the channel. 

Step 4. Design Alternative Energy Dissipators. 

 The following dissipators were determined from Table 1.1 by comparing the 
limitations shown against the site conditions. Since Fr > 3, tumbling flow, 
increased resistance, as well as, USBR Type IV, SAF stilling basin, and USBR 
Type VI streambed level dissipators will be designed.  The outlet weir and outlet 
drop/weir were also assessed, but were not feasible without increasing the size of 
the culvert.  Furthermore, a broken-back culvert was not considered and the 
culvert is too large for a riprap apron. 

a. Tumbling flow (Chapter 7):  Five elements 0.59 m in height spaced 5.02 m 
apart are required to reduce the velocity to Vc = 3.36 m/s. In order to 
accomplish this reduction, the last 25.1 m of culvert is used for the elements 
(4 spacing lengths between elements plus one-half spacing length before the 
first element and after the last element).  In addition, this portion of the culvert 
must be increased in height to 2.1 m to accommodate the elements. 

 b. Increased resistance (Chapter 7):  For a roughness height, h = 0.12 m, the 
internal resistance, nLOW = 0.039 for velocity check and nHIGH = 0.052 for Q 
check.  The velocity at the outlet is 4.4 m/s.  The elements are 1.2 m apart for 
28 rows.  Therefore, the modified culvert length required to accommodate the 
roughness elements is 33.6 m (27 spacing lengths between elements plus 
one-half spacing length before the first element and after the last element). 

c. USBR Type IV stilling basin (Chapter 8):  The dissipator length, LB = 21.6 m, 
is located below the streambed at elevation 25.0 m. The total length of the 
stilling basin including transitions is 38.6 m. The exit velocity, V2, is 4.85 m/s, 
which matches the channel velocity, Vn, of 4.846 m/s. 

d. SAF stilling basin (Chapter 8):  The dissipator length, LB = 3.353 m, is located 
below the streambed at elevation 27.889 m. The total length of the stilling 
basin including transitions is 12.192 m. The exit velocity, V2, is 4.877 m/s, 
which is close to channel velocity, Vn, of 4.846 m/s. 

e. USBR Type VI impact basin (Chapter 9):  The dissipator width, WB, is 3.5 m.  
The height, h1, equals 2.68 m and length, L, equals 4.65 m.  The exit velocity, 
VB, equals 3.7 m/s, which is calculated knowing the energy loss is 61 percent. 

Step 5. Select Energy Dissipator. 

The dissipator selected should be governed by comparing the efficiency, cost, 
natural channel compatibility, and anticipated scour for all the alternatives. 

 In this example, all the structures highlighted fit the channel, meet the velocity 
criteria, and produce significant energy losses.  However, the costs of the USBR 
Type VI are lower than the other dissipators, so becomes the dissipator of choice. 
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Design Example: RCB (Fr > 3) with Defined Downstream Channel (CU) 
Evaluate the outlet velocity from a 10 ft x 6 ft reinforced concrete box (RCB) culvert and 
determine the need for an energy dissipator. 

Solution 
Step 1. Identify Design Data: 

a.  Culvert Data:  Type, D, B, L, n, So, Q, TW, Control, yo, Vo, Fro 

 RCB, D = 6 ft, B = 10 ft, L = 300 ft, n = 0.012 

 So = 6.5%, Q = 417 ft3/s, TW = 1.9 ft, inlet control 

 Elevation of outlet invert = 100 ft 

 yo = 1.5 ft, Vo = 27.8 ft/s, Fro = 4  

b. Transition Data:  y and V at end of apron, Chapter 4 

 The standard outlet with 45° wingwalls is an abrupt expansion. Since the 
culvert is in inlet control, the flow at the end of the apron will be supercritical:  
y = yo = 1.5 ft and V = Vo = 27.8 ft/s 

c. Channel Data:  Q, So, geometry, n, z, b, yn, Vn, debris, bedload 

 Q = 417 ft3/s., So = 6.5%, trapezoidal, 1:2 (V:H), b = 10 ft, n = 0.03 

 yn = 1.9 ft, Vn = 15.9 ft/s 

 Graded gravel bed with no boulders, little floating debris 

d. Allowable Scour Estimate:  hs, Ws, Ls, D16, D84, σ, Sv, PI 

 Scour hole should be contained within channel Ws = Ls = 10 ft and should be 
no deeper than 5 ft. This allowable estimate can be obtained by observing 
scour holes in the vicinity.  

e. Stability Assessment: 

 The channel, culvert, and related structures are evaluated for stability 
considering potential erosion, as well as buoyancy, shear, and other forces 
on the structure.  If the channel, culvert, and related structures are assessed 
as unstable, the depth of degradation or height of aggradation that will occur 
over the design life of the structure should be estimated.  In this case, the 
channel appears to be stable.  No long-term degradation or head cutting was 
observed in the field. 

Step 2. Evaluate Velocities. 

Since Vo = 27.8 ft/s is much larger than Vn = 15.9 ft/s, increasing culvert n is not 
practical.  Determine if a scour hole is acceptable (step 3) or design an energy 
dissipator (step 4). 

Step 3. Evaluate Outlet Scour Hole. 

hs, Ws, Ls, Vs from Chapter 5.  If these values exceed allowable values in step 1, 
protection is required. 

 ye = 2.74 ft, hs = 8.3 ft, Ws = 52 ft, Ls = 71 ft, Vs = 963 ft3  
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 Scour appears to be a problem and consideration should be given to reducing the 
Vo = 27.8 ft/s to the 15.9 ft/s in the channel. 

Step 4. Design Alternative Energy Dissipators. 

 The following dissipators were determined from Table 1.1 by comparing the 
limitations shown against the site conditions. Since Fr > 3, tumbling flow, 
increased resistance, as well as the USBR Type IV, SAF stilling basin, and USBR 
Type VI streambed level dissipators will be designed.  The outlet weir and outlet 
drop/weir were also assessed, but were not feasible without increasing the size of 
the culvert.  Furthermore, a broken-back culvert was not considered and the 
culvert is too large for a riprap apron. 

a. Tumbling flow (Chapter 7):  Five elements 1.92 ft in height spaced 16.3 ft 
apart are required to reduce the velocity to Vc = 11.0 ft/s.  In order to 
accomplish this reduction, the last 81.5 ft of culvert is used for the elements 
(4 spacing lengths between elements plus one-half spacing length before the 
first element and after the last element).  In addition, this portion of the culvert 
must be increased in height to 6.7 ft to accommodate the elements. 

 b. Increased resistance (Chapter 7):  For a roughness height, h = 0.4 ft, the 
internal resistance, nLow, equals 0.039 for velocity check and nHIGH equals 
0.052 for Q check.  The velocity at the outlet is 14.5 ft/s.  The elements are 
4.0 ft apart for 28 rows.  Therefore, the modified culvert length required to 
accommodate the roughness elements is 112 ft (27 spacing lengths between 
elements plus one-half spacing length before the first element and after the 
last element). 

c. USBR Type IV stilling basin (Chapter 8):  The dissipator length, LB = 70.9 ft, 
is located below the streambed at elevation 82.0 ft.  The total length of the 
stilling basin including transitions is 126.5 ft.  The exit velocity, V2, is 16 ft/s, 
which is close to channel velocity, Vn, of 15.9 ft/s. 

d. SAF stilling basin (Chapter 8):  The dissipator length, LB = 11 ft is located 
below the streambed at elevation 91.5 ft. The total length of the stilling basin 
including transitions is 40 ft.  The exit velocity, V2, is 16 ft/s, which is close to 
channel velocity, Vn, of 15.9 ft/s. 

e. USBR Type VI impact basin (Chapter 9):  The dissipator width, WB, is 12 ft. 
The height, h1 = 9.17 ft and length, L = 16 ft.  The exit velocity, VB, equals 
12.9 ft/s, which is calculated knowing the energy loss is 61 percent.  

Step 5. Select Energy Dissipator. 

The dissipator selected should be governed by comparing the efficiency, cost, 
natural channel compatibility, and anticipated scour for all the alternatives. 

 In this example, all the structures highlighted fit the channel, meet the velocity 
criteria, and produce significant energy losses.  However, the costs of the USBR 
Type VI are lower than the other dissipators, so becomes the dissipator of choice. 

Design Example: RCB (Fr < 3) with Undefined Downstream Channel (SI) 
Evaluate the outlet velocity from a 3048 mm x 1829 mm reinforced concrete box (RCB) and 
determine the need for an energy dissipator. 



1-9 
 

 
 

Solution 
Step 1. Identify Design Data.  

a.  Culvert Data:  Type, D, B, L, n, So, Q, TW, Control, yo, Vo, Fro 

 RCB, D = 1.524 m, B = 1.524 m, L = 64.922 m, n = 0.012 

 So = 3.0%, Q = 5.66 m3/s, TW = 0.0 m, inlet control 

 Elevation of outlet invert = 30.480 m 

 yo = 0.655 m, Vo = 5.791 m/s, Fro = 2.3  

b. Transition Data:  y and V at end of apron, Chapter 4 

 The standard Outlet with 90° headwall is an abrupt expansion. Since the 
culvert is in inlet control, the flow at the end of the apron will be supercritical:  
y = yo = 0.655 m and V = Vo = 5.791 m/s 

c. Channel Data:  Q, So, geometry, n, z, b, yn, Vn, debris, bedload 

 The downstream channel is undefined. The water will spread and decrease in 
depth as it leaves the culvert making tailwater essentially zero. The channel 
is graded sand with no boulders and has moderate to high amounts of 
floating debris. 

d. Allowable Scour Estimate:  hs, Ws, Ls, D16, D84, σ, Sv, PI 

 A scour basin not more than 0.914 meters deep is allowable at this site.  
Allowable outlet velocity should be about 3 m/s.  

e. Stability Assessment: 

 The channel, culvert, and related structures are evaluated for stability 
considering potential erosion, as well as buoyancy, shear, and other forces 
on the structure.  If the channel, culvert, and related structures are assessed 
as unstable, the depth of degradation or height of aggradation that will occur 
over the design life of the structure should be estimated.  In this case, the 
channel appears to be stable.  No long-term degradation or head cutting was 
observed in the field. 

Step 2. Evaluate Velocities.  

Since Vo = 5.791 m/s is much larger than Vallow = 3.0 m/s, increasing culvert n is not 
practical.  Determine if a scour hole is acceptable (step 3) or design an energy 
dissipator (step 4). 

Step 3. Evaluate Outlet Scour Hole. 

hs, Ws, Ls, Vs from Chapter 5.  If these values exceed allowable values in step 1, 
protection is required. 

 ye = 0.707 m, hs = 1.707 m, WS = 9.449 m, LS = 14.935 m, VS = 62 m3  

 Since 1.707 m is greater than the 0.914 m allowable, an energy dissipator will be 
necessary. 
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Step 4. Design Alternative Energy Dissipators. 

 The following dissipators were determined from Table 1.1 by comparing the 
limitations shown against the site conditions. For comparison purposes all the Fr < 
3 dissipators will be designed (even those that cannot handle a moderate amount 
of debris).  Dissipators meeting the Froude number requirement, but not designed 
are as follows (reason for exclusion in parentheses): SAF stilling basin (requires 
tailwater), Contra Costa basin (no defined channel); Broken-back culvert (mild site 
slope); outlet weir (infeasible without increasing culvert size); and riprap apron 
(culvert too large). 

a. Tumbling flow (Chapter 7):  The So = 3% is less than the 4% required, but the 
design is included for comparison.  Five elements 0.55 m in height spaced 
4.68 m apart are required to reduce the velocity to Vc = 3.32 m/s. In order to 
accomplish this reduction, the last 23.4 m of the culvert is used for the 
elements (4 spacing lengths between elements plus one-half spacing length 
before the first element and after the last element).  In addition, this portion of 
the culvert must be increased in height to 2.0 m to accommodate the 
elements. 

 b. Increased resistance (Chapter 7):  For a roughness height, h = 0.09 m, the 
internal resistance, nLOW = 0.032 for velocity check and nHIGH = 0.043 for Q 
check.  The discharge check indicates that the culvert height has to be 
increased to 1.7 m.  The velocity at the outlet is 3.2 m/s.  The elements are 
0.9 m apart for 34 rows.  Therefore, the modified culvert length required to 
accommodate the roughness elements is 30.6 m (33 spacing lengths 
between elements plus one-half spacing length before the first element and 
after the last element).  

c. CSU rigid boundary basin (Chapter 9):  Width of basin, WB = 9.144 m, length 
of basin, LB = 8.534 m, number of roughness rows, Nr = 4, number of 
elements, N = 17, divergence, Ue = 1.9:1, width of elements, W1 = 0.914 m, 
height of elements, h = 0.229 m, velocity at basin outlet, VB = 2.896 m/s, 
depth at basin outlet, yB = 0.213 m. 

d. USBR Type VI impact basin (Chapter 9):  The dissipator width, WB, is 4.0 m.  
The height, h1 = 3.12 m, and length, L = 5.33 m.  The exit velocity, VB, equals 
4.2 m/s, which is calculated knowing the energy loss is 47 percent. 

e. Hook basin (Chapter 9):  Assuming the downstream velocity, Vn, equals the 
allowable, 3.0 m/s, Vo/Vn = 5.791/3.0 = 1.93.  The dimensions for a straight 
trapezoidal basin are: length, LB = 4.572 m, width, W6 = 2Wo = 3.048 m, side 
slope = 2:1, length to first hook, L1 = 1.905 m, length to second hooks, L2 = 
3.179 m, height of hook, h3 = 0.716 m, target exit velocity, VB = Vn = 3.0 m/s.  
From Figure 9.12, Vo/VB = 2.0; actual VB = 5.8/2.0 = 2.896 m/s, which is less 
than the target. 

f. Riprap basin (Chapter 10):  Assuming a diameter of rock, D50 = 0.38 m, the 
depth of pool, hs = 0.78 m, length of pool = 7.8 m,  
length of apron = 3.9 m, length of basin = 11.7 m, thickness of riprap on 
approach, 3D50 = 1.14 m, and thickness of riprap for the remainder of basin, 
2D50 = 0.76 m.  
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Step 5. Select Energy Dissipator. 

The dissipator selected should be governed by comparing the efficiency, cost, 
natural channel compatibility, and anticipated scour for all the alternatives. 

 Right-of-way (ROW), debris, and dissipator cost are all constraints at this site. 
ROW is expensive making the longer dissipators more costly. Debris will affect the 
operation of the impact basin and may be a problem with the CSU roughness 
elements and tumbling flow designs. In the final analysis, the riprap basin was 
selected based on cost and anticipated maintenance. 

Design Example: RCB (Fr < 3) with undefined Downstream Channel (CU) 
Evaluate the outlet velocity from a 5 ft by 5 ft reinforced concrete box (RCB) and determine the 
need for an energy dissipator. 

Solution 
Step 1. Identify Design Data. 

a.  Culvert Data:  Type, D, B, L, n, So, Q, TW, Control, yo, Vo, Fro 

 RCB, D = 5 ft, B = 5 ft, L = 213 ft, n = 0.012 

 So = 3.0%, Q = 200 ft3/s, TW = 0.0 ft, inlet control 

 Elevation of outlet invert = 100 ft 

 yo = 2.15 ft, Vo = 19 ft/s, Fro = 2.3  

b. Transition Data:  y and V at end of apron, Chapter 4 

 The standard Outlet with 90° headwall is an abrupt expansion. Since the 
culvert is in inlet control, the flow at the end of the apron will be supercritical:  
y = yo = 2.15 ft and V = Vo = 19 ft/s 

c. Channel Data:  Q, So, geometry, n, z, b, yn, Vn, debris, bedload 

 The downstream channel is undefined. The water will spread and decrease in 
depth as it leaves the culvert making tailwater essentially zero. The channel 
is graded sand with no boulders and has moderate to high amounts of 
floating debris. 

d. Allowable Scour Estimate:  hs, Ws, Ls, D16, D84, σ, Sv, PI 

 A scour basin not more than 0.914 meters deep is allowable at this site.  
Allowable outlet velocity should be about 10 ft/s.  

e. Stability Assessment: 

 The channel, culvert, and related structures are evaluated for stability 
considering potential erosion, as well as buoyancy, shear, and other forces 
on the structure.  If the channel, culvert, and related structures are assessed 
as unstable, the depth of degradation or height of aggradation that will occur 
over the design life of the structure should be estimated.  In this case, the 
channel appears to be stable.  No long-term degradation or head cutting was 
observed in the field. 
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Step 2. Evaluate Velocities.  

Since Vo = 19 ft/s is much larger than Vallow = 10 ft/s, increasing culvert n is not 
practical.  Determine if a scour hole is acceptable (step 3) or design an energy 
dissipator (step 4). 

Step 3. Evaluate Outlet Scour Hole. 

hs, Ws, Ls, Vs from Chapter 5.  If these values exceed allowable values in step 1, 
protection is required. 

 ye = 2.32 ft, hs = 5.6 ft, WS = 32 ft, LS = 49 ft, VS = 81 yd3  

 Since 5.6 ft is greater than the 3.0 ft allowable, an energy dissipator will be 
necessary. 

Step 4. Design Alternative Energy Dissipators. 

 The following dissipators were determined from Table 1.1 by comparing the 
limitations shown against the site conditions. For comparison purposes all the Fr < 
3 dissipators will be designed (even those that cannot handle a moderate amount 
of debris).  Dissipators meeting the Froude number requirement, but not designed 
are as follows (reason for exclusion in parentheses): SAF stilling basin (requires 
tailwater), Contra Costa basin (no defined channel); Broken-back culvert (mild site 
slope); outlet weir (infeasible without increasing culvert size); and riprap apron 
(culvert too large). 

a. Tumbling Flow (Chapter 7):  The So = 3% is less the 4% required, but the 
design is included for comparison.  Five elements 1.8 ft in height spaced 15.4 
ft apart are required to reduce the velocity to Vc = 10.9 ft/s.  In order to 
accomplish this reduction, the last 77.0 ft of the culvert is used for the 
elements (4 spacing lengths between elements plus one-half spacing length 
before the first element and after the last element).  In addition, this portion of 
the culvert must be increased in height to 6.5 ft to accommodate the 
elements. 

 b. Increased resistance (Chapter 7):  For a roughness height, h = 0.3 ft, the 
internal resistance, nLOW  = 0.032 for velocity check and nHIGH = 0.043 for Q 
check.  The discharge check indicates that the culvert height has to be 
increased to 5.6 ft.  The velocity at the outlet is 10.6 ft/s.  The elements are 
3.0 ft apart for 34 rows.  Therefore, the modified culvert length required to 
accommodate the roughness elements is 102 ft (33 spacing lengths between 
elements plus one-half spacing length before the first element and after the 
last element) 

c. CSU Rigid Boundary basin (Chapter 9):  Width of basin, WB = 30 ft, length of 
basin, LB = 28 ft, number of roughness rows, Nr = 4, number of elements, N = 
17, divergence, Ue = 1.9:1, width of elements, W1 = 3.0 ft, height of elements, 
h = 0.75 ft, velocity at basin outlet, VB = 9.5 ft/s, depth at basin outlet, yB = 
0.70 ft. 

d. USBR Type VI (Chapter 9):  The dissipator width, WB, is 13 ft.  The height, h1 
= 10.17 ft, and length, L = 17.33 ft.  The exit velocity, VB, equals 13.9 ft/s, 
which is calculated knowing the energy loss is 47 percent. 
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e. Hook (Chapter 9):  Assuming the downstream velocity, Vn, equals the 
allowable, 10 ft/s, Vo/Vn = 19/10 = 1.9.  The dimensions for a straight 
trapezoidal basin are: length, LB = 15 ft, width, W6 = 2Wo = 10 ft, side slope = 
2:1, length to first hook, L1 = 6.25 ft, length to second hooks, L2 = 10.43 ft, 
height of hook, h3 = 2.35 ft, target exit velocity, VB = Vn = 10 ft/s.  From Figure 
9.12, Vo/VB = 2.0; actual VB = 19/2.0 = 9.5 ft/s which is less than the target. 

f. Riprap basin (Chapter 10):  Assuming a diameter of rock, D50 = 1.2 ft, the 
depth of pool, hs = 2.7 ft, length of pool = 27 ft,  
length of apron = 13.5 ft, length of basin = 40.5 ft, thickness of riprap on 
approach, 3D50 = 3.6 ft, and thickness of riprap for the remainder of basin, 
2D50 = 2.4 ft.  

Step 5. Select Energy Dissipator. 

The dissipator selected should be governed by comparing the efficiency, cost, 
natural channel compatibility, and anticipated scour for all the alternatives. 

 Right-of-way (ROW), debris, and dissipator cost are all constraints at this site. 
ROW is expensive making the longer dissipators more costly. Debris will affect the 
operation of the impact basin and may be a problem with the CSU roughness 
elements and tumbling flow designs. In the final analysis, the riprap basin was 
selected based on cost and anticipated maintenance. 
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CHAPTER 2: EROSION HAZARDS 
This chapter discusses potential erosion hazards at culverts and countermeasures for these 
hazards.  Section 2.1 presents the hazards associated with culvert inlets: channel alignment 
and approach velocity, depressed inlets, headwalls and wingwalls, and inlet and barrel failures. 
Section 2.2 presents the hazards associated with culvert outlets: local scour, channel 
degradation, and standard culvert end treatments. 

2.1 EROSION HAZARDS AT CULVERT INLETS 
The erosion hazard at culvert inlets from vortices, flow over wingwalls, and fill sloughing is 
generally minor and can be addressed by maintenance if it occurs.  Designers should focus 
their attention on the following concerns and associated mitigation measures. 

2.1.1 Channel Alignment and Approach Velocity 
An erosion hazard may exist if a defined approach channel is not aligned with the culvert axis. 
Aligning the culvert with the approach channel axis will minimize erosion at the culvert inlet.  
When the culvert cannot be aligned with the channel and the channel is modified to bend into 
the culvert, erosion can occur at the bend in the channel.  Riprap or other revetment may be 
needed (see Lagasse, et al., 2001).  

At design discharge, water will normally pond at the culvert inlet and flow from this pool will 
accelerate over a relatively short distance. Significant increases in velocity only extend 
upstream from the culvert inlet at a distance equal to the height of the culvert. Velocity near the 
inlet may be approximated by dividing the flow rate by the area of the culvert opening. The risk 
of channel erosion should be judged on the basis of this average approach velocity. The 
protection provided should be adequate for flow rates that are less than the maximum design 
rate. Since depth of ponding at the inlet is less for smaller discharges, greater velocities may 
occur. This is especially true in channels with steep slopes where high velocity flow prevails. 

2.1.2 Depressed Inlets 
Culvert inverts are sometimes placed below existing channel grades to increase culvert capacity 
or to meet minimum cover requirements. Hydraulic Design Series No. 5 (HDS 5) (Normann, et 
al., 2001) discusses the advantages of providing a depression or fall at the culvert entrance to 
increase culvert capacity.  However, the depression may result in progressive degradation of 
the upstream channel unless resistant natural materials or channel protection is provided.  

Culvert invert depressions of 0.30 or 0.61 m (1 to 2 ft) are usually adequate to obtain minimum 
cover and may be readily provided by modification of the concrete apron. The drop may be 
provided in two ways. A vertical wall may be constructed at the upstream edge of the apron, 
from wingwall to wingwall. Where a drop is undesirable, the apron slab may be constructed on a 
slope to reduce or eliminate the vertical face.  

Caution must be exercised in attempting to gain the advantages of a lowered inlet where 
placement of the outlet flow line below the channel would also be required. Locating the entire 
culvert flow line below channel grade may result in deposition problems. 
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2.1.3 Headwalls and Wingwalls 
Recessing the culvert into the fill slope and retaining the fill by either a headwall parallel to the 
roadway or by a short headwall and wingwalls does not produce significant erosion problems. 
This type of design decreases the culvert length and enhances the appearance of the highway 
by providing culvert ends that conform to the embankment slopes.  A vertical headwall parallel 
to the embankment shoulder line and without wingwalls should have sufficient length so that the 
embankment at the headwall ends remain clear of the culvert opening.  Normally riprap 
protection of this location is not necessary if the slopes are sufficiently flat to remain stable when 
wet.  

The inlet headwall (with or without wingwalls) does not have to extend to the maximum design 
headwater elevation. With the inlet and the slope above the headwall submerged, velocity of 
flow along the slope is low. Even with easily erodible soils, a vegetative cover is usually 
adequate protection in this area.  

Wingwalls flared with respect to the culvert axis are commonly used and are more efficient than 
parallel wingwalls. The effects of various wingwall placements upon culvert capacity are 
discussed in HDS 5 (Normann, et al., 2001). Use of a minimum practical wingwall flare has the 
advantage of reducing the inlet area requiring protection against erosion. The flare angle for the 
given type of culvert should be consistent with recommendations of HDS 5. 

If the flow velocity near the inlet indicates a possibility of scour threatening the stability of 
wingwall footings, erosion protection should be provided. A concrete apron between wingwalls 
is the most satisfactory means for providing this protection. The slab has the further advantage 
that it may be reinforced and used to support the wingwalls as cantilevers.  

2.1.4 Inlet and Barrel Failures 
Most inlet failures reported have occurred on large, flexible-type pipe culverts with projected or 
mitered entrances without headwalls or other entrance protection. The mitered or skewed ends 
of corrugated metal pipes, cut to conform to the embankment slopes, offer little resistance to 
bending or buckling. When soils adjacent to the inlet are eroded or become saturated, pipe 
inlets can be subjected to buoyant forces.  Lodged drift and constricted flow conditions at culvert 
entrances cause buoyant and hydrostatic pressures on the culvert inlet edges that, while difficult 
to predict, have significant effect on the stability of culvert entrances.  

To aid in preventing inlet failures of this type, protective features generally should include full or 
partial concrete headwalls and/or slope paving. Riprap can serve as protection for the 
embankment, but concrete inlet structures anchored to the pipe are the only protection against 
buoyant failure. Manufactured concrete or metal sections may be used in lieu of the inlet 
structures shown. Metal end sections for culvert pipes larger than 1350 mm (54 in) in height 
must be anchored to increase their resistance to failure.  

Failures of inlets are of primary concern, but other types of failures have occurred. Seepage of 
water along the culvert barrel has caused piping or the washing out of supporting material. 
Hydrostatic pressure from seepage water or from flow under the culvert barrel has buckled the 
bottoms of large corrugated metal arch pipes. Good compaction of backfill material is essential 
to reduce the possibility of these types of failures.  Where soils are quite erosive, special 
impervious bedding and backfill materials should be placed for a short distance at the culvert 
entrance.  Further protection may be provided by cutoff collars placed at intervals along the 
culvert barrel or by a special subdrainage system. 
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2.2 EROSION HAZARDS AT CULVERT OUTLETS  
Erosion at culvert outlets is a common condition. Determination of the local scour potential and 
channel erodibility should be standard procedure in the design of all highway culverts.  Chapter 
3 provides procedures for determining culvert outlet velocity, which will be the primary indicator 
of erosion potential. 

2.2.1 Local Scour 
Local scour is the result of high-velocity flow at the culvert outlet, but its effect extends only a 
limited distance downstream as the velocity transitions to outlet channel conditions. Natural 
channel velocities are almost always less than culvert outlet velocities because the channel 
cross-section, including its flood plain, is generally larger than the culvert flow area. Thus, the 
flow rapidly adjusts to a pattern controlled by the channel characteristics. 

Long, smooth-barrel culverts on steep slopes will produce the highest velocities. These cases 
will no doubt require protection of the outlet channel at most sites. However, protection is also 
often required for culverts on mild slopes. For these culverts flowing full, the outlet velocity will 
be critical velocity with low tail-water and the full barrel velocity for high tail-water. Where the 
discharge leaves the barrel at critical depth, the velocity will usually be in the range of 3 to 6 m/s 
(10 to 20 ft/s).  Estimating local scour at culvert outlets is an important topic discussed in more 
detail in Chapter 5. 

A common mitigation measure for small culverts is to provide at least minimum protection (see 
Riprap Aprons in Chapter 10), and then inspect the outlet channel after major storms to 
determine if the protection must be increased or extended. Under this procedure, the initial 
protection against channel erosion should be sufficient to provide some assurance that 
extensive damage could not result from one runoff event.  For larger culverts, the designer 
should consider estimating the size of the scour hole using the procedures in Chapter 5. 

2.2.2 Channel Degradation  
Culverts are generally constructed at crossings of small streams, many of which are eroding to 
reduce their slopes.  This channel erosion or degradation may proceed in a fairly uniform 
manner over a long length of stream or it may occur abruptly with drops progressing upstream 
with every runoff event. The latter type, referred to as headcutting, can be detected by location 
surveys or by periodic maintenance inspections following construction. Information regarding 
the degree of instability of the outlet channel is an essential part of the culvert site investigation. 
If substantial doubt exists as to the long-term stability of the channel, measures for protection 
should be included in the initial construction.  HEC 20 “Stream Stability at Highway Structures” 
(Lagasse, et al., 2001) provides procedures for evaluating horizontal and vertical channel 
stability. 

2.2.3 Standard Culvert End Treatments 
Standard practice is to use the same end treatment at the culvert entrance and exit.  However, 
the inlet may be designed to improve culvert capacity or reduce head loss while the outlet 
structure should provide a smooth flow transition back to the natural channel or into an energy 
dissipator. Outlet transitions should provide uniform redistribution or spreading of the flow 
without excessive separation and turbulence. Therefore, it may not be possible to satisfy both 
inlet and outlet requirements with the same end treatment or design.  As will be illustrated in 
Chapter 4, properly designed outlet transitions are essential for efficient energy dissipator 



2-4 
 

 
 

design.  In some cases, they may substantially reduce or eliminate the need for other end 
treatments. 
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CHAPTER 3: CULVERT OUTLET VELOCITY AND VELOCITY MODIFICATION 
This chapter provides an overview of outlet velocity computation.  The purpose of this 
discussion is to identify culvert configurations that are candidates for velocity reduction within 
the barrel or for more detailed velocity computation. Outlet velocities can range from 3 m/s (10 
ft/s) for culverts on mild slopes up to 9 m/s (30 ft/s) for culverts on steep slopes. The discussion 
in this chapter is limited to changing culvert material or increasing culvert size to modify or 
reduce the velocity within the culvert.  The discussion of energy dissipator designs for reducing 
velocity within the barrel is found in Chapter 7.  

The continuity equation, which states that discharge is equal to flow area times average velocity 
(Q = AV), is used to compute culvert velocities within the barrel and at the outlet. The discharge, 
Q, is determined during culvert design. The flow area, A, for determining outlet velocity is 
calculated using the culvert outlet depth that is consistent with the culvert flow type.  The culvert 
flow types and recommended outlet depths from HDS 5 (Normann, et al., 2001) are 
summarized in the following sections. 

3.1 CULVERTS ON MILD SLOPES 
Figure 3.1 (Normann, et al., 2001) shows the types of flow for culverts on mild slopes, that is, 
culverts flowing with outlet control.  Culverts A and B have unsubmerged inlets.  Culverts C and 
D have submerged inlets.  Culverts A, B and C have unsubmerged outlets. The higher of critical 
depth or tailwater depth at the outlet is used for calculating outlet velocity.  Since the barrel for 
Culvert D flows full to the exit, the full barrel area is used for calculating outlet velocity.  Each of 
these cases as well as refinements is discussed in the following sections. 

 

Figure 3.1. Outlet Control Flow Types 
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3.1.1 Submerged Outlets 
In Figure 3.1D, the tailwater controls the culvert outlet velocity.  Outlet velocity is determined 
using the full barrel area. As long as the tailwater is above the culvert, the outlet velocity can be 
reduced by increasing the culvert size. The degree of reduction is proportional to the reciprocal 
of the culvert area. Table 3.1 illustrates the amount of reduction that can be achieved. 

Table 3.1. Example Velocity Reductions by Increasing Culvert Diameter 

Culvert Diameter Change (SI) mm 914 to 1219 1219 to 1524 1524 to1829
Culvert Diameter Change (CU) ft 3 to 4 4 to 5 5 to 6 
Percent Reduction in 
Outlet Velocity (V=Q/A) 44% 35% 31% 

 

For high tailwater conditions, erosion may not be a serious problem. The designer should 
determine if the tailwater will always control or if the outlet will be unsubmerged under some 
circumstances.  Full flow can also exist when the discharge is high enough to produce critical 
depth equal to or higher than the crown of the culvert barrel.  As long as critical depth is higher 
than the crown, outlet velocity reduction can be achieved by increasing the barrel size as 
illustrated above. 

3.1.2 Unsubmerged Outlets (Critical Depth) and Tailwater 
In Figures 3.1A, B, and C, the tailwater is below the crown of the culvert.  Outlet velocity is 
determined using the flow area at the outlet that is calculated using the higher of the tailwater or 
critical depth.  For Figure 3.1B, the tailwater controls; for Figures 3.1A and 3.1C, critical depth 
controls.  (Appendix B includes useful figures for estimating critical depth for a variety of culvert 
shapes.)  If critical depth is above the culvert, the culvert will flow full and the outlet velocity can 
be reduced by increasing the culvert size as shown above.  The following example illustrates 
critical depth and velocity computation for full and partial full flow at the outlet. 

Design Example: Velocity Reduction by Increasing Culvert Size When Critical Depth 
Occurs at the Outlet (SI) 
Evaluate the reduction in velocity by replacing a 914 mm diameter culvert with a 1219 mm 
diameter culvert.  Given: 

 CMP Culvert 
 Diameter, D = 900 mm and 1200 mm  
 Q = 2.83 m3/s 
 Tailwater, TW = 0.610 m   

Solution 
Step 1. Read critical depth, yc, for 900 mm CMP from Figure B.2.  Since yc exceeds 0.900 

m, the barrel is flowing full to the end even though TW is less than 0.900 m. 

Step 2. Calculate flow area, A, and velocity, V, with the pipe flowing full. 

 A = πD2/4 = 3.14(0.900)2/4 = 0.636 m2 

 V = Q/A = 2.83/0.656 = 4.4 m/s. 
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Step 3. Read critical depth, yc, for 1200 mm CMP from Figure B.2.  The new yc = 0.95 m 
which is less than D so yc controls outlet velocity.  

Step 4. Calculate flow area, A, using Table B.2.  With y/D = 0.95/1.2 = 0.79, A/D2 = 
0.6655, and V = Q/A = 2.832/(0.6655 (1.2)2) = 2.95 m/s. 

This is a reduction of about 32 percent.  The reduction is less than shown in Table 
3.1 because the 1.2 m pipe is not flowing full at the exit.  

Design Example: Velocity Reduction by Increasing Culvert Size When Critical Depth 
Occurs at the Outlet (CU) 
Evaluate the reduction in velocity by replacing a 3-ft-diameter culvert with a 4-ft-diameter 
culvert.  Given: 

 CMP Culvert 
 Diameter, D = 3 ft and 4 ft 
 Q = 100 ft3/s 
 Tailwater, TW = 2.0 ft 

Solution 
Step 1. Read critical depth, yc, for 3 ft CMP from Figure B.2.  Since yc exceeds 3 ft, the 

barrel is flowing full to the end even though TW is less than 3 ft. 

Step 2. Calculate flow area, A, and velocity, V, with the pipe flowing full. 

 A = πD2/4 = 3.14(3)2/4 = 7.065 ft2 

 V = Q/A = 100/7.065 = 14.2 ft/s. 

Step 3. Read critical depth, yc, for 4 ft CMP from Figure B.2.  The new yc = 3.1 ft which is 
less than 4 ft so yc controls outlet velocity.  

Step 4. Calculate flow area, A, using Table B.2.  With y/D = 3.1/4 = 0.78, A/D2 = 0.6573, 
and V = Q/A = 100/0.6573(4)2 = 9.5 ft/s. 

 This is a reduction of about 33 percent.  The reduction is less than shown in Table 
3.1 because the 4 ft pipe is not flowing full at the exit. 

3.1.3 Unsubmerged Outlets (Brink Depth) 
Brink depth, yo, which is shown in Figure 3.2, is the depth that occurs at the exit of the culvert.  
The flow goes through critical depth upstream of the outlet when the tailwater elevation is below 
the critical depth elevation in the culvert.  Figures 3.3 and 3.4 may be used to determine outlet 
brink depths for rectangular and circular sections.  These figures are dimensionless rating 
curves that indicate the effect on brink depth of tailwater for culverts on mild or horizontal 
slopes.  In order to use these curves, the designer must determine normal depth or tailwater 
(TW) in the outlet channel and Q/(BD3/2) or Q/D5/2 for the culvert.  Table B.1 (Appendix B) can 
be used to estimate TW if the downstream channel can be approximated with a trapezoidal 
channel. 

For culvert shapes other than rectangular and circular, the brink depth for low tailwater can be 
approximated from the critical depth curves found in Appendix B.  Since critical depth is larger 
than brink depth, determining brink depth in this manner is not conservative, but is acceptable. 
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Figure 3.2. Definition Sketch for Brink Depth. 

When the tailwater depth is low, culverts on mild or horizontal slopes will flow with critical depth 
near the outlet. This is indicated on the ordinate of Figures 3.3 and 3.4.  As the tailwater 
increases, the depth at the brink increases at a variable rate along the Q/(BD3/2) or Q/D5/2 curve, 
until a point where the tailwater and brink depth vary linearly at the 45o line on the figures.  The 
following example illustrates the use of these figures and the effect of changing culvert size for a 
constant Q and TW. 

Design Example: Velocity Reduction by Increasing Culvert Size for Brink Depth 
Conditions (SI) 
Evaluate the reduction in velocity by replacing a 1.050 m pipe culvert with a larger pipe culvert.  
Given: 

 Q = 1.7 m3/s 
 TW = 0.610 m, constant 

Solution 
Step 1. Calculate the quantity KuQ/D5/2 and TW/D.  From Figure 3.4 determine yo/D.  (See 

following table for calculations.) 

Step 2. Calculate yc from Figure B.2 or other appropriate method.  Note that critical depth 
is greater than brink depth. 

Step 3. Determine flow area based on yo/D using Table B.2 and outlet velocity. 

 

D (m) 1.811Q/D5/2 TW/D yo/D yo (m) yc (m) A/D2 A (m2) 
V=Q/A 
(m/s) 

1.050 2.73 0.58 0.64 0.67 0.73 0.5308 0.585 2.90 
1.200 1.95 0.51 0.55 0.66 0.70 0.4426 0.637 2.67 
1.350 1.45 0.45 0.47 0.63 0.70 0.3627 0.661 2.57 
1.500 1.12 0.41 0.42 0.63 0.67 0.3130 0.704 2.41 

 

Changing culvert diameter from 1.050 to 1.500 m, a 43 percent increase, results in a decrease 
of only 17 percent in the outlet velocity. 

 

yo
Flow yo
Flow
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Figure 3.3. Dimensionless Rating Curves for the Outlets of Rectangular Culverts on Horizontal and 
Mild Slopes (Simons, 1970) 
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Figure 3.4. Dimensionless Rating Curves for the Outlets of Circular Culverts on Horizontal and 
Mild Slopes (Simons, 1970) 
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Design Example: Velocity Reduction by Increasing Culvert Size for Brink Depth 
Conditions CU) 
Evaluate the reduction in velocity by replacing a 3.5 ft pipe culvert with a larger pipe culvert.  
Given: 

 Q = 60 ft3/s 
 TW = 2 ft, constant 

Solution 
Step 1. Calculate the quantity KuQ/D5/2 and TW/D.  From Figure 3.4 determine yo/D.  (See 

following table for calculations.) 

Step 2. Calculate yc from Figure B.2 or other appropriate method.  Note that critical depth 
is greater than brink depth. 

Step 3. Determine flow area based on yo/D using Table B.2 and outlet velocity. 

 

D (ft) Q/D5/2 TW/D yo/D yo (ft) yc (ft) A/D2 A (ft2) 
V=Q/A 
(ft/s) 

3.5 2.62 0.57 0.63 2.20 2.4 0.52 6.4 9.4 
4.0 1.88 0.50 0.54 2.16 2.3 0.43 6.9 8.7 
4.5 1.40 0.44 0.46 2.10 2.3 0.35 7.1 8.5 
5.0 1.07 0.40 0.41 2.05 2.2 0.30 7.5 8.0 

 

Changing culvert diameter from 3.5 to 5 ft, a 43 percent increase, results in a decrease of only 
15 percent in the outlet velocity. 

3.2 CULVERTS ON STEEP SLOPES 
Figure 3.5 (Normann, et al., 2001) shows the types of flow for culverts on steep slopes, i.e., 
culverts flowing with inlet control. 

3.2.1 Submerged Outlets (Full Flow) 
For culvert flow types shown in Figure 3.5B and D, full flow is assumed at the outlet. The outlet 
velocity is calculated using the full barrel area.  See Section 3.1.1 for a discussion on the effect 
of increasing culvert diameter to decrease outlet velocity. 

3.2.2 Unsubmerged Outlets (Normal Depth) 
For culvert flow types shown in Figure 3.5A and C, normal flow is assumed at the culvert outlet 
and the outlet velocity is computed using Manning's Equation. Hydraulic Design Series No. 3 
(FHWA, 1961) provides charts for a direct solution of Manning’s Equation for circular and 
rectangular culverts.  Tables B.1 and B.2 (Appendix B) can also be used to determine normal 
depth for circular and rectangular culverts.  The following example illustrates how to compute 
normal depth and the effect on outlet velocity of increasing the roughness of the culvert. 
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Figure 3.5. Inlet Control Flow Types 

Design Example: Increasing Roughness to Reduce Velocity (SI) 
Evaluate increasing roughness for reducing velocity.  Given: 
 Culvert Diameter, D, = 1.524 m 
 Q = 2.832 m3/s 
 n = 0.012 for concrete and 0.024 for corrugated metal 
 So  = 0.01 m/m (1 percent slope) 

Solution 
For a smooth pipe (concrete): 

Step 1. Calculate the quantity αQn/(D8/3S1/2) = 1.49(2.832)(0.012)/((1.524)8/3(0.01)1/2) = 
0.1646 

Step 2. Calculate depth, y, from Table B.2.  y/D = 0.41, y = 0.41(1.524) = 0.625 m 

Step 3. Calculate area, A, from Table B.2.  A/D2 = 0.3032, A = 0.3032(1.524)2 = 0.704 m2 

Step 4. Calculate velocity, Vo, = Q/A = 2.832/0.704 = 4.02 m/s.  

Step 5. Read critical depth, yc, from Figure B.2.  yc = 0.9 m. 

 Since yc > y, the flow is supercritical and exit depth is normal depth. 

For a rough pipe (corrugated metal): 

Step 1. Calculate αQn/(D8/3S1/2) = 1.49(2.832)(0.024)/((1.524)8/3(0.01)1/2) = 0.3293 

Step 2. Calculate depth, y, from Table B.2.  y/D = 0.62, y = 0.62(1.524) = 0.945 m  

Step 3. Calculate area, A, from Table B.2.  A/D2 = 0.5115, A = 0.5115(1.524)2 = 1.19 m2 

Step 4. Calculate velocity, Vo, = Q/A = 2.832/1.19 = 2.38 m/s. 
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Step 5. Read critical depth, yc, from Figure B.2.  yc = 0.9 m. 

 Since yc < y, the flow is subcritical. The exit depth will be critical depth of 0.9 m and 
the exit velocity will be critical velocity of 2.41 m/s. 

Design Example: Increasing Roughness to Reduce Velocity (CU) 
Evaluate increasing roughness for reducing velocity.  Given: 
 Culvert Diameter, D = 5 ft 
 Q = 100 ft3/s 
 n = 0.012 for concrete and 0.024 for corrugated metal 
 So = 0.01 ft/ft (1 percent slope) 

Solution 
For a smooth pipe (concrete): 

Step 1. Calculate the quantity αQn/(D8/3S1/2) = 1(100)(0.012)/((5)8/3(0.01)1/2) = 0.1642 

Step 2. Calculate depth, y, from Table B.2.  y/D = 0.41, y = 0.41(5) = 2.05 ft 

Step 3. Calculate area, A, from Table B.2.  A/D2 = 0.3032, A = 0.3032(5)2 = 7.58 ft2 

Step 4. Calculate velocity, Vo, = Q/A = 100/7.58 = 13.2 ft/s.  

Step 5. Read critical depth, yc, from Figure B.2.  yc = 2.9 ft. Since yc > y, the flow is 
supercritical and exit depth is normal depth. 

For a rough pipe (corrugated metal): 

Step 1. Calculate αQn/(D8/3S1/2) = 1(100)(0.024)/((5)8/3(0.01)1/2) = 0.3283 

Step 2. Calculate depth, y, from Table B.2.  y/D = 0.62, y = 0.62(5) = 3.1 ft  

Step 3. Calculate area, A, from Table B.2.  A/D2 = 0.5115, A = 0.5115(5)2 = 12.78 ft2 

Step 4. Calculate velocity, Vo, = Q/A = 100/12.78 = 7.82 ft/s. 

Step 5. Read critical depth, yc, from Figure B.2.  yc = 2.9 ft. Since yc < y, the flow is 
subcritical.  The exit depth will be critical depth of 2.9 ft and the exit velocity will be 
critical velocity of 7.9 ft/s. 

For culverts on steep slopes, increasing the barrel size for a given discharge and slope has little 
effect on velocity.  For example, using the 1.524 m (5 ft) diameter concrete pipe in the previous 
example, a Vo = 4.02 m/s (13.2 ft/s) was calculated.  If a 2.438 m (8 ft) pipe is put at the same 
location, the velocity in the larger pipe will be 3.84 m/s (12.6 ft/s). The pipe diameter was more 
than doubled, but the velocity was only decreased by 4 percent. 

Some reduction in outlet velocity can be obtained by increasing the number of barrels carrying 
the total discharge.  Reducing the flow rate per barrel reduces velocity at normal depth if the 
flow line slopes are the same. Substituting two smaller pipes with the same depth to diameter 
ratio for a large one reduces Q per barrel to one-half the original rate and the outlet velocity to 
approximately 87 percent of that in the single-barrel design. However, this 13 percent reduction 
must be considered in light of the increased cost of the culverts. In addition, the percentage 
reduction decreases as the number of barrels is increased. For example, using four pipes 
instead of three provides only an additional 5 percent reduction in outlet velocity. A design using 
more barrels may still result in velocities requiring protection, with a large increase in the area to 
be protected. 
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For culverts on slopes greater than critical, rougher material will cause greater depth of flow and 
less velocity in equal size pipes. Velocity varies inversely with resistance; therefore, using a 
corrugated metal pipe instead of a concrete pipe will reduce velocity approximately 40 percent, 
and substitution of a structural plate corrugated metal pipe for concrete will result in about 50 
percent reduction in velocity. Barrel resistance is obviously an important factor in reducing 
velocity at the outlets of culverts on steep slopes. Chapter 7 contains detailed discussion and 
specific design information for increasing barrel resistance. 

3.2.3 Broken-back Culvert 
Substituting a "broken-slope" flow line for a steep, continuous slope can be used for controlling 
outlet velocity.  Chapter 7 contains detailed discussion and specific design information for 
designing broken-back culverts. 

 

 

 



4-1 
 

 
 

CHAPTER 4: FLOW TRANSITIONS 
A flow transition is a change of open channel flow cross section designed to be accomplished in 
a short distance with a minimum amount of flow disturbance. Five types of transitions are shown 
in Figure 4.1: cylindrical quadrant, straight line, square end, warped, and wedge.  Expansion 
transitions are illustrated, but contraction transitions would have similar geometry. 

 

Figure 4.1. Transition Types  

The most common flow transitions are the square end expansion (headwall) and the straight-
line (wingwall) transitions. Both of these transitions are considered abrupt expansions and are 
discussed in Section 4.1.  Procedures are provided for determining the velocity and depth 
exiting these standard headwall and wingwall configurations.  An apron, which is an integral part 
of these transitions, protects the channel bottom at the culvert outlet from erosion. 

Specially designed open channel flow inlet transitions (contractions) are normally not required 
for highway culverts. The economical culvert is designed to operate with an upstream 
headwater pool that dissipates the channel approach velocity and, therefore, negates the need 
for an approach flow transition. Side and slope tapered culvert inlets are designed as 
submerged transitions and do not fall within the intended limits of open channel transitions 
discussed in this chapter (see Normann, et al., 2001).  Special inlet transitions are useful when 
the conservation of energy is essential because of allowable headwater considerations such as 
an irrigation structure in subcritical flow (see Section 4.2) or where it is desirable to maintain a 
small cross section with supercritical flow in a steep channel (see Section 4.3).  Section 4.4 
addresses supercritical flow expansions. 

Expansions/transitions upstream of stilling basins are designed to decrease depth, increase 
velocity, and, therefore, increase Froude number.  These supercritical expansions include 
design of a chute and determination of the needed depression below the streambed to force an 
efficient hydraulic jump.   This topic is addressed in detail in Section 8.1. 
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4.1 ABRUPT EXPANSION 
As a jet of water, which is not laterally constrained, leaves a culvert flowing in outlet control, the 
water surface plunges or drops very rapidly (see Figure 4.2).  As the water surface drops and 
the flow spreads out, the potential energy stored as depth is converted to kinetic energy or 
velocity. Therefore, the velocity leaving the wingwall apron can be higher than the culvert outlet 
velocity and must be considered in determining outlet protection. The straight-line transition may 
also be considered an abrupt transition if the tanθ is greater than 1/3Fr, where θ is the angle 
between the wingwall and culvert axis. 

Figure 4.2. Dimensionless Water Surface Contours (Watts, 1968)  

A reasonable estimate of transition exit velocity can be obtained by using the energy equation 
and assuming the losses to be negligible. By neglecting friction losses, a higher velocity than 
actually occurs is predicted making the error on the conservative side.  

A more accurate way to determine transition exit flow conditions was developed by Watts 
(1968). Watts' experimental data has been converted to Equation 4.1 (for boxes) and Equation 
4.2 (for circular pipes) for determining VA/Vo. 

 Fr3.065.1
V
V

o

A −=  (4.1) 

 
5

o

A

gD
Q45.065.1

V
V

−=  (4.2) 

where, 
 VA = average velocity on the apron, m/s (ft/s) 
 Vo = velocity at the culvert outlet, m/s (ft/s) 
 
Also based on Watts’ work, Figures 4.3 and 4.4 relate Froude number (Fr) or Q/(gD5)0.5 to the 
average depth/brink depth ratio (yA/yo).  These equations and curves were developed for Fr from 
1 to 3, which are applicable for most abrupt culvert outlet transitions.  Normally, low tailwater is 
encountered at the culvert outlet and flow is supercritical on the outlet apron. 
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Figure 4.3. Average Depth for Abrupt Expansion Below Rectangular Culvert Outlet 

 

Figure 4.4. Average Depth for Abrupt Expansion Below Circular Culvert Outlet 
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Water cannot completely expand to fill the section between the wingwalls in an abrupt 
expansion.  The majority of the flow will stay within an area whose boundaries are defined by: 

 ( )3/Frtan 1−=θ  (4.3) 
where, 
 θ = optimum flare angle 
 
The downstream width of the apron, W2, is given by: 

 wo2 tanL2WW θ+=  (4.4) 
where, 
 W2 = width of apron at length, L, downstream from the culvert outlet, m (ft) 
 L = distance downstream from culvert outlet, m (ft) 
 θw = wingwall flare angle 
 
If θw > θ then the designer should consider reducing θw to θ.  As shown in Figure 4.2 flaring the 
wingwall more than 1/3Fr (for example 45°) provides unused space which is not completely 
filled with water. 

The design procedure for an abrupt expansion may be summarized in the following steps: 

Step 1. Determine the flow conditions at the culvert outlet: Vo and yo (see Chapter 3). 

Step 2. Calculate the Froude number: Fr = Vo /(g yo)0.5 at the culvert outlet. 

Step 3. Find the optimum flare angle, θ, using Equation 4.3.  If the chosen wingwall flare, 
θw, is greater than θ, consider reducing θw to θ. 

Step 4. Find the average depth on the apron.  For boxes, use Figure 4.3.  For pipes, use 
Figure 4.4.  The ratio yA/yo is obtained knowing the Froude number (Fr) and the 
desired distance downstream, L.  

Step 5. Find average velocity on the apron, VA, using Equation 4.1 or Equation 4.2.  VA = 
V2. 

Step 6. Calculate the downstream width, W2, using Equation 4.4. 

Step 7. Calculate downstream depth, y2. 

If θ was used in Equation 4.4, calculate y2 = Q/(VAW2).  This depth will be larger 
than yA since the flow prism is now laterally confined. 

If θw was used in Equation 4.4, calculate y2 = yA.  However, estimate the average 
flow width, WA, = Q/(VAyA).  Check that WA < W2.  If it is not, then y2 = Q/(VA W2).  

Design Example: Abrupt Expansion Transition (SI) 
Find the flow conditions (y2 and V2) at end of a 3.1 m apron. Assume negligible tailwater. Given: 

 RCB = 1524 mm x 1524 mm  
 Wingwall flare θw = 45° 
 Culvert length = 61 m 
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 So = 0.002 m/m  
 Q = 7.65 m3/s 
 yc = 1.37 m 

Solution 
Step 1. Find culvert outlet velocity from Figure 3.3 with TW/D ≈ 0. 

Need quantity1.811 Q/(BD3/2) = 1.811(7.65)/(1.524(1.524)3/2) = 4.83 

yo /D = 0.68 

yo = 0.68(1.524) = 1.036 m 

Vo = Q/A = 7.65/(1.036 (1.524)) = 4.84 m/s  

Step 2. Find culvert outlet Froude number. 

 Fr = Vo /(g yo)0.5 = 4.84/(9.81(1.036))0.5 = 1.52 

Step 3. Find θ  

tanθ = 1/3 Fr = 1/3(1.52) = 0.22 

θ = 12.37°   

Step 4. Estimate average depth. 

Apron Length/Diameter = 3.1/1.524 = 2 (Convert apron length to multiple of culvert 
diameter.) 

Use Figure 4.3 for yA/yo = 0.26 

yA = 0.26(1.036)  = 0.269 m  

Step 5. Find average velocity, VA, using Equation 4.1. 

 VA/Vo = 1.65 - 0.3Fr = 1.65 – 0.3(1.52) = 1.2 

 VA = 4.84(1.2) = 5.82 m/s 

 VA = V2 = 5.82 m/s 

Step 6. Calculate downstream width using Equation 4.4. 

θw > θ  use θw 

 W2 = Wo + 2L tan (θw) = 1.524 + 2(3.1)(1.0)  = 7.72 m  

Step 7. Calculate downstream depth. 

θw was used, therefore, 

 y2 = yA = 0.269 m 

 Check WA = Q/(VA yA) = 7.65/((5.82)(0.269)) 

 WA = 4.89 m < 7.72 m 

Compare the above solution with two alternatives using the energy equation.  

Alternative 1. Assume W2 = full width between wingwalls at the end of the apron.  

  W2 = Wo + 2L tan 45o = 7.72 m  
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A2 = W2 y2 = 7.62 y2  

V2 = Q/A2 = 7.65/(7.72y2) = 0.99/y2  

The energy balance between flow at the culvert outlet and the apron is given by: 

zo + yo + Vo
2 /(2g) = z2 + y2 + V2

2 /(2g) + Hf  

Assuming Hf = 0 and zo = z2  

1.036 + (4.84)2 /(2(9.81)) = y2 + (0.99/y2)2 /(2(9.81))  

1.036 + 1.194 = y2 + 0.050/y2
2  

2.230 = y2 + 0.050/y2
2 

y2 = 0.157 m, which is 41% lower than the original solution. 

V2 = 0.99/0.157 = 6.31 m/s which is 8% higher than the original solution. 

Alternative 2. Assume W2 is based on θ where tanθ  = 1/3 Fr.  

  W2 = Wo + 2L tan 12.41o = 1.524 + 6.2(0.22) = 2.89 m 

A2 = 2.89 y2 and V2 = 7.65/(2.89y2) = 2.65/y2 

2.230 = y2 + 0.360/y2
2  

y2 = 0.45 meters, which is 68% higher than the original solution  

V2 = 2.65/0.45 = 5.89 m/s, which is 2% higher than the original solution.  

Design Example: Abrupt Expansion Transition (CU)  
Find the flow condition (y2 and V2) at end of a 10 ft apron. Assume negligible tailwater.  Given: 

 RCB = 5 ft x 5 ft 
 Wingwall flare θw = 45° 
 Culvert length = 200 ft 
 So = 0.002 ft/ft  
 Q = 270 ft3/s 
 yc = 4.5 ft 

Solution 
Step 1. Find culvert outlet velocity from Figure 3.3 with TW/D ≈ 0  

Need quantity Q/(BD3/2) = 270/(5(5)3/2) = 4.83 

yo /D = 0.68 

yo = 0.68(5) = 3.4 ft 

Vo = Q/A = 270/ ((5) 3.4) = 15.9 ft/s  

Step 2. Find culvert outlet Froude number. 

 Fr = Vo /(g yo)0.5 = 15.9/(32.2(3.4))0.5 = 1.52 
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Step 3. Find θ  

tanθ = 1/3 Fr = 1/3(1.52) = 0.22 

θ = 12.37°   

Step 4. Estimate average depth. 

Apron Length/Diameter = 10/5 = 2  (Convert apron length to multiple of culvert 
diameter.) 

Use Figure 4.3 for yA/yo = 0.26 

yA = 0.26(3.4)  = 0.88 ft  

Step 5. Find average velocity VA using Equation 4.1. 

 VA/Vo = 1.65 - 0.3Fr = 1.65 – 0.3(1.52) = 1.2 

 VA = 15.9(1.2) = 19.1 ft/s 

 VA = V2 = 19.1 ft/s 

Step 6. Calculate downstream width. 

θw > θ  use θw 

 W2 = Wo + 2L tan (θw) = 5 + 2(10)(1.0)  = 25 ft 

Step 7. Calculate downstream depth. 

θw was used: 

 y2 = yA = 0.88 ft 

 Check WA = Q/(VA yA) = 270/((19.1)(0.88)) 

 WA = 16.1 ft < 25 ft  

Compare the above solution with two alternatives using the energy equation.  

Alternative 1. Assume W2 = full width between wingwalls at the end of the apron.  

  W2 = Wo + 2L tan 45o = 25 ft  

A2 = W2 y2 = 25 y2  

V2 = Q/A2 = 270/(25y2) = 10.8/y2  

The energy balance between flow at the culvert outlet and the apron is given by: 

zo + yo + Vo
2 /(2g) = z2 + y2 + V2

2 /(2g) + Hf 

Assuming Hf = 0 and zo = z2,  

3.4 + (15.9)2 /(2(32.2)) = y2 + (10.8/y2)2 /(2(32.2)) 

3.4 + 3.92 = y2 + 1.81/y2
2  

7.32 = y2 + 1.81/y2
2 

y2 = 0.52 ft, which is 41% lower than the original solution. 

V2 = 10.8/0.52 = 20.8 ft/s which is 10% higher than the original solution.  



4-8 
 

 
 

Alternative 2. Assume W2 is based on θ where tanθ  = 1/3 Fr.  

  W2 = Wo + 2L tan 12.41o = 5 + 20(0.22) = 9.4 ft 

A2 = 9.4 y2 and V2 = 270/(9.4y2) = 28.7/y2 

7.32 = y2 + 12.8/y2
2  

y2 = 1.48 ft, which is 68% higher than the original solution 

V2 = 28.7/1.48 = 19.4 ft/s, which is 2% higher than the original solution. 

4.2 SUBCRITICAL FLOW TRANSITION 
Subcritical flow can be transitioned into and out of highway structures without causing adverse 
effect if subcritical flow is maintained throughout the structure.  The flow cannot approach or 
pass through critical depth, yc. The range of depths to avoid is 0.9yc to 1.1yc.  In this range, 
slight changes in specific energy are reflected in large changes in depth, i.e., wave problems 
develop.  The straight line or wedge transition should be used if conservation of flow energy is 
required, for example, for an irrigation canal structure that traverses a highway.  Warped and 
cylindrical transitions are more efficient, but the additional construction cost can only be justified 
for structures where backwater is critical. 

Figure 4.5 illustrates the design problem.  Starting upstream of section 1 where some backwater 
exists due to the culvert, the flow is transitioned from a canal into and then out of the highway 
culvert. The flare angle, θw, should be 12.5°, (1:4.5 (lateral:longitudinal) or smaller) according to 
Hinds (1928).  This criterion provides a gradually varied transition that can be analyzed using 
the energy equation. 

Figure 4.5. Subcritical Flow Transition 
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As the flow transitions into the culvert, the water surface approaches yc. To minimize waves, y2 
should be equal to or greater than 1.1yc. In the culvert, the depth will increase and will reach yn if 
the culvert is long enough. In the expansion, the depth increases to yn of the downstream 
channel, Section 4. Associated with both transitions are energy losses that are proportional to 
the change in velocity head in the transitions.  The energy loss in the contraction, HLc, and in the 
expansion, HLe, are:  

 ⎟⎟
⎠
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where Cc and Ce are found from Table 4.1. 

 
Table 4.1. Transition Loss Coefficients (USACE, 1994) 

Transition Type 
Contraction 

Cc 
Expansion  

Ce 

Warped  0.10 0.20 

Cylindrical Quadrant  0.15 0.25 

Wedge  0.30 0.50 

Straight Line  0.30 0.50 

Square End  0.30 0.75 

 

The depth in the culvert, y3, can be found by trial and error using the energy equation with y4 = 
yn in the downstream channel and assuming hf2 = 0 (see Figure 4.5).  The streambed elevation 
is equal to z.  Writing the energy equation between sections 3 and 4 yields: 

z4 + y4 + V4
2 /(2g) + HLe + Hf2  =  z3 + y3 + V3

2 /(2g)  

Assuming Hf2 ≅ 0, V3  = Q/(W3 y3), V4  = Q/(W4 y4), and substituting Equation 4.6 gives: 

z4 + y4 +V4
2 /(2g) +Ce (V3

2 /(2g) - V4
2 /(2g))  = z3 + y3 + V3

2 /(2g)  

z4 + y4 + (1 - Ce) V4
2 /(2g)  = z3 + y3 + (1 - Ce) v3

2 /(2g)  

           z4 - z3 + y4 + (1 - Ce) (Q/(W4 y4))2 /(2g)  = y3 + (1 - Ce) (Q/(W3 y3))2 /(2g) (4.7) 
 
After known values are substituted, Equation 4.7 reduces to  

C1 = y3 + C2 /y3
2 

which can be solved by trial and error.  
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In a similar manner, y1 can be determined by assuming y2 = y3 and hf1 = 0.  

z2 + y2 + V2
2 /(2g) + HLC + Hf1  = z1 + y1 + V1

2 /(2g)  
 
z2 + y2 +V2

2 /(2g) +Cc (V2
2 /(2g) - V1

2 /(2g))  = z1 + y1 + V1
2 /(2g)  

 
z2 + y2 + (1 + Cc) V2

2 /(2g)  = z1 + y1 + (1 +Cc) V1
2 /(2g)  

 
z2 - z1 + y2 + (1 + Cc) (Q/(W2 y2))2 /(2g)  = y1 + (1 + Cc) (Q/(W1 y1))2 /(2g) (4.8) 
 

These depths are approximate because friction loss was neglected.  They should be checked 
by computing the water surface profile using a standard step method computer program, like 
HEC-RAS (USACE, 2002). 

4.3 SUPERCRITICAL FLOW CONTRACTION 
The design of transitions for supercritical flow is difficult to manage without causing a hydraulic 
jump or other surface irregularity. Therefore, the full flow area should be maintained if at all 
possible. A smooth transition of supercritical flow requires a structure longer than typical 
wingwalls and should not be attempted unless the structure is of primary importance. A model 
study should be used to determine transition geometry where a hydraulic jump is not desired. If 
a hydraulic jump is acceptable, the inlet structure can be designed as shown in Figure 4.6. This 
design, which must be accomplished in a rectangular channel, yields a long transition. The 
design approach outlined below is from USACE (1994) and Ippen (1951). 

Figure 4.6. Supercritical Inlet Transition for Rectangular Channel (USACE, 1994) 
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The length, L, is defined by the channel contraction, W1 -W3, and the wall deflection angle, θw.  

 L = (W1 -W3)/(2Tanθw)  (4.9) 
 
To minimize surface disturbances, L should also equal L1 + L2 where  

 L1 = W1 /(2Tan β1) (4.10) 
 
 L2 = W3 / (2Tan (β2 - θw)) (4.11) 
 

 
( )

1sinFr81tan2

3sinFr81tan
tan

1
22

11
2
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22

11
w

−β++β

−β+β
=θ  (4.12) 

 
The transition design requires a trial θw that fixes L as defined by Equation 4.9.  This length is 
then checked by finding L1 + L2.  To determine L1, β1 is found from Equation 4.12 by trial and 
error and then substituted into Equation 4.10.  L2 is calculated from Equation 4.11 with β2 
determined from Equation 4.12 by substituting β2 for β1 and Fr1 for Fr2.  To find Fr2 first 
calculate: 

 ( )1sinFr81
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If the trial θw was chosen correctly the total length, L, will equal the sum of L1 and L2.  If not, 
choose another trial θw and repeat the process until the lengths match.  The depth, y3, and Fr3 in 
the culvert can now be calculated using Equation 4.13 and Equation 4.14 if the subscripts are 
increased by 1; i.e., y2/y1 is now y3/y2.  The above design approach assumes that the width of 
the channel (W1) and the width of the culvert (W3) are known and L is found by trial and error.  If 
W3 has to be determined, the design problem is complicated by another trial and error process. 

4.4 SUPERCRITICAL FLOW EXPANSION 
Supercritical flow expansion design has, in part, been discussed in Section 4.1.  The procedure 
outlined in Section 4.1 should be used to determine apron or expansion flow conditions if the 
culvert exit Froude number, Fr, is less than 3, if the location where the flow conditions are 
desired is within 3 culvert diameters of the outlet and So is less than 10%.  For expansions 
outside these limits, the energy equation can be used to determine flow conditions leaving the 
transition.  Normally, these parameters would then be used as the input values for a basin 
design. 
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CHAPTER 5: ESTIMATING SCOUR AT CULVERT OUTLETS 
This chapter presents a method for predicting local scour at the outlet of culverts based on 
discharge, culvert shape, soil type, duration of flow, culvert slope, culvert height above the bed, 
and tailwater depth. In addition to this local scour, channel degradation (discussed in Chapter 2) 
should be evaluated. The procedures in this chapter provide a good method for estimating the 
extent of the local scour hole. The designer should also review maintenance history, site 
reconnaissance and data on soils, flows, and flow duration to determine the best estimate of the 
potential scour hazard at a culvert outlet.  

The prediction equations presented in this chapter are intended to serve along with field 
reconnaissance as guidance for determining the need for energy dissipators at culvert outlets. 
The designer should remember that the equations do not include long-term channel degradation 
of the downstream channel. The equations are based on tests that were conducted to determine 
maximum scour for the given condition and therefore represent what might be termed worst-
case scour geometries. The equations were derived from tests conducted by the Corps of 
Engineers (Bohan, 1970) and Colorado State University (Abt, et al., 1985; Abt, et al., 1987; Abt, 
1996; Doehring, 1994; Donnell and Abt, 1983; Ruff, et al., 1982).  

5.1 COHESIONLESS SOILS 
The general expression for determining scour geometry in a cohesionless soil at the culvert 
outlet is:  
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where,  
 hs = depth of scour, m (ft) 
 Ws = width of scour, m (ft) 
 Ls = length of scour, m (ft) 
 Vs = volume of scour, m3 (ft3) 
 Rc = hydraulic radius at the end of the culvert (assuming full flow) 
 Q = discharge, m3/s (ft3/s) 
 g = acceleration of gravity, 9.81 m/s2 (32.2 ft /s2) 
 t = time in minutes  
 σ =   (D84/D16)0.5, material standard deviation  
 α, β, θ are coefficients, see Table 5.1  
 Cs = slope correction coefficient, see Table 5.2 
 Ch = drop height adjustment coefficient, see Table 5.3 
 
The bed-material grain-size distribution is determined by performing a sieve analysis (ASTM 
DA22-63).  The values of D84 and D16 are extracted from the grain size distribution.  If σ <1.5, 
the material is considered to be uniform.  If σ >1.5, the material is classified as graded.  Typical 
values for σ are 2.10 for gravel and 1.87 for sand. 
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5.1.1 Scour Hole Geometry 
Investigators Bohan (1970) and Fletcher and Grace (1972) indicate that the scour hole 
geometry varies with tailwater conditions with the maximum scour geometry occurring at 
tailwater depths less than half the culvert height (Bohan, 1970); and that the maximum depth of 
scour, hs, occurs at a location approximately 0.4 Ls downstream of the culvert outlet (Fletcher 
and Grace, 1972) where Ls is the length of scour.  The α, β, θ coefficients to determine scour 
geometry are shown in Table 5.1. 

 

Table 5.1. Coefficients for Culvert Outlet Scour in Cohesionless Soils 

 α β θ 

Depth, hS 2.27 0.39 0.06 

Width, WS 6.94 0.53 0.08 

Length, LS 17.10 0.47 0.10 

Volume, VS 127.08 1.24 0.18 

 

5.1.2 Time of Scour 
The time of scour is estimated based upon knowledge of peak flow duration. Lacking this 
knowledge, it is recommended that a time of 30 minutes be used in Equation 5.1.  The tests 
indicate that approximately 2/3 to 3/4 of the maximum scour depth occurs in the first 30 minutes 
of the flow duration.  The exponents for the time parameter in Table 5.1 reflect the relatively flat 
part of the scour-time relationship (t > 30 minutes) and are not applicable for the first 30 minutes 
of the scour process. 

5.1.3 Headwalls 
Installation of a perpendicular headwall at the culvert outlet moves the scour hole downstream 
(Ruff, et al., 1982).  However, the magnitude of the scour geometry remains essentially the 
same as for the case without the headwall.  If the culvert is installed with a headwall, the 
headwall should extend to a depth equal to the maximum depth of scour. 

5.1.4 Drop Height 
The scour hole dimensions will vary with the height of the culvert invert above the bed.  The 
scour hole shape becomes deeper, wider, and shorter, as the culvert invert height is increased 
(Doehring, 1994).  The coefficients, Ch, are derived from tests where the pipe invert is adjacent 
to the bed. In order to compensate for an elevated culvert invert, Equation 5.1 can be modified 
to where Ch, expressed in pipe diameters, is a coefficient for adjusting the compound scour hole 
geometry.  The values of Ch are presented in Table 5.2. 
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Table 5.2. Coefficient Ch for Outlets above the Bed 

Hd
1 Depth Width Length Volume 

0 1.00 1.00 1.00 1.00 

1 1.22 1.51 0.73 1.28 

2 1.26 1.54 0.73 1.47 

4 1.34 1.66 0.73 1.55 
1Hd is the height above bed in pipe diameters. 

5.1.5 Slope 
The scour hole dimensions will vary with culvert slope. The scour hole becomes deeper, wider, 
and longer as the slope is increased (Abt, 1985). The coefficients presented are derived from 
tests where the pipe invert is adjacent to the bed. In order to compensate for a sloped culvert, 
Equation 5.1 can be adjusted with a coefficient, Cs, adjusting for scour hole geometry.  The 
values of Cs are shown in Table 5.3. 

  

Table 5.3. Coefficient Cs for Culvert Slope 

Slope % Depth Width Length Volume 

0 1.00 1.00 1.00 1.00 

2 1.03 1.28 1.17 1.30 

5 1.08 1.28 1.17 1.30 

>7 1.12 1.28 1.17 1.30 

5.1.6 Design Procedure 
Step 1. Determine the magnitude and duration of the peak discharge.  Express the 

discharge in m3/s (ft3/s) and the duration in minutes. 

Step 2. Compute the full flow hydraulic radius, Rc 

Step 3. Compute the culvert invert height above the bed ratio, Hd, for slopes > 0%. 

 
Diameter

HeightDrop
Hd =  

Step 4. Determine scour coefficients from Table 5.1 and coefficients for culvert drop 
height, Ch, from Table 5.2 and slope, Cs, from Table 5.3. 

Step 5. Determine the material standard deviation, σ = (D84/D16)0.5 from a sieve analysis of 
a soil sample at the proposed culvert location. 

Step 6. Compute the scour hole dimensions using Equation 5.1. 

Step 7. Compute the location of maximum scour, Lm = 0.4 Ls. 
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Design Example: Estimating Scour Hole Geometry in a Cohesionless Soil (SI) 
Determine the scour geometry-maximum depth, width, length and volume of scour.  Given: 
 D = 457 mm CMP Culvert  
 S = 2% 
 Drop height = 0.914 m from channel degradation 
 Q = 0.764 m3/s  
 σ = 1.87 for downstream channel which is graded sand 

Solution 
Step 1. Determine the magnitude and duration of the peak discharge: Q = 0.764 m3/s and 

the peak flow duration is estimated to be 30 minutes.  

Step 2. Compute the full flow hydraulic radius, Rc:  

 m114.0
4
457.0

4
DRc ===  

Step 3. Compute the height above bed ratio, Hd, for slopes > 0%: 

  2
457.0
914.0

Diameter
HeightDrop

Hd ===  

Step 4. The Coefficients of scour obtained from Table 5.1, Table 5.2, and Table 5.3 are:  

   α  β  θ  Cs Ch 

Depth of scour 2.27 0.39 0.06 1.03 1.26 

Width of scour 6.94 0.53 0.08 1.28 1.54 

Length of scour 17.10 0.47 0.10 1.17 0.73 

Volume of scour 127.08 1.24 0.18 1.30 1.47 

 

Step 5. Determine the material standard deviation.  σ = 1.87 

Step 6. Compute the scour hole dimensions using Equation 5.1: 
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 Similarly, 
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⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=  

Step 7. Compute the location of maximum scour. Lm = 0.4 Ls = 0.4 (7.06) = 2.82 m 
downstream of the culvert outlet.  

Design Example: Estimating Scour Hole Geometry in a Cohesionless Soil (CU) 
Determine the scour geometry-maximum depth, width, length and volume of scour.  Given: 
 D = 18 in CMP Culvert  
 S = 2% 
 Drop height = 3 ft from channel degradation 
 Q = 27 ft3/s  
 σ = 1.87 for downstream channel which is graded sand 

Solution 
Step 1. Determine the magnitude and duration of the peak discharge: Q = 27 ft3/s and the 

peak flow duration is estimated to be 30 minutes.  

Step 2. Compute the full flow hydraulic radius, Rc:  

 ft375.0
4
5.1

4
DRc ===  

Step 3. Compute the height above bed ratio, Hd, for slopes > 0% 

  2
5.1

3
Diameter

HeightDrop
Hd ===  

Step 4. The coefficients of scour obtained from Table 5.1, Table 5.2, and Table 5.3 are:  

   α  β  θ  Cs Ch 
Depth of scour 2.27 0.39 0.06 1.03 1.26 
Width of scour 6.94 0.53 0.08 1.28 1.54 
Length of scour 17.10 0.47 0.10 1.17 0.73 
Volume of scour 127.08 1.24 0.18 1.30 1.47 

 

Step 5. Determine the material standard deviation. σ = 1.87 

Step 6. Compute the scour hole dimensions using Equation 5.1: 
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Step 7. Compute the location of maximum scour. Lm = 0.4 Ls = 0.4 (23.2) = 9.2 ft 
downstream of the culvert outlet.  

5.2 COHESIVE SOILS 
If the soil is cohesive in nature, Equation 5.2 should be used to determine the scour hole 
dimensions.  Shear number expressions, which relate scour to the critical shear stress of the 
soil, were derived to have a wider range of applicability for cohesive soils besides the one 
specific sandy clay that was tested.  The sandy clay tested had 58 percent sand, 27 percent 
clay, 15 percent silt, and 1 percent organic matter; had a mean grain size of 0.15 mm (0.0059 
in); and had a plasticity index, PI, of 15.  The shear number expressions for circular culverts are:  
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and for other shaped culverts: 
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where,  
 D = culvert diameter, m (ft) 
 ye = equivalent depth (A/2)1/2, m (ft) 
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 A = cross-sectional area of flow, m2 (ft2) 
 V = mean outlet velocity, m/s (ft/s)  
 τc = critical tractive shear stress, N/m2 (lb/ft2) 
 ρ = fluid density of water, 1000 kg/m3 (1.94 slugs/ft3) 
   (ρV2)/τc is the modified shear number 
 αe = αe = α/0.63 for hs, Ws, and Ls and αe = α/(0.63)3  for Vs 
 α, β, θ, and αe are coefficients found in Table 5.4 
 
Use 30 minutes for t in Equation 5.2 and Equation 5.3 if it is not known. 

The critical tractive shear stress is defined in Equation 5.4 (Dunn, 1959; Abt et al., 1996).  
Equations 5.2 and 5.3 should be limited to sandy clay soils with a plasticity index of 5 to 16. 

 τc = 0.001 (Sν + αu) tan (30 + 1.73 PI) (5.4) 
where, 
 τc = critical tractive shear stress, N/m2 (lb/ft2) 
 Sν = the saturated shear strength, N/m2 (lb/ft2) 
 αU = unit conversion constant, 8630 N/m2 (SI), 180 lb/ft2 (CU) 
 PI = Plasticity Index from the Atterberg limits 
 

 Table 5.4. Coefficients for Culvert Outlet Scour in Cohesive Soils 

 α β θ αe 

Depth, hS 0.86 0.18 0.10 1.37 

Width, WS 3.55 0.17 0.07 5.63 

Length, LS 2.82 0.33 0.09 4.48 

Volume, VS 0.62 0.93 0.23 2.48 

 

The design procedure for estimating scour in cohesive materials with PI from 5 to 16 may be 
summarized as follows. 

Step 1. Determine the magnitude and duration of the peak discharge, Q. Express the 
discharge in m3/s (ft3/s) and the duration in minutes. 

Step 2. Compute the culvert average outlet velocity, V.  

Step 3. Obtain a soil sample at the proposed culvert location.  

a. Perform Atterberg limits tests and determine the plasticity index (PI) using 
ASTM D423-36. 

b. Saturate a sample and perform an unconfined compressive test (ASTM 
D211-66-76) to determine the saturated shear stress, Sν. 

Step 4. Compute the critical tractive shear strength, τc, from Equation 5.4. 
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Step 5. Compute the modified shear number, Snm, at the peak discharge and height above 
bed ratio, Hd, for slopes > 0%. 

 
c

2

nm
VS
τ

ρ
=  and 

Diameter
HeightDrop

Hd =  

Step 6. Determine scour coefficients from Table 5.4 and, if appropriate, coefficients for 
culvert drop height, Ch, from Table 5.2 and slope, Cs, from Table 5.3. 

Step 7. Compute the scour hole dimensions using Equation 5.2 for circular culverts and 
Equation 5.3 for other shapes. 

Step 8. Compute the location of maximum scour. Lm = 0.4 Ls. 

Design Example: Estimating Scour Hole Geometry in a Cohesive Soil (SI) 
Determine the scour geometry: maximum depth, width, length and volume of scour.  Given: 
 D = 610 mm CMP Culvert  
 S = 0% 
 Drop height = 0 m 
 Q = 1.133 m3/s  
 PI = 12 and Sv = 23,970 N/m2 for downstream channel 

Solution 
Step 1. Determine the magnitude and duration of the peak discharge: Q = 1.133 m3/s and 

the peak flow duration is estimated to be 30 minutes.  

Step 2. Compute the culvert average outlet velocity, V: 

 s/m88.3
4/)61.0(14.3

133.1
A
QV 2 ===  

Step 3. Obtain a soil sample at the proposed culvert location:  The sandy-clay soil was 
tested and found to have: 

a. Plasticity index (PI) = 12 

b. Saturated shear stress, Sν = 23,970 N/m2.  

Step 4. Compute the critical tractive shear strength, τc, from Equation 5.4. 

 τc = 0.001 (Sν + αu) tan (30 + 1.73 PI) 

 τc = 0.001 (23970 + 8630) tan [30 + 1.73(12)] 

 τc = 0.001 (32600) tan (50.76) = 39.9 N/m2  

Step 5. Compute the modified shear number, Snm at the peak discharge and height above 
bed, Hd, ratio for slopes > 0%. 

 3.377
9.39

)88.3(1000VS
2

c

2

nm ==
τ

ρ
=  

Step 6. Determine scour coefficients from Table 5.4 and coefficients for culvert drop 
height, Ch, from Table 5.2 and slope from Table 5.3:  Ch = 1 and Cs = 1 
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 α  β  θ  

Depth 0.86 0.18 0.10 

Width 3.55 0.17 0.07 

Length 2.82 0.33 0.09 

Volume 0.62 0.93 0.23 

 

Step 7. Compute the scour hole dimensions using Equation 5.2 for circular culverts: 
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 hs = (1.0)(1.0)(0.86)(377.3)0.18(0.09)0.10(0.61) = 1.2 m  

 Similarly, 

 Ws = (1.0)(1.0)(3.55)(377.3)0.17(0.09)0.07(0.61) = 5.02 m 

 Ls = (1.0)(1.0)(2.82)(377.3)0.33(0.09)0.09(0.61) = 9.81 m 

 Vs = (1.0)(1.0)(0.62)(377.3)0.93(0.09)0.23(0.61)3 = 20.15 m3 

Step 8. Compute the location of maximum scour. Lm = 0.4 Ls = 0.4(9.81) = 3.92 m 
downstream of culvert outlet. 

Design Example: Estimating Scour Hole Geometry in a Cohesive Soil (CU) 
Determine the scour geometry: maximum depth, width, length and volume of scour.  Given: 
 D = 24 in CMP Culvert  
 S = 0% 
 Drop height = 0 ft 
 Q = 40 ft3/s  
 PI = 12 and Sv = 500 lb/ft2 for downstream channel  

Solution 
Step 1. Determine the magnitude and duration of the peak discharge: Q = 40 ft3/s and the 

peak flow duration is estimated to be 30 minutes.  

Step 2. Compute the culvert average outlet velocity, V: 

 s/ft74.12
4/)2(14.3

40
A
QV 2 ===  

Step 3. Obtain a soil sample at the proposed culvert location:  The sandy-clay soil was 
tested and found to have: 

a. Plasticity index, PI = 12 
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b. Saturated shear stress, Sν = 500 lb/ft2.  

Step 4. Compute the critical tractive shear strength, τc, from Equation 5.4. 

 τc = 0.001 (Sν + αu) tan (30 + 1.73 PI) 

 τc = 0.001 (500 + 180) tan [30 + 1.73(12)] 

 τc = 0.001 (680) tan (50.76) = 0.83 lb/ft2  

Step 5. Compute the modified shear number, Snm, at the peak discharge and height above 
bed ratio, Hd, for slopes > 0%. 

 4.379
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Step 6. Determine scour coefficients from Table 5.4 and coefficients for culvert drop 
height, Ch, from Table 5.2 and slope from Table 5.3:  Ch = 1 and Cs = 1 

 α  β  θ  
Depth 0.86 0.18 0.10 
Width 3.55 0.17 0.07 
Length 2.82 0.33 0.09 
Volume 0.62 0.93 0.23 

 

Step 7. Compute the scour hole dimensions using Equation 5.2 for circular culverts: 
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 hs = (1.0)(1.0)(0.86)(379.4)0.18(0.09)0.10(2) = 3.9 ft 

 Similarly, 

 Ws = (1.0)(1.0)(3.55)(379.4)0.17(0.09)0.07(2) = 16.5 ft 

 Ls = (1.0)(1.0)(2.82)(379.4)0.33(0.09)0.09(2) = 32.2 ft 

 Vs = (1.0)(1.0)(0.62)(379.4)0.93(0.09)0.23(2)3 = 713.7 ft3 

Step 8. Compute the location of maximum scour.  Lm = 0.4 Ls = 0.4(32.2) = 12.9 ft 
downstream of culvert outlet. 
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CHAPTER 6: HYDRAULIC JUMP 
The hydraulic jump is a natural phenomenon that occurs when supercritical flow is forced to 
change to subcritical flow by an obstruction to the flow.  This abrupt change in flow condition is 
accompanied by considerable turbulence and loss of energy.  The hydraulic jump can be 
illustrated by use of a specific energy diagram as shown in Figure 6.1.  The flow enters the jump 
at supercritical velocity, V1, and depth, y1, that has a specific energy of E = y1 + V1

2/(2g).  The 
kinetic energy term, V2/(2g), is predominant.  As the depth of flow increases through the jump, 
the specific energy decreases.  Flow leaves the jump area at subcritical velocity with the 
potential energy, y, predominant. 

 

Figure 6.1. Hydraulic Jump 

6.1 TYPES OF HYDRAULIC JUMP 
When the upstream Froude number, Fr, is 1.0, the flow is at critical and a jump cannot form.  
For Froude numbers greater than 1.0, but less than 1.7, the upstream flow is only slightly below 
critical depth and the change from supercritical to subcritical flow will result in only a slight 
disturbance of the water surface. On the high end of this range, Fr approaching 1.7, the 
downstream depth will be about twice the incoming depth and the exit velocity about half the 
upstream velocity. 

The Bureau of Reclamation (USBR, 1987) has related the jump form and flow characteristics to 
the Froude number for Froude numbers greater than 1.7, as shown in Figure 6.2.  When the 
upstream Froude number is between 1.7 and 2.5, a roller begins to appear, becoming more 
intense as the Froude number increases. This is the prejump range with very low energy loss. 
The water surface is quite smooth, the velocity throughout the cross section uniform, and the 
energy loss in the range of 20 percent. 
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Figure 6.2. Jump Forms Related to Froude Number (USBR, 1987)  

An oscillating form of jump occurs for Froude numbers between 2.5 and 4.5. The incoming jet 
alternately flows near the bottom and then along the surface. This results in objectionable 
surface waves that can cause erosion problems downstream from the jump.  

A well balanced and stable jump occurs where the incoming flow Froude number is greater than 
4.5. Fluid turbulence is mostly confined to the jump, and for Froude numbers up to 9.0 the 
downstream water surface is comparatively smooth. Jump energy loss of 45 to 70 percent can 
be expected.  

With Froude numbers greater than 9.0, a highly efficient jump results but the rough water 
surface may cause downstream erosion problems.  
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The hydraulic jump commonly occurs with natural flow conditions and with proper design can be 
an effective means of dissipating energy at hydraulic structures.  Expressions for computing the 
before and after jump depth ratio (conjugate depths) and the length of jump are needed to 
design energy dissipators that induce a hydraulic jump.  These expressions are related to 
culvert outlet Froude number, which for many culverts falls within the range 1.5 to 4.5. 

6.2 HYDRAULIC JUMP IN HORIZONTAL CHANNELS 
The hydraulic jump in any shape of horizontal channel is relatively simple to analyze (Sylvester, 
1964).  Figure 6.3 indicates the control volume used and the forces involved.  Control section 1 
is before the jump where the flow is undisturbed, and control section 2 is after the jump, far 
enough downstream for the flow to be again taken as parallel.  Distribution of pressure in both 
sections is assumed hydrostatic.  The change in momentum of the entering and exiting stream 
is balanced by the resultant of the forces acting on the control volume, i.e., pressure and 
boundary frictional forces.  Since the length of the jump is relatively short, the external energy 
losses (boundary frictional forces) may be ignored without introducing serious error.  Also, a 
channel may be considered horizontal up to a slope of 18 percent (10 degree angle with the 
horizontal) without introducing serious error.  The momentum equation provides for solution of 
the sequent depth, y2, and downstream velocity, V2.  Once these are known, the internal energy 
losses and jump efficiency can be determined by application of the energy equation. 

  

Figure 6.3. Hydraulic Jump in a Horizontal Channel  

The general form of the momentum equation can be used for the solution of the hydraulic jump 
sequent-depth relationship in any shape of channel with a horizontal floor.  Defining a 
momentum quantity as, M = Q2/(gA) + AY and recognizing that momentum is conserved through 
a hydraulic jump, the following can be written:  

 Q2/(gA1) + A1Y1 = Q2/(gA2) + A2Y2  (6.1) 
where, 
 Q = channel discharge, m3/s (ft3/s) 
 A1,A2 = cross-sectional flow areas in sections 1 and 2, respectively, m2 (ft2) 
 Y1,Y2 = depth from water surface to centroid of cross-section area, m (ft) 
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The depth from the water surface to the centroid of the cross-section area can be defined as a 
function of the channel shape and the maximum depth:  Y = Ky.  In this relationship, K is a 
parameter representing the channel shape while y is the maximum depth in the channel.  
Substituting this quantity into Equation 6.1 and rearranging terms yields: 

A1 K1 y1 - A2 K2 y2 = (1/A2 - 1/A1)Q2/g 

Rearranging and using Fr1
2 = V1

2 /(gy1) = Q2 /(A1
2 gy1), gives: 

A1 K1 y1 - A2 K2 y2 = Fr1
2 A1 y1 (A1 /A2 -1). 

Dividing this by A1 y1 provides: 

 K2 A2 y2 /(A1 y1) - K1 = Fr1
2 (1 - A1 /A2)  (6.2) 

 
This is a general expression for the hydraulic jump in a horizontal channel.  The constants K1 
and K2 and the ratio A1/A2 have been determined for rectangular, triangular, parabolic, circular, 
and trapezoidal shaped channels by Sylvester (1964).  The relationships for rectangular and 
circular shapes are summarized in the following sections. 

6.2.1 Rectangular Channels 
For a rectangular channel, substituting K1 = K2 = 1/2 and A1 /A2 = y1 /y2 into Equation 6.2, the 
expression becomes: 

y2
2 /y1

2 -1 = 2Fr1
2 (1 - y1 /y2) 

If y2 /y1 = J, the expression for a hydraulic jump in a horizontal, rectangular channel becomes 
Equation 6.3, which is plotted as Figure 6.4.  

  ⎟
⎠
⎞

⎜
⎝
⎛ −=−

J
11Fr21J 2

1
2   (6.3) 

 
The length of the hydraulic jump can be determined from Figure 6.5.  The jump length is 
measured to the downstream section at which the mean water surface attains the maximum 
depth and becomes reasonably level.  Errors may be introduced in determining length since the 
water surface is rather flat near the end of the jump.  This is undoubtedly one of the reasons so 
many empirical formulas for determining jump length are found in the literature.  The jump 
length for rectangular basins has been extensively studied. 

Stilling basin design is a common application for hydraulic jumps in rectangular channels (see 
Chapter 8).  Free jump basins can be designed for any flow conditions; but because of 
economic and performance characteristics they are, in general, only employed in the lower 
range of Froude numbers. Flows with Froude numbers below 1.7 may not require stilling basins 
but may require protection such as riprap and wingwalls and apron.  For Froude numbers 
between 1.7 and 2.5, the free jump basin may be all that is required.  In this range, loss of 
energy is less than 20 percent; the conjugate depth is about three times the incoming flow 
depth; and, the length of basin required is less than about 5 times the conjugate depth. Many 
highway culverts operate in this flow range.  At higher Froude numbers, the use of baffles and 
sills make it possible to reduce the basin length and stabilize the jump over a wider range of 
flow situations. 
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Figure 6.4. Hydraulic Jump - Horizontal, Rectangular Channel 

 

Figure 6.5. Length of Jump for a Rectangular Channel 
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Design Example: Hydraulic Jump in a Horizontal, Rectangular Channel (SI)  
Determine the height and length of a hydraulic jump in a box culvert with a 2.134 m span.  Also, 
estimate the range of flows for which a jump would be triggered as discharged to a trapezoidal 
channel.  Given: 

 S = 0.2% 
 Q = 11.33 m3/s  
 V1 = 5.79 m/s  
 y1 = 0.914 m  
 Fr = 1.9  
For the trapezoidal channel: 
 B = 3.04 m 
 Side slopes = 1V:2H 
 n = 0.03 
 S = 0.04% 

Solution 
Step 1. Find the conjugate depth from Figure 6.4. 

 J = y2 /y1 = 2.2 

 y2 = 2.2(0.914) = 2.011 m 

Step 2. Find the Length of jump from Figure 6.5 

 L /y1 = 9.0  

 L = 0.914(9.0) = 8.226 m  

Step 3. Calculate the after jump velocity  

 V2 = Q/A2 = 11.33/ [2.134(2.011)] = 2.64 m/s  

 Velocity reduction is (5.79 - 2.64)/5.79 = 54.4%. 

Step 4. Develop a Q vs. stage curve for the downstream trapezoidal channel using either 
HDS No. 3 (FHWA, 1961) or Table B.1 to determine the relationship with 
conjugate depth (see below). 

Step 5. Review sequent depth requirements.  The plot shows that excess tailwater depth 
is available in the downstream channel for discharges up to approximately 13.6 
m3/s.  For larger discharges, the jump would begin to move downstream. The 
assumption in this example is that normal depth in the downstream channel is 
obtained as soon as the flow leaves the culvert.  In a real case, a stilling basin (see 
Section 8.1) will normally be required to generate enough tailwater depth to cause 
a jump to occur or the culvert will need to be designed as a broken-back culvert 
(see Chapter 7). 
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Normal Channel Depth - Conjugate Depth Relationship 

Design Example: Hydraulic Jump in a Horizontal, Rectangular Channel (CU)  
Determine the height and length of a hydraulic jump in a box culvert with a 7 ft span.  Also, 
estimate the range of flows for which a jump would be triggered as discharged to a trapezoidal 
channel.  Given: 

 S = 0.2% 
 Q = 400 ft3/s  
 V1 = 19 ft/s  
 y1 = 3.0 ft  
 Fr = 1.9  
For the trapezoidal channel: 
 B = 10 ft 
 Side slopes = 1V:2H 
 n = 0.03 
 S = 0.04% 

Solution 
Step 1. Find the conjugate depth in a rectangular basin from Figure 6.4. 

 J = y2 /y1 = 2.2 

 y2 = 2.2(3.0) = 6.6 ft 

Step 2. Find the Length of jump from Figure 6.5 

 L /y1 = 9.0  

 L = 3.0(9.0) = 27 ft  
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Step 3. Calculate the after jump velocity  

 V2 = Q/A2 = 400/ [7(6.6)] = 8.7 ft/s  

 Velocity reduction is (19 - 8.7)/19 = 54.2%.  

Step 4. Develop a Q vs. stage curve for the downstream trapezoidal channel using either 
HDS 3 (FHWA, 1961) or Table B.1 to determine the relationship with conjugate 
depth (see below). 

Step 5. Review sequent depth requirements.  The plot shows that excess tailwater depth 
is available in the downstream channel for discharges up to approximately 480 
ft3/s.  For larger discharges, the jump would begin to move downstream.  The 
assumption in this example is that normal depth in the downstream channel is 
obtained as soon as the flow leaves the culvert.  In a real case, a stilling basin (see 
Section 8.1) will normally be required to generate enough tailwater depth to cause 
a jump to occur or the culvert will need to be designed as a broken-back culvert 
(see Chapter 7). 

 

Normal Channel Depth - Conjugate Depth Relationship 

6.2.2 Circular Channels 
Circular channels are divided into two cases: where y2 is greater than the diameter, D, and 
where y2 is less than D. For y2 less than D:  

 (K2 y2 C2 /(y1C1))  - K1 = Fr1
2 (1 - C1 /C2)  (6.4) 

 
For y2 greater than or equal to D:  

 (y2C2/(y1C1)) - 0.5 (C2 D/(C1 y1)) - K1 = Fr1
2 (1 - C1/C2) (6.5) 

 
C and K are functions of y/D and may be evaluated from the Table 6.1. 
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Table 6.1. Coefficients for Horizontal, Circular Channels 

Y/D 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
K 0.410 0.413 0.416 0.419 0.424 0.432 0.445 0.462 0.473 0.500
C 0.041 0.112 0.198 0.293 0.393 0.494 0.587 0.674 0.745 0.748
C’ 0.600 0.800 0.917 0.980 1.000 0.980 0.917 0.800 0.600  

 

In Equations 6.4 and 6.5, Fr1 is computed using the maximum depth in the channel.  Figure 6.6 
may be used as an alternative to these equations. 

Alternatively, the designer may calculate a Froude number based on hydraulic depth, Frm.= 
V/(gym)1/2.  Where ym = (C/C')D or ym = A/T.  For the first expression, C’ is taken from Table 6.1.  
For the second expression, A is the cross-sectional area of flow and T is the water surface 
width.   Figure 6.7 is the design chart for horizontal, circular channels using the hydraulic depth 
in computing the Froude number. 

The length of the hydraulic jump is generally measured to the downstream section at which the 
mean water surface attains the maximum depth and becomes reasonably level. The jump 
length in circular channels is determined using Figure 6.8.  This curve is for the case where y2 is 
less than D. For the case where y2 is greater than D, the length should be taken as seven times 
the difference in depths, i.e., LJ = 7(y2 -y1). 

 

Figure 6.6. Hydraulic Jump - Horizontal, Circular Channel (actual depth) 
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Figure 6.7. Hydraulic Jump - Horizontal, Circular Channel (hydraulic depth) 

 

Figure 6.8. Jump Length Circular Channel with y2 < D 



6-11 
 

 
 

 

Design Example: Hydraulic Jump in a Horizontal, Circular Channel (SI)  
Determine the height and length of a hydraulic jump in an RCP culvert with a 2.134 m diameter.  
Given: 

 S = 2% 
 Q = 5.664 m3/s  
 V1 = 5.182 m/s  
 y1 = 0.732 m  
 Fr1 = 1.9  

Solution 
Step 1. Find the conjugate depth in a circular channel. 

 y1/D = 0.732/2.134 = 0.34 (use 0.4) 

 J = y2/ y1 = 2.3 from Figure 6.6 

 y2 = 2.3(0.732) = 1.684 m and y2/D = 0.78 (use 0.8) 

 (Using Equation 6.4 with C1 = 0.293, K1 = 0.419, C2 = 0.674, K2 = 0.462 yields the 
same result.) 

Step 2. Find the Length of jump from Figure 6.8 

 Lj /y1 = 19  

 Lj = 0.732 (19) = 13.9 m 

Step 3. Calculate the after jump velocity  

 For y2/D = 0.78, A/D2 = 0.6573 from Table 3.3 and A = 2.99 m2 

 V2 = Q/A2 = 5.664/2.99 = 1.89 m/s  

Velocity reduction is (5.182 - 1.89)/ 5.182 = 63.5%.  

Design Example: Hydraulic Jump in a Horizontal, Circular Channel (CU)  
Determine the height and length of a hydraulic jump in an RCP culvert with a 7 ft diameter.  
Given: 

 S = 2% 
 Q = 200 ft3/s  
 V1 = 17 ft/s  
 y1 = 2.4 ft  
 Fr1 = 1.9  

Solution 
Step 1. Find the conjugate depth in a circular channel. 

 y1/D = 2.4/7 = 0.34 (use 0.4) 

 J = y2/ y1 = 2.3 from Figure 6.6 
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 y2 = 2.3(2.4) = 5.5 ft and y2/D = 0.78 (use 0.8) 

 (Using Equation 6.4 with C1 = 0.293, K1 = 0.419, C2 = 0.674, K2 = 0.462 yields the 
same result.) 

Step 2. Find the Length of jump from Figure 6.8 

 Lj /y1 = 19  

 Lj = 2.4(19) = 46 ft  

Step 3. Calculate the after jump velocity  

 For y2/D = 0.78, A/D2 = 0.6573 from Table 3.3 and A = 32.2 ft2 

 V2 = Q/A2 = 200/ 32.2 = 6.2 ft/s  

 Velocity reduction is (17 - 6.2)/17 = 63.5%. 

6.2.3 Jump Efficiency 
A general expression for the energy loss (HL/H1) in any shape channel is:  

 HL/H1 = 2 - 2(y2) + Frm
2 [1 - A1

2 /A2
2] / (2 + Fr2)  (6.6) 

where, 
 Frm = upstream Froude number at section 1, Frm

2 = V2/(gym) 
 ym = hydraulic depth, m (ft) 
 
This equation is plotted for the various channel shapes as Figure 6.9.  Even though Figure 6.9 
indicates that the non-rectangular sections are more efficient for the higher Froude numbers, it 
should be remembered that these sections also involve longer jumps, stability problems, and a 
rough downstream water surface. 
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Figure 6.9. Relative Energy Loss for Various Channel Shapes  

6.3 HYDRAULIC JUMP IN SLOPING CHANNELS 
Figure 6.10 (Bradley, 1961) indicates a method of delineating hydraulic jumps in horizontal and 
sloping channels.  Horizontal channels (case A) were discussed in the previous section.  
Sloping channels are discussed in this section.  If the channel bottom is selected as a datum, 
the momentum equation becomes:  

 
( ) ( ) ( )

γ
φ

+φ−=
− sinwcosyyB5.0

g
VVQ 2

2
2
1

12  (6.7) 

where, 
 γ = unit weight of water, N/m3 (lb/ft3) 
 φ = angle of channel with the horizontal 
 B = channel bottom width (rectangular channel), m (ft) 
 w = weight of water in jump control volume, N (lb) 
  
The momentum equation used for the horizontal channels cannot be applied directly to 
hydraulic jumps in sloping channels since the weight of water within the jump must be 
considered.  The difficulty encountered is in defining the water surface profile to determine the 
volume of water within the jumps for various channel slopes.  This volume may be neglected for 
slopes less than 10 percent and the jump analyzed as a horizontal channel.  

The Bureau of Reclamation (Bradley, 1961) conducted extensive model tests on case B and C 
type jumps to define the length and depth relationships.  This reference should be consulted if a 
hydraulic jump in a sloping rectangular channel is being considered.  Model tests should be 
considered if other channel shapes are being considered.  
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Figure 6.10. Hydraulic Jump Types Sloping Channels (Bradley, 1961) 
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CHAPTER 7: INTERNAL (INTEGRATED) DISSIPATORS 
In situations where there is limited right-of-way for an energy dissipator beyond the discharge 
point of a culvert or chute there are several options for internal or integrated dissipators, 
including adding internal roughness elements throughout the culvert or chute or just prior to the 
outlet.  These approaches may be applicable within closed culvert barrels (conventional or 
broken-back) as well as in open, usually rectangular, chutes.  

Roughness elements are sometimes a convenient way of controlling outlet velocities for culvert 
installations where the culvert barrel is not used to capacity because it is operating in inlet 
control.  These roughness elements may be designed to slow the velocity in the culvert 
including, at the limit, creation of a condition of tumbling flow, where the outlet velocity is 
reduced to critical velocity.   Such internal roughness elements may be placed throughout the 
entire length of the culvert or chute, or simply near the end prior to the outlet, depending on the 
hydraulic conditions and desired outlet conditions. 

This chapter describes a series of strategies for increasing roughness including tumbling flow, 
increased roughness, the USBR Type IX baffled apron, broken-back culvert runout sections, 
outlet weirs, and outlet drop/weirs.  Their applicability and limitations are discussed in the 
following sections. 

7.1 TUMBLING FLOW 
Roughness elements placed in the culvert barrel or open chute may be used to decrease 
velocities by creating a series of hydraulic jumps in a phenomenon known as tumbling flow 
(Peterson and Mohanty, 1960).  Tumbling flow is an optimum dissipator on steep slopes.  It is 
essentially a series of hydraulic jumps and overfalls that maintain the predominant flow paths at 
approximately critical velocity even on slopes that would otherwise be characterized by high 
supercritical velocities.  

A major concern with tumbling flow is that silt may accumulate in front of the roughness 
elements and render them ineffective.  This is perhaps unwarranted as the element enhances 
sediment transport capacity and tends to be self-cleansing. In their original list of possible 
applications, Peterson and Mohanty (1960) noted that by "using roughness elements to induce 
greater turbulence, the sediment-carrying capacity of a channel may be increased."  

Tumbling flow is uniform flow in a cyclical sense, with the same patterns of depth and velocity 
repeated at each roughness element. It is not necessary to line the entire length of the culvert 
with roughness elements to get outlet velocity control. Five rows of roughness elements are 
sufficient to establish the cyclical uniform flow pattern.  

The basic premise of the tumbling flow regime is that it will maintain essentially critical flow even 
on very steep slopes. The last element is located a distance L/2 upstream of the outlet so the 
flow reattaches to the channel bed right at the outlet.  The first element for an enlarged section, 
as shown in Figure 7.1, should also be located a distance L/2 downstream of the start of the 
enlarged section.  The distance L/2 for both the first and last elements should be considered a 
minimum.  Sizing and spacing for the roughness elements are described in subsequent 
sections.  Outlet velocity will approach critical velocity, unless backwater exists.  It is not 
unreasonable to expect to provide additional culvert height in the roughened region of culverts 
as shown in Figure 7.1. 
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Figure 7.1. Definition Sketch for Tumbling Flow in a Culvert  

The design procedure for tumbling flow in box and circular culverts may be summarized in the 
following steps: 

Step 1. Verify the culvert is in inlet control. 

Step 2. Compute normal flow conditions in the culvert to determine if the discharge 
conditions at the outlet require mitigation. 

Step 3. Compute critical depth and velocity.  If the critical velocity is less than or equal to 
the desired outlet velocity, tumbling flow may be an appropriate energy dissipation 
approach. 

Step 4. Size the element heights, element spacing, and other design features. Design 
details differ for box and circular culverts and are described in the following 
sections. 

7.1.1 Tumbling Flow in Box Culverts/Chutes 
The tumbling flow phenomenon was investigated as a means of dissipating energy in box 
culverts and embankment chutes at Virginia Polytechnic Institute (VPI), (Morris, 1968; Morris, 
1969; Mohanty, 1959). Slopes up to 20 percent were tested at VPI and up to 35 percent in 
subsequent tests by the Federal Highway Administration (Jones, 1975).  

Drainage chutes on highway cut and fill slopes are candidate sites for roughness element 
energy dissipators. Use of roughness elements is reasonable for slopes up to 10 or 15 percent. 
Beyond this, flow separation and the trajectory of the flow that is out of contact with the channel 
bed are so exaggerated that provisions must be incorporated to counter splashing.  

One of the major limitations of tumbling flow as an energy dissipator is that the required height 
of the roughness elements is closely related to the discharge for a given size culvert.  
Conversely, the required element height is less sensitive to the culvert slope. For example, 
given a slope and culvert size, doubling the discharge increases the required height of 
roughness elements by approximately 50 percent in box culverts; whereas, for a given 
discharge, increasing the slope from four percent to eight percent increases the required 
element height by less than six percent.  There will be many situations where the element height 
may have to be half the culvert height to maintain tumbling flow.  Practical applications of 
tumbling flow are likely to be limited to low-discharge per unit width, high-velocity culverts. 

Tumbling flow is established in box culverts and rectangular chutes with roughness elements 
placed on the bottom of the culvert as shown in Figure 7.1.   Critical depth in a box culvert is 
calculated from the unit discharge (discharge divided by culvert/chute width, B). 
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where, 
 yc = critical depth, m (ft) 
 q = unit discharge (Q/B), m (ft) 
 
Critical velocity, which will be the outlet velocity, may be determined using the critical depth and 
the continuity equation. 

Tumbling flow can be established rather quickly by using one of two configurations.  The first 
configuration is to use five rows of uniformly sized roughness elements as shown in Figure 7.2a.  
This configuration is recommended for use in box culverts.  The second, alternative, 
configuration uses a larger initial element with four additional rows of uniformly sized roughness 
elements as shown in Figure 7.2b.  (Note that only one of the uniform elements is shown.)  The 
alternative configuration is not considered to be a practical solution in box culverts since the 
element size is likely to be excessive.  However, it may be useful for open chutes. 

 

Figure 7.2a. Tumbling Flow in a Box Culvert or Open Chute: Recommended Configuration 

 

Figure 7.2b. Tumbling Flow in a Box Culvert or Open Chute: Alternative Configuration 
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The recommended configuration requires a splash shield to reverse the flow jet between the 
first and second rows of elements.  The splash shield has merit since it deflects the so-called 
"rooster tail" jet against the channel bed and brings the flow under control very quickly without 
using a large leading roughness element.  For box culverts, the top of the culvert can serve as 
the shield.  However there should be a top baffle to help redirect the flow. The top baffle need 
not be the same size as the bed elements. 

The recommended configuration is to use 5 rows of elements all the same height, where height 
is determined from the following equation: 

 
3

2)S7.33(
yh

o

c

−
=  (7.2) 

where, 
 h = element height, m (ft) 
 yc = critical depth, m (ft) 
 So = culvert slope, m/m (ft/ft) 
 

Spacing between the roughness element rows, L, is set by choosing the ratio of L/h to be 
between 8.5 and 10, inclusive. 

The alternative configuration is to use a large initial roughness element followed by four smaller 
elements as shown in Figure 7.2b.  The large initial roughness element must meet the following 
requirement: 

 c2i yyh −>  (7.3) 
where, 
 hi = large initial element height, m (ft) 
 y2 = sequent depth required for a hydraulic jump, m (ft) 
 
The sequent depth, y2, required for the hydraulic jump is computed as follows:  

 )153.0S(y)Fr(5.7y on2 +=  (7.4) 
where, 
 Fr = Froude number at the approach condition at the toe of the jump, dimensionless 
 
The large initial element is followed by four smaller elements with a height computed by 
Equation 7.2, as before.  

Spacing between the small elements is determined by selecting an L/h ratio between 8.5 and 10 
as before.  Spacing, L1, between the large initial element and the first small element is: 

 ( ))sin()cos(tan
cos

)cos(
cy2h21L θ−φ+θ−φθ⎟

⎠
⎞
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⎝
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θ
θ−φ

+=  (7.5) 

where, 
 θ = slope of the culvert bottom expressed in degrees (see Figure 7.2) 
 φ = jet angle, taken as 45 degrees 
 yc = critical depth (see Equation 7.1), m (ft) 
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For either configuration, continuous elements across the bottom of the culvert will trap water 
and tend to collect sediment and debris.  Slots may be provided in the roughness elements as 
shown in Figure 7.3.  The slot width, W2, should be: 

 
2
hW2 =  (7.6) 

where, 
 h = height of the small elements 
 

The width of the elements is then calculated based on the width of the culvert and the number of 
slots. 

 
3

WNBW 2s
1

−
=     (7.7) 

  
where, 
 Ns = number of slots 
 B = culvert width, m (ft) 
 
For rows 1, 3, and 5, the element width is calculated with 2 slots and for rows 2 and 4 the 
element width is calculated with three slots.   An alternating pattern is recommended to disrupt 
streamlines between roughness elements as shown in Figure 7.3. 

 

Figure 7.3. Definition Sketch for Slotted Roughness Elements  

The culvert rise must be checked to insure sufficient space for the jet tumbling over the 
roughness elements.  For culverts, the jet should just clear the culvert top. The jet height, h1, is: 

 c1 y25.1h =  (7.8) 
  

Referring to Figure 7.1, if D < (h1+h) an enlarged culvert height, h3, equal to h1+h is required.  If 
D > (h1+h), a splash shield with height, h2, is required to redirect the flow and should be located 
downstream of the first roughness element. 
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 ( )( )hhD5.1h 12 +−=    (7.9) 
 
If the value for h2 is less than 50 mm (2 in), then 50 mm (2 in) should be used for h2.  The splash 
shield length is taken as the element spacing, L, divided by 2 as shown in Figure 7.2a.  The 
splash shield should span the entire flow width.  No splash shield is necessary when the large 
initial roughness element design is used. 

Design Example: Tumbling Flow in a Box Culvert (SI) 
Design a concrete box culvert for tumbling flow  (See Figure 7.2).  Determine if the outlet 
velocity is less than 3 m/s.  Given: 

 Q = 2.8 m3/s 
 B = 1.2 m 
 D = 1.2 m 
 n = 0.013 
 So = 0.06 m/m 

Solution 
Step 1. Verify the culvert is in inlet control.  In this example the culvert is in inlet control. 

Step 2. Compute normal flow conditions.  Using trial and error with Manning’s Equation: 

 yn = 0.342 m 

 Vn = 6.8 m/s  (Since this is greater than 3 m/s, energy dissipation is required.) 

Step 3. Compute critical depth and velocity.  First compute the unit discharge, 

q = Q/B = 2.8/1.2 = 2.333 m2/s 

Using Equation 7.1, 

 m822.0
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 Vc = Q/(ycB) = 2.8/(0.822 (1.2)) = 2.8 m/s (Since the outlet velocity will be critical 
velocity, a proper design will meet the design criterion of 3 m/s) 

Step 4. Size the element height, element spacing, and splash shield.  We will use the 
recommended procedure of 5 rows of equal height roughness elements.  
Roughness element height, h, longitudinal spacing, L, and transverse spacing, W1 
and W2, are as follows. 

 From Equation 7.2: 

 m42.0
))06.0(7.33(

822.0
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=
−

=  

 L = 8.5h = 8.5(0.42) = 3.57 m 
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 From Equations 7.6 and 7.7: 
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=   for rows 2 and 4 

 The splash shield height and length are calculated by first calculating the jet 
height: 

 h1 = 1.25yc = 1.25(0.822) = 1.03 m 

h1 + h = 1.03 + 0.42 = 1.45 m  

Since culvert rise is only 1.2 m, an enlarged section of culvert with a 1.45 m rise is 
required.  Use 1.5 m based on constructibility and materials availability. 

With culvert rise set to 1.5, use Equation 7.9 to calculate splash shield height: 

h2 = 1.5(D-(h1+h)) = 1.5(1.5-1.45) = 0.075 m 

Take h2 = 0.075 m since this is greater than the minimum (0.05 m). 

Length of splash shield = L/2 = 3.57/2 = 1.78 m. 

Design summary: 

• 5 rows of roughness elements, h = 0.42 m 

• length of roughened and enlarged section =17.85 m 

• outlet velocity = 2.8 m/s. (Velocity reduction = 58%) 

Design Example: Tumbling Flow in a Box Culvert (CU) 
Design a concrete box culvert for tumbling flow (see Figure 7.2).  Determine if the outlet velocity 
is less than 10 ft/s.  Given: 

 Q = 100 ft3/s 
 B = 4.0 ft 
 D = 4.0 ft 
 n = 0.013 
 So = 0.06 ft/ft 

Solution 
Step 1. Verify the culvert is in inlet control.  In this example the culvert is in inlet control. 

Step 2. Compute normal flow conditions.  Using trial and error with Manning’s Equation. 

 yn = 1.12 ft 

 Vn = 22.4 ft/s  (Since this is greater than 10 ft/s, energy dissipation is required.) 
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Step 3. Compute critical depth and velocity.  First compute the unit discharge, 

q = Q/B = 100/4 = 25 ft2/s 

Using Equation 7.1, 

 ft69.2
2.32

25
g
qy

3
1

3
1

22
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=  

 Vc = Q/(ycB) = 100/(2.69 (4)) = 9.3 ft/s (Since the outlet velocity will be critical 
velocity, a proper design will meet the design criterion of 10 ft/s.) 

Step 4. Size the element height, element spacing, and splash shield.  We will use the 
recommended procedure of 5 rows of equal height roughness elements.  
Roughness element height, h, longitudinal spacing, L, and transverse spacing, W1 
and W2, are as follows: 

 From Equation 7.2: 

 ft36.1
))06.0(7.33(

69.2
)S7.33(

yh
3

2
3

2

o

c =
−

=
−

=  

 L = 8.5h = 8.5(1.36) = 11.56 ft 

 From Equations 7.6 and 7.7: 

 ft68.0
2
36.1

2
hW2 ===  

 ft88.0
3

)68.0(24
3

WNB
W 2s

1 =
−

=
−

=   for rows 1, 3, and 5 

 ft65.0
3

)68.0(34
3

WNB
W 2s

1 =
−

=
−

=   for rows 2 and 4 

 The splash shield height and length are calculated by first calculating the jet 
height: 

 h1 = 1.25yc = 1.25(2.69) = 3.36 ft 

h1 + h = 3.36 + 1.36 = 4.72 ft  

Since culvert rise is only 4 ft, an enlarged section of culvert with a 4.72 ft rise is 
required.  Use 5.0 ft based on constructibility and materials availability. 

With culvert rise set to 5.0, use Equation 7.9 to calculate splash shield height: 

h2 = 1.5(D-(h1+h)) = 1.5(5.0-4.72) = 0.42 ft 

Take h2 = 0.42 ft since this is greater than the minimum (0.2 ft). 

Length of splash shield = L/2 = 11.56/2 = 5.78 ft. 
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Design summary: 

• 5 rows of roughness elements, h = 1.36 ft 

• length of roughened and enlarged section = 57.8 ft 

• outlet velocity = 9.3 ft/s. (Velocity reduction = 58%) 

7.1.2 Tumbling Flow in Circular Culverts 
Tumbling flow in circular culverts can be attained by inserting circular rings inside the barrel as 
shown in Figure 7.4.  Geometrical considerations are more complex, but the phenomenon of 
tumbling flow is the same as for box culverts.  For box culverts, only bottom roughness 
elements were considered, whereas in circular culverts the elements are complete rings.  The 
culvert is treated as an open channel, which greatly simplifies the discussion, and the diameter 
is varied to obtain vertical clearance for free surface flow.  

Figure 7.4. Definition Sketch for Tumbling Flow in Circular Culverts  

Design procedures have been described by Wiggert and Erfle (1971).  Their experiments for 
tumbling flow in circular culverts were run with a 152 mm (6 in) plexiglass model and a 457 mm 
(18 in) concrete prototype culvert. Slopes ranged from 0 to 25 percent, h/D1 ranged from 0.06 to 
0.15 and L/D1 ranged from 0.3 to 3.0 (L/h from 5 to 20). The experimental variables are 
illustrated in Figure 7.4.  The variables that determine whether or not tumbling flow will occur 
are: roughness height, h, spacing, L, slope, So, discharge, Q, and diameter, D1.  

A functional relationship for the roughness height can be described as:  

  h = f (L, So, Q, D1, g)    
 
Establishing dimensionless groupings yields:  

 h/D1 = f(L/D1, So, Q/(gD1
5)1/2 ) 

 
Practical design limits can be assigned to h/D1 and L/D1 to simplify the functional relationship. 
Based on qualitative laboratory observations, tumbling flow is easiest to maintain when L/D1 is 
between 1.5 and 2.5 and when h/D1 is between 0.10 and 0.15.  Assigning these limits for 
circular culverts is analogous to assigning values for L/h in the design procedure for box 
culverts. The previous functional relationship can be rewritten:  

 Constant = f(So, Q/(g D1
5)1/2 ) 

or  

 Q/(gD1
5)1/2 = f(So) 
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Theoretically f(So) could be any function involving the slope term.  Empirically f(So) was found to 
be approximately a constant.  The slight observed dependence of f(So) on slope is considered 
to be much less significant than the inaccuracies associated with measuring flow characteristics 
over the large roughness elements.  Based on model and prototype data, f(So) ranges from 0.21 
to 0.32 if the slope is between 4 percent and 25 percent.  For slopes less than four percent, the 
culvert should be designed for full flow rather than tumbling flow.  (See section 7.2.) 

With the observed limits on f(So), the following expression is developed: 

 0.21 < Q/(g D1
5)1/2  < 0.32     

 

Rewriting for use in design:  
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where, 
 D1 = Diameter of the enlarged culvert section, m (ft) 
 
Equation 7.10 is the basic design equation for tumbling flow in steep circular culverts. If the 
diameter of the roughened section of the culvert is sized according to this equation, tumbling 
flow will occur and the outlet velocity will be approximately critical velocity.  This design is limited 
to the following conditions: 

1. L/D1 ≈ 2.0 (tolerance plus/minus 25%)  

2. h/D1 ≈ 0.125 (tolerance plus/minus 20%) 

3. So greater than 4% and less than 25%  

Since tumbling flow is an open channel phenomenon, gravity forces prevail and the Froude 
number, V/(gy)1/2, should be used as the basis for design (or interpretation of model results).  
Watts (1968) established, by reference to several publications, that h/y is an important scaling 
parameter for roughness elements in open channel flow. In both of these dimensionless terms, 
y is a characteristic flow depth. The validity of using D1 in lieu of a characteristic flow depth in 
Q/(gD1

5)1/2 must be carefully examined for culverts flowing less than full. The characteristic 
depth for tumbling flow, however, is critical depth, which is uniquely defined by Q and D1; so D1 
can be substituted for y in this special case of partially full culverts.  

Furthermore, the higher coefficient in Equation 7.10 resulted from the 152 mm (6 in) model data 
rather than from the 457 mm (18 in) prototype.  Differences in model and prototype data were 
attributed to experimental difficulties with the prototype; nevertheless, if there are scaling errors, 
they appear to be on the conservative side. 

As with box culverts, a major concern is that silt may accumulate in front of the roughness 
elements and render them ineffective. This is perhaps unwarranted as the element enhances 
sediment transport capacity and tends to be self-cleansing. In their original list of possible 
applications, Peterson and Mohanty (1960) noted that by "using roughness elements to induce 
greater turbulence, the sediment-carrying capacity of a channel may be increased."  

Water trapped between elements may cause difficulties during dry periods due to freezing and 
thawing and insect breeding.  Narrow slots in the roughness rings (less than 0.5h) can be used 
to allow complete drainage without changing the design criteria.  Sarikelle and Simon (1980) 
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performed field studies of internal rings on circular pipes and found that modifications to ease 
installation (effectively adding slots) did not impair energy dissipation performance. 

Five roughness rings at the outlet end of the culvert are sufficient to establish tumbling flow. The 
diameter computed from Equation 7.10 is for the roughened section only, and will not 
necessarily be the same as the rest of the culvert.  The American Concrete Pipe Association 
(ACPA, 1972) introduced the telescoping concept in which the main section of the culvert is 
governed by the usual design parameters (presumably inlet control) and the roughened section 
is designed by Equation 7.10.  They suggest telescoping the larger diameter pipe over the 
smaller "for at least the length of a normal joint and using normal sealing materials in the 
annular space.”  This concept is shown in Figure 7.4. 

The design procedure requires computation of both the normal depth in the culvert based on the 
culvert diameter D and the critical depth based on the internal diameter of the roughened 
section, Di.  Using the definition sketch of Figure 7.5, the following geometric relationships are 
determined given a depth. 
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where, 
 θ = internal angle, degrees 
 
 θ= sinDT  (7.12) 
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Figure 7.5. Definition Sketch for Flow in Circular Pipes 

θ

T

D/2

y θ

T

D/2

y



7-12 
 

 
 

The outlet velocity for tumbling flow is approximately critical velocity. It can be computed by 
determining the critical depth, yc, for the inside diameter of the roughness rings.  Critical flow for 
an open channel of any shape will occur when: 

       1
gA

TQ
3
c

c
2

=   (7.14) 

where, 
 Tc = water surface width at critical flow condition, m (ft) 
 Ac =  flow area at critical flow condition, m (ft) 
 
Once the critical depth is found, critical velocity is determined using the continuity equation. 

Design Example: Tumbling Flow in a Circular Culvert (SI) 
Design concrete pipe culvert for tumbling flow.  Determine if the outlet velocity is less than 3 
m/s.  Given: 

 Q = 2.8 m3/s 
 D = 1.2 m 
 n = 0.013 
 So = 0.06 m/m 

Solution 
Step 1. Verify the culvert is in inlet control.  In this example the culvert is in inlet control. 

Step 2. Compute normal flow conditions.  Using trial and error and the geometric relations 
of Equations 7.11, 7.12, and 7.13: 

 yn = 0.445 m 

 Vn = 7.3 m/s  (Since this is greater than 3 m/s, energy dissipation is required.) 

Step 3. Compute critical depth and velocity.  First we need to compute the diameter of the 
roughened section using Equation 7.10 and taking the range midpoint: 

 m67.1
81.9
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 h = 0.125D1 = 0.125(1.67) = 0.21 m 

 Di = D1-2h = 1.67-2(0.21) = 1.25 m 

 By trial and error, using Equation 7.14 and D = Di, 

 yc = 0.913 m 

 Ac = 0.961 m2 

 Vc = Q/Ac = 2.8/0.961 = 2.9 m/s (Meets design criteria of 3 m/s) 

Step 4. Determine the remaining design component: element spacing.   

 L = 2D1 = 2(1.67) = 3.34 m 
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Design summary (see figure below; all dimensions not otherwise indicated are in 
meters): 

• 5 rows of roughness elements, h = 0.21 m 

• length of roughened and enlarged section, Lm = 16.7 m 

• outlet velocity = critical velocity = 2.9 m/s. (Velocity reduction = 60%) 

 
  

Solution for Tumbling Flow Example for a Circular Culvert (SI) 

Design Example: Tumbling Flow in a Circular Culvert (CU) 
Design a concrete pipe culvert for tumbling flow.  Determine if the outlet velocity is less than 10 
ft/s.  Given: 

 Q = 100 ft3/s 
 D = 4.0 ft 
 n = 0.013 
 So = 0.06 ft/ft 

Solution 
Step 1. Verify the culvert is in inlet control.  In this example the culvert is in inlet control. 

Step 2. Compute normal flow conditions.  Using trial and error and the geometric relations 
of Equations 7.11, 7.12, and 7.13: 

 yn = 1.46 ft 

 Vn = 24.2 ft/s  (Since this is greater than 10 ft/s, energy dissipation is required.) 

Step 3. Compute critical depth and velocity.  First we need to compute the diameter of the 
roughened section using Equation 7.10 and taking the range midpoint: 
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 h = 0.125D1 = 0.125(5.51) = 0.69 ft 



7-14 
 

 
 

 Di = D1-2h = 5.51-2(0.69) = 4.13 ft 

 By trial and error, using Equation 7.14 and D = Di, 

 yc = 3.01 ft 

 Ac = 10.45 ft2 

 Vc = Q/Ac = 100/10.45 = 9.6 ft/s (Meets design criteria of 10 ft/s) 

Step 4. Determine the remaining design component: element spacing.   

 L = 2D1 = 2(5.51) = 11.0 ft 

Design summary (see figure below; all dimensions not otherwise indicated are in 
feet): 

• 5 rows of roughness elements, h = 0.69 ft 

• length of roughened and enlarged section, Lm = 55 ft 

• outlet velocity = critical velocity = 9.6 ft/s. (Velocity reduction = 60%) 

 

Solution for Tumbling Flow Example for a Circular Culvert (CU) 

7.2 INCREASED RESISTANCE 
The methodology described in this section involves using roughness elements to increase 
resistance and induce velocity reductions. Increasing resistance may cause a culvert to change 
from partial flow to full flow in the roughened zone. Velocity reduction is accomplished by 
increasing the wetted surfaces as well as by increasing drag and turbulence by the use of 
roughness elements.  

Tumbling flow, as described in the previous section, is the limiting design condition for 
roughness elements on steep slopes. Tumbling flow essentially delivers the outlet flow at critical 
velocity.  If the requirement is for outlet velocities between critical and the normal culvert 
velocity, designing increased resistance into the barrel is a viable alternative. 

The most obvious situation for application of increased barrel resistance is a culvert flowing 
partially full with inlet control. The objective is to force full flow near the culvert outlet without 
creating additional headwater.  Although based on the same principles, the design approaches 
for circular and box culverts differ. 
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Morris (1963) studied all pertinent rough pipe flow data available and concluded that there are 
three flow regimes and each has a different resistance relationship. Conceptually, the 
description of these regimes also applies to box culverts.  The three regimes illustrated in Figure 
7.6 are: 

1. Quasi-smooth flow:  Occurs only when there are depressions or when 
roughness elements are spaced very close (L/h approximately equal to 2).  
Quasi-smooth flow is not important for this discussion.  

2. Hyper-turbulent flow:  Occurs when roughness elements are sufficiently close 
so each element is in the wake of the previous element and rough surface 
vortices are the primary source of the overall friction drag.  

3. Isolated roughness flow:  Occurs when roughness spacing is large and overall 
resistance is due to drag on the culvert surface plus form drag on the 
roughness elements. 

  

Figure 7.6. Flow Regimes in Rough Pipes  

The design procedure for increased resistance in box and circular culverts may be summarized 
in the following steps: 

Step 1. Verify the culvert is in inlet control. 

Step 2. Compute normal flow conditions in the culvert to determine if the discharge 
conditions at the outlet require mitigation. 

Step 3. Select initial design scale ratios.  Determine Manning’s n value for the roughened 
section of culvert. 

Step 4. Compute mitigated depth and velocity.  Check mitigated velocity against design 
criteria.  One of three conditions will be observed: 

1. The computed depth will exceed the culvert rise meaning the culvert will 
flow full and, potentially, increase headwater.  In such cases, a larger 
roughened section is required and step 3 is repeated. 

2. The computed depth is less than the culvert rise and the velocity is lower 
than the design criteria.  This is an acceptable design.  Verify that full flow 
capacity is greater than design discharge.  If not, repeat step 3. 
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3. The computed depth is less than the culvert rise, but the velocity is higher 
than the design criteria, then one of three alternatives may be pursued: 

a. Increase the roughness element height to approach full flow (and 
therefore lower the velocity).  Repeat step 3. 

b. Use the tumbling flow design discussed in Section 7.1.1. 

c. Use another type of dissipator in lieu of or in addition to increased 
roughness. 

Step 5. Complete sizing the element heights, element spacing, and other design features. 
Design details differ for box and circular culverts and are described in the following 
sections. 

7.2.1 Increased Resistance in Circular Culverts 
Wiggert and Erfle (1971) studied the effectiveness of roughness rings as energy dissipators in 
circular culverts. Although their study was primarily a tumbling flow study, they observed in 
many tests that they could get velocity reductions greater than 50 percent without reaching the 
roughness level necessary for tumbling flow. They did not derive resistance equations, but they 
did establish approximate design limits. 

From these studies, good performance was observed when h/D was 0.06 to 0.09 using five 
rings.  (See Figure 7.7.)  Doubling the height, h1, of the first ring was effective in triggering full 
flow in the roughened zone.  Adequate performance was obtained with four identical rings, but 
with double spacing between the first two. However, the same pipe length is involved if a 
constant spacing is maintained and five rings used, with the first double the height of the other 
four. The additional ring should help establish the assumed full flow condition.  In addition, the 
last (downstream) ring must be located no closer than one-half the ring spacing from the end of 
the culvert. 

Figure 7.7. Conceptual Sketch of Roughness Elements to Increase Resistance  

Subsequent experience reported by the American Concrete Pipe Association (ACPA, 1972) 
indicated a need to consider lower values of h/D, and to establish approximate resistance 
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curves for evaluating a design in order to avoid installations that will propagate full flow 
upstream to the culvert inlet. 

Based on experience with large elements used to force tumbling flow (see Section 7.1) and the 
work of Wiggert and Erfle (1971), five rows of roughness elements with heights ranging from 5 
to 10 percent of the culvert diameter are sufficient. 

A key element in the design of increased roughness elements is determination of the roughness 
regime and, subsequently, the appropriate Manning’s n value.  Although much of the literature 
relative to large roughness elements in circular pipes expresses resistance in terms of the 
friction factor, "f", all resistance equations are converted to Manning's "n" expressions for this 
manual. 

7.2.1.1 Isolated-Roughness Flow 
Isolated roughness flow was introduced in Section 7.2.  The overall friction or resistance, fIR, is 
made up of two parts:  

 fIR = fs + fd  (7.15) 
where,  
 fs = friction on the culvert surface. 
 fd = friction due to form drag on the roughness elements.  
 

The friction due to form drag is a function of the drag coefficient for the particular shape, the 
percentage of the wetted perimeter that is roughened, the roughness dimensions and spacing 
and the velocity impinging on the roughness elements.  Morris (1963) related the velocity to 
surface drag and derived the following equation:  
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where, 
 CD = drag coefficient for the roughness shape 
 Lr/P = ratio of total peripheral length of roughness elements to total wetted perimeter 
 ri = pipe radius based on the inside diameter of roughness rings measured from crest 

to crest  
 
Lr may be less than P to facilitate constructibility of the rings or to permit a low flow opening at 
the bottom of the ring. 

Throughout Morris' work, he used measurements from crest to crest of a roughness element 
ring as the effective diameter, Di.  To convert the expression for roughness to Manning’s n, the 
following expressions are needed: 

 fs =α (n/D1/6)2  
 
 fIR =α (nIR /Di

1/6)2  
 
α represents a unit conversion constant equal to 124 in SI and 184 in CU.  Equation 7.16 can 
then be converted to Manning's n: 
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where, 
 nIR = overall Manning's “n" for isolated roughness flow 
 n = Manning's "n" for the culvert surface without roughness rings 
 D = nominal diameter of the culvert, m (ft) 
 Di =  inside diameter of roughness rings, m (ft) (Di = D-2h)  
 
For sharp edge rectangular roughness shapes, a constant value of 1.9 can be used for CD.  It is 
noteworthy that the overall resistance, nIR, decreases as the relative spacing, L/Di, increases for 
this regime.  

7.2.1.2 Hyperturbulent Flow 
The friction in this regime is independent of friction on the culvert surface: 
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where, 
 fHT = overall friction for hyper-turbulent flow 
 φ = function of Reynolds number, element shape, and relative spacing 
By restricting application of Equation 7.18 to sharp edged roughness rings and to a spacing 
greater than the pipe radius, φ can be neglected.  

Substituting the following expression: 

 fHT =α (nHT /Di
1/6)2  

 
Equation 7.18 can then be converted to Manning's n: 
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where, 
 nHT = Manning’s n for hyper-turbulent flow 
 α = unit conversion constant, 0.0898 (SI) and 0.0737 (CU) 
 
The effect of the roughness height, h, is included inherently in Di.  From Equation 7.19 it can be 
seen that nHT increases as the spacing increases for this regime.  
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7.2.1.3 Regime Boundaries 
Since resistance increases when the spacing increases for the hyper-turbulent regime and 
when the spacing decreases for the isolated roughness regime, the boundary between the 
regimes occurs when the resistance equations are the same. The boundary is determined by 
equating nIR in Equation 7.17 to nHT in Equation 7.19.  For design, both are calculated; the 
lowest n value is used and indicates which regime is applicable.   

The recommended design is limited to the following conditions: 

1. 0.5 < L/Di <1.5 (1.0 to 1.1 is a suggested starting point) 

2. 0.05 < h/Di < 0.10 (0.06 is a suggested starting point using sharp-edged 
roughness rings) 

Once these ranges are selected, the roughness element height is computed as follows: 

 

c
12

Dh
+

=  (7.20) 

where, 
 h = roughness element height, m (ft) 
 c = ratio of h/Di 
Once h is calculated, values of Di and L follow directly and the roughness values are calculated. 

Design Example: Increased Resistance in a Circular Culvert (SI) 
Design a concrete pipe culvert for increased roughness.  Determine if the outlet velocity is less 
than 3 m/s.  Given: 

 Q = 2.8 m3/s 
 D = 1.2 m 
 n = 0.013 
 So = 0.06 m/m 

Solution 
Step 1. Verify the culvert is in inlet control.  In this case, the culvert is in inlet control. 

Step 2. Compute normal flow conditions.  Using trial and error and the geometric relations 
of Equations 7.11, 7.12, and 7.13: 

 yn = 0.445 m 

 Vn = 7.3 m/s  (Since this is greater than 3 m/s, energy dissipation is required.) 

Step 3. Select initial design scale ratios and determine Manning’s n value for the 
roughened section of culvert. 

 Try L/Di = 1.1 and h/Di = 0.06 

 Calculate h from Equation 7.20: 
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 Di = D – 2h = 1.2 – 2(0.06) = 1.08 m 

 L = 1.1Di = 1.1(1.08) = 1.19 m 

 For this design, we will not have gaps in the rings, therefore, Lr/P = 1. 

 Now, we calculate Manning’s n for the isolated roughness (Equation 7.17) and 
hyperturbulent flow (Equation 7.19) to determine flow regime and Manning’s n. 
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 Since nIR < nHT the roughness is characterized as isolated roughness and n = 
0.035 

Step 4. Compute mitigated depth and velocity.  Check mitigated velocity against design 
criteria. 

 With the internal diameter, Di, and the Manning’s n values calculated in step 3, the 
normal depth for the roughened condition is calculated to be (by trial and error); 

 yn = 0.932 m 

 Vn = 3.3 m/s  

Compared with the design goal of 3.0 m/s, this velocity is unacceptable even 
though it has been reduced significantly from the unmitigated velocity.  Since the 
depth is less than Di, we can increase h to further slow the velocity.  (We also 
need to increase the culvert size because the full flow velocity of 3.1 m/s still 
exceeds our design criteria.)  Steps 3 and 4 must be repeated. 

Step 3 (2nd iteration). Select trial design scale ratios and determine Manning’s n value for 
the roughened section of culvert. 

 Maintain L/Di = 1.1, increase D = 1.50 m (next available size) and try h = 0.1 m  

 Di = D – 2h = 1.50 – 2(0.10) = 1.30 m (h/Di = 0.077) 

 L = 1.1Di = 1.1(1.3) = 1.43 m 

 For this design, we will not have gaps in the rings, therefore, Lr/P = 1. 

 Now, we calculate Manning’s n for the isolated roughness (Equation 7.17) and 
hyperturbulent flow (Equation 7.19) to determine flow regime and Manning’s n. 
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 Since nIR < nHT the roughness is characterized as isolated roughness and n = 
0.040. 

Step 4 (second iteration). Compute trial of the mitigated depth and velocity.  Check 
mitigated velocity against design criteria. 

 With the internal diameter, Di, and the Manning’s n values calculated in step 3, the 
normal depth for the roughened condition is calculated to be (by trial and error); 

 yn = 1.025 m 

 Vn = 2.5 m/s  

Compared with the design goal of 3.0 m/s, this velocity is acceptable.  However, 
we must check the culvert capacity using Manning’s Equation.   

 We assume that the culvert is flowing full and estimate the wetted perimeter. 

A = πDi
2/4 = π(1.30)2/4 = 1.33 m2 

P = πDi = π(1.30) = 4.08 m 

R = A/P = 1.33/4.08 = 0.326 m 

Using Manning’s Equation, 

( ) ( ) s/m9.306.0326.033.1
040.0
1SAR

n
1Q 32

1
3

2
2

1
3

2
===  

Since this flow is greater than the design flow of 2.8 m3/s we know that the design 
is acceptable.  If this had not been the case, a larger culvert barrel could be 
evaluated going back to step 3 or tumbling flow or another type of dissipator could 
be considered. 

Step 5. Complete sizing the element heights, element spacing, and other design features. 

 Roughness height and spacing have been established as well as an oversized 
culvert section.  For 5 rows of roughness elements, the length of the oversized 
section with increased roughness is 5.06 m. 

Design summary (see figure below): 

• 5 rows of roughness elements, h = 0.1 m 

• length of roughened section = 7.15 m.  (Roughened length considered from 
L/2 before the first element and with the last roughness element no less 
than L/2 from the culvert outlet.) 

• outlet velocity = 2.9 m/s. (Velocity reduction = 60%) 
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Sketch for Increased Resistance In a Circular Culvert Design Example (SI) 

Design Example: Increased Resistance in a Circular Culvert (CU) 
Design a concrete pipe culvert for increased roughness.  Determine if the outlet velocity is less 
than 10 ft/s.  Given: 

 Q = 100 ft3/s 
 D = 4.0 ft 
 n = 0.013 
 So = 0.06 ft/ft 

Solution 
Step 1. Verify the culvert is in inlet control.  In this case the culvert is in inlet control. 

Step 2. Compute normal flow conditions.  Using trial and error and the geometric relations 
of Equations 7.11, 7.12, and 7.13: 

 yn = 1.45 ft 

 Vn = 24.1 ft/s  (Since this is greater than 10 ft/s, energy dissipation is required.) 

Step 3. Select initial design scale ratios and determine Manning’s n value for the 
roughened section of culvert. 

 Try L/Di = 1.1 and h/Di = 0.06 

 Calculate h from Equation 7.20: 

 ft214.0

06.0
12

0.4

c
12

Dh =
+

=
+

=   (round to 0.21 ft) 

 Di = D – 2h = 4.0 – 2(0.21) = 3.58 ft 

 L = 1.1Di = 1.1(3.58) = 3.94 ft 

 For this design, we will not have gaps in the rings, therefore, Lr/P = 1. 

 Now, we calculate Manning’s n for the isolated roughness (Equation 7.17) and 
hyperturbulent flow (Equation 7.19) to determine flow regime and Manning’s n. 
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 Since nIR < nHT the roughness is characterized as isolated roughness and n = 
0.036 

Step 4. Compute mitigated depth and velocity.  Check mitigated velocity against design 
criteria. 

 With the internal diameter, Di, and the Manning’s n values calculated in step 3, the 
normal depth for the roughened condition is calculated using Manning’s Equation 
to be (by trial and error); 

 yn = 3.10 ft 

 Vn = 10.7 ft/s  

Compared with the design goal of 10 ft/s, this velocity is unacceptable even though 
it has been reduced significantly from the unmitigated velocity.  Since the depth is 
less than Di, we can increase h to further slow the velocity.  (We also need to 
increase the culvert size because the full flow velocity exceeds our design criteria.)  
Steps 3 and 4 must be repeated. 

Step 3 (2nd iteration). Select trial design scale ratios and determine Manning’s n value for 
the roughened section of culvert. 

 Maintain L/Di = 1.1, increase D = 4.5 ft and try h = 0.32 ft  

 Di = D – 2h = 4.5 – 2(0.32) = 3.86 ft (h/Di = 0.083) 

 L = 1.1Di = 1.1(3.86) = 4.25 ft 

 For this design, we will not have gaps in the rings, therefore, Lr/P = 1. 

 Now, we calculate Manning’s n for the isolated roughness (Equation 7.17) and 
hyperturbulent flow (Equation 7.19) to determine flow regime and Manning’s n. 
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 Since nIR < nHT the roughness is characterized as isolated roughness and n = 
0.041 
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Step 4 (2nd iteration). Compute trial of the mitigated depth and velocity.  Check mitigated 
velocity against design criteria. 

 With the internal diameter, Di, and the Manning’s n values calculated in step 3, the 
normal depth for the roughened condition is calculated to be (by trial and error); 

 yn = 3.07 ft 

 Vn = 9.9 ft/s  

Compared with the design goal of 10 ft/s, this velocity is acceptable. However, we 
must check the culvert capacity using Manning’s Equation.   

 We assume that the culvert is flowing full and estimate the wetted perimeter. 

A = πDi
2/4 = π(3.86)2/4 = 11.70 ft2 

P = πDi = π(3.86) = 12.13 ft 

R = A/P = 11.70/12.13 = 0.964 ft 

Using Manning’s Equation, 
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Since this flow is greater than the design flow of 100 ft3/s we know that the design 
is acceptable.  If this had not been the case, a larger culvert barrel could be 
evaluated going back to step 3 or tumbling flow or another type of dissipator could 
be considered. 

Step 5. Complete sizing the element heights, element spacing, and other design features. 

 Roughness height and spacing have been established as well as an oversized 
culvert section.  For 5 rows of roughness elements, the length of the oversized 
section with increased roughness is 17.0 ft. 

Design summary (see figure below): 

• 5 rows of roughness elements, h = 0.32 ft 

• length of roughened and enlarged section = 21.25 ft.  (Roughened length 
considered from L/2 before the first element and with the last roughness 
element no less than L/2 from the culvert outlet.) 

• outlet velocity = 9.9 ft/s. (Velocity reduction = 59%) 

Sketch for Increased Resistance In a Circular Culvert Design Example (CU) 
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7.2.2 Increased Resistance in Box Culverts 
Material for this section was drawn primarily from a preliminary FHWA report on fish baffles in 
box culverts (Normann, 1974).  This report used Morris' categorization of flow regimes and basic 
friction equations (Morris, 1963), but a more representative approach velocity, VA, in one of the 
regimes.  Experimental data by Shoemaker (1956) were also utilized to define the transition 
curves. For several reasons, modifications to the fish baffle development were necessary to 
adapt to energy dissipator design.  In fish baffle design, the interest is in a conservative estimate 
of resistance in order to size a culvert; whereas, in this manual, a conservative estimate of the 
outlet velocity is also important.  Also, fish baffle design curves involve bottom roughness only.  

As before, both the hyperturbulent and isolated roughness flow regimes are considered.  For 
box culverts in hyperturbulent flow, Manning’s roughness may be estimated by: 
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where, 
 nHT = Manning’s n for the hyperturbulent flow regime 
 n = Manning’s roughness coefficient for the culvert without the roughness elements 

(maximum n value is 0.015 for this equation) 
 Lr /P = ratio of total peripheral length of roughness elements to total wetted perimeter 
 
For the isolated roughness regime, a high and low Manning’s range are considered as shown 
by the following equations: 
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where, 
 nIR,LOW = Manning’s n for the isolated roughness flow regime, low design range for 

estimating velocity. 
 nIR,HIGH = Manning’s n for the isolated roughness flow regime, high design range for 

estimating depth. 
 n = Manning’s roughness coefficient for the culvert without the roughness elements 

(maximum n value is 0.015 for these equations) 
 
Lr will equal the bottom width, B, for installations with bottom roughness only and will equal the 
wetted perimeter, P, when roughness elements are attached to all sides or when the roughness 
elements extend through the flow.  The presence of drainage slots in the roughness elements is 
ignored in estimating Lr. 
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The equations are based on CD = 1.9, f = 0.14 (where f is the Darcy friction factor for the culvert 
surface without roughness elements), and VA/V = 0.60 or 0.85.  The lower value of VA/V is 
implicitly included in Equation 7.22a and the higher value in Equation 7.22b.  The use of a 
representative approach velocity, VA, allows an opportunity to input culvert parameters that will 
lean towards either an overprediction or an underprediction of resistance.  It is assumed that 
(R/Ri)1/3 is approximately one to simplify the analysis.  R is the hydraulic radius of the culvert 
proper and Ri is the hydraulic radius taken inside the crests of the roughness elements.  For 
designs considered in this section, the approximation is reasonable. 

For this manual, it is appropriate to develop high as well as low resistance curves. Rather than 
attempt to define the transition between these curves, an abrupt transition is used as the worst 
condition for the high curves, and a straight-line transition is assumed as the mildest condition 
for the low curves. This is illustrated in Figure 7.8.  Observations by Powell (1946) are the basis 
for assuming the 6 to 12 range of L/h for the transition curve between isolated roughness and 
hyperturbulent flow.  An L/h=10 is chosen for design because it yields the largest n value. 

For estimating velocities, it is appropriate to estimate resistance based on the straight-line (low) 
relationship shown in Figure 7.8.  Therefore, Equation 7.21 (hyperturbulent) is evaluated at 
L/h=6 and Equation 7.22a (isolated roughness) is evaluated at L/h=12.  A linear interpolation 
between the two for L/h=10 results in the relationship provided as follows: 
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Figure 7.8.  Transition Curves between Flow and Regimes  

For determining the lower value of Manning’s n, nLOW, for the purpose of estimating outlet 
velocity, Equation 7.23 applies to values of h/Ri less than or equal to 0.3.  For ratios above 0.3, 
nLOW is calculated directly from Equation 7.22a evaluated for L/h = 10. 

For determining the upper value of Manning’s n, nHIGH, for the purpose of estimating flow depths, 
the abrupt (high) value indicated in Figure 7.8 is desired.  For h/Ri greater than 0.2, Equation 
7.22b is evaluated at L/h = 10 and used for nHIGH.  For ratios less than or equal to 0.2, Equations 
7.22b and 7.21 are both evaluated at L/h = 10 and the lower value is taken for nHIGH.  Both are 
compared to avoid unrealistic values from Equation 7.22b. 
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Since the above equations are normal flow equations and roughness elements may be relatively 
small using this method, it is necessary to compute the length of the culvert to be roughened. 
The momentum equation, written for the roughened section of culvert, is used to compute the 
number of rows of roughness element needed.  
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where, 
 N = number of roughness element rows 
 B = culvert bottom width, m (ft) 
 yn = normal depth in the culvert approaching the roughened section, m (ft) 
 yi = normal depth in the roughened section of the culvert, m (ft) 
 Vn = normal velocity in the culvert approaching the roughened section, m/s (ft/s) 
 Vi = normal velocity in the roughened section of the culvert, m/s (ft/s) 
 CD = coefficient of drag (taken as 1.9) 
 Af = wetted frontal area of a roughness row, m2 (ft2), equal to B(h) for bottom 

roughness 
 Vw = average wall velocity action on the roughness elements, m/s (ft/s), equal to 

(Vn+Vi)/6 
 
Regardless of the result of Equation 7.24, the number of rows should never be less than five. 
Furthermore, it is recommended that one large element be used at the beginning of the 
roughened zone to accelerate the asymptotic approach to normal flow. The recommended 
height of the larger element is twice the height of the regular elements. The spacing is the same 
for all rows of elements. 

Slots in the roughness elements are provided for low flow drainage.  The slot opening should 
not exceed h/2. 

The procedure is limited to solid strip roughness elements with sharp upstream edges. 
Rectangular cross section roughness elements will best fit the assumptions made.  

Due to the assumed velocity distribution, application of the procedure must be limited to small 
roughness heights and to relatively flat slopes. The roughness height should not exceed ten 
percent of the flow depth. This restriction is inherently included in the suggested range of h/Ri in 
the design procedure. 

The recommended design is limited to the following conditions: 

1. So ≤ 6 % 

2. 0.1 < h/Ri < 0.4 

3. L/h = 10 
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Design Example: Increased Resistance for a Box Culvert (SI) 
Design a concrete box culvert for increased roughness using bottom roughness elements.  
Determine if the outlet velocity is less than 3 m/s.  Given: 

 Q = 2.8 m3/s 
 D = 1.2 m 
 B = 1.2 m 
 n = 0.013 
 So = 0.06 m/m 

Solution 
Step 1. Verify the culvert is in inlet control.  In this case the culvert is in inlet control. 

Step 2. Compute normal flow conditions.  Using trial and error: 

 yn = 0.34 m 

 Vn = 6.8 m/s  (Since this is greater than 3 m/s, energy dissipation is required.) 

Step 3. Select initial design scale ratios.  Determine Manning’s n value for the roughened 
section of culvert for estimating the mitigated depth and velocity. 

 Try L/h = 10 and h/Ri = 0.3 

 We will assume that the culvert is not flowing full for computation of the wetted 
perimeter.  (If the culvert did flow full for this computation, it will be surcharged 
when we compute the high Manning’s n for the capacity check.  Using the sides 
and bottom of the culvert will provide the lowest (short of full flow), and therefore, 
conservative value of n for estimating velocity in the roughened section.  This 
assumption may be revised in subsequent iterations. 

 P = 2D+B = 2(1.2)+1.2 = 3.6 m 

 Lr = B = 1.2 m (bottom roughness only) 

 Using Equation 7.23 and n = 0.013 (maximum value is 0.015): 
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Step 4. Compute mitigated depth and velocity and roughness height, h.  Check mitigated 
velocity against design criteria.  Using trial and error: 

 yi = 0.783 m (note that culvert is not flowing full) 

 Ai = 0.783(1.2) = 0.940 m2 

 Pi = 2(0.783)+1.2 = 2.77 m 

 Ri = 0.940/2.77 = 0.340 m 

 h = (h/Ri)(Ri) = 0.3(0.340) = 0.102 m (round to 0.10 m) 
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 Vi = 2.98 m/s 

Since this velocity is less than or equal to 3 m/s, the dissipation design is 
satisfactory.  However, we must check the culvert capacity using the high estimate 
of Manning’s n from Equation 7.22b.  Two possible flow limiting scenarios exist. 

 First, assume the culvert is flowing nearly full.  Using Equation 7.22b and n = 
0.013 (maximum value is 0.015): 
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Area and hydraulic radius are calculated as: 

y = D – h = 1.2 - 0.10 = 1.10 m 

A = yB = 1.10(1.2) = 1.32 m2 

P = 2y+B = 2(1.10)+1.2 = 3.40 m 

R = A/P = 1.32/3.40 = 0.388 m 

Using Manning’s Equation, 
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Q is greater than the design flow using this scenario. 

Second, assume the culvert is flowing full.  Using Equation 7.22b and n = 0.013 
(maximum value is 0.015): 
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Area and hydraulic radius are calculated as: 

A = yB = 1.10(1.2) = 1.32 m2 

P = 2(y+B) = 2(1.10+1.2) = 4.6 m 

R = A/P = 1.32/4.6 = 0.287 m 

Using Manning’s Equation, 
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Since both flows are greater than the design flow of 2.8 m3/s we know that the 
design is acceptable.  If this had not been the case, a larger culvert barrel could be 
evaluated going back to step 3 or tumbling flow or another type of dissipator could 
be considered. 

Step 5. Complete sizing the element heights, element spacing, and other design features. 

Spacing between roughness elements is calculated to be: 

L = (L/h)h = (10)0.10 = 1.0 m 
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Number of rows of roughness elements is estimated using Equation 7.24.  First 
calculate: 

Af = B(h) = 1.2(0.10) = 0.12 m2 

Vw = (Vn+Vi)/6 = (6.8+2.98)/6 = 1.63 m/s 
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Round up to the nearest whole number, N = 26 

Design summary: 

• 26 rows of roughness elements, h = 0.10 m 

• length of roughened section = 25.0 m.  The last roughness element should 
be no less than L/2 from the culvert outlet. 

• outlet velocity = 2.98 m/s. (Velocity reduction = 57%) 

Design Example: Increased Resistance for a Box Culvert (CU) 
Design a concrete box culvert for increased roughness using bottom roughness elements.  
Determine if the outlet velocity is less than 10 ft/s.  Given: 

 Q = 100 ft3/s 
 D = 4.0 ft 
 B = 4.0 ft 
 n = 0.013 
 So = 0.06 ft/ft 

Solution 
Step 1. Verify the culvert is in inlet control.  In this case the culvert is in inlet control. 

Step 2. Compute normal flow conditions.  Using trial and error: 

 yn = 1.11 ft 

 Vn = 22.5 ft/s  (Since this is greater than 10 ft/s, energy dissipation is required.) 

Step 3. Select initial design scale ratios.  Determine Manning’s n value for the roughened 
section of culvert for estimating the mitigated depth and velocity. 

 Try L/h = 10 and h/Ri = 0.3 

 We will assume that the culvert is not flowing full for computation of the wetted 
perimeter.  (If the culvert did flow full for this computation, it will be surcharged 
when we compute the high Manning’s n for the capacity check.  Using the sides 
and bottom of the culvert will provide the lowest (short of full flow), and therefore, 
conservative value of n for estimating velocity in the roughened section.  This 
assumption may be revised in subsequent iterations. 

 P = 2D+B = 2(4.0)+4.0 = 12.0 ft 

 Lr = B = 4.0 ft (bottom roughness only) 
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 Using Equation 7.23 and n = 0.013 (maximum value is 0.015): 
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Step 4. Compute mitigated depth and velocity and roughness height, h.  Check mitigated 
velocity against design criteria.  Using trial and error: 

 yi = 2.54 ft (note that culvert is not flowing full) 

 Ai = 2.54(4.0) = 10.17 ft2 

 Pi = 2(2.54)+4.0 = 9.083 ft 

 Ri = 10.17/9.083 = 1.119 ft 

 h = (h/Ri)(Ri) = 0.3(1.119) = 0.336 ft (round to 0.34 ft) 

 Vi = 9.84 ft/s 

Since this velocity is less than or equal to 10 ft/s, the dissipation design is 
satisfactory.  However, we must check the culvert capacity using the high estimate 
of Manning’s n from Equation 7.22b.  Two flow limiting scenarios exist. 

First, assume the culvert is flowing nearly full.  Using Equation 7.22b and n = 
0.013 (maximum value is 0.015): 
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Area and hydraulic radius are calculated as: 

y = D – h = 4.0 - 0.34 = 3.66 ft 

A = yB = 3.66(4.0) = 14.64 ft2 

P = 2y+B = 2(3.66)+4.0 = 11.32 ft 

R = A/P = 14.64/11.32 = 1.293 ft 

Using Manning’s Equation, 
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Q is greater than the design flow using this scenario. 

Second, assume the culvert is flowing full.  Using Equation 7.22b and n = 0.013 
(maximum value is 0.015): 
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Area and hydraulic radius are calculated as: 

A = yB = 3.66(4.0) = 14.64 ft2 

P = 2(y+B) = 2(3.66+4.0) = 15.32 ft 

R = A/P = 14.64/15.32 = 0.956 ft 

Using Manning’s Equation, 
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Since both flows are greater than the design flow of 100 ft3/s we know that the 
design is acceptable.  If this had not been the case, a larger culvert barrel could be 
evaluated going back to step 3 or tumbling flow or another type of dissipator could 
be considered. 

Step 5. Complete sizing the element heights, element spacing, and other design features. 

Spacing between roughness elements is calculated to be: 

L = (L/h)h = (10)0.34 = 3.4 ft 

Number of rows of roughness elements is estimated using Equation 7.24.  First 
calculate: 

Af = B(h) = 4.0(0.34) = 1.36 ft2 

Vw = (Vn+Vi)/6 = (22.5+9.84)/6 = 5.39 ft/s 
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Round up to the next whole number, N = 25 

Design summary: 

• 25 rows of roughness elements, h = 0.34 ft 

• length of roughened section = 81.6 ft.  The last roughness element should 
be no less than L/2 from the culvert outlet. 

• outlet velocity = 9.84 ft/s. (Velocity reduction = 56%) 

7.3 USBR TYPE IX BAFFLED APRON 
Peterka (1978) has described the design process for a baffled apron that makes use of 
roughness elements on the floor of a box culvert or chute as shown in Figure 7.9.  The 
roughness elements, referred to as baffles or blocks, perturb the flow pattern such that flow 
slows as it approaches each block and then accelerates as it passes each block and 
approaches the next row.  By placing the baffles from the top of the culvert or chute to the 
bottom, the baffles prevent excessive acceleration of flows regardless of the total drop height.  
Based on model studies reported by Peterka, the baffled apron design produces velocities at 
the bottom of the apron equal to no more than one-third of the critical velocity if the design 
guidance is followed.  This approach works satisfactorily with or without downstream tailwater 
and is generally not susceptible to trash or debris accumulation. 
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Figure 7.9.  USBR Type IX Baffled Apron (Peterka, 1978) 

The USBR Type IX baffled apron is limited to the following site conditions and design limits: 

1. Culvert/chute slopes of no greater than 50 percent (1:2) and no less than 25 
percent (1:4). 

2. Unit discharge less than or equal to 5.6 m3/s/m (60 ft3/s/ft). 

3. Approach velocity less than critical velocity (Froude number prior to drop less 
than 1). 

The baffled apron is not a device intended to slow excessive approach velocity, but to prevent 
excessive acceleration during the vertical drop.  According to Peterka (1978), the recommended 
approach velocity is 1.5 m/s (5 ft/s) less than critical velocity.  Velocities near or above critical 
velocity tend to cause the flow to be thrown into the air after striking the first row of baffles and 
jumping past the first two or three baffle rows.  This is of particular concern for relatively short 
aprons.  One strategy for reducing the approach velocity is providing a recessed approach prior 
to the entrance of the apron as shown in Figure 7.9. 

Another key design element is the selection of the baffle dimensions (height, width, and 
spacing).  Based on model testing and prototype observations by Peterka, baffle height, H, 
should be about 0.8 times the critical depth, yc.  The height may be increased as high as 0.9yc, 
but should not be less than 0.8yc. 
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As shown in Figure 7.9, the baffle widths and horizontal baffle spacing should be equal to 1.5H, 
but not less than H.  Each row should be alternating and partial blocks will likely be necessary at 
the culvert/chute walls. 

Longitudinal spacing between rows is based on an assumed apron slope at the maximum slope 
of 50%.  Under these conditions, successive rows of baffles are placed 2H apart as measured 
along the slope.  For baffles less than 0.9 m (3 ft) in height, the row spacing may be greater, 
than 2H, but not exceeding 1.8 m (6 ft).  For apron slopes less than 50 percent, the spacing 
along the apron slope may be increased such that the vertical drop between baffle rows is 
0.89H. 

Four rows of baffles are required to establish full control of the flow, although fewer rows have 
been successful.  As shown in Figure 7.9, the chute is generally extended below the bed level of 
the downstream channel with the lower row of baffles buried to control scour.  Riprap consisting 
of 6 to 12-inch rock should be placed at the downstream ends of the sidewalls to prevent 
turbulence from undermining the walls, but should not extend appreciably into the channel. 

The design procedure for the USBR Type IX baffled apron may be summarized in the following 
steps: 

Step 1. Compute normal flow conditions in the culvert/chute to determine if the discharge 
conditions at the outlet require mitigation. 

Step 2. Verify that the approach flow conditions are acceptable. 

Step 3. Compute discharge velocity.  If this velocity meets criteria, the USBR Type IX may 
be an appropriate energy dissipation approach. 

Step 4. Size the baffle height, spacing, and other design features. 

Design Example: USBR Type IX Baffled Apron (SI) 
Design a USBR Type IX baffled apron for energy dissipation in a concrete box culvert with an 
overall vertical drop of 8 m.  Determine if the outlet velocity is less than 3 m/s.  Given: 

 Q = 2.8 m3/s 
 D = 1.2 m 
 B = 1.2 m 
Approach channel: 
 n = 0.020 
 So = 0.01 m/m 
Box/Chute: 
 n = 0.013 
 So = 0.333 m/m 

Solution 
Step 1. Compute normal flow conditions in the box/chute to determine if a baffled apron is 

needed.  Using trial and error and the geometric relations of Equations 7.11, 7.12, 
and 7.13: 

 yn = 0.19 m 

 Vn = 12.2 m/s  (Since this is greater than 3 m/s, energy dissipation is required.) 
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Step 2. Verify that the approach flow conditions are acceptable.  Estimate the approach 
flow conditions using trial and error and Manning’s Equation: 

 yn = 0.92 m 

 Vn = 2.54 m/s  

 This approach velocity must be compared with critical velocity computed from: 

 q = Q/B = 2.8/1.2 = 2.33 m3/s/m 

 Vc = (qg)1/3 = (2.33(9.8))1/3 = 2.84 m/s 

 Since Vc > Vn (approach velocity) and the unit discharge is less than 5.6 m3/s/m, 
the baffled apron is applicable. 

Step 3. Compute discharge velocity.  Discharge velocity is no more than one-third of 
critical velocity; in this case discharge velocity = (2.84 m/s)/3 = 0.95 m/s.  This is 
well below the design requirement of 3 m/s, therefore, the USBR Type IX may be 
an appropriate energy dissipation approach. 

Step 4. Size the baffle height, spacing, and other design features.  Critical depth must be 
computed first. 

 yc = q/Vc = 2.33/2.84 = 0.82 m 

 Baffle height, H = 0.8yc = 0.8 (0.82) = 0.66 m 

 Baffle width = 1.5H = 1.5 (0.66) = 0.99 m 

 Baffle spacing (horizontal) = 1.5H = 0.99 m 

 Vertical drop between baffle rows, Δh = 0.89H = 0.89 (0.66) = 0.59 m 

 Spacing (measured along apron) between baffle rows, L = 1.87 m 

 Minimum sidewall height = 3H = 3(0.66) = 1.98 m (Since this is a closed box with a 
rise = 1.2 m, splash is not a concern.) 

Design summary: 

• 13 rows of baffles, h = 0.66 m 

• length of apron = 25.3 m 

• outlet velocity = 0.95 m/s. (Velocity reduction = 92%) 

Design Example: USBR Type IX Baffled Apron (CU) 
Design a USBR Type IX baffled apron for energy dissipation in a concrete box culvert with an 
overall vertical drop of 26.2 ft.  Determine if the outlet velocity is less than 10 ft/s.  Given: 

 Q = 100 ft3/s 
 D = 4.0 ft 
 B = 4.0 ft 
Approach channel: 
 n = 0.020 
 So = 0.01 ft/ft 
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Box/Chute: 
 n = 0.013 
 So = 0.333 ft/ft 

Solution 
Step 1. Compute normal flow conditions in the box/chute to determine if a baffled apron is 

needed.  Using trial and error and the geometric relations of Equations 7.11, 7.12, 
and 7.13: 

 yn = 0.62 ft 

 Vn = 40.2 ft/s  (Since this is greater than 10 ft/s, energy dissipation is required.) 

Step 2. Verify that the approach flow conditions are acceptable.  Estimate the approach 
flow conditions using trial and error and Manning’s Equation: 

 yn = 2.98 ft 

 Vn = 8.4 ft/s  

 This approach velocity must be compared with critical velocity computed from: 

 q = Q/B = 100/4 = 25 ft3/s/ft 

 Vc = (qg)1/3 = (25.0(32.2))1/3 = 9.31 ft/s 

 Since Vc > Vn (approach velocity) and the unit discharge is less than 60 ft3/s/ft, the 
baffled apron is applicable. 

Step 3. Compute discharge velocity.  Discharge velocity is no more than one-third of 
critical velocity; in this case discharge velocity = (9.3 ft/s)/3 = 3.1 ft/s.  This is well 
below the design requirement of 10 ft/s, therefore, the USBR Type IX may be an 
appropriate energy dissipation approach. 

Step 4. Size the baffle height, spacing, and other design features.  Critical depth must be 
computed first. 

 yc = q/Vc = 25/9.3 = 2.69 ft 

 Baffle height, H = 0.8yc = 0.8 (2.69) = 2.15 ft 

 Baffle width = 1.5H = 1.5 (2.15) = 3.23 ft 

 Baffle spacing (horizontal) = 1.5H = 3.23 ft 

 Vertical drop between baffle rows, Δh = 0.89H = 0.89 (2.15) = 1.91 ft 

 Spacing (measured along apron) between baffle rows, L = 6.08 ft 

 Minimum sidewall height = 3H = 3(2.15) = 6.45 ft (Since this is a closed box with a 
rise = 4.0 ft, splash is not a concern.) 

Design summary: 

• 13 rows of baffles, h = 2.15 ft 

• length of apron = 82.9 ft 

• outlet velocity = 3.1 ft/s. (Velocity reduction = 92%) 
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7.4 BROKEN-BACK CULVERTS/OUTLET MODIFICATION 
An alternative to installing a steeply sloped culvert is to break the slope into a steeper portion 
near the inlet followed by a horizontal runout section.  This configuration is referred to as a 
broken-back culvert and may be considered another internal (integrated) energy dissipator 
strategy if it is designed so that a hydraulic jump occurs in the runout section to dissipate 
energy.  Figure 7.10 illustrates two cases:  a double broken-back culvert, and a single broken-
back culvert.  In both cases, the exit or runout section is assumed to be horizontal.  Under 
certain conditions of culvert properties and tailwater levels, a hydraulic jump will form in the 
runout section and reduce the outlet velocity from that associated with a supercritical depth to 
that associated with a subcritical depth.  Modifications to the runout section may be used to 
induce a hydraulic jump within the culvert. 

7.4.1 Broken-back Culvert Hydraulics 
A hydraulic jump will form in a channel if either of the following two conditions occurs:  (1) the 
momentum in the tailwater downstream from the culvert exceeds that in the barrel, or (2) the 
supercritical Froude number in the barrel is reduced to approximately 1.7 in a decelerating flow 
environment (Chow, 1959). 

To solve for the hydraulics of a broken-back culvert, a gradually varied water surface profile is 
calculated within the culvert from the entrance down to the flat runout section.  This supercritical 
profile is compared to the tailwater elevation and the sequent depth to determine whether or not 
a hydraulic jump will occur in the runout section. 

Figure 7.10.  Elevation view of (a) Double and (b) Single Broken-back Culvert 

If a jump does occur, the design should ensure that the jump is confined to the runout section.  
First, the location of the jump referenced from the beginning of the runout section must be 
determined.  This is accomplished by computing the profiles upstream and downstream of the 
jump to find where the momenta are the same, that is, where the jump is located. 

Second, the length of the jump is estimated.  The sum of these two quantities must be less than 
the runout section length.  The jump length for a rectangular culvert or channel is given by: 
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where, 
 L = jump length, m (ft) 
 y1 = supercritical flow depth, m (ft) 
 Fr = supercritical Froude number 
 
For a circular barrel, the jump length is equal to six times the subcritical sequent depth, where 
the sequent depth is computed using an empirical formulation (French, 1985). 

The hydraulic analysis of broken-back culverts has been simplified by the computer application 
entitled Broken-back Computer Analysis Program, or BCAP (Hotchkiss et al. 2004). 

The recommended design is limited to the following conditions: 

1. Slope of the steep section must be less than or equal to 1.4:1 (V:H) 

2. Hydraulic jump must be completed within the culvert barrel 

For situations where the runout section is too short and/or there is insufficient tailwater for a 
jump to be completed (or initiated) within the barrel, modifications may be made to the outlet 
that will induce a jump.  Two modification alternatives are presented in the following sections. 

7.4.2 Outlet Weir 
Placing a weir near the outlet of a culvert will induce a hydraulic jump under certain flow 
conditions (see Figure 7.11).  The weir spans the width of a box culvert and is located 
approximately 3 m (10 ft) upstream from the culvert outlet.  This location will facilitate debris 
removal from the upstream side of the weir.  Drain holes in the weir prevent water from standing 
upstream.  The distance Lw is referenced to the break in slope from the more steeply sloped 
section of the culvert.  The rise of the culvert must be greater than y2. 

 

Figure 7.11. Weir Placed near Outlet of Box Culvert 

Weirs of this nature are intended for use in conjunction with broken-back culverts, but may be 
used for chutes.  They are placed in the horizontal runout section downstream from the change 
in slope exiting the steep section a distance to be determined during the design process.  The 
weir is best used when there will be no standing water or design tailwater downstream from the 
culvert.  Because flow will pass over the weir without the mitigating effect of tailwater, the flow 
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will pass through critical depth and become supercritical as it approaches the culvert outlet.  The 
need for downstream channel protection will be decreased due to the presence of the weir. 

Hotchkiss, et al. (2005) tested conditions similar to those investigated by Forster and Skrinde 
(1950).  Weirs near culvert outlets will induce hydraulic jumps for approach Froude numbers 
between 2 and 7.  Designers interested in this dissipator may also wish to compare with the 
stilling basin designs found in Chapter 8. 

The recommended design is limited to the following conditions: 

1. Approach Froude number between 2 and 7 

2. Weir heights between 0.7y1 and 4.2y1 

3. Rectangular culverts 

The approach hydraulic conditions may be determined for broken-back culverts (see Section 
7.4) or for chutes or any other steep approach to a horizontal runout section.  However, the 
design procedure that follows has only been developed for rectangular shapes.  Future 
extensions of the methodology will need to be supported by additional experimental testing. 

The procedure makes use of the critical depth and the sequent depth for the hydraulic jump.  
The critical depth for a rectangular culvert was given earlier by Equation 7.1.  The sequent 
depth is as follows: 

  ( )1Fr81
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where, 
 y2 = sequent depth, m (ft) 
 
Design of the weir primarily involves selecting its location and height.  The relationship between 
weir height, approach depth, and Froude number is given by: 

 ( ) 11
2

1w y6534.0Fr4385.0Fr0331.0h −+=  (7.27) 
where, 
 hw = weir height, m (ft) 
 y1 = depth at the beginning of the runout section, m (ft) 
 
The distance from the break in slope to the weir, approximately equal to the length of the 
hydraulic jump, is calculated as follows: 

 2W y5L =  (7.28) 
 
Equation 7.28 is empirically based on the experimental data.  For this reason, and because of 
its simplicity, it is used in this design procedure rather than Equation 7.25. 

To calculate conditions downstream of the weir, near the culvert outlet, it is necessary to solve 
the energy equation iteratively for the depth downstream from the weir assuming no losses: 
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where, 
 y3 = theoretical depth leaving the culvert, m (ft) 
 B = culvert width, m (ft) 
 
Equation 7.29 has two solutions: subcritical and supercritical.  The supercritical solution is taken 
because after passing through critical depth going over the weir the flow will be supercritical.  
The theoretical depth is adjusted for energy losses from the experimental data of Hotchkiss, et 
al. (2005): 

 α+= 3o y23.1y  (7.30) 
where, 
 yo = outlet depth, m (ft) 
 α = constant equal to 0.015 m in SI and 0.05 ft in CU 
 
The corresponding outlet velocity is computed from: 

 
o
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The following design procedure may be used: 

Step 1. Find the depth of flow, y1, velocity, and Froude number at the beginning of the 
horizontal runout section.  (This can be calculated using BCAP (Hotchkiss et al. 
2004), HY8 (FHWA culvert analysis software), or other calculation tool to 
determine the depth entering the runout section.) 

Step 2. Find critical depth, yc, using Equation 7.1. 

Step 3. Find the weir height (Equation 7.27) and location (Equation 7.28). 

Step 4. Solve the energy equation (Equation 7.29) iteratively for the depth downstream 
from the weir. 

Step 5. Compute the outlet depth (Equation 7.30) and velocity (Equation 7.31).  Evaluate if 
energy dissipation is sufficient.  Check culvert height for sufficient clearance. 

Design Example: Outlet Weir in a Box Culvert (SI) 
Design an outlet weir in the runout section of a RCB and determine the outlet conditions.  The 
approach depth to the runout section is y1 = 0.375 m.  Given: 

 Q = 14.2 m3/s 
 D = 2.44 m 
 B = 4.3 m 
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Solution 
Step 1. Find the depth of flow, y1, velocity, and Froude number at the beginning of the 

horizontal runout section.  y1 was given. 

 V1 = Q/(By1) = 14.2/((4.3)(0.375)) = 8.81 m/s 
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Step 2. Find critical depth, yc, using Equation 7.1.  Unit discharge, q = Q/B =14.2/4.3 = 
3.302 m2/s. 
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Step 3. Find the weir height (Equation 7.27) and location (Equations 7.27 and 7.28). 

( ) ( ) m774.0375.06534.0)6.4(4385.0)6.4(0331.0y6534.0Fr4385.0Fr0331.0h 2
11

2
1w =−+=−+=

 

 ( ) ( ) m255.21)6.4(81
2
375.01Fr81

2
yy 22

1
1

2 =−+=−+=  

m27.11)255.2(5y5L 2W ===   (round to 11.3 m) 

Step 4. Solve the energy equation (Equation 7.29) iteratively for the depth downstream 
from the weir.  From this trial and error process, y3 = 0.561 m 

Step 5. Compute the outlet depth (Equation 7.30) and velocity (Equation 7.31).  Evaluate if 
energy dissipation is sufficient. 
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 If this velocity is acceptable, then the weir design is appropriate.  Also, verify that 
the depth inside the culvert does not touch the top of the culvert.  In this case, the 
rise of the culvert (2.44 m) is higher than the jump height (2.25 m) and the design 
is acceptable. 

Design Example: Outlet Weir in a Box Culvert (CU) 
Design an outlet weir in the runout section of a RCB and determine the outlet conditions.  The 
approach depth to the runout section is y1 = 1.23 ft.  Given: 

 Q = 500 ft3/s 
 D = 8.0 ft 
 B = 14.0 ft 
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Solution 
Step 1. Find the depth of flow, y1, velocity, and Froude number at the beginning of the 

horizontal runout section.  y1 was given. 

 V1 = Q/(By1) = 500/((14.0)(1.23)) = 29.0 ft/s 
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Step 2. Find critical depth, yc, using Equation 7.1.  Unit discharge, q = Q/B =500/14.0 = 
35.71 ft2/s. 
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Step 3. Find the weir height (Equation 7.27) and location (Equations 7.27 and 7.28). 
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ft15.37)43.7(5y5L 2W ===   (round to 37.2 ft) 

Step 4. Solve the energy equation (Equation 7.29) iteratively for the depth downstream 
from the weir.  From this trial and error process, y3 = 1.847 ft 

Step 5. Compute the outlet depth (Equation 7.30) and velocity (Equation 7.31).  Evaluate if 
energy dissipation is sufficient. 
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 If this velocity is acceptable, then the weir design is appropriate.  Also, verify that 
the depth inside the culvert does not touch the top of the culvert.  In this case, the 
rise of the culvert (8.0 ft) is higher than the jump height (7.43 ft) and the design is 
acceptable. 

7.4.3 Outlet Drop Followed by a Weir 
A drop in the culvert invert followed by a weir is shown in Figure 7.12.  As with the weir near the 
culvert outlet (Section 7.5), this installation is intended to be used in conjunction with a broken-
back culvert or chute where a steeply sloped section terminates with a horizontal runout section.  
The location of the drop beyond the break in slope from the steep barrel, Ld, is about 1.5 m (5 
ft).  The drop effectively decreases the slope of the steep culvert section, while the weir induces 
a hydraulic jump between the drop and weir.  The drop may also be used if the height of the 
hydraulic jump for the design in Section 7.5 reaches the top of the culvert. 
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Figure 7.12.  Drop followed by Weir 

The design procedure is based upon Hotchkiss and Larson (2004) and Hotchkiss, et al. (2005).  
An extensive set of experiments was performed to define reductions in energy, momentum, and 
velocity at the culvert outlet due to the presence of a drop followed by a weir.  Empirical results 
relate the drop height, hd, to approach Froude number and weir height.  Designers interested in 
this design may wish to compare the results with a straight drop structure (Section 11.1) at the 
end of the culvert or chute. 

The recommended design is limited to the following conditions: 

1. Approach Froude number between 3.5 and 6 

2. Weir height to approach depth (hw/y1) between 1.3 and 4 

3. Drop height between 60 and 65% of the weir height (suggested, not required) 

4. Rectangular culverts 

The approach hydraulic conditions, at location 1, may be determined for broken-back culverts 
(See Section 7.4) or for chutes or any other steep approach to a horizontal runout section.  
However, the design procedure that follows has only been developed for rectangular shapes.  
Future extensions of the methodology will need to be supported by additional experimental 
testing. 

The procedure makes use of the critical depth and the sequent depth for the hydraulic jump.  
The critical depth for a rectangular culvert was given earlier by Equation 7.1.  The sequent 
depth was also provided earlier as Equation 7.26. 

Design of the weir primarily involves selecting its location and height.  The relationship between 
weir height, approach depth, and Froude number is given by Equation 7.32.  The weir height is 
also related to the drop height. 
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where, 
 hw = weir height, m (ft) 
 hd = drop height, m (ft) 
 y1 = depth at the beginning of the runout section, m (ft) 
 
To solve Equation 7.32, the ratio of hd/hw is selected to fall within the range of 0.60 and 0.65.  
The distance from the drop to the weir is calculated as follows: 

 )hy(6L wcw +=  (7.33) 
 
The quantity (yc + hw) approximates the sequent depth downstream from a classic hydraulic 
jump. 

To calculate conditions downstream of the weir, near the culvert outlet, it is necessary to solve 
the energy equation iteratively for the depth downstream from the weir assuming no losses.  
Equation 7.29, presented earlier is used for this purpose.  The theoretical depth calculated from 
Equation 7.29 is adjusted for energy losses from the experimental data of Hotchkiss, et al. 
(2005) using previously presented Equation 7.30. 

The following design procedure may be used: 

Step 1. Find the depth of flow, y1, velocity, and Froude number at the beginning of the 
horizontal runout section.  (This can be calculated using BCAP (Hotchkiss et al. 
2004), HY8 (FHWA culvert analysis software), or other calculation tool to 
determine the depth entering the runout section.) 

Step 2. Find critical depth, yc, using Equation 7.1. 

Step 3. Find the weir height (Equation 7.32), weir location (Equation 7.33), and drop 
height. 

Step 4. Solve the energy equation (Equation 7.29) iteratively for the depth downstream 
from the weir. 

Step 5. Compute the outlet depth (Equation 7.30) and velocity (Equation 7.31).  Evaluate if 
energy dissipation is sufficient. Check culvert height for sufficient clearance. 

Design Example: Drop and Outlet Weir in a Box Culvert (SI) 
Design an outlet weir in the runout section of a RCB and determine the outlet conditions.  The 
approach depth to the runout section is y1 = 0.375 m.  Given: 

 Q = 14.2 m3/s 
 D = 2.44 m 
 B = 4.3 m 

Solution 
Step 1. Find the depth of flow, y1, velocity, and Froude number at the beginning of the 

horizontal runout section.  y1 was given. 

 V1 = Q/(By1) = 14.2/((4.3)(0.375)) = 8.81 m/s 
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Step 2. Find critical depth, yc, using Equation 7.1.  Unit discharge, q = Q/B =14.2/4.3 = 
3.302 m2/s. 
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Step 3. Find the weir height (Equation 7.32), weir location (Equations 7.27 and 7.33), and 
drop height.  Select the ratio hd/hw = 0.64. 
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LW = 6(yc +hw) = 6(1.04 + 0.771) = 10.87 (round to 10.9 m) 

hd = 0.64(hw) = 0.64(0.771) = 0.49 m 

Step 4. Solve the energy equation (Equation 7.29) iteratively for the depth downstream 
from the weir.  From this trial and error process, y3 = 0.568 m 

Step 5. Compute the outlet depth (Equation 7.30) and velocity (Equation 7.31).  Evaluate if 
energy dissipation is sufficient. 

 yo = 1.23y3 + α = 1.23(0.568) + 0.015 = 0.714 m 
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 If this velocity is acceptable, then the weir design is appropriate.  Also, verify that 
the depth inside the culvert does not touch the top of the culvert.  In this case, the 
rise of the culvert (2.44 m) is higher than the jump height less the drop (2.25 –0.49 
m) and the design is acceptable. 

Design Example: Drop and Outlet Weir in a Box Culvert (CU) 
Design an outlet weir in the runout section of a RCB and determine the outlet conditions.  The 
approach depth to the runout section is y1 = 1.23 ft.  Given: 

 Q = 500 ft3/s 
 D = 8.0 ft 
 B = 14.0 ft 

Solution 
Step 1. Find the depth of flow, y1, velocity, and Froude number at the beginning of the 

horizontal runout section.  y1 was given. 
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 V1 = Q/(By1) = 500/((14.0)(1.23)) = 29.0 ft/s 
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Step 2. Find critical depth, yc, using Equation 7.1.  Unit discharge, q = Q/B =500/14.0 = 
35.71 ft2/s. 
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Step 3. Find the weir height (Equation 7.32), weir location (Equations 7.27 and 7.33), and 
drop height.  Select the ratio hd/hw = 0.64. 
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LW = 6(yc +hw) = 6(3.41 + 2.53) = 35.64 ft (round to 35.6 ft) 

hd = 0.64(hw) = 0.64(2.53) = 1.62 ft 

Step 4. Solve the energy equation (Equation 7.29) iteratively for the depth downstream 
from the weir.  From this trial and error process, y3 = 1.86 ft 

Step 5. Compute the outlet depth (Equation 7.30) and velocity (Equation 7.31).  Evaluate if 
energy dissipation is sufficient. 

 yo = 1.23y3 + α = 1.23(1.86) + 0.05 = 2.34 ft 
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 If this velocity is acceptable, then the weir design is appropriate.  Also, verify that 
the depth inside the culvert does not touch the top of the culvert.  In this case, the 
rise of the culvert (8.0 ft) is higher than the jump height less the drop (7.43 – 1.62 
ft) and the design is acceptable. 
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CHAPTER 8: STILLING BASINS 
Stilling basins are external energy dissipators placed at the outlet of a culvert, chute, or 
rundown.  These basins are characterized by some combination of chute blocks, baffle blocks, 
and sills designed to trigger a hydraulic jump in combination with a required tailwater condition.  
With the required tailwater, velocity leaving a properly designed stilling basin is equal to the 
velocity in the receiving channel. 

Depending on the specific design, they operate over a range of approach flow Froude numbers 
from 1.7 to 17 as summarized in Table 8.1.  This chapter includes the following stilling basins: 
USBR Type III, USBR Type IV, and SAF.  The United States Bureau of Reclamation (USBR) 
basins were developed based on model studies and evaluation of existing basins (USBR, 
1987).  The St. Anthony Falls (SAF) stilling basin is based on model studies conducted by the 
Soil Conservation Service at the St. Anthony Falls Hydraulic Laboratory of the University of 
Minnesota (Blaisdell, 1959).  

 

Table 8.1. Applicable Froude Number Ranges for Stilling Basins 

Stilling Basin 
Minimum Approach 

Froude Number 
Maximum Approach 

Froude Number 

USBR Type III 4.5 17 

USBR Type IV 2.5 4.5 

SAF 1.7 17 
 

The selection of a stilling basin depends on several considerations including hydraulic 
limitations, constructibility, basin size, and cost.  The design examples in this chapter all use the 
identical site conditions to provide a comparison between the size of basins and a free hydraulic 
jump basin for one case.  Table 8.2 summarizes the results of these examples with the 
incoming Froude number, the required tailwater at the exit of the basin along with basin length 
and depth.  For this example, the SAF stilling basin results in the shortest and shallowest basin.  
Details of the design procedures and this design example are found in the following sections. 

 

Table 8.2. Example Comparison of Stilling Basin Dimensions 

Basin Type1 
Froude 
Number 

Required 
Tailwater3, m (ft) 

Basin Length, 
m (ft) 

Basin Depth, 
m (ft) 

Free jump 7.6 3.1 (10.1) 33.7 (109.2) 4.8 (15.5) 
USBR Type III 6.9 3.0 (9.6) 20.6 (67.3) 3.8 (12.5) 
USBR Type IV2 8.0 3.5 (11.2) 38.1 (121.8) 5.5 (17.4) 
SAF 6.1 2.4 (7.9) 12.4 (39.7) 2.7 (8.6) 

1Based on a 3 m by 1.8 m (10 ft by 6 ft) box culvert at a design discharge of 11.8 m3/s (417 
ft3/s).  All basins have a constant width equal to the culvert width.  Detailed description of the 
example is found in Section 8.1. 
2The USBR Type IV approach Froude number is outside of the recommended range, but 
was included for comparison. 
3Required tailwater influences basin depth.  Velocity leaving each of these basins is the 
same and depends on the tailwater channel. 
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8.1 EXPANSION AND DEPRESSION FOR STILLING BASINS 
As explained in Chapter 4, the higher the Froude number at the entrance to a basin, the more 
efficient the hydraulic jump and the shorter the resulting basin.  To increase the Froude number 
as the water flows from the culvert to the basin, an expansion and depression is used as is 
shown in Figure 8.1.  The expansion and depression converts depth, or potential energy, into 
kinetic energy by allowing the flow to expand, drop, or both.  The result is that the depth 
decreases and the velocity and Froude number increase. 

 
 

Figure 8.1. Definition Sketch for Stilling Basin   

The Froude number used to determine jump efficiency and to evaluate the suitability of 
alternative stilling basins as described in Table 8.1 is defined in Equation 8.1. 

 
1

1
1 gy

VFr =  (8.1) 

where, 
 Fr1 = Froude number at the entrance to the basin 
 V1 = velocity entering the basin, m/s (ft/s) 
 y1 = depth entering the basin, m (ft) 
 g = acceleration due to gravity, m/s2 (ft/s2) 
 
To solve for the velocity and depth entering the basin, the energy balance is written from the 
culvert outlet to the basin.  Substituting Q/(y1WB) for V1 and solving for Q results in:  
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where, 
 WB = width of the basin, m/s (ft/s) 
 Vo = culvert outlet velocity, m/s (ft/s) 
 y1 = depth entering the basin, m (ft) 
 yo = culvert outlet depth, m (ft) 
 z1 = ground elevation at the basin entrance, m (ft) 
 zo = ground elevation at the culvert outlet, m (ft) 
 
Equation 8.2 has three unknowns y1, WB, and z1. The depth y1 can be determined by trial and 
error if WB and z1 are assumed.   WB should be limited to the width that a jet would flare 
naturally in the slope distance L.  
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where, 
 LT = length of transition from culvert outlet to basin, m (ft) 
 ST = slope of the transition, m/m (ft/ft) 
 Fro = outlet Froude number 
 

Since the flow is supercritical, the trial y1 value should start near zero and increase until the 
design Q is reached.  This depth, y1, is used to find the sequent (conjugate) depth, y2, using the 
hydraulic jump equation: 
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where, 
 y2 = conjugate depth, m (ft) 
 y1 = depth approaching the jump, m (ft) 
 C = ratio of tailwater to conjugate depth, TW/y2 
 Fr1 = approach Froude number 
 
For a free hydraulic jump, C = 1.0.  Later sections on the individual stilling basin types provide 
guidance on the value of C for those basins.  For the jump to occur, the value of y2 + z2 must be 
equal to or less than TW + z3 as shown in Figure 8.1.  If z2 + y2 is greater than z3 +TW,  the 
basin must be lowered and the trial and error process repeated until sufficient tailwater exists to 
force the jump.  

In order to perform this check, z3 and the basin lengths must be determined.  The length of the 
transition is calculated from:  
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where, 
 LT = length of the transition from the culvert outlet to the bottom of the basin, m (ft) 
 ST = slope of the transition entering the basin, m/m (ft/ft) 
 
The length of the basin, LB, depends on the type of basin, the entrance flow depth, y1, and the 
entrance Froude number, Fr1.  Figure 8.2 describes these relationships for the free hydraulic 
jump as well as several USBR stilling basins. 

 

Figure 8.2. Length of Hydraulic Jump on a Horizontal Floor  

The length of the basin from the floor to the sill is calculated from: 
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where, 
 LS = length of the basin from the bottom of the basin to the basin exit (sill), m (ft) 
 SS = slope leaving the basin, m/m (ft/ft) 
 
The elevation at the entrance to the tailwater channel is then calculated from: 

 1SS3 zSLz +=  (8.7) 
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where, 
 z3 = elevation of basin at basin exit (sill), m (ft) 
 
Figure 8.1 also illustrates a radius of curvature between the culvert outlet and the transition to 
the stilling basin.  If the transition slope is 0.5V:1H or steeper, use a circular curve at the 
transition with a radius defined by Equation 8.8 (Meshgin and Moore, 1970).  It is also advisable 
to use the same curved transition going from the transition slope to the stilling basin floor. 
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where, 
 r = radius of the curved transition, m (ft) 
 Fr = Froude number 
 y = depth approaching the curvature, m (ft) 
 
For the curvature between the culvert outlet and the transition, the Froude number and depth 
are taken at the culvert outlet.  For the curvature between the transition and the stilling basin 
floor, the Froude number and depth are taken as Fr1 and y1. 

8.2 GENERAL DESIGN PROCEDURE 
The design procedure for all of these stilling basins may be summarized in the following steps.  
Basin specific variations to these steps are discussed in the following sections on each basin. 

Step 1. Determine the velocity and depth at the culvert outlet.   For the culvert outlet, 
calculate culvert brink depth, yo, velocity, Vo, and Fro.  For subcritical flow, use 
Figure 3.3 or Figure 3.4.  For supercritical flow, use normal depth in the culvert for 
yo.  (See HDS 5 (Normann, et al., 2001) for additional information on culvert brink 
depths.) 

Step 2. Determine the velocity and TW depth in the receiving channel downstream of the 
basin.  Normal depth may be determined using Table B.1 or other appropriate 
technique. 

Step 3. Estimate the conjugate depth for the culvert outlet conditions using Equation 8.4 to 
determine if a basin is needed.  Substitute yo and Fro for y1 and Fr1, respectively.  
The value of C is dependent, in part, on the type of stilling basin to be designed.  
However, in this step the occurrence of a free hydraulic jump without a basin is 
considered so a value of 1.0 is used.  Compare y2 and TW.  If y2 < TW, there is 
sufficient tailwater and a jump will form without a basin.  The remaining steps are 
unnecessary. 

Step 4.  If step 3 indicates a basin is needed (y2 > TW), make a trial estimate of the basin 
bottom elevation, z1, a basin width, WB, and slopes ST and SS.  A slope of 0.5 
(0.5V:1H) or 0.33 (0.33V:1H) is satisfactory for both ST and Ss.  Confirm that WB is 
within acceptable limits using Equation 8.3.  Determine the velocity and depth 
conditions entering the basin and calculate the Froude number.  Select candidate 
basins based on this Froude number. 
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Step 5. Calculate the conjugate depth for the hydraulic conditions entering the basin using 
Equation 8.4 and determine the basin length and exit elevation.  Basin length and 
exit elevation are computed using Equations 8.5, 8.6, and 8.7 as well as Figure 
8.2.  Verify that sufficient tailwater exists to force the hydraulic jump.  If the 
tailwater is insufficient go back to step 4.  If excess tailwater exists, the designer 
may either go on to step 6 or return to step 4 and try a shallower (and smaller) 
basin. 

Step 6. Determine the needed radius of curvature for the slope changes entering the basin 
using Equation 8.8. 

Step 7. Size the basin elements for basin types other than a free hydraulic jump basin. 
The details for this process differ for each basin and are included in the individual 
basin sections. 

Design Example: Stilling Basin with Free Hydraulic Jump (SI) 
Find the dimensions for a stilling basin (see Figure 8.1) with a free hydraulic jump providing 
energy dissipation for a reinforced concrete box culvert.  Given:  

 Q = 11.8 m3/s 
 Culvert 
 B = 3.0 m 
 D = 1.8 m 
 n = 0.015 
 So = 0.065 m/m 
 zo = 30.50 m 
 Downstream channel (trapezoidal) 
 B = 3.10 m 
 Z = 1V:2H 
 n = 0.030 

Solution 
Step 1. Determine the velocity and depth at the culvert outlet.   By trial and error using 

Manning’s Equation, the normal depth is calculated as: 

Vo = 8.50 m/s, yo = 0.463 m 
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 Since the Froude number is greater than 1.0, the normal depth is supercritical and 
the normal depth is taken as the brink depth. 

Step 2. Determine the velocity and depth (TW) in the receiving channel. By trial and error 
using Manning’s Equation or by using Table B.1: 

Vn = 4.84 m/s, yn = TW = 0.574 m 

Step 3. Estimate the conjugate depth for the culvert outlet conditions using Equation 8.4.  
C = 1.0. 
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Since y2 (2.4 m) > TW (0.574 m) a jump will not form and a basin is needed. 

Step 4.   Since y2 - TW = 2.64 – 0.574 = 2.07 m, try z1 = zo – 2.07 = 28.4 m  

Also, choose WB = 3.0 m (no expansion from culvert to basin) and slopes ST = 0.5 
and SS = 0.5. 

Check WB using Equation 8.3, but first calculate the transition length from Equation 
8.5. 
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By using Equation 8.2 or other appropriate method by trial and error, the velocity 
and depth conditions entering the basin are: 

V1 = 10.74 m/s, y1 = 0.366 m 
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Step 5. Calculate the conjugate depth for a free hydraulic jump (C=1) using Equation 8.4. 
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From Figure 8.2 basin length, LB/y2 = 6.1.  Therefore, LB = 6.1(2.77) = 16.9 m.   

The length of the basin from the floor to the sill is calculated from Equation 8.6: 
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The elevation at the entrance to the tailwater channel is from Equation 8.7: 
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Since y2 +z2 (2.77+28.4) > z3 + TW (29.05+ 0.574), tailwater is not sufficient to 
force a jump in the basin.  Go back to step 4. 

Step 4 (2nd iteration). Try z1 = 25.7 m.  Maintain WB, ST, and SS. 
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By using Equation 8.2 or other appropriate method by trial and error, the velocity 
and depth conditions entering the basin are: 

V1 = 13.02 m/s, y1 = 0.302 m 
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Step 5 (2nd iteration).  Calculate the conjugate depth for a free hydraulic jump (C=1) using 
Equation 8.4. 
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From Figure 8.2 basin length, LB/y2 = 6.1.  Therefore, LB = 6.1(3.10) = 18.9 m.   

The length of the basin from the floor to the sill is calculated from Equation 8.6: 
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The elevation at the entrance to the tailwater channel is from Equation 8.7: 
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Since y2 +z2 (3.10+25.7) < z3 + TW (28.30+ 0.574), tailwater is sufficient to force a 
jump in the basin.  Continue on to step 6. 

Step 6. For the slope change from the outlet to the transition, determine the needed radius 
of curvature using Equation 8.8 and the results from step 1. 
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Step 7. Size the basin elements. Since this is a free hydraulic jump basin, there are no 
additional elements and the design is complete.  The basin is shown in the 
following sketch. 

 Total basin length = 9.6 + 18.9 + 5.2 = 33.7 m 

Sketch for Free Hydraulic Jump Stilling Basin Design Example (SI) 
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Design Example: Stilling Basin with Free Hydraulic Jump (CU) 
Find the dimensions for a stilling basin (see Figure 8.1) with a free hydraulic jump providing 
energy dissipation for a reinforced concrete box culvert.  Given:  

 Q = 417 ft3/s 
 Culvert 
 B = 10.0 ft 
 D = 6 ft 
 n = 0.015 
 So = 0.065 ft/ft 
 zo = 100 ft 
 Downstream channel (trapezoidal) 
 B = 10.2 ft 
 Z = 1V:2H 
 n = 0.030 

Solution 
Step 1. Determine the velocity and depth at the culvert outlet.   By trial and error using 

Manning’s Equation, the normal depth is calculated as: 

Vo = 27.8 ft/s, yo = 1.50 ft 

 0.4
)50.1(2.32

8.27
gy
VFr

o

o
o ===  

 Since the Froude number is greater than 1.0, the normal depth is supercritical and 
the normal depth is taken as the brink depth. 

Step 2. Determine the velocity and depth (TW) in the receiving channel. By trial and error 
using Manning’s Equation or by using Table B.1: 

  Vn = 15.9 ft/s, yn = TW = 1.88 ft 

Step 3. Estimate the conjugate depth for the culvert outlet conditions using Equation 8.4.  
C = 1.0. 

 ( ) ( ) ft8.71)0.4(81
2

)50.1(0.11Fr81
2

Cyy 22
o

o
2 =−+=−+=  

Since y2 (7.8 ft) > TW (1.88 ft) a jump will not form and a basin is needed. 

Step 4.   Since y2 - TW = 8.55 – 1.88 = 6.67 ft, try z1 = zo –6.67 = 93.3 ft, use 93.  

Also, choose WB = 10.0 ft (no expansion from culvert to basin) and slopes ST = 0.5 
and SS = 0.5. 

Check WB using Equation 8.3, but first calculate the transition length from Equation 
8.5. 

ft14
5.0

93100
S
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T =
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=
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By using Equation 8.2 or other appropriate method by trial and error, the velocity 
and depth conditions entering the basin are: 

V1 = 35.3 ft/s, y1 = 1.18 ft 

 7.5
)18.1(2.32

3.35
gy
VFr

1

1
1 ===  

Step 5. Calculate the conjugate depth for a free hydraulic jump (C=1) using Equation 8.4. 

 ( ) ( ) ft94.81)7.5(81
2

)18.1(0.11Fr81
2

Cyy 22
1

1
2 =−+=−+=  

From Figure 8.2 basin length, LB/y2 = 6.1.  Therefore, LB = 6.1(8.94) = 54.5 ft.   

The length of the basin from the floor to the sill is calculated from Equation 8.6: 

 ft5.4
065.05.0

)065.0(5.54)065.05.0(14
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The elevation at the entrance to the tailwater channel is from Equation 8.7: 

 ft25.950.93)5.0(5.4zSLz 1SS3 =+=+=  

Since y2 +z2 (8.94+93) > z3 + TW (95.25+1.88), tailwater is not sufficient to force a 
jump in the basin.  Go back to step 4. 

Step 4 (2nd iteration). Try z1 = 84.5 ft.  Maintain WB, ST, and SS. 

ft0.31
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By using Equation 8.2 or other appropriate method by trial and error, the velocity 
and depth conditions entering the basin are: 

V1 = 42.5 ft/s, y1 = 0.98 ft 

 6.7
)98.0(2.32

5.42
gy
VFr

1

1
1 ===  

Step 5 (2nd Iteration).  Calculate the conjugate depth for a free hydraulic jump (C=1) using 
Equation 8.4. 

 ( ) ( ) ft07.101)6.7(81
2

)98.0(0.11Fr81
2

Cyy 22
1

1
2 =−+=−+=  

From Figure 8.2 basin length, LB/y2 = 6.1.  Therefore, LB = 6.1(10.07) = 61.4 ft.   

The length of the basin from the floor to the sill is calculated from Equation 8.6: 
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The elevation at the entrance to the tailwater channel is from Equation 8.7: 

 ft90.925.84)5.0(8.16zSLz 1SS3 =+=+=  

Since y2 + z2 (10.1 + 84.5) < z3 + TW (92.90 + 1.88), tailwater is sufficient to force 
a jump in the basin.  Continue on to step 6. 

Step 6. For the slope change from the outlet to the transition, determine the needed radius 
of curvature using Equation 8.8 and the results from step 1. 
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Step 7. Size the basin elements. Since this is a free hydraulic jump basin, there are no 
additional elements and the design is complete.  The basin is shown in the 
following sketch. 

 Total basin length = 31.0 + 61.4 + 16.8 = 109.2 ft 

Sketch for Free Hydraulic Jump Stilling Basin Design Example (CU) 

8.3 USBR TYPE III STILLING BASIN 
The USBR Type III stilling basin (USBR, 1987) employs chute blocks, baffle blocks, and an end 
sill as shown in Figure 8.3.  The basin action is very stable with a steep jump front and less 
wave action downstream than with the free hydraulic jump. The position, height, and spacing of 
the baffle blocks as recommended below should be adhered to carefully. If the baffle blocks are 
too far upstream, wave action in the basin will result; if too far downstream, a longer basin will 
be required; if too high, waves can be produced; and, if too low, jump sweep out or rough water 
may result.  

The baffle blocks may be shaped as shown in Figure 8.3 or cubes; both are effective. The 
corners should not be rounded as this reduces energy dissipation. 
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The recommended design is limited to the following conditions: 

1. Maximum unit discharge of 18.6 m3/s/m (200 ft3/s/ft). 

2. Velocities up to 18.3 m/s (60 ft/s) entering the basin. 

3. Froude number entering the basin between 4.5 and 17. 

4. Tailwater elevation equal to or greater than full conjugate depth elevation.  This 
provides a 15 to 18 percent factor of safety. 

5. The basin sidewalls should be vertical rather than trapezoidal to insure proper 
performance of the hydraulic jump. 

 

Figure 8.3. USBR Type III Stilling Basin  

The general design procedure outlined in Section 8.1 applies to the USBR Type III stilling basin.  
Steps 1 through 4 and step 6 are applied without modification.  For step 5, two adaptations to 
the general design procedure are made: 

1. For computing conjugate depth, C=1.0.  (This value is also applicable for the 
free hydraulic jump.)  At a minimum, C=0.85 could be used, but C=1.0 is 
recommended. 
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2. For obtaining the length of the basin, LB, use Figure 8.2 based on the Froude 
number calculated in step 4. 

For step 7, sizing the basin elements (chute blocks, baffle blocks, and an end sill), the following 
guidance is recommended.  The height of the chute blocks, h1, is set equal to y1.  If y1 is less 
than 0.2 m (0.66 ft), then h1 = 0.2 m  (0.66 ft). 

The number of chute blocks is determined by Equation 8.9 rounded to the nearest integer. 

 
1

B
c y2

WN =  (8.9) 

where, 
 Nc = number of chute blocks 
 
Block width and block spacing are determined by: 

 
c

B
21 N2

WWW ==  (8.10) 

where, 
 W1 = block width, m (ft) 
 W2 = block spacing, m (ft) 
 
Equations 8.9 and 8.10 will provide Nc blocks and Nc-1 spaces between those blocks.  The 
remaining basin width is divided equally for spaces between the outside blocks and the basin 
sidewalls.  With these equations, the height, width, and spacing of chute blocks should 
approximately equal the depth of flow entering the basin, y1.  The block width and spacing may 
be reduced as long as W1 continues to equal W2.   

The height, width, and spacing of the baffle blocks are shown on Figure 8.3.  The height of the 
baffles is computed from the following equation: 

 )58.0Fr168.0(yh 113 +=  (8.11) 
where, 
 h3 = height of the baffle blocks, m (ft) 
 
The top thickness of the baffle blocks should be set at 0.2h3 with the back slope of the block on 
a 1:1 slope.  The number of baffle blocks is as follows: 

 
3

B
B h5.1

WN =  (8.12) 

where, 
 NB =  number of baffle blocks (rounded to an integer) 
 
Baffle width and spacing are determined by: 

 
B

B
43 N2

WWW ==  (8.13) 
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where, 
 W3 = baffle width, m (ft) 
 W4 = baffle spacing, m (ft) 
 
As with the chute blocks, Equations 8.12 and 8.13 will provide NB baffles and NB-1 spaces 
between those baffles.  The remaining basin width is divided equally for spaces between the 
outside baffles and the basin sidewalls.  The width and spacing of the baffles may be reduced 
for narrow structures provided both are reduced by the same amount.  The distance from the 
downstream face of the chute blocks to the upstream face of the baffle block should be 0.8y2.  

The height of the final basin element, the end sill, is given as: 

 )04.1Fr0536.0(yh 114 +=  (8.14) 
where, 
 h4 = height of the end sill, m (ft) 
 
The fore slope of the end sill should be set at 0.5:1 (V:H). 

If these recommendations are followed, a short, compact basin with good dissipation action will 
result.  If they cannot be followed closely, a model study is recommended. 

Design Example: USBR Type III Stilling Basin (SI) 
Design a USBR Type III stilling basin for a reinforced concrete box culvert.  Given:  

 Q = 11.8 m3/s 
 Culvert 
 B = 3.0 m 
 D = 1.8 m 
 n = 0.015 
 So = 0.065 m/m 
 zo = 30.50 m 
 Downstream channel (trapezoidal) 
 B = 3.10 m 
 Z = 1V:2H 
 n = 0.030 

Solution 

The culvert, design discharge, and tailwater channel are the same as considered for the free 
hydraulic jump stilling basin addressed in the design example in Section 8.1.  Steps 1 through 3 
of the general design process are identical for this example so they are not repeated here.  The 
tailwater depth from the previous design example is TW=0.574 m. 

Step 4. Try z1 = 26.7 m.  WB = 3.0 m, ST = 0.5 m/m, and SS = 0.5 m/m.  From Equation 8.5: 

m6.7
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7.2650.30
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By using Equation 8.2 or other appropriate method by trial and error, the velocity 
and depth conditions entering the basin are: 

V1 = 12.2 m/s, y1 = 0.322 m 

 9.6
)322.0(81.9

1.12
gy
VFr

1

1
1 ===  

Step 5. Calculate the conjugate depth in the basin (C=1) using Equation 8.4. 

 ( ) ( ) m98.21)9.6(81
2

)322.0(0.11Fr81
2

Cyy 22
1

1
2 =−+=−+=  

From Figure 8.2 basin length, LB/y2 = 2.7.  Therefore, LB = 2.7(2.98) = 8.0 m.   

The length of the basin from the floor to the sill is calculated from Equation 8.6: 

 m9.4
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The elevation at the entrance to the tailwater channel is from Equation 8.7: 

 m15.297.26)5.0(9.4zSLz 1SS3 =+=+=  

Since y2 +z2 (2.98+26.7) < z3 + TW (29.15+ 0.574), tailwater is sufficient to force a 
jump in the basin.  If the tailwater had not been sufficient, repeat step 4 with a 
lower assumption for z1. 

Step 6. Determine the needed radius of curvature for the slope changes entering the 
basin.  See the design example Section 8.1 for this step.  It is unchanged. 

Step 7. Size the basin elements.  For the USBR Type III basin, the elements include the 
chute blocks, baffle blocks, and end sill. 

 For the chute blocks, the height of the chute blocks, h1=y1=0.322 m (round to 0.32 
m).  The number of chute blocks is determined by Equation 8.9 and rounded to the 
nearest integer. 

 56.4
)322.0(2

0.3
y2

WN
1

B
c ≈===  

 Block width and block spacing are determined by Equation 8.10: 

 m30.0
)5(2

0.3
N2

WWW
c

B
21 ====  

With 5 blocks at 0.30 m and 4 spaces at 0.30 m, 0.30 m of space remains.  This is 
divided equally for spaces between the outside blocks and the basin sidewalls. 

For the baffle blocks, the height of the baffles is computed from Equation 8.11: 

 m56.0)58.0)9.6(168.0(322.0)58.0Fr168.0(yh 113 =+=+=  

The number of baffles blocks is calculated from Equation 8.12: 
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B ≈===  

Baffle width and spacing are determined by Equation 8.13: 

 m38.0
)4(2

3
N2

WWW
B

B
43 ====  

With 4 baffles at 0.38 m and 3 spaces at 0.38 m, 0.34 m of space remains.  This is 
divided equally for spaces between the outside baffles and the basin sidewalls.  
The distance from the downstream face of the chute blocks to the upstream face 
of the baffle block should be 0.8y2=0.8(2.98)=2.38 m.  

For the end sill, the height of the end sill is given by Equation 8.14: 

 m45.0)04.1)9.6(053.0(322.0)04.1Fr0536.0(yh 114 =+=+=  

Total basin length = 7.6 + 8.0 + 4.9 = 20.5 m.  The basin is shown in the following 
sketch.  

Sketch for USBR Type III Stilling Basin Design Example (SI) 

Design Example: USBR Type III Stilling Basin (CU) 
Design a USBR Type III stilling basin for a reinforced concrete box culvert.  Given:  

 Q = 417 ft3/s 
 Culvert 
 B = 10.0 ft 
 D = 6 ft 
 n = 0.015 
 So = 0.065 ft/ft 
 zo = 100 ft 
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 Downstream channel (trapezoidal) 
 B = 10.2 ft 
 Z = 1V:2H 
 n = 0.030 

Solution 
The culvert, design discharge, and tailwater channel are the same as considered for the free 
hydraulic jump stilling basin addressed in the design example in Section 8.1.  Steps 1 through 3 
of the general design process are identical for this example so they are not repeated here.  The 
tailwater depth from the previous design example is TW=1.88 ft. 

Step 4. Try z1 = 87.5 ft.  WB = 10.0 ft, ST = 0.5 ft/ft, and SS = 0.5 ft/ft.  From Equation 8.5: 

ft0.25
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By using Equation 8.2 or other appropriate method by trial and error, the velocity 
and depth conditions entering the basin are: 

V1 = 40.1 ft/s, y1 = 1.04 ft 

 9.6
)04.1(2.32
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Step 5. Calculate the conjugate depth in the basin (C=1) using Equation 8.4. 

 ( ) ( ) ft64.91)9.6(81
2

)04.1(0.11Fr81
2

Cyy 22
1

1
2 =−+=−+=  

From Figure 8.2 basin length, LB/y2 = 2.7.  Therefore, LB = 2.7(9.64) = 26.0 ft.   

The length of the basin from the floor to the sill is calculated from Equation 8.6: 

 ft3.16
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The elevation at the entrance to the tailwater channel is from Equation 8.7: 

 ft65.955.87)5.0(3.16zSLz 1SS3 =+=+=  

Since y2 +z2 (9.64+87.5) < z3 + TW (95.65+1.88), tailwater is sufficient to force a 
jump in the basin.  If the tailwater had not been sufficient, repeat step 4 with a 
lower assumption for z1. 

Step 6. Determine the needed radius of curvature for the slope changes entering the 
basin.  See the design example Section 8.1 for this step.  It is unchanged. 

Step 7. Size the basin elements.  For the USBR Type III basin, the elements include the 
chute blocks, baffle blocks, and end sill. 

 For the chute blocks, the height of the chute blocks, h1=y1=1.04 ft (round to 1.0 ft).  
The number of chute blocks is determined by Equation 8.9 and rounded to the 
nearest integer. 
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 Block width and block spacing are determined by Equation 8.10: 

 ft0.1
)5(2
0.10

N2
WWW

c

B
21 ====  

With 5 blocks at 1.0 ft and 4 spaces at 1.0 ft, 1.0 ft of space remains.  This is 
divided equally for spaces between the outside blocks and the basin sidewalls. 

For the baffle blocks, the height of the baffles is computed from Equation 8.11: 

 ft8.1)58.0)9.6(168.0(04.1)58.0Fr168.0(yh 113 =+=+=  

The number of baffles blocks is calculated from Equation 8.12: 

 47.3
)8.1(5.1
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B ≈===  

Baffle width and spacing are determined by Equation 8.13: 

 ft3.1
)4(2

10
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B

B
43 ====  

With 4 baffles at 1.3 ft and 3 spaces at 1.3 ft, 0.9 ft of space remains.  This is 
divided equally for spaces between the outside baffles and the basin sidewalls.  
The distance from the downstream face of the chute blocks to the upstream face 
of the baffle block should be 0.8y2=0.8(9.64)=7.7 ft.  

For the end sill, the height of the end sill is given by Equation 8.14: 

 ft5.1)04.1)9.6(053.0(04.1)04.1Fr0536.0(yh 114 =+=+=  

Total basin length = 25.0 + 26.0 + 16.3 = 67.3 ft.  The basin is shown in the 
following sketch. 

Sketch for USBR Type III Stilling Basin Design Example (CU) 
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8.4 USBR TYPE IV STILLING BASIN 
The USBR Type IV stilling basin (USBR, 1987) is intended for use in the Froude number range 
of 2.5 to 4.5.  In this low Froude number range, the jump is not fully developed and downstream 
wave action may be a problem as discussed in Chapter 4.  For the intermittent flow encountered 
at most highway culverts, wave action is not judged to be a severe limitation.  The basin, 
illustrated in Figure 8.4, employs chute blocks and an end sill. 

The recommended design is limited to the following conditions: 

1. The basin sidewalls should be vertical rather than trapezoidal to insure proper 
performance of the hydraulic jump. 

2. Tailwater elevation should be equal to or greater than 110 percent of the full 
conjugate depth elevation.  The hydraulic jump is very sensitive to tailwater 
depth at the low Froude numbers for which the basin is applicable.  The 
additional tailwater improves jump performance and reduces wave action. 

The general design procedure outlined in Section 8.1 applies to the USBR Type IV basin.  Steps 
1 through 4 and step 6 are applied without modification.  For step 5, two adaptations to the 
general design procedure are made: 

1. For computing conjugate depth, C = 1.1.   

2. For obtaining the length of the basin, LB, use Figure 8.2 (dashed portion of the 
free jump curve) based on the Froude number calculated in step 4. 

For step 7, sizing the basin elements (chute blocks and an end sill), the following guidance is 
recommended.  The height of the chute blocks, h1, is set equal to 2y1.  The top surface of the 
chute blocks should be sloped downstream at a 5 degree angle.  

The number of chute blocks is determined by Equation 8.15a and rounded to the nearest 
integer. 

 
1

B
c y625.2

WN =  (8.15a) 

where, 
 Nc = number of chute blocks 
 
Block width and block spacing are determined by: 

 
c

B
1 N5.3

WW =  (8.15b) 

 12 W5.2W =  (8.15c) 
where, 
 W1 = block width, m (ft) 
 W2 = block spacing, m (ft) 
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Figure 8.4.  USBR Type IV Stilling Basin  

With Equation 8.15b, the block width, W1, should be less than or equal to the depth of the 
incoming flow, y1.  Equations 8.15a, 8.15b, and 8.15c will provide Nc blocks and Nc-1 spaces 
between those blocks.  The remaining basin width is divided equally for spaces between the 
outside blocks and the basin sidewalls.   

The height of the end sill, is given as: 

 )04.1Fr0536.0(yh 114 +=  (8.16) 
where, 
 h4 = height of the end sill, m (ft) 
 
The fore slope of the end sill should be set at 0.5:1 (V:H). 

END SILLEND SILL
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Design Example: USBR Type IV Stilling Basin (SI) 
Design a USBR Type IV stilling basin for a reinforced concrete box culvert.  Given:  

 Q = 11.8 m3/s 
 Culvert 
 B = 3.0 m 
 D = 1.8 m 
 n = 0.015 
 So = 0.065 m/m 
 zo = 30.50 m 
 Downstream channel (trapezoidal) 
 B = 3.10 m 
 Z = 1V:2H 
 n = 0.030 

Solution 
The culvert, design discharge, and tailwater channel are the same as considered for the free 
hydraulic jump stilling basin addressed in the design example in Section 8.1.  Steps 1 through 3 
of the general design process are identical for this example so they are not repeated here.  The 
tailwater depth from the previous design example is TW=0.574 m. 

Step 4. Try z1 = 25.00 m.  WB=3.0 m, ST=0.5 m/m, and SS=0.5 m/m.  From Equation 8.5: 
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By using Equation 8.2 or other appropriate method by trial and error, the velocity 
and depth conditions entering the basin are: 

V1 = 13.55 m/s, y1 = 0.290 m 

 0.8
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1
1 ===  

 It should be noted that this Froude number is outside the applicability range for the 
Type IV basin, therefore the Type IV is not appropriate for this situation.  However, 
we will proceed with the calculations in order to compare basin dimensions with 
the other basin options. 

Step 5. Calculate the conjugate depth in the basin (C=1.1) using Equation 8.4. 
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From Figure 8.2 basin length, LB/y2 = 6.1.  Therefore, LB = 6.1(3.46) = 21.1 m.   

The length of the basin from the floor to the sill is calculated from Equation 8.6: 
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The elevation at the entrance to the tailwater channel is from Equation 8.7: 

 m00.2800.25)5.0(0.6zSLz 1SS3 =+=+=  

Since y2 +z2 (3.46+25.00) < z3 + TW (28.00+0.574), tailwater is sufficient to force a 
jump in the basin.  If this had not been the case, repeat step 4 with a lower 
assumption for z1. 

Step 6. Determine the needed radius of curvature for the slope changes entering the 
basin.  See the design example Section 8.1 for this step.  It is unchanged. 

Step 7. Size the basin elements.  For the USBR Type IV basin, the elements include the 
chute blocks and end sill. 

 For the chute blocks: 

The height of the chute blocks, h1=2y1=2(0.290) = 0.58 m.  The number of chute 
blocks is determined by Equation 8.15a and rounded to the nearest integer. 

 49.3
)290.0(625.2
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1

B
c ≈===  

Block width and block spacing are determined by Equations 8.15b and 8.15c: 

 m21.0
)4(5.3

0.3
N5.3
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c

B
1 ===  

 m53.0)21.0(5.2W5.2W 12 ===  

With 4 blocks at 0.21 m and 3 spaces at 0.53 m, 0.57 m of space remains.  This is 
divided equally for spaces between the outside blocks and the basin sidewalls. 

 For the sill: 

The height of the end sill, is given by Equation 8.16: 

 m43.0)04.1)0.8(0536.0(290.0)04.1Fr0536.0(yh 114 =+=+=  

Total basin length = 11.0 + 21.1 +6.0 = 38.1 m.  The basin is shown in the 
following sketch. 

Sketch for USBR Type IV Stilling Basin Design Example (SI) 

8.5 m/s

4.8  m/s
0.57

0.29

30.5
0.5

0.5

4.7

0.46

25.925.9

21.111.0
38.1

3.46

28.0

6.0

8.5 m/s

4.8  m/s
0.57

0.29

30.5
0.5

0.5

4.7

0.46

25.925.9

21.111.0
38.1

3.46

28.0

6.0



8-23 
 

 
 

Design Example: USBR Type IV Stilling Basin (CU) 
Design a USBR Type IV stilling basin for a reinforced concrete box culvert.  Given:  

 Q = 417 ft3/s 
 Culvert 
 B = 10 ft 
 D = 6 ft 
 n = 0.015 
 So = 0.065 ft/ft 
 zo = 100.0 ft 
 Downstream channel (trapezoidal) 
 B = 10.2 ft 
 Z = 1V:2H 
 n = 0.030 

Solution 
The culvert, design discharge, and tailwater channel are the same as considered for the free 
hydraulic jump stilling basin addressed in the design example in Section 8.1.  Steps 1 through 3 
of the general design process are identical for this example so they are not repeated here.  The 
tailwater depth from the previous design example is TW=1.88 ft. 

Step 4. Try z1 = 82.6 ft.  WB=10.0 ft, ST=0.5 ft/ft, and SS=0.5 ft/ft.  From Equation 8.5: 

ft8.34
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6.82100
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=  

By using Equation 8.2 or other appropriate method by trial and error, the velocity 
and depth conditions entering the basin are: 

V1 = 43.9 ft/s, y1 = 0.95 ft 

 9.7
)95.0(2.32

9.43
gy
VFr

1

1
1 ===  

 It should be noted that this Froude number is outside the applicability range for the 
Type IV basin, therefore the Type IV is not appropriate for this situation.  However, 
we will proceed with the calculations in order to compare basin dimensions with 
the other basin options. 

Step 5. Calculate the conjugate depth in the basin (C=1.1) using Equation 8.4. 
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From Figure 8.2 basin length, LB/y2 = 6.1.  Therefore, LB = 6.1(11.15) = 68.0 ft.   

The length of the basin from the floor to the sill is calculated from Equation 8.6: 
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The elevation at the entrance to the tailwater channel is from Equation 8.7: 

 ft10.9260.82)5.0(0.19zSLz 1SS3 =+=+=  

Since y2 +z2 (11.15+82.60) < z3 + TW (92.10+1.88), tailwater is sufficient to force a 
jump in the basin.  If this had not been the case, repeat step 4 with a lower 
assumption for z1. 

Step 6. Determine the needed radius of curvature for the slope changes entering the 
basin.  See the design example Section 8.1 for this step.  It is unchanged. 

Step 7. Size the basin elements.  For the USBR Type IV basin, the elements include the 
chute blocks and end sill. 

 For the chute blocks: 

The height of the chute blocks, h1=2y1=2(0.95) = 1.9 ft.  The number of chute 
blocks is determined by Equation 8.15a and rounded to the nearest integer. 
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Block width and block spacing are determined by Equations 8.15b and 8.15c: 

 ft7.0
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With 4 blocks at 0.7 ft and 3 spaces at 1.8 ft, 1.8 ft of space remains.  This is 
divided equally for spaces between the outside blocks and the basin sidewalls. 

 For the sill: 

The height of the end sill, is given by Equation 8.16: 

 ft4.1)04.1)9.7(0536.0(95.0)04.1Fr0536.0(yh 114 =+=+=  

Total basin length = 34.8 + 68.0 + 19.0 = 121.8 ft.  The basin is shown in the 
following sketch. 

Sketch for USBR Type IV Stilling Basin Design Example (CU) 
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8.5 SAF STILLING BASIN 
The Saint Anthony Falls (SAF) stilling basin, shown in Figure 8.5, provides chute blocks, baffle 
blocks, and an end sill that allows the basin to be shorter than a free hydraulic jump basin.  It is 
recommended for use at small structures such as spillways, outlet works, and canals where the 
Froude number at the dissipator entrance is between 1.7 and 17.  The reduction in basin length 
achieved through the use of appurtenances is about 80 percent of the free hydraulic jump 
length.   The SAF stilling basin provides an economical method of dissipating energy and 
preventing stream bed erosion.  

 

Figure 8.5.  SAF Stilling Basin (Blaisdell, 1959) 

The general design procedure outlined in Section 8.1 applies to the SAF stilling basin.  Steps 1 
through 3 and step 6 are applied without modification.  As part of step 4, the designer selects a 
basin width, WB.  For box culverts, WB must equal the culvert width, Wo.   For circular culverts, 
the basin width is taken as the larger of the culvert diameter and the value calculated according 
to the following equation: 

Z
1

WB WB3WB2

Z
1

WB WB3WB2
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⎝

⎛
= 5.2
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5.0oB Dg
QD7.1W  (8.17) 

where, 
 WB = basin width, m (ft) 
 Q = design discharge, m3/s (ft3/s) 
 Do = culvert diameter, m (ft) 
 
The basin can be flared to fit an existing channel as indicated on Figure 8.5.  The sidewall flare 
dimension z should not be greater than 0.5, i.e., 0.5:1, 0.33:1, or flatter. 

For step 5, two adaptations to the general design procedure are made.  First, for computing 
conjugate depth, C is a function of Froude number as given by the following set of equations.  
Depending on the Froude number, C ranges from 0.64 to 1.08 implying that the SAF basin may 
operate with less tailwater than the USBR basins, though tailwater is still required. 

 
120
Fr1.1C

2
1−=  when 1.7 < Fr1 < 5.5 (8.18a) 

 85.0C =  when 5.5 < Fr1 < 11 (8.18b) 

 
800
Fr0.1C

2
1−=  when 11 < Fr1 < 17 (8.18c) 

 
The second adaptation is the determination of the basin length, LB, using Equation 8.19. 

 76.0
1

2
B CFr

y5.4L =  (8.19) 

 

For step 7, sizing the basin elements (chute blocks, baffle blocks, and an end sill), the following 
guidance is recommended.  The height of the chute blocks, h1, is set equal to y1. 

The number of chute blocks is determined by Equation 8.20 rounded to the nearest integer. 

 
1

B
c y5.1

WN =  (8.20) 

where, 
 Nc = number of chute blocks 
 
Block width and block spacing are determined by: 

 
c

B
21 N2

WWW ==  (8.21) 

where, 
 W1 = block width, m (ft) 
 W2 = block spacing, m (ft) 
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Equations 8.20 and 8.21 will provide Nc blocks and Nc spaces between those blocks.  A half 
block is placed at the basin wall so there is no space at the wall.   

The height, width, and spacing of the baffle blocks are shown on Figure 8.5.  The height of the 
baffles, h3, is set equal to the entering flow depth, y1. 

The width and spacing of the baffle blocks must account for any basin flare.  If the basin is 
flared as shown in Figure 8.5, the width of the basin at the baffle row is computed according to 
the following: 

 ⎟
⎠
⎞

⎜
⎝
⎛+=

3
zL2WW B

B2B  (8.22) 

where, 
 WB2 = basin width at the baffle row, m (ft) 
 LB = basin length, m (ft) 
 z = basin flare, z:1 as defined in Figure 8.5 (z=0.0 for no flare) 
 
The top thickness of the baffle blocks should be set at 0.2h3 with the back slope of the block on 
a 1:1 slope.  The number of baffles blocks is as follows: 

 
1

2B
B y5.1

WN =  (8.23) 

where, 
 NB =  number of baffle blocks (rounded to an integer) 
 
Baffle width and spacing are determined by: 

 
B

2B
43 N2

WWW ==  (8.24) 

where, 
 W3 = baffle width, m (ft) 
 W4 = baffle spacing, m (ft) 
 
Equations 8.23 and 8.24 will provide NB baffles and NB-1 spaces between those baffles.  The 
remaining basin width is divided equally for spaces between the outside baffles and the basin 
sidewalls.  No baffle block should be placed closer to the sidewall than 3y1/8.  Verify that the 
percentage of WB2 obstructed by baffles is between 40 and 55 percent.  The distance from the 
downstream face of the chute blocks to the upstream face of the baffle block should be LB/3.  

The height of the final basin element, the end sill, is given as: 

 
C

y07.0h 2
4 =  (8.25) 

where, 
 h4 = height of the end sill, m (ft) 
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The fore slope of the end sill should be set at 0.5:1 (V:H).  If the basin is flared the length of sill 
(width of the basin at the sill) is: 

 BB3B zL2WW +=  (8.26) 
where, 
 WB3 = basin width at the sill, m (ft) 
 LB = basin length, m (ft) 
 z = basin flare, z:1 as defined in Figure 8.5 (z=0.0 for no flare) 
 
Wingwalls should be equal in height and length to the stilling basin sidewalls. The top of the 
wingwall should have a 1H:1V slope.  Flaring wingwalls are preferred to perpendicular or 
parallel wingwalls.  The best overall conditions are obtained if the triangular wingwalls are 
located at an angle of 45° to the outlet centerline.  

The stilling basin sidewalls may be parallel (rectangular stilling basin) or diverge as an extension 
of the transition sidewalls (flared stilling basin).  The height of the sidewall above the floor of the 
basin is given by: 

 ⎟
⎠
⎞

⎜
⎝
⎛ +≥

C3
11yh 25  (8.27) 

where, 
 h5 = height of the sidewall, m (ft) 
 
A cut-off wall should be used at the end of the stilling basin to prevent undermining.  The depth 
of the cut-off wall must be greater than the maximum depth of anticipated erosion at the end of 
the stilling basin. 

Design Example: SAF Stilling Basin (SI) 
Design a SAF stilling basin with no flare for a reinforced concrete box culvert.  Given:  

 Q = 11.8 m3/s 
 Culvert 
 B = 3.0 m 
 D = 1.8 m 
 n = 0.015 
 So = 0.065 m/m 
 zo = 30.50 m 
 Downstream channel (trapezoidal) 
 B = 3.10 m 
 Z = 1V:2H 
 n = 0.030 

Solution 
The culvert, design discharge, and tailwater channel are the same as considered for the free 
hydraulic jump stilling basin addressed in the design example in Section 8.1.  Steps 1 through 3 
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of the general design process are identical for this example so they are not repeated here.  The 
tailwater depth from the previous design example is TW=0.574 m. 

Step 4. Try z1 = 27.80 m.  WB=3.0 m (no flare), ST=0.5 m/m, and SS=0.5 m/m.  From 
Equation 8.5: 
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By using Equation 8.2 or other appropriate method by trial and error, the velocity 
and depth conditions entering the basin are: 

V1 = 11.29 m/s, y1 = 0.348 m 

 1.6
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Step 5. Calculate the conjugate depth in the basin using Equation 8.4.  First estimate C 
using Equation 8.18.  For the calculated Froude number, C=0.85. 

 ( ) ( ) m41.21)1.6(81
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From Equation 8.19 basin length is calculated: 
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The length of the basin from the floor to the sill is calculated from Equation 8.6: 
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The elevation at the entrance to the tailwater channel is from Equation 8.7: 

Z3  = LSSS + Z1 = 3.8(0.5) + 27.80 =29.70 m 

 Since y2 +z2 (2.41+27.80) < z3 + TW (29.70+0.574), tailwater is sufficient to force a 
jump in the basin.  If tailwater had not been sufficient, repeat step 4 with a lower 
assumption for z1. 

Step 6. Determine the needed radius of curvature for the slope changes entering the 
basin.  See the design example Section 8.1 for this step.  It is unchanged. 

Step 7. Size the basin elements.  For the SAF basin, the elements include the chute 
blocks, baffle blocks, and an end sill. 

 For the chute blocks: 

The height of the chute blocks, h1=y1=0.348 (round to 0.35 m).  

 The number of chute blocks is determined by Equation 8.20: 

 67.5
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Block width and block spacing are determined by Equation 8.21: 

 m25.0
)6(2
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21 ====  

A half block is placed at each basin wall so there is no space at the wall.   

 For the baffle blocks: 

The height of the baffles, h3=y1=0.348 m. (round to 0.35 m) 

The basin has no flare so the width in the basin is constant and equal to WB. 

 The number of baffles blocks is from Equation 8.23: 

 67.5
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Baffle width and spacing are determined from Equation 8.24.  In this case 
WB2=WB. 
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For this design, we have 6 baffles at 0.25 m and 5 spaces between them at 0.25 
m.  The remaining 0.25 m is divided in half and provided as a space between the 
sidewall and the first baffle. 

The total percentage blocked by baffles is 6(0.25)/3.0=50 percent which falls within 
the acceptable range of between 40 and 55 percent. 

The distance from the downstream face of the chute blocks to the upstream face 
of the baffle block equals LB/3=3.2/3=1.1 m.  

For the sill: 

The height of the end sill, is given in Equation 8.25: 

 m20.0
85.0

)41.2(07.0
C

y07.0h 2
4 ===  

Total basin length = 5.4 + 3.2 + 3.8 = 12.4 m.  The basin is shown in the following 
sketch. 
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Sketch for SAF Stilling Basin Design Example (SI) 

 

Design Example: SAF Stilling Basin (CU) 
Design a SAF stilling basin with no flare for a reinforced concrete box culvert.  Given:  

 Q = 417 ft3/s 
 Culvert 
 B = 10.0 ft 
 D = 6.0 ft 
 n = 0.015 
 So = 0.065 ft/ft 
 zo = 100.0 ft 
 Downstream channel (trapezoidal) 
 B = 10.2 ft 
 Z = 1V:2H 
 n = 0.030 

Solution 
The culvert, design discharge, and tailwater channel are the same as considered for the free 
hydraulic jump stilling basin addressed in the design example in Section 8.1.  Steps 1 through 3 
of the general design process are identical for this example so they are not repeated here.  The 
tailwater depth from the previous design example is TW=1.88 ft. 

Step 4. Try z1 = 91.40 ft.  WB=10.0 ft (no flare), ST=0.5 ft/ft, and SS=0.5 ft/ft.  From Equation 
8.5: 
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By using Equation 8.2 or other appropriate method by trial and error, the velocity 
and depth conditions entering the basin are: 
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V1 = 36.8 ft/s, y1 = 1.13 ft 
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Step 5. Calculate the conjugate depth in the basin using Equation 8.4.  First estimate C 
using Equation 8.18.  For the calculated Froude number, C=0.85. 
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From Equation 8.19 basin length is calculated: 
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The length of the basin from the floor to the sill is calculated from Equation 8.6: 
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The elevation at the entrance to the tailwater channel is from Equation 8.7: 

Z3  = LSSS + Z1 = 12.0(0.5) + 91.40 =97.40 ft 

Since y2 +z2 (7.85+91.40) < z3 + TW (97.40+1.88), tailwater is sufficient to force a 
jump in the basin.  If tailwater had not been sufficient, repeat step 4 with a lower 
assumption for z1. 

Step 6. Determine the needed radius of curvature for the slope changes entering the 
basin.  See the design example Section 8.1 for this step.  It is unchanged. 

Step 7. Size the basin elements.  For the SAF basin, the elements include the chute 
blocks, baffle blocks, and an end sill. 

 For the chute blocks: 

The height of the chute blocks, h1=y1=1.13 (round to 1.1 ft).  

 The number of chute blocks is determined by Equation 8.20: 
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Block width and block spacing are determined by Equation 8.21: 
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A half block is placed at each basin wall so there is no space at the wall.   

 For the baffle blocks: 

The height of the baffles, h3=y1=1.13 ft. (round to 1.1 ft) 

The basin has no flare so the width in the basin is constant and equal to WB. 
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 The number of baffles blocks is from Equation 8.23: 
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Baffle width and spacing are determined from Equation 8.24.  In this case 
WB2=WB. 
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For this design, we have 6 baffles at 0.8 ft and 5 spaces between them at 0.8 ft.  
The remaining 1.2 ft is divided in half and provided as a space between the 
sidewall and the first baffle. 

The total percentage blocked by baffles is 6(0.8)/10.0=48 percent which falls within 
the acceptable range of between 40 and 55 percent. 

The distance from the downstream face of the chute blocks to the upstream face 
of the baffle block equals LB/3=10.5/3=3.5 ft.  

For the sill: 

The height of the end sill, is given in Equation 8.25: 

 ft6.0
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Total basin length = 17.2 + 10.5 + 12.0 = 39.7 ft.  The basin is shown in the 
following sketch. 

 

Sketch for SAF Stilling Basin Design Example (CU) 
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CHAPTER 9: STREAMBED LEVEL DISSIPATORS 
This chapter contains energy dissipators for culvert outlets that are designed to operate at the 
streambed level and reestablish natural flow conditions downstream from the culvert outlet.  
They are also intended to drain by gravity when not in operation.  The following sections contain 
limitations, design guidance, and design examples for the following energy dissipators: 

• Colorado State University (CSU) rigid boundary basin 

• Contra Costa basin 

• Hook basin 

• U.S. Bureau of Reclamation (USBR) Type VI impact basin 

9.1 CSU RIGID BOUNDARY BASIN 
The Colorado State University (CSU) rigid boundary basin, illustrated in Figure 9.1, uses 
staggered rows of roughness elements to initiate a hydraulic jump (Simons, 1970).  CSU tested 
a number of basins with different roughness configurations to determine the average drag 
coefficient over the roughened portion of the basins. The effects of the roughness elements are 
reflected in a drag coefficient that was derived empirically for each roughness configuration. The 
experimental procedure was to measure depths and velocities at each end of the control volume 
illustrated in Figure 9.2, and compute the basin drag coefficient, CB, from the momentum 
equation by balancing the forces acting on the volume of fluid.  

 

Figure 9.1. CSU Rigid Boundary Basin  
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The CSU test results indicate several design limitations.  The height of the roughness elements, 
h, must be between 0.31 and 0.91 of the approach flow average depth, yA, and, the relative 
spacing, L/h, between rows of elements, must be either 6 or 12. The latter is not a severe 
restriction since relative spacing is normally a fixed parameter in a design procedure and other 
tests (Morris, 1968) have shown that the best range for energy dissipation is from 6 to 12.  

 

Figure 9.2. Definition Sketch for the Momentum Equation  

The roughness configurations tested and the corresponding test results for CB are shown in 
Figure 9.3 and Table 9.1, respectively.  To design a basin, the designer selects a basin from 
Figure 9.3 and uses the CB value from Table 9.1 in the following momentum equation to 
determine the velocity from the basin (VB) if the slope is less than 10%:  

 ρVoQ + Cp γ (yo
2 /2)Wo = CBAFN ρ VA

2 /2 + ρVBQ + γ Q2 /(2VB
2 WB) (9.1) 

where, 
 yo = depth at the culvert outlet, m (ft) 
 Vo = velocity at the culvert outlet, m/s (ft/s) 
 Wo = culvert width at the culvert outlet, m (ft) 
 VA = approach velocity at two culvert widths downstream of the culvert outlet, m/s (ft/s)  
 VB = exit velocity, just downstream of the last row of roughness elements, m/s (ft/s) 
 WB = basin width, just downstream of the last row of roughness elements, m/s (ft/s) 
 N = total number of roughness elements in the basin  
 AF = frontal area of one full roughness element, m2 (ft2) 
 CB = basin drag coefficient (see Figure 9.3) 
 Cp = momentum correction coefficient for the pressure at the culvert outlet (see Figure 

9.4) 
 γ = unit weight of water, 9810 N/m3 (62.4 lbs/ft3) 
 ρ = density of water, 1000 kg/m3 (1.94 slugs/ft3) 
 
The CB values listed are for expansion ratios, WB /Wo, from 4 to 8 based on the configurations 
tested.  CB values developed for the WB/Wo = 4 configuration are also valid for expansion ratios 
less than 4, but greater than or equal to 2, as long as the same number of roughness elements, 
N, are placed in the basin.  For these smaller expansion ratios, this may require increasing the 
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number of rows, Nr, to achieve the required N shown in Figure 9.3.  The elements for all basins 
are arranged symmetrical about the basin centerline.  All basins are flared to the width WB of the 
corresponding abrupt expansion basin. 

 
 

Figure 9.3. Roughness Configurations Tested 

 
Table 9.1. Design Values for Roughness Elements 

WB/Wo 2 to 4 5 6 7 8 
W1/Wo 0.57 0.63 0.6 0.58 0.62

Rows (Nr) 4 5 6 4 5 6 4 5 6 5 6 6 
Elements (N) 14 17 21 15 19 23 17 22 27 24 30 30 

h/yA L/h Basin Drag Coefficient, CB 

0.91 6 0.32 0.28 0.24 0.32 0.28 0.24 0.31 0.27 0.23 0.26 0.22 0.22
0.71 6 0.44 0.40 0.37 0.42 0.38 0.35 0.40 0.36 0.33 0.34 0.31 0.29
0.48 12 0.60 0.55 0.51 0.56 0.51 0.47 0.53 0.48 0.43 0.46 0.39 0.35

R
EC

TA
N

G
U

LA
R

 

0.37 12 0.68 0.66 0.65 0.65 0.62 0.60 0.62 0.58 0.55 0.54 0.50 0.45
0.91 6 0.21 0.20 0.48 0.21 0.19 0.17 0.21 0.19 0.17 0.18 0.16  
0.71 6 0.29 0.27 0.40 0.27 0.25 0.23 0.25 0.23 0.22 0.22 0.20  
0.31 6 0.38 0.36 0.34 0.36 0.34 0.32 0.34 0.32 0.30 0.30 0.28  
0.48 12 0.45 0.42 0.25 0.40 0.38 0.36 0.36 0.34 0.32 0.30 0.28  C

IR
C

U
LA

R
 

0.37 12 0.52 0.50 0.18 0.48 0.46 0.44 0.44 0.42 0.40 0.38 0.36  
 
Equation 9.1 is applicable for basins on less than 10 percent slopes. For basins with greater 
slopes, the weight of the water within the hydraulic jump must be considered in the expression. 
Equation 9.2 includes the weight component by assuming a straight-line water surface profile 
across the jump:  

                    CP γ yo
2 Wo /2 + ρVoQ + w (sinθ) = CB AF N ρVA

2 /2 + γ Q2 /(2VB
2 WB) + ρVB Q (9.2) 
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where, 
 w = weight of water within the basin 
 Volume = (yo Wo + yA WA) Wo + (0.75LQ/ VB) [(Nr -1) - (WB/Wo - 3) (1 - WA /WB)/2]  
 Weight = (Volume) γ  
 θ = arc tan of the channel slope, So 
 Nr = number of rows of roughness elements 
 L = longitudinal spacing between rows of elements. 
 

Figure 9.4. Energy and Momentum Coefficients (Simons, 1970) 

The depth yA at the beginning of the roughness elements can be determined from Figure 4.3 
and Figure 4.4.  These figures are based on slopes less than 10 percent.  The velocity VA can 
be computed using Equations 4.1 or 4.2.  Where slopes are greater than 10 percent, VA and yA 
can be computed using the following energy equation written between the end of the culvert 
(section o) and two culvert widths downstream (section A).  

 2Wo So + yA + (0.25) (Q/(WA yA))2 /2g = yo + 0.25(Vo
2 /(2g)) (9.3) 

where, 

 WA = Wo [4/(3Fr) + 1] which is adapted from Equations 4.3 and 4.4 
 
Substantial splashing over the first row of roughness elements will occur if the elements are 
large and if the approach velocity is high. This problem can be addressed by locating the 
dissipator partially or totally within the culvert barrel, providing sufficient freeboard in the splash 
area, or providing some type of splash plate.  If feasible both structurally and hydraulically, 
locating the dissipator partially or totally within the culvert barrel may result in economic, safety, 
and aesthetic advantages. 
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The necessary freeboard can be obtained from: 

 FB = h + yA + 0.5(VA sinφ)2 /g (9.4) 
where, 
 FB =  necessary freeboard, m (ft) 
 h = roughness element height, m (ft) 
 yA = depth approaching first row of roughness elements, m (ft) 
 g = 9.81 m/s2 (32.2 ft/s2) 
 φ = 45° (function of yA/h and the Froude number but no relationship has been derived) 
 
φ is believed to be a function of yA/h and the Froude number, but no relationship has been 
derived.  45 degrees is a reasonable approximation. 

Another solution is a splash shield, which has been investigated in the FHWA Hydraulics 
Laboratory by J.S. Jones (unpublished research).  A splash shield is a plate with a stiffener 
suspended between the first two rows of roughness elements as shown in Figure 9.5.  The 
height to the plate was selected rather arbitrarily as a function of the critical depth since flow 
usually passed through critical in the vicinity of the large roughness elements. 

Figure 9.5. Splash Shield  

Although the tests were made with abrupt expansions, the configurations recommended for use 
are the combination flared-abrupt expansion basins shown in Figure 9.3 and above. These 
basins contain the same number of roughness elements as the abrupt expansion basin. The 
flare divergence, ue, is a function of the longitudinal spacing between rows of elements, L, and 
the culvert barrel width, Wo:  

 ue = 4/7 + (10/7)L/Wo (9.5) 
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The design procedure for the CSU rigid boundary basin may be summarized as follows: 

Step 1. Compute the velocity, Vo, depth, yo, and Froude number, Fr, at the culvert outlet or, 
if the basin is partially or totally located within the culvert barrel, at the beginning of 
the flared portion of the barrel.  

Step 2. Select a trial basin from Table 9.1 based on the WB /Wo expansion ratio that best 
matches the site geometry or satisfies other constraints.  Choose WB /Wo, number 
of rows, Nr, number of elements, N, and ratios h/yA and L/h.  

Step 3. Determine the flow condition VA and yA at the approach to the roughness element 
field (two culvert widths downstream). 

 Calculate VA using Equations 4.1 or 4.2. 

For  4 < WB /Wo < 8, read yA from Figure 4.3 and Figure 4.4. 

 For WB /Wo < 4, compute yA using Equation 9.3. 

 For slopes > 10 percent, use Equation 9.3 to find both VA and yA 

Step 4. For the trial roughness height to depth ratio h/yA and length to height ratio 
determine dissipator parameters from Figure 9.3: 

a. roughness element height, h 

b. longitudinal spacing between rows of elements, L 

c. width of basin, WB 

d. element width, W1, which equals element spacing 

e. divergence, ue 

f. basin drag, CB 

g. roughness element frontal area, AF = W1 h 

h. Cp from Figure 9.4 

i. Total basin length, LB = 2Wo + LNr.  This provides a length downstream of the 
last row of elements equal to the length between rows, L.  

Step 5. Confirm that the trial basin produces an exit velocity, VB, and depth, yB, that 
matches the downstream conditions.  If WB matches the downstream channel 
width or tailwater controls follow option 1.  If WB is less than the channel width 
follow option 2. 

Option 1.  Use the downstream depth, yn, or tailwater if higher, to solve Equation 
9.1 or Equation 9.2 for the quantity CBAFN.  Using the CB, AF, and N values found 
in steps 2 and 4 compute CBAFN (for basin).  The basin value should be greater 
than or equal to the CBAFN value from the equation.  If not, select a new 
roughness configuration. 

 Option 2.  Use the CB, AF, and N values found in steps 2 and 4 to solve for VB in 
Equation 9.1 or 9.2.   Three solutions for VB are determined by trial and error: two 
positive roots and a negative root.  The negative root may be discarded.  The 
larger positive root is normally used for VB.  If VB does not match the downstream 
velocity, select a new roughness configuration.  If VB is satisfactory, calculate yB. 
Compare yB to yn.  If yB < yn, use the smaller positive root for VB and calculate yB.  
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If tailwater is greater than yB, VB should be calculated using the tailwater depth and 
the trial basin checked using option 1. 

Step 6. Sketch the basin.  The basin layout is shown on Figure 9.3.  The elements are 
symmetrical about the basin centerline and the spacing between elements is 
approximately equal to the element width. In no case, should this spacing be made 
less than 75 percent of the element width.  The W1/h ratio must be between 2 and 
8 and at least half the rows of elements should have an element near the wall to 
prevent high velocity jets from traversing the entire basin length. Alternate rows 
are staggered so that all streamlines are disrupted. 

Step 7. Consider erosion protection downstream of the basin.  If option 1 (step 5) is 
applicable, the flow conditions leaving the basin match the downstream conditions 
and additional riprap downstream of the basin is not required unless site-specific 
concern regarding localized turbulence is identified.  If, however, option 2 (step 5) 
is applicable, riprap is likely to be required until flow conditions fully transition to 
downstream conditions.  Chapter 10 contains a section on riprap protection that 
may be used to size the required riprap. 

Design Example: CSU Rigid Boundary Basin (SI) 
Design a CSU rigid boundary basin to provide a transition from a RCB culvert to the natural 
channel. The basin should reduce velocities to approximately the downstream level.  Given:  

 RCB = 2438 x 2438 mm culvert:  
 L = 71.6 m 
 S = 0.02 m/m 
 Q = 39.64 m3/s 
 n = 0.013  
 yC = 2.987 m 
 yn = 1.829 m 
 Downstream natural channel: 
 W = 12.5 m (width) 
 TW = 1.00 m (from downstream control) 

Solution 
Step 1. Compute the velocity, Vo, depth, yo, and Froude number, Fr, at the culvert outlet  

 yo = yn = 1.829 m  (from HDS 3)  

 Vo = Vn = 8.87 m/s  

 Fr = Vo/(g yo)1/2 = 8.87 / [9.81(1.829)]1/2 = 2.1 

Step 2. Select a trial basin from Table 9.1 based on the WB /Wo expansion ratio which best 
matches the site geometry or satisfies other constraints.  Choose WB /Wo, number 
of rows, Nr, number of elements, N, and ratios h/yA and L/h.  

 Channel Width/Culvert Width = 12.5/2.438 = 5.1 

 Try the following rectangular basin: 

 WB /Wo = 5 and W1/Wo = 0.63 
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 Nr = 4 and N =15 

 h/yA = 0.71 and L/h = 6  

Step 3. Determine the flow condition VA and yA at the approach to the roughness element 
field (two culvert widths downstream) = 2Wo or 2(2.438) = 4.876 m.  

 Calculate VA using Equations 4.1 or 4.2. 

 VA /Vo = 1.65 – 0.3Fr = 1.65 – 0.3(2.1) = 1.02 from Equation 4.1 

 VA = 8.870(1.02) = 9.047 m/s 

For  4 < WB /Wo < 8, read yA from Figure 4.3 or Figure 4.4. 

  yA /yo = 0.33 from Figure 4.3 for Fr = 2.1 and L = 2B 

  yA = 1.829(0.33) = 0.604 m 
Step 4. For the trial roughness height to depth ratio h/yA and length to height ratio 

determine dissipator parameters from Table 9.1: 

a. roughness element height, h = (h/yA)yA = 0.71(0.604) = 0.429 m 

b. spacing between rows of elements, L = (L/h)h = 6(0.429) = 2.574 m 

c. width of basin, WB = (WB /Wo)Wo = 5(2.438) = 12.190 m 

d. element width, W1 = (W1/Wo) Wo = 0.63(2.438) =1.536 m; use 1.524 m 

e. divergence, ue = 4/7+10L/(7Wo) = 4/7 + 10(2.574)/(7(2.438)) = 2.07 use 2 

f. basin drag, CB = 0.42 

g. roughness element frontal area, AF = W1 h = 1.524(0.429) = 0.65 m2 

h. Cp from Figure 9.4 = 0.7 

i. Total basin length, LB = 2Wo + LNr = 2(2.438) + 4(2.574) = 15.172 m  

Step 5. Since the width of the basin (WB = 12.190 m) matches the downstream channel 
width (12.5 m), confirm trial basin using option 1.  Use the normal flow conditions 
(Vn and yn) and solve Equation 9.1 for CBAFN, which will be compared to CBAFN for 
basin: 

 Calculate CBAFN from Equation 9.1 

 yn Downstream = 1.001 m 

 VB = Q/ (WByn) = 39.64/ [12.190(1.001)] = 39.64/12.178 = 3.255 m/s  

 ρVoQ + Cp γ Yo
2Wo /2 = CBAFN ρ VA

2/2 + ρVBQ + γQ2 /(2VB
2 WB) (Equation 9.1) 

 Terms with Vo and yo: 1000(8.870) (39.64) + 0.7(9810) (1.829)2 (2.438)/2 = 379609 

 Terms with VB: 1000(3.255) (39.64) + 9810(39.64)2 /(2 (3.225)2 (12.190)) = 189820 

 Term with CBAFN is CBAFN (1000)(9.047)2 /2 = 40924 CBAFN  

 (379609 – 189820) = 40924 CBAFN  

 CBAFN = 4.63 
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 Calculate CBAFN for basin based on parameters determined in steps 2 and 4 (N 
=15, CB = 0.42, AF = 0.65 m2).  Using these values CBAFN = 4.12.  Since 4.12 is 
less than the 4.40 calculated from Equation 9.1, try a basin with more resistance (5 
rows). 

Step 4 (2nd iteration).  For the trial roughness height to depth ratio h/yA and length to height 
ratio determine dissipator parameters from Table 9.1:  WB /Wo = 5 that had Nr = 5, 
N =19, h/yA = 0.71, L/h = 6, and CB = 0.38. 

a. roughness element height, h = (h/yA)yA = 0.71(0.604) = 0.429 m 

b. spacing between rows of elements, L = (L/h)h = 6(0.429) = 2.574 m 

c. width of basin, WB = (WB /Wo)Wo = 5(2.438) = 12.190 m 

d. element width, W1 = (W1/Wo) Wo = 0.63(2.438) =1.536 m; use 1.524 m (5 ft) 

e. divergence, ue = 4/7+10L/(7Wo) = 4/7 + 10(2.574)/(7(2.438)) = 2.07 use 2 

f. basin drag, CB = 0.38 

g. roughness element frontal area, AF = W1 h = 1.524(0.429) = 0.654 m2 

h. Cp from Figure 9.4 = 0.7 

i. Total basin length, LB = 2Wo + LNr = 2(2.438) + 5(2.574) = 17.746 m 

Step 5 (2nd iteration).  Calculate CBAFN from Equation 9.1. 

 CBAFN from Equation 9.1 = 4.63 (basin width did not change) 

 Calculate CBAFN for basin 

 CBAFN for basin = 0.38(0.654)(19) = 4.72 > 4.63 which is OK 

Step 6. Sketch the basin and distribute roughness elements.  (See sketch on following 
page.  All dimensions shown in meters.) 

 W1/h = 1.524/0.429 = 3.55 which is between the target range of 2 to 8. 

Step 7. Since the design matches the downstream conditions, minimum riprap will be 
required.  See Chapter 10 for guidance on riprap placement.  

Design Example: CSU Rigid Boundary Basin (CU) 
Design a CSU rigid boundary basin to provide a transition from a RCB culvert to the natural 
channel. The basin should reduce velocities to approximately the downstream level.  Given:  

 RCB = 8 ft x 8 ft culvert 
 L = 235 ft 
 S = 0.02 ft/ft 
 Q = 1400 ft3/s 
 n = 0.013  
 yC = 9.8 ft 
 yn = 6.0 ft 
 Downstream natural channel: 
 W = 41 ft (width) 
 TW = 3.3 ft (from downstream control) 
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Sketch for the CSU Rigid Boundary Basin Design Example (SI) 

Solution 
Step 1. Compute the velocity, Vo, depth, yo, and Froude number, Fr, at the culvert outlet  

 yo = yn = 6.0 ft  (from HDS 3)  

 Vo = Vn = 29.1 ft/s  

 Fr = Vo/ (g yo)1/2 = 29.1 / [32.2(6.0)]1/2 = 2.1 

Step 2. Select a trial basin from Table 9.1 based on the WB /Wo expansion ratio which best 
matches the site geometry or satisfies other constraints.  Choose WB /Wo, number 
of rows, Nr, number of elements, N, and ratios h/yA and L/h.  

 Channel Width/Culvert Width = 41/8 = 5.13 

 Try the following rectangular basin: 

 WB /Wo = 5 and W1/Wo = 0.63 

 Nr = 4 and N =15 

 h/yA = 0.71 and L/h = 6  

Step 3. Determine the flow condition VA and yA at the approach to the roughness element 
field (two culvert widths downstream) = 2Wo or 2(8) = 16 ft.  

 Calculate VA using Equations 4.1 or 4.2. 

 VA /Vo = 1.65 – 0.3Fr = 1.65 – 0.3(2.1) = 1.02 from Equation 4.1 

 VA = 29.1(1.02) = 29.7 ft/s 
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For  4 < WB /Wo < 8, read yA from Figure 4.3 or 4.4. 

  yA /yo = 0.33 from Figure 4.3 for Fr = 2.1 and L = 2B 

  yA = 6.0(0.33) = 1.98 ft 
Step 4. For the trial roughness height to depth ratio h/yA and length to height ratio 

determine dissipator parameters from Table 9.1: 

a. roughness element height, h = (h/yA)yA = 0.71(1.98) = 1.4 ft 

b. spacing between rows of elements, L = (L/h)h = 6(1.4) = 8.4 ft 

c. width of basin, WB = (WB /Wo)Wo = 5(8) = 40 ft 

d. element width, W1 = (W1/Wo) Wo = 0.63(8) = 5.04 ft; use 5 ft 

e. divergence, ue = 4/7+10L/(7Wo) = 4/7 + 10(8.4)/(7(8)) = 2.07 use 2 

f. basin drag, CB = 0.42 

g. roughness element frontal area, AF = W1 h = 5(1.4) = 7 ft2 

h. Cp from Figure 9.4 = 0.7 

i. Total basin length, LB = 2Wo + LNr = 2(8) + 4(8.4) = 49.6 ft  

Step 5. Since the width of the basin (WB = 40 ft) matches the downstream channel width 
(41 ft) confirm trial basin using option 1.  Use the normal flow conditions (Vn and 
yn) and solve Equation 9.1 for CBAFN, which will be compared to CBAFN for basin: 

 Calculate CBAFN from Equation 9.1 

 yn Downstream = 3.3 ft 

 VB = Q/(WByn) = 1400/ [40(3.3)] = 1400/132 = 10.6 ft/s  

 ρVoQ + Cp γ Yo
2Wo /2 = CBAFN ρ VA

2/2 + ρVBQ + γQ2 /(2VB
2 WB) (Equation 9.1) 

 Terms with Vo and yo: 1.94(29.1) (1400) + 0.7(62.4) (6)2 (8)/2 = 85,325.5 

 Terms with VB: 1.94(10.6) (1400) + 62.4(1400)2 / (2 (10.6)2 (40)) = 42,395.9 

 Term with CBAFN is CBAFN (1.94) (30.6)2 /2 = 908.3(CBAFN) 

 (85,325.5 - 42,395.9 = 908.3(CBAFN)  

 CBAFN = 47.3 

 Calculate CBAFN for basin based on parameters determined in steps 2 and 4 ((Nr = 
4, CB = 0.42, AF = 7 ft2).  Using these values CBAFN = 44.1.  Since 44.1 is less than 
the 47.3 calculated from Equation 9.1, try a basin with more resistance (5 rows). 

Step 4 (2nd iteration).  For the trial roughness height to depth ratio h/yA and length to height 
ratio determine dissipator parameters from Table 9.1: WB /Wo = 5 that had Nr = 5, 
N =19, h/yA = 0.71, L/h = 6, and CB = 0.38. 

a. roughness element height, h = (h/yA)yA = 0.71(1.98) = 1.4 ft 

b. spacing between rows of elements, L = (L/h)h = 6(1.4) = 8.4 ft 

c. width of basin, WB = (WB /Wo)Wo = 5(8) = 40 ft 

d. element width, W1 = (W1/Wo) Wo = 0.63(8) = 5.04 ft; use 5 ft 
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e. divergence, ue = 4/7+10L/(7Wo) = 4/7 + 10(8.4)/(7(8)) = 2.07 use 2 

f. basin drag, CB = 0.38 

g. roughness element frontal area, AF = W1 h = 5(1.4) = 7 ft2 

h. Cp from Figure 9.4 = 0.7 

i. Total basin length, LB = 2Wo + LNr = 2(8) + 5(8.4) = 58 ft 

Step 5 (2nd iteration).  Calculate CBAFN from Equation 9.1. 

 CBAFN from Equation 9.1 = 47.3 (basin width did not change) 

 Calculate CBAFN for basin 

 CBAFN for basin = 0.38(7) (19) = 50.5 > 47.3 which is OK 

Step 6. Sketch basin and distribute roughness elements.  (See following figure).  All 
dimensions shown in feet.) 

 W1/h = 5/1.4 = 3.57 which is between the target range of 2 to 8. 

Step 7. Since the design matches the downstream conditions, minimum riprap will be 
required.  See Chapter 10 for guidance on riprap placement. 

 

Sketch for the CSU Rigid Boundary Basin Design Example (CU) 

9.2 CONTRA COSTA BASIN 
The Contra Costa energy dissipator (Keim, 1962) was developed at the University of California, 
Berkeley, in conjunction with Contra Costa County, California.  It is intended for use primarily in 
urban areas with defined tailwater channels.  A sketch of the dissipator is shown in Figure 9.6. 
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The dissipator was developed to be self-cleaning with minimum maintenance requirements.  It is 
best suited to small and medium size culverts of any cross section where the depth of flow at 
the outlet is less than or equal to half the culvert height, but is applicable over a wide range of 
culvert sizes and operating conditions as noted in Table 1.1.  The flow leaving the dissipator will 
be at minimum energy when operating without tailwater.  When tailwater is present, the 
performance will improve.  Field experience with this dissipator has been limited.  Designers 
should not extrapolate parameter values in this guidance beyond the ranges cited for the model 
tests. 

Equation 9.6 was obtained by testing model Contra Costa dissipators that had L2 / h2 ratios from 
2.5 to 7.  The equation is in terms of culvert exit velocity, Vo, and depth, yo, for a circular culvert.   
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where, 
 yo = outlet depth, m (ft) 
 Vo = outlet velocity, m/s (ft/s) 
 Fr = Vo/(g yo)1/2 
 h2 = height of large baffle, m (ft) 
 L2 = length from culvert exit to large baffle, m (ft) 
 

 

Figure 9.6. Contra Costa Basin  

Profile View

End View

Profile View

End View
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Equation 9.6 is generalized for other shapes by substituting the equivalent depth of flow, ye, for 
yo.  Equivalent depth is found by converting the area of flow at the culvert outfall to an 
equivalent rectangular cross section with a width equal to twice the depth of flow.  For box 
culverts, ye = yn or ybrink.   
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where, 
 ye = equivalent depth, (A/2)1/2 , m (ft) 
 A = outlet flow area, m2 (ft2) 
 Vo = outlet velocity, m/s (ft/s) 
 Fr = Vo/ (g ye)1/2 

 
Equation 9.7b is solved by assuming a value of L2 /h2 between 2.5 and 7.  A trial height of the 
second baffle, h2, can be determined. If the recommended L2 /h2 = 3.5 value is substituted into 
Equation 9.7, the design equation becomes Equation 9.8.  The value of h2/ye should always be 
greater than unity. 
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After determining the values of h2 and L2, the length from the large baffle to the end sill, L3, can 
be obtained using Equation 9.9. 
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The height of the small baffle, h1, is half the height of the large baffle, h2.  The position of the 
small baffle is half way between the culvert outlet and the large baffle or L2/2.  Side slopes of the 
trapezoidal basin for all experimental runs were 1:1 (V:H).  The width of basin, W, may vary 
from one to three times the width of the culvert.  The floor of the basin should be essentially 
level.  The height of the end sill, h3, may vary from 0.06y2 to 0.10y2.  After obtaining satisfactory 
basin dimensions, the approximate maximum water surface depth, y2, without tailwater, can be 
obtained from Equation 9.10 which is for basins with WB/Wo = 2.  The depth y3 is equal to yc for 
the basin + h3. 
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The following steps outline the design procedure for the design of the Contra Costa basin: 

Step 1. Determine the flow conditions at the outfall of the culvert for the design discharge. 
If the depth of flow at the outlet, yo, is D/2 or less, the Contra Costa basin is 
applicable. 

Step 2. Compute equivalent depth, ye, and Froude number, Fr. 

 ye = yo  for rectangular culvert 

 ye = (A/2)1/2 for other shapes 

 Fr = Vo / (gye)1/2 

Step 3. The width of the basin floor, WB, is selected to conform to the natural channel, but 
must be 1Wo to 3Wo. If there is no defined channel, the width should be no greater 
than 3 times the culvert width.  The basin side slopes should be 1:1. 

Step 4. Assume a value of L2/h2 between 2.5 and 7. If L2/h2 = 3.5, use Equation 9.8 to 
determine h2.  Use Equation 9.7 for other values.  Calculate L2 = 3.5 h2.  Calculate 
the first baffle height, h1 = 0.5h2 and position, L1 = 0.5L2. 

Step 5. Determine the length from the large baffle to the end sill, L3, using Equation 9.9.  
Repeat the procedure, if necessary, until a dissipator is defined which optimizes 
the design requirements. 

Step 6. Estimate the approximate maximum water surface depth without tailwater, y2, 
using Equation 9.10 which is for WB = 2Wo.  Set the end sill height, h3, between 
0.06y2 and 0.1y2.  If the above dimensions are compatible with the topography at 
the site, the dimensions are final.  If not, a different value of L2 /h2 is selected and 
the design procedure repeated. 

Step 7. Determine the basin exit depth, y3 = yc and exit velocity, V2 = Vc.  

 Q2/g = (Ac)3/Tc = [yc(WB + yc)]3/ (WB + 2yc) (Substituting for Ac and Tc using the 
properties of a trapezoid.) 

 Vc = Q/Ac 

Step 8. Riprap may be necessary downstream especially for the low tailwater cases. See 
Chapter 10 for design recommendations.  Freeboard to prevent overtopping and a 
cutoff wall to prevent undermining of the basin also should be considered.  

Design Example: Contra Costa Basin (SI) 
Determine the design dimensions for a Contra Costa basin.  Given:  

 D = 1.219 m diameter RCP culvert 
 Q = 8.49 m3/s 
 yo = 0.701 m 
 Vo = 12.192 m/s 
Channel bottom width = 2.438 m 

Solution  
Step 1. Determine the flow conditions at the outfall of culvert for the design discharge. 

 yo = 0.701 m is approximately D/2, OK.  
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Step 2. Compute equivalent depth, ye, and Froude number, Fr. 

 Using Equations 7.11 and 7.13, flow area in the culvert = 0.696 m2. 

 ye = (A/2)1/2 = (0.696/2)1/2 = 0.590 m 

 Fr = Vo / (gye)1/2 = 12.192 / [9.81(0.590)]1/2 = 5.07 

Step 3. The width of the basin floor, WB, is selected to conform to the natural channel. The 
basin side slopes should be 1:1 (V:H). 

 Set W = 2.438 m (channel bottom width).  1 ≤ W/D ≤ 3 OK 

Step 4. Assume L2/h2 = 3.5, use Equation 9.8 to determine h2.  Calculate L2 = 3.5 h2.  
Calculate the first baffle height, h1 = 0.5h2 and position, L1 = 0.5L2 

 h2 / ye = 0.595 Fr 1.092 = 0.595 (5.07)1.092 = 3.5 

 h2 = ye (h2 / ye) = 0.590 (3.50) = 2.065 m 

 L2 = 3.5 h2 = 3.5 (2.065) = 7.228 m 

 h1 = 0.5h2  = 0.5 (2.065) = 1.032 m 

 L1 = 0.5 L2 = 0.5 (7.228) = 3.614 m 

Step 5. Determine the length from the large baffle to the end sill, L3, using Equation 9.9.  
Repeat the procedure, if necessary, until a dissipator is defined which optimizes 
the design requirements. 

 L3 / L2 = 3.75(h2 /L2)0.68
  = 3.75(1/3.5)0.68

  = 1.6 

 L3 = (L3 / L2) L2 = 1.6 (7.228) = 11.56 m 

Step 6. Estimate the approximate maximum water surface depth without tailwater, y2, 
using Equation 9.10 which is for WB = 2D.  Determine end sill height, h3 = 0.1y2 

 y2 / h2 = 1.3(L2 /h2)0.36 = 1.3(3.5)0.36 = 2.04 

 y2 = (y2 / h2) h2 = (2.04) 2.065 = 4.21 m 

 h3 = 0.1(y2) = 0.1(4.21) = 0.42 m 

 A summary of physical dimensions is shown in the following table. 

 First Baffle 
Second 
Baffle End Sill 

Distance from exit (m) 3.61 7.23 18.79 
Height (m) 1.03 2.07 0.42 

 

Step 7. Determine the basin exit depth, y3 = yc and exit velocity, V2 = Vc. 

 Q2/g = (Ac)3/Tc = [yc (WB + yc)]3/ (WB + 2yc) 

 8.492/9.81 = 7.35 = [yc (2.438 + yc)]3/ (2.438 + 2yc) 

 By trial and success, yc = 0.938 m, Tc = 4.314 m, Ac = 3.17 m2 

 Vc = Q/Ac = 8.49/3.17 = 2.68 m/s 
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Step 8. Riprap may be necessary downstream especially for the low tailwater cases. See 
Chapter 10 for design recommendations.  Freeboard to prevent overtopping and a 
cutoff wall to prevent undermining of the basin also should be considered.  

Design Example: Contra Costa Basin (CU) 
Determine the design dimensions for a Contra Costa basin.  Given:  

 D = 4 ft diameter RCP culvert 
 Q = 300 ft3/s 
 yo = 2.3 ft 
 Vo = 40 ft/s 
Channel bottom width = 8 ft 

Solution  
Step 1. Determine the flow conditions at the outfall of culvert for the design discharge. 

 yo = 2.3 ft is approximately D/2, OK.  

Step 2. Compute equivalent depth, ye, and Froude number, Fr. 

 Using Equations 7.11 and 7.13, flow area in the culvert = 7.5 ft2. 

 ye = (A/2)1/2 = (7.5/2)1/2 = 1.94 ft 

 Fr = Vo / (gye)1/2 =  40 / [32.2(1.94)]1/2 = 5.06 

Step 3. The width of the basin floor, WB, is selected to conform to the natural channel. The 
basin side slopes should be 1H:1V. 

 Set W = 8 ft (channel bottom width).  1 ≤ W/D ≤ 3 OK 

Step 4. Assume L2/h2 = 3.5, use equation 9.8 to determine h2. Calculate L2 = 3.5 h2. 
Calculate the first baffle height, h1 = 0.5h2 and position, L1 = 0.5L2 

 h2 / ye = 0.595 Fr 1.092 = 0.595 (5.06)1.092 = 3.5 

 h2 = ye (h2 / ye) = 1.94 (3.5) = 6.8 ft 

 L2 = 3.5 h2 = 3.5 (6.8) = 23.8 ft 

 h1 = 0.5h2 = 0.5 (6.8) = 3.4 ft 

 L1 = 0.5 L2 = 0.5 (23.8) = 11.9 ft 

Step 5. Determine the length from the large baffle to the end sill, L3, using Equation 9.9.  
Repeat the procedure, if necessary, until a dissipator is defined which optimizes 
the design requirements. 

 L3 / L2 = 3.75(h2 /L2)0.68 
 = 3.75(1/3.5)0.68

  = 1.6 

 L3 = (L3 / L2) L2 = 1.6 (23.8) = 38.1 ft 

Step 6. Estimate the approximate maximum water surface depth without tailwater, y2, 
using Equation 9.10 which is for WB = 2D. Determine end sill height, h3 = 0.1y2. 

 y2 / h2 = 1.3(L2 /h2)0.36 = 1.3(3.5)0.36 = 2.04 

 y2 = (y2 / h2) h2 = (2.04) 6.8 = 13.9 ft 
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 h3 = 0.1(y2) = 0.1(13.9) = 1.4 ft 

 A summary of physical dimensions is shown in the following table. 

 First Baffle 
Second 
Baffle End Sill 

Distance from exit (ft) 11.9 23.8 61.9 
Height (ft) 3.4 6.8 1.4 

 

Step 7. Determine the basin exit depth, y3 = yc and exit velocity, V2 = Vc. 

 Q2/g = (Ac)3/Tc = [yc (WB + yc)]3/ (WB + 2yc) 

  3002/32.2 = 2795 = [yc (8 + yc)]3/ (8 + 2yc) = 34.063/14.15 = 2792 

 By trial and success, yc = 3.075 ft, Tc = 14.15 ft, Ac = 34.06 ft2 

 Vc = Q/Ac = 300/34.06 = 8.8 ft/s 

Step 8. Riprap may be necessary downstream especially for the low tailwater cases. See 
Chapter 10 for design recommendations.  Freeboard to prevent overtopping and a 
cutoff wall to prevent undermining of the basin also should be considered.  

9.3 HOOK BASIN 
The Hook basin was developed at the University of California in cooperation with the California 
Division of Highways and the Bureau of Public Roads (MacDonald, 1967).  The basin was 
originally developed for large arch culverts with low tailwater, but can be used with box or 
circular conduits.  The dissipator can be used for culvert outlet Froude numbers from 1.8 to 3.0.  
Two hydraulic model studies were conducted: (1) a basin with wingwalls warped from vertical at 
the culvert outlet to side slopes of 1:1.5 (V:H) at the end sill and a tapered basin floor which is 
discussed in Section 9.3.1 and (2) a trapezoidal channel of uniform cross section which is 
discussed which is discussed in Section 9.3.2.  

9.3.1 Hook Basin with Warped Wingwalls 
The hook basin with warped wingwalls is shown in Figure 9.7.  The design procedure is 
deterministic except for selecting the width of the hooks.  Judgment is necessary in choosing 
this dimension to insure that the width is sufficient for effective energy dissipation, but not so 
great that flow passage between the hooks is inadequate.  A ratio of W4/Wo = 0.16, which was 
the minimum tested, is recommended.  Each design should be checked to see that the spacing 
between hooks is 1.5 to 2.5 times the hook width. 

The height of wingwalls, h6, should be at least twice the flow depth at the culvert exit or 2ye.  
This height is based on the highest water surface elevations observed in the basin during the 
study.  Therefore, setting h6 = 2ye does not provide freeboard to contain splashing.  Depending 
on the site conditions, the designer should provide for additional freeboard. 
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Figure 9.7. Hook Basin with Warped Wingwalls 

The best range of design dimensions that were tested are indicated in the design procedure.  In 
most cases, the ratio that will produce the smallest dimension was used.  The recommended 
hook configuration is shown in Figure 9.8.  The recommended dimensions are: 

1. h3 = ye 

2. h2 = 1.28h1 

3. h1 = ye/1.4 

4. β = 135° 

5. r = 0.4h1 

Figure 9.8. Hook for Warped Wingwall Basin   
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A flare angle, α, of 5.7 degrees per side (tanα = 0.10) is the optimum value for Fr > 2.45.  
Increasing the length beyond LB = 3Wo does not improve basin performance.  The effectiveness 
of the dissipator falls off rapidly with increasing Froude number regardless of hook width, for 
flare angle exceeding 5.7 degrees.  The exit velocity of the dissipator, VB, is estimated from 
Figure 9.9.  The higher the velocity ratio, Vo/VB, the more effective the basin is in dissipating 
energy and distributing the flow downstream. 

 

Figure 9.9. Velocity Ratio for Hook Basin With Warped Wingwalls 

Depending on final velocity and soil conditions, some scour can be expected downstream of the 
basin. The designer should, where necessary, provide riprap protection in this area.  Chapter 10 
contains design guidance for riprap. Where large debris is expected, armor plating the upstream 
face of the hooks with steel is recommended.  

The recommended design procedure for a Hook basin with warped wingwalls is as follows: 

Step 1. Compute the culvert outlet velocity, Vo, equivalent depth, ye, and Froude number, 
Fr = Vo/(gye)1/2.  If 1.8 < Fr < 3.0, proceed with design.  

Step 2. Compute the downstream channel velocity, Vn, and depth, yn. 

Step 3. Select width of the basin at the basin exit, WB (WB = W6), and compute LB.  W6 
should be approximately equal to the channel width, if the downstream channel is 
defined. 

 LB = (W6 - Wo) / (2tanα), use α = 5.7° (tan = 0.10) 
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Step 4. Compute the position and spacing of the hooks (see Figure 9.7): 

a. distance to first hooks, L1 = 0.75 LB 

(allowable range: 0.75 < L1/LB < 0.80) 

b. width at first hooks, W1 = 2L1(tanα) + Wo  

c. distance between first (row A) hooks, W2 = 0.66 W 1  

(allowable range: 0.66 < W2/W1 < 0.70) 

d. distance to second (row B) hook, L2 = 0.83 LB 

(allowable range: 0.83 < L2/LB < 0.89) 

e. width of hooks, W4 = 0.16Wo 

f. lateral spacing between A and B hook, W3 = (W2 - W4)/2 

If spacing does not satisfy 1.5 < W3/W4 < 2.5, adjust W4.  

Step 5. Compute hook dimensions (see Figure 9.8): 

a. height to center of radius, h1 = ye /1.4 

b. height to point, h2 = 1.28h1 

c. height to top of radius, h3 = ye 

d. angle of radius, β = 135º  

e. radius, r = 0.4h1 

Step 6. Compute the end sill and wingwall dimensions (see Figure 9.7): 

a. height of end sill, h4 = 0.67ye 

b. width of slot in end sill, W5 = 0.33W6  

c. height to top of warped wingwall, h6 = 2ye minimum  
d. height to top of end sill, h5 = 0.94h6 

Step 7. Find Vo/VB from Figure 9.9 and compute basin exit velocity, VB.  Compare VB with 
Vn from step 2.  If VB is unacceptable, adjust basin length.  Assess scour potential 
downstream based on soil condition and outlet velocity.  If riprap is needed, see 
Chapter 10. 

Step 8. Where large debris is expected, the upstream face of the hooks should be 
armored with steel. 

Design Example: Hook Basin With Warped Wingwalls (SI) 
Determine dimensions for a Hook basin with warped wingwalls (see Figure 9.7) for a long 
concrete semicircular arch culvert that is 3.658 m wide and 3.658 m from the floor to the crown. 
Given:  

 So = 0.020 m/m 
 n = 0.012 
 Q = 76.41 m3/s 
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 ye = 1.829 m 
 Vo = 11.43 m/s 
The downstream channel has a trapezoidal shape with the following properties: 

 Wc = 6.096 m 
 So = 0.020 m/m 
 Z = 1.5 
 n = 0.030 
 Vn = 5.27 m/s 
 yn = 1.676 m 

Solution 
Step 1. Compute the culvert outlet velocity, Vo, equivalent depth, ye, and Froude number, 

Fr, Vo/(gye)1/2.  Vo = 11.43 m/s and ye = 1.829 m were given. 

 Fro = Vo / (gye)1/2 = 11.43/ (9.81 x 1.829)1/2 = 2.70 

Since 1.8 < 2.70 < 3, proceed to step 2. 

Step 2. Compute the downstream channel velocity, Vn, and depth, yn.  Vn = 5.27 m/s and 
yn = 1.676 m were given. 

Step 3. Select W6 and compute LB. 

 Use W6 = Wc = 6.096 m and tanα = 0.10. 

 LB = (W6 - Wo) / (2tanα) = (6.096 - 3.658)/ [2(0.10)] = 12.19 m or 3.3Wo 

Step 4. Compute the position and spacing of the hooks (see Figure 9.7): 

a. distance to first hooks, L1 = 0.75 LB = 0.75(12.19) = 9.143 m 

b. width at first hooks, W1 = 2L1(tanα) + Wo = 2(9.143)(0.1) + 3.658 = 5.487 m 

c. distance between first (row A) hooks, W2 = 0.66 W 1 = 0.66(5.487) = 3.621 m  

d. distance to second (row B) hook, L2 = 0.83 LB = 0.83(12.19) = 10.118 m 

e. width of hooks, W4 = 0.16Wo = 0.16(3.658) = 0.585 m 

f. lateral spacing between A and B hook, W3 

 W3 = (W2 - W4)/2 = (3.621 - 0.585) /2 = 1.518 m 

 W3/W4 = 1.518/0.585 = 2.6, which does not satisfy 1.5 < W3/W4 < 2.5 

 Adjust W4 = W3/2.5 = 1.518/2.5 = 0.607 m 

Step 5. Compute hook dimensions (see Figure 9.8): 

a. height to center of radius, h1 = ye /1.4 = 1.829/1.4 = 1.306 m 

b. height to point, h2 = 1.28h1 = 1.28(1.306) = 1.672 m 

c. height to top of radius, h3 = ye = 1.829 m 

d. angle of radius, β = 135º 

e. radius, r = 0.4h1 = 0.4(1.306) = 0.522 m  
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Step 6. Compute the end sill and wingwall dimensions (see Figure 9.7): 

a. height of end sill, h4 = 0.67ye = 0.67(1.829) = 1.225 m 

b. width of slot in end sill, W5 = 0.33W6 = 0.33(6.096) = 2.012 m 

c. height to top of warped wingwall, h6 = 2ye = 2 (1.829) = 3.658 m 

d. height to top of end sill, h5 = 0.94h6 = 0.94 (2ye) = 3.439 m 

Step 7. Find Vo/VB from Figure 9.9 and compute VB.  Compare with Vn from step 2.  
Assess scour potential downstream based on soil condition and outlet velocity. If 
riprap is needed, see Chapter 10. 

 With Fr = 2.7 and LB = 3.3 Wo, Vo /VB will be less than 1.9 making VB ≅ 11.43/1.9 = 
6.016 m/s.  This is somewhat higher than the normal velocity in the downstream 
channel indicating riprap protection may be desirable.  See Chapter 10. 

The dissipator design is shown on the sketch below.  (All dimensions are in 
meters.) 

Step 8. Since no large debris is expected at this site, the hook face will not be armored 
with steel. 

 

Sketch for the Hook Basin with Warped Wingwalls Design Example (SI) 
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Design Example: Hook Basin With Warped Wingwalls (CU) 
Determine dimensions for a Hook basin with warped wingwalls (see Figure 9.7) for a long 
concrete semicircular arch culvert that is 12 ft wide and 12 ft from the floor to the crown. Given:  

 So = 0.020 ft/ft 
 n = 0.012 
 Q = 2700 ft3/s 
 ye = 6 ft 
 Vo = 37.5 ft/s 
The downstream channel has a trapezoidal shape with the following properties: 

 Wc = 20 ft 
 So = 0.020 ft/ft 
 Z = 1.5 
 n = 0.030 
 Vn = 16.1 ft/s 
 yn = 5.5 ft 

Solution  
Step 1. Compute the culvert outlet velocity, Vo, equivalent depth, ye, and Froude number, 

Fr Vo/(gye)1/2.  Vo = 37.5 ft/s and ye = 6 ft were given. 

 Fro = Vo / (gye)1/2 = 37.5/ (32.2 x 6)1/2 = 2.7 

Since 1.8 < 2.7 < 3, proceed with step 2. 

Step 2. Compute the downstream channel velocity, Vn, and depth, yn.  Vn = 16.1 ft/s and yn 
= 5.5 ft were given. 

Step 3. Select W6 and compute LB. 

 Use W6 = Wc = 20 and tanα = 0.10. 

 LB = (W6 - Wo) / (2tanα) = (20 - 12)/ [2(0.10)] = 40 ft or 3.3Wo 

Step 4. Compute the position and spacing of the hooks (see Figure 9.7): 

a. distance to first hooks, L1 = 0.75 LB = 0.75(40) = 30 ft 

b. width at first hooks, W1 = 2L1(tanα) + Wo = 2(30)(0.1) + 12 = 18 ft 

c. distance between first (row A) hooks, W2 = 0.66 W 1 = 0.66(18) = 11.9 ft, use 
12 ft  

d. distance to second (row B) hook, L2 = 0.83 LB = 0.83(40) = 33.2 ft, use 33 ft 

e. width of hooks, W4 = 0.16Wo = 0.16(12) = 1.92 ft, use 2 ft 

f. lateral spacing between A and B hook, W3 

 W3 = (W2 - W4)/2 = (12 - 2) /2 = 5 ft 

 W3/W4 = 5/2 = 2.5, which satisfies 1.5 < W3/W4 < 2.5 

Step 5. Compute hook dimensions (see Figure 9.8): 

a. height to center of radius, h1 = ye /1.4 = 6/1.4 = 4.3 ft 
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b. height to point, h2 = 1.28h1 = 1.28(4.3) = 5.5 ft 

c. height to top of radius, h3 = ye = 6 ft 

d. angle of radius, β = 135º 

e. radius, r = 0.4h1 = 0.4(4.3) = 1.72 ft  

Step 6. Compute the end sill and wingwall dimensions (see Figure 9.7): 

a. height of end sill, h4 = 0.67ye = 0.67(6) = 4 ft 

b. width of slot in end sill, W5 = 0.33W6 = 0.33(20) = 6.6 ft 

c. height to top of warped wingwall, h6 = 2ye = 2 (6) = 12 ft 
d. height to top of end sill, h5 = 0.94h6 = 0.94 (2ye) = 11.3 ft 

Step 7. Find Vo/VB from Figure 9.9 and compute VB.  Compare with Vn from step 2.  
Assess scour potential downstream based on soil condition and outlet velocity.  If 
riprap is needed, see Chapter 10. 

 With Fr = 2.7 and LB = 3.3 Wo, Vo /VB will be less than 1.9 making VB ≅ 37.5/1.9 = 
19.7 ft/s. This is somewhat higher than the normal velocity in the downstream 
channel (16.1 ft/s) indicating riprap protection may be desirable.  See Chapter 10. 

The dissipator design is shown on the sketch below.  (All dimensions are in feet.) 

Step 8. Since no large debris is expected at this site, the hook face will not be armored 
with steel. 

Sketch for the Hook Basin with Warped Wingwalls Design Example (CU) 
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9.3.2 Hook Basin with Uniform Trapezoidal Channel 
The Hook basin with a uniform trapezoidal channel with end sill is shown in Figure 9.10.  The 
hooks and end sill are closer to the outfall of the culvert than the hooks and end sill with warped 
wingwalls.  The research report (MacDonald, 1967) presents several charts depicting the effect 
of various variables on the performance of the dissipator.  These charts show that for a given 
discharge condition widening the basin produces some reduction in the velocity downstream, 
and flattening the side slopes improves the performance of the dissipator for values of the 
Froude number up to 3.0.  

 

Figure 9.10. Hook Basin with Uniform Trapezoidal Channel  

The best range of design dimensions that were tested are indicated in the design procedure.  In 
most cases, the ratio that will produce the smallest dimension was used.  The recommended 
hook configuration is shown in Figure 9.11.  The height dimensions are different than those 
used for the hook energy dissipator with warped wingwalls.  The recommended dimensions are: 

1. h1 = 0.78ye 

2. h2 = ye 

3. h3 = 1.4h1 

4. β = 135° 

5. r = 0.4h1 

W6 W6 
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Figure 9.11. Hook for Uniform Trapezoidal Channel Basin 

The discharge velocity at the exit of the dissipator, VB, is estimated from Figure 9.12. 

 

Figure 9.12. Velocity Ratio for Hook Basin With Uniform Trapezoidal Channel   

The design procedure for a Hook basin with a uniform trapezoidal channel is as follows: 

Step 1. Compute the culvert outlet velocity, Vo, equivalent depth, ye = (A/2)1/2, and Froude 
number, Fr = Vo/(gye)1/2. 
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Culvert width, Wo = width of rectangular culvert or Wo = 2ye for circular and other 
shapes. 

If 1.8 < Fr < 3.0, proceed with design.  

Step 2. Compute the downstream channel velocity, Vn, and depth, yn. 

Step 3. Select a basin width, WB (W6 = WB), side slope, and length, LB.  W6 should be 
approximately equal to the channel width if the downstream channel is defined. 

 W6 = Wo to 2Wo 

 Basin side slope can be from 1:1.5 to 1:2 (V:H). 

 LB = 3.0Wo 

Step 4. Compute the position and spacing of the hooks (see Figure 9.10): 

a. distance to first hooks, L1 = 1.25 Wo 

b. width at first hooks, W1 = Wo 

c. distance between first hooks, W2 = 0.65 Wo 

d. distance to second hook, L2 = 2.085 Wo 

e. width of hooks, W4 = 0.16Wo 

f. spacing between first and second hook, W3 = (W2 - W4)/2 

 If spacing does not satisfy W3/W4 ≥ 1.0, adjust W6.  

Step 5. Compute hook dimensions (see Figure 9.11): 

a. height to center of radius, h1 = 0.78ye  

b. height to point, h2 = ye 

c. height to top of radius, h3 = 1.4h1 

d. angle of radius, β = 135º  

e. radius, r = 0.4h1 

Step 6. Compute the end sill and wingwall dimensions (see Figure 9.10): 

a. height of end sill, h4 = 0.67ye 

b. width of slot in end sill, W5 = 0.33WB  

c. height to top of side slope, h6 

 h6 = 3.33 ye for 1:1.5 side slopes 

 h6 = 2.69ye for 1:2 side slopes 

d. height to top of end sill, h5 = 0.70h6 

Step 7. Find Vo/VB from Figure 9.12 and calculate VB.  Compare with Vn from step 2.  If VB 
is unacceptable, adjust W6, if feasible.  Assess scour potential downstream based 
on soil condition and outlet velocity. If riprap is needed, see Chapter 10. 

Step 8. Where large debris is expected, the upstream face of the hooks should be 
armored with steel.  
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Design Example: Hook Basin with a Uniform Trapezoidal Channel (SI) 
Determine dimensions for a Hook basin with a uniform trapezoidal channel for a long concrete 
semicircular arch culvert that is 3.658 m wide and 3.658 m from the floor to the crown. Given:  

 So = 0.020 m/m 
 n = 0.012 
 Q = 76.41 m3/s 
 ye = 1.829 m 
 Vo = 11.43 m/s 
The downstream channel has a trapezoidal shape with the following properties: 

 Wc = 6.096 m 
 So = 0.020 m/m 
 Z = 1.5 
 n = 0.030 
 Vn = 5.27 m/s 
 yn = 1.676 m 

Solution 
Step 1. Compute the culvert outlet velocity, Vo, equivalent depth, ye, and Froude number, 

Fr = Vo/(gye)1/2.  Vo = 11.43 m/s and ye = 1.829 m were given. 

 Fro = Vo / (gye)1/2 = 11.43/ (9.81 x 1.829)1/2 = 2.70 

Since 1.8 < 2.70 < 3, proceed to step 2. 

Step 2. Compute the downstream channel velocity, Vn, and depth, yn.  Vn = 5.273 m/s and 
yn = 1.676 m were given. 

Step 3. Select a basin width, W6, side slope, and length, LB.  W6 should be approximately 
equal to the channel width, if the downstream channel is defined. 

 W6 = Wc = 6.096 m, which is 6.096/3.658 = 1.67 Wo 

 Basin side slope will be 1:1.5 (V:H) 

 LB = 3.0Wo = 3.0(3.658) = 10.974 m 

Step 4. Compute the position and spacing of the hooks (see Figure 9.10): 

a. distance to first hooks, L1 = 1.25 Wo = 1.25 (3.658) = 4.573 m 

b. width at first hooks, W1 = Wo = 3.658 m 

c. distance between first hooks, W2 = 0.65 Wo = 0.65 (3.658) = 2.377 m 

d. distance to second hook, L2 = 2.085 Wo = 2.085 (3.658) = 7.627 m 

e. width of hooks, W4 = 0.16Wo = 0.16(3.658) = 0.585 m 

f. spacing between first and second hook, W3 

 W3 = (W2 - W4)/2 = (2.377 - 0.585)/2 = 0.896 m 

W3 /W4 = 0.896/0.585 = 1.5, which satisfies W3/W4 ≥ 1.0. 
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Step 5. Compute hook dimensions (see Figure 9.11): 

a. height to center of radius, h1 = 0.78ye = 1.427 m 

b. height to point, h2 = ye = 1.829 m 

c. height to top of radius, h3 = 1.4h1 = 1.4(1.427) = 1.998 m 

d. angle of radius, β = 135º  

e. radius, r = 0.4h1 = 0.4(1.427) = 0.571 m 

Step 6. Compute the end sill and wingwall dimensions (see Figure 9.10): 

a. height of end sill, h4 = 0.67ye = 0.67(1.829) = 1.225 m 

b. width of slot in end sill, W5 = 0.33WB = 0.33(6.096) = 2.012 m 

c. height to top of side slope, h6 for 1:1.5 (V:H) side slopes 

 h6 = 3.33 ye = 3.33(1.829) = 6.091 m 

d. height to top of end sill, h5 = 0.70h6 = 0.70(6.091) = 4.264 m 

Step 7. Find Vo/VB from Figure 9.12 and compute VB.  Compare with Vn from step 2.  
Assess scour potential downstream based on soil condition and outlet velocity. If 
riprap is needed, see Chapter 10. 

 From Figure 9.12 with a Froude number of 2.70 and W6/Wo = 1.67, Vo/VB  ≅ 2.0 
making VB  ≅ 11.43/2 = 5.72 m/s which is slightly higher than the normal channel 
velocity, Vn =  5.273 m/s indicating minimum riprap protection will be necessary.  A 
sketch of this dissipator is shown in the sketch on the next page.  (All dimensions 
are shown in meters.) 

Step 8. Where large debris is expected the upstream face of the hooks should be 
armored.  Since no large debris is expected, the hook face will not be armored. 

The design example dimensions for both the warped wingwall and the trapezoidal basins are 
shown in the following table. 

 
Feature Element Symbol Warped Wingwall (m) Trapezoidal (m) 

Length LB 12.19 10.974 Basin 
Width W6 6.096 6.096 
Length L1 9.143 4.573 First Hooks 

Spacing W2 3.621 2.377 
Length L2 10.118 7.682 Second Hook 

Spacing W3 1.518 0.896 
Height h4 1.225 1.225 

Slot W5 2.012 2.012 
End Wall 

Top h5 3.439 4.264 
Height h3 1.829 1.998 Hooks 
Width W4 0.607 0.585 
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Sketch for the Hook Basin with a Uniform Trapezoidal Channel (SI) 
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Design Example: Hook Basin with a Uniform Trapezoidal Channel (CU) 
Determine dimensions for a Hook basin with a uniform trapezoidal channel for a long concrete 
semicircular arch culvert that is 12 ft wide and 12 ft from the floor to the crown.  Given: 

 So = 0.020 ft/ft 
 n = 0.012 
 Q = 2700 ft3/s 
 ye = 6 ft 
 Vo = 37.5 ft/s 
The downstream channel has a trapezoidal shape with the following properties: 

 Wc = 20 ft 
 So = 0.020 ft/ft 
 Z = 1.5 
 n = 0.030 
 Vn = 16.1 ft/s 
 yn = 5.5 ft 

Solution  
Step 1. Compute the culvert outlet velocity, Vo, equivalent depth, ye, and Froude number, 

Fr = Vo/(gye)1/2.  Vo = 37.5 ft/s and ye = 6 ft were given. 

 Fro = Vo / (gye)1/2 = 37.5/ (32.2 x 6)1/2 = 2.7 

Since 1.8 < 2.7 < 3, proceed with step 2. 

Step 2. Compute the downstream channel velocity, Vn, and depth, yn.  Vn = 16.1 ft/s and yn 
= 5.5 ft were given. 

Step 3. Select a basin width, W6, side slope, and length, LB.  W6 should be approximately 
equal to the channel width, if the downstream channel is defined. 

 W6 = Wc = 20 ft, which is 20/12 = 1.67 Wo 

 Basin side slope will be 1:1.5 (V:H) 

 LB = 3.0Wo = 3.0(12) = 36 ft 

Step 4. Compute the position and spacing of the hooks (see Figure 9.10): 

a. distance to first hooks, L1 = 1.25 Wo = 1.25 (12) = 15 ft 

b. width at first hooks, W1 = Wo = 12 ft 

c. distance between first hooks, W2 = 0.65 Wo = 0.65 (12) = 7.8 ft 

d. distance to second hook, L2 = 2.085 Wo = 2.085 (12) = 25 ft 

e. width of hooks, W4 = 0.16Wo = 0.16(12) = 1.92 ft (use 2 ft) 

f. spacing between first and second hook, W3 

 W3 = (W2 - W4)/2 = (7.8 - 2)/2 = 2.9 ft 

W3 /W4 = 2.9/2 = 1.45, which satisfies W3/W4 ≥ 1.0. 
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Step 5. Compute hook dimensions (see Figure 9.11): 

a. height to center of radius, h1 = 0.78ye = 0.78 (6) = 4.7 ft 

b. height to point, h2 = ye = 6 ft 

c. height to top of radius, h3 = 1.4h1 = 1.4(4.7) = 6.6 ft 

d. angle of radius, β = 135º  

e. radius, r = 0.4h1 = 0.4(4.7) = 1.9 ft 

Step 6. Compute the end sill and wingwall dimensions (see Figure 9.10): 

a. height of end sill, h4 = 0.67ye = 0.67(6) = 4 ft 

b. width of slot in end sill, W5 = 0.33WB = 0.33(20) = 6.6 ft 

c. height to top of side slope, h6 for 1:1.5 (V:H) side slopes 

 h6 = 3.33 ye = 3.33(6) = 20 ft 

d. height to top of end sill, h5 = 0.70h6 = 0.70(20) = 14 ft 

Step 7. Find Vo/VB from Figure 9.12 and compute VB.  Compare with Vn from step 2.  
Assess scour potential downstream based on soil condition and outlet velocity. If 
riprap is needed, see Chapter 10. 

 From Figure 9.12 with a Froude number of 2.70 and W6/Wo = 1.67, Vo/VB  ≅ 2.0 
making VB  ≅ 37.5/2 = 18.8 ft/s which is slightly higher than the normal channel 
velocity, Vn = 16.1 ft/s indicating minimum riprap protection will be necessary.  A 
sketch of this dissipator is shown on the next page.  (All dimensions are shown in 
feet.) 

Step 8. Where large debris is expected the upstream face of the hooks should be 
armored. Since no large debris is expected, the hook face will not be armored. 

The design example dimensions for both the warped wingwall and the trapezoidal basins are 
shown in the following table. 
 

Feature Element Symbol Warped Wingwall (ft) Trapezoidal (ft) 
Length LB 36 40 Basin 
Width W6 20 20 
Length L1 15 30 First Hooks 

Spacing W2 7.8 12 
Length L2 25 33 Second Hook 

Spacing W3 2.9 5 
Height h4 4 4 

Slot W5 6.6 6.6 
End Wall 

Top h5 14 11.3 
Height h3 6.6 6 Hooks 
Width W4 2 2 
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 Sketch for Hook Basin with a Uniform Trapezoidal Channel (CU) 
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9.4 USBR TYPE VI IMPACT BASIN 
The U.S. Bureau of Reclamation (USBR) Type VI impact basin was developed at the USBR 
Laboratory (ASCE, 1957).  The dissipator is contained in a relatively small box-like structure that 
requires no tailwater for successful performance.  Although the emphasis in this manual is on its 
use at culvert outlets, the structure may also be used in open channels.  

The shape of the basin has evolved from extensive tests, but these were limited in range by the 
practical size of field structures required.  With the many combinations of discharge, velocity, 
and depth possible for the incoming flow, it became apparent that some device was needed 
which would be equally effective over the entire range. The vertical hanging baffle, shown in 
Figure 9.13, proved to be this device.  Energy dissipation is initiated by flow striking the vertical 
hanging baffle and being deflected upstream by the horizontal portion of the baffle and by the 
floor, creating horizontal eddies.  

Notches in the baffle are provided to aid in cleaning the basin after prolonged periods of low or 
no flow.  If the basin is full of sediment, the notches provide concentrated jets of water for 
cleaning.  The basin is designed to carry the full discharge over the top of the baffle if the space 
beneath the baffle becomes completely clogged.  Although this performance is not good, it is 
acceptable for short periods of time. 

 

Figure 9.13. USBR Type VI Impact Basin  

The design information is presented as a dimensionless curve in Figure 9.14.  This curve 
incorporates the original information contained in ASCE (1957) and the results of additional 
experimentation performed by the Department of Public Works, City of Los Angeles.  The curve 

WBWB
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shows the relationship of the Froude number to the ratio of the energy entering the dissipator to 
the width of dissipator required.  The Los Angeles tests indicate that limited extrapolation of this 
curve is permissible. 

 

Figure 9.14. Design Curve for USBR Type VI Impact Basin 

Once the basin width, WB, has been determined, many of the other dimensions shown in Figure 
9.13 follow according to Table 9.2.  To use Table 9.2, round the value of WB to the nearest entry 
in the table to determine the other dimensions.  Interpolation is not necessary. 

In calculating the energy and the Froude number, the equivalent depth of flow, ye = (A/2)1/2, 
entering the dissipator from a pipe or irregular-shaped conduit must be computed.  In other 
words, the cross section flow area in the pipe is converted into an equivalent rectangular cross 
section in which the width is twice the depth of flow.  The conduit preceding the dissipator can 
be open, closed, or of any cross section. 

The effectiveness of the basin is best illustrated by comparing the energy losses within the 
structure to those in a natural hydraulic jump, Figure 9.15.  The energy loss was computed 
based on depth and velocity measurements made in the approach pipe and also in the 
downstream channel with no tailwater. Compared with the natural hydraulic jump, the USBR 
Type VI impact basin shows a greater capacity for dissipating energy.  

H
o/

W
B

Fr = Vo/(gye)1/2

H
o/

W
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Although tailwater is not necessary for successful operation, a moderate depth of tailwater will 
improve the performance.  For best performance set the basin so that maximum tailwater does 
not exceed h3 + (h2/2) which is half of the baffle.  

The basin floor should be constructed horizontally and will operate effectively with entrance 
conduits on slopes up to 15o (27%).  For entrance conduits with slopes greater than 15o, a 
horizontal conduit section of at least four conduit widths long should be provided immediately 
upstream of the dissipator.  Experience has shown that, even for conduits with slopes less than 
15 degrees, it is more efficient when the horizontal section of pipe recommended for steeper 
slopes is used.  In every case, the proper position of the entrance invert, as shown in Figure 
9.13, should be maintained. 

If a horizontal section of pipe is provided before the dissipator, the conduit should be analyzed 
to determine if a hydraulic jump would form in the conduit.  When a hydraulic jump is expected 
and the pipe outlet is flowing full, a vent about one-sixth the pipe diameter should be installed at 
a convenient location upstream from the jump. 

To provide structural support to the hanging baffle, a short support should be placed under the 
center of the baffle wall.  This support will also provide an additional energy dissipating barrier to 
the flow. 

 

Table 9.2 (SI). USBR Type VI Impact Basin Dimensions (m) (AASHTO, 1999) 

WB h1 h2 h3 H4 L L1 L2 
1.0 0.79 0.38 0.17 0.43 1.40 0.59 0.79 
1.5 1.16 0.57 0.25 0.62 2.00 0.88 1.16 
2.0 1.54 0.75 0.33 0.83 2.68 1.14 1.54 
2.5 1.93 0.94 0.42 1.04 3.33 1.43 1.93 
3.0 2.30 1.12 0.50 1.25 4.02 1.72 2.30 
3.5 2.68 1.32 0.58 1.46 4.65 2.00 2.68 
4.0 3.12 1.51 0.67 1.67 5.33 2.28 3.08 
4.5 3.46 1.68 0.75 1.88 6.00 2.56 3.46 
5.0 3.82 1.87 0.83 2.08 6.52 2.84 3.82 
5.5 4.19 2.03 0.91 2.29 7.29 3.12 4.19 
6.0 4.60 2.25 1.00 2.50 7.98 3.42 4.60 

 

WB W1 W2 t1 t2 t3 t4 t5 

1.0 0.08 0.26 0.15 0.15 0.15 0.15 0.08 
1.5 0.13 0.42 0.15 0.15 0.15 0.15 0.08 
2.0 0.15 0.55 0.15 0.15 0.15 0.15 0.08 
2.5 0.18 0.68 0.16 0.18 0.18 0.16 0.08 
3.0 0.22 0.83 0.20 0.20 0.22 0.20 0.08 
3.5 0.26 0.91 0.20 0.23 0.23 0.21 0.10 
4.0 0.30 0.91 0.20 0.28 0.25 0.25 0.10 
4.5 0.36 0.91 0.20 0.30 0.30 0.30 0.13 
5.0 0.39 0.91 0.22 0.31 0.30 0.30 0.15 
5.5 0.41 0.91 0.22 0.33 0.33 0.33 0.18 
6.0 0.45 0.91 0.25 0.36 0.35 0.35 0.19 
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 Table 9.2 (CU). USBR Type VI Impact Basin Dimensions (ft) (AASHTO, 2005) 

WB h1 h2 h3 h4 L L1 L2 
4. 3.08 1.50 0.67 1.67 5.42 2.33 3.08 
5. 3.83 1.92 0.83 2.08 6.67 2.92 3.83 
6. 4.58 2.25 1.00 2.50 8.00 3.42 4.58 
7. 5.42 2.58 1.17 2.92 9.42 4.00 5.42 
8. 6.17 3.00 1.33 3.33 10.67 4.58 6.17 
9. 6.92 3.42 1.50 3.75 12.00 5.17 6.92 
10. 7.58 3.75 1.67 4.17 13.42 5.75 7.67 
11. 8.42 4.17 1.83 4.58 14.58 6.33 8.42 
12. 9.17 4.50 2.00 5.00 16.00 6.83 9.17 
13. 10.17 4.92 2.17 5.42 17.33 7.42 10.00 
14. 10.75 5.25 2.33 5.83 18.67 8.00 10.75 
15. 11.50 5.58 2.50 6.25 20.00 8.50 11.50 
16. 12.25 6.00 2.67 6.67 21.33 9.08 12.25 
17. 13.00 6.33 2.83 7.08 21.50 9.67 13.00 
18. 13.75 6.67 3.00 7.50 23.92 10.25 13.75 
19. 14.58 7.08 3.17 7.92 25.33 10.83 14.58 
20. 15.33 7.50 3.33 8.33 26.58 11.42 15.33 

 
WB W1 W2 t1 t2 t3 t4 t5 

4. 0.33 1.08 0.50 0.50 0.50 0.50 0.25 
5. 0.42 1.42 0.50 0.50 0.50 0.50 0.25 
6. 0.50 1.67 0.50 0.50 0.50 0.50 0.25 
7. 0.50 1.92 0.50 0.50 0.50 0.50 0.25 
8. 0.58 2.17 0.50 0.58 0.58 0.50 0.25 
9. 0.67 2.50 0.58 0.58 0.67 0.58 0.25 
10. 0.75 2.75 0.67 0.67 0.75 0.67 0.25 
11. 0.83 3.00 0.67 0.75 0.75 0.67 0.33 
12. 0.92 3.00 0.67 0.83 0.83 0.75 0.33 
13. 1.00 3.00 0.67 0.92 0.83 0.83 0.33 
14. 1.08 3.00 0.67 1.00 0.92 0.92 0.42 
15. 1.17 3.00 0.67 1.00 1.00 1.00 0.42 
16. 1.25 3.00 0.75 1.00 1.00 1.00 0.50 
17. 1.33 3.00 0.75 1.08 1.00 1.00 0.50 
18. 1.33 3.00 0.75 1.08 1.08 1.08 0.58 
19. 1.42 3.00 0.83 1.17 1.08 1.08 0.58 
20. 1.50 3.00 0.83 1.17 1.17 1.17 0.67 
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Figure 9.15. Energy Loss of USBR Type VI Impact Basin versus Hydraulic Jump  

For erosion reduction and better basin operation, use the alternative end sill and 45o wingwall 
design as shown in Figure 9.13.  The sill should be set as low as possible to prevent 
degradation downstream.  For best performance, the downstream channel should be at the 
same elevation as the top of the sill.  A slot should be placed in the end sill to provide for 
drainage during periods of low flow.  Although the basin is depressed, the slot allows water to 
drain into the surrounding soil. 

For protection against undermining, a cutoff wall should be added at the end of the basin. Its 
depth will depend on the type of soil present.  Riprap should be placed downstream of the basin 
for a length of at least four conduit widths.  For riprap size recommendations see Chapter 10. 

The Los Angeles experiments simulated discharges up to 11.3 m3/s (400 ft3/s) and entrance 
velocities as high as 15.2 m/s (50 ft/s).  Therefore, use of the basin is limited to installations 
within these parameters.  Velocities up to 15.2 m/s (50 ft/s) can be used without subjecting the 
structure to damage from cavitation forces.  Some structures already constructed have 
exceeded these thresholds suggesting there may be some design flexibility.  For larger 
installations where discharge is separable, two or more structures may be placed side by side.  
The USBR Type VI is not recommended where debris or ice buildup may cause substantial 
clogging. 
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The recommended design procedure for the USBR Type VI impact basin is as follows: 

Step 1. Determine the maximum discharge, Q, and velocity, Vo and check against design 
limits.  Compute the flow area at the end of the approach pipe, A.  Compute 
equivalent depth, ye = (A/2)1/2. 

Step 2. Compute the Froude number, Fr, and the energy at the end of the pipe, Ho. 

Step 3. Determine Ho/WB from Figure 9.14.  Calculate the required width of basin, WB.  

 WB = Ho / (Ho/ WB)  

Step 4. Obtain the remaining dimensions of the USBR Type VI impact basin from Table 
9.2 using WB obtained from step 3. 

Step 5. Determine exit velocity, VB = V2, by trial and error using an energy balance 
between the culvert exit and the basin exit.  Determine if this velocity is acceptable 
and whether or not riprap protection is needed downstream (see Chapter 10.) 

HB = Q/(WBVB) + VB
2/(2g) = Ho(1– HL/Ho) 

This equation is a cubic equation yielding 3 solutions, two positive and one 
negative.  The negative solution is discarded.  The two positive roots yield a 
subcritical and supercritical solution.  Where low or no tailwater exists, the 
supercritical solution is taken.  Where sufficient tailwater exists, the subcritical 
solution is taken. 

Design Example: USBR Type VI Impact Basin (SI) 
Determine the USBR Type VI impact basin dimensions for use at the outlet of a concrete pipe.  
Compare the design with a dissipator at the end of a rectangular concrete channel.  Given:  

 D = 1.219 m (pipe diameter and rectangular channel width) 
 So = 0.15 m/m 
 Q = 8.5 m3/s (pipe) 
 Q = 10.6 m3/s (channel) 
 n = 0.015 
 Vo = 12.192 m/s 
 yo = 0.701 m (for both pipe and channel) 

Solution 
First design dissipator for the pipe conduit. 

Step 1. Determine the maximum discharge, Q, and velocity, Vo.  Compute the flow area at 
the end of the approach pipe, A.  Compute equivalent depth, ye = (A/2)1/2. 

 Since Q is less than 11.3 m3/s and Vo less than 15.2 m/s, the dissipator can be 
tried at this site. 

 A = Q/Vo = 8.5/12.192 = 0.697 m2 

 ye = (A/2)1/2 = (0.697/2)1/2 = 0.590 m 

Step 2. Compute the Froude number, Fr, and the energy at the end of the pipe, Ho.  

 Fr = Vo /(gye)1/2 = 12.192/ [9.81(0.590)]1/2 = 5.07 
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 Ho = ye + Vo
2 /(2g) = 0.590 + (12.192)2 /19.62 = 8.166 m 

Step 3. Determine Ho/ WB from Figure 9.14.  Calculate the required width of basin, WB.  

 WB = Ho / (Ho/ WB) = 8.166 /1.68 = 4.86 m 

Step 4. Obtain the remaining dimensions of the USBR Type VI impact basin from Table 
9.2 using WB = 5.0 m obtained from step 3.  (The basin width is taken to the 
nearest 0.5 m.)  Results are summarized in the following table. 

Step 5. Determine exit velocity, VB = V2, by trial and error using an energy balance 
between the culvert exit and the basin exit.   Determine if this velocity is 
acceptable and whether or not riprap protection is needed downstream (see 
Chapter 10.) 

HB = Q/(WBVB) + VB
2/(2g) = Ho(1– HL/Ho) 

HB = 8.5/(5.0VB) + VB
2/19.62 = 8.166(1 -0.67) 

HB = 1.7/VB + VB
2/19.62 = 2.695 

No tailwater exists so the supercritical solution is chosen.  By trial and error, VB = 
6.9 m/s, therefore velocity has been reduced from 12.2 m/s to 6.9 m/s. 

Compare the design for the circular pipe with a second USBR Type VI impact basin at the 
end of a long rectangular concrete channel.  The computations and comparison with the 
pipe are tabulated below.  WB = 5.5 m for this case. 

Approach Channel 
Circular   

Pipe 
Rectangular 

Channel 
Depth of flow yo (m) 0.701 0.701 
Area of flow, A (m2) 0.697 0.855 
Velocity, Vo (m/s) 12.192 12.419 
Equivalent depth, ye (m) 0.590 0.701 
Velocity Head, Vo

2/(2g) (m) 7.576 7.861 
Ho = ye + Vo

2/2g (m) 8.166 8.562 
Fr = Vo/(gye)0.5 5.07 4.74 
Ho/ WB from Figure 9.14 1.68 1.55 
Width of basin, WB (m) 5.0 5.5 
HL/Ho from Figure 9.15 67% 65% 

 

Design Example: USBR Type VI Impact Basin (CU) 
Determine the USBR Type VI impact basin dimensions for use at the outlet of a concrete pipe.  
Compare the design with a dissipator at the end of a rectangular concrete channel.  Given: 

 D = 4 ft (pipe diameter and rectangular channel width) 
 So = 0.15 ft/ft 
 Q = 300 ft3/s (pipe) 
 Q = 375 ft3/s (channel) 
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 n = 0.015 
 Vo = 40 ft/s 
 yo = 2.3 ft (for both pipe and channel) 

Solution 
First design dissipator for the pipe conduit. 

Step 1. Determine the maximum discharge, Q, and velocity, Vo.  Compute the flow area at 
the end of the approach pipe, A.  Compute equivalent depth, ye = (A/2)1/2. 

 Since Q is less than 400 ft3/s and Vo less than 50 ft/s, the dissipator can be tried at 
this site. 

 A = Q/Vo = 300/40 = 7.5 ft2 

 ye = (A/2)1/2 = (7.5/2)1/2 = 1.94 ft 

Step 2. Compute the Froude number, Fr, and the energy at the end of the pipe, Ho.  

 Fr = Vo / (gye)1/2 = 40/ [32.2(1.94)]1/2 = 5.06 

 Ho = ye + Vo
2 /(2g) = 1.94 + (40)2 /64.4 = 26.8 ft 

Step 3. Determine Ho/ WB from Figure 9.14.  Calculate the required width of basin, WB.  

 WB = Ho / (Ho/ WB) = 26.8 /1.68 = 16 ft 

Step 4. Obtain the remaining dimensions of the USBR Type VI impact basin from Table 
9.2 using WB = 16 ft obtained from step 3.  (The basin width is taken to the nearest 
1 ft.)  Results are summarized in the following table. 

Step 5. Determine exit velocity, VB = V2, by trial and error using an energy balance 
between the culvert exit and the basin exit.   Determine if this velocity is 
acceptable and whether or not riprap protection is needed downstream (see 
Chapter 10.) 

HB = Q/(WBVB) + VB
2/(2g) = Ho(1– HL/Ho) 

HB = 300/(16VB) + VB
2/64.4 = 26.8(1 -0.67) 

HB = 18.75/VB + VB
2/64.4 = 8.84 

No tailwater exists so the supercritical solution is chosen.  By trial and error, VB = 
22.7 ft/s, therefore velocity has been reduced from 40 ft/s to 22.7 ft/s. 

Compare the design for the circular pipe with a second USBR Type VI impact basin at the 
end of a long rectangular concrete channel.  The computations and comparison with the 
pipe are tabulated below.  WB = 18 ft for this case. 
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Approach Channel 
Circular 

Pipe 
Rectangular 

Channel 
Depth of flow yo (ft) 2.3 2.3 
Area of flow, A (ft2) 7.5 9.2 
Velocity, Vo (ft/s) 40 40.9 
Equivalent depth, ye (ft) 1.9 2.3 
Velocity Head, Vo

2/(2g) (ft) 24.9 26 
Ho = ye + Vo

2/2g (ft) 26.8 28.3 
Fr = Vo/(gye)0.5 5.06 4.75 
Ho/ WB from Figure 9.14 1.68 1.55 
Width of basin, WB (ft) 16 18 
HL/Ho from Figure 9.15 67% 65% 
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CHAPTER 10: RIPRAP BASINS AND APRONS 
Riprap is a material that has long been used to protect against the forces of water.  The material 
can be pit-run (as provided by the supplier) or specified (standard or special).  State DOTs have 
standard specifications for a number of classes (sizes or gradations) of riprap.  Suppliers 
maintain an inventory of frequently used classes.  Special gradations of riprap are produced on-
demand and are therefore more expensive than both pit-run and standard classes. 

This chapter includes discussion of both riprap aprons and riprap basin energy dissipators.  
Both can be used at the outlet of a culvert or chute (channel) by themselves or at the exit of a 
stilling basin or other energy dissipator to protect against erosion downstream.  Section 10.1 
provides a design procedure for the riprap basin energy dissipator that is based on armoring a 
pre-formed scour hole.  The riprap for this basin is a special gradation.  Section 10.2 includes 
discussion of riprap aprons that provide a flat armored surface as the only dissipator or as 
additional protection at the exit of other dissipators.  The riprap for these aprons is generally 
from State DOT standard classes.  Section 10.3 provides additional discussion of riprap 
placement downstream of energy dissipators. 

10.1 RIPRAP BASIN 
The design procedure for the riprap basin is based on research conducted at Colorado State 
University (Simons, et al., 1970; Stevens and Simons, 1971) that was sponsored by the 
Wyoming Highway Department.  The recommended riprap basin that is shown on Figure 10.1 
and Figure 10.2 has the following features:  

• The basin is pre-shaped and lined with riprap that is at least 2D50 thick.  

• The riprap floor is constructed at the approximate depth of scour, hs, that would occur in a 
thick pad of riprap. The hs/D50 of the material should be greater than 2. 

• The length of the energy dissipating pool, Ls, is 10hs, but no less than 3Wo; the length of the 
apron, LA, is 5hs, but no less than Wo.  The overall length of the basin (pool plus apron), LB, 
is 15hs, but no less than 4Wo.  

• A riprap cutoff wall or sloping apron can be constructed if downstream channel degradation 
is anticipated as shown in Figure 10.1.  

 

Figure 10.1. Profile of Riprap Basin  
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Figure 10.2. Half Plan of Riprap Basin  

10.1.1 Design Development 
Tests were conducted with pipes from 152 mm (6 in) to 914 mm (24 in) and 152 mm (6 in) high 
model box culverts from 305 mm (12 in) to 610 mm (24 in) in width.  Discharges ranged from 
0.003 to 2.8 m3/s (0.1 to 100 ft3/s).  Both angular and rounded rock with an average size, D50, 
ranging from 6 mm (1.4 in) to 177 mm (7 in) and gradation coefficients ranging from 1.05 to 2.66 
were tested.  Two pipe slopes were considered, 0 and 3.75%.  In all, 459 model basins were 
studied.  The following conclusions were drawn from an analysis of the experimental data and 
observed operating characteristics: 

• The scour hole depth, hs; length, Ls; and width, Ws, are related to the size of riprap, D50; 
discharge, Q; brink depth, yo; and tailwater depth, TW. 

• Rounded material performs approximately the same as angular rock.  

• For low tailwater (TW/yo < 0.75), the scour hole functions well as an energy dissipator if 
hs/D50 > 2. The flow at the culvert brink plunges into the hole, a jump forms and flow is 
generally well dispersed. 

• For high tailwater (TW/yo > 0.75), the high velocity core of water passes through the 
basin and diffuses downstream. As a result, the scour hole is shallower and longer.   

• The mound of material that forms downstream contributes to the dissipation of energy 
and reduces the size of the scour hole.  If the mound is removed, the scour hole 
enlarges somewhat. 

Plots were constructed of hs/ye versus Vo/ (gye)1/2 with D50/ye as the third variable.  Equivalent 
brink depth, ye, is defined to permit use of the same design relationships for rectangular and 
circular culverts.  For rectangular culverts, ye = yo (culvert brink depth).  For circular culverts, ye 
= (A/2)1/2, where A is the brink area.   

Anticipating that standard or modified end sections would not likely be used when a riprap basin 
is located at a culvert outlet, the data with these configurations were not used to develop the 
design relationships.  This assumption reduced the number of applicable runs to 346.   A total of 
128 runs had a D50/ye of less than 0.1.  These data did not exhibit relationships that appeared 
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useful for design and were eliminated.  An additional 69 runs where hs/D50<2 were also 
eliminated by the authors of this edition of HEC 14.  These runs were not considered reliable for 
design, especially those with hs = 0.  Therefore, the final design development used 149 runs 
from the study.  Of these, 106 were for pipe culverts and 43 were for box culverts.  Based on 
these data, two design relationships are presented here: an envelope design and a best fit 
design. 

To balance the need for avoiding an underdesigned basin against the costs of oversizing a 
basin, an envelope design relationship in the form of Equation 10.1 and Equation 10.2 was 
developed.  These equations provide a design envelope for the experimental data equivalent to 
the design figure (Figure XI-2) provided in the previous edition of HEC 14 (Corry, et al., 1983).  
Equations 10.1 and 10.2, however, improve the fit to the experimental data reducing the root-
mean-square (RMS) error from 1.24 to 0.83. 
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 (10.1) 

where, 
 hs = dissipator pool depth, m (ft) 
 ye = equivalent brink (outlet) depth, m (ft) 
 D50 = median rock size by weight, m (ft) 
 Co = tailwater parameter 
The tailwater parameter, Co, is defined as: 
  
 Co = 1.4    TW/ye < 0.75 
 Co = 4.0(TW/ye) -1.6   0.75 < TW/ye < 1.0 (10.2) 
 Co = 2.4    1.0 < TW/ye  
 
A best fit design relationship that minimizes the RMS error when applied to the experimental 
data was also developed.  Equation 10.1 still applies, but the description of the tailwater 
parameter, Co, is defined in Equation 10.3.  The best fit relationship for Equations 10.1 and 10.3 
exhibits a RMS error on the experimental data of 0.56. 

  
 Co = 2.0    TW/ye < 0.75 
 Co = 4.0(TW/ye) -1.0   0.75 < TW/ye < 1.0 (10.3) 
 Co = 3.0    1.0 < TW/ye  
 
Use of the envelope design relationship (Equations 10.1 and 10.2) is recommended when the 
consequences of failure at or near the design flow are severe.  Use of the best fit design 
relationship (Equations 10.1 and 10.3) is recommended when basin failure may easily be 
addressed as part of routine maintenance.  Intermediate risk levels can be adopted by the use 
of intermediate values of Co. 

10.1.2 Basin Length 
Frequency tables for both box culvert data and pipe culvert data of relative length of scour hole 
(Ls/hs < 6, 6 < Ls/h s< 7, 7 < Ls/hs <8 . . . 25 < Ls/hs < 30), with relative tailwater depth TW/ye in 
increments of 0.03 m (0.1 ft) as a third variable, were constructed using data from 346 
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experimental runs.  For box culvert runs Ls/hs was less than 10 for 78% of the data and Ls/hs 
was less than 15 for 98% of the data.  For pipe culverts, Ls/hs was less than 10 for 91% of the 
data and, Ls/hs was less than 15 for all data.  A 3:1 flare angle is recommended for the basins 
walls. This angle will provide a sufficiently wide energy dissipating pool for good basin 
operation. 

10.1.3 High Tailwater 
Tailwater influenced formation of the scour hole and performance of the dissipator.  For tailwater 
depths less than 0.75 times the brink depth, scour hole dimensions were unaffected by 
tailwater.  Above this the scour hole became longer and narrower.  The tailwater parameter 
defined in Equations 10.2 and 10.3 captures this observation.  In addition, under high tailwater 
conditions, it is appropriate to estimate the attenuation of the flow velocity downstream of the 
culvert outlet using Figure 10.3.  This attenuation can be used to determine the extent of riprap 
protection required.  HEC 11 (Brown and Clyde, 1989) or the method provided in Section 10.3 
can be used for sizing riprap. 

 

Figure 10.3. Distribution of Centerline Velocity for Flow from Submerged Outlets  

10.1.4 Riprap Details 
Based on experience with conventional riprap design, the recommended thickness of riprap for 
the floor and sides of the basin is 2D50 or 1.50Dmax, where Dmax is the maximum size of rock in 
the riprap mixture.  Thickening of the riprap layer to 3D50 or 2Dmax on the foreslope of the 
roadway culvert outlet is warranted because of the severity of attack in the area and the 
necessity for preventing undermining and consequent collapse of the culvert.  Figure 10.1 
illustrates these riprap details. The mixture of stone used for riprap and need for a filter should 
meet the specifications described in HEC 11 (Brown and Clyde, 1989). 
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10.1.5 Design Procedure 
The design procedure for a riprap basin is as follows: 

Step 1. Compute the culvert outlet velocity, Vo, and depth, yo.   

 For subcritical flow (culvert on mild or horizontal slope), use Figure 3.3 or Figure 
3.4 to obtain yo/D, then obtain Vo by dividing Q by the wetted area associated with 
yo.  D is the height of a box culvert or diameter of a circular culvert. 

 For supercritical flow (culvert on a steep slope), Vo will be the normal velocity 
obtained by using the Manning’s Equation for appropriate slope, section, and 
discharge. 

 Compute the Froude number, Fr, for brink conditions using brink depth for box 
culverts (ye=yo) and equivalent depth (ye = (A/2)1/2) for non-rectangular sections. 

Step 2. Select D50 appropriate for locally available riprap.  Determine Co from Equation 
10.2 or 10.3 and obtain hs/ye from Equation 10.1.  Check to see that hs/D50 ≥ 2 and 
D50/ye ≥ 0.1.  If hs/D50 or D50/ye is out of this range, try a different riprap size.  
(Basins sized where hs/D50 is greater than, but close to, 2 are often the most 
economical choice.) 

Step 3. Determine the length of the dissipation pool (scour hole), Ls, total basin length, LB, 
and basin width at the basin exit, WB, as shown in Figures 10.1 and 10.2.  The 
walls and apron of the basin should be warped (or transitioned) so that the cross 
section of the basin at the exit conforms to the cross section of the natural 
channel.  Abrupt transition of surfaces should be avoided to minimize separation 
zones and resultant eddies. 

Step 4. Determine the basin exit depth, yB = yc, and exit velocity, VB = Vc and compare with 
the allowable exit velocity, Vallow.  The allowable exit velocity may be taken as the 
estimated normal velocity in the tailwater channel or a velocity specified based on 
stability criteria, whichever is larger.  Critical depth at the basin exit may be 
determined iteratively using Equation 7.14: 

 Q2/g = (Ac)3/Tc = [yc(WB + zyc)]3/ (WB + 2zyc) by trial and success to determine yB. 

 Vc = Q/Ac  

 z = basin side slope, z:1 (H:V) 

If Vc ≤ Vallow, the basin dimensions developed in step 3 are acceptable.  However, it 
may be possible to reduce the size of the dissipator pool and/or the apron with a 
larger riprap size.  It may also be possible to maintain the dissipator pool, but 
reduce the flare on the apron to reduce the exit width to better fit the downstream 
channel.  Steps 2 through 4 are repeated to evaluate alternative dissipator 
designs. 

Step 5. Assess need for additional riprap downstream of the dissipator exit.  If            
TW/yo ≤ 0.75, no additional riprap is needed.  With high tailwater (TW/yo ≥ 0.75), 
estimate centerline velocity at a series of downstream cross sections using Figure 
10.3 to determine the size and extent of additional protection.  The riprap design 
details should be in accordance with specifications in HEC 11 (Brown and Clyde, 
1989) or similar highway department specifications.  



10-6 
 

 
 

Two design examples are provided.  The first features a box culvert on a steep slope while the 
second shows a pipe culvert on a mild slope. 

Design Example: Riprap Basin (Culvert on a Steep Slope) (SI) 
Determine riprap basin dimensions using the envelope design (Equations 10.1 and 10.2) for a 
2440 mm by 1830 mm reinforced concrete box (RCB) culvert that is in inlet control with 
supercritical flow in the culvert.  Allowable exit velocity from the riprap basin, Vallow, is 2.1 m/s.  
Riprap is available with a D50 of 0.50, 0.55, and 0.75 m.  Consider two tailwater conditions: 1) 
TW = 0.85 m and 2) TW = 1.28 m.  Given: 

 Q = 22.7 m3/s 
 yo = 1.22 m (normal flow depth) = brink depth 

Solution 
Step 1. Compute the culvert outlet velocity, Vo, depth, yo, and Froude number for brink 

conditions.  For supercritical flow (culvert on a steep slope), Vo will be Vn  

 yo = ye = 1.22 m 

 Vo = Q/A = 22.7/ [1.22 (2.44)] = 7.63 m/s 

 Fr = Vo / (9.81ye)1/2 = 7.63/ [9.81(1.22)]1/2 = 2.21 

Step 2. Select a trial D50 and obtain hs/ye from Equation 10.1.  Check to see that hs/D50 ≥ 2 
and D50/ye ≥ 0.1. 

 Try D50 = 0.55 m; D50/ye = 0.55/1.22 = 0.45 (≥ 0.1 OK) 

 Two tailwater elevations are given; use the lowest to determine the basin size that 
will serve the tailwater range, that is, TW = 0.85 m. 

 TW/ye = 0.85/1.22 = 0.7, which is less than 0.75.  Therefore, from Equation 10.2, 
Co = 1.4 

 From Equation 10.1,  
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 hS = (hS /ye)ye = 1.55 (1.22) = 1.89 m 

 hS/D50 = 1.89/0.55 = 3.4 and hS/D50 ≥ 2 is satisfied 

Step 3. Size the basin as shown in Figures 10.1 and 10.2. 

 LS = 10hS = 10(1.89) = 18.9 m  

 LS min = 3Wo = 3(2.44) = 7.3 m, use LS = 18.9 m 

 LB = 15hS = 15(1.89) = 28.4 m  

 LB min = 4Wo = 4(2.44) = 9.8 m, use LB = 28.4 m 

 WB = Wo + 2(LB/3) = 2.44 + 2(28.4/3) = 21.4 m 

Step 4. Determine the basin exit depth, yB = yc, and exit velocity, VB = Vc.  

 Q2/g = (Ac)3/Tc = [yc(WB + zyc)]3/ (WB + 2zyc) 
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 22.72/9.81 = 52.5 = [yc(21.4 + 2yc)]3/ (21.4 + 4yc) 

 By trial and success, yc = 0.48 m, Tc = 23.3 m, Ac = 10.7 m2 

 VB = Vc = Q/Ac = 22.7/10.7 = 2.1 m/s (acceptable) 

The initial trial of riprap (D50 = 0.55 m) results in a 28.4 m basin that satisfies all 
design requirements.  Try the next larger riprap size to test if a smaller basin is 
feasible by repeating steps 2 through 4. 

Step 2 (2nd iteration). Select riprap size and compute basin depth. 

 Try D50 = 0.75 m; D50/ye = 0.75/1.22 = 0.61 (≥ 0.1 OK) 

 From Equation 10.1,  
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 hS = (hS /ye)ye = 1.09 (1.22) = 1.34 m 

 hS/D50 = 1.34/0.75 = 1.8 and hS/D50 ≥ 2 is not satisfied.  Although not available, try 
a riprap size that will yield hS/D50 close to, but greater than, 2.  (A basin sized for 
smaller riprap may be lined with larger riprap.)  Repeat step 2. 

Step 2 (3rd iteration). Select riprap size and compute basin depth. 

 Try D50 = 0.71 m; D50/ye = 0.71/1.22 = 0.58 (≥ 0.1 OK) 

 From Equation 10.1,  

 ( ) ( ) 16.14.121.258.086.0C
gy
V

y
D86.0

y
h 55.0

o
e

o

55.0

e

50

e

s =−=−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

−

 

 hS = (hS /ye)ye = 1.16 (1.22) = 1.42 m 

 hS/D50 = 1.42/0.71 = 2.0 and hS/D50 ≥ 2 is satisfied. 

Step 3 (3rd iteration). Size the basin as shown in Figures 10.1 and 10.2. 

 LS = 10hS = 10(1.42) = 14.2 m  

 LS min = 3Wo = 3(2.44) = 7.3 m, use LS = 14.2 m 

 LB = 15hS = 15(1.42) = 21.3 m  

 LB min = 4Wo = 4(2.44) = 9.8 m, use LB = 21.3 m 

 WB = Wo + 2(LB/3) = 2.44 + 2(21.3/3) = 16.6 m 

 However, since the trial D50 is not available, the next larger riprap size (D50 = 0.75 
m) would be used to line a basin with the given dimensions. 

Step 4 (3rd iteration). Determine the basin exit depth, yB = yc, and exit velocity, VB = Vc.  

 Q2/g = (Ac)3/Tc = [yc(WB + zyc)]3/ (WB + 2zyc) 

 22.72/9.81 = 52.5 = [yc(16.6 + 2yc)]3/ (16.6 + 4yc) 

 By trial and success, yc = 0.56 m, Tc = 18.8 m, Ac = 9.9 m2 
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 VB = Vc = Q/Ac = 22.7/9.9 = 2.3 m/s (greater than 2.1 m/s; not acceptable).  If the 
apron were extended (with a continued flare) such that the total basin length was 
28.4 m, the velocity would be reduced to the allowable level. 

Two feasible options have been identified.  First, a 1.89 m deep, 18.9 m long pool, 
with a 9.5 m apron using D50 = 0.55 m.  Second, a 1.42 m deep, 14.2 m long pool, 
with a 14.2 m apron using D50 = 0.75 m.  Because the overall length is the same, 
the first option is likely to be more economical. 

Step 5. For the design discharge, determine if TW/yo ≤ 0.75. 

 For the first tailwater condition, TW/yo = 0.85/1.22 = 0.70, which satisfies TW/yo ≤ 
0.75.  No additional riprap needed downstream. 

 For the second tailwater condition, TW/yo = 1.28/1.22 = 1.05, which does not 
satisfy TW/yo ≤ 0.75.  To determine required riprap, estimate centerline velocity at 
a series of downstream cross sections using Figure 10.3.  

 Compute equivalent circular diameter, De, for brink area:  

 A = π De
2 /4 = (yo)(Wo) = (1.22)(2.44) = 3.00 m2  

 De = [3.00(4)/ π ]1/2 = 1.95 m 

 Rock size can be determined using the procedures in Section 10.3 (Equation 10.6) 
or other suitable method.  The computations are summarized below. 

 

L/De L (m) 
VL/Vo  

(Figure 10.3) VL (m/s) 
Rock size, 

D50 (m) 
10 19.5 0.59 4.50 0.43 
15 29.3 0.42 3.20 0.22 
20 39.0 0.30 2.29 0.11 
21 41.0 0.28 2.13 0.10 

 

The calculations above continue until VL ≤ Vallow.  Riprap should be at least the size 
shown.  As a practical consideration, the channel can be lined with the same size 
rock used for the basin.  Protection must extend at least 41.0 m downstream from 
the culvert brink, which is 12.6 m beyond the basin exit.  Riprap should be installed 
in accordance with details shown in HEC 11. 

Design Example: Riprap Basin (Culvert on a Steep Slope) (CU) 
Determine riprap basin dimensions using the envelope design (Equations 10.1 and10.2) for an 8 
ft by 6 ft reinforced concrete box (RCB) culvert that is in inlet control with supercritical flow in the 
culvert.  Allowable exit velocity from the riprap basin, Vallow, is 7 ft/s.  Riprap is available with a 
D50 of 1.67, 1.83, and 2.5 ft.  Consider two tailwater conditions: 1) TW = 2.8 ft and 2) TW = 4.2 
ft.  Given: 

 Q = 800 ft3/s 
 yo = 4 ft (normal flow depth) = brink depth 
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Solution 
Step 1. Compute the culvert outlet velocity, Vo, depth, yo, and Froude number for brink 

conditions.  For supercritical flow (culvert on a steep slope), Vo will be Vn.  

 yo = ye = 4 ft 

 Vo = Q/A = 800/ [4 (8)] = 25 ft/s 

 Fr = Vo / (32.2ye)1/2 = 25/ [32.2(4)]1/2 = 2.2 

Step 2. Select a trial D50 and obtain hs/ye from Equation 10.1.  Check to see that hs/D50 ≥ 2 
and D50/ye ≥ 0.1. 

 Try D50 = 1.83 ft; D50/ye = 1.83/4 = 0.46 (≥ 0.1 OK) 

 Two tailwater elevations are given; use the lowest to determine the basin size that 
will serve the tailwater range, that is, TW = 2.8 ft. 

 TW/ye = 2.8/4 = 0.7, which is less than 0.75.  From Equation 10.2, Co = 1.4 

 From Equation 10.1,  
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 hS = (hS /ye)ye = 1.50 (4) = 6.0 ft 

 hS/D50 = 6.0/1.83 = 3.3 and hS/D50 ≥ 2 is satisfied 

Step 3. Size the basin as shown in Figures 10.1 and 10.2. 

 LS = 10hS = 10(6.0) = 60 ft  

 LS min = 3Wo = 3(8) = 24 ft, use LS = 60 ft 

 LB = 15hS = 15(6.0) = 90 ft  

 LB min = 4Wo = 4(8) = 32 ft, use LB = 90 ft 

 WB = Wo + 2(LB/3) = 8 + 2(90/3) = 68 ft 

Step 4. Determine the basin exit depth, yB = yc, and exit velocity, VB = Vc.  

 Q2/g = (Ac)3/Tc = [yc(WB + zyc)]3/ (WB + 2zyc) 

 8002/32.2 = 19,876 = [yc(68 + 2yc)]3/ (68 + 4yc) 

 By trial and success, yc = 1.60 ft, Tc = 74.4 ft, Ac = 113.9 ft2 

 VB = Vc = Q/Ac = 800/113.9 = 7.0 ft/s (acceptable) 

The initial trial of riprap (D50 = 1.83 ft) results in a 90 ft basin that satisfies all 
design requirements.  Try the next larger riprap size to test if a smaller basin is 
feasible by repeating steps 2 through 4. 

Step 2 (2nd iteration). Select riprap size and compute basin depth. 

 Try D50 = 2.5 ft; D50/ye = 2.5/4 = 0.63 (≥ 0.1 OK) 
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 From Equation 10.1,  
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 hS = (hS /ye)ye = 1.04 (4) = 4.2 ft 

 hS/D50 = 4.2/2.5 = 1.7 and hS/D50 ≥ 2 is not satisfied.  Although not available, try a 
riprap size that will yield hS/D50 close to, but greater than, 2.  (A basin sized for 
smaller riprap may be lined with larger riprap.)  Repeat step 2. 

Step 2 (3rd iteration). Select riprap size and compute basin depth. 

 Try D50 = 2.3 ft; D50/ye = 2.3/4 = 0.58 (≥ 0.1 OK) 

 From Equation 10.1,  
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 hS = (hS /ye)ye = 1.15 (4) = 4.6 ft 

 hS/D50 = 4.6/2.3 = 2.0 and hS/D50 ≥ 2 is satisfied. 

Step 3 (3rd iteration). Size the basin as shown in Figures 10.1 and 10.2. 

 LS = 10hS = 10(4.6) = 46 ft  

 LS min = 3Wo = 3(8) = 24 ft, use LS = 46 ft 

 LB = 15hS = 15(4.6) = 69 ft  

 LB min = 4Wo = 4(8) = 32 ft, use LB = 69 ft 

 WB = Wo + 2(LB/3) = 8 + 2(69/3) = 54 ft 

 However, since the trial D50 is not available, the next larger riprap size (D50 = 2.5 ft) 
would be used to line a basin with the given dimensions. 

Step 4 (3rd iteration). Determine the basin exit depth, yB = yc, and exit velocity, VB = Vc.  

 Q2/g = (Ac)3/Tc = [yc(WB + zyc)]3/ (WB + 2zyc) 

 8002/32.2 = 19,876 = [yc(54 + 2yc)]3/ (54 + 4yc) 

 By trial and success, yc = 1.85 ft, Tc = 61.4 ft, Ac = 106.9 ft2 

 VB = Vc = Q/Ac = 800/106.9 = 7.5 ft/s (not acceptable).  If the apron were extended 
(with a continued flare) such that the total basin length was 90 ft, the velocity 
would be reduced to the allowable level. 

Two feasible options have been identified.  First, a 6-ft-deep, 60-ft-long pool, with a 
30-ft-apron using D50 = 1.83 ft.  Second, a 4.6-ft-deep, 46-ft-long pool, with a 44-ft-
apron using D50 = 2.5 ft.  Because the overall length is the same, the first option is 
likely to be more economical. 

Step 5. For the design discharge, determine if TW/yo ≤ 0.75. 

 For the first tailwater condition, TW/yo = 2.8/4.0 = 0.70, which satisfies             
TW/yo ≤ 0.75.  No additional riprap needed downstream. 
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 For the second tailwater condition, TW/yo = 4.2/4.0 = 1.05, which does not satisfy 
TW/yo ≤ 0.75.  To determine required riprap, estimate centerline velocity at a series 
of downstream cross sections using Figure 10.3.  

 Compute equivalent circular diameter, De, for brink area:  

 A = π De
2 /4 = (yo)(Wo) = (4)(8) = 32 ft2  

 De = [32(4)/ π ]1/2 = 6.4 ft 

 Rock size can be determined using the procedures in Section 10.3 (Equation 10.6) 
or other suitable method.  The computations are summarized below. 

 

L/De L (ft) 
VL/Vo  

(Figure 10.3) VL (ft/s) 
Rock size, 

D50 (ft) 
10 64 0.59 14.7 1.42 
15 96 0.42 10.5 0.72 
20 128 0.30 7.5 0.37 
21 135 0.28 7.0 0.32 

 

The calculations above continue until VL ≤ Vallow.  Riprap should be at least the size 
shown.  As a practical consideration, the channel can be lined with the same size 
rock used for the basin.  Protection must extend at least 135 ft downstream from 
the culvert brink, which is 45 ft beyond the basin exit.  Riprap should be installed in 
accordance with details shown in HEC 11. 

Design Example: Riprap Basin (Culvert on a Mild Slope) (SI) 
Determine riprap basin dimensions using the envelope design (Equations 10.1 and 10.2) for a 
pipe culvert that is in outlet control with subcritical flow in the culvert.  Allowable exit velocity 
from the riprap basin, Vallow, is 2.1 m/s.  Riprap is available with a D50 of 0.125, 0.150, and 0.250 
m.  Given: 

 D = 1.83 m CMP with Manning's n = 0.024 
 So = 0.004 m/m 
 Q = 3.82 m3/s 
 yn = 1.37 m (normal flow depth in the pipe) 
 Vn = 1.80 m/s (normal velocity in the pipe) 
 TW = 0.61 m (tailwater depth) 

Solution 
Step 1. Compute the culvert outlet velocity, Vo, and depth, yo. 

 For subcritical flow (culvert on mild slope), use Figure 3.4 to obtain yo/D, then 
calculate Vo by dividing Q by the wetted area for yo. 

 Ku Q/D2.5 = 1.81 (3.82)/1.832.5 = 1.53 

 TW/D = 0.61/1.83 = 0.33 

 From Figure 3.4, yo/D = 0.45 
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 yo = (yo/D)D = 0.45(1.83) = 0.823 m (brink depth) 

 From Table B.2, for yo /D = 0.45, the brink area ratio A/D2 = 0.343 

 A = (A/D2)D2 = 0.343(1.83)2 = 1.15 m2  

 Vo = Q/A = 3.82/1.15 = 3.32 m/s 

ye = (A/2)1/2 = (1.15/2)1/2 = 0.76 m 

 Fr = Vo / [9.81(ye)]1/2 = 3.32/ [9.81(0.76)]1/2 = 1.22 

Step 2. Select a trial D50 and obtain hs/ye from Equation 10.1.  Check to see that hs/D50 ≥ 2 
and D50/ye ≥ 0.1. 

 Try D50 = 0.15 m; D50/ye = 0.15/0.76 = 0.20 (≥ 0.1 OK) 

 TW/ye = 0.61/0.76 = 0.80.  Therefore, from Equation 10.2, 

Co = 4.0(TW/ye) -1.6 = 4.0(0.80) –1.6 = 1.61 

 From Equation 10.1,  
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 hS = (hS /ye)ye = 0.933 (0.76) = 0.71 m 

 hS/D50 = 0.71/0.15 = 4.7 and hS/D50 ≥ 2 is satisfied 

Step 3. Size the basin as shown in Figures 10.1 and 10.2. 

 LS = 10hS = 10(0.71) = 7.1 m 

 LS min = 3Wo = 3(1.83) = 5.5 m, use LS = 7.1 m 

 LB = 15hS = 15(0.71) = 10.7 m   

 LB min = 4Wo = 4(1.83) = 7.3 m, use LB = 10.7 m 

 WB = Wo + 2(LB/3) = 1.83 + 2(10.7/3) = 9.0 m 

Step 4. Determine the basin exit depth, yB = yc and exit velocity, VB = Vc.  

 Q2/g = (Ac)3/Tc = [yc(WB + zyc)]3/ (WB + 2zyc) 

 3.822/9.81 = 1.49 = [yc(9.0 + 2yc)]3/ (9.0 + 4yc) 

 By trial and success, yc = 0.26 m, Tc =10.0 m, Ac = 2.48 m2 

 Vc = Q/Ac = 3.82/2.48 = 1.5 m/s (acceptable) 

The initial trial of riprap (D50 = 0.15 m) results in a 10.7 m basin that satisfies all 
design requirements.  Try the next larger riprap size to test if a smaller basin is 
feasible by repeating steps 2 through 4. 

Step 2 (2nd iteration). Select a trial D50 and obtain hs/ye from Equation 10.1. 

 Try D50 = 0.25 m; D50/ye = 0.25/0.76 = 0.33 (≥ 0.1 OK) 

 From Equation 10.1,  
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 hS = (hS /ye)ye = 0.320 (0.76) = 0.24 m 

 hS/D50 = 0.24/0.25 = 0.96 and hS/D50 ≥ 2 is not satisfied.  Although not available, try 
a riprap size that will yield hS/D50 close to, but greater than 2.  (A basin sized for 
smaller riprap may be lined with larger riprap.)  Repeat step 2. 

Step 2 (3rd iteration). Select a trial D50 and obtain hs/ye from Equation 10.1. 

 Try D50 = 0.205 m; D50/ye = 0.205/0.76 = 0.27 (≥ 0.1 OK) 

 From Equation 10.1,  
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 hS = (hS /ye)ye = 0.545 (0.76) = 0.41 m 

 hS/D50 = 0.41/0.205 = 2.0 and hS/D50 ≥ 2 is satisfied.  Continue to step 3. 

Step 3 (3rd iteration). Size the basin as shown in Figures 10.1 and 10.2. 

 LS = 10hS = 10(0.41) = 4.1 m 

 LS min = 3Wo = 3(1.83) = 5.5 m, use LS = 5.5 m 

 LB = 15hS = 15(0.41) = 6.2 m   

 LB min = 4Wo = 4(1.83) = 7.3 m, use LB = 7.3 m 

 WB = Wo + 2(LB/3) = 1.83 + 2(7.3/3) = 6.7 m 

 However, since the trial D50 is not available, the next larger riprap size               
(D50 = 0.25 m) would be used to line a basin with the given dimensions. 

Step 4 (3rd iteration). Determine the basin exit depth, yB = yc and exit velocity, VB = Vc.  

 Q2/g = (Ac)3/Tc = [yc(WB + zyc)]3/ (WB + 2zyc) 

 3.822/9.81 = 1.49 = [yc(6.7 + 2yc)]3/ (6.7 + 4yc) 

 By trial and success, yc = 0.31 m, Tc =7.94 m, Ac = 2.28 m2 

 Vc = Q/Ac = 3.82/2.28 = 1.7 m/s (acceptable) 

Two feasible options have been identified. First, a 0.71 m deep, 7.1 m long pool, 
with an 3.6 m apron using D50 = 0.15 m.  Second, a 0.41 m deep, 5.5 m long pool, 
with a 1.8 m apron using D50 = 0.25 m.  The choice between these two options will 
likely depend on the available space and the cost of riprap. 

Step 5. For the design discharge, determine if TW/yo ≤ 0.75 

 TW/yo = 0.61/0.823 = 0.74, which satisfies TW/yo ≤ 0.75.  No additional riprap 
needed. 
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Design Example: Riprap Basin (Culvert on a Mild Slope) (CU) 
Determine riprap basin dimensions using the envelope design (Equations 10.1 and 10.2) for a 
pipe culvert that is in outlet control with subcritical flow in the culvert.  Allowable exit velocity 
from the riprap basin, Vallow, is 7.0 ft/s.  Riprap is available with a D50 of 0.42, 0.50, and 0.83 ft.  
Given: 

 D = 6 ft CMP with Manning's n = 0.024 
 So = 0.004 ft/ft 
 Q = 135 ft3/s 
 yn = 4.5 ft (normal flow depth in the pipe) 
 Vn = 5.9 ft/s (normal velocity in the pipe) 
 TW = 2.0 ft (tailwater depth) 

Solution 
Step 1. Compute the culvert outlet velocity, Vo, depth, yo and Froude number. 

 For subcritical flow (culvert on mild slope), use Figure 3.4 to obtain yo/D, then 
calculate Vo by dividing Q by the wetted area for yo. 

 KuQ/D2.5 = 1.0(135)/62.5 = 1.53 

 TW/D = 2.0/6 = 0.33 

 From Figure 3.4, yo/D = 0.45 

 yo = (yo/D)D = 0.45(6) = 2.7 ft (brink depth) 

 From Table B.2 for yo/D = 0.45, the brink area ratio A/D2 = 0.343 

 A = (A/D2)D2 = 0.343(6)2 = 12.35 ft2  

 Vo = Q/A = 135/12.35 = 10.9 ft/s 

ye = (A/2)1/2 = (12.35/2)1/2 = 2.48 ft 

 Fr = Vo / [32.2(ye)]1/2 = 10.9/ [32.2(2.48)]1/2 = 1.22 

Step 2. Select a trial D50 and obtain hs/ye from Equation 10.1.  Check to see that hs/D50 ≥ 2 
and D50/ye ≥ 0.1. 

 Try D50 = 0.5 ft; D50/ye = 0.5/2.48 = 0.20 (≥ 0.1 OK) 

 TW/ye = 2.0/2.48 = 0.806.  Therefore, from Equation 10.2, 

Co = 4.0(TW/ye) -1.6 = 4.0(0.806) -1.6 = 1.62 

 From Equation 10.1,  
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 hS = (hS /ye)ye = 0.923 (2.48) = 2.3 ft 

 hS/D50 = 2.3/0.5 = 4.6 and hS/D50 ≥ 2 is satisfied 
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Step 3. Size the basin as shown in Figures 10.1 and 10.2. 

 LS = 10hS = 10(2.3) = 23 ft 

 LS min = 3Wo = 3(6) = 18 ft, use LS = 23 ft 

 LB = 15hS = 15(2.3) = 34.5 ft   

 LB min = 4Wo = 4(6) = 24 ft, use LB = 34.5 ft 

 WB = Wo + 2(LB/3) = 6 + 2(34.5/3) = 29 ft 

Step 4. Determine the basin exit depth, yB = yc and exit velocity, VB = Vc.  

 Q2/g = (Ac)3/Tc = [yc(WB + zyc)]3/ (WB + 2zyc) 

 1352/32.2 = 566 = [yc(29 + 2yc)]3/ (29 + 4yc) 

 By trial and success, yc = 0.86 ft, Tc =32.4 ft, Ac = 26.4 ft2 

 Vc = Q/Ac = 135/26.4 = 5.1 ft/s (acceptable) 

The initial trial of riprap (D50 = 0.5 ft) results in a 34.5 ft basin that satisfies all 
design requirements.  Try the next larger riprap size to test if a smaller basin is 
feasible by repeating steps 2 through 4. 

Step 2 (2nd iteration). Select a trial D50 and obtain hs/ye from Equation 10.1. 

 Try D50 = 0.83 ft; D50/ye = 0.83/2.48 = 0.33 (≥ 0.1 OK) 

 From Equation 10.1,  
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 hS = (hS /ye)ye = 0.311 (2.48) = 0.8 ft 

 hS/D50 = 0.8/0.83 = 0.96 and hS/D50 ≥ 2 is not satisfied.  Although not available, try 
a riprap size that will yield hS/D50 close to, but greater than 2.  (A basin sized for 
smaller riprap may be lined with larger riprap.)  Repeat step 2. 

Step 2 (3rd iteration). Select a trial D50 and obtain hs/ye from Equation 10.1. 

 Try D50 = 0.65 ft; D50/ye = 0.65/2.48 = 0.26 (≥ 0.1 OK) 

 From Equation 10.1,  
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 hS = (hS /ye)ye = 0.581 (2.48) = 1.4 ft 

 hS/D50 = 1.4/0.65 = 2.15 and hS/D50 ≥ 2 is satisfied.  Continue to step 3. 

Step 3 (3rd iteration). Size the basin as shown in Figures 10.1 and 10.2. 

 LS = 10hS = 10(1.4) = 14 ft 

 LS min = 3Wo = 3(6) = 18 ft, use LS = 18 ft 

 LB = 15hS = 15(1.4) = 21 ft   
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 LB min = 4Wo = 4(6) = 24 ft, use LB = 24 ft 

 WB = Wo + 2(LB/3) = 6 + 2(24/3) = 22 ft 

 However, since the trial D50 is not available, the next larger riprap size               
(D50 = 0.83 ft) would be used to line a basin with the given dimensions. 

Step 4 (3rd iteration). Determine the basin exit depth, yB = yc and exit velocity, VB = Vc.  

 Q2/g = (Ac)3/Tc = [yc(WB + zyc)]3/ (WB + 2zyc) 

 1352/32.2 = 566 = [yc(22 + 2yc)]3/ (22 + 4yc) 

 By trial and success, yc = 1.02 ft, Tc =26.1 ft, Ac = 24.5 ft2 

 Vc = Q/Ac = 135/24.5 = 5.5 ft/s (acceptable) 

Two feasible options have been identified. First, a 2.3-ft-deep, 23-ft-long pool, with 
an 11.5-ft-apron using D50 = 0.5 ft.  Second, a 1.4-ft-deep, 18-ft-long pool, with a 
6-ft-apron using D50 = 0.83 ft.  The choice between these two options will likely 
depend on the available space and the cost of riprap. 

Step 5. For the design discharge, determine if TW/yo ≤ 0.75 

 TW/yo = 2.0/2.7 = 0.74, which satisfies TW/yo ≤ 0.75.  No additional riprap needed. 

10.2 RIPRAP APRON 
The most commonly used device for outlet protection, primarily for culverts 1500 mm (60 in) or 
smaller, is a riprap apron.  An example schematic of an apron taken from the Federal Lands 
Division of the Federal Highway Administration is shown in Figure 10.4. 

 

Figure 10.4. Placed Riprap at Culverts (Central Federal Lands Highway Division)  

They are constructed of riprap or grouted riprap at a zero grade for a distance that is often 
related to the outlet pipe diameter. These aprons do not dissipate significant energy except 
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through increased roughness for a short distance.  However, they do serve to spread the flow 
helping to transition to the natural drainage way or to sheet flow where no natural drainage way 
exists.  However, if they are too short, or otherwise ineffective, they simply move the location of 
potential erosion downstream.  The key design elements of the riprap apron are the riprap size 
as well as the length, width, and depth of the apron.   

Several relationships have been proposed for riprap sizing for culvert aprons and several of 
these are discussed in greater detail in Appendix D.  The independent variables in these 
relationships include one or more of the following variables: outlet velocity, rock specific gravity, 
pipe dimension (e.g. diameter), outlet Froude number, and tailwater.  The following equation 
(Fletcher and Grace, 1972) is recommended for circular culverts: 
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where, 
 D50 = riprap size, m (ft) 
 Q = design discharge, m3/s (ft3/s) 
 D = culvert diameter (circular), m (ft) 
 TW = tailwater depth, m (ft) 
 g = acceleration due to gravity, 9.81 m/s2 (32.2 ft/s2) 
 
Tailwater depth for Equation 10.4 should be limited to between 0.4D and 1.0D.  If tailwater is 
unknown, use 0.4D. 

Whenever the flow is supercritical in the culvert, the culvert diameter is adjusted as follows: 

 
2

yD'D n+
=  (10.5) 

where, 
 D’ = adjusted culvert rise, m (ft) 
 yn = normal (supercritical) depth in the culvert, m (ft) 
 
Equation 10.4 assumes that the rock specific gravity is 2.65.  If the actual specific gravity differs 
significantly from this value, the D50 should be adjusted inversely to specific gravity. 

The designer should calculate D50 using Equation 10.4 and compare with available riprap 
classes.  A project or design standard can be developed such as the example from the Federal 
Highway Administration Federal Lands Highway Division (FHWA, 2003) shown in Table 10.1 
(first two columns).  The class of riprap to be specified is that which has a D50 greater than or 
equal to the required size.  For projects with several riprap aprons, it is often cost effective to 
use fewer riprap classes to simplify acquiring and installing the riprap at multiple locations.  In 
such a case, the designer must evaluate the tradeoffs between over sizing riprap at some 
locations in order to reduce the number of classes required on a project. 
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Table 10.1.  Example Riprap Classes and Apron Dimensions 

Class D50 (mm) D50 (in) 
Apron 

Length1 
Apron 
Depth 

1 125 5 4D 3.5D50 
2 150 6 4D 3.3D50 
3 250 10 5D 2.4D50 
4 350 14 6D 2.2D50 
5 500 20 7D 2.0D50 
6 550 22 8D 2.0D50 

1D is the culvert rise. 
 

The apron dimensions must also be specified.  Table 10.1 provides guidance on the apron 
length and depth.  Apron length is given as a function of the culvert rise and the riprap size.  
Apron depth ranges from 3.5D50 for the smallest riprap to a limit of 2.0D50 for the larger riprap 
sizes.  The final dimension, width, may be determined using the 1:3 flare shown in Figure 10.4 
and should conform to the dimensions of the downstream channel.  A filter blanket should also 
be provided as described in HEC 11 (Brown and Clyde, 1989). 

For tailwater conditions above the acceptable range for Equation 10.4 (TW > 1.0D), Figure 10.3 
should be used to determine the velocity downstream of the culvert.  The guidance in Section 
10.3 may be used for sizing the riprap.  The apron length is determined based on the allowable 
velocity and the location at which it occurs based on Figure 10.3. 

Over their service life, riprap aprons experience a wide variety of flow and tailwater conditions.  
In addition, the relations summarized in Table 10.1 do not fully account for the many variables in 
culvert design.  To ensure continued satisfactory operation, maintenance personnel should 
inspect them after major flood events.  If repeated severe damage occurs, the location may be a 
candidate for extending the apron or another type of energy dissipator. 

Design Example: Riprap Apron (SI) 
Design a riprap apron for the following CMP installation.  Available riprap classes are provided 
in Table 10.1.  Given: 

 Q = 2.33 m3/s 
 D = 1.5 m 
 TW = 0.5 m 

Solution 
Step 1. Calculate D50 from Equation 10.4.  First verify that tailwater is within range. 

 TW/D = 0.5/1.5 = 0.33.   This is less than 0.4D, therefore, 

use TW = 0.4D = 0.4(1.5) = 0.6 m 
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Step 2. Determine riprap class.  From Table 10.1, riprap class 2 (D50 = 0.15 m) is required. 
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Step 3. Estimate apron dimensions. 

 From Table 10.1 for riprap class 2, 

 Length, L = 4D = 4(1.5) = 6 m 

 Depth = 3.3D50 = 3.3 (0.15) = 0.50 m 

 Width (at apron end) = 3D + (2/3)L = 3(1.5) + (2/3)(6) = 8.5 m  

Design Example: Riprap Apron (CU) 
Design a riprap apron for the following CMP installation.  Available riprap classes are provided 
in Table 10.1.  Given: 

 Q = 85 ft3/s 
 D = 5.0 ft 
 TW = 1.6 ft 

Solution 
Step 1. Calculate D50 from Equation 10.4.  First verify that tailwater is within range. 

 TW/D = 1.6/5.0 = 0.32.   This is less than 0.4D, therefore, 

use TW = 0.4D = 0.4(5) = 2.0 ft 
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Step 2. Determine riprap class.  From Table 10.1, riprap class 2 (D50 = 6 in) is required. 

Step 3. Estimate apron dimensions. 

 From Table 10.1 for riprap class 2, 

 Length, L = 4D = 4(5) = 20 ft 

 Depth = 3.3D50 = 3.3 (6) = 19.8 in = 1.65 ft 

 Width (at apron end) = 3D + (2/3)L = 3(5) + (2/3)(20) = 28.3 ft  

10.3 RIPRAP APRONS AFTER ENERGY DISSIPATORS 
Some energy dissipators provide exit conditions, velocity and depth, near critical.  This flow 
condition rapidly adjusts to the downstream or natural channel regime; however, critical velocity 
may be sufficient to cause erosion problems requiring protection adjacent to the energy 
dissipator.  Equation 10.6 provides the riprap size recommended for use downstream of energy 
dissipators.  This relationship is from Searcy (1967) and is the same equation used in HEC 11 
(Brown and Clyde, 1989) for riprap protection around bridge piers. 
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where, 
 D50 = median rock size, m (ft) 
 V = velocity at the exit of the dissipator, m/s (ft/s) 
 S = riprap specific gravity 
 
The length of protection can be judged based on the magnitude of the exit velocity compared 
with the natural channel velocity.  The greater this difference, the longer will be the length 
required for the exit flow to adjust to the natural channel condition.  A filter blanket should also 
be provided as described in HEC 11 (Brown and Clyde, 1989). 
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CHAPTER 11: DROP STRUCTURES 
Drop structures are commonly used for flow control and energy dissipation.  Changing the 
channel slope from steep to mild, by placing drop structures at intervals along the channel 
reach, changes a continuous steep slope into a series of gentle slopes and vertical drops.  
Instead of slowing down and transferring high erosion producing velocities into low non-erosive 
velocities, drop structures control the slope of the channel in such a way that the high, erosive 
velocities never develop. The kinetic energy or velocity gained by the water as it drops over the 
crest of each structure is dissipated by a specially designed apron or stilling basin.  

The drop structures discussed here (see Figure 11.1) require an aerated nappe and are, in 
general, for subcritical flow in the upstream as well as downstream channel.  The effect of 
upstream supercritical flow on drop structure design is discussed in a later section.  The stilling 
basin protects the channel against erosion below the drop and dissipates energy.  This is 
accomplished through the impact of the falling water on the floor, redirection of the flow, and 
turbulence.  The stilling basin used to dissipate the excess energy can vary from a simple 
concrete apron to an apron with flow obstructions such as baffle blocks, sills, or abrupt rises.  
The length of the concrete apron required can be shortened by the addition of these 
appurtenances. 

 

Figure 11.1. Flow Geometry of a Straight Drop Spillway 

The drop number gives a quantitative measure for drop: 
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where, 
 Nd = drop number 
 q = unit discharge, m3/s/m (ft3/s/ft) 
 g = acceleration due to gravity, 9.81 m/s2 (32.2 ft/s2) 
 ho = drop height, m (ft) 
 
Another commonly used quantitative measure for drop is given by: 
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where, 
 Dr = relative drop 
 yc = critical depth at the drop, m (ft) 
 ho = drop height, m (ft) 
 
Drop structures may be categorized based on either Equations 11.1 or 11.2.  Drops for which Nd 
is greater than 1 or Drop is less than 1 are considered “low drop” structures.  Two dissipators 
are discussed in this chapter: the straight drop structure and the box inlet drop structure.  
Neither of these is considered low drop structures. 

11.1 STRAIGHT DROP STRUCTURE 
A straight drop structure is characterized by flow through a rectangular weir followed by a drop 
into a stilling basin.  The stilling basin may be a flat apron or an apron with various baffles and 
sills depending on the site conditions.  First a simple stilling basin is considered followed by 
discussion of other features available to modify the drop structure performance. 

11.1.1 Simple Straight Drop 
The basic flow geometry of a straight drop structure is shown in Figure 11.1.  The discharge 
passes through critical depth as it flows over the drop structure crest.  The free-falling nappe 
reverses its curvature and turns smoothly into supercritical flow on the apron at the distance L1 
from the drop wall.  The mean velocity at the distance L is parallel to the apron; the depth y2 is 
the smallest depth in the downstream channel, and the pressure is nearly hydrostatic. The 
depth of supercritical flow in the downstream direction increases due to channel resistance, and 
at some point will reach a depth sufficient for the formation of a hydraulic jump.  

For a given drop height, ho, and discharge, q, the sequent depth, y3, in the downstream channel 
and the drop length, L1, may be computed.  The length of jump Lj, is discussed in Chapter 6.  
The drop number can be used to estimate the dimensions of a simple straight drop structure. 

 27.0
do1 Nh30.4L =  (11.3a) 

 22.0
do1 Nh0.1y =  (11.3b) 

 425.0
do2 Nh54.0y =  (11.3c) 

 27.0
do3 Nh66.1y =  (11.3d) 

where, 
 L1 = drop length (the distance from the drop wall to the position of the depth y2), m (ft) 
 y1  = pool depth under the nappe, m (ft) 
 y2  = depth of flow at the toe of the nappe or the beginning of the hydraulic jump, m (ft) 
 y3  = tailwater depth sequent to y2, m (ft) 
 

By comparing the channel tailwater depth, TW, with the computed, y3, one of the following 
cases will occur.  The case will determine design modifications necessary to the structure. 

1. TW > y3.  The hydraulic jump will be submerged and the basin length may 
need to be increased. 
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2. TW = y3.  The hydraulic jump begins at depth y2, no supercritical flow exists on 
the apron and the distance L1 is a minimum.  In this case, the basin will function 
without additional design modifications. 

3. TW < y3.  The hydraulic jump will recede downstream and the basin will not 
function. 

For case 3, when the tailwater depth is less than y3, it is necessary to modify the basin to force 
the hydraulic jump to stay in the basin.  Two alternatives to achieve this are to provide an apron:  

1. at the bed level with an end sill or baffles to trigger the jump in the basin, or  

2. depressed below the downstream bed level to effectively increase tailwater 
with an end sill.  

The choice of design type and the design dimensions will depend, for a given unit discharge, q, 
on the drop height, ho, and on the downstream depth, TW.  The apron may be designed to 
extend to the end of the hydraulic jump.  However, including an end sill allows the use of a 
shorter and more economical stilling basin.  

The geometry of the undisturbed flow should be taken into consideration in the design of a 
straight drop structure.  If the overfall crest length is less than the width of the approach 
channel, it is important that a transition be properly designed by shaping the approach channel 
to reduce the effect of end contractions.  Otherwise the contraction at the ends of the spillway 
notch may be so pronounced that the jet will land beyond the stilling basin and the concentration 
of high velocities at the center of the outlet may cause additional scour in the downstream 
channel (see Chapter 4). 

11.1.2 Grate Design 
A grate or series of rails forming a "grizzly" may be used in conjunction with drop structures as 
illustrated in Figure 11.2.  The incoming flow is divided into a number of jets as it passes 
through the grate. These fall almost vertically to the downstream channel resulting in good 
energy dissipator action.  This type of design is also utilized as a debris ejector where the debris 
rides over the grate and falls into a holding area for later removal and the water passes through 
the grate. 

The Bureau of Reclamation has published design recommendations for grates (USBR, 1987) for 
use where the incoming flow is subcritical.  The length of the grate is calculated from: 

 
( ) 2

1

o
G gy2CWN

QL =  (11.4) 

where, 
 C = experimental coefficient equal to 0.245 
 W = width of the slots, m (ft) 
 N = number of slots (spaces) between beams 
 yo = approach flow depth, m (ft) 
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Figure 11.2. Drop Structure with Grate  

The design process is iterative based on the number of slots and the slot width.  The USBR 
(1987) recommends the following guidelines: 

1. Select an initial slot width.  Provide a full slot width at each wall.  

2. Beam width should be approximately 1.5W 

3. Estimate the number of slots, N, for use in Equation 11.4 

4. Calculate the grate length using Equation 11.4.  Adjust the slot width until an 
acceptable beam length, LG, is obtained.  

5. Tilt the grate about 3° downstream to be self-cleaning. 

Examination of the beam length equation indicates the relative effect of higher approach 
velocities on the design of drop structures.  Assuming the slot width, W, approaches the channel 
width making N equal to 1, and considering a constant flow rate, then the relationship in 
Equation 11.4 reveals that the grate length is inversely proportional to the square root of the 
approach depth.  For constant Q, as the approach velocity increases the approach depth 
decreases and the length LG increases.  Therefore, for high velocity flow, above critical velocity, 
the length of drop structure required, to contain the jet, may very rapidly exceed practical limits. 

Slot width equals 
2/3 of beam width
Slot width equals 
2/3 of beam width



11-5 
 

 
 

11.1.3 Straight Drop Structure Design Features 
A general design for a stilling basin at the toe of a drop structure was developed by the 
Agricultural Research Service, St. Anthony Falls Hydraulic Laboratory, University of Minnesota 
(Donnelly and Blaisdell, 1954).  The basin consists of a horizontal apron with blocks and sills to 
dissipate energy as shown in Figure 11.3.  Tailwater also influences the amount of energy 
dissipated.  The stilling basin length computed for the minimum tailwater level required for good 
performance may be inadequate at high tailwater levels.  Scour of the downstream channel may 
occur if the nappe is supported sufficiently by high tailwater so that it lands beyond the end of 
the stilling basin.  A method for computing the stilling basin length for all tailwater levels is 
presented. 

 

Figure 11.3. Straight Drop Structure (Rand, 1955)  

hh
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The recommended design is limited to the following conditions: 

1. Total drop, ho, less than 4.6 m (15 ft) with sufficient tailwater. 

2. Relative drop, ho/yc, between 1.0 and 15. 

3. Crest length, Wo, greater than 1.5yc. 

The elements that must be considered in the design of this stilling basin include the length of 
basin, the position and size of floor blocks, the position and height of end sill, the position of the 
wingwalls, and the approach channel geometry.  Figure 11.3 illustrates a straight drop structure 
that provides adequate protection from scour in the downstream channel.  

Many of the design parameters for the straight drop structure are based on the critical depth.  
Critical depth in a rectangular channel or culvert is calculated from the unit discharge (discharge 
divided by culvert/chute width, B). 

 
3

1

g
qy

2

c ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  (11.5) 

where, 
 yc = critical depth, m (ft) 
 q = unit discharge (Q/B), m (ft) 
 
Critical flow for an open channel of any shape will occur when: 

       1
gA

TQ
3
c

c
2

=   (11.6) 

where, 
 Tc = water surface width at critical flow condition, m (ft) 
 Ac =  flow area at critical flow condition, m (ft) 
 
As discussed earlier, the tailwater must neither be too high nor too low.  Therefore, the following 
relationships must be achieved in the design.  First, the tailwater depth above the floor of the 
stilling basin must be calculated from Equation 11.7. 

 c3 y15.2y =  (11.7) 
where, 
 y3 = tailwater depth above the floor of the stilling basin, m (ft) 
 
The tailwater also needs to be a distance below the crest to maintain the aerated nappe 
trajectory as given below.  Using the crest as the reference point, this distance is a negative 
number. 

 )yh(h o2 −−=  (11.8) 
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where, 
 h2 = vertical distance of the tailwater below the crest, m (ft) 
 h = vertical drop between the approach and tailwater channels, m (ft) 
 yo = normal depth in the tailwater channel (equals normal depth in approach channel 

assuming same channel characteristics), m (ft) 
 
To achieve sufficient tailwater and to maintain adequate drop from the crest to the tailwater, it is 
sometimes necessary to depress the floor below the elevation of the tailwater channel.  The 
total drop from the crest to the stilling basin floor is given by: 

 32o yhh −=  (11.9) 
where, 
 ho = drop from crest to stilling basin floor, m (ft) 
 
The horizontal dimensions of the basin must also be established.  From Figure 11.3 it can be 
seen that the total basin length is the sum of three components. 

 321B LLLL ++=  (11.10) 
where, 
 LB = stilling basin length, m (ft) 
 L1 = distance from the headwall to the point where the surface of the upper nappe 

strikes the stilling basin floor, m (ft) 
 L2 = distance from the point where the surface of the upper nappe strikes the stilling 

basin floor to the upstream face of the floor blocks, m (ft) 
 L3 = distance from the upstream face of the floor blocks to the end of the stilling basin, 

m (ft) 
 
L1 is given by: 

 
2

LLL sf
1

+
=  (11.11) 

where, 
 Lf = length given by Equation 11.12, m (ft) 
 Ls = length given by Equation 11.13, m (ft) 
 

 c
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where, 
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L2 and L3 are determined by: 

 c2 y8.0L =  (11.15) 
 c3 y75.1L ≥  (11.16) 
 
In comparison with the simple straight drop structure discussed in Section 11.1.1, the addition of 
floor blocks and a sill, allows for a shorter basin as given by Equation 11.10.  The floor blocks 
should be proportioned to have a height of 0.8yc with a width and spacing of 0.4yc.  The basin 
will perform acceptably if the width and spacing varies within plus or minus 0.15yc.  The blocks 
should be square in plan and should occupy between 50 percent and 60 percent of the stilling 
basin width. 

The end sill height should be 0.4yc.  Longitudinal sills, as shown in Figure 11.3, are optional 
from a hydraulic perspective.  If needed, they reinforce the basin structurally, but should pass 
through the blocks, not between them. 

Final consideration is given to the configuration of the exit of the basin as well as the transition 
from the approach channel to the basin.  With respect to the exit, the sidewall height at the 
basin exit should be above the tailwater elevation by 0.85yc.  Wingwalls should be located at an 
angle of 45° with the outlet centerline and have a top slope of 1 to 1. 

With respect to the approach channel, the crest of spillway should be at same elevation as the 
invert of the approach channel.  The bottom width of the approach channel should be equal to 
the spillway notch length, Wo, at the headwall.  Because of the acceleration as the flow 
approaches the crest, riprap or paving should be provided for a distance upstream from the 
headwall equal to 3yc.  (See Section 10.3 for sizing riprap.)  

The design procedure for the straight drop structure may be summarized in the following steps. 

Step 1. Estimate the elevation difference required between the approach and tailwater 
channel, h.  This may be to address a drop at the outlet of a culvert resulting from 
erosion or headcutting or it may be to flatten a channel to a series of subcritical 
slopes and drops. 

Step 2. Calculate normal flow conditions approaching the drop to verify subcritical 
conditions.  If not subcritical, repeat step 1. 

Step 3. Calculate critical depth over the weir (usually rectangular) into the drop structure.  
Calculate the vertical dimensions of the stilling basin using Equations 11.7 through 
11.9. 

Step 4. Estimate the basin length using Equations 11.10 though 11.16. 

Step 5. Design the basin floor blocks and end sill. 

Step 6. Design the basin exit and entrance transitions. 
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Design Example: Straight Drop Structure (SI) 
Find the dimensions for a straight drop structure with a rectangular weir used to reduce channel 
slope.  Given: 

 Q = 7.1 m3/s 
 h = 1.83 m  
 Wo = 3.10 m 
 Upstream and downstream channel (trapezoidal) 
 B = 3.10 m 
 Z = 1V:3H 
 So = 0.002 m/m (after providing for drop) 
 n = 0.030 

Solution 
Step 1. Estimate the required approach and tailwater channel elevation difference, h.  This 

is estimated and given above as 1.83 m.  This drop forces the slope of the 
upstream and downstream channel to 0.002 m/m, as given. 

Step 2. Calculate normal flow conditions approaching the drop to verify subcritical 
conditions.  By trial and error, 

yo = 1.025 m, Vo = 1.123 m/s, Fro = 0.35; therefore, flow is subcritical.  Proceed to 
step 3. 

Step 3. Calculate critical depth over the weir into the drop structure.  Calculate the vertical 
dimensions of the stilling basin.  Start by finding the critical depth over the weir 
using Equation 11.5 based on the unit discharge, q = Q/B = 7.10/3.10 = 2.29 m2/s. 
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 The required tailwater depth above the floor of the stilling basin is calculated from 
Equation 11.7. 

 y3 = 2.15yc = 2.15(0.812) = 1.745 m 

 The distance from the crest down to the tailwater needs to be calculated using 
Equation 11.8.  (The negative indicates the tailwater elevation is below the crest.) 

 h2 = -(h – yo) = -(1.83 – 1.025) = -0.805 m 

The total drop from the crest to the stilling basin floor is given by Equation 11.9: 

ho = h2 –y3 = -0.805 –1.745 = -2.55 m 

 Since the nominal drop, h, is 1.83 m, the floor must be depressed by 0.72 m 
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Step 4. Estimate the basin length.  Start by using Equations 11.12, 11.13, and 11.14. 
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L1 is given by Equation 11.11: 

 m15.3
2

30.301.3
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 L2 and L3 are determined by Equations 11.15 and 11.16: 

 L2 = 0.8yc = 0.8(0.812) = 0.65 m 

 L3 ≥ 1.75yc = 1.75(0.812) = 1.43 m 

 Total basin length required is given by Equation 11.10: 

 LB = L1 +L2 +L3 = 3.15 +0.65 + 1.43 = 5.23 m 

Step 5. Design the basin floor blocks and end sill. 

 Block height = 0.8yc = 0.8(0.812) = 0.65 m 

 Block width = block spacing = 0.4yc = 0.4(0.812) = 0.325 m 

 End sill height = 0.4yc = 0.4(0.812) = 0.325 m 

Step 6. Design the basin exit and entrance transitions. 

 Sidewall height above tailwater elevation = 0.85yc = 0.85(0.812) = 0.69 m 

 Armour approach channel above headwall to length = 3yc = 3(0.812) = 2.44 m 

Design Example: Straight Drop Structure (CU) 
Find the dimensions for a straight drop structure with a rectangular weir used to reduce channel 
slope.  Given: 

 Q = 250 ft3/s 
 h = 6.0 ft 
 Wo = 10.0 ft 
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 Upstream and downstream channel (trapezoidal) 
 B = 10.0 ft 
 Z = 1V:3H 
 So = 0.002 ft/ft (after providing for drop) 
 n = 0.030 

Solution 
Step 1. Estimate the required approach and tailwater channel elevation difference, h.  This 

is estimated and given above as 6.0 ft.  This drop forces the slope of the upstream 
and downstream channel to 0.002 ft/ft, as given. 

Step 2. Calculate normal flow conditions approaching the drop to verify subcritical 
conditions.  By trial and error, 

yo = 3.36 ft, Vo = 3.71 ft/s, Fro = 0.36; therefore, flow is subcritical.  Proceed to step 
3. 

Step 3. Calculate critical depth over the weir into the drop structure.  Calculate the vertical 
dimensions of the stilling basin.  Start by finding the critical depth over the weir 
using Equation 11.5 based on the unit discharge, q = Q/B = 250/10 = 25 ft2/s. 
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The required tailwater depth above the floor of the stilling basin is calculated from 
Equation 11.7. 

y3 = 2.15yc = 2.15(2.69) = 5.77 ft 

 The distance from the crest down to the tailwater needs to be calculated using 
Equation 11.8.  (The negative indicates the tailwater elevation is below the crest.) 

 h2 = -(h – yo) = -(6.0 – 3.36) = -2.64 ft 

 The total drop from the crest to the stilling basin floor is given by Equation 11.9: 

ho = h2 –y3 = -2.64 – 5.77 = -8.41 ft  (round to –8.4) 

 Since the nominal drop, h, is 6.0 ft, the floor must be depressed by 2.4 ft 

Step 4. Estimate the basin length.  Start by using Equations 11.12, 11.13, and 11.14. 

ft94.969.2
69.2
41.8368.4195.3406.0y

y
h368.4195.3406.0L c

c

o
f =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−+−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−=

 

ft26.669.2
69.2
64.2368.4195.3406.0y

y
h368.4195.3406.0L c

c

2
t =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−+−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−=

 



11-12 
 

 
 

ft89.10

69.2
26.6456.0185.0

69.2
69.2
41.8

69.2
26.6228.0691.0

y
L456.0185.0

y
y
h

y
L228.0691.0

L

2

c

t

c
c

o

2

c

t

s =
⎟
⎠
⎞

⎜
⎝
⎛+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=

 

L1 is given by Equation 11.11: 
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 L2 and L3 are determined by Equations 11.15 and 11.16: 

 L2 = 0.8yc = 0.8(2.69) = 2.2 ft 

 L3 ≥ 1.75yc = 1.75(2.69) = 4.7 ft 

 Total basin length required is given by Equation 11.10: 

 LB = L1 +L2 +L3 = 10.4 +2.2 + 4.7 = 17.3 ft 

Step 5. Design the basin floor blocks and end sill. 

 Block height = 0.8yc = 0.8(2.69) = 2.1 ft 

 Block width = block spacing = 0.4yc = 0.4(2.69) = 1.1 ft 

 End sill height = 0.4yc = 0.4(2.69) = 1.1 ft 

Step 6. Design the basin exit and entrance transitions. 

 Sidewall height above tailwater elevation = 0.85yc = 0.85(2.69) = 2.3 ft 

 Armour approach channel above headwall to length = 3yc = 3(2.69) = 8.1 ft 

11.2 BOX INLET DROP STRUCTURE 
The box inlet drop structure may be described as a rectangular box open at the top and 
downstream end (Figure 11.4).  Water is directed to the crest of the box inlet by earth dikes and 
a headwalls. Flow enters over the upstream end and two sides. The long crest of the box inlet 
permits large flows to pass at relatively low heads.  

The outlet structure can be adjusted to fit a wide variety of field conditions. It is possible to 
lengthen the straight section and cover it to form a highway culvert.  The sidewalls of the stilling 
basin section can be flared if desired, thus permitting use with narrow channels or wide flood 
plains.  Flaring the sidewalls also makes it possible to adjust the outlet depth to that in the 
natural channel.  

The design information is based on an extensive experimental program performed by the Soil 
Conservation Service, St. Anthony Falls Hydraulic Laboratory, Minneapolis (Blaisdell and 
Donnelly, 1956).  The recommended design is limited to the following conditions: 

1. Total drop, ho, less than 3.7 m (12 ft) and greater than 0.6 m (2 ft).  The total 
drop is that amount required to reduce the channel slope to a desired stable 
slope. 
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2. Downstream width of structure should be less than or equal to the width of the 
tailwater channel. 

3. Approach channel is level with the crest of the box inlet 

 

Figure 11.4. Box Inlet Drop Structure  

One of two different sections will control the flow: the crest of the box inlet or the opening in the 
headwall. The flow at which the control changes from one point to the other is dependent upon 
a number of factors, the principal factors being the box inlet depth and its length.  The design of 
the box inlet drop structure involves determining which section (crest or headwall opening) 
controls at the design flow.  

First, assume crest control and calculate the head, yo, at the crest of the box inlet drop structure 
required to pass the design discharge.  The general equation relating discharge to head for a 
rectangular weir is: 

 2
3Lhg2CQ w=  (11.17) 
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where, 
 Cw = dimensionless weir coefficient = 0.43 
 L = weir length, m (ft) 
 h = head on the weir crest, m (ft) 
 
Calling the weir length, Lc, and the head, yo, and solving for head yields the following 
relationship. 
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where, 
 yo = required head on the weir crest to pass the design flow, m (ft) 
 Lc = length of box inlet crest, m (ft) 
 Q = design discharge, m3/s (ft3/s) 
 
By inspection of Figure 11.4, it is apparent that the weir crest length is: 

 12c L2WL +=  (11.19) 
where, 
 Lc = length of box inlet crest, m (ft) 
 W2 = width of box inlet, m (ft) 
 L1 = length of box inlet, m (ft) 
 
Various lengths of crest, Lc, are evaluated in Equation 11.18 to obtain a head consistent with the 
hydraulic conditions in the approach channel. 

Several corrections to the weir coefficient used in Equation 11.18 are appropriate if the crest 
does control the structure hydraulics.  However, for determining crest versus headwall control it 
is not necessary to make these corrections.  Four multiplicative corrections are considered: 

1. Correction for low relative head given in Figure 11.5. 

2. Correction for box inlet shape given in Figure 11.6.   This correction is only 
applicable for W1/Lc ≥ 3. 

3. Correction for approach channel width given in Figure 11.7.  This correction is 
only applicable for W1/Lc < 3. 

4. Correction for dike proximity to the box inlet crest given in Table 11.1.  These 
values have a low precision. 

The precision of the correction curves is within 7 percent when there is no dike present and 
within 15 percent when dikes are used. 

Second, assume headwall control and calculate the head, yo, to determine if this head is greater 
than that obtained for the box inlet crest control.  The general equation relating discharge and 
head for a rectangular weir was described in Equation 11.17.  For this case, the weir length is 
W2, the head is yo + CH, and the weir coefficient is C2.  Solving for head yields the following 
relationship. 
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where, 
 yo = required head on the headwall crest to pass the design flow, m (ft) 
 W2 = width of the box inlet, m (ft) 
 Q = design discharge, m3/s (ft3/s) 
 C2 = dimensionless weir coefficient (discharge coefficient) 
 CH = head correction, m (ft) 
 
The discharge coefficient, C2, is obtained from Figure 11.8.  The head correction, CH, is given in 
Figure 11.9.  If ho/W2 is between 1/4 and 1, CH may be more readily determined from Figure 
11.10.  The precision of the design curves for headwall control is estimated to be within 10 
percent. 

When the box inlet drop structure operates under submerged conditions, reference should be 
made to Blaisdell and Donnelly (1956) to determine the submerged design.  However, this is not 
a desirable design condition.  

The outlet for a box inlet drop structure should be designed as follows.  Critical depth in the 
straight section is: 
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Similarly, critical depth at the exit of the stilling basin is: 
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The minimum length of the straight section for values of L1/W2 equal to or greater than 0.25 is: 
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As shown in Figure 11.4, the sidewalls of the stilling basin may flare from z=0 (parallel 
extensions of the section walls) to z=0.5.  
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Figure 11.5. Discharge Coefficients/Correction for Head with Control at Box Inlet Crest  

 

Figure 11.6. Correction for Box Inlet Shape with Control at Box Inlet Crest 
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Figure 11.7. Correction for Approach Channel Width with Control at Box Inlet Crest  

 
 

Table 11.1. Correction for Dike Effect, CE, with Control at Box Inlet Crest 

W4/W2 
L1/W2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 
0.5 0.90 0.96 1.00 1.02 1.04 1.05 1.05 
1.0 0.80 0.88 0.93 0.96 0.98 1.00 1.01 
1.5 0.76 0.83 0.88 0.92 0.94 0.96 0.97 
2.0 0.76 0.83 0.88 0.92 0.94 0.96 0.97 
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Figure 11.8. Coefficient of Discharge with Control at Headwall Opening  

 
 

Figure 11.9. Relative Head Correction with Control at Headwall Opening  
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Figure 11.10. Relative Head Correction for ho/W2 >1/4 with Control at Headwall Opening 

The minimum length of the final, potentially flared portion of the stilling basin is taken as the 
larger of the following two equations.  However, Equation 11.24b is only valid for L1/W2 values 
equal to or greater than 0.25.   

   
1

2c
3 L2

WLL =  (11.24a) 

 

or 

   
z2
WWL 23

3
−

=  (11.24b) 

 

Frequently, it is desirable to design the stilling basin outlet width to equal the width of the 
tailwater channel.  When the stilling basin width at the exit is less than 11.5yc3, the minimum 
tailwater depth over the basin floor is: 

   3c3 y6.1y =  (11.25) 
 

When the stilling basin width at the exit is greater than 11.5 yc3, the minimum tailwater depth 
over the basin floor is calculated from Equation 11.26.  However, such a stilling basin may make 
inefficient use of the outlet.  

    33c3 W52.0yy +=  (11.26) 
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The height of the end sill is: 

   
6
yh 3

4 =  (11.27) 

 

Longitudinal sills will improve the flow distribution in the outlet.  Considerations for their use are:  

• When the stilling basin sidewalls are parallel (z=0), the longitudinal sills may be omitted.  

• The center pair of longitudinal sills should start at the exit of the box inlet and extend through 
the straight section and stilling basin to the end sill.  

• When W3 is less than 2.5W2, only two sills are needed.  These sills should be located at a 
distance W5, each side of the centerline.  

• When W3 exceeds 2.5W2 two additional sills are required.  These sills should be located 
parallel to the outlet centerline and midway between the center sills and the sidewalls at the 
exit of the stilling basin. 

• The height of the longitudinal sills should be the same as the height of the end sill.  

The minimum height of the sidewalls above the water surface at the exit of the stilling basin is 
calculated from Equation 11.28.  The sidewalls should extend above the tailwater surface under 
all conditions. 

   
3
yh 3

3 =  (11.28) 

 

The wingwalls should be triangular in elevation and have top slope of 45° with the horizontal. 
Top slopes as flat as 30° are permissible.  The wingwalls should flare in plan at an angle of 60° 
with the outlet centerline. Flare angles as small as 45° are permissible; however, wingwalls 
parallel to the outlet centerline are not recommended.  

The design procedure for the box inlet drop structure may be summarized in the following steps. 

Step 1. Select the initial box inlet trial dimensions, ho, L1, and W2. 

Step 2. Assume crest control and estimate the crest control head using Equation 11.18. 

Step 3. Assume headwall control and estimate the headwall control head using Equation 
11.20. 

Step 4. Select the largest head from steps 2 and 3.  If the largest head is crest control, 
adjust the crest control head with the correction factors from Figures 11.5, 11.6, 
and 11.7 as well as Table 11.1. 

Step 5. Calculate critical depths in both the straight and flared basin sections using 
Equations 11.21 and 11.22, respectively. 

Step 6. Determine the basin length from Equations 11.23 and 11.24. 

Step 7. Calculate the outlet depth from Equations 11.25 and 11.26 and compare this depth 
with the tailwater depth. 

Step 8. Calculate the sill height using Equation 11.27 and determine the need for 
longitudinal sills. 
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Step 9. Determine the height of the sidewalls using Equation 11.28.  Lay out the 
wingwalls. 

Design Example: Box Inlet Drop Structure (SI) 
Find the dimensions for a box inlet drop structure used to reduce channel slope.  Given: 

 Q = 7.1 m3/s 
 ho = 1.20 m 
 W2 = 1.20 m 
 L1 = 1.20 m 
 Upstream and downstream channel (trapezoidal) 
 B = 6.0 m 
 Z = 1V:3H 
 So = 0.002 m/m 
 n = 0.030 

Solution 
Step 1. The initial box inlet trial dimensions, ho, L1, and W2 were given. 

Step 2. Assume crest control and estimate the crest control head using Equation 11.18.  
Equation 11.19 gives us the crest length for Equation 11.18. 

Lc = W2 + 2L1  = 1.2 + 2(1.2) = 3.6 m 
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Step 3. Assume headwall control and estimate the headwall control head using Equation 
11.20.  First we need to determine C2 and CH. 

From Figure 11.8 for a value of ho/W2=1.2/1.2=1.0 we determine C2=0.43. 

From Figure 11.10 for a value of L1/ho=1.2/1.2=1.0 we determine CH/ho=0.49.  
Therefore, CH=0.588 m 
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Step 4. Select the largest head from steps 2 and 3.  In this case, the headwall controls and 
yo=1.541 m 

Step 5. Calculate critical depths in the straight section using Equation 11.21. 
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 Calculate critical depth at the exit using Equation 11.22 and taking the structure 
width equal to the channel width. 
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Step 6. Determine the length of the straight section beyond the inlet from Equation 11.23. 
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 The length of the flared section is determined by the maximum of Equations 
11.24a and 11.24b. 
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 Therefore, L3 = 4.8 m 

Step 7. Calculate the outlet depth from Equations 11.25 or 11.26 depending on whether or 
not W3 is less than 11.5yc3.  11.5yc3 = 11.5(0.523) = 6.01 m.  Therefore, use 
Equation 11.25. 

 y3 = 1.6yc3 = 1.6(0.523) = 0.84 m 

 Normal depth in the tailwater channel is 0.80 m.  Since y3 is slightly greater than 
the tailwater channel depth, some form of channel protection at the exit may be 
advisable to protect against erosion from the accelerating flow. 

Step 8. Calculate the sill height using Equation 11.27. 

 m14.0
6
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6
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4 ===  

 We determine if longitudinal sills are necessary by comparing W3 to 2.5W2.  Since 
2.5W2=2.5(1.2)=3.0 m and this is less than W3, 4 sills are needed. 

Step 9. Determine the height of the sidewalls above the water surface elevation using 
Equation 11.28. 
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3
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Design Example: Box Inlet Drop Structure (CU) 
Find the dimensions for a box inlet drop structure used to reduce channel slope.  Given: 

 Q = 250 ft3/s 
 ho = 4.0 ft 
 W2 = 4.0 ft 
 L1 = 4.0 ft 
 Upstream and downstream channel (trapezoidal) 
 B = 20.0 ft 
 Z = 1V:3H 
 So = 0.002 ft/ft 
 n = 0.030 

Solution 
Step 1. The initial box inlet trial dimensions, ho, L1, and W2 were given. 

Step 2. Assume crest control and estimate the crest control head using Equation 11.18.  
Equation 11.19 gives us the crest length for Equation 11.18. 

Lc = W2 + 2L1  = 4.0 + 2(4.0) = 12.0 ft 
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Step 3. Assume headwall control and estimate the headwall control head using Equation 
11.20.  First we need to determine C2 and CH. 

From Figure 11.8 for a value of ho/W2=4.0/4.0=1.0 we determine C2=0.43. 

From Figure 11.10 for a value of L1/ho=4.0/4.0=1.0 we determine CH/ho=0.49.  
Therefore, CH=1.96 ft 
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Step 4. Select the largest head from steps 2 and 3.  In this case, the headwall controls and 
yo=4.94 ft 

Step 5. Calculate critical depths in the straight section using Equation 11.21. 
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 Calculate critical depth at the exit using Equation 11.22 and taking the structure 
width equal to the channel width. 
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Step 6. Determine the length of the straight section beyond the inlet from Equation 11.23. 
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 The length of the flared section is determined by the maximum of Equations 
11.24a and 11.24b. 
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 Therefore, L3 = 16.0 ft 

Step 7. Calculate the outlet depth from Equations 11.25 or 11.26 depending on whether or 
not W3 is less than 11.5yc3.  11.5yc3 = 11.5(1.69) = 19.4 ft.  Therefore, use 
Equation 11.25. 

 y3 = 1.6yc3 = 1.6(1.69) = 2.7 ft 

 Normal depth in the tailwater channel is 2.6 ft.  Since y3 is slightly greater than the 
tailwater channel depth, some form of channel protection at the exit may be 
advisable to protect against erosion from the accelerating flow. 

Step 8. Calculate the sill height using Equation 11.27. 
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 We determine if longitudinal sills are necessary by comparing W3 to 2.5W2.  Since 
2.5W2=2.5(4.0)=10 ft and this is less than W3, 4 sills are needed. 

Step 9. Determine the height of the sidewalls above the water surface elevation using 
Equation 11.28. 
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CHAPTER 12: STILLING WELLS 
The design of the US Army Corps of Engineers’ stilling well energy dissipator is based on model 
tests conducted by the US Army Corps of Engineers (USACE, 1963; Grace and Pickering, 
1971).  It is illustrated in Figure 12.1.  The stilling well can be used in channels with moderate to 
high concentrations of sand or silt and where debris is not a serious problem. The stilling well 
should not be used in areas where large floating or rolling debris is expected unless suitable 
debris-control structures are used. The highway uses of stilling wells are at the outfalls of storm 
drains, median, and pipe down drains where little debris is expected. 

 

Figure 12.1. US Army Corps of Engineers’ Stilling Well (USACE, 1963) 

The design of the stilling well is initiated after the size and discharge of the incoming pipe are 
determined.  Figure 12.2 is used to select the stilling well diameter, DW.  The model tests 
indicated that satisfactory performance can be maintained for KuQ/D5/2 ratios as large as 10, 
with stilling well diameters from 1 to 5 times that of the incoming conduits.  (Ku is a unit 
conversion constant equal to 1.811 in SI and 1.0 in CU.)  These ratios were used to define the 
curves shown in Figure 12.2.   

The optimum depth of stilling well below the invert of the incoming pipe is determined by 
entering Figure 12.3 with the slope of the incoming pipe and using the stilling well diameter, DW, 
previously obtained from Figure 12.2.  The height of the stilling well above the invert is fixed at 
twice the diameter of the incoming pipe, 2D. This dimension results in satisfactory operation and 
is practical from a cost standpoint; however, if increased, greater efficiency will result.  

Tailwater also increases the efficiency of the stilling well.  Whenever possible, it should be 
located in a sump or depressed area. 

Riprap or other types of channel protection should be provided around the stilling well outlet and 
for a distance of at least 3DW downstream.  

The outlet may also be covered with a screen or grate for safety. However, the screen or grate 
should have a clear opening area of at least 75 percent of the total stilling well area and be 
capable of passing small floating debris such as cans and bottles. 
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Figure 12.2 (SI). Stilling Well Diameter, DW (USACE, 1963) 

 
 
 

 

Figure 12.2 (CU). Stilling Well Diameter, DW (USACE, 1963) 
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Figure 12.3. Depth of Stilling Well Below Invert (USACE, 1963) 

The design procedure is summarized as follows: 

Step 1. Select approach pipe diameter, D, and discharge, Q. 

Step 2. Obtain well diameter, DW from Figure 12.2. 

Step 3. Calculate the culvert slope.  The depth of the well below the culvert invert, h1 is 
determined from Figure 12.3.  

Step 4. The depth of the well above the culvert invert, h2, is equal to 2D as a minimum, but 
may be greater if the site permits.  

Step 5. The total height of the well, hW = h1 + h2.  

Design Example: U.S. Army Corps of Engineers’ Stilling Well (SI) 
Determine the stilling well dimensions. Given: 

 D = 600 mm CMP 
 S = 0.5 V/H 
 Q = 0.424 m3/s 

Solution 

Step 1. Select approach pipe diameter and discharge. 

 D = 0.600 m 

Q = 0.424 m3/s  

Step 2. Obtain well diameter (DW) from Figure 12.2 

 DW =1.5 D = 1.5 (0.600 m) = 0.90 m 

Step 3. Calculate the culvert slope.  The depth of the well below the culvert invert is 
determined from Figure 12.3.  

 Slope = 0.5 
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  h1/DW = 0.42  

 h1 = 0.42(0.90) = 0.378 m, use h1 = 0.38 m 

Step 4. The depth of the well above the culvert invert is equal to 2D as a minimum, but 
may be greater if the site permits. 

 h2 = 2(D) = 2(0.600) = 1.20 m 

Step 5. The total height of the well.  

  hW = h1 + h2 = 0.38 + 1.20 = 1.58 m 

Design Example: U.S. Army Corps of Engineers’ Stilling Well (CU) 
Determine the stilling well dimensions. Given: 

 D = 24 in CMP 
 S = 0.5 V/H 
 Q = 15 ft3/s 

Solution 

Step 1. Select approach pipe diameter and discharge. 

 D = 2 ft 

Q = 15 ft3/s  

Step 2. Obtain well diameter from Figure 12.2 

 DW =1.5 D = 1.5 (2 ft) = 3 ft 

Step 3. Calculate the culvert slope.  The depth of the well below the culvert invert is 
determined from Figure 12.3.  

 Slope = 0.5 

  h1/DW = 0.42  

 h1 = 0.42(3) = 1.26 ft, use h1 = 1.3 ft 

Step 4. The depth of the well above the culvert invert is equal to 2D as a minimum, but 
may be greater if the site permits.  

 h2 = 2(D) = 2(2 ft) = 4 ft 

Step 5. The total height of the well.  

  hW = h1 + h2 = 1.3 + 4 = 5.3 ft 
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APPENDIX A: METRIC SYSTEM, CONVERSION FACTORS, AND WATER PROPERTIES 
 
The following information is summarized from the Federal Highway Administration, National 
Highway Institute (NHI) Course No. 12301, "Metric (SI) Training for Highway Agencies." For 
additional information, refer to the Participant Notebook for NHI Course No. 12301. 

In SI there are seven base units, many derived units and two supplemental units (Table A.1). 
Base units uniquely describe a property requiring measurement.  One of the most common units 
in civil engineering is length, with a base unit of meters in SI.  Decimal multiples of meter include 
the kilometer (1000 m), the centimeter (1m/100) and the millimeter (1 m/1000).  The second 
base unit relevant to highway applications is the kilogram, a measure of mass that is the inertia 
of an object.  There is a subtle difference between mass and weight.  In SI, mass is a base unit, 
while weight is a derived quantity related to mass and the acceleration of gravity, sometimes 
referred to as the force of gravity.  In SI the unit of mass is the kilogram and the unit of 
weight/force is the newton.  Table A.2 illustrates the relationship of mass and weight.  The unit 
of time is the same in SI as in the Customary (English) system (seconds).  The measurement of 
temperature is Centigrade.  The following equation converts Fahrenheit temperatures to 
Centigrade, °C = 5/9 (°F - 32). 

Derived units are formed by combining base units to express other characteristics.  Common 
derived units in highway drainage engineering include area, volume, velocity, and density.  
Some derived units have special names (Table A.3). 

Table A.4 provides useful conversion factors from Customary to SI units.  The symbols used in 
this table for metric (SI) units, including the use of upper and lower case (e.g., kilometer is "km" 
and a newton is "N") are the standards that should be followed.  Table A.5 provides the 
standard SI prefixes and their definitions. 

Table A.6 provides physical properties of water at atmospheric pressure in SI units. Table A.7 
gives the sediment grade scale and Table A.8 gives some common equivalent hydraulic units. 
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Table A.1.  Overview of SI Units 
 
 

 
Units 

 
Symbol  

Base units 
length 
mass 
time 
temperature* 
electrical current 
luminous intensity 
amount of material 

 
 

meter 
kilogram 
second 
kelvin 

ampere 
candela 

mole 

 
 

m 
kg 
s 
K 
A 
cd 

mol  
Derived units 

 
 

 
  

Supplementary units 
angles in the plane 
solid angles 

 
 

radian 
steradian 

 
 

rad 
sr  

*Use degrees Celsius (°C), which has a more common usage than kelvin. 
 
 
 
 
 

Table A.2.  Relationship of Mass and Weight 
  

Mass 
Weight or 
Force of 
Gravity 

 
Force 

Customary slug  
pound-mass 

pound  
pound-force 

pound 
pound-force 

Metric kilogram newton newton 
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Table A.3.  Derived Units With Special Names 

Quantity Name Symbol Expression 
Frequency hertz Hz s-1 
Force newton N kg•m/s2 
Pressure, stress pascal Pa N/m2 
Energy, work, quantity of heat joule J N•m 
Power, radiant flux watt W J/s 
Electric charge, quantity coulomb C A•s 
Electric potential volt V W/A 
Capacitance farad F C/V 
Electric resistance ohm Ω V/A 
Electric conductance siemens S A/V 
Magnetic flux weber Wb V•s 
Magnetic flux density tesla T Wb/m2 
Inductance henry H Wb/A 
Luminous flux lumen lm cd•sr 
Illuminance lux lx lm/m2 
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Table A.4.  Useful Conversion Factors 

Quantity From Customary Units To Metric Units 
Multiplied 

By* 
Length mile 

yard 
foot 
inch 

Km 
m 
m 

mm 

1.609 
0.9144 
0.3048 
25.40 

Area square mile 
acre 
acre 

square yard 
square foot 
square inch 

km2 
m2 

hectare 
m2 
m2 

mm2 

2.590 
4047 

0.4047 
0.8361 

0.09290 
645.2 

Volume acre foot 
cubic yard 
cubic foot 
cubic foot 

100 board feet 
gallon 

cubic inch 

m3 
m3 
m3 

L (1000 cm3) 
m3 

L (1000 cm3) 
cm3 

1233 
0.7646 

0.02832 
28.32 
0.2360 
3.785 
16.39 

Mass lb 
kip (1000 lb) 

kg 
metric ton (1000 kg) 

0.4536 
0.4536 

Mass/unit length plf kg/m 1.488 
Mass/unit area psf kg/m2 4.882 
Mass density pcf kg/m3 16.02 
Force lb 

kip 
N 
kN 

4.448 
4.448 

Force/unit length plf 
klf 

N/m 
kN/m 

14.59 
14.59 

Pressure, stress, modulus 
of elasticity 

psf 
ksf 
psi 
ksi 

Pa 
kPa 
kPa 
MPa 

47.88 
47.88 
6.895 
6.895 

Bending moment, torque, 
moment of force 

ft-lb 
ft-kip 

N Α m 
kN Α m 

1.356 
1.356 

Moment of mass lb•ft m 0.1383 
Moment of inertia lb•ft2 kg•m2 0.04214 
Second moment of area In4 mm4 416200 
Section modulus in3 mm3 16390 
Power ton (refrig) 

Btu/s 
hp (electric) 

Btu/h 

kW 
kW 
W 
W 

3.517 
1.054 
745.7 
0.2931  

Volume rate of flow 
 

ft3/s 
cfm 
cfm 
mgd 

 
m3/s 
m3/s 
L/s 

m3/s 

 
0.02832 

0.0004719 
0.4719 
0.0438  

Velocity, speed 
 

ft/s 
 

M/s 
 

0.3048  
Acceleration 

 
F/s2 

 
m/s2 

 
0.3048  

Momentum 
 

lb•ft/sec 
 

kg•m/s 
 

0.1383  
Angular momentum 

 
lb•ft2/s 

 
kg•m2/s 

 
0.04214  

Plane angle 
 

degree 
 

rad 
mrad 

 
0.01745 

17.45 
*4 significant figures; underline denotes exact conversion 
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Table A.5.  Prefixes 

Submultiples Multiples 
Deci 10-1 d deka 101 da 
Centi 10-2 c hecto 102 h 
Milli 10-3 m kilo 103 k 

Micro 10-6 μ mega 106 M 
Nano 10-9 n giga 109 G 
Pica 10-12 p tera 1012 T 

Femto 10-15 f peta 1015 P 
Atto 10-18 a exa 1018 E 

Zepto 10-21 z zetta 1021 Z 
Yocto 10-24 y yotto 1024 Y 
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APPENDIX B: CRITICAL DEPTH AND UNIFORM FLOW FOR VARIOUS CULVERT AND 
CHANNEL SHAPES 

 

Figure B.1 (SI). Critical Depth Rectangular Section (Normann, et al., 2001) 
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Figure B.1 (CU). Critical Depth Rectangular Section (Normann, et al., 2001) 



B-3 
 
 

Figure B.2 (SI). Critical Depth of Circular Pipe 
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Figure B.2 (CU). Critical Depth of Circular Pipe 
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Figure B.3 (SI). Critical Depth Oval Concrete Pipe Long Axis Horizontal 
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Figure B.3 (CU). Critical Depth Oval Concrete Pipe Long Axis Horizontal 
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Figure B.4 (SI). Critical Depth Oval Concrete Pipe Long Axis Vertical 
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Figure B.4 (CU). Critical Depth Oval Concrete Pipe Long Axis Vertical 
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Figure B.5 (SI). Critical Depth Standard C.M. Pipe-Arch 
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Figure B.5 (CU). Critical Depth Standard C.M. Pipe-Arch 
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Figure B.6 (SI). Critical Depth Structural Plate C.M. Pipe-Arch 
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Figure B.6 (CU). Critical Depth Structural Plate C.M. Pipe-Arch 
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Table B.1. Uniform Flow in Trapezoidal Channels by Manning’s Formula 

Values of (αQn)/(b8/3S1/2) 
y/b1 z = 0 z = 0.25 z = 0.5 z = 0.75 z = 1  z = 1.25 z = 1.5 z = 1.75 z = 2 z = 3 
0.02 0.00213 0.00215 0.00216 0.00217 0.00218 0.00219 0.00220 0.00220 0.00221 0.00223 
0.03 0.00414 0.00419 0.00423 0.00426 0.00429 0.00429 0.00433 0.00434 0.00437 0.00443 
0.04 0.00661 0.00670 0.00679 0.00685 0.00690 0.00690 0.00700 0.00704 0.00707 0.00722 
0.05 0.00947 0.00964 0.00980 0.00991 0.01000 0.01010 0.01020 0.01030 0.01030 0.01060 
0.06 0.0127 0.0130 0.0132 0.0134 0.0136 0.0137 0.0138 0.0140 0.0141 0.0145 
0.07 0.0162 0.0166 0.0170 0.0173 0.0176 0.0177 0.0180 0.0182 0.0183 0.0190 
0.08 0.0200 0.0206 0.0211 0.0215 0.0219 0.0222 0.0225 0.0228 0.0231 0.0240 
0.09 0.0240 0.0249 0.0256 0.0262 0.0267 0.0271 0.0275 0.0279 0.0282 0.0296 

                      
0.10 0.0283 0.0294 0.0305 0.0311 0.0318 0.0324 0.0329 0.0334 0.0339 0.0358 
0.11 0.0329 0.0342 0.0354 0.0364 0.0373 0.0380 0.0387 0.0394 0.0400 0.0424 
0.12 0.0376 0.0393 0.0408 0.0420 0.0431 0.0441 0.0450 0.0458 0.0466 0.0497 
0.13 0.0425 0.0446 0.0464 0.0480 0.0493 0.0505 0.0516 0.0527 0.0537 0.0575 
0.14 0.0476 0.0501 0.0524 0.0542 0.0559 0.0573 0.0587 0.0599 0.0312 0.0659 
0.15 0.0528 0.0559 0.0585 0.0608 0.0628 0.0645 0.0662 0.0677 0.0692 0.0749 
0.16 0.0582 0.0619 0.0650 0.0676 0.0699 0.0720 0.0740 0.0759 0.0776 0.0845 
0.17 0.0638 0.0680 0.0717 0.0748 0.0775 0.0800 0.0823 0.0845 0.0867 0.0947 
0.18 0.0695 0.0744 0.0786 0.0822 0.0854 0.0883 0.0910 0.0936 0.0961 0.1050 
0.19 0.0753 0.0809 0.0857 0.0900 0.0936 0.0970 0.1000 0.1030 0.1060 0.1170 

                      
0.20 0.0813 0.0875 0.0932 0.0979 0.1020 0.1060 0.1100 0.1130 0.1160 0.1290 
0.21 0.0873 0.0944 0.1010 0.1060 0.1110 0.1150 0.1200 0.1230 0.1270 0.1420 
0.22 0.0935 0.1010 0.1090 0.1150 0.1200 0.1250 0.1300 0.1340 0.1390 0.1550 
0.23 0.0997 0.1090 0.1170 0.1240 0.1300 0.1350 0.1410 0.1460 0.1510 0.1690 
0.24 0.106 0.116 0.125 0.133 0.139 0.146 0.152 0.157 0.163 0.184 
0.25 0.113 0.124 0.133 0.142 0.150 0.157 0.163 0.170 0.176 0.199 
0.26 0.119 0.131 0.142 0.152 0.160 0.168 0.175 0.182 0.189 0.215 
0.27 0.126 0.139 0.151 0.162 0.171 0.180 0.188 0.195 0.203 0.232 
0.28 0.133 0.147 0.160 0.172 0.182 0.192 0.201 0.209 0.217 0.249 
0.29 0.139 0.155 0.170 0.182 0.193 0.204 0.214 0.223 0.232 0.267 

                      
0.30 0.146 0.163 0.179 0.193 0.205 0.217 0.227 0.238 0.248 0.286 
0.31 0.153 0.172 0.189 0.204 0.217 0.230 0.242 0.253 0.264 0.306 
0.32 0.160 0.180 0.199 0.215 0.230 0.243 0.256 0.269 0.281 0.327 
0.33 0.167 0.189 0.209 0.227 0.243 0.257 0.271 0.285 0.298 0.348 
0.34 0.174 0.198 0.219 0.238 0.256 0.272 0.287 0.301 0.315 0.369 
0.35 0.181 0.207 0.230 0.251 0.270 0.287 0.303 0.318 0.334 0.392 
0.36 0.190 0.216 0.241 0.263 0.283 0.302 0.319 0.336 0.353 0.416 
0.37 0.196 0.225 0.251 0.275 0.297 0.317 0.336 0.354 0.372 0.440 
0.38 0.203 0.234 0.263 0.289 0.311 0.333 0.354 0.373 0.392 0.465 
0.39 0.210 0.244 0.274 0.301 0.326 0.349 0.371 0.392 0.412 0.491 

           
0.40 0.218 0.254 0.286 0.314 0.341 0.366 0.389 0.412 0.433 0.518 
0.41 0.225 0.263 0.297 0.328 0.357 0.383 0.408 0.432 0.455 0.545 



B-14 
 
 

Values of (αQn)/(b8/3S1/2) 
y/b1 z = 0 z = 0.25 z = 0.5 z = 0.75 z = 1  z = 1.25 z = 1.5 z = 1.75 z = 2 z = 3 
0.42 0.233 0.279 0.310 0.342 0.373 0.401 0.427 0.453 0.478 0.574 
0.43 0.241 0.282 0.321 0.356 0.389 0.418 0.447 0.474 0.501 0.604 
0.44 0.249 0.292 0.334 0.371 0.405 0.437 0.467 0.496 0.524 0.634 
0.45 0.256 0.303 0.346 0.385 0.442 0.455 0.487 0.519 0.548 0.665 
0.46 0.263 0.313 0.359 0.401 0.439 0.475 0.509 0.541 0.547 0.696 
0.47 0.271 0.323 0.371 0.417 0.457 0.494 0.530 0.565 0.600 0.729 
0.48 0.279 0.333 0.384 0.432 0.475 514.000 0.552 0.589 0.626 0.763 
0.49 0.287 0.345 0.398 0.448 0.492 0.534 0.575 0.614 0.652 0.797 

                      
0.50 0.295 0.356 0.411 0.463 0.512 0.556 0.599 0.639 0.679 0.833 
0.52 0.310 0.377 0.438 0.496 0.548 0.599 0.646 0.692 0.735 0.906 
0.54 0.327 0.398 0.468 0.530 0.590 0.644 0.696 0.746 0.795 0.984 
0.56 0.343 0.421 0.496 0.567 0.631 0.690 0.748 0.803 0.856 1.070 
0.58 0.359 0.444 0.526 0.601 0.671 0.739 0.802 0.863 0.922 1.150 

                      
0.60 0.375 0.468 0.556 0.640 0.717 0.789 0.858 0.924 0.988 1.240 
0.62 0.391 0.492 0.590 0.679 0.763 0.841 0.917 0.989 1.060 1.330 
0.64 0.408 0.516 0.620 0.718 0.809 0.894 0.976 1.050 1.130 1.430 
0.66 0.424 0.541 0.653 0.759 0.858 0.951 1.040 1.130 1.210 1.530 
0.68 0.441 0.566 0.687 0.801 0.908 1.010 1.100 1.200 1.290 1.640 

                      
0.70 0.457 0.591 0.722 0.842 0.958 1.070 1.170 1.270 1.370 1.750 
0.72 0.474 0.617 0.757 0.887 1.010 1.130 1.240 1.350 1.450 1.870 
0.74 0.491 0.644 0.793 0.932 1.070 1.190 1.310 1.430 1.550 1.980 
0.76 0.508 0.670 0.830 0.981 1.120 1.260 1.390 1.510 1.640 2.110 
0.78 0.525 0.698 0.868 1.030 1.180 1.320 1.460 1.600 1.730 2.240 

                      
0.80 0.542 0.725 0.906 1.080 1.240 1.400 1.540 1.690 1.830 2.370 
0.82 0.559 0.753 0.945 1.130 1.300 1.470 1.630 1.780 1.930 2.510 
0.84 0.576 0.782 0.985 1.180 1.360 1.540 1.710 1.870 2.030 2.650 
0.86 0.593 0.810 1.030 1.230 1.430 1.610 1.790 1.970 2.140 2.800 
0.88 0.610 0.839 1.070 1.290 1.490 1.690 1.880 2.070 2.250 2.950 

                      
0.90 0.627 0.871 1.110 1.340 1.560 1.770 1.980 2.170 2.360 3.110 
0.92 0.645 0.898 1.150 1.400 1.630 1.860 2.070 2.280 2.480 3.270 
0.94 0.662 0.928 1.200 1.460 1.700 1.940 2.160 2.380 2.600 3.430 
0.96 0.680 0.960 1.250 1.520 1.780 2.030 2.270 2.500 2.730 3.610 
0.98 0.697 0.991 1.290 1.580 1.850 2.110 2.370 2.610 2.850 3.790 
1.00 0.714 1.020 1.330 1.640 1.930 2.210 2.470 2.730 2.990 3.970 
1.05 0.759 1.100 1.460 1.800 2.130 2.440 2.750 3.040 3.330 4.450 
1.10 0.802 1.190 1.580 1.970 2.340 2.690 3.040 3.370 3.700 4.960 
1.15 0.846 1.270 1.710 2.140 2.560 2.960 3.340 3.720 4.090 5.520 
1.20 0.891 1.360 1.850 2.330 2.790 3.240 3.680 4.090 4.500 6.110 

                      
1.25 0.936 1.450 1.990 2.520 3.040 3.540 4.030 4.490 4.950 6.730 
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Values of (αQn)/(b8/3S1/2) 
y/b1 z = 0 z = 0.25 z = 0.5 z = 0.75 z = 1  z = 1.25 z = 1.5 z = 1.75 z = 2 z = 3 
1.30 0.980 1.540 2.140 2.730 3.300 3.850 4.390 4.900 5.420 7.390 
1.35 1.02 1.64 2.29 2.94 3.57 4.18 4.76 5.34 5.90 8.10 
1.40 1.07 1.74 2.45 3.16 3.85 4.52 5.18 5.80 6.43 8.83 
1.45 1.11 1.84 2.61 3.39 4.15 4.88 5.60 6.29 6.98 9.62 

                      
1.50 1.16 1.94 2.78 3.63 4.46 5.26 6.04 6.81 7.55 10.40 
1.55 1.20 2.05 2.96 3.88 4.78 5.65 6.50 7.33 8.14 11.30 
1.60 1.25 2.15 3.14 4.14 5.12 6.06 6.99 7.89 8.79 12.20 
1.65 1.30 2.27 3.33 4.41 5.47 6.49 7.50 8.47 9.42 13.20 
1.70 1.34 2.38 3.52 4.69 5.83 6.94 8.02 9.08 10.10 14.20 

                      
1.75 1.39 2.50 3.73 4.98 6.21 7.41 8.57 9.72 10.90 15.20 
1.80 1.43 2.62 3.93 5.28 6.60 7.89 9.13 10.40 11.60 16.30 
1.85 1.48 2.74 4.15 5.59 7.01 8.40 9.75 11.10 12.40 17.40 
1.90 1.52 2.86 4.36 5.91 7.43 8.91 10.40 12.40 13.20 18.70 
1.95 1.57 2.99 4.59 6.24 7.87 9.46 11.00 12.50 14.00 19.90 

                      
2.00 1.61 3.12 4.83 6.58 8.32 10.00 11.70 13.30 14.90 21.10 
2.10 1.71 3.39 5.31 7.30 9.27 11.20 13.10 15.00 16.80 23.90 
2.20 1.79 3.67 5.82 8.06 10.30 12.50 14.60 16.70 18.70 26.80 
2.30 1.89 3.96 6.36 8.86 11.30 13.80 16.20 18.60 20.90 30.00 
2.40 1.98 4.26 6.93 9.72 12.50 15.30 17.90 20.60 23.10 33.40 

                      
2.50 2.07 4.58 7.52 10.60 13.70 16.80 19.80 22.70 25.60 37.00 
2.60 2.16 4.90 8.14 11.60 15.00 18.40 21.70 25.00 28.20 40.80 
2.70 2.26 5.24 8.80 12.60 16.30 20.10 23.80 27.40 31.00 44.80 
2.80 2.35 5.59 9.49 13.60 17.80 21.90 25.90 29.90 33.80 49.10 
2.90 2.44 5.95 10.20 14.70 19.30 23.80 28.20 32.60 36.90 53.70 

                      
3.00 2.53 6.33 11.00 15.90 20.90 25.80 30.60 35.40 40.10 58.40 
3.20 2.72 7.12 12.50 18.30 24.20 30.10 25.80 41.50 47.10 68.90 
3.40 2.90 7.97 14.20 21.00 27.90 34.80 41.50 48.20 54.60 80.20 
3.60 3.09 8.86 16.10 24.00 32.00 39.90 47.80 55.50 63.00 92.80 
3.80 3.28 9.81 18.10 27.10 36.30 45.50 54.60 63.50 72.40 107 
4.00 3.46 10.8 20.2 30.5 41.1 51.6 61.9 72.1 82.2 122 
4.50 3.92 13.5 26.2 40.1 54.5 68.8 82.9 96.9 111 164 
5.00 4.39 16.7 33.1 51.5 70.3 89.2 108 126 145 216 

1 for y /b less than 0.04, use of the assumption R = y is more convenient and more accurate than interpolation in the table.
y = depth of flow, m (ft)         
Q = discharge by Manning’s Equation, m3/s (ft3/s)      
n = Manning’s coefficient          
S = channel bottom and water surface slope       
α = units conversion = 1.49 for SI, 1 for CU       
z = side slope, 1:z (V:H)         
b = bottom width        Source: USBR (1974)
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Table B.2. Uniform Flow in Circular Sections Flowing Partly Full 

y/D A/D2  R/D  
(αQn)    

(D8/3 S1/2)  
(αQn)   

(y8/3 S1/2) y/D A/D2  R/D  
(αQn)    

(D8/3 S1/2)  
(αQn)   

(y8/3 S1/2) 
0.01 0.0013 0.0066 0.00007 15.04 0.51 0.4027 0.2531 0.239 1.442 
0.02 0.0037 0.0132 0.00031 10.57 0.52 0.4127 0.2562 0.247 0.415 
0.03 0.0069 0.0197 0.00074 8.56 0.53 0.4227 0.2592 0.255 1.388 
0.04 0.0105 0.0262 0.00138 7.38 0.54 0.4327 0.2621 0.263 1.362 

           
0.05 0.0147 0.0325 0.00222 6.55 0.55 0.4426 0.2649 0.271 1.336 
0.06 0.0192 0.0389 0.00328 5.95 0.56 0.4526 0.2676 0.279 1.311 
0.07 0.0294 0.0451 0.00455 5.47 0.57 0.1626 0.2703 0.287 1.286 
0.08 0.0350 0.0513 0.00604 5.09 0.58 0.4724 0.2728 0.295 1.262 
0.09 0.0378 0.0575 0.00775 4.76 0.59 0.4822 0.2753 0.303 1.238 

           
0.10 0.0409 0.0635 0.0097 4.49 0.60 0.4920 0.2776 0.311 1.215 
0.11 0.0470 0.0695 0.0118 4.25 0.61 0.5018 0.2799 0.319 1.192 
0.12 0.0534 0.0755 0.0142 4.04 0.62 0.5115 0.2821 0.327 1.170 
0.13 0.0600 0.0813 0.0167 3.86 0.63 0.5212 0.2842 0.335 1.148 
0.14 0.0668 0.0871 0.0195 3.69 0.64 0.5308 0.2862 0.343 1.126 

           
0.15 0.0739 0.0929 0.0225 3.54 0.65 0.5405 0.2988 0.350 1.105 
0.16 0.0811 0.0985 0.0257 3.41 0.66 0.5499 0.2900 0.358 1.084 
0.17 0.0885 0.1042 0.0291 3.28 0.67 0.5594 0.2917 0.366 1.064 
0.18 0.0961 0.1097 0.0327 3.17 0.68 0.5687 0.2933 0.373 1.044 
0.19 0.0139 0.1152 0.0365 3.06 0.69 0.5780 0.2948 0.380 1.024 

           
0.20 0.1118 0.1206 0.0406 2.96 0.70 0.5872 0.2962 0.388 1.004 
0.21 0.1199 0.1259 0.0448 2.87 0.71 0.5964 0.2975 0.395 0.985 
0.22 0.1281 0.1312 0.0492 2.79 0.72 0.6054 0.2987 0.402 0.965 
0.23 0.1365 0.1364 0.0537 2.71 0.73 0.6143 0.2998 0.409 0.947 
0.24 0.1449 0.1416 0.0585 2.63 0.74 0.6231 0.3008 0.416 0.928 

           
0.25 0.1535 0.1466 0.0634 2.56 0.75 0.6319 0.3042 0.422 0.910 
0.26 0.1623 0.1516 0.0686 2.49 0.76 0.6405 0.3043 0.429 0.891 
0.27 0.1711 0.1566 0.0739 2.42 0.77 0.6489 0.3043 0.435 0.873 
0.28 0.1800 0.1614 0.0793 2.36 0.78 0.6573 0.3041 0.441 0.856 
0.29 0.1890 0.1662 0.0849 2.30 0.79 0.6655 0.3039 0.447 0.838 
0.30 0.1982 0.1709 0.0907 2.25 0.80 0.6736 0.3042 0.453 0.821 
0.31 0.2074 0.1756 0.0966 2.20 0.81 0.6815 0.3043 0.458 0.804 
0.32 0.2167 0.1802 0.1027 2.14 0.82 0.6893 0.3043 0.463 0.787 
0.33 0.2260 0.1847 0.1089 2.09 0.83 0.6969 0.3041 0.468 0.770 
0.34 0.2355 0.1891 0.1153 2.05 0.84 0.7043 0.3038 0.473 0.753 

           
0.35 0.2450 0.1935 0.1218 2.00 0.85 0.7115 0.3033 0.453 0.736 
0.36 0.2546 0.1978 0.1284 1.958 0.86 0.7186 0.3026 0.458 0.720 
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y/D A/D2  R/D  
(αQn)    

(D8/3 S1/2)  
(αQn)   

(y8/3 S1/2) y/D A/D2  R/D  
(αQn)    

(D8/3 S1/2)  
(αQn)   

(y8/3 S1/2) 
0.37 0.2642 0.2020 0.1351 1.915 0.87 0.7254 0.3018 0.485 0.703 
0.38 0.2739 0.2062 0.1420 1.875 0.88 0.7320 0.3007 0.488 0.687 
0.39 0.2836 0.2102 0.1490 1.835 0.89 0.7384 0.2995 0.491 0.670 

           
0.40 0.2934 0.2142 0.1561 1.797 0.90 0.7445 0.2980 0.494 0.654 
0.41 0.3032 0.2182 0.1633 1.760 0.91 0.7504 0.2963 0.496 0.637 
0.42 0.3130 0.2220 0.1705 1.724 0.92 0.7560 0.2944 0.497 0.621 
0.43 0.3229 0.2258 0.1779 1.689 0.93 0.7612 0.2921 0.498 0.604 
0.44 0.3328 0.2295 0.1854 1.655 0.94 0.7662 0.2895 0.498 0.588 

           
0.45 0.3428 0.2331 0.1929 1.622 0.95 0.7707 0.2865 0.498 0.571 
0.46 0.3527 0.2366 0.201 1.590 0.96 0.7749 0.2829 0.496 0.553 
0.47 0.3627 0.2401 0.208 1.559 0.97 0.7785 0.2787 0.494 0.535 
0.48 0.3727 0.2435 0.216 1.530 0.98 0.7817 0.2735 0.489 0.517 
0.49 0.3827 0.2468 0.224 1.500 0.99 0.7841 0.2666 0.483 0.496 

           
0.50 0.3927 0.2500 0.232 1.471 1.00 0.7854 0.2500 0.463 0.463 

y = depth of flow, m (ft)  Q = discharge by Manning's Equation, m3/s (ft3/s) 
D = diameter of pipe, m (ft)   n = Manning's coefficient  
A = area of flow, m2 (ft2)  S = channel bottom and water surface slope  
R= hydraulic radius, m (ft)  α = units conversion = 1.49 for SI, 1 for CU 
Source: USBR (1974)   
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APPENDIX C: STRUCTURAL CONSIDERATIONS FOR ROUGHNESS ELEMENTS 
Blocks, sills, and other roughness elements are used to impose exaggerated resistance to flow 
and to force and stabilize the hydraulic jump. They may be employed inside the culvert barrel, at 
the culvert exit or in open channels. Roughness elements must be anchored sufficiently to 
withstand the drag forces on the elements. The fluid dynamic drag equation is: 

 FD = CD AF ρ Va
2 /2 (C.1) 

where, 
 CD = coefficient of drag  (The maximum CD for a structural angle or a rectangular block 

is 1.98 (Horner, 1965).) 
  ρ = density of water, 1000 kg/m3 (1.94 slugs/ft3) 
 Va = approach velocity acting on roughness element, m/s (ft/s)  
 
The roughness elements in the CSU rigid boundary basin, the USBR basins, the SAF basin, 
and internal dissipators must be able to satisfactorily resist the drag force over the lifetime of the 
structure.  The drag force may be assumed to act at the center of the roughness element as 
shown in Figure C.1. 

 

Figure C.1. Forces Acting on a Roughness Element  

The anchor forces necessary to resist overturning can be computed as follows:  

 FA = hFD/2Lc = 0.5 (h/Lc) AFρVa
2  (C.2) 

where, 
 FA = total force on anchors 
 FD = drag force on roughness element 
 h = height of roughness, m (ft)  
 LC = distance from downstream edge of roughness element to the centroid of the 

anchors, m (ft) 
 AF = frontal area of roughness element, m2 (ft2) 
 Va = approach velocity acting on roughness element, m/s (ft/s)  
 ρ = density of water, 1000 kg/m3 (1.94 slugs/ft3) 
 
The approach velocity, Va, should be selected as a worst case using the approach velocity at 
the first row for Va.  In cases of tumbling flow or increased resistance on steep slopes, use the 
normal velocity of the culvert without roughness elements for Va. 
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APPENDIX D: RIPRAP APRON SIZING EQUATIONS 
A variety of relationships for sizing riprap aprons have been developed.  Six are summarized 
and compared in this appendix.  The first is from the Urban Drainage and Flood Control District 
in Denver Colorado (UD&FCD, 2004).  These equations consider tailwater in addition to a 
measure of flow intensity. 
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where, 
 D50 = riprap size, m (ft) 
 Q = design discharge, m3/s (ft3/s) 
 D = culvert diameter (circular) or culvert rise (rectangular), m (ft) 
 B = culvert span (rectangular), m (ft) 
 TW = tailwater depth, m (ft) 
 α = unit conversion constant, 1.811 (SI) and 1.0 (CU) 
 
An equation in Berry (1948) and Peterka (1978) has been used for apron riprap sizing.  It is only 
based on velocity. 

 2
50 VD α=  (D.2) 

where, 
 V = culvert exit velocity, m/s (ft/s) 
 α = unit conversion constant, 0.0413 (SI) and 0.0126 (CU) 
 
A relationship used in the previous edition of HEC 14 from Searcy (1967) and also found in HEC 
11 (Brown and Clyde, 1989) for sizing riprap protection for piers is based on velocity. 
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where, 
 S = riprap specific gravity 
 
Bohan (1970) developed two relationships based on laboratory testing that considered, among 
other factors, whether the culvert was subjected to “minimum” tailwater (TW/D < 0.5) or 
“maximum” tailwater (TW/D > 0.5).  The equations for minimum and maximum tailwater, 
respectively, are as follows: 

 o50 DFr25.0D =  (D.4a) 
 
 ( )15.0Fr25.0DD o50 −=  (D.4b) 
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where, 
 Fro = Froude number at the outlet defined as Vo/(gD)0.5 
 
Fletcher and Grace (1972) used the laboratory data from Bohan and other sources to develop a 
similar equation to Equation D.1. 
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where, 
 α = unit conversion constant, 0.55 (SI) and 1.0 (CU) 
 
Finally, the USDA/SCS has a series of charts for sizing riprap for aprons.  These charts appear 
to be based on Bohan (Equation D.4a and D.4b). 

Equation D.2 (Berry) and Equation D.3 (Searcy) are similar in their exclusive reliance on velocity 
as the predictor variable and differ only in terms of their coefficient.  Equation D.1 (UD&FCD), 
Equation D.4 (Bohan), and Equation D.5 (Fletcher and Grace) incorporate some sort of flow 
intensity parameter, i.e. relative discharge or Froude number, as well as relative tailwater depth.  
(Bohan incorporates tailwater by having separate minimum and maximum tailwater equations.)  
UD&FCD and Fletcher and Grace have identical forms but differ in their coefficient and 
exponents. 

These equations and the USDA charts were compared based on a series of hypothetical 
situations.  A total of 10 scenarios were run with HY8 to generate outlet velocity conditions for 
testing the equations.  The 10 scenarios included the following variations: 

• Two culvert sizes, 760 and 1200 mm (30 to 48 in) metal pipe culverts 

• Discharges ranging from (1.1 to 4.2 m3/s) (40 to 150 ft3/s) 

• Slope and tailwater changes resulting in 5 inlet control and 5 outlet control cases 

Figures D.1, D.2, and D.3 compare the recommended riprap size, D50, relative to the outlet 
velocity, V, discharge intensity, Q/D2.5, and relative tailwater depth, TW/D.  The recommended 
D50 varies widely, but it is clear that the Berry equation (Equation D.2) results in the highest 
values for the range of conditions evaluated. 

Equations D.2 and D.3 are not recommended because they do not consider tailwater effects.  
Equation D.4 is not further considered because it treats tailwater only as two separate 
conditions, minimum and maximum.  Equations D.1 and D.5 are similar in their approach and 
are based on laboratory data.  Both would probably both generate reasonable designs.  For the 
ten hypothetical cases evaluated Equation D.1 produced the higher recommendation 3 times 
and the lower recommendation 7 times.  Therefore, Equation D.5 is included in Chapter 10 of 
this manual.   
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Figure D.1. D50 versus Outlet Velocity 

 

Figure D.2. D50 versus Discharge Intensity 
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Figure D.3. D50 versus Relative Tailwater Depth 
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