Federal Highway Administration Every Day Counts Innovation Initiative

Safety Edge_{SM} Demonstration Project Seaford, Delaware

Field Report January 30, 2011

1. Report No.	2. Governi	ment Accession No	3.]	Recipient's Catalo	og No
3. Title and Subtitle			5. 1	Report Date	
		-		January 30. 2011	
Safety Edge _{SM} Project, Seaford, Delawa	re		6. l	Performing Organ	ization Code
7. Authors			8.	Performing Organ	ization Report No.
Harold Von Quintus and Jagannath Mall	ela			0 0	
9. Performing Organization Name and Add	ress		10.	Work Unit No.	
Applied Research Associates, Inc.					
100 Trade Centre Drive, Suite 200			11. (Contract or Grant	No.
Champaign, IL 61820					
12. Sponsoring Agency Name and Address			13.	Type of Report a	nd Period Covered
Office of Infrastructure				Report	
Federal Highway Administration		_		August 2010–Jan	uary 2011
1200 New Jersey Avenue, SE			14.	Sponsoring Agen	cy Code
Washington, DC 20590					
15. Supplementary Notes					
Contracting Officer's Technical Represe	ntative: Byron	Lord and Mary Huie			
Contracting Officer's Technical Manager	: Andy Merger	imeier			
16. Abstract					
In a coordinated effort with highway authorit identify and promote cost effective innovation system, decrease project delivery time, and pr initiative in which the edge of the road is bev roadways to more easily return to the road wi off the other side of the roadway.	es and industr ns to bring abo rotect our envir eled during con thout over corr	y leaders, the Every Da ut rapid change to incre- conment. The Safety E instruction for the purpo- ecting and running into	ay Co ease s dge _{SN} ose of o the	bunts initiative serv safety of our natio M concept is an exa f helping drivers w path of oncoming	ves as a catalyst to ns highway ample of one such ho migrate off the traffic or running
This field report documents the observations asphalt (WMA) overlay project near Seaford, demonstrated during this project. Details reg properties of the finished Safety Edge _{SM} are p most successful in forming the Safety Edge _{SM}	made on the co Delaware. Sa arding the perf resented for th	onstruction of Safety Ed fety Edge _{SM} paving dev ormance of each device e purpose of understan	dge _{SM} vices e alor ding	$_{A}$ on a two lane hig from two manufa- ng with the shape a what processes an	ghway warm mix cturers were and physical id techniques were
The findings from this overlay project and oth process and material performance necessary to highways safer.	ner similar ong o bring this ini	oing projects form the novation into common	basis highv	for understanding way practice and n	the construction nake our Nation's
17. Key Words		18. Distribution State	emen	it	
Safety Edge _{SM} , Slope, WMA, Advant-E	lger,	No restriction. T	his d	locument is availal	ble to the public
TransTech Shoulder Wedge Maker		through the High	iway	s for LIFE website	2:
		http://www.fhwa	<u>a.dot.</u>	.gov/hfl/	
Security Classif (of this report)	9 Security C1	assif (of this page)	20	No of Pages	21 Price
Unclassified	Un	classified	20	30	21. 11100

			SI* (MODERN	METRIC	C) CON	ERSION FACT	TORS		
	APPROXIMATE	CONVERS	ONS TO SI UNITS			APPROXIM	ATE CONVERSI	ONS FROM SI UNITS	
Symbol	When You Know	Multiply	By To Find	Symbol	Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH					LENGTH		
(none)	mil	25.4	micrometers	μm	μm	micrometers	0.039	mli	(none)
In	inches	25.4	millimeters	mm	mm	millimeters	0.039	Inches	in
π	feet	0.305	meters	m	m	meters	3.28	feet	n
yd	yards	0.914	meters	m	m	meters	1.09	yards	yd
ml	miles	1.61	kliometers	km	km	kliometers	0.621	miles	mi
		AREA					AREA		
In ²	square Inches	645.2	square millimeters	mm²	mm²	square millimeters	0.0016	square Inches	ln ²
ft ²	square feet	0.093	square meters	m²	m ²	square meters	10.764	square feet	ft ²
yd²	square yard	0.836	square meters	m²	m²	square meters	1.195	square yards	yd ²
ac	acres	0.405	hectares	ha	ha	hectares	2.47	acres	ac
ml*	square miles	2.59	square kliometers	km*	km*	square kilometers	0.386	square miles	mi*
		VOLUME					VOLUME		
floz	fluid ounces	29.57	milliters	mL	mL	milliters	0.034	fluid ounces	fl oz
gal	gallons	3.785	liters	L	L	liters	0.264	gallons	gal
ft ³	cubic feet	0.028	cubic meters	m ³	m ³	cubic meters	35.71	cubic feet	n ³
yd ³	cubic yards	0.765	cubic meters	m ³	m ³	cubic meters	1.307	cubic yards	yd ³
NOTE: volur	mes greater than 1000 shall	be shown in r	n ³						
		MASS					MASS		
oz	ounces	28.35	grams	g	g	grams	0.035	ounces	oz
Ib	pounds	0.454	kliograms	kg	kg	kliograms	2.202	pounds	lb
т	short tons (2000 lb)	0.907	megagrams (metric tons)	Mg (or t)	Mg (or t)	megagrams (metric tons	5) 1.103	short tons (2000 lb)	т
	TEMPERA	TURE (exact	degrees)			TEMPER	ATURE (exact de	1668)	
°F	Fahrenheit	5 (F-32)/9	Celsius	°C	°c	Celsius	1.8C+32	Fahrenhelt	°F
	10	LUMINATION					LEOMINATION		
IC C	root-candles	10.76	iux	IX	IX	IUX	0.0929	toot-candles	TC .
n	toot-Lamberts	3.426	canoeia/m	ca/m	ca/m	canoela/m*	0.2919	foot-Lamberts	n
	FORCE and	PRESSURE	or STRESS			FORCE an	d PRESSURE or S	TRESS	
ID	pounds	4.45	Newtons	N	N	Newtons	0.225	pounds	ID
iovin" (pei)	pounds per square inch	6.89	KIIOPascals	kPa	kPa	KIIOPascais	0.145	pounds per square inch	ib/in* (psi)
k/in* (ksl)	kips per square inch	6.89	megaPascals	мра	MPa	megaPascais	0.145	kips per square inch	k/in* (ksi)
		DENSITY					DENSITY		
lb/ft ³ (pcf)	pounds per cubic foot	16.02	kliograms per cubic meter	kg/m ³	kg/m ³	pounds per cubic foot	0.062	kilograms per cubic meter	lb/ft ³ (pcf)
*SI is the syn	mbol for the International Sy	stem of Units	Appropriate rounding should	be made to c	omply with Se	ction 4 of ASTM E380.	(Revised \$	eptember 1993)	

FOREWORD

The purpose of this field report is to provide a summary of observations made during the warm mix asphalt (WMA) Safety $Edge_{SM}$ project located along Old Furnace Road just northeast of Seaford, Delaware. These observations and data are to be used with similar information from other Safety $Edge_{SM}$ projects to facilitate the development of standards and guidance for Safety $Edge_{SM}$ construction and long term performance.

All field and laboratory test results, WMA mixture design data, observations made during paving, and comments provided by construction personnel are included in the Field Evaluation Form that is provided as a separate document to this field report. This field report is a summary of the observations and field data measured during construction on August 25 to 27, 2010. In addition, it includes the results from field tests performed on a section that was paved on August 19 and 20, 2010.

Table of Contents

Topic	Page
FOREWORD	1
SUMMARY OF OBSERVATIONS	
Overall Opinion of the Safety Edge _{SM}	
Slope of the Safety Edge _{SM}	
Placement	
Compaction	
Shoulder Construction	
WMA Mixture and Safety Edge _{SM}	
FIELD EVALUATION OF WMA OVERLAY WITH SAFETY EDGE _{SM}	5
INTRODUCTION	5
PAVEMENT STRUCTURE AND PROJECT CONDITIONS	5
FIELD EVALUATION	9
Slope Measurements	
Cores	
Longitudinal Profile Measurements	
OBSERVATIONS MADE DURING PAVING WITH SAFETY EDGE _{SM}	
Surface Preparation	
Placement/Paving Operations	
Compaction Operations	
HMA Mixture Characteristics and the Safety Edge _{SM}	
Other Observations	
FINDINGS AND CONCLUSIONS	
APPENDIX	
DATA TABLES FROM FIELD MEASUREMENTS	A-2
PHOTOGRAPHS OF SELECTED CORES RECOVERED FROM THE PROJECT	A-6

SUMMARY OF OBSERVATIONS

This section of the report provides a summary and listing of important observations made during the paving operations, interview with paving personnel, and findings from the field measurements taken during paving that are expected to have a significant impact on the performance of this project.

Overall Opinion of the Safety $Edge_{SM}$

• The Safety Edge_{SM} did not have a detrimental impact on the contractor's paving operation during mainline paving. A couple of issues, however, were encountered that need to be resolved and are noted in the following bullet items.

Slope of the Safety $Edge_{SM}$

• The average slope of the Safety $Edge_{SM}$ was found to vary from 37 to 50° for the different sections. It was the opinion of construction personnel that the slope of the Safety $Edge_{SM}$ device would need to be flattened to about 20 to 25° to meet the planned 30° requirement.

Placement

- The Safety Edge_{SM} was formed using two devices at different times during paving; the TransTech Shoulder Wedge Maker device and the Advant-Edger device. The TransTech device was used to place warm mix asphalt (WMA) during the week of August 19. The Advant-Edger device was used during observations made for this field report. Both were properly bolted to the screed. The project superintendent commented that there was no difference between the two devices, but the screed operator commented that the Advant-Edger seemed to work better, resulting in a smoother edge condition.
- Both contractor and agency personnel voiced a concern that paving across intersections or in areas with higher longitudinal profile; the Safety Edge_{SM} devices raise the screed relative to the profile set by the longitudinal ski. Both also commented that it was difficult to get a good tie-in to existing driveways and other hard surfaces.

Compaction

- The WMA density or percent compaction of the Safety Edge_{SM} sections was found to be higher than for the non-Safety Edge_{SM} sections. Thus, the Safety Edge_{SM} is believed to have a confining effect on rolling an unconfined edge. This observation is considered a benefit to the use of the Safety Edge_{SM}.
- The air voids of the interior WMA mat were considered good to fair with a mean value from 7.3 to 8.9 percent for the different sections. The air voids determined along the edge of the mat were high; varying from 8.6 to 13.5 percent. High air voids have a detrimental impact on pavement performance.

Shoulder Construction

• Existing fine to coarse-grained soil was planned to be used for the shoulder backing material. Placement of the backing material was not observed because the contractor planned to place it after all paving had been completed.

WMA Mixture and Safety Edge_{SM}

- Longitudinal segregation or different surface texture was observed along the edge of each slat conveyor of the paver.
- The planned WMA overlay thickness was 2.0 inches. The average overlay thickness for the Safety Edge_{SM} sections was found to vary from 2.0 to 2.7 inches.

This Safety $Edge_{SM}$ project should be monitored over time to determine its long-term performance and the frequency of any required maintenance operations, as well as the life cycle cost of the Safety $Edge_{SM}$ and its effectiveness over time.

FIELD EVALUATION OF WMA OVERLAY WITH SAFETY $EDGE_{SM}$

Introduction

A series of field tests were carried out to assess the placement and condition of the warm mix asphalt (WMA) overlay placed along Old Furnace Road just northeast of Seaford, Delaware, with and without the use of the Safety $Edge_{SM}$ devices. The paving contractor for this project was American Infrastructure. The Contractor used the TransTech Shoulder Wedge Maker device during the first part of the project and the Advant-Edger device for the latter part. The purpose of this field study was to evaluate the quality of the in-place WMA mixture and Safety $Edge_{SM}$ by investigating three issues or features.

- 1. Correct use of Safety Edge_{SM} device during paving.
- 2. Safety Edge_{SM} versus non-Safety Edge_{SM} portions of project.
- 3. Slope of the Safety $Edge_{SM}$.

The location of the project was in Sussex County, as shown in Figure 1. The project started just east of the intersection between U.S. Highway 13 (Sussex Highway) and Old Furnace Road, and ended at the intersection between Old Furnace and Cokesbury Road; just west of Old Furnace. The Safety Edge_{SM} sections were located along the eastern portion of the project.

Pavement Structure and Project Conditions

The project consisted of repairing some localized areas with extensive cracking and distortions, widening the roadway by 2 ft, and placing a 2-inch lift of a 9.5-mm WMA mix over the existing HMA pavement. Figure 2 shows the typical cracking and surface condition of the existing pavement along this project. Figure 3 provides a general view of the Figure 2 in WMA overlay and typical cross section of the pavement. In preparation for the WMA overlay, the following activities and repairs were made.

- The existing shoulder was graded along some areas of the project to remove grass and other debris (refer to Figure 4).
- About 1 ft of HMA was placed to widen the roadway on each side (refer to Figure 5).
- Localized repairs or patches were placed in selected areas of the roadway where extensive cracking and distortions have occurred.
- An emulsion tack coat was placed on the existing surface and patches (refer to Figure 5).

The ditches along the edge of the pavement were generally shallow (1 to 3 ft) with shallow slopes (10 to 30°). No lane-shoulder drop-offs were observed; however, the shoulder had been graded and the roadway widened on each side of the roadway prior to visiting the project. Figure 3 through Figure 6 include general views of the roadway during construction. The Safety $Edge_{SM}$ backing material was planned to be an on-site fine to coarse-grained soil. The backing material was scheduled to be graded back to the Safety $Edge_{SM}$ near the end of this rehabilitation project, after paving.

Figure 1. Site location.

Figure 2. Typical condition of the existing surface (with tack coat applied).

Figure 3. WMA overlay placed in the westbound lane.

Figure 4. Edge of pavement graded in some areas to remove grass and debris.

Figure 5. 1.0-ft widening strip placed on both sides of the roadway.

Figure 6. General view of the roadway and right-of-way.

Field Evaluation

Four sections were identified and marked during the paving operation; three Safety $Edge_{SM}$ sections and one section without the Safety $Edge_{SM}$ device. Station numbers were unavailable for referencing the sections, so all sections were located related to telephone poles along the project. The following summarizes the four sections included within this project.

- 1. Area #1, Advant-Edger Safety $Edge_{SM}$ section, westbound lane; telephone pole #44155, localized station numbers increase to the west from the designated telephone pole.
- 2. Area #2, Advant-Edger Safety $Edge_{SM}$ section, westbound lane; telephone pole #44128, localized station numbers increase to the west from the designated telephone pole.
- Area #3, TransTech Shoulder Wedge Maker Safety Edge_{SM} section, westbound lane; telephone pole #44010, localized station numbers increase to the west from the designated telephone pole.
- 4. Area #4, non-Safety Edge_{SM} section, westbound lane; telephone pole #44128. This non-Safety Edge_{SM} section was to be located on August 21, 2010, but the plant was not operating because of electrical problems. Thus, the section was located within Area #2 of the Advant-Edger. The non-Safety Edge_{SM} was designated along the centerline joint—the opposite side of the paver without the Safety Edge_{SM} device.

Field tests were conducted within each test section for measuring slope and WMA density. Slope measurements were taken using a straight-edge (4-ft aluminum level) and 6-inch ruler (refer to Figure 7), while density readings were taken adjacent to and 3 ft from the mat's edge using a Troxler 3430 nuclear density gauge (refer to Figure 8).

Figure 7. Safety $Edge_{SM}$ angle measurement.

Figure 8. Troxler 3430 nuclear density gauge used to measure WMA density.

Eight cores were taken in the test sections established during the paving operation. The eight cores were obtained at four different locations within the Safety Edge_{SM} sections. The cores were taken for calibration of the nuclear density gauge readings, and to observe the mix near the center of the mat and adjacent to the mat's edge. Cores were planned for two other locations in the non-Safety Edge_{SM} section. However, paving on the last day of the field visit was cancelled because of electrical problems at the plant. The two cores used for acceptance (away from the edge) from the area designated as Area #2 were requested to increase the number of data points for determining the correction or adjustment factors between the nuclear density gauge and laboratory measured densities. Bulk specific gravities of these additional cores were not obtained.

Slope Measurements

Slope measurements were taken using a straight-edge to measure the width and thickness of the taper of the Safety $Edge_{SM}$; prior to any rolling and after final rolling. The average slope of the Safety $Edge_{SM}$ sections is summarized in Table 1.

		Slope of Safety Edge _{SM}				
	Section/Area Designation	Maan dagraas	Coefficient of			
		Mean, degrees	Variation, %			
Pri	ior to Rolling; mean of two areas	34.1	5.2			
	After Final R	olling				
1	Advant-Edger	45.4	10.8			
2	Advant-Edger	50.0	11.4			
3	TransTech Shoulder Wedge Maker	36.6	24.3			

Table 1. Summary of the Safety Edge_{SM} slope measurements.

The slope of the Safety $Edge_{SM}$ prior to rolling the unconfined edge was 34.1°. The average slope for the Safety $Edge_{SM}$ created with the TransTech device after final rolling was about the same as prior to rolling, while the slope for Advant-Edger section was much steeper after final rolling. The Safety $Edge_{SM}$ created with the TransTech device was placed on August 19 or 20, and the Safety $Edge_{SM}$ created with the Advant-Edger device was placed on August 25 and 26. The WMA mixture was observed to shove and "push out" under the steel wheel vibratory roller for the paving on August 26. The reason for the difference in Safety $Edge_{SM}$ slopes between the two devices is unknown, but it was reported that the mixture did change and corrections to production had to be made between the two paving dates. In fact, the production plant was shut down on August 26 to make adjustments to the WMA mixture.

The other important observation relates to the variability of the Safety $Edge_{SM}$ slope measurements, as listed above. The coefficient of variation of the Safety $Edge_{SM}$ slope created by the Advant-Edger device prior to any rolling was about half the value determined after final rolling. The coefficient of variation of the Safety $Edge_{SM}$ slope for the TransTech device after final rolling was significantly greater than for the other sections. The reason for the higher variability but lower slope was unknown.

All slope measurements are listed in Tables A-1 through A-3 of Appendix A. Figure 9 includes a comparison between the slope of the Safety $Edge_{SM}$ after final rolling and thickness of the

Other slope measurements were made at random along the Safety $Edge_{SM}$ in other areas of the project and the results were the same as for the specific Safety $Edge_{SM}$ sections established for future performance reviews. Thus, the slope of the Safety $Edge_{SM}$ was found to be steeper than what was planned.

Cores

A total of eight cores were drilled along the project. Two cores were taken at each station or location; in the same areas where the densities were measured with the Troxler nuclear density gauge. These cores were taken to measure the bulk specific gravity of the WMA for developing a correction factor for the nuclear density gauge readings taken adjacent to the edge and within the center of the mat. Figure 10 shows the location of the cores and nuclear density gauge readings relative to the edge of the WMA mat. Photographs of all eight cores recovered from the roadway are included in the appendix. A summary of these test results; core thickness and bulk specific gravities (saturated surface dry) converted to bulk densities is included in Table A-4 in Appendix A. Figure 11 is a comparison of the core densities taken along the edge and 3 ft from the edge (center of the steel drum breakdown roller) for the Safety Edge_{SM} sections. As expected, densities 3 ft from the edge are higher than along the edge of the mat (unconfined edge).

Figure 10. Photos showing location of cores and nuclear density tests made with the Troxler 3430 gauge (nuclear density readings were taken and then the WMA mix was cored).

Nuclear Density Results

Density measurements were made with a Troxler 3430 gauge. Two readings were taken at each point; one with the gauge parallel and the other perpendicular to the centerline. Two points were marked at each station or location; one point adjacent to the Safety $Edge_{SM}$ and the other 3-ft from the edge.

Nuclear density gauge readings were taken before drilling each core. Figure 12 is a comparison of the nuclear gauge readings and densities measured on the cores. As shown, there is a positive bias for the readings taken adjacent to the edge of the mat. Adjustment factors were determined for the nuclear gauge readings taken at the edge of the mat and 3 ft from the edge. The adjustment factors are included in Table A-4 and the nuclear density gauge readings at each point are listed in Table A-5 and Table A-6 in Appendix A. The following summarizes the adjustment factors determined for this project.

Location	Adjustment Factor
Near Center of Steel Drum	0.957
Adjacent to Safety Edge _{SM}	1.000

These factors were used to adjust the nuclear density gauge readings to be consistent with the densities that would be measured in the laboratory. The adjusted densities using the correction factors are included in Table A-5 and A-6 in Appendix A.

Figure 13 shows a comparison of the adjusted nuclear density gauge readings taken adjacent to the Safety $Edge_{SM}$ and 3 ft from the edge. Figure 13 also includes a comparison of the WMA air voids between both of these areas. As shown, the air voids are higher adjacent to the Safety $Edge_{SM}$, in comparison to 3 ft from the Safety $Edge_{SM}$.

Figure 12. Comparison of the nuclear gauge readings and densities measured on cores recovered from the WMA mat.

Figure 13. Comparison of the adjusted nuclear density readings and air voids between the areas adjacent to the edge and 3 ft from the edge.

Figure 9 included a comparison between the WMA thickness (near the Safety $Edge_{SM}$) and slope of the Safety $Edge_{SM}$. The thickness of the WMA has little to no effect on the slope of the Safety $Edge_{SM}$. Figure 14 shows a comparison of the density and WMA overlay thickness. As shown, there is also little correspondence between the overlay thickness and air voids or densities.

Longitudinal Profile Measurements

Longitudinal profile measurements were not planned nor measured for this project.

Observations Made During Paving with Safety Edge_{SM}

This section discusses the observations made during the paving and rolling operations that could have a significant impact on the performance of the Safety $Edge_{SM}$ over time. As stated in the Introduction to the Field Report section, the objective of this field study was to evaluate the quality of the in-place WMA material and Safety $Edge_{SM}$ by investigating three features.

- 1. Correct use of Safety Edge_{SM} device during paving.
- 2. Safety Edge_{SM} versus non-Safety Edge_{SM} portions of project.
- 3. Slope of the Safety $Edge_{SM}$.

Surface Preparation

The following lists the different activities performed by the contractor prior to placing the WMA overlay.

- 1. The edge of the pavement was graded to remove grass and other debris along the edge of the roadway prior to placing the overlay (refer to Figure 4).
- 2. The roadway was widened by 1 ft on each side (refer to Figure 5).
- 3. Localized WMA patches were placed in selected areas along the project where extensive cracking and surface distortions have occurred.
- 4. An emulsion tack coat was applied prior to the WMA overlay. The application of the tack coat was uniform and covered the entire surface (refer to Figure 5 and Figure 6).

Placement/Paving Operations

Figure 15 shows the equipment used to place the WMA overlay. The paving contractor operated the paver in the automatic longitudinal grade control mode and used non-contact sonic sensors for controlling the grade. The production plant was down for about 1.5 hours to make some WMA mixture revisions on August 26 to bring the mixture into specification. Free water was observed flowing from the back of a few truck beds. Excess water could explain some of the mixture tenderness characteristics observed during compaction (explained in the next section on *Compaction Operations*).

Figure 16 shows the Advant-Edger device attached to the screed. The project superintendent commented that there was no difference between the two devices, but the screed operator commented that the Advant-Edger seemed to work better than the TransTech device, resulting in a smoother edge condition. Figure 17 shows the slope and surface texture of the Safety Edge_{SM}; prior to and after rolling.

Both contractor and agency personnel stated the Safety $Edge_{SM}$ device would raise the screed relative to the profile set by the longitudinal ski when paving across intersections or in areas with higher longitudinal profile with hard surfaces. In addition, both commented that it was difficult to get a good tie-in to existing driveways and other hard surfaces. Figure 18 shows the line caused by the tip of the Safety $Edge_{SM}$ device along the edge of pavement over an intersection driveway.

Figure 15. Equipment used to place the WMA overlay.

Figure 16. Advant-Edger device attached to the screed.

Figure 17. Typical surface texture and slope of the Safety $Edge_{SM}$ sections.

Figure 18. Point of Safety Edge_{SM} scratching the surface of an intersecting driveway.

Compaction Operations

Figure 19 shows the two rollers that were used to compact the 9.5 mm WMA mixture. The primary or breakdown roller was a Volvo DD118 double drum steel wheel vibratory roller, while the finish roller was a Volvo DD112 double drum steel wheel vibratory roller. The field evaluation forms identify the number of passes and coverage used by all rollers (a pass is defined as one movement of the roller in one direction, while coverage is defined as each point on the mat receiving a pass of the roller).

In summary, each roller performed seven passes with two coverages. The following summarizes the rolling pattern (number of passes and location for each roller) used by the contractor.

- Breakdown or primary roller pattern; the roller's vibratory setting was on high frequency and on setting 5 (on a scale of 1 to 10) for the amplitude:
 - First pass was along the Safety $Edge_{SM}$ in the vibratory mode with the roller's edge extended over the Safety $Edge_{SM}$ by 4 to 6 inches.
 - Second pass; same location as for the first pass, but in the reverse direction and in vibratory mode.
 - Third pass was along the centerline construction joint in the vibratory mode with the roller's edge extended over the longitudinal joint by 4 to 6 inches.
 - Fourth pass; same location as for the third pass, but in the reverse direction and in vibratory mode.
 - Fifth pass was down the center of the mat in vibratory mode.
 - Sixth pass; same location as for the fifth pass, but in the reverse direction and in vibratory mode.
 - \circ Seventh pass was along the Safety Edge_{SM} in the vibratory mode with the roller's edge extended over the Safety Edge_{SM} by 4 to 6 inches.
- Finish roller pattern; the roller's vibratory setting was on high frequency and low amplitude:
 - First pass was along the Safety $Edge_{SM}$ in the vibratory mode with the roller's edge extended over the Safety $Edge_{SM}$ by 4 to 6 inches.
 - Second pass; same location as for the first pass, but in the reverse direction and in vibratory mode.
 - Third pass was along the centerline construction joint in the vibratory mode with the roller's edge extended over the longitudinal joint by 4 to 6 inches.
 - Fourth pass; same location as for the third pass, but in the reverse direction and in vibratory mode.
 - Fifth pass was down the center of the mat in vibratory mode.
 - Sixth pass; same location as for the fifth pass, but in the reverse direction and in vibratory mode.
 - \circ Seventh pass along the Safety Edge_{SM} side of the mat in static mode. Additional passes that were needed based on periodic density measurements made with the nuclear density gauge were in the static position.

A control strip was not used to confirm that the roller pattern being used was achieving an adequate density of the mix. The Contractor used a Pavement Quality Indicator (PQI) non-nuclear density gauge to ensure that density was being met during paving. The non-nuclear and

nuclear density gauge readings and the densities of the cores suggest that adequate density was obtained for this mixture 3 ft from the edge, but the density was low near the edge.

Volvo double drum vibratory steel wheel roller used in breakdown or primary position for compacting the WMA overlay.

Volvo double drum vibratory steel wheel roller used in the vibratory and static mode that was used in the finish position for compacting the WMA overlay.

Figure 19. Rollers used for compacting the 9.5 mm WMA overlay mixture.

Figure 20 shows a comparison of the adjusted nuclear density gauge readings and air voids adjacent to the Safety $Edge_{SM}$ in comparison to 3 ft from the edge. Table 2 summarizes the average air voids and slopes of the Safety $Edge_{SM}$ for the different sections along this project, and is followed by the following important points from these density and slope measurements:

Figure 20. Comparison of volumetric properties between the areas adjacent to the edge and 3 ft from the edge (center of the steel drum roller) for the different sections.

Section Identification	Average	Air Vo Ed	oids at lge	Air Voids near Mat Center		
	Slope	Mean	COV	Mean	COV	
Non-Safety Edge _{SM} Section		13.5	28.9	8.92	24.2	
Area #1; Advant Section	45.4	8.6	30.7	7.3	19.3	
Area #2; Advant Section	50.0	9.4	33.4	7.6	28.3	
Area #3; TransTech Section	36.6	11.2	13.1	8.4	12.3	

Table 2. Summary of the average slope and air voids.

- The air voids measured along the mat's edge of the Safety Edge_{SM} sections are significantly lower than measured along the non-Safety Edge_{SM} section. The Safety Edge_{SM} provided additional confinement along the edge.
- The air voids measured along the mat's edge of the Advant-Edger Safety Edge_{SM} sections are slightly higher than measured within the center of the Volvo double drum steel wheel roller. It was expected that the extra pass of the roller along the Safety Edge_{SM} provides additional densification of the mix.
- The other important observation was the difference between the Advant-Edger and TransTech sections. The TransTech section had higher air voids but lower slopes in comparison to the Advant-Edger sections. The reason for this difference was unknown, because the roller pattern used to compact the TransTech section was not recorded during placement. Two additional roller passes (one for each of the rollers) along the Safety Edge_{SM} was used to compact the Advant-Edger sections. It was expected that this additional pass increased the density (lower air voids) but steepened the slope.

HMA Mixture Characteristics and the Safety Edge_{SM}

The WMA mixture design data was obtained from the Delaware DOT. The WMA mixture design parameters are documented in the Field Evaluation Form, which is a separate document to this field report. This WMA includes 21 percent Recycled Asphalt Pavement (RAP) and 6 percent shingles.

The WMA mixture volumetric properties and gradation were considered reasonable. Figure 21 shows the surface texture of the finished HMA mat along different areas of the project; with and without surface defects or surface texture differences. The surface texture and condition were relatively uniform within specific areas of the project. Some agency personnel voiced a concern about the use of some Superpave mixtures; they can be very tender and move under steel wheel rollers.

The WMA mixture did shove and "push out" during the compaction operation, steepening the slope of the Safety Edge_{SM}. The WMA mixture exhibited tenderness under the steel wheel rollers. As an example, roller marks were present after the breakdown roller completed its rolling pattern, checking was observed during the rolling operation, and shear cracks were observed along the roller's edge (Figure 22 shows these examples). Chatter from the Volvo breakdown roller was observed in those areas exhibiting the more severe checking and shear cracks (refer to Figure 22).

The temperature of the WMA delivered to the project site was reported to be approximately 260 °F and 160 to 170 °F during finish rolling. In some cases, the WMA temperature was below 150 °F during the last pass of the finish roller. The WMA temperature could be related to the roller marks being left in the mat, checking and chatter observed in specific areas, and the steeper slopes than planned.

Longitudinal segregation or surface texture difference was observed along the edges of the slat conveyor (refer to Figure 23). Bulk mixture samples (for gradation testing), nuclear gauge

density tests, and cores were not taken within these locations.

Figure 21. Surface texture of the overlay after final rolling.

Figure 22. Surface defects observed after rolling.

Figure 23. Longitudinal segregation or surface texture differences along the edge of both slat conveyors.

Thus, it was not confirmed whether these areas shown in Figure 23 were caused by segregation or surface texture difference near the surface. It was expected that these areas were a result of longitudinal segregation along the edges of the slat conveyor of the paver. Densities were taken with the nuclear density gauge for the non-Safety $Edge_{SM}$ section near the area in question and some of these densities were found to be low (and high air voids).

The distance between the end of the auger and screed end plate was approximately 24 inches (refer to Figure 15 and Figure 16). This distance should be less than 18 inches. The distance between the end of the auger and screed end plate was not believed to be a contributing factor to the steeper slope.

Other Observations

The following lists the observations and comments made by construction personnel and on-site personnel.

- A shallower angle of the Safety Edge_{SM} device will be needed to meet the planned 30° angle.
- There were different opinions on the use of the two Safety Edge_{SM} devices (Advant-Edger and TransTech). One opinion was that there was no difference between two devices, while another opinion was that the Advant-Edger device resulted in a smoother edge.
- The densities measured along the Safety Edge_{SM} created by the TransTech device were consistently lower than those measured along the edge created by the Advant-Edger device. However, the densities measured within the center of the mat (away from the Safety Edge_{SM}) are also higher for the Advant-Edger section (about 147 pounds per cubic foot (pcf)) in comparison to the TransTech section (145 pcf). This observation indicates that this difference is more related to the rolling pattern and/or WMA mixture between the different days of paving rather than related to the Safety Edge_{SM} devices.
- Some construction personnel voiced an opinion that the planned 30° slope of the Safety Edge_{SM} will not be met using Superpave designed mixtures that are tender.
- After the evaluation, the Delaware DOT management stated that overlays greater than 1.25 inch will have the Safety Edge_{SM}.
- Paving across driveways and other features with hard surfaces causes the screed to rise resulting in a reduction of smoothness in localized areas.

Findings and Conclusions

As previously stated, the objective of this field study was to evaluate the quality of the in-place WMA material and Safety $Edge_{SM}$ by investigating three features.

- 1. Correct use of Safety Edge_{SM} device during paving.
- 2. Safety Edge_{SM} versus non-Safety Edge_{SM} portions of project.
- 3. Slope of the Safety $Edge_{SM}$.

This section of the field report summarizes the findings and conclusions made during the paving/compaction operations related to the long term performance of the WMA mixture and Safety Edge_{SM}.

- The average slope of the Safety $Edge_{SM}$ from the TransTech Shoulder Wedge Maker device was 36°, while it was 45 and 50° for the Advant-Edger device; both exceeding the planned value of 30°. It was expected that the slope of the Safety $Edge_{SM}$ device may need to be reduced to a value of about 25° to end up with a 30° slope after rolling.
- The average air voids along the edge of the mat were lower for the Safety Edge_{SM} than for the non-Safety Edge_{SM} section. The reason for this decrease in air voids and increase

in density was believed to be related to the added confinement from the Safety $Edge_{SM}$ material. This observation is considered a benefit from the use of the Safety $Edge_{SM}$.

- Breakdown and finish rolling did steepen the slope of the Safety Edge_{SM}, especially during the paving operations on August 25 and 26. It was expected that the magnitude of this increase will be mixture dependent. There was much less of an increase in slope during the previous week's paving. The reason for the increase in the slope of the Safety Edge_{SM} during paving on August 25 and 26 was probably related to the tenderness of the WMA, as discussed above. Mix behavior under the steel wheel rollers was not observed during the week of August 19.
- WMA thickness variations measured along the sections had no impact on the slope of the Safety Edge_{SM} or the density adjacent to the Safety Edge_{SM}.

The pavement should be inspected after the final shoulders have been constructed. Local soil is planned to be used as the backing material for the Safety $Edge_{SM}$. Care should be taken to observe the material placement and ensure that meets proper relative elevation to the WMA mat. Long term monitoring of the shoulder should be performed to see how well the fine- to coarse-grained shoulder material remains in place and observe any deformation or erosion.

APPENDIX A

DATA TABLES AND CORE PHOTOGRAPHS

DATA TABLES FROM FIELD MEASUREMENTS

This section of the field report provides a summary and listing of all field measurements recorded during the paving operations. These data are also included in the detailed evaluation forms for the Safety $Edge_{SM}$ projects.

Table A-1. Safety $Edge_{SM}$ slope measurements for sections placed with the Advant-Edger device after final rolling.

	[[[Safety Edge	
	Core/Section ID	Station			
Section Identifier			Width of Taper	Thickness	Slope
	Core #1	0+50	2.125	1.75	39.5
		1+00	2	2	45
		1+50	1.5	2	53.1
		2+00	2.125	2.4375	48.9
Area #1; Telephone Pole #44155; Advant-Edger	Core #2	2+50	2.375	2.25	43.5
		3+00	2.5	2	38.7
		3+50	2	2.3125	49.1
		4+00	2.375	2.375	45
Mean Value			2.13	2.14	45.35
Standard Deviation			0.313	0.238	4.911
Coefficient of Variation			14.75	11.12	10.83
		1+00	1.5	1.875	51.3
		1+50	2.125	2.125	45
		2+00	1.875	1.875	45
	Core #3	2+50	1.75	2.25	52.1
Area #2: Talanhanan Dala #44420; Advant Edaan		3+00	1.875	2.5	53.1
Area #2; Telephonee Pole #44128; Advant-Edger		3+50	2	2.125	46.7
		4+00	1.875	2.25	50.2
		4+50	1.25	2.375	62.2
	Core #4	5+00	2.625	2.375	42.1
		5+50	1.75	2.25	52.1
Mean Value			1.863	2.200	49.980
Standard Deviation			0.365	0.206	5.699
Coefficient of Variation			19.6	9.4	11.4

				Safety Edge	
Section Identifier	Core/Section ID Station		Width of Taper	Thickness	Slope
		0+00	1.625	1.625	45
		0+25	3.5	1.875	28.2
		0+50	2.875	1.875	33.1
		0+75	2.5	2	38.7
		1+00	3.5	2	29.7
		1+25	3.5	2.5	35.5
Area #2: Talanhana Dala #44010; TransTas Davisa; UNAA		1+50	2.5	2.25	42
Area #3; Telephone Pole #44010; TransTec Device; HMA		1+75	3.75	2.375	32.3
Placed August 19 of 20, 2010		2+00	3.125	1.875	31
		2+25	3.125	2	32.6
		2+50	3.25	1.875	30
		2+75	3.25	2.125	33.2
		3+00	1.875	2.125	62.1
		3+25	3.375	2	30.7
		3+50	2.125	2.125	45
Mean Value			2.925	2.042	36.61
Standard Deviation			0.653	0.220	8.914
Coefficient of Variation			22.3	10.8	24.3

Table A-2. Safety Edge_{SM} slope measurements for sections placed with the TransTech shoulder wedge maker device after final rolling.

Table A-3. Safety Edge_{SM} slope measurements for sections placed with the Advant-Edger device; prior to rolling.

				Safety Edge	
Section Identifier	Core/Section ID	Station	Width of Taper	Thickness	Slope
		А	4	2.6	33.2
		В	4.13	2.68	32.9
		С	3.74	2.72	36
Area #1. East of Corman Boad, Slong Moacurements Brier		D	3.54	2.68	37.1
to Polling					
to Koning					
Mean Value	2		3.85	2.67	34.80
Standard Deviation	1		0.264	0.050	2.074
Coefficient of Variation	n		6.85	1.89	5.96
		E	4	2.625	33.3
		F	4.125	2.5	31.2
		G	4.25	2.625	31.7
Area #2: West of German Road: Slope Measurements Prior		Н	3.75	2.625	35
to Polling		I	3.75	2.4375	33
to Kolling					
Mean Value	2		3.975	2.563	32.84
Standard Deviation	1		0.224	0.088	1.491
Coefficient of Variation	n		5.6	3.4	4.5

Table A-4. Nuclear density adjustment ratios; core density/nuclear

density.

					Density o	f Cores	Nuclear Der	isity Values	Adjustme	nt Ratio	Adjusted Nuc	lear Values
Area/Location	Core #	Lane Direction	Station	Type of Section	A – Adjacent to	B – 3 feet	A – Adjacent	B – 3 feet	A – Adjacent	B – 3 feet	A – Adjacent	B – 3 feet
					Edge	from Edge	to Edge	from Edge	to Edge	from Edge	to Edge	from Edge
Area #1; Telephone Pole	C 1	Westbound	0+50	Advant-Edger	142.20	150.40	142.20	158.00	1.000	0.952	145.90	159.42
#44155	C 2	Westbound	2+50	Advant-Edger	138.80	149.30	143.90	151.00	0.965	0.989	147.64	152.36
Area #2; Telephone Pole	C 3	Westbound	2+50	Advant-Edger	142.10	149.90	135.80	156.40	1.046	0.958	139.33	157.81
#44128	C 4	Westbound	5+00	Advant-Edger	139.80	148.50	141.20	160.20	0.990	0.927	144.87	161.64
	C T-1	Westbound	0+95	Advant-Edger								
	C T-2	Westbound	2+32	Advant-Edger								
	CT-3	Westbound		Advant-Edger								
	CT-4	Westbound		Advant-Edger								
				Average	140.725	149.525	140.775	156.400	1.000	0.957	144.435	157.808
				Standard Deviation	1.696	0.818	3.499	3.923	0.034	0.025	3.590	3.958
				Coefficient of Variation	1.21	0.55	2.49	2.51	3.42	2.66	2.49	2.51

Table A-5. Density readings made with a nuclear density gauge (Troxler Gauge 3430) for the sections placed with the Advant-Edger device.

						(Overall Average		2.555		159.432
						Tra	ansTech Device	Max. Specific	2.548		158.995
							Advant Device	Gravity:	2.554	Max. Density:	159.370
						Adjustment Ra	tios for Nuclear	A=	1		
							Gauge:	B=	0.957		
						-					
	Core	Lane Direction	Station	Type of Section	Nuclear	Densities	Adjusted N	uclear Values		Air Vo	ids, %
	Location				A – Adjacent to	B – 3 feet from	A – Adjacent	B – 3 feet from	HMA	A – Adjacent	B – 3 feet
Location/Area					Edge	Edge	to Edge	Edge	Thickness, in.	to Edge	from Edge
	C 1	Westbound	0+50	Advant	142.15	157.95	142.15	151.15815	1.75	10.81	5.15
		Westbound	1+00	Advant	144.45	155.5	144.45	148.8135	2	9.36	6.62
		Westbound	1+50	Advant	146.55	155.3	146.55	148.6221	2	8.04	6.74
		Westbound	2+00	Advant	140.35	151.45	140.35	144.93765	2.4375	11.93	9.06
Area #1; Safety Edge Section;	C 2	Westbound	2+50	Advant	143.9	151	143.9	144.507	2.25	9.71	9.33
Telephone Pole # 44155		Westbound	3+00	Advant	144.85	156	144.85	149.292	2	9.11	6.32
		Westbound	3+50	Advant	152.3	154.45	152.3	147.80865	2.3125	4.44	7.25
		Westbound	4+00	Advant	151.35	153.5	151.35	146.8995	2.375	5.03	7.82
				Average Value	145.74	154.39	145.74	147.75	2.141	8.55	7.29
				Standard Deviation	4.191	2.338	4.191	2.237	0.238	2.630	1.404
			(Coefficient of Variation	2.88	1.51	2.88	1.51	11.12	30.74	19.26
	Core	Lane Direction	Station	Type of Section	Nuclear	Densities	Adjusted N	uclear Values		Air Vo	ids, %
	Location				A – Adjacent to	B – 3 feet from	A – Adjacent	B – 3 feet from	HMA	A – Adjacent	B – 3 feet
Location/Area					Edge	Edge	to Edge	Edge	Thickness, in.	to Edge	from Edge
		Westbound	1+00	Advant	144.75	152.05	144.75	145.51	1.875	9.17	8.70
		Westbound	1+50	Advant	144	151.4	144.00	144.89	2.125	9.64	9.09
		Westbound	2+00	Advant	142.1	151.9	142.10	145.37	1.875	10.84	8.79
	C 3	Westbound	2+50	Advant	135.8	156.35	135.80	149.63	2.25	14.79	6.11
Area #2; Safety Edge Section;		Westbound	3+00	Advant	143.1	153.45	143.10	146.85	2.5	10.21	7.85
Telephone Pole #44128		Westbound	3+50	Advant	147.7	153.85	147.70	147.23	2.125	7.32	7.61
		Westbound	4+00	Advant	147.9	148.7	147.90	142.31	2.25	7.20	10.71
		Westbound	4+50	Advant	153.55	157.7	153.55	150.92	2.375	3.65	5.30
	C 4	Westbound	5+00	Advant	141.15	160.2	141.15	153.31	2.375	11.43	3.80
		Westbound	5+50	Advant					2.25		
				Average Value	144.45	153.96	144.45	147.34	2.20	9.36	7.55
				Standard Deviation	4.983	3.554	4.983	3.401	0.206	3.127	2.134
			(Coefficient of Variation	3.45	2.31	3.45	2.31	9.36	33.40	28.26

Table A-6. Density readings made with a nuclear density gauge (Troxler Gauge 3430) for the section placed with the TransTech Shoulder Wedge Maker device and the section without the Safety Edge_{SM}.

	C				Nuclear I	Densities	Adjusted N	uclear Values		Air Vo	ids, %
Location/Area	Core	Lane Direction	Station	Type of Section	A – Adjacent to	B – 3 feet from	A – Adjacent	B – 3 feet from	HMA	A – Adjacent	B – 3 feet
	Location				Edge	Edge	to Edge	Edge	Thickness, in.	to Edge	from Edge
		Westbound	0+00	TransTec	140.95	154.4	140.95	147.76	1.625	11.35	7.07
		Westbound	0+50	TransTec	142.6	153.65	142.60	147.04	1.875	10.31	7.52
		Westbound	1+00	TransTec	140.9	152.55	140.90	145.99	2	11.38	8.18
		Westbound	1+50	TransTec	139.8	152.3	139.80	145.75	2.25	12.08	8.33
Area#3; Safety Edge Section;		Westbound	2+00	TransTec	140.5	152.15	140.50	145.61	1.875	11.64	8.42
Pleased August 10 as 20, 2010		Westbound	2+50	TransTec	140.1	149.2	140.10	142.78	1.875	11.89	10.20
Placed August 19 or 20, 2010		Westbound	3+00	TransTec	134.6	150.1	134.60	143.65	2.125	15.35	9.66
		Westbound	3+50	TransTec	142.2	152.8	142.20	146.23	2.125	10.57	8.03
		Westbound	4+00	TransTec							
				Average Value	140.21	152.14	140.21	145.60	1.97	11.82	8.43
				Standard Deviation	2.462	1.725	2.462	1.651	0.198	1.548	1.038
			(Coefficient of Variation	1.76	1.13	1.76	1.13	10.04	13.10	12.32
	Core				Nuclear I	Densities	Adjusted N	uclear Values		Air Vo	ids, %
Location/Area	Core	Lane Direction	Station	Type of Section	Nuclear I A – Adjacent to	Densities B – 3 feet from	Adjusted N A – Adjacent	uclear Values B – 3 feet from	НМА	Air Vo A – Adjacent	ids, % B – 3 feet
Location/Area	Core Location	Lane Direction	Station	Type of Section	Nuclear I A – Adjacent to Edge	Densities B – 3 feet from Edge	Adjusted N A – Adjacent to Edge	uclear Values B – 3 feet from Edge	HMA Thickness, in.	Air Vo A – Adjacent to Edge	ids, % B – 3 feet from Edge
Location/Area	Core Location	Lane Direction Westbound	Station 0+00	Type of Section Non-Safaety Edge	Nuclear I A – Adjacent to Edge	Densities B – 3 feet from Edge 154.6	Adjusted No A – Adjacent to Edge	uclear Values B – 3 feet from Edge 147.95	HMA Thickness, in.	Air Vo A – Adjacent to Edge	ids, % B – 3 feet from Edge 7.16
Location/Area	Core Location Core T-1	Lane Direction Westbound Westbound	Station 0+00 0+45	Type of Section Non-Safaety Edge Non-Safaety Edge	Nuclear I A – Adjacent to Edge 133.5	Densities B – 3 feet from Edge 154.6 150.7	Adjusted No A – Adjacent to Edge 133.50	uclear Values B – 3 feet from Edge 147.95 144.22	HMA Thickness, in.	Air Vo A – Adjacent to Edge 16.23	ids, % B – 3 feet from Edge 7.16 9.51
Location/Area Area #4; Non-Safety Edge; Along	Core Location Core T-1	Lane Direction Westbound Westbound Westbound	Station 0+00 0+45 0+95	Type of Section Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge	Nuclear I A – Adjacent to Edge 133.5 140.8	Densities B – 3 feet from Edge 154.6 150.7 150.65	Adjusted N A – Adjacent to Edge 133.50 140.80	uclear Values B – 3 feet from Edge 147.95 144.22 144.17	HMA Thickness, in.	Air Vo A – Adjacent to Edge 16.23 11.65	ids, % B – 3 feet from Edge 7.16 9.51 9.54
Location/Area Area #4; Non-Safety Edge; Along the Centerline of Roadway; Plant	Core Location Core T-1 Core T-2	Lane Direction Westbound Westbound Westbound Westbound	Station 0+00 0+45 0+95 1+45	Type of Section Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge	Nuclear I A – Adjacent to Edge 133.5 140.8 143.6	Densities B – 3 feet from Edge 154.6 150.7 150.65 157.2	Adjusted Nr A – Adjacent to Edge 133.50 140.80 143.60	uclear Values B – 3 feet from Edge 147.95 144.22 144.17 150.44	HMA Thickness, in.	Air Vo A – Adjacent to Edge 16.23 11.65 9.90	ids, % B – 3 feet from Edge 7.16 9.51 9.54 5.60
Location/Area Area #4; Non-Safety Edge; Along the Centerline of Roadway; Plant down so section located along	Core Location Core T-1 Core T-2	Lane Direction Westbound Westbound Westbound Westbound	Station 0+00 0+45 0+95 1+45 2+32	Type of Section Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge	Nuclear I A – Adjacent to Edge 133.5 140.8 143.6 129.3	Densities B – 3 feet from Edge 154.6 150.7 150.65 157.2 149.65	Adjusted Nr A – Adjacent to Edge 133.50 140.80 143.60 129.30	uclear Values B – 3 feet from Edge 147.95 144.22 144.17 150.44 143.22	HMA Thickness, in.	Air Vo A – Adjacent to Edge 16.23 11.65 9.90 18.87	ids, % B - 3 feet from Edge 7.16 9.51 9.54 5.60 10.14
Location/Area Area #4; Non-Safety Edge; Along the Centerline of Roadway; Plant down so section located along the centerline of previously	Core Location Core T-1 Core T-2	Lane Direction Westbound Westbound Westbound Westbound Westbound	Station 0+00 0+45 0+95 1+45 2+32 2+82	Type of Section Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge	Nuclear I A – Adjacent to Edge 133.5 140.8 143.6 129.3 142.35	Densities B - 3 feet from Edge 154.6 150.7 150.65 157.2 149.65 147.25	Adjusted N A – Adjacent to Edge 133.50 140.80 143.60 129.30 142.35	B – 3 feet from Edge 147.95 144.22 144.17 150.44 143.22 140.92	HMA Thickness, in.	Air Vo A – Adjacent to Edge 16.23 11.65 9.90 18.87 10.68	ids, % B - 3 feet from Edge 7.16 9.51 9.54 5.60 10.14 11.58
Location/Area Area #4; Non-Safety Edge; Along the Centerline of Roadway; Plant down so section located along the centerline of previously placed mix from yesterday;	Core Location Core T-1 Core T-2	Lane Direction Westbound Westbound Westbound Westbound Westbound	Station 0+00 0+45 0+95 1+45 2+32 2+82	Type of Section Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge	Nuclear I A – Adjacent to Edge 133.5 140.8 143.6 129.3 142.35	Densities B – 3 feet from Edge 154.6 150.7 150.65 157.2 149.65 147.25	Adjusted Ni A – Adjacent to Edge 133.50 140.80 143.60 129.30 142.35	B - 3 feet from Edge 147.95 144.22 144.17 150.44 143.22 140.92	HMA Thickness, in.	Air Vo A – Adjacent to Edge 16.23 11.65 9.90 18.87 10.68	ids, % B - 3 feet from Edge 7.16 9.51 9.54 5.60 10.14 11.58
Location/Area Area #4; Non-Safety Edge; Along the Centerline of Roadway; Plant down so section located along the centerline of previously placed mix from yesterday; Telephone Pole #4128.	Core Location Core T-1 Core T-2	Lane Direction Westbound Westbound Westbound Westbound Westbound Westbound	Station 0+00 0+45 0+95 1+45 2+32 2+82	Type of Section Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge	Nuclear I A – Adjacent to Edge 133.5 140.8 143.6 129.3 142.35	Densities B - 3 feet from Edge 154.6 150.7 150.65 157.2 149.65 147.25	Adjusted N A – Adjacent to Edge 133.50 140.80 143.60 129.30 142.35	uclear Values B – 3 feet from Edge 147.95 144.22 144.17 150.44 143.22 140.92	HMA Thickness, in.	Air Vo A – Adjacent to Edge 16.23 11.65 9.90 18.87 10.68	ids, % B - 3 feet from Edge 7.16 9.51 9.54 5.60 10.14 11.58
Location/Area Area #4; Non-Safety Edge; Along the Centerline of Roadway; Plant down so section located along the centerline of previously placed mix from yesterday; Telephone Pole #44128.	Core Location Core T-1 Core T-2	Lane Direction Westbound Westbound Westbound Westbound Westbound Westbound Westbound	Station 0+00 0+45 0+95 1+45 2+32 2+82	Type of Section Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge	Nuclear I A – Adjacent to Edge 133.5 140.8 143.6 129.3 142.35	Densities B - 3 feet from Edge 154.6 150.7 150.65 157.2 149.65 147.25	Adjusted Ni A – Adjacent to Edge 133.50 140.80 143.60 129.30 142.35	uclear Values B - 3 feet from Edge 147.95 144.22 144.22 144.17 150.44 143.22 140.92	HMA Thickness, in.	Air Vo A – Adjacent to Edge 16.23 11.65 9.90 18.87 10.68	ids, % B - 3 feet from Edge 7.16 9.51 9.54 5.60 10.14 11.58
Location/Area Area #4; Non-Safety Edge; Along the Centerline of Roadway; Plant down so section located along the centerline of previously placed mix from yesterday; Telephone Pole #44128.	Core Location Core T-1 Core T-2	Lane Direction Westbound Westbound Westbound Westbound Westbound Westbound Westbound	Station 0+00 0+45 0+95 1+45 2+32 2+82	Type of Section Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge	Nuclear I A – Adjacent to Edge 133.5 140.8 143.6 129.3 142.35	Densities B - 3 feet from Edge 154.6 150.7 150.65 157.2 149.65 147.25	Adjusted Ni A – Adjacent to Edge 133.50 140.80 143.60 129.30 142.35	uclear Values B - 3 feet from Edge 147.95 144.22 144.17 150.44 143.22 140.92	HMA Thickness, in.	Air Vo A – Adjacent to Edge 16.23 11.65 9.90 18.87 10.68	ids, % B - 3 feet from Edge 7.16 9.51 9.54 5.60 10.14 11.58
Location/Area Area #4; Non-Safety Edge; Along the Centerline of Roadway; Plant down so section located along the centerline of previously placed mix from yesterday; Telephone Pole #44128.	Core Location Core T-1 Core T-2	Lane Direction Westbound Westbound Westbound Westbound Westbound Westbound Westbound	Station 0+00 0+45 0+95 1+45 2+32 2+82	Type of Section Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge	Nuclear I A – Adjacent to Edge 133.5 140.8 143.6 129.3 142.35 142.35	B - 3 feet from Edge 154.6 150.7 150.65 157.2 149.65 147.25 151.68	Adjusted Ni A - Adjacent to Edge 133.50 140.80 143.60 129.30 142.35 142.35	uclear Values B - 3 feet from Edge 147.95 144.22 144.27 144.22 144.17 150.44 143.22 140.92 145.15	HMA Thickness, in.	Air Vo A - Adjacent to Edge 16.23 11.65 9.90 18.87 10.68	ids, % B - 3 feet from Edge 7.16 9.51 9.54 5.60 10.14 11.58 8.92
Location/Area Area #4; Non-Safety Edge; Along the Centerline of Roadway; Plant down so section located along the centerline of previously placed mix from yesterday; Telephone Pole #44128.	Core Location Core T-1 Core T-2	Lane Direction Westbound Westbound Westbound Westbound Westbound Westbound	Station 0+00 0+45 0+95 1+45 2+32 2+82	Type of Section Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Non-Safaety Edge Standard Deviation	Nuclear (A – Adjacent to Edge 133.5 140.8 143.6 129.3 142.35 142.35 142.35	B - 3 feet from Edge 154.6 150.7 150.65 157.2 149.65 147.25 151.68 3.599	Adjusted Ni A – Adjacent to Edge 133.50 140.80 143.60 129.30 142.35 142.35 142.35	uclear Values B - 3 feet from Edge 147.95 144.22 144.17 150.44 143.22 140.92 145.15 3.444	HMA Thickness, in.	Air Vo A - Adjacent to Edge 16.23 11.65 9.90 18.87 10.68 13.47 3.894	ids, % B - 3 feet from Edge 7.16 9.51 9.54 5.60 10.14 11.58 8.92 2.161

Photographs of Selected Cores R ecovered from the Project

This section of the field report provides a photograph of the cores that were recovered for laboratory density testing, and visual observations of the mixture along the edge and 3 feet from the edge. No systematic visual differences were noted between the different core sets.

Cores 1B (3 ft from edge) and 1A (adjacent to edge)

Cores 2B (3 ft from edge) and 2A (adjacent to edge)

Cores 3B (3 ft from edge) and 3A (adjacent to edge)

Cores 4B (3 ft from edge) and 4A (adjacent to edge)