U.S. Department of Transportation

Annual Vehicle Miles of Travel and Related Data Procedures Used to Derive the Data Elements of the 1994 Table VM-1

Notice

This document is disseminated by the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

This report does not constitute a standard, specification, or regulation.

Introduction

The purpose of this report is to document the preparation of the 1994 Table VM-1, including data sources, assumptions, and estimating procedures. Table VM-1 describes vehicle distance traveled in miles, by highway category and vehicle type. Since 1936, the VM-1 table has been published annually in Highway Statistics. ${ }^{1}$ The Highway Statistics publication is produced by the Federal Highway Administration (FHWA), Office of Highway Information Management. VM-1 depicts national travel for the current year and revised travel estimates for the previous year. This information is segregated by passenger cars, motorcycles, buses, other two-axle four-tire vehicles, and trucks on the rural interstate system, other rural arterial, other rural roads, urban interstate system, and other urban streets. Table VM-1 also shows the number of vehicles registered and total fuel consumption by vehicle type. Also included, are the calculated average miles of travel, average miles traveled per gallon, and average fuel consumption for each vehicle type. In addition, VM-1 provides the FHWA estimate of person-miles of travel. The 1994 VM-1 table is shown in Appendix A.

VM-1 is a widely referenced source of information. The Federal Highway Administration (FHWA), State Highway Agencies (SHAs), and Metropolitan Planning Organizations (MPOs) use VM-1 for planning, budgeting, and legislative purposes. Academia uses VM-1 for course work or as a source of research. Private organizations like insurance companies rely on VM-1 for travel and registration data that affect the insurance industry. In addition, transportationrelated trade associations use the data for legislative efforts. These are only some of the wide variety of uses of Table VM-1.

Data Sources

The information displayed in Table VM-1 is based primarily on data supplied by each State and the District of Columbia. These data are typically collected and compiled by the SHA, however, some elements of Table VM-1 may originate from other agencies within a State. For example, vehicle registration data is often collected and maintained by a State's Motor Vehicle Administration. States may also coordinate travel data collection with Metropolitan Planning Organizations. A growing trend is to outsource travel data collection by contracting with private companies to provide some or all Statewide data collection services.

Vehicle Miles of Travel

The key elements of travel data pertaining to VM-1 are vehicles miles of travel (VMT) by functionally classified roadway and VMT by vehicle type. Table VM-2 (Appendix B) is a primary input to VM-1. It shows VMT by roadway functional class as reported by each State. The other critical State-supplied data set is shown in the VM-4 series (Appendix C). The VM-4 tables display the distribution of VMT by vehicle type for each arterial roadway classification and reflect data as submitted directly by the States.

Total VMT by highway category in VM-1 is based on aggregating data from VM-2. For instance, the VM-2 totals for rural interstate, rural total, urban interstate, urban total, and the grand totals are directly entered in the "All Motor Vehicles" total in VM-1. The VM-2 rural
other principal arterial and rural minor arterial category totals are aggregated and shown in the VM-1 other arterial rural category. Likewise, the VM-2 rural major collector, rural minor collector, and rural local road VMT totals are combined to form the total for the VM-1 other rural category. On the urban side, the VM-2 urban other freeways and expressways, urban other principal arterial, urban minor arterial, urban collector, and urban local categories are added to provide the control total for the VM-1 "other urban" category. There may be slight differences in these calculations due to rounding.

Vehicle Distribution
In order to segregate the total VMT for each highway category into VMT by vehicle type, information on vehicle distribution is required. This distribution information is found in Table VM-4. States submit vehicle distribution information as part of the Highway Performance Monitoring System (HPMS) program. Vehicle type distribution, as reported by the States, varies as shown in the VM-4 series of tables. Factors causing this variation include, different data collection methodologies from State to State, different types of automatic vehicle classification (AVC) equipment, varied regional travel patterns, combining vehicle types, seasonality, day of week, and time of day constraints. Analysts are strongly urged to pay particular attention to the footnotes for the VM-4 series. Also, keep in mind that this data collection effort is a Statewide approach to classifying vehicles. Specific regions within a State may have very different vehicle distributions. Researchers are urged to contact SHAs or MPOs with area-specific data requirements.

In cases where States fail to report certain vehicle types, or where they combine vehicle types into one category, estimates for the missing types, as well as, disaggregation of combined types are based on a national average of all States that supplied these vehicle type distributions. In addition, the VM-1 calculation procedure makes adjustments for temporal variation. Each State submits a form with the vehicle classification distribution data that describes the months, days, and hours for which the data were collected. The missing temporal elements of each State's data set are calculated using a national data set developed through FHWA-sponsored research ${ }^{2}$. This procedure accounts for anomalies attributed to seasonal, weekday-only, or partial day data collection.

Following the above procedures, VMT is calculated for each State by vehicle type, and roadway functional classification. The Statewide totals are next aggregated into a national total VMT by vehicle type and functional class. As might be expected, these interim totals do not exactly match the control totals from Table VM-2 due to differing calculation methods. Therefore, distributions obtained from the interim totals are then applied to the control totals for the final VMT estimates.

Passenger Cars and Other Two-Axle Four-Tire Vehicles

Passenger car and other two-axle four-tire vehicle VMTs require additional processing. These two vehicle group VMTs are summed to a composite national VMT. Travel for the various vehicle types that compose the "Other Two-Axle Four-Tire Vehicle" category are then
extracted individually based on average annual miles traveled per vehicle (AAMPV), and the number of vehicles registered. AAMPV for the pickup truck, minivan, full-size van, and utility vehicle types are reported in the Bureau of Census 1992 Truck Inventory and Use Survey (TIUS). ${ }^{3}$ This AAMPV is projected to the current year and multiplied by the projected number of each vehicle type registered as reported by TIUS. The product yields VMT for each of the light truck vehicle types (i.e., pickup trucks, minivans, full-size van, and utility vehicles). Individual vehicle type VMTs are then summed to provide total VMT for light trucks. Total light truck VMT is then divided by total light registrations to give AAMPV for the vehicle group.

The light truck AAMPV must then be reconciled with the number of vehicles registered as reported annually by the States. This is done to correlate the vehicle registration data reported in Table VM-1 with the number of vehicles shown in Table MV-1 of Highway Statistics. Light truck VMT is derived by multiplying the FHWA-determined number of light trucks by the light truck AAMPV estimate. Passenger car VMT is then produced by subtracting light truck VMT from the summed passenger car and other two axle four tire vehicle VMT.

This methodology uses the data elements with the greatest integrity to derive the missing component. This is based on the relationship between VMT, AAMPV, and the number of registered vehicles. These three functions are dependent upon each another as illustrated below.

Average Annual Miles per Vehicle (AAMPV)

Number of Vehicles (N)
Vehicle Miles of Travel (VMT)

The functional relationships are as follows:

$$
\begin{aligned}
& \mathrm{N}=\mathrm{VMT} / \mathrm{AAMPV} \\
& \mathrm{AAMPV}=\mathrm{VMT} / \mathrm{N} \\
& \mathrm{VMT}=\mathrm{N} * \mathrm{AAMPV}
\end{aligned}
$$

Passenger car VMT as determined by AVC equipment often cannot distinguish between passenger cars and some two-axle four-tire vehicle types. Minivans and sport/utility vehicles are particularly difficult for the AVC machine to distinguish from automobiles. As a result, VMT becomes the least stable of the three functions for these two vehicle groups individually. This provides justification for use of the VMT $=\mathrm{N}$

$$
\mathrm{s}
$$ procedure is applicable only to the passenger car and other two-axle four-tire vehicle categories.

AVC equipment is a more accurate source of VMT for the remaining vehicle types. A recent study, sponsored by the FHWA, Office of Highway Information Management, supports this conclusion. The study, conducted by the Georgia Department of Transportation, and authored by the Georgia Tech Research Institute of the Georgia Institute of Technology, sampled thousands of vehicles using various AVC configurations. ${ }^{4}$ The tests showed that the equipment correctly classified vehicle types within an accuracy range of 64% to 79% with passenger cars separated from other two-axle four-tire vehicles. Combining passenger cars and other two-axle four-tire vehicles yields an accuracy range of 79% to 96%. Given these accuracy rates, the AAMPV $=\mathrm{VMT} / \mathrm{N}$ formula becomes the most appropriate model for vehicle types other than passenger cars or other two-axle four-tire vehicles.

Related Data
The preceding sections document VMT estimates by highway category and vehicle type. Table VM-1 also includes other related information. This information describes numbers of vehicles registered, average distance traveled per vehicle, person distance traveled, and various fuel related data. The lower half of Table VM-1 shows these data elements.

Number of Motor Vehicles Registered
Vehicle registration information is found in Table MV-1 of Highway Statistics (Appendix D). The MV-1 table totals become control totals for Table VM-1. Table MV-1 total automobile registrations include private, commercial, and publicly owned cars. This value appears in the VM-1 passenger car category. The same holds for the bus and motorcycle categories. Tables MV-1 and MV-9, (Appendix E), include vans, minivans, and utility-type vehicles in the truck category as described in each table's footnotes. The proportion of vans, minivans, and utilitytype vehicle registrations are extracted from State-submitted data using the R. L. Polk vehicle registration database light truck distribution. ${ }^{5}$ The R. L. Polk company uses vehicle manufacturer's vehicle identification number (VIN) to quantify and identify the characteristics of the national vehicle fleet. The light truck vehicle types are aggregated in the other two-axle
four-tire vehicle category in Table VM-1. The footnotes for Table VM-1 precisely define these vehicle types.

Total truck registrations from Table MV-1 are transferred to other two-axle four-tire vehicles and single-unit two-axle six-tire or more trucks in Table VM-1. The number of combination truck registrations in VM-1 is based on truck and truck-tractor registrations from Table MV-9, publicly owned trailer and semitrailer registrations from Table MV-11 (Appendix F), and an FHWA estimate of straight trucks pulling large trailers at least 50% of the time. This estimate is derived from the most recent TIUS. The TIUS provides data on the physical and operational characteristics of the Nation's truck population as described in previous sections. The TIUS is based on a sample of private and commercial trucks registered in each State during the survey year.

Note that the total of all motor vehicles in Table MV-1 does not compare with the "All Motor Vehicles" total in VM-1. This is due to the absence of motorcycles in the MV-1 total and their presence in the VM-1 total. There may also be slight differences in these calculations due to rounding.

Average Miles Traveled per Vehicle
Average miles traveled per vehicle in Table VM-1 is calculated by dividing total VMT for each vehicle type by the number of vehicles for that type of vehicle.

Person-Miles of Travel

Person miles of travel are calculated by multiplying vehicle miles of travel by average number of occupants for each vehicle type. Average number of vehicle occupants for passenger cars, motorcycles, and buses are estimated using data provided by the Nationwide Personal Transportation Survey (NPTS) ${ }^{6}$. The NPTS is a large-scale telephone household survey conducted approximately every five years. The target population for this survey is all persons five years and older who reside in the 50 States and the District of Columbia. The survey queried respondents on all aspects of trip-making during a specified time. Among the questions were inquiries about vehicle occupancy during these trips.

Fuel Consumption

Fuel consumed by all motor vehicles, as shown in VM-1 is a control total. It is extracted from Table MF-21 of Highway Statistics (Appendix G). The total is distributed among the vehicle types based on the miles per gallon (MPG) for each vehicle type. Average miles traveled per gallon of fuel consumed is estimated using the TIUS database. Miles per gallon are projected to the current data year using the previous year's data, TIUS estimates, and CAFE standards.

Particular attention is focused on diesel fuel usage. Careful analysis of combination truck data reveals a potential low estimate for average miles traveled per truck in the TIUS. Assuming that most diesel fuel is consumed by combination trucks, the TIUS estimates of average miles traveled per combination truck reconciled with the TIUS estimate for MPG shows a substantial
shortfall of diesel fuel used. Various methods of this calculation do not account for approximately 28% diesel fuel. The FHWA therefore uses the TIUS MPG figure as a baseline rather than the average miles traveled per vehicle. The assumption here is that the TIUS respondents more accurately estimated MPG than average miles traveled per vehicle.

Average fuel consumed per vehicle is based on fuel consumed by each vehicle type divided by the number of vehicles registered for that vehicle type. This calculation is applied to each vehicle type in Table VM-1.

Table VM-1 Format Change
The format of Table VM-1 was changed for the 1994 data year. Both the table format and the calculation methodology have been revised. This was done to enhance clarity, provide a more explicit definition of "other two-axle four-tire vehicles," and to be consistent with the TIUS.

The effect of a more stringent distinction between passenger cars and other two-axle four-tire vehicles results in VMT, number of motor vehicles registered, person-miles of travel, and fuel consumed to be lower than previous years for passenger cars and higher for other two-axle four-tire vehicles. This change also affects average fuel consumed per vehicle and average miles traveled per gallon of fuel consumed. As a result of these changes, passenger cars and other two-axle four-tire vehicles must be aggregated when comparing trends across previous years.

Footnote number 2 of Table VM-1 describes other two-axle four-tire vehicles as those vehicles that have two axles and four tires but are not passenger cars. These include vans, pickup trucks, and sport/utility vehicles. This definition is consistent with the Traffic Monitoring Guide (TMG). ${ }^{7}$ Also note that other two-axle four-tire vehicles are no longer called "trucks." In previous years, some minivans and sport/utility vehicles were included with passenger cars due to data collection equipment limitations as described earlier.

Metric

The VM-1 and VM-2 tables are provided in metric format. Referred to as VM-1M, and VM-2M respectively, the metric versions appear in Highway Statistics beginning with the 1994 edition. Tables VM-1M and VM-2M are shown in appendices H and I.

Summary

The two parts of Table VM-1 depend on numerous other resources. VM-1 integrates the elements of vehicle travel, vehicle classification, number of vehicles, and fuel usage into a comprehensive data source. Each of these elements must be compatible with each of the other elements. In this sense, VM-1 resembles a jigsaw puzzle.

Travel data is derived from data submitted by each State annually. These data take the forms of VMT by roadway type, as in Table VM-2 and vehicle distribution, as in Table VM-4. The number of vehicles are derived from State-submitted data and the R. L. Polk vehicle identification number database. These data are detailed in Tables MV-1, MV-9, and MV-11.The fuel consumed by vehicle type is estimated using Table MF-21 which reflects fuel usage based on fuel tax revenue records for each State.

Improvements are needed in standards and data collection equipment. Critical research in vehicle classification equipment, alternative methods, and data quality must continue. These research efforts lead to continuous improvements in the accuracy of vehicle classification information.

Table VM-1 is a robust national transportation data source. The fact that Table VM-1 is referenced in many transportation and research documents is a testament to its impact. The FHWA continues to investigate improved means of collating, analyzing, and reporting this information. One may argue that a particular procedure or methodology used to create VM-1 is faulty. However, given the interrelationships among all the data elements in VM-1, its integrity as a whole is sound.

ANNUAL VEHICLE DISTANCE TRAVELED IN MILES AND RELATED DATA - 1994 BY HIGHWAY CATEGORY AND VEHICLE TYPE

1 The 50 states and the District of Columbia report travel by highway category, number of motor vehicles registered, and total fuel consumed. The travel and fuel data by vehicle type and stratification of trucks, as well as related data, are calculated by the Federal highway Administration (FHWA). Note that the format of this table is different from previous years. Entries for 1993 have been revised based on the availability of more current data and to reflect the new format. Estimation procedures have been adjusted due to the availability of the 1992 Census of Transportation Truck Inventory and Use Survey (TIUS).
2 Other 2-Axle 4-Tire Vehicles which are not passenger cars. These include vans, pickup trucks, and sport/utility vehicles. Note that in previous years, some minivans and sport/utility vehicles were included in the passenger car category.
3 Single-Unit 2-Axle 6-Tire or More Trucks on a single frame with at least two axles and six tires.
4 Urban consists of travel on all roads and streets in urban places with 5,000 or greater population.
5 Stratification of the truck figures is made by the FHWA based on the 1992 TIUS. The combinations represent approximately the number of tractor-trailers with semi-trailer(s) and a majority of heavy single-unit trucks used regularly in combination with trailer(s). Truck vehicle figures should be regarded as preliminary and may be revised pending further analysis of the TIUS data
6 As estimated by the FHWA using the Nationwide Personal Transportation Study, TIUS, and National Transportation Statistics Annual Report. 1993 data have been revised.
7 Total fuel consumption figures are derived from state fuel tax records and reflect impacts of improved tax compliance and some one-time changes in Federal and state fuel tax laws. Distribution by vehicle type is estimated by the FHWA based on miles per gallon for both diesel and gasoline powered vehicles as derived from the 1992 TIUS and other sources.

STATE	RURAL (MILLONS)														CTOBER 1995
															TOTAL
	INTERSTATE	OTHER PRINCIPAL ARTERIAL	MINOR ARTERIAL	MAJOR COLLECTOR	MINOR COLLECTOR	LOCAL	TOTAL	INTERSTATE	OTHER RREWAYS An EXPRESSWAYS	OTHER PRINCIPAL ARTERIAL	$\begin{gathered} \text { MINOR } \\ \text { ARTERIAL } \end{gathered}$	COLLECTOR	LOCAL	TOTAL	
Alabama	4,854	5,168	4,037	4.899	1,160	4,423	24,541	4,729	377	6.231	4,996	2,376	5,706	24,415	48,956
Alaska	763	224	175	434	98	482	2,176	497	0	406	673	177	221	1,974	4,150
Arizona	5,299	2,192	1,671	2,716	308	1,609	13,795	3,564	1,514	8,994	5,316	2,792	2,799	24,979	38,774
Arkansas	3,255	4.119	3,086	3,865	657	1,141	16,123	2,113	762	2,638	1,926	674	712	8.825	24,948
California	13,986	15,146	8,751	9,753	2,709	2,378	52,723	53,773	43,121	52,801	39,390	13,749	16,386	219,220	271,943
Colorado	4,097	3,290	2,310	1,814	641	1,409	13,561	4,128	2,537	6,099	3,839	1,521	2,020	20,144	33,705
Connecticut	1,428	1,333	1,146	1,179	362	902	6,350	6,947	2,731	3,334	3,923	1,485	2,368	20,788	27,138
Delaware	0	1,301	286	572	76	437	2,672	1,048	81	1,249	719	437	819	4,353	7,025
Dist. of Columbia	0	0	0	0	0	0	0	477	404	916	941	334	376	3,448	3,448
Florida	9,502	10,518	4,311	2,456	1,404	3,536	31,727	14,499	5,978	26,719	14,201	9,515	19,350	90,262	121,989
Georgia	8,491	5,914	6,700	6,048	2,018	4.734	33,905	13,697	2,252	10,463	9.800	4,627	8,078	48,917	82,822
Hawaii 2	0	597	714	353	27	369	2.060	1,530	608	1,276	727	844	890	5,875	7,935
Idaho	1,753	1,734	803	1,195	214	2,098	7,797	808	0	1,107	1,005	445	490	3,855	11,652
Illinois 3	8,555	4,594	4,896	4,984	427	3,485	26,941	15,863	920	18,316	14,770	7,835	7,671	65,375	92,316
Indiana	7,665	5,393	4,182	10,025	1,939	2,555	31,759	6,793	1,015	9,310	6,588	2,076	4,567	30,349	62,108
Iowa	3,766	4,747	2,546	3,129	776	1,505	16,469	1,692	0	2,849	2,570	730	1,427	9,268	25,737
Kansas	2,760	3,737	2,113	2,924	268	1,557	13,359	2,453	983	2,774	2,416	831	1,862	11,319	24,678
Kentucky	4,849	4,911	2,078	5,072	2,302	2,841	22,053	4,784	697	4,151	3,919	1,679	2,539	17,769	39,822
Louisiana	5,177	3,080	2,460	5,651	1,521	2,166	20,055	4,457	658	5,438	4,216	1,326	1,280	17,375	37,430
Maine	1,780	1,679	1,737	2,153	734	1,071	9,154	489	131	939	858	624	274	3,315	12,469
Maryland	2,977	3,301	2,402	2,157	805	1,497	13,139	9,697	3,483	7,840	5,406	2,560	2,040	31,026	44,165
Massachusetts	2,188	1,621	1,321	1,447	230	866	7,673	11,365	3,459	9,182	7.913	2,644	4,754	39,317	46,990
Michigan	6,255	7,182	5,916	8,136	1,256	2,404	31,149	12,627	3,916	15,821	12,067	3,824	5,779	54,034	85,183
Minnesota	3,454	5,853	4,352	3,312	1,106	2,619	20,696	6,116	2,322	3,234	6,130	2,043	2.776	22,621	43,317
Mississippi	3,323	3,958	3,493	4,207	362	3,931	19,274	1,571	204	3,138	1,453	996	1,912	9,274	28,548
Missouri	5,772	7,344	3,250	6,297	441	2,554	25,658	9,541	2,733	6,957	4,727	2,033	5,639	31,630	57,288
Montana	1,941	1,892	981	1,049	312	692	6,867	211	0	780	409	295	554	2,249	9,116
Nebraska	2,140	2,558	1,986	1,363	257	1,150	9,454	791	169	2,391	1,406	533	722	6,012	15,466
Nevada	1,655	1,268	443	550	370	834	5,120	1,761	520	1,766	2,401	800	651	7.899	13,019
New Hampshire	1,442	1,463	963	1,241	440	558	6,107	787	532	939	1,369	391	376	4,394	10,501
New Jersey	2,039	3,522	1,305	2,061	736	1,279	10,942	8,886	7,380	11,714	9,576	3,397	8,571	49,524	60,466
New Mexico	4,046	2,575	1,203	1,708	447	2,721	12,700	1,485	1	3,232	985	762	1,315	7,780	20,480
New York	5,577	5,059	5,864	5,302	6,059	3,334	31,195	14,627	14,796	17,411	18,105	8,048	8,788	81,775	112,970
North Carolina	6,315	7,281	5,765	8,751	3,266	4,369	35,747	6,595	2,504	8,384	6.865	1,995	9,838	36,181	71,928
North Dakota	1,069	1,392	545	803	66	830	4,705	201		548	404	176	304	1,633	6,338
Ohio	8.475	6,619	4,839	9,607	1,994	6,219	37,753	17,936	3,872	11,546	11,026	4.776	11,291	60,447	98,200
Oklahoma 2	4,047	3,818	2,811	4,943	161	2,546	18,326	3,789	1,648	4,293	4,466	999	3,459	18,654	36,980
Oregon	3,811	4,670	1,840	2,802	752	1,818	15,693	3,415	1,030	3,802	2,672	1,391	1,450	13,760	29,453
Pennsylvania	7.702	9,155	7,905	5,693	2,624	6,247	39,326	9,086	5,085	15,541	11,201	6,226	5,882	53,021	92,347
Rhode Island	288	196	147	169	58	24	882	1,517	671	2,067	687	438	833	6,213	7,095
South Carolina	6,469	3,903	5,219	4,625	590	2,163	22,969	2,600	683	4,725	3,722	1,737	809	14,276	37,245
South Dakota	1,574	1,537	932	1,201	138	536	5,918	288	17	472	557	184	195	1,713	7,631
Tennessee	7,350	4,445	5,138	3,294	2,696	1,674	24,597	7,132	1,086	9,214	6,867	2,224	3,404	29,927	54,524
Texas	12,801	13,996	10,475	13,108	2,427	4,099	56,906	26,895	17,324	25,840	20,516	9,486	21,381	121,442	178,348
Utah	2,598	1,380	924	975	234	510	6,621	3,761	100	2,254	2,410	1,043	1,889	11,457	18,078
Vermont	1,040	715	872	1,109	161	445	4,342	314	73	434	352	207	430	1,810	6,152
Virginia	7.976	5,964	5,378	6,031	551	3,294	29,194	10,404	3,221	9,067	7,204	2,346	6,173	38,415	67,609
Washington	3,965	4,081	2,031	3,314	937	1,090	15,418	8,851	4,137	6,770	6,161	2,559	3,532	32,010	47,428
West Virginia	3,189	2,444	2,052	3,263	360	964	12,272	1,257	52	1,257	1,383	428	463	4.840	17,112
Wisconsin	4.620	7,584	4,972	4,080	762	4,400	26,418	3,073	1,764	7,243	4,882	1,161	5,732	23,855	50,273
Wyoming	1,840	1,114	623	508	322	727	5,134	280	9	620	244	339	63	1,555	6,689
Total	215,918	207,567	149,949	182,328	48,561	105,092	909,415	331,200	147,560	364,492	286,359	120,118	200,840	1,450,569	2,359,984
Percent - Area	23.8	22.9	16.5	20.1	5.4	11.6	100.0	22.9	10.2	25.2	19.8	8.3	13.9	100.0	0.0
Percent - Total	9.2	8.8	6.4	7.8	2.1	4.5	38.6	14.1	6.3	15.5	12.2	5.1	8.6	61.5	100.0

[^0]DISTRIBUTION OF ANNUAL VEHICLE DISTANCE TRAVELED BY VEHICLE TYPE - 1994 ו
Office of highway
TABLE VMINFORMATION MANAGEMENT

						COMBI	IRUCKS			
STATE	PASSENGER CARS	MOTOR- CYO	LLES BUSES	OTHER 2-AXLE 4-TIRE VEHICLES 2	SINGLE-UNIT 2-AXLE 6-TIRE OR MORE TRUCKS 3	SINGLE TRAILER	MULTIPLE TRAILER	PASSENGER CARS AND OTHER 2-AXLE 4-TIRE VEHICLES	SINGLE-UNIT 2-AXLE 6-TIRE OR MORE AND COMBINATION TRUCKS	ALL MOTOR VEHICLES
Alabama	62.1	0.7	0.1	9.7	5.6	20.3	1.6	71.8	27.5	100.0
Alaska	02L:2	U. 2	U. 2	24.0	5.8	1.0	U.ち	91.1	1.4	100.0
Arizona	53.5	0.4	U. 3	18.4	5.4	19.0	2.6	12.3	21.0	IUU.U
Arkansas	Su. 1	U. 2	U. 0	13.2	2.0	31.0	2.3	¢3.2	30.0	IU0.0
California	10.3	0.0	0.2	13.0	3.1	11.0	2.5	83.3	10.5	100.0
Colorado 456	80.0	U.U	U.U	U.U	5.2	12.5	1.1	80.0	19.4	100.0
Connecticut	79.0	0.1	0.2	7.0	3.9	9.5	0.3	85.9	13.7	100.0
Delaware 9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
District of Columbia 9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Florida	69.6	0.5	0.7	11.0	3.7	13.6	1.0	80.5	18.3	100.0
Georgia	56.8	0.2	0.4	19.4	3.7	18.0	1.5	76.3	23.1	100.0
Hawaii 9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Idaho	47.4	1.6	0.4	29.0	2.3	16.4	2.9	76.4	21.6	100.0
Illinois 4	64.6	0.0	0.7	9.4	2.4	21.6	1.3	74.0	25.4	100.0
Indiana 8	56.8	1.3	1.1	12.7	3.6	22.6	1.9	69.6	28.1	100.0
lowa 5	67.5	1.2	0.3	0.0	3.6	25.5	1.9	67.5	31.0	100.0
Kansas	60.7	0.2	0.4	18.6	3.0	15.1	2.0	79.3	20.1	100.0
Kentucky	52.9	0.2	0.3	21.7	3.6	20.1	1.2	74.6	24.9	100.0
Louisiana	5/.	U. 2	U.4	14.0	5.8	1/:2	U.U	10.5	23.0	IU.U
VIaine 8	62.1	U. 2	U. 2	21.1	¢.U	11.2	U.2	83:2	10.4	100.0
Maryland 456	15.8	0.0	0.0	0.0	0.1	18.2	U.U	15.8	24.2	100.0
Massachusetts	\%\%.0	0.4	1.1	11.8	3.2	13.0	0.9	80.9	1/:2	10.0
Vilchigan	03.3	0.4	1.4	18.5	4.5	Y.5	1.4	$81 . /$	10.0	IUU.U
Minnesota 45	86.2	0.0	0.2	0.0	2.7	10.6	0.3	86.2	13.6	100.0
Mississippi	61.6	0.8	0.5	14.5	3.6	18.2	0.8	76.1	22.6	100.0
Missouri 4	62.7	0.0	0.7	8.5	3.6	22.1	2.4	71.2	28.1	100.0
Montana	51.8	0.5	0.3	28.9	3.4	13.3	1.8	80.7	18.5	100.0
Nebraska 8	50.0	0.1	0.2	19.8	3.7	23.6	2.6	69.8	29.9	100.0
Nevada 45	69.7	0.0	0.3	0.0	4.3	21.5	4.2	69.7	30.0	100.0
New Hampshire	73.6	0.6	0.2	18.6	3.2	3.7	0.0	92.2	6.9	100.0
New Jersey	74.3	0.5	0.3	13.5	4.7	6.4	0.3	87.8	11.4	100.0
New Mexico	57.7	1.6	0.6	16.7	3.6	17.5	2.3	74.4	23.4	100.0
New York 8	68.5	0.4	0.6	13.6	2.7	13.5	0.7	82.1	16.9	100.0
North Carolina	68.5	0.7	0.5	8.6	3.9	17.1	0.8	77.1	21.7	100.0
North Dakota	63.4	0.7	0.5	17.1	3.9	13.4	1.0	80.5	18.3	100.0
Ohio	62.8	0.4	0.7	10.7	2.7	21.4	1.4	73.5	25.5	100.0
Oklanoma 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Uregon	54.8	U. 2	U. 2	2b. 1	3.4	12:2	3.0	19.4	14.1	IUU.U
Pennsylvania 46	OU. 0	0.0	U.U	12.4	4.5	21.6	1.4	12.0	21.4	100.0
IRnode Istana	৪.Ь	U. 3	U. 3	11.1	1.4	U. 6	U.U	41.3	2.2	10.0
south Caroina	12.9	0.9	0.9	T0.2	3.2	11.5	0.3	83.1	15.1	T00.0
South Dakota 4	70.5	0.0	0.3	15.2	2.8	10.6	0.6	85.7	14.0	100.0
Tennessee	57.5	1.0	0.9	11.4	3.0	24.7	1.5	68.9	29.2	100.0
Texas 4	58.5	0.0	0.3	16.8	4.0	19.2	1.1	75.4	24.4	100.0
Utah 4	58.0	0.0	0.2	19.8	3.5	14.3	4.2	77.8	22.0	100.0
Vermont	72.7	0.8	0.6	12.9	3.3	9.3	0.4	85.6	13.0	100.0
Virginia 48	68.5	0.0	0.3	13.3	3.2	14.0	0.6	81.9	17.9	100.0
Washington	65.0	0.1	0.2	21.7	3.2	7.6	2.3	86.6	13.0	100.0
West Virginia	63.3	0.1	0.6	11.2	3.0	19.7	2.2	74.4	24.9	100.0
Wisconsin	75.8	0.1	0.6	8.1	1.9	12.8	0.8	83.8	15.5	100.0
Wyoming	43.4	2.9	0.2	25.3	1.7	23.0	3.7	68.7	28.3	100.0
1 Lata are basea on state hignway agency estimates reported tor this functional system. Note that the tormat ot this table is aifterent trom the previous year 2 Uther 2 -Axie 4 -IIre Vehicles which are not passenger cars, these include vans, pickup trucks, and sport/utillty venicles				3 single-Unit <-Axle 0 -IIre or More Irucks on a single trame with at least two axies ana six tires 4 Motorcycles includea with passenger cars 5 2-Axie 4-IIre venicles incluaea with passenger cars				© Buses includea with 2-Axie 0-IIre or more trucks 7 Uata not avallable		
				8 Lata trom a previous year						
				9 State has no nighways within this functionai classitication						

DISTRIBUTION OF ANNUAL VEHICLE DISTANCE TRAVELED BY VEHICLE TYPE - 1994

OfFICE OF HIGHWAY \quad TABLE VM-4

						COMB	IRUCKS			
STATE	PASSENGER CARS	MOTORCYCLES	BUSES	OTHER 2-AXLE 4-TIRE VEHICLES 2	SINGLE-UNIT 2-AXLE 6-TIRE ORMORE TRUCKS 3	SINGLE TRAILER	MULTIPLE TRAILER	PASSENGER CARS AND OTHER 2-AXLE 4-TIRE VEHICLES	SINGLE-UNIT 2-AXLE 6-TIRE OR MORE AND COMBINATION TRUCKS	$\begin{gathered} \text { ALL } \\ \text { MOTOR } \\ \text { VEHICLES } \end{gathered}$
Alabama	66.5	0.6	0.1	20.8	2.8	8.9	0.3	87.3	12.0	100.0
Alaska	65.0	0.1	0.2	27.6	5.2	1.7	0.2	92.6	7.1	100.0
Arizona	58.0	u. ${ }^{\text {b }}$	U.4	21.1	3.6	8.4	1.2	8 ¢. 1	13.2	IU.U
Arkansas	00.0	U.4	U.ち	1/.5	2.4	12.1	U. 5	83.5	15.5	IU.U
California	04.8	0.5	0.9	14.5	3.2	8.9	2.3	84.3	14.3	10.0
Colorado 456	80.4	U.U	U.U	U.U	0.2	1.0	U.4	80.4	13.6	IU.U
Connecticut	৪๐.ט	U.I	U.3	4.1	3.2	1.6	U.U	44.1	4.8	IU.U
Delaware	75.0	0.2	1.1	18.9	3.0	1.8	0.0	93.9	4.8	100.0
District of Columbia 9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Florida	71.3	0.7	0.6	15.0	4.2	7.9	0.3	86.3	12.4	100.0
Georgia	76.3	0.5	0.4	11.9	2.8	7.8	0.4	88.2	11.0	100.0
Hawail 8	81.8	0.5	0.4	10.2	4.7	2.4	0.0	92.0	7.1	100.0
Idaho	50.4	1.5	0.4	37.4	2.7	6.3	1.2	87.8	10.3	100.0
Illinois 4	76.3	0.0	0.3	14.9	2.6	5.8	0.1	91.2	8.5	100.0
Indiana 8	66.4	0.8	0.7	16.1	3.3	12.2	0.5	82.5	16.0	100.0
lowa 5	82.0	1.5	0.5	0.0	4.6	11.0	0.4	82.0	16.0	100.0
Kansas	69.4	0.2	0.3	19.7	2.8	6.9	0.7	89.1	10.4	100.0
Kentucky	58.0	0.2	0.3	30.6	4.3	6.5	0.1	88.6	10.9	100.0
Louisiana	54.0	0.2	0.5	27.0	8.0	10.2	0.0	81.0	18.2	100.0
Mlaine 8	14.4	U.8	U.4	13.5	2.4	2.4	U. 1	42.4	5.4	IU.U
Maryland 456	Y0.0	0.0	0.0	0.0	1.0	3.0	0.0	प्र 0	IU.U	10.0
Massachusetts	80.1	U.4	U.3	4.1	1.5	2.0	U.1	95.4	3.5	IU.U
Milchigan	¢๐.6	U. 0	I. ${ }^{\text {c }}$	21.3	3.0	5.4	1.0	80.4	11.0	10.0
Minnesota 45	88.2	U.U	U. 2	U.U	3.0	1.4	U. 2	88.2	$11 . /$	IU.U
Mississippi	67.0	0.5	0.6	15.7	3.5	12.1	0.6	82.7	16.2	100.0
Missouri 4	72.4	0.0	0.6	14.6	3.4	8.2	0.9	87.0	12.4	100.0
Montana	54.0	0.4	0.3	34.6	4.3	5.2	1.2	88.6	10.7	100.0
Nebraska 8	54.2	0.1	0.2	32.4	4.1	8.7	0.2	86.6	13.0	100.0
Nevada 45	85.9	0.0	0.7	0.0	5.3	6.7	1.4	85.9	13.4	100.0
New Hampshire	71.9	1.2	0.6	17.2	5.3	3.8	0.0	89.1	9.1	100.0
New Jersey	73.7	0.4	0.1	17.4	4.3	4.1	0.0	91.1	8.4	100.0
New Mexico	59.3	0.8	0.9	21.7	5.1	11.8	0.5	81.0	17.4	100.0
New York 8	71.7	0.4	0.6	16.1	3.3	7.7	0.2	87.8	11.2	100.0
North Carolina	71.5	0.7	0.4	10.5	4.0	12.4	0.5	82.0	16.9	100.0
North Dakota	63.7	0.9	0.4	22.6	4.6	7.1	0.7	86.3	12.4	100.0
Ohio	63.2	0.5	0.6	12.9	3.4	18.3	1.2	76.0	22.9	100.0
UkIanoma 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Uregon	54.1	U.6	U. 3	24.1	3.8	5.1	1.4	88.2	10.4	IU.U
Pennsylvania 46	11.3	U.U	U.U	18.0	5.1	5.3	U.3	84.3	10./	IUW
IRnode Islana	83.0	U. 2	U.3	12.4	2.2	0.1	U.U	90.5	2.4	IU.U
soutn Carolina	71.5	3.9	0.3	11.1	2.3	4.1	0.2	88.6	7.2	T0.0
South Dakota 4	68.2	0.0	0.4	21.7	3.6	5.6	0.5	89.9	9.7	100.0
Tennessee	74.2	0.7	0.6	15.3	2.6	6.5	0.1	89.5	9.2	100.0
Texas 4	61.1	0.0	0.3	23.0	4.6	10.6	0.5	84.2	15.6	100.0
Utah 4	67.6	0.0	0.2	22.0	3.0	5.4	1.8	89.6	10.2	100.0
Vermont	76.8	0.7	0.5	13.9	3.5	4.6	0.0	90.6	8.2	100.0
Virginia 48	69.1	0.0	0.8	15.8	4.2	9.8	0.2	84.9	14.3	100.0
Washington	62.3	0.1	0.2	26.7	4.5	4.7	1.5	89.0	10.8	100.0
West Virginia	80.7	0.1	0.5	14.5	2.2	2.0	0.2	95.2	4.3	100.0
Wisconsin	70.3	0.7	0.6	16.2	3.8	7.9	0.6	86.5	12.2	100.0
Wyoming	53.0	2.8	0.2	34.8	1.7	5.9	1.6	87.9	9.2	100.0
1 Data are based on State highway agency estimates reported tor this functional system. Note that the tormat ot this table is aitterent trom the previous year 2 Uther 2 -Axie 4 -IIre Vehicles which are not passenger cars, these incluade vans, pickup trucks, ana sport/utillity venicles					3 Single-Unit 2-Axle 6 -lire or More Irucks on a single trame with at least two axles ana six tires 4 Motorcycles incluadea with passenger cars 52 -Axie 4-IIre Venicles incluaea with passenger cars			6 Buses included with 2-Axle 6-lire or more trucks 7 Uata not available 8 Lata trom a previous year		
				trucks, ana sport/utillty venicles				9 State has no hignways within this functional classitication		

DISTRIBUTION OF ANNUAL VEHICLE DISTANCE TRAVELED BY VEHICLE TYPE - 1994 RURAL MINOR ARTERIAL

OfFICE OF HIGHWAY

DISTRIBUTION OF ANNUAL VEHICLE DISTANCE TRAVELED BY VEHICLE TYPE - 19941

						COMBI	TRUCKS			
STATE	PASSENGER CARS	MOTOR- CYCLES	BUSES	OTHER 2-AXLE 4-TIRE VEHICLES 2	SINGLE-UNIT 2-AXLE 6-TIRE OR MORE TRUCKS 3	SINGLE TRAILER	MULTIPLE TRAILER	PASSENGER CARS AND OTHER 2-AXLE 4-TIRE VEHICLES	SINGLE-UNIT 2-AXLE 6-TIRE OR MORE AND COMBINATION TRUCKS	ALL MOTOR VEHICLES
Alabama	66.6	0.7	0.1	11.7	5.1	13.9	2.0	78.3	20.9	100.0
Alaska	78.3	0.0	0.1	17.7	3.0	0.7	0.2	96.0	3.8	100.0
Arizona	54.4	U. 3	U. 3	23.6	0.0	12:2	1.2	80.1	19.4	IU0.U
Arkansas	¢8.0	U./	U.5	14.2	2.0	12.4	1.1	৪2.	10.0	IU0.U
California	86.1	0.0	0.1	Y.2	1.9	2.3	0.4	प5.4	4.5	100.0
Colorado 456	Y2./	U.U	U.U	U.U	4.0	2.4	0.4	42.1	1.3	IUU
Connecticut	81.4	U. 3	U.6	4.0	2.0	5.\%	U.3	Y 2.4	8.2	IUU.U
Delaware	62.9	0.7	0.9	21.3	3.3	10.0	0.9	84.2	14.2	100.0
District of Columbia 8	94.8	0.3	0.6	2.0	2.0	0.3	0.0	96.8	2.3	100.0
Florida	81.6	0.4	0.6	9.9	2.6	4.6	0.3	91.5	7.5	100.0
Georgia	65.4	0.1	0.2	25.1	2.9	6.1	0.3	90.5	9.2	100.0
Hawail 8	78.2	0.5	0.6	17.9	2.1	0.6	0.1	96.1	2.8	100.0
Idaho	59.9	1.4	0.3	29.3	1.6	6.6	1.0	89.2	9.2	100.0
Illinois 4	70.5	0.0	0.4	9.2	2.3	17.1	0.6	79.6	20.0	100.0
Indiana 8	66.5	1.4	0.8	13.7	3.1	13.4	1.1	80.2	17.6	100.0
lowa 5	80.4	1.2	0.3	0.0	3.0	14.0	1.1	80.4	18.1	100.0
Kansas	66.9	0.1	0.3	24.0	3.1	5.1	0.5	90.9	8.7	100.0
Kentucky	66.0	0.1	0.3	23.3	3.1	6.9	0.3	89.3	10.3	100.0
Louisiana	62.8	0.1	1.0	19.0	6.0	11.1	0.0	81.8	17.1	100.0
\|Vaine 8	14.3	U. 2	U. 2	18.1	3.3	3.3	U.U	43.0	0.6	IUU
Maryland 456	41.0	0.0	0.0	0.0	4.0	5.0	0.0	41.0	4.0	10.0
Massachusetts	1/:2	1.0	U.ち	12.0	4.0	5.2	U. 2	84:2	4.4	IU.U
Vilchigan	¢8.2	0.4	1.4	10.0	4.2	1.3	1.3	84.8	12.4	IUU.U
VIInnesota 45	42.1	U.U	U. 3	U.U	2.5	4.4	U.1	42.1	1.0	IUU
Mississippi	66.2	0.7	0.5	13.8	3.4	14.6	0.8	80.0	18.8	100.0
Missouri 4	74.2	0.0	0.4	16.2	3.5	5.1	0.6	90.4	9.2	100.0
Montana	68.6	0.2	0.7	20.0	2.1	6.5	1.9	88.6	10.5	100.0
Nebraska 8	68.4	0.1	0.2	22.7	2.8	5.4	0.4	91.1	8.6	100.0
Nevada 45	86.0	0.0	0.4	0.0	3.4	8.4	1.7	86.0	13.5	100.0
New Hampshire	68.9	0.2	0.2	24.1	2.9	3.7	0.0	92.9	6.7	100.0
New Jersey	75.9	0.4	0.2	12.6	3.2	7.5	0.2	88.5	10.9	100.0
New Mexico	59.6	1.0	0.5	26.5	4.5	7.2	0.8	86.1	12.5	100.0
New York 8	76.6	0.3	0.5	14.4	2.8	5.2	0.2	91.0	8.2	100.0
North Carolina	74.8	0.7	0.4	11.8	4.4	7.6	0.3	86.6	12.3	100.0
North Dakota	71.4	0.9	0.3	16.4	3.0	7.5	0.5	87.8	11.0	100.0
Ohio	72.3	0.2	0.7	12.9	2.6	10.6	0.7	85.2	13.9	100.0
Uklanoma 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Uregon	¢.५	U. 3	U. 3	25.4	2.4	4.4	1.2	Y 4.4	8.5	IU.U
Pennsyivania 46	13.4	U.U	U.U	12.0	4.2	4.4	U. 5	¢८. 4	14.1	IUW
IRnode Islana	19.0	U. 3	U.6	10.4	3.6	5.4	U. 2	89.4	4.1	IUU
South Carolina	89.4	0.1	0.1	6.1	1.5	2.0	0.1	96.1	3.6	100.0
South Dakota 4	79.4	0.0	0.2	15.5	2.2	2.5	0.2	94.9	4.9	100.0
Tennessee	59.2	0.1	0.2	28.3	3.1	8.4	0.7	87.5	12.2	100.0
Texas 4	72.3	0.0	0.2	17.6	2.8	6.7	0.4	89.9	9.9	100.0
Utah 4	73.2	0.0	0.1	17.6	3.0	4.8	1.2	90.8	9.1	100.0
Vermont	75.2	0.3	0.5	12.9	3.1	7.8	0.1	88.1	11.1	100.0
Virginia 48	77.8	0.0	0.4	12.4	4.2	5.1	0.2	90.2	9.5	100.0
Washington	68.8	0.1	0.2	22.9	3.8	3.3	0.9	91.8	8.0	100.0
West Virginia	67.0	0.2	0.6	8.7	1.8	18.8	3.0	75.7	23.5	100.0
Wisconsin	76.0	0.7	0.5	11.8	1.9	8.8	0.2	87.8	11.0	100.0
Wyoming	52.6	1.6	0.1	25.1	1.9	16.5	2.2	77.7	20.6	100.0
1 Data are based on State highway agency estimates reported tor this functional system. Note that the tormat ot this table is altrerent trom the previous year 2 Uther 2-Axle 4-IIre venicles which are not passenger cars, these incluade vans, pickup trucks, ana sport/utillty venicles				3 Single-Unit 2-Axle 6-lire or More Irucks on a single trame with at least two axies and six tires 4 Miotorcycles includea with passenger cars 5 2-Axie 4-IIre venicles inclualea with passenger cars				6 Buses included with 2-Axle 6-lire or more trucks 7 Uata not avallable 8 Lata trom a previous year		

DISTRIBUTION OF ANNUAL VEHICLE DISTANCE TRAVELED BY VEHICLE TYPE - 1994
URBAN OTHER FREEWAYS AND EXPRESSWAYS
OFFICE OF HIGHWAY \quad TABLE VM-

						COMB	IRUCKS			
STATE	PASSENGER CARS	MOTORCYCLES	BUSES	OTHER 2-AXLE 4-TIRE VEHICLES 2	SINGLE-UNIT 2-AXLE 6-TIRE OR MORE TRUCKS 3	SINGLE TRAILER	MULTIPLE TRAILER	PASSENGER CARS AND OTHER 2-AXLE 4-TIRE VEHICLES	SINGLE-UNIT 2-AXLE 6-TIRE OR MORE AND COMBINATION TRUCKS	ALL MOTOR VEHICLES
Alabama	85.5	0.5	0.0	9.2	1.3	1.5	2.0	94.7	4.8	100.0
Alaska	77.4	0.1	0.3	18.8	3.0	0.5	0.0	96.1	3.5	100.0
Arizona	¢U.5	U.5	U. 3	24.1	5./	3.0	U.4	84.0	4.6	IUu.u
Arkansas	88.5	U.2	U. 3	19.0	3.3	8.1	U.O	81.5	I2.U	ıueu
California	83.1	0.1	0.2	4.1	2.8	3.1	0.5	Y 3.4	0.3	100.0
colorado 456	44.2	U.U	U.U	U.U	3.8	1.4	U.I	94.2	5.8	IUu.u
Connecticut	80.3	U.2	0.1	8.3	3.4	$1 . /$	U.I	94.6	5.1	IUu.u
Delaware	63.8	0.2	0.4	22.8	5.5	6.9	0.4	86.6	12.8	100.0
District of Columbia 8	94.9	0.3	0.5	2.0	2.0	0.3	0.0	96.9	2.3	100.0
Florida	87.7	0.4	0.3	8.0	2.3	1.2	0.1	95.7	3.6	100.0
Georgia	71.5	0.2	0.3	23.2	2.5	2.3	0.1	94.7	4.8	100.0
Hawail 8	80.5	0.4	0.8	15.6	2.1	0.6	0.0	96.1	2.7	100.0
Idaho 9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Illinois 4	77.6	0.0	0.3	10.3	2.0	9.2	0.7	87.9	11.9	100.0
Indiana 8	67.2	0.8	0.8	17.6	3.6	9.5	0.5	84.7	13.6	100.0
lowa,	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kansas	69.6	0.2	0.2	22.6	3.5	3.8	0.1	92.2	7.4	100.0
Kentucky	68.4	0.2	0.5	23.7	3.3	3.8	0.1	92.1	7.2	100.0
Louisiana	63.2	0.6	1.0	25.0	6.0	4.2	0.0	88.2	10.2	100.0
Maine 8	8¢.1	U. 2	U. 3	13.4	2.6	U. 8	U.U	40.1	3.4	IUU.U
Marylana 456	प5.0	0.0	0.0	0.0	4.0	1.0	0.0	प5.0	5.0	100.0
Massachusetts	8/.8	U./	0.4	8.3	1.4	1.4	U. 2	40.0	2.4	IUU.U
Micnigan	\%8.6	U./	1.3	20.5	3.2	4.6	I.U	84.1	8.4	IUU.U
Minnesota 45	94.5	U.U	U. 2	U.U	2.0	3.2	U.1	44.5	5.3	IUU.U
Mississippi	67.5	0.2	0.5	12.6	5.1	13.2	0.9	80.1	19.2	100.0
Missouri 4	79.5	0.0	0.4	14.2	2.6	3.0	0.3	93.7	5.9	100.0
Montana 9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nebraska 8	68.9	0.2	0.2	24.8	2.4	3.3	0.2	93.7	5.9	100.0
Nevada 45	91.8	0.0	0.6	0.0	3.5	3.5	0.6	91.8	7.7	100.0
New Hampshire	60.5	0.7	0.6	29.9	5.2	3.1	0.0	90.4	8.3	100.0
New Jersey	81.1	0.1	0.3	9.4	2.7	6.4	0.1	90.5	9.2	100.0
New Mexico	60.0	0.9	0.4	28.2	4.5	5.4	0.5	88.3	10.4	100.0
New York 8	75.5	0.3	0.6	15.9	2.8	4.8	0.1	91.4	7.7	100.0
North Carolina	75.3	0.7	0.4	11.7	4.3	7.3	0.3	87.0	11.9	100.0
North Dakota 9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ohio	76.6	0.3	0.3	12.9	2.5	7.0	0.4	89.5	9.8	100.0
Oklanoma 7	0.0	U.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	U.U
Uregon	11.2	U.3	0.4	23.4	2.6	1./	0.4	94.0	4.1	10.0
rennsyivania 46	13.0	U.U	0.0	$1 / .0$	5.0	4.2	U. 2	40.0	4.4	IUU.U
Knode Islana	82.2	0.4	0.6	8.1	2.0	5.4	U.1	40.9	8.1	IUu.u
south Carolina	81.8	0.1	0.3	10.8	2.1	4.0	0.3	92.6	7.0	10.0
South Dakota 4	74.7	0.0	0.2	18.9	4.1	1.9	0.2	93.6	6.2	100.0
Tennessee	80.4	0.3	0.3	15.7	1.7	1.5	0.1	96.1	3.3	100.0
Texas 4	74.4	0.0	0.2	19.2	2.7	3.5	0.1	93.6	6.2	100.0
Utah 4	70.2	0.0	0.1	18.9	4.8	4.4	1.5	89.1	10.8	100.0
Vermont	81.5	0.6	0.2	11.3	3.3	3.0	0.0	92.8	6.4	100.0
Virginia 48	85.3	0.0	0.2	10.3	2.5	1.7	0.0	95.6	4.2	100.0
Washington	64.8	0.1	0.1	27.8	3.5	2.9	0.8	92.6	7.3	100.0
West Virginia	80.8	0.1	0.3	11.6	2.3	4.8	0.1	92.4	7.2	100.0
Wisconsin	80.3	0.6	0.4	12.5	2.1	4.0	0.1	92.8	6.2	100.0
Wyoming	57.2	1.0	0.1	33.9	1.6	3.9	2.4	91.2	7.8	100.0
1 Data are based on State highway agency estimates reported tor this functional system. Note that the tormat ot this table is altrerent trom the previous year 2 Uther 2 -Axle 4-Iire venicles which are not passenger cars, these inciude vans, pickup trucks, ana sport/utillty venicles				3 Single-Unit 2-Axle 6-lire or More Irucks on a single trame with at least two axies and six tires 4 Viotorcycles includea with passenger cars 5 L-Axie 4-IIre Venicles included with passenger cars				6 Buses included with 2-Axle 6-lire or more trucks 7 Uata not available 8 Lata trom a previous year		
				9 state has no highways within this tunctional classitication						

DISTRIBUTION OF ANNUAL VEHICLE DISTANCE TRAVELED BY VEHICLE TYPE - 19941

						COMBI	TRUCKS			
STATE	PASSENGER CARS	MOTOR- CYCLES	BUSES	OTHER 2-AXLE 4-TIRE VEHICLES 2	SINGLE-UNIT 2-AXLE 6-TIRE OR MORE TRUCKS 3	SINGLE TRAILER	MULTIPLE TRAILER	PASSENGER CARS AND OTHER 2-AXLE 4-TIRE VEHICLES	SINGLE-UNIT 2-AXLE 6-TIRE OR MORE AND COMBINATION TRUCKS	ALL MOTOR VEHICLES
Alabama	80.2	0.5	0.0	13.6	2.1	3.3	0.4	93.7	5.8	100.0
Alaska	78.8	0.1	0.3	18.2	2.2	0.3	0.0	97.1	2.6	100.0
Arizona	56.1	0.4	U.0	32.1	4.4	4.1	U.O	8 8.8	10.3	IU0.U
Arkansas	15.4	U. 2	U.2	11.4	2.4	3.2	U.1	43.8	5.1	IU0.U
California	14.9	0.9	0.0	12.6	5.0	4.2	1.9	$8 / .4$	11.1	100.0
Colorado 456	44.5	U.U	U.U	U.U	3.8	1.1	U.1	44.5	¢.Ь	IUU
Connecticut	80.4	U. 2	U.S	4.6	2.4	U.Y	U.U	40.0	3.2	IUU.U
Delaware	82.9	1.0	0.6	11.6	2.0	1.8	0.1	94.5	3.9	100.0
District of Columbia 8	92.5	0.4	1.2	2.0	3.6	0.3	0.0	94.5	3.9	100.0
Florida	84.3	0.7	0.5	10.6	2.2	1.6	0.1	95.0	3.9	100.0
Georgia	70.6	0.2	0.3	24.0	2.8	2.1	0.1	94.5	5.0	100.0
Hawail 8	76.4	1.1	0.9	16.7	3.4	1.5	0.0	93.1	5.0	100.0
Idaho	52.2	0.9	0.2	40.6	2.4	3.1	0.5	92.8	6.1	100.0
Illinois 4	83.0	0.0	0.4	11.3	2.2	3.1	0.0	94.3	5.3	100.0
Indiana 8	73.9	0.6	0.8	17.4	2.5	4.6	0.3	91.2	7.4	100.0
lowa 5	90.5	1.5	0.3	0.0	3.4	4.2	0.1	90.5	7.7	100.0
Kansas	68.8	0.3	0.2	27.6	1.9	1.2	0.0	96.4	3.1	100.0
Kentucky	67.9	0.2	0.5	27.0	2.6	1.8	0.0	94.9	4.4	100.0
Louisiana	60.5	0.4	1.0	26.0	7.0	5.2	0.0	86.5	12.2	100.0
\|Vaine 8	19.0	U. 6	U.4	14.1	2.4	2.3	0.1	93.1	5.3	IUU
Maryland 456	प3.0	0.0	0.0	0.0	0.0	1.0	0.0	प3, 0	1.0	10.0
Massachusetts	84.3	U.4	U.3	11.4	2.1	1.4	0.1	$95 . /$	3.6	IU.U
Vilchigan	IU.U	U. ${ }^{\text {b }}$	1.4	20.5	3.2	3.0	U. 8	Y0.4	1.0	IUU.U
VIInnesota 45	Y5.4	U.U	U. 3	U.U	2.5	1./	0.1	95.4	4.3	IUU
Mississippi	76.3	0.4	0.5	16.1	3.2	3.3	0.2	92.4	6.7	100.0
Missouri 4	78.7	0.0	0.4	15.9	2.9	2.1	0.2	94.6	5.1	100.0
Montana	68.2	0.1	0.2	26.3	2.8	2.1	0.3	94.5	5.2	100.0
Nebraska 8	69.5	0.2	0.2	26.9	1.9	1.3	0.1	96.4	3.3	100.0
Nevada 45	96.7	0.0	0.3	0.0	2.0	0.9	0.1	96.7	3.0	100.0
New Hampshire	65.4	1.3	0.8	22.5	6.1	3.8	0.0	87.9	9.9	100.0
New Jersey	76.9	0.2	0.2	15.5	3.4	3.7	0.0	92.4	7.2	100.0
New Mexico	73.7	0.3	0.5	19.2	3.8	2.2	0.3	92.9	6.3	100.0
New York 8	78.7	0.4	0.7	15.2	2.4	2.6	0.0	93.9	5.0	100.0
North Carolina	76.1	0.7	0.4	11.5	4.6	6.5	0.2	87.6	11.3	100.0
North Dakota	72.1	1.0	0.3	21.2	3.0	2.2	0.2	93.3	5.4	100.0
Ohio	85.2	0.2	0.5	8.0	1.6	4.3	0.2	93.2	6.0	100.0
Uklanoma 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	U.U	0.0	0.0
Uregon	00.1	U.4	U.ち	28.1	2.5	1.5	U. 3	44.8	4.3	IU.U
Pennsyivania 46	15.4	U.U	U.U	18.0	4.3	2.1	0.1	93.4	0.6	IUW
IRnode Islana	81.1	0.4	U.4	8.1	2:2	I.U	0.1	4. $\%$	3.4	10.0
South Carolina	83.4	2.6	0.3	9.8	2.2	1.6	0.2	93.2	3.9	100.0
South Dakota 4	74.7	0.0	0.2	18.9	4.1	1.9	0.2	93.6	6.2	100.0
Tennessee	77.3	0.3	0.4	18.1	2.4	1.5	0.0	95.4	3.9	100.0
Texas 4	71.6	0.0	0.3	19.3	3.4	5.3	0.2	90.9	8.8	100.0
Utah 4	76.0	0.0	0.2	17.7	2.6	2.9	0.7	93.7	6.1	100.0
Vermont	80.5	0.7	0.4	11.8	3.4	2.8	0.4	92.3	6.7	100.0
Virginia 48	79.4	0.0	0.4	15.8	2.9	1.6	0.0	95.1	4.5	100.0
Washington	64.8	0.1	0.1	27.8	3.5	2.9	0.8	92.6	7.3	100.0
West Virginia	84.7	0.0	0.6	11.2	2.1	1.4	0.1	95.9	3.5	100.0
Wisconsin	82.6	0.7	0.2	11.3	3.4	1.6	0.1	94.0	5.1	100.0
Wyoming	60.4	1.7	0.1	33.7	1.2	2.2	0.8	94.0	4.1	100.0
1 Data are based on State highway agency estimates reported tor this functional system. Note that the tormat ot this table is altrerent trom the previous year 2 Uther 2-Axle 4-IIre venicles which are not passenger cars, these incluade vans, pickup trucks, ana sport/utillty venicles				3 Single-Unit 2-Axle 6-lire or More Irucks on a single trame with at least two axies and six tires 4 Miotorcycles includea with passenger cars 5 2-Axie 4-IIre venicles inclualea with passenger cars				6 Buses included with 2-Axle 6-lire or more trucks 7 Uata not avallable 8 Lata trom a previous year		

DISTRIBUTION OF ANNUAL VEHICLE DISTANCE TRAVELED BY VEHICLE TYPE－ 1994

Office of highway \quad TABLE VM－4

						COMBI	IRUCKS			
STATE	PASSENGER CARS	MOTOR－ CYCLES	BUSES	OTHER 2－AXLE 4－TIRE VEHICLES 2	SINGLE－UNIT 2－AXLE 6－TIRE OR MORE TRUCKS 3	SINGLE TRAILER	MULTIPLE TRAILER	PASSENGER CARS AND OTHER 2－AXLE 4－TIRE VEHICLES	SINGLE－UNIT 2－AXLE 6－TIRE OR MORE AND COMBINATION TRUCKS	ALL MOTOR VEHICLES
Alabama	81.0	0.4	0.0	12.7	2.6	3.1	0.3	93.7	6.0	100.0
Alaska	75.5	0.3	0.5	21.7	1.5	0.5	0.0	97.2	2.0	100.0
Arizona	58.6	U．4	U． 3	32.0	3.8	3．6	U．5	41.2	8.1	100.0
Arkansas	14.4	U．4	U． 3	1／．8	3.4	3.4	U． 2	42：2	1.4	10.0
California	82.3	0.5	0.6	IU． 2	2.4	3.5	0.5	42.5	0.4	100.0
colorado 456	42.0	U．U	U．U	U．U	0.2	1.8	U．U	Y2．0	8.0	10.0
Connecticut	8／．3	0.4	0.4	4.1	1.8	U．4	U．U	Y1．0	2：2	10.0
Delaware	79.9	0.7	0.9	11.0	5.3	1.5	0.7	90.9	7.5	100.0
District of Columbia 8	92.0	0.4	1.4	2.5	3.4	0.3	0.0	94.5	3.7	100.0
Florida	84.9	0.6	0.4	10.6	2.3	1.1	0.1	95.4	3.6	100.0
Georgia	74.8	0.3	0.3	22.2	1.9	0.5	0.0	97.1	2.3	100.0
Hawaii 8	87.5	0.4	0.8	7.8	2.9	0.5	0.0	95.3	3.5	100.0
Idaho	61.5	1.0	0.4	32.9	2.4	1.7	0.1	94.4	4.2	100.0
Illinois 4	84.1	0.0	0.3	11.9	2.1	1.5	0.1	96.0	3.6	100.0
Indiana 8	74.8	0.4	0.6	19.4	2.6	2.1	0.1	94.2	4.8	100.0
lowa 5	96.5	1.0	0.4	0.0	1.7	0.4	0.0	96.5	2.1	100.0
Kansas	71.0	0.2	0.2	25.9	1.6	1.1	0.0	96.9	2.7	100.0
Kentucky	70.1	0.2	0.6	25.8	2.4	0.9	0.0	95.9	3.3	100.0
Louisiana	61.5	0.4	1.0	27.0	6.0	4.1	0.0	88.5	10.1	100.0
Malane 8	84.3	U．6	U． 3	11.8	2.4	U．6	U．U	90.1	3.4	IUU．U
Maryiana	83.3	0.9	0.5	10.1	2.9	1.9	0.0	94.0	4.1	100.0
Massachusetts	80.8	U．ち	U． 3	IU．2	1.6	U．ち	U．U	41.0	2.1	IUU．U
Milcnigan	12.0	U．ち	1.4	20.4	2.0	2：2	U．4	42.4	5.3	IUU．U
Vilinnesota 45	90.6	U．U	U． 1	U．U	2．2	1.1	U．U	40.0	3.3	IUU．U
Mississippi	76.1	0.4	0.3	17.4	2.9	2.7	0.2	93.5	5.8	100.0
Missouri 4	85.2	0.0	0.4	8.3	3.2	2.8	0.2	93.5	6.2	100.0
Montana	70.4	0.5	0.0	26.8	1.2	0.9	0.2	97.2	2.3	100.0
Nebraska 8	72.7	0.3	0.5	24.2	1.6	0.6	0.0	97.0	2.3	100.0
Nevada 45	93.4	0.0	2.0	0.0	3.2	1.1	0.3	93.4	4.6	100.0
New Hampshire	72.7	0.9	0.4	20.8	3.7	1.5	0.0	93.4	5.2	100.0
New Jersey	76.3	0.3	0.7	17.3	3.6	1.8	0.0	93.5	5.5	100.0
New Mexico	76.8	0.2	1.3	16.8	3.6	1.2	0.0	93.6	4.9	100.0
New York 8	79.2	0.3	0.6	15.3	2.3	2.3	0.0	94.5	4.6	100.0
North Carolina	76.8	0.7	0.4	11.4	4.6	5.9	0.2	88.2	10.7	100.0
North Dakota	76.5	1.3	0.2	18.6	2.5	0.9	0.0	95.1	3.4	100.0
Ohio	85.5	0.5	0.3	11.4	1.7	0.5	0.1	96.9	2.3	100.0
Oklanoma 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Uregon	13.3	U．ち	U．／	23.2	$1 . /$	U．4	U． 2	40.5	2.3	100.0
Yennsyivania 46	14.0	U．U	U．U	2 2.	4.4	1.1	U．I	44.5	$\bigcirc .5$	100.0
Rnode Islana	81.6	U．4	U． 6	14.3	1.4	1．2	U． 1	4b． 4	3.1	100.0
South Caroina	86.4	0.6	0.2	9.6	1.6	1.4	0.1	प0．0	3.2	10.0
South Dakota 4	83.0	0.0	0.1	12.5	3.8	0.5	0.1	95.5	4.4	100.0
Tennessee	74.9	0.3	0.4	20.9	2.4	1.0	0.1	95.8	3.5	100.0
Texas 4	72.5	0.0	0.2	21.4	3.5	2.3	0.0	93.9	5.9	100.0
Utah 4	82.0	0.0	0.2	12.0	3.8	1.4	0.6	94.0	5.8	100.0
Vermont	77.9	1.4	0.5	14.5	3.4	2.0	0.2	92.4	5.7	100.0
Virginia 48	74.6	0.1	0.4	20.4	2.9	1.5	0.0	95.0	4.4	100.0
Washington	64.9	0.0	0.2	27.8	4.2	2.5	0.4	92.7	7.1	100.0
West Virginia	82.1	0.0	0.6	12.2	2.2	2.7	0.0	94.4	5.0	100.0
Wisconsin	77.9	0.8	0.2	16.0	2.2	2.8	0.1	93.8	5.1	100.0
Wyoming	67.8	1.5	0.3	28.5	0.7	1.0	0.3	96.3	2.0	100.0
1 Data are based on State highway agency estimates reported tor this functional system． Note that the tormat ot this table is altrerent trom the previous year 2 Uther 2 －Axle 4－IIre venicles which are not passenger cars，these incluade vans，pickup trucks，ana sport／utllity venicles				3 Single－Unit 2－Axle 6－lire or More Irucks on a single trame with at least two axles ana six tires 4 Motorcycles incluadea with passenger cars 52－Axle 4－IIre Venicles included with passenger cars				© Buses included with 2－Axle 6－lire or more trucks 7 Uata not avallable 8 Lata trom a previous year		

STATE MOTOR-VEHICLE REGISTRATIONS - 1994

COMPILED FOR TH OF STATE AUTHORI	RYYEAR FROMREPO Hersources 2															TABLE MV-1SEPTEMBER 1995		
State	- MOTORVEHCLES															MOTORCYCLES		
	Automobless			Buses			TRUCKK3			All Motorvehiles			COMPARSONOF TOTALMOTOR-VEHCLIE REGITTRATIONS. 1993-1994					
	COMMERCIAL (INCluding	PUBLCLY owned4	TOTAL	PRIVATE AND COMMERCIAL5	pubucly owned4	Total	PRIVATE AND COMMERCIAL	PUBLCLY owneD4		PRIVATE AND COMMERCIAL	PUBUCLY owned4	TOTAL	TOTAL 1993 REGITTATIONS	INCREASE OR DECREASE 1994	PERCENT Change	PRIVATE AND COMMERCIAL	PUBLCLY owneD4	
Alabama	1,933,476	14.485	1,947,961	2.100	${ }^{6.301}$	${ }^{8.40}$	1,195,063	25.136	1.220, 199	3,130.638	45.922	3,176,500	3,390,365	(213,805)	${ }^{(0.3}$	${ }^{38,228}$	479	
Alaska	298,103	2,317	300.420	1.804	131	1.93	223,699	7.442	231,141	523,006	9.890	533.496	489,004	44.492	9.1	12,535		
Atizona	1.834,190	15.804	1,849,994	1.351	3.093	4.444	941.972	17,051	959,023	2.777.513	35,948	2,813,462	2.89, 589	(78,127)	(2.7)	60,984	754	
Afransas	765.867	9.275	775,142	1.219	4.366	$5.58{ }^{\text {a }}$	775.379	10.732	786,111	1,542,465	24.373	1.566.838	1.527.625	39.213	2.6	14,338	18	
Calforma	14.574 .084	168.473	${ }^{14,742,557}$	20.670	${ }^{15.597}$	${ }^{42,26}$	7,318.847	235,209	$7.554,050$	21,919,602	419,273	${ }^{22,338,875}$	22,823,72	(484,837)	(2.)	529,193	76	
Colorado	1.642,070	9.521	1.651.591	1.507	4.064	5.57)	1.068.601	24.095	1.092.696	2.712.179	37.880	2,749,858	3.032.088	(282, 230)	${ }^{9} .3$	96.367	58	
Connecticuto	2.035,366	${ }^{11,057}$	2.046,422	7.583	792	$8.37{ }^{\text {\% }}$	520,324	24,369	544.692	2.563.272	36,217	2.599,489	2.594,369	5.120	0.2	48.045	273	
Delaware	397.690	6.439	404,129	1.596	581	2,177	169,348	2.381	171,729	568,035	9,401	578,036	554,550	23.486	4.2	9.088	2	
Dist. of Col.	207.289	4.089	211.378	${ }^{2,421}$	371	2.79	28.632	5,993	34,625	238,341	10.454	248,795	263,637	(14,842)	(5.6)	909	409	
Forida	7.429,630	89.576	7,519,206	4.933	34.631	39,564	2.562,194	130.846	2,693,040	9.996,757	255.053	10,251,810	10, 169,556	82,254	0.8	171.850	5.524	
Georgia	4.146,195	21.402	4,167,597	3.390	11.672	15.06	1,753,297	53.746	1.807.042	5,902,882	8.8820	5,889,702	5.632.425	357,277	${ }^{6.3}$	55,733	898	
Howai	503,644	5.639	509,282	3,385	920	4.308	258,488	${ }^{6.639}$	265,288	765.678	13,198	778,876	763,491	15.385	2.0	11.852	296	
licho	53,839	5,324	545,163	${ }^{1.263}$	${ }^{2,147}$	${ }^{3.419}$	465,636	${ }^{20,521}$	488,157	1.006,738	27.992	1.034,729	1.023,179	${ }^{11,550}$	${ }^{1.1}$	${ }^{32,926}$	${ }^{124}$	
Winois	0,168,519	57,490	0,226,009	${ }^{14.878}$	${ }^{1.427}$	16,300	2.437,733	17,807	2,455.540	8,621,130	70.724	8,697.854	8,070.444	627,390	7.8	188,299	${ }^{127}$	
Indiona	3,210,159	20,352	3,230.511	9.003	14.578	23.581	1.598,316	36.226	1.634.542	4.817.479	71,156	4.888,635	4.670,301	218,334	4.7	96.569	448	
lowa	1.794,833	11,242	1,80,075	1,357	7.912	9.264	924,752	25,782	950.534	2.720.942	44.836	2.765,878	2,738,147	27,731	1.0	115,034	162	
Kansas	1.086,674	7,203	1,093,876	${ }^{1,535}$	${ }^{2,244}$	3,774	967,972	17,330	986,302	2,056,187	20.776	2,082, 957	1.922.229	160,728	${ }^{8.4}$	44,364	294	
Kentucky	1.709,419	22,940	1.732,359	1.874	9.914	11.788	915.432	0.125	921.557	2.626.726	38,979	2.665,705	2.629,130	36.575	1.4	33,889		
Louisiona	1,948,082	29.704	1,977,787	15.224	5.123	20.347	1.408,408	19.923	1.428.330	3,371.714	54,750	3.426,464	3.166,155	260.309	8.2	34.892	449	
Maine	605.017	5.710	610.727	6^{62}	2.188	2.81	321,008	10.600	332.208	927,246	18.498	945,744	1.027.942	(82,198)	${ }^{(8.0)}$	25.548	71	
Maryand	2,718.838	12,672	2,731,510	${ }^{6.599}$	4.617	11.216	876,380	21,232	897.617	3,601.816	${ }^{38,521}$	3,640,337	3,559,558	${ }^{80,779}$	${ }^{2,3}$	${ }^{38,790}$	104	
Massachusetts	3,053,422	14.972	3,068,374	9,949	465	10.414	915.856	32,160	948.016	3,979,207	47,596	4,026,804	3,837.497	189,307	4.9	65,977	3	
Michigan	5,232,501	44.452	5,276,953	9.445	14.445	23,940	2.201, 144	71.556	2.272.700	7.443, 140	130.453	7.573,593	7.398.558	175.035	2.4	111.800	1.298	
Minnesota	2.665.035	12.258	2.677,293	0.973	9.867	16.840	1.335.888	27,414	1,363,282	4.007.876	49,539	4.057.415	3.716.103	341,312	9.2	129,385	329	
Misisisppi	1,330,782	9,731	${ }^{1,340.513}$	3,253	${ }^{6.081}$	9,334	696,532	${ }^{10,587}$	713,120	2,030,567	${ }^{32,399}$	2.062,967	1,999,639	${ }^{63,328}$	${ }^{3.2}$	${ }^{28,525}$		
Missouri	2,73,994	7.389	2,741,383	4.428	7.739	12.160	1.438,459	15,921	1.454.380	4.176,881	31.049	4.207,930	4.065.680	142.244	3.5	56.731	${ }^{37}$	
Montana	505.396	6.748	512,144	1.126	1,923	3.045	417.265	17,067	434,332	923,787	25.738	949,525	939,220	10.305	1.1	21,265	${ }^{126}$	
Nebraska	830,399	10.134	840,533	1.116	4.654	5.770	595,715	15.566	611.281	1,427.230	30.353	1.457.584	1,43,026	18.558	1.3	20.330	221	
${ }^{\text {Nevoda }}$	${ }^{528,331}$	${ }^{0.525}$	5378.85	${ }^{1.469}$	${ }^{258}$	${ }^{1.727}$	${ }^{431,608}$	${ }^{13,505}$	445.113	961.408	${ }^{23,287}$	${ }^{984,696}$	937,227	47.469	5.1	19,708	451	
New Hampshire 6	640,065	3,775	${ }_{643,840}$	1.413	316	1.722	335.693	10,553	346,246	977,170	14.644	991.815	958,741	33,04	3.4	33,338		
New Jersey ${ }^{\text {c }}$	4.547.413	54,184	4.601.597	${ }^{16.367}$	${ }^{3.056}$	19.423	1,127.638	${ }^{90.551}$	1,218,189	5.699,418	147,792	5,839,209	5.640, 875	198,334	${ }^{3.5}$	${ }^{85,675}$	796	
New Mexico	722,136	12,499	734.634	2.469	933	3,402	664,774	19.630	684,404	1,389,379	${ }^{33.061}$	1.422.40	1.420.653	1.787	0.1	30.645	230	
New York6	7.836,692	70.882	7,906,975	${ }^{19,423}$	23.90	${ }^{43,33}$	${ }^{2,151,265}$	${ }^{94,593}$	2,245.858	${ }^{10.007,381}$	${ }^{188,786}$	${ }^{10.196,160}$	10.162.501	${ }^{33,665}$	${ }^{0.3}$	${ }^{173,836}$	1.352	
North Carolina	3,494,371	30,944	3,525.315	9.027	25.086	34.113	1.823,102	60.191	1.883,293	5,326,499	116,221	5.442,720	5.364,571	78, 149	1.5	63.412	${ }^{426}$	
Notrt Dakota	369,343	3,763	373,106	595	1.814	2.400	300.447	8.679	309, 126	670,34	14.256	688,640	601.831	22.809	3.4	17,500	30	
Ohio	7.141,332	36,110	7.177.441	11,412	20.867	32.278	2,390,389	63.018	2.454.007	9.543,133	120,595	9.663,727	9.278,973	384,754	4.1	223,249	545	
Okahoma	1,549,008	10.288	1,559,306	1.937	${ }^{12,469}$	14,400	1,191,321	40.717	1,232.038	2.742 .266	${ }^{63,484}$	2,805,750	2,771.353	${ }^{34,397}$	1.2	${ }^{55,885}$	${ }^{323}$	
Oregon	1,508,963	21,107	1.530.070	3.600	7.338	10.938	1,188,276	25,285	1,211.561	2.698.839	53,730	2,752.569	2.624,127	128.442	4.8	60,542	692	
Pennsylvania6	5,985,050	41.393	6.022.443	26.378	7.088	33.466	2.364,908	57.570	2.422.478	8,37, 336	106,051	$8.482,387$	8,282,066	200,321	2.4	167.529	1.006	
Ehoded sland	542,032	3,162	545,194	1.632	11	1.643	146,792	5.465	152.257	690.455	8.638	699,093	695,310	3.783	0.5	16.807	86	
South Carolina	1,807,270	9,336	1.816,606	4.478	10.227	14.708	888.718	22.784	911.502	2,700.465	${ }^{42,348}$	2.742,813	2,683,771	59,102	2.2	${ }^{33,913}$	210	
South Dakota	464,358	4.320	468.678	710	1.854	2.56	286,151	${ }^{11,993}$	298, 144	751,219	18.167	769,386	807.684	(38.288)	(4.7)	25.794	28	
Tennessee	3,691,382	20,798	3,712, 80	3,356	${ }^{13.099}$	16,455	1.278.091	51.926	1,330.017	4.972.830	85.823	5.058.653	4.963.848	94.805	1.9	57,233	210	
Texas	8.529,526	169,02	8.998,528	15.474	52.994	68.468	4.631,299	227,570	4.858.869	13,176,299	499,566	13.625.865	13,118,321	507,544	3.9	138,70	4.089	
Utoh	799,117	${ }^{9,254}$	${ }^{808,372}$	${ }^{418}$	${ }^{448}$	860	591.909	${ }^{13,521}$	605.430	1.391 .444	${ }^{23.223}$	${ }^{1.414,668}$	1.334,784	79,884	${ }^{6.0}$	${ }^{22,831}$	169	
Vermont	311.981	${ }^{3.074}$	315,044	${ }^{632}$	1.242	1.87	166,221	${ }^{6,287}$	172.508	478.833	${ }^{10.603}$	489,436	483,222	6.214	${ }^{1.3}$	17,932	-	
Virginia	3,888,812	${ }^{31,764}$	3,920,576	2.390	${ }^{13,876}$	10.266	1.537,923	${ }^{32,296}$	1.570.219	5,429, 125	${ }^{77,936}$	5,507,060	$5.407,735$	${ }^{99,325}$	${ }^{1.8}$	58.011	${ }^{342}$	
Wassington	2.865,111	17,149	2,882,261	2.925	4.727	7.65	1.538.729	36.428	1.575,156	4.406,765	58.304	4.465.069	4.412,998	52.071	1.2	96,222	765	
WestVirginia	${ }^{801,738}$	${ }^{17,467}$	${ }^{879,205}$	909	${ }^{2.597}$	${ }^{3.500}$	545,224	${ }^{34,000}$	${ }^{577.023}$	${ }^{1.4008,270}$	${ }^{54,058}$	1,462,388	${ }^{1.345,395}$	${ }^{16,983}$	${ }^{8.7}$	15.634	677	
$\begin{aligned} & \text { Wisconsin } \\ & \text { Wyoming } \end{aligned}$	$\left.\begin{array}{r} 2,448,079 \\ 264,347 \end{array} \right\rvert\,$	12,851 4.259	2.460 .931 26.006	$\left.\begin{array}{r} 7,938 \\ 902 \end{array} \right\rvert\,$	4.358 1.517	12.298 2.419	$\begin{array}{r}1.412,777 \\ 227,568 \\ \hline\end{array}$	39,794 10.577	$\begin{array}{r}1.452 .562 \\ \\ \hline 288.145\end{array}$	3.868 .784 492.818	57.004 16,352	$\begin{array}{r}3,925,788 \\ 509 \\ \hline\end{array}$	3.814 .695 57.016	111,093 $(48,46)$	$\begin{array}{r}2.9 \\ \hline 8.7 \\ \hline\end{array}$	149,112 16,474	644	
Total	${ }^{132,696,946]}$	1,232,716	\|33,929,662		282,507	387,916	670,423	61,552,294\|	1.892, 986	63,445,280	94,531,788	3,513,617	8,044,365	944.063,482	${ }^{3,981,883}$	2.1)	3,679707\|	38.426

 espectivev. Excludues 8.161 Dilolomatic Corps venicles issued icenses 2 Where the registration year is not more than one month removed from the calendary ear, registration-year data are given. Where the registration yearis more than one monthremoved. registrations are given for the calendar year. -P Personal possengervans, passengerminivans and utiliy-type venicicles are no longer included in automobles ontable MV-1. eisonal passenger vans. passenger minivans and utilyty-tpe vehicles are now included in tuucks on table MV-9.

5 The numbers of pivacte and commercial busses given here cre estimates by the Federal Highway Administration of the numbers in Qerafion, rather than the registration counts of the States

COMPILED FOR THE CALENDAR YEAR FROM REPORTS								TABLE MV-11
OF STATE AUTHORITIES AND OTHER SOURCES								SEPTEMBER 1995
STATE	PRIVATE AND COMMERCIAL				PUBLICLY OWNED			
	COMMERCIAL TRAlLERS2	LIGHT FARM TRAILERS, CAR TRAILERS, ETC. 3	HOUSE TRAILERS4	TOTAL	BY FEDERAL GOVERNMENT	BY STATE, COUNTY, AND MUNICIPAL GOVERNMENT	TOTAL	$\begin{aligned} & \text { GRAND } \\ & \text { TOTAL } \end{aligned}$
Alabama	56,393	48,168	24,409	128,970	14	1,007	1,021	129,991
Alaska	16,754	69,096	-	85,850	125	1,073	1,198	87,048
Arizona	48,917	170,230	77,318	296,464	91	3,645	3,736	300,200
Arkansas	34,429	378,529	12,653	425,611	5	266	271	425,883
California	683,252	1,485,140	541,527	2,709,919	350	42,336	42,686	2,752,605
Colorado	57,175	146,831	61,824	265,830	76	2.067	2,143	267,973
Connecticut	28,455	138,790	-	167,245	12	2,592	2,604	169,848
Delaware	12,527	28.796	-	41,323	6	602	608	41,931
Dist. of Col.	95	1,015		1,110	143	323	466	1,576
Florida	116,332	947,866	-	1,064,198	172	27,040	27,212	1,091,410
Georgia	110,972	369,869	26,105	506,946	121	3,398	3,519	510,465
Hawaii	3,984	16,727	-	20,711	4	772	776	21,487
Idaho	18,115	50,600	46,438	115,153	56	2,751	2,807	117,960
Illinois	78,834	355,005	83,626	517,465	219	687	906	518,371
Indiana	89,883	261,747	70,167	421,797	37	2,009	2,046	423,843
lowa	75,579	222,967	62,229	360,775	19	3.828	3,847	364,622
Kansas	80,277	23,188	18,241	121,706	22	837	859	122,565
Kentucky	39,658	27,424	31,025	98,107	57	107	164	98,271
Louisiana	206,264	298,675	11,410	516,349	24	2,413	2,437	518,786
Maine	533,693	101,587	-	635,280	7	2,185	2,192	637,472
Maryland	14,313	203,227		217,540	97	382	479	218,019
Massachusetts	23,518	152,277	-	175,795	69	160	229	176,024
Michigan	87,159	715,906	110,897	913,962	80	4,259	4,339	918,301
Minnesota	177,779	532,437	91,780	801,995	77	3,709	3,786	805,781
Mississippi	28,061	65,868	9,709	103,638	30	1,479	1,509	105,147
Missouri	82,155	310,025	-	392, 180	117	361	478	392,658
Montana	17,353	107,108	48,115	172,576	50	2,963	3,013	175,589
Nebraska	69,289	165,050	-	234,339	12	895	907	235,246
Nevada	9,634	75,906	32,560	118,100	44	1,126	1,170	119,270
New Hampshire	8,718	86,372	-	95,090	3	1,069	1,072	96,162
New Jersey	40,059	277,682	-	317,741	151	100	251	317,992
New Mexico	16,935	30,211	58,817	105,963	131	2,857	2,988	108,951
New York	19,721	512,189	-	531,910	334	5,744	6,078	537,988
North Carolina	81,229	448,375	1,878	531,482	42	8,502	8,544	540,026
North Dakota	18,538	23,428	14,970	56,936	8	715	723	57,659
Ohio	132,811	410,778	100,290	643,879	117	6,340	6,457	650,336
Oklahoma	81,517	62,379	8,251	152,147	33	1,758	1,791	153,938
Oregon	46,401	104,134	131,419	281,954	93	8,385	8,478	290,432
Pennsylvania	123,690	363,542	186,254	673,486	192	3,802	3,994	677,480
Rhode Island	6,350	35,789	-	42,139	7	830	837	42,976
South Carolina	34,289	28,810	122	63,221	31	1,040	1,071	64,292
South Dakota	25,348	77,925	23,266	126,540	29	1,234	1,263	127,803
Tennessee	29,279	32,516	106	61,901	67	309	376	62,277
Texas	206,931	1,202,425	-	1,409,356	170	34,661	34,831	1,444,187
Utah	22,807	49,977	42,217	115,000	71	407	478	115,478
Vermont	2,989	58,159	-	61,148	2	864	866	62,014
Virginia	74,477	152,573	65,236	292,286	57	2,466	2,523	294,809
Washington	139,976	338,749	85,685	564,410	149	1,894	2,043	566,453
West Virginia	35,878	48,048	24,054	107,980	8	4,162	4,170	112,150
Wisconsin	164,369	11,639	36,948	212,956	26	1,545	1,571	214,527
Wyoming	7,835	88,077	20,761	116,673	83	914	997	117,670
Total	4,120,994	11,913,832	2,160,307	18,195,133	3,940	204,869	208,809	18,403,943
1 The completeness of data on trailer registrations varies greatly. Data are reported to the extent available and in some cases are supplemented by estimates of the Federal Highway Administration. 2 This column includes all commercial type vehicles and semitrailers that are in private or for-hire use. 3 Several States do not require the registration of light farm or automobile trailers. 4 Mobile homes and house trailers are shown in this column for States which require them to be registered and are able to segregate them from other trailers. In States where this classification is not available, house trailers are included with light car trailers.								

TABLE VM-1M
OCTOBER 1995

INFORMATION MANAGEMENT										OCTOBER 1995
	ITEM	PASSENGER CARS	MOTORCYCLES	BUSES	OTHER 2-AXLE 4-TIRE VEHICLES 2	SINGLE-UNIT 2-AXLE 6-TIRE ORMORE TRUCKS 3	COMBINATION TRUCKS	SUBTOTALS		
YEAR								PASSENGER CARS AND OTHER 2-AXLE 4-TIRE VEHICLES	SINGLE-UNIT 2-AXLE 6-TIRE OR MORE AND COMBINATION TRUCKS	ALL MOTOR VEHICLES
$\begin{aligned} & 1994 \\ & 1993 \\ & 1994 \\ & 1993 \\ & 1994 \\ & 1993 \end{aligned}$	Motor-Vehicle Travel: (millions of vehicle-kilometers) Interstate Rural Other Arterial Rural Other Rural	204,247 197,021 359,897 351,305 320,956 314,984	2,062 1,968 2,733 2,499 2,296 2,459	1,101 924 1,858 1,725 3,051 3,005	75,543 72,871 154,242 150,559 172,822 169,607	10,438 9,627 19,360 18,305 22,429 20,133	54,095 52,828 37,037 38,180 19,143 19,217	279,791 269,892 514,139 501,865 493,779 484,591	64,533 62,455 56,397 56,485 41,572 39,350	$\begin{aligned} & 347,486 \\ & 335,239 \\ & 575,127 \\ & 562,574 \\ & 540,698 \\ & 529,405 \end{aligned}$
$\begin{aligned} & 1994 \\ & 1993 \end{aligned}$	All Rural	885,100 863,310	7,091 6,927	6,010 5,654	402,608 393,037	52,228 48,065	110,274 110,226	$1,287,708$ $1,256,348$	162,502 158,290	$1,463,311$ $1,427,218$
1994 1993 1994 1993	Interstate Urban Other Urban	376,789 362,493 $1,289,610$ $1,264,441$	2,290 2,681 7,114 6,334	1,011 827 3,304 3,378	112,547 108,277 429,870 421,480	11,264 10,482 35,229 32,834	29,118 26,044 36,111 29,691	489,336 470,770 $1,719,480$ $1,685,921$	40,382 36,526 71,340 62,525	533,019 510,804 $1,801,238$ $1,758,158$
$\begin{array}{\|l\|} \hline 1994 \\ 1993 \end{array}$	All Urban 4	$1,666,399$ $1,626,934$	9,404 9,016	4,314 4,205	542,417 529,757	46,493 43,315	65,229 55,735	$2,208,816$ $2,156,691$	111,722 99,050	$\begin{aligned} & 2,334,257 \\ & 2,268,963 \end{aligned}$
$\begin{aligned} & \hline 1994 \\ & 1993 \end{aligned}$	Total Rural and Urban	$2,551,499$ $2,490,244$	16,495 15,942	10,324 9,859	945,025 922,794	98,721 91,380	175,503 165,960	$3,496,524$ $3,413,038$	274,224 257,341	$3,797,568$ $3,696,180$
1994	Number of motor vehicles	133,929,661	3,718,127	670,423	57,141,967	4,678,197	1,625,117	191,071,628	8,396,324	201,763,491
1993	registered 5	131,581,427	3,977,856	654,432	55,710,076	4,526,004	1,591,542	187,291,503	8,503,860	198,041,338
1994	Average kilometers traveled	19,051	4,436	15,400	16,538	21,102	107,994	18,300	32,660	18,822
1993	per vehicle	18,925	4,008	15,065	16,564	20,190	104,276	18,223	30,262	18,664
1994	Person-kilometers of travel 6	4,439,609	18,145	218,876	1,426,988	98,721	175,503	5,903,249	274,224	6,414,493
1993	(millions)	4,333,025	17,536	209,007	1,393,420	91,380	165,960	5,754,471	257,341	6,071,072
1994	Fuel consumed 7	279,459,272	776,085	3,691,064	142,142,754	34,052,055	70,333,209	421,602,027	104,385,264	530,454,439
1993	(thousand liters)	278,427,923	749,966	3,584,147	138,075,520	31,332,284	67,072,684	416,503,443	98,404,967	519,242,523
1994	Average fuel consumption per	2,087	209	5,506	2,488	7,279	43,279	2,207	12,432	2,629
1993	vehicle (liters) 7	2,116	189	5,477	2,478	6,923	42,143	2,224	11,572	2,622
1994	Average kilometers traveled per	9.13	21.26	2.80	6.65	2.90	2.50	8.29	2.63	7.16
1993	liter of fuel consumed 7	8.94	21.26	2.75	6.68	2.92	2.47	8.19	2.62	7.12

1 The 50 states and the District of Columbia report travel by highway category, number of motor vehicles registered, and total fuel consumed. The travel and fuel data by vehicle type and stratification of trucks, as well as related data, are calculated by the Federal highway Administration (FHWA). Note that the format of this table is different from previous years. Entries for 1993 have been revised based on the availability of more current data and to reflect the new format. Estimation procedures have been adjusted due to the availability of the 1992 Census of Transportation Truck Inventory and Use Survey (TIUS).
2 Other 2-Axle 4-Tire Vehicles which are not passenger cars. These include vans, pickup trucks, and sport/utility vehicles. Note that in previous years, some minivans and sport/utility vehicles were included in the passenger car category.
3 Single-Unit 2-Axle 6-Tire or More Trucks on a single frame with at least two axles and six tires.
4 Urban consists of travel on all roads and streets in urban places with 5,000 or greater population.
5 Stratification of the truck figures is made by the FHWA based on the 1992 TIUS. The combinations represent approximately the number of tractor-trailers with semi-trailer(s) and a majority of heavy single-unit trucks used regularly in combination with trailer(s). Truck vehicle figures should be regarded as preliminary and may be revised pending further analysis of the TIUS data.
6 As estimated by the FHWA using the Nationwide Personal Transportation Study, TIUS, and National Transportation Statistics Annual Report. 1993 data have been revised.
7 Total fuel consumption figures are derived from state fuel tax records and reflect impacts of improved tax compliance and some one-time changes in Federal and state fuel tax laws. Distribution by vehicle type is estimated by the FHWA based on kilometers per liter for both diesel and gasoline powered vehicles as derived from the 1992 tiUS and other sources.

ANNUAL VEHICLE-KILOMETERS OF TRAVEL - 1994 1
BY FUNCTIONAL SYSTEM

OFFICE OF HIGHWAY INFORMATION MANAGEMENT (MILLIONS)															TABLE VM-2M OCTOBER 1995
STATE	RURAL							URBAN							TOTAL
	INTERSTATE	OTHER PRINCIPAL ARTERIAL	MINOR ARTERIAL	MAJOR COLLECTOR	MINOR COLLECTOR	LOCAL	TOTAL	INTERSTATE	OTHER FREEWAYS AND EXPRESSWAYS	OTHER PRINCIPAL ARTERIAL	MINOR ARTERIAL	COLLECTOR	LOCAL	TOTAL	
Alabama	7.812		6.497	7,884	1,866	7,117	39,494	7,611	607	10,028	8.040	3,823	9,183	39,292	78,786
Alaska	1,228	361	281	698	158	775	3,501	799	0	653	1,083	284	356	3,175	6,676
Arizona	8,529	3,528	2,690	4,372	495	2,589	22,203	5,736	2,437	14,475	8,556	4,492	4,505	40,201	62,404
Arkansas	5,239	6,629	4.967	6,220	1,057	1,837	25,949	3,400	1,227	4,245	3,099	1,085	1,146	14,202	40,151
California	22,508	24,376	14,083	15,696	4,359	3,827	84,849	86,540	69,397	84,975	63,392	22,127	26,371	352,802	437,651
Colorado	6,594	5,295	3,718	2,919	1,031	2,268	21,825	6,643	4,083	9,815	6,178	2,448	3,250	32,417	54,242
Connecticut	2,298	2,145	1,844	1,897	583	1,451	10,218	11,180	4,395	5,366	6,313	2,389	3,812	33,455	43,673
Delaware	0	2,094	460	920	123	704	4,301	1,687	131	2,010	1,157	703	1,319	7,007	11,308
Dist. of Columbia	0	0	0	0	0	0	0	768	650	1,474	1,515	538	604	5,549	5,549
Florida	15,291	16,927	6,938	3,953	2,259	5,690	51,058	23,335	9,621	42,999	22,853	15,312	31,141	145,261	196,319
Georgia	13,665	9,518	10,783	9,733	3,248	7,619	54,566	22,043	3,624	16,839	15,771	7,446	13,001	78,724	133,290
Hawaii 2	0	961	1,149	568	43	593	3,314	2,463	979	2,053	1,171	1,359	1,432	9,457	12,771
Idaho	2,821	2,790	1,292	1,924	344	3,377	12,548	1,302	0	1,782	1,618	717	788	6,207	18,755
Illinois 2	13,767	7,393	7,880	8,022	688	5,609	43,359	25,528	1,480	29,476	23,771	12,609	12,345	105,209	148,568
Indiana	12,335	8,678	6,730	16,133	3,120	4,112	51,108	10,933	1,634	14,983	10,603	3,340	7,350	48,843	99,951
lowa	6,062	7,399	4,098	5,035	1,248	2,423	26,265	2,723	0	4,368	4,137	1,174	2,297	14,699	40,964
Kansas	4,442	6,014	3,400	4,706	431	2,505	21,498	3,947	1,582	4,464	3,889	1,337	2,997	18,216	39,714
Kentucky	7,804	7.904	3,344	8,162	3,704	4,572	35,490	7,700	1,122	6,680	6,307	2,702	4,086	28.597	64,087
Louisiana	8,331	4,957	3,958	9.094	2,448	3,486	32,274	7.173	1,058	8,753	6,785	2,135	2,059	27,963	60,237
Maine	2,864	2,702	2,796	3,465	1,181	1,724	14.732	787	211	1,511	1,380	1,004	441	5,334	20,066
Maryland	4,790	5,312	3,866	3,471	1,296	2,410	21,145	15,604	5.605	12,617	8,700	4,120	3,282	49,928	71,073
Massachusetts	3,521	2,609	2,126	2,328	370	1,393	12,347	18,291	5,566	14,777	12,735	4,256	7,653	63,278	75,625
Michigan	10,066	11,558	9,521	13,094	2,022	3,869	50,130	20,321	6,302	25,462	19,421	6,154	9,300	86,960	137,090
Minnesota	5,559	9,419	7,004	5,330	1,780	4,215	33,307	9,842	3,738	5,205	9,864	3,288	4,468	36,405	69,712
Misisissippi	5,347	6,370	5,622	6,771	583	6,326	31,019	2,529	328	5,051	2,339	1,603	3,076	14,926	45,945
Missouri	9,289	11,819	5,230	10,135	709	4,110	41,292	15,356	4,398	11,197	7,607	3,271	9,075	50,904	92,196
Montana	3,124	3,044	1,580	1,688	503	1,113	11,052	340	0	1,255	658	475	892	3,620	14,672
Nebraska	3,445	4,116	3,196	2,193	413	1,850	15,213	1,273	272	3,849	2,263	858	1,161	9.676	24,889
Nevada	2,664	2,040	713	885	596	1,342	8,240	2,834	838	2,841	3,864	1,287	1,048	12,712	20,952
New Hampshire	2,321	2,354	1,550	1,997	708	898	9,828	1,267	856	1,511	2,204	630	604	7,072	16,900
New Jersey	3,281	5,667	2,100	3,317	1,184	2,059	17,608	14,301	11,877	18,852	15,411	5,466	13,794	79,701	97,309
New Mexico	6,512	4,145	1,936	2,749	719	4,379	20,440	2,390	2	5,201	1,585	1,227	2,116	12,521	32,961
New York	8,975	8,141	9,437	8,532	9,751	5,366	50,202	23,540	23,812	28,020	29,138	12,953	14,144	131,607	181,809
North Carolina	10,163	11,718	9,278	14,082	5,256	7,032	57,529	10,613	4,030	13,493	11,049	3,211	15,833	58,229	115,758
North Dakota	1,720	2,240	877	1,292	107	1,335	7,571	324	0	882	651	284	490	2,631	10,202
Ohio	13,639	10,651	7,788	15,461	3,209	10,008	60,756	28,866	6,230	18,581	17,744	7,686	18,170	97,277	158,033
Oklahoma 2	6,513	6,144	4,524	7,955	259	4,097	29,492	6,098	2,652	6,909	7,187	1,608	5,567	30,021	59,513
Oregon	6,133	7.516	2,961	4,509	1,210	2,925	25,254	5,496	1,657	6,118	4,299	2,239	2,333	22,142	47,396
Pennsylvania	12,395	14,734	12,722	9,162	4,222	10,054	63,289	14,623	8,184	25,012	18,027	10,020	9,467	85,333	148,622
Rhode Island	463	316	237	272	93	38	1,419	2,441	1,080	3,326	1,105	705	1,340	9.997	11,416
South Carolina	10,410	6,282	8,399	7,443	949	3,482	36,965	4,184	1,099	7,604	5,989	2,795	1,302	22,973	59,938
South Dakota	2,533	2,474	1,500	1,933	223	862	9,525	463	28	760	896	296	315	2,758	12,283
Tennessee	11,828	7.153	8,268	5,301	4,338	2,694	39,582	11,477	1,747	14,828	11,051	3,580	5,478	48,161	87,743
Texas	20,601	22,524	16,858	21,096	3,905	6,597	91,581	43,284	27,881	41,585	33,017	15,266	34,408	195,441	287,022
Utah	4,182	2,222	1,487	1,569	377	821	10,658	6,052	160	3,627	3,879	1,678	3,040	18,436	29,094
Vermont	1,674	1,151	1,403	1,784	259	715	6,986	506	118	699	567	334	693	2,917	9,903
Virginia	12,837	9,599	8,655	9,706	886	5,301	46,984	16,744	5,184	14,591	11,594	3,776	9,934	61,823	108,807
Washington	6,381	6,568	3,268	5,333	1,509	1,754	24,813	14,243	6,658	10,896	9,915	4,119	5,684	51,515	76,328
West Virginia	5,133	3,933	3,303	5,252	580	1,551	19,752	2,023	83	2,022	2,225	689	746	7,788	27,540
Wisconsin	7,435	12,205	8,002	6,566	1,226	7,081	42,515	4,946	2,839	11,657	7,856	1,869	9,224	38,391	80,906
Wyoming	2,962	1,793	1,002	818	519	1,171	8,265	450	15	999	393	546	101	2,504	10,769
Total	347,486	333,806	241,321	293,425	78,147	169,126	1,463,311	533,019	237,477	586,376	460,851	193,313	323,221	2,334,257	3,797,568
Percent - Area	23.8	22.9	16.5	20.1	5.4	11.6	100.0	22.9	10.2	25.2	19.8	8.3	13.9	100.0	0.0
Percent - Total	9.2	8.8	6.4	7.8	2.1	4.5	38.6	14.1	6.3	15.5	12.2	5.1	8.6	61.5	100.0
1 Data are based on State highway agency estimates reported for the various functional systems and are subject to revision pending further Federal Highway Administration review. 2 FHWA estimates based on Highway Performance Monitoring System and other available traffic monitoring data.															

Notes

1. 1994 Highway Statistics, U.S. Government Publication Number FHWA-PL-95-023, contact FHWA, Office of Highway Information for more information: (202)366-0180.
2. Highway Performance Monitoring System Vehicle Classification Case Study, August 1982, contact FHWA, Office of Highway Information for more information: (202)366-0180.
3. 1992 Truck Inventory and Use Survey, U.S. Government Publication Number TC92-T-52, Contact U.S. Department of Commerce, Bureau of the Census for more information: (301) 4572797.
4. Accuracy of Traffic Monitoring Equipment, June 1995, Technical Report GTRI Project A9291, contact GDOT, Office of Materials and Research for more information: 15 Kennedy Drive, Forrest Park, GA 30050.
5. R. L. Polk \& Co., Statistical Services Division, contact R. L. Polk \& Co. For more information: (313) 393-4762.
6. 1990 Nationwide Personal Transportation Survey, U.S. Government Publication Number FHWA-PL-94-010B, Contact FHWA, Office of Highway Information for more information: (202) 366-0160.
7. Traffic Monitoring Guide, Third Edition, February, 1995, U.S. Government Publication Number FHWA-PL-95-031, Contact FHWA, Office of Highway Information Management for more information: (202) 366-0180.

[^0]: 1. Data are based on State highway agency estimates reported for the various functional systems and are
 monitoring data.
 subject to revision pending further Federal Highway Administration review.
 2 FHWA estimates based on Highway Performance Monitoring System and other available traffic
 3 Preliminary estimate pending on results of in-depth State study
