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FOREWORD 

The FHWA managed pooled fund study, TPF-5(063) Improving the Quality of Pavement Profile 

Measurement, was established to assemble State Departments of Transportation (DOTs) and the 

Federal Highway Administration, alongside industry and academia to meet five main goals: (1) 

Identify data integrity and quality issues with inertial profilers; (2) Suggest approaches to 

addressing identified issues and provide solutions; (3) Initiate and monitor pilot projects intended 

to address identified issues; (4) Disseminate results; and (5) Assist in the deployment of research 

findings and recommendations.  TPF-5(063) participants identified a need to improve the quality 

of pavement profile measurement at low speed, during braking, and at stops. This report presents 

the results of a study designed to address that need. The project was conducted simultaneous to 

the NCHRP 10-93 project “Measuring, Characterizing, and Reporting Pavement Roughness of 

Low-Speed and Urban Roads,” which resulted in the NCHRP Report 914.  The main goal of that 

report is to provide successful practices for DOTs and industry to implement in collecting quality 

ride data on low volume and urban roads that result in increased data accuracy, precision, and 

reliability while maintaining a cost-effective data collection process. This report will be useful 

for agencies, industry, and personnel involved in network-level pavement surface condition data 

collection and analysis.  

Shay Burrows, Director, 

FHWA Resource Center 

Notice 

This document is disseminated under the sponsorship of the U.S. Department of 

Transportation (USDOT) in the interest of information exchange. The U.S. Government assumes 

no liability for the use of the information contained in this document. The U.S. Government does 

not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this 

report only because they are considered essential to the objective of the document. They are 

included for informational purposes only and are not intended to reflect a preference, approval, 

or endorsement of any one product or entity. Unless noted otherwise, Steven M. Karamihas is the 

source for all images in the document. 

Non-Binding Contents 

 The contents of this document do not have the force and effect of law and are not meant to 

bind the public in any way. This document is intended only to provide clarity to the public 

regarding existing requirements under the law or agency policies. 



Quality Assurance Statement 

The Federal Highway Administration (FHWA) provides high-quality information to serve 

Government, industry, and the public in a manner that promotes public understanding. Standards 

and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its 

information. FHWA periodically reviews quality issues and adjusts its programs and processes to 

ensure continuous quality improvement. 
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CHAPTER 1. INTRODUCTION 

MOTIVATION 

Federal, State, and local transportation agencies collectively manage a network of roads that 

represents a huge public investment. The U.S. public road system comprises more than 4 million 

centerline miles of road, which supported 3 trillion vehicle-miles of travel in 2019.(1) In 2018, 

Federal, State, and local highway funding was $235.0 billion, and it has exceeded $190 billion 

each year since 2010.(1,2)  

Most State and Federal highway agencies use pavement roughness as a measure of the quality of 

roads. Roughness measurements are used to monitor the ride quality of their road networks, 

prioritize pavement rehabilitation and reconstruction projects, and to select pavement 

preservation strategies.(3) Many agencies also use roughness measurements for construction 

quality control and assurance, and adjust the value of paving contracts based on the roughness of 

the finished surface.(4) In addition, the Federal Highway Administration (FHWA) Highway 

Performance Monitoring System (HPMS) requires States to submit roughness data for a large 

portion of their Federal aid highway network, including the National Highway System (NHS).(5) 

In turn, these data influence the allocation of billions of dollars in Federal funding for roads 

through the FHWA’s Highway Economic Requirements System.(6,7) 

Roughness is not measured directly for these applications. Instead, the roughness of a particular 

segment of road is calculated from a measurement of longitudinal elevation profile.(8) 

Longitudinal elevation profile is a record of road surface elevation relative to an arbitrary datum, 

which is stored as a function of distance along the pavement. Hereafter, longitudinal elevation 

profile is referred to as profile. By far, the most common scale for quantifying the roughness of a 

profile is the International Roughness Index (IRI), and the most common device for measuring 

profile is the inertial profiler.(3,9,10) 

A greater emphasis on the quality of pavement roughness measurements has been provoked 

recently by the enactment of the Moving Ahead for Progress in the 21st Century (MAP-21), 

Public Law 112-141 (2012). The Act requires an asset management plan for the entire NHS, and 

requires states to meet minimum standards for pavement performance or lose flexibility in the 

use of their Federal highway funds.(11,12) The IRI was selected as a “tier 1” measurement of 

pavement condition, and, therefore, was immediately implemented as the primary indicator of 

pavement performance.(10,13) States are now required to report the IRI on an expanded NHS 

network under the National Highway Performance Program.(5) 

Under ideal conditions, inertial profilers have demonstrated the capability to measure profile 

with sufficient accuracy and repeatability for the engineering applications described above. 

However, horizontal acceleration of the profiler host vehicle combined with changes in its 

orientation introduces artificial roughness into measured profiles.(14) This occurs when profilers 

operate on curves, or when safe piloting of the profiler host vehicle requires rapid changes in 

speed or stop-and-go driving.(15)  
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Urban pavements pose a particular challenge to inertial profilers, because they include signal 

lights, stop signs, railroad crossings, and heavy traffic. Obtaining valid measurement of 

roughness in urban areas is particularly important, since MAP-21 expanded the 164,000-mile 

NHS by more than 60,000 miles, and most of the newly designated roads are in urban areas.(16) 

Further, more than two-thirds of the 3-trillion vehicle miles traveled on the U.S. road system in 

2018 occurred on urban roadways.(17) 

Many low-speed rural roads also pose a challenge to inertial profilers. For example, the Federal 

Lands Highway Program (FLHP) includes 172,000 miles of road built within parks, forests, 

wildlife refuges, Indian reservations, and other locations with difficult terrain.(18) The FHWA’s 

design guidance for roads built under the FLHP calls for “context sensitive” road design, which 

requires respect for the land, preservation of wildlife, and minimization of the effect of the road 

system on existing features.(19) As such, these roads often include tight horizontal curves and 

aggressive grade changes.  

This research will systematically define the limitations of current inertial profiling technology 

and develop and validate improvements to the technology needed for obtaining valid profile 

measurements that are not sensitive to horizontal acceleration or pitch and roll of the profiler 

host vehicle. Since several hundred, and possibly more than one thousand, inertial profilers are 

already in service in the United States for measurement of profile and road roughness, the 

technology improvements should be cost effective and augment the design of conventional 

inertial profilers. 

PROBLEM DESCRIPTION 

Background 

The inertial profiler was invented in the early 1960s at the General Motors (GM) Corporation. A 

research laboratory within GM created the “Profilometer,” shown in figure 1, to measure road 

profiles with “reasonable flexibility and speed” for use as realistic vertical disturbance inputs to 

vehicles on a driving simulator.(20,21) Previous devices that measured road roughness efficiently 

produced output based on measurement of vehicle response or relative measurements from the 

device chassis to the road.(22) These devices did not offer a flat frequency response to the true 

profile.(23) Engineers interested in undistorted profiles obtained them using high-precision rod 

and level surveys, because the level provides a consistent reference from which to measure the 

relative elevation of the road.(24–26) However, the measurement process was “very time 

consuming and requires painstaking care.”(22) 
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Figure 1. Schematic. GM Research Road Profilometer.a(27) 

Shortly after GM introduced the first inertial profiler to the pavement community, the Bureau of 

Public Roads initiated a research project with the Michigan Department of Transportation (DOT) 

to duplicate the GM design and evaluate the technology for measurement of “bridge and 

pavement roughness.” (28) In parallel, a number of state DOTs began to evaluate the technology 

and adapt it for pavement management applications.(29–32) Early study showed that inertial 

profilers could efficiently reproduce profiles measured by high-precision rod and level surveys 

over a broad waveband, although they could not detect road grade or gradual grade changes.(27,28) 

Users did not find the measurement principle of inertial profilers intuitive, and the need to cover 

large road networks safely and efficiently challenged inertial profilers’ ability to establish a valid 

inertial reference with difficult operational conditions.(33) Nevertheless, the relative efficiency of 

inertial profilers and their ability to reproduce the true profile over a broad waveband under 

favorable operational conditions led to their widespread use for monitoring road roughness. 

Measurement Principle 

Inertial profiles measure the elevation of the road surface along a given wheel path (or multiple 

wheel paths) as a function of longitudinal distance. To do so, they combine the same three 

ingredients that make up a profile measured by a surveyor’s rod and level: (1) a reference 

elevation, (2) the height of the road relative to the reference elevation, and (3) a measure of 

longitudinal distance.(34) Figure 2 illustrates this measurement concept for a rod and level. The 

level establishes a constant reference elevation (rzref). At each location along a given segment of 

road, the reading on the rod (rzref – rzroad) indicates the vertical distance to the road beneath the 

reference elevation. Longitudinal distance is measured independently, often with a graduated 

steel tape. When profile is measured for analysis of pavement roughness, both elevation and 

distance (x) are reported relative to an arbitrary origin, although the final profile is often offset 

vertically and horizontally to place the origin at the start of a road section of interest.  

                                                 

a From Spangler, E. B., and W. J. Kelly. GMR Road Profilometer–A Method for Measuring Road 

Profile. Highway Research Record, No. 121, 1966, Figure 12, p. 32. Copyright, National Academy of Sciences. 

Reproduced with permission of the Transportation Research Board. 
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Figure 2. Schematic. Measurement of profile with a surveyor’s rod and level. 

The purpose of inertial profilers is to efficiently record profile, and they are often mounted to 

conventional over-the-road vehicles to facilitate safe operation in live traffic. An inertial profiler 

records the elevation of a reference point on a host-vehicle chassis and the height of the road 

surface relative to the reference point as the vehicle passes over a road section of interest. The 

profile is calculated as shown in figure 3. 

  

Figure 3. Equation. Measurement of profile with a surveyor’s rod and level. 

Figure 4 illustrates the principle of operation for an inertial profiler with sensors mounted to a 

reference point forward of the front bumper of a vehicle. Unlike the rod and level, the elevation 

of the reference point fluctuates as the profiler host vehicle responds to the roughness of the road 

and to other disturbances. A vertically oriented accelerometer, mounted to the profiler’s 

reference point, provides a record of its motion. Integrating twice produces a record of rzref(x). 

This “accelerometer-established inertial reference” is often called a floating-reference-height 

signal.(35) 

 

Figure 4. Schematic. Inertial measurement of longitudinal profile (after Huft).(36) 
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A ranging sensor, often called a height sensor in this context, provides the relative measurement 

rzref(x) – rzroad(x) to the road surface. Unlike the original GM design shown in figure 1, which 

used a potentiometer connected to a road follower wheel, most inertial profilers sense the vertical 

distance from the (floating) profiler reference point to the road surface using laser triangulation 

sensors.  

In some implementations the calculation of road profile is performed in the time domain, as 

shown if figure 5. In the figure, azref(t) and h(t) are the signals from the accelerometer and height 

sensor, respectively. The temporal profile is resolved to a spatial profile in a subsequent 

processing step using an independent measurement of distance versus time. In other 

implementations the sensor signals are digitized with a constant longitudinal spacing, or resolved 

to the spatial domain before the profile is calculated, as shown in figure 6.(37,38) In figure 6, vx is 

the longitudinal speed of the host vehicle. The term in the integrand is the spatial vertical 

acceleration of the reference point. 

Figure 5. Equation. Temporal profile calculation. 

Figure 6. Equation. Spatial profile calculation. 

Figure 7 presents a block diagram used to explain the principle of operation of the first inertial 

profiler. (27) The figure illustrates the signal flow from the actual profile, W (i.e., rzroad(x) in 

figure 4), to the measured profile. The figure also provides straight-line approximations of the 

temporal frequency content at each stage of the process for a simple model of the profiler host 

vehicle described as a mechanical filter with a “natural frequency of n”, and idealized sensor 

and filter performance. 

Figure 7. Block diagram. Inertial profiler signal flow.b(27) 

b From Spangler, E. B., and W. J. Kelly. GMR Road Profilometer–A Method for Measuring Road 

Profile. Highway Research Record, No. 121, 1966, Figure 10, p. 31. Copyright, National Academy of Sciences. 

Reproduced with permission of the Transportation Research Board. 
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As shown in figure 7, the profile serves as the excitation to the host vehicle. The time history of 

vertical position of the profiler reference point (rzref) is determined by the dynamic response of 

the profiler host vehicle. The response is detected by a vertically oriented accelerometer, and the 

vertical position of the profiler reference point is recovered by integrating the accelerometer 

output twice. The height sensor, which is shown as the “potentiometer” in the figure, provides 

the vertical distance from the profiler reference point to the road. In theory, the profile is 

reproduced when the two signals are combined. In early profilers, a high-pass filter was applied 

to the measured profile to avoid exceeding the voltage capacity of the analog components. 

Although figure 7 illustrates the measurement principle used by inertial profilers, it omits several 

details that are relevant to this research. For example, the functions enclosed within the box 

marked “analog computations” are performed digitally in most modern inertial profilers, and 

filtering is performed at multiple stages in the measurement process. In addition, the frequency 

content of the vehicle response is much more complex, and the frequency response of the height-

sensor and accelerometer signal overlap.  Chapter 2 examines these issues using field 

measurements.  

Measurement Errors 

Two mechanisms cause errors in the measurement of the floating-reference-height signal. These 

impose a limitation on the measurement of the very long-wavelength (i.e., low-frequency) 

portion of the profile. The first is system noise. At progressively lower frequencies, the actual 

vertical acceleration diminishes in relation to noise in the instrumentation and the resolution of 

the system.(39) Although grade changes and long-wavelength roughness typically correspond to 

large changes in elevation, their contribution to the vertical acceleration measured on a profiler 

host vehicle is very small relative to other disturbances.  

Second, offsets caused by tilt of the accelerometer from true vertical and other sources of drift 

appear in the output signal.(20,31,36) In typical inertial profilers the accelerometers are rigidly 

mounted to the host-vehicle sprung mass. A combination of road grade, cross slope, imprecise 

mounting, and quasi-static inconsistency in vehicle attitude all cause accelerometer 

misalignment. When the error in the accelerometer readings is nearly constant over a long time 

interval, the error in the floating reference height after double integration grows in proportion to 

the square of time.(36) 

Early inertial profilers applied analog high-pass filters to the accelerometer signals, in part to 

eliminate the waveband that was contaminated by these two error sources.(28,29) High-pass 

filtering also limited the output of profilers to the waveband of interest for vehicle dynamic 

response. In modern implementations profilers apply high-pass filtering with a specific spatial 

frequency response in mind, and the most common cut-off corresponds to a wavelength of 

300 ft.(40) The 300-foot wavelength limit is a vestige from an early stage in the history of inertial 

profiler development, “which at 100-mph car velocity produce(s) input frequencies to the car 

below the natural frequencies of all current road vehicle suspensions.” (20) Use of the 300-foot 

cut-off value has prevailed as a standard, since at practical travel speeds it retains content that 

affects ride comfort, suspension stroke, and dynamic tire load fluctuations. For typical 

combinations of road grade, cross slope, road roughness level, profiler host-vehicle properties, 

and host-vehicle speed, the high-pass filter eliminates the content that is contaminated by low 
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signal strength in the accelerometer and slowly fluctuating or constant accelerometer 

misalignment. 

Some accelerometer misalignment occurs because of excessive rigid-body motion of the host-

vehicle sprung mass (i.e., pitch and roll response to roughness) and errors caused by operator-

induced disturbances (e.g., braking, steering corrections for lane keeping). These alignment 

errors are a serious source of drift for two reasons. First, since inertial profilers used for 

pavement management must operate in live traffic, they experience the road at speeds near the 

prevailing traffic speed. Therefore, misalignment errors caused by profiler host-vehicle dynamic 

responses map to the same range of wavelengths in the measured profile that affect the IRI. 

Second, the dynamic component of accelerometer tilt typically occurs in response to, or at least 

in conjunction with, horizontal acceleration that further contaminates the accelerometer readings.  

Sayers and Karamihas described errors in accelerometer readings caused by braking, and 

Karamihas et al. expanded the discussion to include lateral acceleration and demonstrated the 

problem experimentally.(14,34) The discussions are summarized here using an example in the pitch 

plane. Figure 8 shows the side view of an accelerometer that is tilted due to braking. In the 

figure, the Zw axis is aligned with gravity, and the Xw axis is perpendicular to gravity and parallel 

to the longitudinal plane of symmetry of the profiler host vehicle. These axes exist within a 

frame of reference called the wander frame. (See Chapter 6.) 

 

Figure 8. Schematic. Accelerometer tilted due to braking. 

In this example, the accelerometer is “servo” type, and it reads vertical acceleration equal to 1 g 

when it is at rest. Typically, the 1 g offset is removed. As such, an ideal sensor would read , 

which is the vertical acceleration of the profiler reference point in the direction aligned with 

gravity. Figure 9 provides an expression for the reading obtained by the misaligned 

accelerometer, which is fixed in the vehicle body. 

  

Figure 9. Equation. Expression for body-fixed vertical acceleration. 

In figure 9, g is the acceleration due to gravity,  is the longitudinal acceleration (negative for 

braking), and  is the pitch angle. The pitch angle defines the misalignment of the sensitive axis 
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of the accelerometer compared to true vertical. Figure 10 shows the expression for the error in 

the accelerometer reading. 

  

Figure 10. Equation. Expression for error in vertical acceleration. 

Note that the projection of vertical acceleration onto the sensitive axis of the accelerometer (the 

second term) causes an error in proportion to cos() – 1. This term grows very slowly with 

misalignment. In contrast, the projection of horizontal acceleration onto the sensitive axis of the 

accelerometer (the first term) grows in proportion to longitudinal acceleration magnitude and in 

approximate proportion to misalignment angle  for practical situations. Since  itself increases 

with longitudinal acceleration, this term is very sensitive. 

The analysis by Karamihas et al. addressed accelerometer misalignment in pitch due to braking 

and accelerometer roll due to lateral acceleration.(14) However, it did not address higher-

frequency variations in accelerometer misalignment and horizontal acceleration caused by road 

disturbances. In addition, the literature has not offered an analysis of the kinematics presented in 

figure 9 and figure 10 in light of dynamic vehicle response. That is, the effect of misalignment 

on profile depends on the time history of vertical and horizontal acceleration experienced by the 

system, the profiler host vehicle’s misalignment in response to it (and the associated lag), and the 

manner in which the “error” signal maps to profile. This is addressed in Chapter 2. 

LITERATURE REVIEW 

The existing literature offers several options with the potential to reduce or eliminate the 

influence of host-vehicle misalignment on road profiles measured in live traffic.  These fall into 

four categories: 

1. Suppression of measurement errors in inertial profile computation and processing 

algorithms. 

2. Augmentation of inertial profiler sensors with additional measurements, such as host-

vehicle attitude. 

3. Estimation of road profile from vehicle response measurements. 

4. Measurement of profile without the use of an accelerometer-established floating 

reference. 

This section presents a brief review of published work on each approach. 

Error Suppression 

Walker and Becker developed a method of suppressing profile measurement errors that occur 

when a profiler host vehicle slows below a given speed or comes to a complete stop.(15) When the 

speed is sufficiently low, the profile calculation algorithm is modified in two ways. First, the 

apparent progression of time is reduced over the interval of low-speed operation so that the 
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double-integrated accelerometer signal grows less rapidly. Second, the change in elevation 

between readings in the computed profile is limited to a preset value. This method did not 

completely eliminate profile measurement errors observed in areas of low-speed operation and 

stops, but it greatly reduced the severity of the artificial roughness that is typically observed. 

Gagarin et al. studied operational conditions that affect the accelerometer-established floating 

reference height for inertial profilers, including alignment errors, cross-axis contamination by 

horizontal acceleration, and frequency response.(41) The research simulated errors in measured 

profile and roughness on roads with horizontal and vertical curvature using CarSim, and 

developed estimates of the expected error in IRI associated with various combinations of travel 

speed, horizontal road curvature, and vertical road curvature. 

Sensor Augmentation 

Direct correction of accelerometer alignment errors requires measurement of host-vehicle 

orientation and off-axis acceleration. Dembski et al. presented kinematic equations for errors to 

inertial profiler readings caused by pitch and roll in a description of a terrain severity 

measurement system.(42,43) The system was implemented using a gyroscopically enhanced rate 

sensor for measurement of orientation. Demić et al. presented the kinematic equations for a 

system that uses two body-mounted tri-axial accelerometers for indirect measurement of the 

change in body pitch, roll, and yaw on a trailer that would house an inertial profiler.(44) Gagarin 

et al. proposed the use of tri-axial accelerometers and gyroscopes for measurement of true 

vertical acceleration.(41) Past developers of inertial profiling systems have also suggested the use 

of gyroscopic stabilization to help avoid host-vehicle alignment errors, although the associated 

cost prevented the implementation of such a system.(31,45,46) In an effort to improve the low-

frequency performance of inertial profilers by modulation, Pong mounted four accelerometers to 

a disk that rotated in the roll plane.(46) 

Kern and Ferris and Wagner et al. incorporated an inertial measurement unit (IMU) and global 

positioning system (GPS) receiver into a road and terrain measurement system.(47,48) This system 

used Kalman filtering to estimate host-vehicle position and orientation from GPS and IMU 

signal, and fused the vehicle position estimate with the floating reference height from the inertial 

profiler using a weighted average. Liu et al. replaced the inertial reference in the system 

described by Dembski with an IMU and GPS receiver for estimation of host-vehicle position via 

Kalman filtering.(49) Liu et al. also demonstrated a “Kalman smoother”, which post-processed the 

signals and considered readings collected fore and aft of a position of interest.(49) This improved 

the kinematic estimates and eliminated discontinuities.  

Collectively, these references suggest that combining inertial and GPS measurement of profiler 

host-vehicle kinematics has the potential to improve the measurement of profile on paved roads. 

Estimation Using Vehicle Response 

Several authors have presented indirect methods of profile measurement by observing or 

estimating road profile from measured vehicle responses using linear models of vehicle vertical 

vibration response.  
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Qin et al. presented the transfer function for calculating the power spectral density (PSD) 

function for a road profile from the PSD function for unsprung-mass vertical acceleration using a 

linear quarter car model.(50) Wang et al. proposed calculation of road profile spectral density 

using the signal from a dynamic tire pressure sensor and linear transfer functions.(51) The method 

assumed a proportional relationship between tire vertical deflection and tire pressure, and the 

transfer function between tire pressure and axle acceleration was measured empirically. Outputs 

from an embodiment of the system were provided for various types of localized roughness. 

Tomiyama et al. back-calculated road profile from a linear quarter-car model using measured 

sprung-mass and unsprung-mass vertical acceleration.(52) The velocity and position associated 

with each degree of freedom were obtained by integrating the measured acceleration signals. 

Nguyen used a Luenberger observer with a linear quarter-car model to infer the floating-

reference-height signal from the signal provided by the height sensor.(53) Vehicle parameters 

were obtained with system identification using impulse response and step response tests, and 

observer parameters were obtained with system identification using testing on roads with known 

profile. Harris et al. presented the theoretical development and simulated examples for inferring 

road profiles from vertical accelerations measured above and below the suspensions on both 

sides at a given axle position.(54) The method proposed combinatorial optimization for obtaining 

parameters for a 4-degree-of-freedom (DOF) half-car model using measurements collected on 

roads with known profiles, and the same modeling framework to subsequently estimate profile 

on roads with unknown profiles in turn.  

Yousefzadeh et al. and Solhmirzaei et al. presented methods of training neural networks for 

estimation of profiles using detailed vehicle dynamics models that were exercised over synthetic 

profiles.(55,56) The neural network used seven inputs, including vertical accelerations at each 

wheel, and “roll, bounce, and pitch” of the sprung mass. The results did not show sufficient 

promise for road monitoring applications. First, significant effort was required to populate the 

underlying vehicle model (ADAMS/CAR) with parameter values and tune its response using 

hydraulic shaker testing. Second, the demonstration produced correlation to the reference profile 

measurement in the range from 0.8 to 0.95 for the waveband from 3 ft to 30 ft, which is below 

the requirements for valid measurement of IRI and addresses only part of waveband of interest.  

Imine et al. and Rabhi et al. offer multiple publications that describe the use of sliding mode 

observers for estimation of road profile.(57–63) The core vehicle model ranges from a 4 DOF roll 

plane model of a single axle position to a full three-dimensional vehicle model with longitudinal 

dynamics. In these publications road profile and other signals of interest are estimated based on 

measurements of sprung-mass vertical motion and axle relative vertical motion. The sensors used 

to obtain those signals are not specified. These publications present measured and observed cross 

plots of profile elevation versus travel distance. The plots demonstrate “fair agreement with local 

discrepancies.” (58) These plots do not provide an objective basis for evaluation. Subjectively, 

they do not appear to meet the accuracy requirements for road-monitoring applications. 

Rath et al. presented a simulation study of road profile and friction estimation in support of 

longitudinal control (anti-lock braking, traction control, etc.) and active suspension systems.(64) 

The mode at the core of the method combined a non-linear quarter car with a model of vehicle 

longitudinal dynamics. The quarter-car model included non-linear suspension elements; and the 
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longitudinal dynamics model included tire rolling losses, aerodynamic drag, tire-road friction, 

wheel spin dynamics, and driveline dynamics.  

Non-Inertial Systems 

Only one type of device used in practice for network pavement evaluation directly measures 

profile without an inertial reference and operates in live traffic. This is based on a concept 

proposed by Still and Jordan, in which several ranging sensors are mounted to a longitudinal 

beam that is mounted to a host vehicle or trailer.(65) The device used a 16.4-foot-long beam and 

four sensors. Relative to the leading sensor, the remaining three were 0.35 ft, 7.02 ft, and 14.04 ft 

rearward. In this system, sensor pairs provide measurements of slope relative to reference beam. 

For reference, the height and orientation of the beam is derived by dead reckoning. 

The irregular spacing of the sensors was needed to increase the waveband of the final profile. 

Still presented results that showed reproduction of a survey profile in the wavelength range from 

1.6 ft to 1280 ft. However, the existing commercial embodiment of this device uses modern 

ranging sensors and a different geometric layout. Yi and Rong-Gui presented the theoretical 

development of a similar system with five sensors.(66) 

Assessment  

The methods for obtaining profile reviewed here are very diverse, and many originate with 

terrain measurement or vehicle dynamic evaluation and control as the intended application. As 

such, the relative accuracy of each method or device is not presented in a way that addresses the 

specific requirements of road profiling for pavement evaluation. Chapter 2 addresses this issue. 

A majority of the estimation approaches described in the literature have only been developed 

theoretically or tested using computer simulations. In addition, while many of them reproduce a 

portion of the profile spectrum or the visible content in a raw elevation trace, it is not clear 

whether the details of the profile are sufficiently captured to support the needs of the pavement 

community. Further, only two of the estimation methods addressed system performance during 

horizontal acceleration. 

This research emphasizes sensor augmentation and improvements to profile computation 

algorithms. This approach was selected for two reasons: (1) the potential for application of the 

results to in-service profilers, given the large investment made in the existing fleet used for 

pavement evaluation in the U.S.; and (2) the potential to support other functions in pavement 

monitoring, such as the measurement of transverse profile, grade, and cross slope.  

PROBLEM DEFINITION 

Inertial profilers have demonstrated reproduction of the true longitudinal road elevation profile in 

the waveband of interest for vehicle dynamic response (i.e., roughness) when they are operated 

under favorable conditions. However, they are limited in their ability to measure aspects of the 

profile related to roughness when the host vehicle accelerates longitudinally, accelerates 

laterally, or comes to a stop. These weaknesses have hindered the application of inertial profilers 

on urban road networks and on ramps and other roads with aggressive changes in horizontal and 
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vertical alignment. This research developed and tested inertial profiler design modifications that 

address errors in profile measurement caused by adverse operational conditions.  

This research investigated data processing algorithms that suppress measurement errors without 

the need for adding sensors to typical in-service profilers. These algorithms combine standard 

filtering techniques with an enhancement of the Walker and Becker error suppression 

algorithm.(15) The recommended algorithms mitigate errors in profile measured during stops 

using only the nominal set of sensors found on a typical production inertial profiler. However, 

the reduction in artificial roughness measured during a stop requires the elimination of valid 

profile content at low travel speed.   

This research also investigated an inertial profiler design that incorporates additional sensors to 

eliminate errors in measured vertical acceleration caused by misalignment and drift in the 

floating-reference-height signal that appears after double integration. The augmented system 

includes body-fixed measurement of profiler acceleration and rotation rate in three dimensions 

(i.e., “inertial sensors”). This provides the means to resolve the component of profiler reference 

point acceleration into the direction aligned with gravity. The augmented system also includes 

GPS measurement of profiler host-vehicle height, vertical velocity, pitch inclination, and roll 

inclination. An extended Kalman filter with a backward pass for smoothing combines the inertial 

sensors with the GPS outputs to eliminate drift in the floating reference height. Special 

provisions are included for incorporating the height sensor into the estimate of floating reference 

height when the profiler host-vehicle forward speed is close to zero. 

REPORT ORGANIZATION 

Chapter 2 presents technical background in support of the engineering approach. This includes 

an introduction to the IRI and roughness profiles, a definition of the waveband of interest for 

roughness measurement, and a description of a method for assessing profile accuracy. The 

chapter also demonstrates the accelerometer alignment problem using a simple dynamic model, 

and presents kinematic equations in support of the approach taken to eliminate profile 

measurement errors. 

Chapter 3 describes a custom-built inertial profiler that was designed and fabricated to support 

the experimental evaluation of profiler design modifications proposed for reducing measurement 

error. This system includes the nominal sensors that appear on a typical commercial profiler and 

several additional sensors to support the measurement of three-dimensional kinematics and drift 

removal via Kalman filtering.  

Chapter 4 describes an experimental assessment of the accuracy and repeatability of profile 

measured by the system using the nominal sensors under ideal operational conditions (i.e., at 

constant speed). 

Chapter 5 presents error suppression algorithms proposed in this research for application to 

inertial profilers without adding sensors to the typical commercial design. These algorithms 

emphasize the reduction of errors in measured roughness during stop-and-go operations, but do 

so at the expense of profile measurement accuracy at low travel speed. The chapter proposes 

error suppression algorithms designed for both temporal and spatial profile data collection 
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architectures. The performance of each algorithm is compared to the performance of baseline 

algorithms with no error suppression. Performance is also evaluated in terms of expectations for 

adequate profile measurement accuracy. 

Chapter 6 proposes the use of an augmented sensor set to improve the measurement of the 

floating reference height. This design uses a multi-rate, extended Kalman smoother to derive an 

estimated floating-reference-height signal from inertial and GPS measurement of profiler host-

vehicle kinematics. The chapter presents alternative versions of the proposed design to account 

for cases when GPS outputs are unavailable. The performance of each design is compared to the 

baseline system without additional sensors or error suppression algorithms. Performance is also 

evaluated in terms of expectations for adequate profile measurement accuracy. 

Chapter 7 summarizes the results, presents conclusions and suggestions for future work, and 

reviews the contributions made by this research. 
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CHAPTER 2. TECHNICAL BACKGROUND 

This chapter presents the technical background and describes preliminary analysis conducted to 

support the research. The first section reviews standard profile analysis methods and establishes 

techniques for quantifying profile measurement errors. The second section examines the signals 

that contribute to profiles measured by inertial systems, and demonstrates the role of high-pass 

filtering in the profile calculation process. The third section demonstrates the contamination of 

measured profile caused by accelerometer misalignment using a simple dynamic model. It 

presents three-dimensional kinematic equations for deriving true vertical acceleration from the 

output of body-fixed sensors. 

PROFILE MEASUREMENT REQUIREMENTS 

This research requires objective comparison of profiles measured in different passes by the same 

device, calculated using alternative algorithms from raw data obtained in the same pass, or 

measured by two different devices. This document reports differences in measured roughness in 

terms of changes to average IRI values over a pavement segment of standard length and the peak 

roughness within a pavement segment using roughness profiles. Agreement between profile 

traces is quantified using cross correlation of profiles that have been filtered to emphasize 

content that affects the IRI. 

This section presents technical background needed to interpret the comparisons of measured 

profiles and roughness.   

International Roughness Index 

The IRI is a general pavement roughness indicator designed to estimate the relative level of 

vehicle vibration caused by the unevenness of the road.(34) The index is based on a 2-DOF 

quarter-car simulation of a broadly representative vehicle’s response to the profile of the road 

surface.(67) The IRI is calculated using four steps.(68) 

1. Convert the elevation profile to slope profile using a finite difference between adjacent 

points. 

2. Apply a moving average with a base length of 9.84 inches. This step approximates the 

envelopment of short-duration profile features by the tire. 

3. Pass the smoothened profile through the Golden-Car Model using a simulated forward 

speed of 49.7 mi/hr. The Golden-Car Model is a linear quarter-car simulation with 

standard vehicle properties. (See figure 11.) The Golden-Car Model predicts the spatial 

velocity across the suspension in units of slope. 

4. Calculate the average rectified value from the Golden-Car Model output trace. 
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Figure 11. Schematic. Golden-Car Model.c(68) 

The IRI Scale 

The calculation of IRI as described above can be performed for a section of road of any length. 

However, when profile is measured over long sections of roadway, an IRI value is often reported 

using 0.1-mile-long segments.(3,13) The FHWA Transportation Performance Management (TPM) 

system defines a pavement section as having a nominal length of 0.1 mi within their reporting 

requirements.(5) When it is appropriate, this research quantifies the effect of profile measurement 

errors by the bias they impose on the average IRI within a 0.1-mile-long segment of profile.  

The IRI scale starts at 0 for a perfectly smooth road and increases with roughness of the road, 

with no limit at the upper end of the scale.(69) The IRI for a given length of profile is typically 

expressed in in/mi or m/km. This is often interpreted as the accumulated absolute suspension 

stroke normalized by travel distance, which is mathematically equivalent to the average absolute 

spatial velocity across the suspension. The FHWA TPM system assigns the following ratings to 

pavement sections based on their IRI value: (1) good (< 95 inches/mi), (2) fair (95 inches/mi to 

170 inches/mi), and (3) poor (> 170 inches/mi).(5) Table 1 lists the IRI ranges for various 

qualitative categories used by the FHWA, including those used prior to the TPM.(70) In both eras, 

the poor category was considered “less than acceptable.”(70) 

  

                                                 

c From Sayers, M. W. On the Calculation of International Roughness Index from Longitudinal Road Profile. 

Transportation Research Record: Journal of the Transportation Research Board, No. 1501, 1995, Figure 2, p. 3. 

Copyright, National Academy of Sciences. Reproduced with permission of the Transportation Research Board. 
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Table 1. FHWA IRI Ratings.(70) 

Rating TPM IRI Range 

(inches/mi) 

Pre-TPM for 

Interstate 

(inches/mi) 

Pre-TPM for 

non-Interstate 

(inches/mi)  

Very Good — < 60 < 60 

Good < 95 60–94 60–94 

Fair 95–170 95–119 95–170 

Mediocre — 120–170 171–220 

Poor > 170 > 170 > 220 

Figure 12 shows the distribution of IRI values for NHS pavement sections that appeared within 

the 2018 FHWA HPMS submittal. The FHWA provided the data used to create this distribution. 

These data included IRI values, segment length, estimated traffic, and other items for 3,093,742 

NHS pavement sections.  

 

Figure 12. Graph. NHS IRI distribution, 2018. 

The IRI values that contributed to the distribution in figure 12 were weighted by segment length, 

although a wide majority of pavement sections were 0.1 miles long. The IRI values were not 

weighted by traffic. The distribution includes IRI values from a total length of 232,207 miles, 

including 146,846 miles (63.24 percent) in the good category, 61,854 miles (26.64 percent) in 

the fair category, and 23,507 miles (10.12 percent) in the poor category. 

Roughness Profiles 

A short-interval roughness profile displays the spatial distribution of roughness within a 

pavement section, and provides a means to quantify the severity of localized roughness.(71) 

Typically, roughness profiles are used to identify localized roughness caused by construction 

defects, built-in features, and pavement distress.(72–74) Figure 13 through figure 16 provide 

examples.  

Figure 13 shows profiles from the left and right wheel path on a State route in an urban area. The 

horizontal axis shows the distance along the route using the State’s distance referencing system. 

The profile is high-pass filtered to make sources of roughness that affect the IRI more visible. 
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The range shown in figure 13 includes a utility cover in the left wheel path and a bridge. 

Figure 14 provides an image of the bridge. A joint in the center of the bridge is deteriorated, 

particularly in the right wheel path. (See figure 15.) 

 

Figure 13. Graph. Elevation profiles, urban bridge encounter. 

 

Figure 14. Image. Urban bridge encounter. 

 

Figure 15. Image. Deteriorated bridge joint. 

Figure 16 shows the short-interval roughness profile for both wheel paths using a base length of 

25 ft. Each point in the roughness profiles represents the IRI averaged over a 25-ft pavement 

segment ranging from 12.5 ft upstream to 12.5 ft downstream. The roughness profiles are 

calculated as follows: (1) Scale the trace produced by Steps 1 through 3, above, of the IRI 

calculation procedure to the desired units (e.g., inches/mi); (2) Rectify the trace (i.e., take the 

absolute value of every point); and (3) Apply a moving average to the rectified trace with the 

desired base length. 
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Figure 16. Graph. Roughness profiles, urban bridge encounter. 

Over the 0.1-mile-long pavement section shown in figure 13, the left profile had an IRI of 

185.9 inches/mi and the right profile had an IRI of 167.1 inches/mi. The short-interval roughness 

profile demonstrates that the utility cover, joint distress, and the interfaces between the bridge 

deck and the surrounding pavement contribute heavily to the average roughness. For example, 

the short-interval roughness profile from the right wheel path rises to a peak value of 

707 inches/mi at the distressed joint. The sub-segment of profile corresponding to this point 

represents about 4.8 percent of the overall length shown. As such, it accounts for about 

33.5 inches/mi of the average IRI for the 0.1-mile-long segment.  

In many cases, such as stop-and-go operations, profile measurement errors appear as severe 

artificial roughness at a specific location. In this research, the peak value of the short-interval 

roughness profile is used to quantify the effects of localized measurement errors on overall 

measured roughness. In this document, short-interval roughness profile refers to a profile of 

roughness using the IRI, and averaged over a base length of 25 ft. 

Waveband of Interest 

This section establishes a frequency range of interest for profile measurement. A previous study 

established a waveband of interest for profile measurement with an emphasis on roads with high 

travel speeds.(75) This section presents an update of that work with consideration of unique 

spectral content that exists on low-speed, recreational roadways. 

The calculations use linear analysis to combine idealized spectral density functions for a range of 

road types with the frequency response function for the IRI algorithm. The spectral density 

functions include limit cases for measured profiles, in which either long-wavelength content or 

short-wavelength content make up a large share of the roughness. To capture a broad range of 

vehicle responses, the analysis examines modifications to the IRI algorithm for a range of 

speeds, as well as sprung-mass acceleration and dynamic tire load variation from the underlying 

Golden-Car Model.  
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Spectral Models 

Andrén reviewed several spectral models of single-track road profiles that have been proposed in 

the literature.(76) These models idealize measured road spectral density functions using simple 

functions with an assumed shape. For example, the International Organization for 

Standardization (ISO) recommends fitting the function shown in figure 17 to the profile 

elevation spectrum.(77) 

 
 

Figure 17. Equation. ISO fitting function for profile elevation spectrum. 

In figure 17, G() is the fitted function,  is wave number, G() is the spectral density at a 

reference wave number , and w is an exponent that determines the function slope with 

logarithmic scaling. (ISO uses different symbols.) Fitting is done with a straight-line 

approximation to the spectrum with log-log scaling. 

When the exponent w is equal to 2, the spectrum of slope, G(), is constant as shown in 

figure 18. 

 
 

 

Figure 18. Equation. ISO profile slope spectrum with w = 2. 

In this case, the road is approximated by white noise slope. However, Andrén and Kropáč and 

Múčka have observed that values in the range of 1.5 to 3.5 are common.(76,78) Others have split 

the spectrum and derived a straight-line approximation over each range (e.g., Dodds and 

Robson).(79) The split model accommodates a change in slope in the log-log spectrum using a 

unique value of w in each range.  

To account for the change in characteristic slope over the log-log spectrum, some have proposed 

a spectral shape made up of a combination of white noise sources. La Barre proposed one such 

model for European roads, as shown in figure 19.(80) 

  

Figure 19. Equation. Profile slope spectrum proposed by La Barre. 

In figure 19, G and  are constants within the model. At low wave numbers, white noise spatial 

acceleration dominates this function, and at high wave numbers, white noise slope dominates this 

function. The break point between the two is determined by the value of . The study of 

European roads found that the break point to be about 0.02 cycles/ft for “rigid constructions” and 

0.05 cycles/ft for “flexible constructions.” (80) In terms of wavelength, this is 50 ft and 20 ft, 

respectively. 
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This analysis uses a model proposed by Sayers that combines three sources of white noise, as 

shown in figure 20.(81) In figure 20, Ge represents the contribution of white noise elevation, Gs 

represents the contribution of white noise slope, and Ga represents the contribution of white 

noise spatial acceleration. This was selected with the expectation that the arithmetic combination 

of terms with exponents of 0, 2, and 4 would provide enough flexibility to capture the variations 

described above.  

 
 

Figure 20. Equation. Sayers model for elevation profile spectrum. 

Sayers provided coefficients for several in-service roads that cover a diverse range of spectral 

shape, and recommended four representative cases as standard simulation inputs.(82) (See 

table 2.)  

Table 2. Model coefficients for four sample roads.(82) 

Description Ga 

1/(ft•cycle)•10–6 

Gs 

ft/cycle•10–6 

Ge 

ft3/cycle•10–6 

Normal 0 65.6 0 

Asphalt with Long Waves 2.13 65.6 0 

Rough (Short Waves) 0 328.1 35.3 

Limit Roughness 0 984.3 282.5 

“Limit roughness” represents the sample in which the largest proportion of content comes from 

the high wave-number (short-wavelength) range. “Asphalt with long waves” represents the 

sample in which the largest proportion of content comes from the low wave-number (long-

wavelength) range, with a ratio of Ga to Gs of 0.033 ft–2.  

Figure 21 shows the expression for the spectral model by Sayers is the slope domain. 

Comparison of figure 21 to figure 19 (the La Barre model) yields the relationship shown in 

figure 22. For “flexible constructions” (i.e., wavy asphalt) this is a ratio of 0.099 ft–2. 

 
 

Figure 21. Equation. Sayers model for elevation profile spectrum. 

 
 

Figure 22. Equation. Relationship between Sayers and La Barre models. 

For this research, a limited number of low-speed, recreational roadway profiles were analyzed to 

identify a new limit case. These roadways are built in areas with limited opportunity to select or 

alter road grade, and are meant for travel at low speed. These roads exhibited values of the ratio 

of Ga to Gs of 0.132 ft–2 to 1.033 ft–2, with a quarter of the values above 0.743 ft–2. 
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The linear analysis of wavelength sensitivity below examines the cases listed in table 3. “Very 

wavy” corresponds to low-speed, recreational roads; “standard” corresponds to La Barre’s 

observations for flexible constructions; and “choppy” corresponds to an extreme among the 

observations made by Sayers. 

Table 3. Sample cases for analysis. 

Description Ga/ Gs  

(ft–2) 

Ge/ Gs  

(ft2) 

Very wavy 0.743 0 

Standard 0.099 0 

White noise slope 0 0 

Choppy 0 0.861 

Frequency Response 

Figure 23 shows the temporal frequency response of the IRI algorithm in terms of slope (spatial 

velocity across the suspension) as a function of slope spectral density. Figure 23 presents an 

alternative axis showing wavelength, which corresponds to the standard Golden-Car simulation 

speed for the IRI of 49.7 mi/hr.  

 

Figure 23. Graph. IRI gain for profile slope. 

The frequency response function shown in figure 23 includes contributions from two linear 

filters. First, the moving average has a transfer function that is a fixed function of wavelength 

(). Figure 24 shows the transfer function in terms of wave number (), and figure 25 relates 

wave number to wavelength. 
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Figure 24. Equation. Moving average transfer function 

  

Figure 25. Equation. Relationship between wave number and wavelength. 

The second is the Golden-Car Model response transfer function for suspension stroke, as shown 

in figure 26. In figure 26, V is simulated travel speed, and  is angular frequency. Figure 27 

provides the expression for the denominator (D). 

  

Figure 26. Equation. Golden-Car Model transfer function for suspension stroke. 

  

Figure 27. Equation. Golden-Car Model transfer function denominator. 

Figure 28 shows the signal used to calculate the IRI in the wave number domain. In figure 28, 

G() is slope spectral density from the road profile. For a Gaussian signal with zero mean, the 

average rectified value of the output signal is proportional to the standard deviation, which is the 

square root of integral of the output spectrum, GIRI. 

  

Figure 28. Equation. IRI algorithm output in the wave number domain. 

Figure 29 shows the normalized cumulative response of the IRI calculation for the “Standard” 

road identified in table 3. The range of wavelengths up to 66.06 ft produces an estimate of the 

IRI that is 95 percent of the value for the entire waveband, and wavelengths up to 119.10 ft 

capture 99.5 percent of the total. Figure 29 also shows an accumulation of the IRI running 

downward from the long-wavelength end of the spectrum. In this case, wavelengths down to 

6.07 ft capture 95 percent of the overall IRI value and wavelengths down to 3.67 ft captures 

99.5 percent. 
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Figure 29. Graph. Portion of the IRI captured versus wavelength. 

Wavelength Thresholds 

Table 4 presents the wavelength thresholds that correspond to capture of 99.5 percent for the 

overall IRI value for the four sample roads listed in table 3. (The range defined by these 

thresholds corresponds to a total error of 1 percent.) 

Table 4. Thresholds for 0.5 percent error in IRI. 

Sample Case Very Wavy Standard White Noise 

Slope 

Choppy 

Long Wavelength (ft) 140.69 119.10 67.04 61.65 

Short Wavelength (ft) 4.81 3.67 3.16 2.00 

Alternatives to the IRI using lower speeds are also currently under consideration, because 

roughness measurements based on profile are increasingly performed on low-speed and urban 

roadways. Alternatives at higher speeds are also under consideration, because prevailing speeds 

on limited access freeways are much higher than 49.7 mi/hr. When the Golden Car is simulated 

at other speeds, the temporal frequency axis in figure 23 remains unchanged, but the wavelength 

axis shifts (leftward) in proportion to speed. In terms of spectral content, a change in speed 

changes the features of the road that affect the response. Further, as speed decreases the moving 

average attenuates a progressively larger portion of the content that affects the Golden Car.(83) 

To help ensure valid measurement of profile for the IRI and other indices tied to vehicle 

response, the analysis was extended to include: Golden-Car Average Rectified Slope (GCARS) 

at 24.9 mi/hr, GCARS at 74.6 mi/hr, and Ride Number (RN). RN is a profile-based index with an 

empirical link to panel ratings of user satisfaction with pavement ride quality.(84,85) 

Table 5 and table 6 provide the results. Note that RN filters the profile in a manner similar to the 

IRI to emphasize the waveband of interest, and accumulates root mean square (RMS) of the 

resulting signal. The RN algorithm casts the RMS value into a 0-to-5 scale using a non-linear 

transformation. The results in table 5 and table 6 pertain to the pre-transform RN value (PTRN).  
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Table 5. Long-wavelength thresholds for 0.5 percent error in IRI. 

Index Very Wavy 

(ft) 

Standard (ft) White Noise 

Slope (ft) 

Choppy (ft) 

GCARS120 215.17 195.64 100.16 95.91 

GCARS40 65.23 48.38 34.17 27.72 

PTRN 54.29 38.77 28.37 19.02 

Table 6. Short-wavelength thresholds for 0.5 percent error in IRI. 

Index Very Wavy 

(ft) 

Standard (ft) White Noise 

Slope (ft) 

Choppy (ft) 

GCARS120 7.79 5.89 4.48 2.82 

GCARS40 2.23 1.94 1.87 1.37 

PTRN 1.23 1.12 1.10 0.48 

For measurement of IRI, the waveband of interest is 2 ft to 141 ft. The analysis above shows that 

accommodation of other applications of profile related to vehicle response (i.e., general 

roughness measurement) requires a waveband from 0.48 ft to 215 ft. 

Objective Trace Comparison 

This research quantifies agreement between profiles using a standard method that is based on 

cross correlation.(86,87) In this application, two profiles are cross-correlated after they are filtered 

to emphasize the frequency content of interest.  

Cross Correlation 

Figure 30 shows the estimate of the cross-correlation function for two measures of road profile 

over a finite length L. In figure 30, p and q are each measurements of road profile as a function 

of distance x. The cross correlation function, R, exists as a continuous function of the offset 

distance xoff between the profiles. 

  

Figure 30. Equation. Cross correlation for continuous spatial signals. 

Since the profile is sampled at discrete intervals, the integral must be replaced by a summation 

shown in figure 31. In figure 31, the subscripts indicate discrete sample numbers, recorded at a 

distance interval of x. The number of samples, N, is the value needed to cover the overall length 

of interest.  

  

Figure 31. Equation. Cross correlation for discrete spatial signals. 
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The equation in figure 31 has two weaknesses when applied to road profiles. First, it yields a 

cross correlation function in units of elevation squared. Figure 32 provides a more desirable 

rating system that is normalized to produce a value of 1 for perfect correlation. 

  

Figure 32. Equation. Normalized cross correlation for discrete spatial signals. 

In figure 32, the hats over the symbols “p” and “q” indicate that the profiles are offset vertically 

to have a mean value of zero. The values p and q represent the standard deviation of profiles p 

and q, respectively. The equation in figure 32 produces a –1 to 1 rating of the correlation, and 

will only produce a value of 1 when the shape of both profiles are exactly the same and they are 

synchronized. 

A second weakness of the equation in figure 31 is that differences in overall roughness are not 

penalized by the standard cross correlation function. Two profiles that have the exact same shape 

but very different amplitudes would be rewarded with a perfect rating by the equation in 

figure 32. To compensate for this, the factor shown in figure 33 is applied to the normalized 

cross correlation function. This adjustment factor diminishes the value of correlation when the 

standard deviations of the profiles are not equal. 

  

Figure 33. Equation. Amplitude adjustment for cross correlation. 

This research quantifies the agreement between profiles for a given waveband as shown 

in figure 34. 

  

Figure 34. Equation. Amplitude adjustment for cross correlation. 

In figure 34, max is the maximum correlation coefficient over the range of offsets included in the 

calculations.  

Filtering 

Repeatability and agreement to a reference measurement are quantified by cross correlating the 

output of the IRI filter. That is, the IRI algorithm (Steps 1 through 3 under “International 

Roughness Index,” above) is applied to each profile, and the resulting signals are cross-

correlated. A minimum threshold value for cross correlation of 0.92 is adopted from American 

Association of State Highway and Transportation Officials (AASHTO) R56-14.d(87) This 

threshold corresponds to adequate roughness measurement accuracy in production applications. 

AASHTO R56-14 also requires repeatability of 0.98 for systems used to make reference 

                                                 

d Compliance is not required under Federal law. AASHTO R56-14 serves as a guide specification. 
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measurements.(87) Similarly, Karamihas recommended a threshold value of 0.98 for a “research 

class” profiler.(86) 

For diagnostic purposes, profiles are cross-correlated using slope in three additional wavebands: 

(1) a long waveband, (2) a medium waveband, and (3) a short waveband. The profiles are 

converted to slope using a finite difference, then are filtered to pass content in the wavelength 

ranges from 0.46 ft to 5.25 ft, 5.25 ft to 26.2 ft, and 26.2 ft to 215 ft for the short, medium, and 

long wavebands, respectively. Collectively, these three bands cover the range of interest 

identified above. The range was split into three bands for their diagnostic value, and to avoid 

cases in which a portion of the waveband dominates the mean square of the slope profile. 

Appendix A describes the high-pass (HPFB3x2) and low-pass (LPFB3x2) filters used to isolate the 

long, medium, and short wavebands. Cut-off wavelength settings (c) correspond to the limits for 

each range provided above. 

SIGNAL FLOW 

This section examines sensor signals from a long profile measurement collected under favorable 

conditions. The discussion shows the relative contribution of the height-sensor signal and the 

floating-reference-height signal to the overall profile, and that they interact heavily over a 

portion of the frequency range of interest. The discussion also explains why high-pass filtering is 

a necessary part of the profile measurement process, and presents an example of the effect of 

filter type on the profile. 

Signal Interaction 

Figure 35 shows the spectral content of a profiler accelerometer signal measured at 67 mi/hr over 

2.5 mi of limited-access highway. These data were collected on I-94 eastbound starting near 

milepost post 161 (near Chelsea, Michigan) by a profiler mounted near the center of the 

wheelbase on a minivan. The test section included several patched transverse cracks and patched 

potholes. The influence of vehicle dynamic response is apparent in the signal. For example, the 

spectral density includes elevated content due to sprung-mass resonant response at near 1 Hz to 

2.5 Hz and elevated content due to unsprung-mass resonant response at 10 Hz to 20 Hz. 

 

Figure 35. Graph. Accelerometer spectral content. 
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As described in Chapter 1, the raw accelerometer signal is transformed to the floating-reference-

height signal using the following steps: 

1. Resample the signal as a function of travel distance with a constant distance interval. 

2. Divide each value in the signal by the square of forward speed to convert temporal 

acceleration to spatial acceleration. 

3. Integrate the spatial acceleration twice in the distance domain. 

The floating-reference-height signal is a record of the fluctuations in vertical position of the 

profiler reference point as it progressed along the pavement section. The height sensor records 

changes in relative vertical distance between the floating reference height and the road.  

Subtracting the height-sensor signal from the floating-reference-height signal produces the 

profile. Figure 36 shows the spectral content of the two signals for the 2.5-mile-long pavement 

section. The figure shows that when these signals are combined, the contribution from the 

accelerometer will dominate the low-frequency (i.e., long-wavelength) portion of the profile and 

the height sensor will contribute the most heavily to the high-frequency (i.e., short-wavelength) 

portion of the profile.  

 

Figure 36. Graph. Spectral density of floating-reference-height and height-sensor signals. 

To help illustrate this further, figure 37 provides the spectral content of the two signals and the 

final profile in terms of slope. The profile slope spectrum is often used in lieu of elevation 

spectrum to reduce the vertical range on the ordinate axis, so that more details are visible.(81,88) 

The floating-reference-height signal contributes most of the content to the final road profile for 

wavelengths greater than 164 ft, whereas the height sensor contributes most to the road profile 

for wavelengths below 5.3 ft.  
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Figure 37. Graph. Slope spectral density of profile and its components. 

At the host-vehicle travel speed, 10 Hz to 20 Hz corresponds to the range of wave numbers from 

0.10 cycles/ft to 0.21 cycles/ft. In this range, the amplitude of the height-sensor signal and 

floating-reference-height signal are the same order of magnitude, although the fluctuations in the 

floating-reference-height signal are larger. In this frequency range, the host-vehicle reference 

point’s motion is in phase with the changes in road profile elevation. The height-sensor signal is 

out of phase. As a result, the final road profile has more content in this range than either of the 

component signals. 

The range of wave numbers from 0.010 cycles/ft to 0.026 cycles/ft corresponds to frequencies of 

1 Hz to 2.5 Hz at the host-vehicle travel speed. In this range, the profiler reference point’s 

motion is out of phase with changes in profile elevation. Due to resonant response of the host 

vehicle associated primarily with sprung-mass motion, the amplitudes of the floating-reference-

height and height-sensor signals are much larger than the complete profile. When they are 

combined to compute the complete profile, much of the content within the two sensors is 

cancelled. In this frequency range, small errors in either of the sensor signals relative to their 

amplitude may appear as very large errors in the resulting profile. As such, an error in one sensor 

signal associated with host-vehicle sprung-mass dynamics, such as accelerometer misalignment, 

may affect profile measurement accuracy disproportionately.  

High-Pass Filtering 

The accelerometer signal that produced figure 35 through figure 37 included a small overall bias, 

and its average value was 0.000834 g. This may have been caused by a legitimate net vertical 

acceleration over the 2.5 mi of travel. However, the average acceleration may also have been 

caused by a slight error in calibration (once the 1 g offset was removed), slight errors in the 

orientation of the accelerometer on the host-vehicle chassis, or a prevailing level of tilt from true 

vertical caused by the overall grade or cross slope of the road. In this measurement, the average 

acceleration was less than 0.55 percent as large as the variance. When the signal is integrated 

twice to establish the elevation time history of the accelerometer, the presence of the net 
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acceleration will superimpose a parabolic rise in elevation of more than 240 ft. This did not exist 

on the test section. 

Figure 38 shows the floating-reference-height signal established by integrating the raw 

accelerometer signal twice. In addition to the artificial parabolic rise in vertical position, the 

signal includes very long wavelength fluctuations. At sufficiently low frequencies the dynamic 

response of the vehicle diminishes, and the accelerometer follows a path that is parallel to the 

road surface. Under ideal conditions, this portion of the signal would approximate the second 

rate of change of road elevation under the accelerometer. Instead, this portion of the signal is 

often contaminated by operator-induced disturbances, such steering corrections for lane keeping 

and adjustment to the throttle for regulating speed. In addition, very long wavelength changes in 

road elevation associated with road geometric design and the prevailing land topography (i.e., 

grade changes) cause slow changes in accelerometer alignment. 

 

Figure 38. Graph. Floating reference from the raw accelerometer signal. 

Profilers typically apply high-pass filters to suppress the contaminated portion of the floating-

reference-height signal. Figure 39 shows the floating-reference-height signal that results when a 

third-order Butterworth filter is applied with a cut-off wavelength of 300 ft. (See HPFB3 in 

Appendix A.) The figure shows the accompanying height-sensor signal and the complete profile. 

Note that the high-pass filter determines the long-wavelength content within the floating-

reference-height signal, which in turn strongly affects the long-wavelength content in the 

computed profile.  



 30 

 

A. Floating reference height 

 

B. Height sensor 

 

C. Complete profile 

Figure 39. Graph. Floating reference height, height sensor, and complete profile traces. 

Many inertial profilers apply the high-pass filter to sensor signals in real time using a recursive 

algorithm.(89,90) In most cases, recursive digital filters impose a non-linear phase shift. Typically, 

the phase shift is greatest near the cut-off wavelength. This was the case for the complete profile 

shown in figure 39. Figure 40 compares the complete profile to a profile processed from the 

same sensor signals with a bi-directional high-pass filter. The bi-directional filter applies 

equivalent filtering in the forward and reverse direction to cancel phase shift. (See Appendix A, 

HPFB3x2.) The deep cracks and short-duration features are aligned in the two profiles. However, 

the conventional filter distorts the long-wavelength content. For example, the dip near the center 
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of the profile produced without phase shift by the bi-directional filter appears as a bump using 

the conventional filter. 

 

Figure 40. Graph. Effect of filter type on a raw profile trace. 

SYSTEM KINEMATICS AND DYNAMICS 

Three Dimensional Kinematics 

Chapter 1 presented expressions for the errors in vertical acceleration measured on-board a 

typical inertial profiler due to misalignment of the host-vehicle body in two dimensions. 

Figure 41 presents the full expressions for vehicle-fixed accelerations that would be measured by 

servo-type accelerometers fixed on the profiler as it experiences rotations about the vehicle-fixed 

axes in pitch () then roll (). 

  

Figure 41. Equations. Body-fixed accelerations. 

In figure 41 (and others), s and c represent sine and cosine functions, respectively, of the angle 

that appears in the subscript. The equations in figure 41 express vehicle body-fixed vertical ( ), 

longitudinal ( ), and lateral ( ) acceleration in terms of vertical acceleration along an axis 

system aligned with gravity ( ) and horizontal components in a plane perpendicular to gravity 

(  and ). The equations in figure 41 include removal of a 1-g offset from the recorded value 

of . 

As shown in figure 42, pitch is represented as a rotation about the host-vehicle lateral axis (Yw). 

The subscript “w” denotes the wander axis system, which corresponds to the Society of 

Automotive Engineers (SAE) intermediate axis system.(91) The alignment of the Yw axis follows 

the vehicle’s yaw motion, but remains perpendicular to a vertical axis aligned with gravity. Roll 

is represented by a subsequent rotation about the body-fixed longitudinal axis (Xb). True vertical 

acceleration along the axis aligned with gravity is . 
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Figure 42. Schematic. Body-fixed rotations in pitch and roll. 

Figure 42 also demonstrates the effect of changes in host-vehicle orientation on the range to 

ground measured by the height sensor. For a perfectly flat, smooth ground plane the measured 

range to ground along the body-fixed vertical axis ( ) increases relative to the vertical 

projection along a truly vertical axis ( ), as shown in figure 43. 

  

Figure 43. Equation. Body-fixed height-sensor reading. 

When the road surface is not flat and smooth, lateral and longitudinal translation of the height-

sensor footprint introduces additional spurious content into the height-sensor signal. In practice, 

the lateral and longitudinal translation is more important than the cosine error.  

The signal , rather than , is required to accurately establish the floating reference height. 

Two strategies for obtaining this are possible: 

1. Correction of  to  using measurements of  and , as shown in figure 44. 

  

Figure 44. Equation. Correction using wander-frame horizontal acceleration. 
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2. Correction of  to  using measurements of  and , as shown in figure 45. 

  

Figure 45. Equation. Correction using body-fixed acceleration. 

Either approach requires measurement of profiler orientation (pitch and roll). Estimates of 

horizontal acceleration may be obtained by observing changes in wheel rotation (for ) and a 

combination of forward speed and yaw rate or steering angle ( ). Since the profiler is mounted 

on the sprung mass of the host vehicle, horizontal acceleration measured or estimated at the 

vehicle’s footprint (i.e., the wander frame) may not be sufficient. Measurement of body-fixed 

lateral and longitudinal acceleration requires additional sensors that are not commonly available 

on existing profilers. However, the approach shown in figure 45 was selected, because direct 

measurement of the acceleration inputs was possible and orientation could be derived in a 

manner similar to a common strap-down navigation system. 

Theoretical Demonstration 

Figure 46 shows a planar inverted pendulum model with 1 DOF that demonstrates the errors 

caused by accelerometer misalignment. The model represents the host vehicle as an inverted 

pendulum attached to a trolley with prescribed longitudinal motion x(t). Although this model is 

very simple, it includes a DOF that permits the body on which the profiler is mounted to change 

its alignment in response to horizontal acceleration. Collectively, the host-vehicle properties m 

(mass), hrc (rotation center height), Lcm (center of mass height in relation to the rotation center), 

kr (rotational stiffness resisting rotation), and cr (rotational damping) define the host vehicle’s 

dynamic response to horizontal acceleration. The dimensions hp and lp describe the profiler’s 

position on the host vehicle in relation to the rotation center. 

 

Figure 46. Schematic. Inverted pendulum model. 

When the trolley experiences deceleration, the pendulum (i.e., the host-vehicle body) changes its 

orientation and changes its alignment by an angle . This has two consequences. First, the 

relative height of the profiler compared to the road surface measured by the misaligned height 

sensor is slightly larger than the true value. This affects the reading as shown in figure 47. 
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Figure 47. Equation. Body-fixed height-sensor reading during pitch. 

Second, as shown in figure 48, the measured components of vertical and horizontal acceleration 

are cross-contaminated. The true acceleration magnitude of the profiler, ap, includes a 

contribution from an absolute vertical component , which is desired for robust measurement 

of the inertial platform, and an absolute horizontal component . The same vector also breaks 

down into a “body-fixed” vertical component , which is measured by a typical profiler, and a 

body-fixed horizontal component . Figure 48 illustrates the equations above visually and 

shows the difficulty in applying corrections to vertical acceleration using on-board 

measurements of horizontal acceleration. 

 

Figure 48. Schematic. Acceleration components. 

Figure 49 shows the equation of motion for the pendulum alignment angle is, and figure 50 

through figure 52 provide equations for relevant outputs. 

  

Figure 49. Equation. Equation of motion for the inverted pendulum. 

  

Figure 50. Equation. Body-fixed vertical acceleration output. 

  

Figure 51. Equation. Output, vertical acceleration in the wander frame. 

  

Figure 52. Equation. Body-fixed height-sensor output. 

Kinematic transformations of the same type shown in figure 41 and figure 43 provide 

expressions for , , and . 
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For the deceleration pulse defined in figure 53, figure 54 through figure 57 show the response of 

the trolley operating on a perfectly flat, smooth surface. 

  

Figure 53. Equations. Deceleration pulse. 

In figure 53, axpeak is the peak deceleration value of 0.4 g, T is the duration of the pulse 

(1 second), and ts is the start time (2 seconds). Figure 54 shows the pulse and the measurement of 

longitudinal acceleration that would be obtained by an accelerometer fixed in the profiler host-

vehicle body, which includes the influence of changes in orientation and the projection of gravity 

and true vertical acceleration onto its measurement axis. 

 

Figure 54. Graph. Deceleration pulse. 

Figure 55 shows the ideal measurement of vertical acceleration and the measurement that would 

be obtained by an accelerometer fixed in the profiler host-vehicle body. Again, the measurement 

by the sensor fixed in the profiler host vehicle is affected by its change in orientation. Both 

signals include the initial downward acceleration at the onset of the pulse, followed by a rebound 

and damped oscillation. However, the accelerometer fixed to the profiler host-vehicle body 

includes a downward bias due to the projection of longitudinal deceleration onto its sensitive 

axis. 

 

Figure 55. Graph. Measured and actual vertical acceleration. 
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Figure 56 shows the floating reference height derived from the accelerometer and the signal 

measured by the height sensor for the sensors fixed to the profiler. The error in the height-sensor 

signal is very small, because the change in orientation () is so small that the cosine term is very 

close to 1. This trace correctly shows that as the profiler pitches forward the simulated profiler 

height sensor drew about 2 inches closer to the road surface and subsequently recovered to its 

nominal position.  

 

Figure 56. Graph. Height-sensor and floating-reference-height signals. 

In figure 56, the floating-reference-height signal is obtained by double-integrating the 

accelerometer signal. It should show downward motion of the profiler followed by a recovery to 

its nominal position. Since the simulated road is perfectly flat, the floating-reference-height 

signal and the height-sensor signal should cancel. They do not, because the floating-reference-

height signal includes downward curvature during the deceleration pulse. The curvature is the 

result of the downward bias in the accelerometer signal after double integration. Since the bias 

was caused by contamination of the vertical acceleration measurement, it is not canceled by the 

height-sensor signal. 

Figure 57 shows the profile calculated using sensors fixed in the profiler host-vehicle body. The 

final profile is calculated by: (1) subtracting the height-sensor signal from the floating-reference-

height signal, and (2) applying a high-pass filter. Misalignment of the accelerometer and cross 

contamination of its readings caused the profile to include an artificial bump over 0.2 inches 

high. The severity of the bump depends on the severity of the deceleration pulse, but its width 

depends on travel speed. Figure 57 shows the profile for deceleration from 49.2 mi/hr to 

44.8 mi/hr, which is a small net speed change. A profiler with ideal sensors that provide true 

vertical acceleration and true vertical range between the profiler and the road would produce a 

flat profile. 
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Figure 57. Graph. Simulated profile measurement. 

The severity (and shape) of the bump also depends on a combination of the dynamic properties 

of the profiler host vehicle and the duration of the pulse. This is because the error in vertical 

acceleration is equal to the product of the sine of the orientation angle and the longitudinal 

acceleration at every instant. Therefore, a lag between the application of longitudinal 

acceleration and the response may reduce the error.  

For the specific conditions illustrated in figure 54 through figure 57, the artificial bump causes 

the 0.1-mile-section that contains it to have an IRI value of 2.4 inches/mi, rather than the correct 

value of 0. This is not a large value, but the deceleration pulse was very short, and the net speed 

change was low. Further, the erroneous roughness is localized. Figure 58 shows the short-

interval roughness profile. 

 

Figure 58. Graph. Short-interval roughness profile, simulated braking. 

An upward bias in roughness of 2.4 inches/mi does not necessarily occur when the artificial 

bump is superimposed on a profile with actual roughness. The artificial bump may cancel if 

some negative content (i.e., a dip) appears in the location where the deceleration occurred. 

Forward acceleration of the host vehicle also superimposes an artificial bump onto the measured 

profile. During forward acceleration, the vehicle pitches rearward. The combination of positive 

longitudinal acceleration ( ) and negative pitch () causes a temporary negative bias in the 

measured vertical acceleration. (See the first term after the equal sign for 
 
in figure 41.) After 

double integration, this appears in the profile as a bump.  
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Figure 59 shows a pair of field profile measurements from a previous research project that 

illustrates the introduction of an artificial bump into the profile when the host vehicle 

experiences a deceleration pulse.(14) The figure shows a profile measured at constant speed and 

another profile that included deceleration with the speed profile shown in figure 60. The vehicle 

decelerates from about 49 mi/hr to about 23 mi/hr, including about 3.75 seconds of deceleration 

over 0.25 g. This type of deceleration event may occur in an urban environment if the profiler is 

cut off or suddenly encounters slower moving traffic. 

 

Figure 59. Graph. Profile measurement with and without braking. 

 

Figure 60. Graph. Test speed profile. 

The deceleration causes the same qualitative erroneous profile content predicted by the kinematic 

analysis and modeling described above. In particular, the projection of rearward longitudinal 

acceleration onto the sensitive axis of the accelerometer causes a temporary downward bias in 

measured vertical acceleration. This in turn causes localized downward curvature in the floating-

reference-height signal after double integration, which appears in the final profile. Once the 

profile is high-pass filtered, the localized downward curvature appears as an artificial bump. 

Figure 61 shows the profile produced by the trolley simulation for a deceleration pulse similar to 

that shown in figure 60. (Note that, while the vehicle properties used are realistic, they are 

merely estimates.) The measured roughness induced by misalignment in the simulated profiler 

during deceleration is similar in shape and magnitude to the additional roughness that appears in 

the test data during deceleration. The range of deceleration appears from 150 ft to 400 ft in 

figure 61, and from 440 ft to 670 ft in figure 59.  
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Figure 61. Graph. Simulated profile measurement error, long braking pulse. 

In the simulation, the braking event adds 3.48 inches/mi of roughness to a perfectly smooth 

0.1-mile-long section. At lower initial speeds, the severity of the roughness for the same 

deceleration history is much larger. For example, with an initial speed of 25 mi/hr, the artificial 

bump is more than 8 inches high and adds roughness of 116 inches/mi to a 0.1-mile segment. 

The increase occurs because: (1) at lower speed, the artificial roughness is more localized, and 

(2) the erroneous content maps to a range of wavelengths that affect the IRI to a greater extent. 

Chapter Summary 

The standard inertial profiler design uses body-fixed measurement of vertical acceleration to 

establish the floating reference height. Errors in the floating reference height occur during 

longitudinal and lateral acceleration, because the pitch and roll response of the host vehicle cause 

the sensitive axis of the accelerometer to tilt. As a result, the measured vertical acceleration is 

contaminated by acceleration along the other axes. This is a powerful source of error because it 

occurs in the frequency range where the height-sensor signal and accelerometer signal interact to 

cancel the effect of host-vehicle vertical vibration on the computed profile. Since this frequency 

range is linked to vehicle vertical dynamic response, it is also in the frequency range that affects 

the IRI. This chapter demonstrated this error source and the resulting error in profile and the IRI 

analytically and provided an experimental example. Chapter 5 proposes algorithms that suppress 

the error caused by accelerometer tilt by removing drift in integrated accelerometer signals.  

This chapter recommends the use of vertical acceleration in the direction aligned with gravity in 

place of body-fixed vertical acceleration to eliminate the errors caused by accelerometer tilt. The 

chapter presents kinematic equations for using body-fixed measurements of acceleration and 

orientation of the host vehicle in three dimensions to derive the true vertical acceleration. This is 

the motivation for the design and fabrication of the measurement system described in Chapter 3, 

which includes the sensors needed to support the approach. This is the core of the proposed 

design solutions examined experimentally in Chapter 6. 

This chapter establishes 2 ft to 141 ft as the wavelength range of interest for the IRI, and 0.48 ft 

to 215 ft as the wavelength range of interest for general roughness measurement. These ranges 

serve as engineering requirement for the design solutions proposed in this research. The chapter 

recommends profile and roughness comparison as the means to assess the relative success of 

each design. Roughness values are compared using the average IRI over a 0.1-mile-long road 
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section, and peak values from short-interval roughness profiles. Profiles are compared by cross 

correlating the output of the algorithm used to calculate IRI. Cross correlation of 0.92 is required 

for adequate profile agreement, and 0.98 is required to demonstrate reference-grade performance. 
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CHAPTER 3. SYSTEM DESCRIPTION 

This chapter describes a custom measurement system that was designed and built for this 

research. The system was designed to enable an experimental demonstration of profile 

measurement errors that occur at low speed, during braking, and at stops; and an investigation of 

the efficacy of methods proposed in this research to eliminate those errors. The measurement 

system was designed to support the research in three ways.  

First, the system included, at its core, the sensors that appear in a typical inertial profiler. Profiles 

produced using only the those sensors and the standard processing algorithms provided a basis 

for comparison to profiles produced using additional sensors and the methods proposed in this 

research. 

Second, the system stored output signals from each sensor for post-processing, which is not 

typical for inertial profilers. Detailed sensor signals were needed to assess sources of 

measurement error systematically. Storage of sensor signals was also needed to support the 

development and evaluation of novel processing algorithms proposed in this research for 

reducing measurement errors, particularly those that could not be applied in real time. 

Third, the system included additional sensors that provided three-dimensional measurement of 

profiler host-vehicle kinematics. The sensors included body-fixed measurement of acceleration 

and rotation rate in three dimensions, and GPS measurement of height, vertical velocity, pitch 

attitude, and roll attitude. These sensors provided the means to resolve the component of profiler 

reference point acceleration into a truly vertical direction, which was needed to eliminate the 

primary source of measurement error that occurs at low speed, during braking, and at stops. 

The system description includes: an overview of the system, a description of its physical layout, 

a list of the sensors and their specifications, and a short explanation of the way signals are 

recorded and synchronized.  

SYSTEM OVERVIEW 

This section provides an overview of the measurement system, and explains the rationale behind 

specific design specifications described in the following sections.  

Nominal Inertial Profiler 

A nominal set of inertial profiler sensors are installed on each side of the vehicle. Each set of 

sensors includes servo-type accelerometers, ranging lasers, and a rotational encoder. The 

accelerometers and height sensors are aligned laterally with the host-vehicle wheels on each side. 

These are design elements that appear on commercial inertial profilers.  

This research is concerned with measurement errors related to operation at low travel speed, 

during braking, and at stops. As such, the nominal system is designed to reduce other common 

sources of measurement error that might confound the results. For example, the accelerometers 

and lasers are mounted rigidly to the host vehicle to avoid excessive vibration. A rigid plate 
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mounted directly to the frame at the rear of the host vehicle provides a system backbone, and 

rigid sensor pods are attached to it on each side.  

The nominal profiler uses aviation-grade accelerometers, which were selected for their accuracy, 

precision, and low noise floor. The nominal profiler on each side also includes a line laser for 

measurement of the range to ground. Line lasers detect the road surface using a wide footprint, 

which helps distinguish changes in elevation of the road surface that occur over a wide area from 

road surface texture, narrow longitudinal cracks and joints, and other narrow gaps in the road 

surface.(75) 

A typical production profiler measures travel distance using a rotational encoder mounted to one 

wheel. The nominal profiler designed for this research includes rotational encoders mounted to 

the rear wheels on each side. This provides a specific longitudinal distance measurement to the 

profiler on each side without the bias associated with driving on a curve. 

Three-Dimensional Kinematics 

This research proposes using profiler vertical acceleration in a direction aligned with gravity in 

place of body-fixed vertical acceleration as a way to reduce errors in profile measurement that 

occur in typical inertial profilers. To do that, the system combines body-fixed measurements of 

acceleration and rotation.  

Resolving readings from the profiler accelerometers into an axis system fixed in the Earth 

requires measurement of horizontal acceleration. Servo-type accelerometers fixed in each sensor 

pod provide body-fixed longitudinal acceleration of the left and right side profilers. An inertial 

navigation system (INS) fixed to a central pod between the two profilers provides body-fixed 

lateral acceleration. 

The system obtains body-fixed yaw rate using the INS, and it obtains pitch and roll rotation rate 

using fiber-optic gyroscopes mounted to the center pod. The fiber-optic gyroscopes are needed 

have better accuracy and time stability than the microelectromechanical angular rate sensors in 

the INS. 

The system also includes measurement of pitch and roll attitude of the host vehicle by a GPS-

based system. This system measures pitch and roll by comparing the height of a GPS antenna 

placed at the rear of the vehicle on the left side to the height of antennas placed forward and 

rightward of it, respectively. These antennas were placed as far apart as possible to reduce the 

influence of errors in height on the derived attitude angles.  

The GPS-based system is included to provide valid absolute measurements of orientation as a 

check on the drift that occurs when integrating measured rotation rate. In particular, this research 

proposes the use of the gyroscopes for measuring high-frequency content, and the GPS-based 

attitude measurements for low-frequency content. The GPS-based attitude measurements also 

provide a way to initialize the estimates of pitch and roll that are produced by integrating 

measurements of rotation rate. 
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Longitudinal Distance Measurement 

Typical inertial profilers measure longitudinal travel distance using a rotational encoder mounted 

to a host-vehicle wheel. This method of distance measurement is prone to bias caused by changes 

in tire rotation speed, tire temperature, and tire inflation pressure.(14) Further, the calibration 

factor that relates travel distance to wheel rotation during constant-speed operation is not valid 

when application of the brakes or the throttle cause a change in longitudinal slip. An optical fifth 

wheel is installed in the center pod to provide a measurement of longitudinal distance that is not 

prone to these error sources.  

As a check on the encoder-based and optical distance measurements, travel distance was also 

monitored using wheel speeds from Controller Area Network (CAN) bus messages and derived 

from latitude and longitude measured by a differential GPS system. 

Diagnostics 

The system includes several elements intended to help explain observations from the subsystems 

described above, and to help ensure that critical sensors are providing valid readings. This 

includes: (1) a video-based lane tracking system, (2) a forward-looking camera, (3) a downward-

looking camera, (4) a laser for range to the road from the left front corner of the vehicle, and (5) 

comprehensive outputs from the inertial navigation system (e.g., angular rates, velocity, heading, 

etc.).  

The system also includes point lasers in parallel with each line laser. The point lasers have a very 

small footprint relative to the line lasers, and are more prone to high-frequency noise on 

pavements with coarse surface texture. However, point lasers of this type have a longer history in 

road profiling applications and are less prone to errors caused by variations in surface 

reflectivity. As such, the point lasers are included for redundancy. 

Signal Timing 

The accuracy of profiles produced by the processing algorithms proposed in this research 

depends on accurate signal timing. This is true of the nominal inertial profiler sensors, because 

the accelerometer signals and height-sensor signals are combined to cancel the influence of host-

vehicle vibration. This is equally critical in the augmented sensor configuration proposed in this 

research, because a Kalman filter combines outputs from the accelerometers, rate gyroscopes, 

and GPS to estimate the signals needed to obtain valid profile. 

PHYSICAL LAYOUT 

Figure 62 and figure 63 show the system in the side and rear view, respectively. The system host 

vehicle is a 2008 GMC Savanna Cargo Van, VIN number 1GTGG25C481234303. The host 

vehicle has a wheelbase of 135 inches, a track width (front and rear) of 67.8 inches, an overall 

length of 224.1 inches, and a height of 81.6 inches. With the instrumentation installed, the 

vehicle’s rear overhang is increased by 9.5 inches and the overall height of the system is 

100 inches. The interior rearward of the front seats was stripped to accommodate the data 

acquisition system (DAS), the power supply, tools, and racks for storage of the rear sensors and 
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mounting racks during transport. When the vehicle is fully instrumented, but unoccupied, it 

weighs 7080 lbs. 

 

Figure 62. Image. Measurement system, side view. 

 

Figure 63. Image. Measurement system, rear view. 

Figure 64 and figure 65 provide schematics of the system. Figure 64 shows the top view of the 

hardware mounted at the lower rear of the vehicle. At the lower rear, three sensor pods are 

attached to a silver mounting plate, which serves as their “backbone.” This assembly remains 

intact when the system is disassembled for storage. The silver plate attached to a black mounting 

plate, which is in turn attached directly to the host-vehicle frame rails. The rear bumper is 

removed. Figure 65 shows the front point laser, the windshield cameras, the rear wheel encoders, 
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and the upper rack for mounting GPS antennas. Appendix B provides several photographs of the 

hardware. 

 

Figure 64. Schematic. Lower sensor rack, top view. 
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Figure 65. Schematic. System top view. 
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Outer Pods 

Each of the left and right sensor pods carries a point laser, a line laser, a vertically oriented 

servo-type accelerometer, and a longitudinally oriented servo-type accelerometer. The pods are 

symmetric about the longitudinal centerline of the vehicle, and the sensors are mounted so that 

the left and right side profilers are 67.75 inches apart, which aligns them with the center of 

contact of the rear tires. Figure 66 shows the layout of the right pod in the rear and side view. 

The side view is shown without the right enclosure plate. 

 

Figure 66. Schematic. Right sensor pod. 

The line lasers project light over a transversely oriented line more than 4 inches wide, with the 

detector rearward of the projected light source. Each line laser is mounted so that the center of 

the light that it projects is aligned with the sensitive axis of its companion accelerometer. The 

point lasers project light onto the ground over a diameter of 0.012 inches. The point lasers are 

aligned transversely with the line laser and accelerometers. Their footprint is 4.12 inches forward 

of the line lasers, and they are mounted with the detectors inboard of the light source.  When the 

vehicle is at rest, the line lasers have an approximate range to ground of 11.1 inches and a 

triangulation angle of 22 degrees. The point lasers have an approximate range to ground of 

11.4 inches and a triangulation angle of 13 degrees. 

The longitudinal accelerometers are installed just rearward of the vertical accelerometers within 

the same mounting blocks.  

Center Pod 

The center pod carries two rate gyroscopes, an INS, and an optical fifth wheel. Figure 67 shows 

the layout of the center pod in the rear and side view. The side view is shown without the right 

enclosure plate. 



 48 

 

Figure 67. Schematic. Center sensor pod. 

The rate gyroscopes are mounted along the host-vehicle longitudinal axis of symmetry. One of 

the gyroscopes is oriented for measurement of profiler pitch rotation rate, and the other is 

oriented for measurement of profile roll rotation rate. The integrated signals provide relative 

pitch and roll rotation. An optical fifth wheel is mounted to the underside of the center pod for 

measurement of longitudinal distance. The center pod also houses the main enclosure for the 

INS, which contains three accelerometers and three angular rate sensors. 

Upper Instrumentation Rack 

The upper instrumentation rack carries three GPS antennas for measurement of host-vehicle 

sprung-mass pitch and roll. (See figure 65.) The master antenna is mounted at the left rear 

corner. A rover antenna is mounted forward of it for measurement of pitch; and another rover 

antenna is mounted beside it for measurement of roll. When the vehicle is at rest, the three 

antennae form a plane that is about 97 inches above the ground. The pitch antennae are 

132 inches apart, and the roll antennae are 78.7 inches apart. 

The upper instrumentation rack also houses a GPS antenna at the center rear, which is used by 

the INS to eliminate drift in its calculation of position and velocity. 

Other Sensors 

As shown in figure 65, the system includes several additional sensors: 

 Rotational encoders are mounted to each of the vehicle rear wheels. 

 A point laser measures range to ground at the front left corner of the vehicle chassis. 

 A forward-looking camera is mounted inside the windshield. 
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 A downward-looking camera is mounted to the left side of the upper instrumentation 

rack. The field of view includes the rear quarter of the vehicle’s left side, the pavement 

beside it, and a portion of the roadside. 

 An optical lane tracker system is mounted inside the windshield. 

Although it is not shown in the diagrams, the system also records wheel speeds and other 

pertinent quantities (transmission status, cruise control, brake light switch, throttle position, etc.) 

from CAN bus messages. 

SENSORS 

Table 7 identifies each sensor by model number and serial number. The list that follows includes 

pertinent specifications of each sensor as they were used in this measurement system.  

Table 7. System sensors. 

Sensor Position Make and Model Number Serial Number 

Left point laser LMI Selcom SLS5200/300-RO 1002 

Right point laser LMI Selcom SLS5200/300-RO 2362 

Front point laser LMI Selcom SLS5000-200/300-RO N2297 

Left line laser LMI Selcom Gocator 2342A-3B-12  00022133 

Right line laser LMI Selcom Gocator 2342A-3B-12 00022135 

Left vertical accel. Honeywell Q-Flex QA1400-AA03-0 459 

Left longitudinal accel. Honeywell Q-Flex QA1400-AA03-0 451 

Right vertical accel. Honeywell Q-Flex QA1400-AA03-0 438 

Right longitudinal accel. Honeywell Q-Flex QA1400-AA03-0 460 

Left encoder BEI XHS25-75-R2-SS-2048 QQ110792 

Right encoder BEI XHS25-75-R2-SS-2048 QQ110791 

Optical fifth wheel Datron DLS-2 06.303 

Pitch rate gyro. KVH DSP-3000 Fiber optic gyro  

02-1222-01 

RD 16610 

Roll rate gyro. KVH DSP-3000 Fiber optic gyro  

02-1222-01 

RD 20917 

INS Oxford Technical Solutions RT3050 073 

GPS antenna, INS Novatel GPS-600-SB 01017062 NTM03230018 

GPS antenna, master Novatel GPS-702-GG 01017577 NAE12100014 

GPS antenna, pitch rover Novatel GPS-702-GG 01017577 NAE12100009 

GPS antenna, roll rover Novatel GPS-702-GG 01017577 NAE12100016 

GPS receiver, master Novatel Flex6-G2L-R0G-55R NKC12240013 

GPS receiver, pitch Novatel Flex6-G2L-B0G-55R NKC12240021 

GPS receiver, roll Novatel Flex6-G2L-R0G-55R NKC12240014 

Lane tracker MobilEye C2-270  

Front camera B&H EVEMC700  

Rear camera B&H EVEMC700  
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The GPS-based attitude measurements were provided by a Novatel Align system, including a 

RavenX modem for receiving Radio Technical Commission for Maritime (RTCM) correction 

data from Networked Transport of RTCM via Internet Protocol servers. The INS combines 

measurements of acceleration, angular rate, and GPS position using Kalman filtering to estimate 

motion outputs. The specifications below are those listed for the RT3050 once the filter has 

converged. The actual outputs provide estimates of the probable error level with each set of 

readings. 

Vertical Accelerometers  

Range: 4 g (+/– 2 g) 

Resolution: 0.001076 g left, 0.001095 g right 

Bandwidth: to 2,000 Hz 

Sample rate: 16,000 Hz 

Longitudinal Accelerometers 

Range: 2 g (+/– 1 g) 

Resolution: 0.000543 g left, 0.000544 g right 

Bandwidth: to 2,000 Hz 

Sample rate: 16,000 Hz 

Point Lasers 

Range: 7.9 inches (+/– 3.9 inches) 

Resolution: 0.004 inches left, 0.004 inches right, 0.005 inches front 

Bandwidth: to 2,000 Hz 

Sample rate: 16,000 Hz 

Line Lasers 

Range: 7.9 inches (+/– 3.9 inches) 

Vertical Resolution: 0.00016 inches 

Horizontal Resolution: ~400 readings over a 4-inch width at stand-off 

Sample rate: ~3,240 Hz 

Encoders 

Resolution: 2048 cycles per rev quadrature (8192 counts per revolution, which is 0.012 

inches per count) 

Sample rate: recorded at 250 Hz 
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Optical Fifth Wheel 

Velocity resolution: 0.0089006 ft/s 

Velocity bandwidth: to 2000 Hz 

Position resolution: 0.089 inches 

Position sample rate: recorded at 16,000 Hz 

Rate Gyros 

Range: full scale +/– 375 deg/sec 

Resolution: 0.000001 deg/sec 

Bandwidth: to 100 Hz 

Sample rate: 100 Hz 

GPS Position (when real-time kinematic (RTK) integer fix is possible) 

Sample rate: 20 Hz 

Accuracy: 0.4 inches + 1 ppm of distance to base station 

GPS Velocity 

Sample rate: 20 Hz 

Accuracy: 0.098 ft/s RMS 

GPS Heading and Pitch 

Sample rate: 20 Hz 

Accuracy: 0.06 deg 

GPS Roll 

Sample rate: 20 Hz 

Accuracy: 0.1 deg 

MobilEye Lateral Lane Position 

Sample rate: asynchronous 

Resolution: 0.013 ft 

Downward and Forward Cameras 

Sample rate: 30 images per second 

Resolution: 720x480 
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INS Outputs 

Update rate: 100 Hz 

Position Accuracy: 2-inch probable circular error 

Velocity Accuracy: 0.5 mi/hr RMS 

Acceleration bias: 0.001 g at one st. dev. 

Roll/pitch: 0.04 deg at one st. dev. 

Angular rate: 0.01 deg/s at one st. dev. 

SIGNAL FLOW 

The measurement system includes a diverse set of sensors and cameras, with diverse outputs and 

timing. Some sensors provide serial outputs, some provide Ethernet outputs, some provide 

analog outputs, and others output counter values and digital signals. 

Data logging is performed by an embedded system including: a host central processing unit 

(CPU), a secondary CPU, a counter/timer card, an A/D card with high-speed digital inputs, a 

dual channel CAN bus interface, and a video frame grabber. The A/D card is connected to a 

custom 8 channel analog signal conditioning chassis.  

Synchronization of data from various sources is done in both distance and time. Temporal 

synchronization is done using constant monitoring of a common time signal by most sensors, and 

monitoring of a common pulse by others. The system records a reference time from a CPU clock 

with every video image, and every sample from the accelerometers, point lasers, rate gyroscopes, 

INS, lane tracker, and GPS receivers. The A/D card also outputs a pulse every 4 seconds. The 

pulse appears in the outputs from each line laser and the high-speed outputs from the 

accelerometers and point lasers. This provides a way to reconcile the internal clocks from each 

line laser with the common clock used by most of the rest of the system. For redundancy, a 

synchronization output from each frame recorded by the line laser is monitored synchronously 

with the 16,000 Hz outputs from the accelerometers and point lasers.  

For spatial synchronization, the system records counts from the optical fifth wheel and both 

rotational encoders every 4 milliseconds using the CPU clock; as described above, these counts 

are also synchronized in time with GPS position. The system also routes rotational encoder 

counts to each liner laser. The vehicle odometer, while low in resolution, is logged over the CAN 

interface. 
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CHAPTER 4. NOMINAL SYSTEM PERFORMANCE 

This chapter characterizes the performance of the nominal inertial profiling system mounted on 

the left side of the host vehicle. This system includes measurement of vertical acceleration by a 

servo-type accelerometer, measurement of range to ground by a line laser, and measurement of 

longitudinal distance by a rotational encoder mounted to the left rear wheel. System performance 

is characterized using stationary testing, profile measurement repeatability, and agreement to a 

reference profile measurement. 

STATIONARY TESTING 

Stationary testing was performed at the start of each test day to verify basic system health and 

vertical calibration, as described in AASHTO R 57-14.(92) In a stationary test, profile data are 

collected with the engine on and the vehicle parked on a flat, level platform. Longitudinal motion 

is simulated using an artificial distance encoder signal, which progresses at a constant rate. The 

results described here correspond to a simulated travel speed of 45 mi/hr. In all stationary tests, a 

clipboard was placed under each laser sensor to reduce the effect of surface texture on 

measurements of range to ground.  

Stationary tests provide an efficient way to identify excessive noise, sensor malfunctions, poor 

sensor calibration, and signal processing errors in the field. Since the elevation of the road 

surface beneath the profiler remains constant throughout stationary tests, a perfect system would 

measure a flat profile and register no roughness. Two types of stationary tests were performed: 

quiescent tests and bounce tests.  

Quiescent tests are typically performed with the engine on and no additional motion imposed on 

the vehicle chassis. The primary purpose of the quiescent test is to characterize the level of 

sensor noise that appears as artificial roughness in the measured profile. AASHTO R57-14 

deems an IRI of 3 inched/mi or less acceptable for a quiescent test.(92)  

In most cases, quiescent tests on the nominal inertial profiling system produced profiles with IRI 

values below 0.6 inches/mi. These profiles included evidence of sensor noise and imperfect 

cancelation of profiler motion caused by engine vibration. Roughness caused by engine vibration 

appeared at a simulated wavelength of 4.8 ft, which corresponds to an engine speed of 820 rpm 

(13.7 Hz). In specialized quiescent tests with the profiler removed from its mounts and supported 

by a rack (and the engine on), the roughness reduced to 0.25 inches/mi. With the engine off and 

the profiler mounted to the vehicle, quiescent tests produced profiles with IRI values near 

0.3 inches/mi.  

During a bounce test, the operator moves the profiler vertically by exercising the host-vehicle 

suspensions in jounce and rebound. A standard bounce test includes several seconds of quiescent 

operation followed by several seconds of induced vertical motion. Ideally, the cyclic changes in 

profiler reference height detected by the accelerometer would be perfectly canceled by equal 

changes in relative range to ground measured by the height sensor. AASHTO R57-14 deems an 

IRI of 8 inches/mi an acceptable level for a bounce test.(92) 
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Figure 68 shows a short-interval roughness profile produced by a bounce test using the nominal 

inertial profiling system. In this case, the induced motion took place over an interval of 6.5 

seconds, which corresponds to a distance of approximately 430 ft at the simulated test speed. 

During the middle two thirds of the induced motion, the profiler moved downward 2.2 inches 

and upward 1.2 inches from its static position at a frequency very close to 2 Hz.  

 

Figure 68. Graph. Short-interval roughness profile produced by a bounce test. 

Artificial roughness appeared in the measured profile with amplitude of 0.004 inches and a 

wavelength of 33 ft due to imperfect cancelation of the vehicle motion between the height-sensor 

signal and the floating-reference-height signal. As shown in figure 68, the average IRI was 3 

inches/mi when the induced motion was at its most severe, which is well below the threshold 

value of 8 inches/mi. The low roughness value over this interval is strong evidence that the 

sensors are functioning, are properly calibrated, and are stored with consistent signal timing. 

During the quiescent portions of the test, the IRI was 0.4 inches/mi. The low quiescent roughness 

value demonstrates a low level of system noise.  

DYNAMIC TESTING 

Test Section 

Dynamic testing took place on the low volume loop at the Minnesota Road Research Facility 

(MnROAD) research facility near Albertville, MN. This is the same site where testing was 

conducted with staged reproductions of common operational conditions encountered during 

network-level profile measurements on low-speed and urban roadways, such as: (1) operation at 

low speed, (2) acceleration or deceleration, (3) stop-and-go operation, (4) profiling from a dead 

stop, and (5) operation on a curve. Most of the testing took place on a tangent section running 

southeast along the northern straightaway on the low volume loop. The tangent section was 

1503 ft long. This length was needed to observe the effects on measurement of long-wavelength 

content during operation at very low speed and long transient effects that occurred during 

acceleration and deceleration, as well as the residual effects of high-pass filter settling behavior. 

Most of the test section was asphalt concrete, but it included a transition to Portland cement 

concrete about 110 ft upstream of the section end.  
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Figure 69 shows the tangent section. Section starting and ending locations were marked with 

temporary reflective tape. Diamond shaped marks were painted 18 inches to the right of the left 

track of interest to help the driver maintain the lateral position of the profiler accurately and 

consistently. The marks were placed about 20 ft apart starting 295 ft upstream of the section and 

extending over its length.  

 

Figure 69. Image. Tangent section starting point. 

Reference Measurements 

Reference profile measurements were collected using a SurPRO 3500 on both sections. This 

device recorded profile data at 1-inch intervals. The SurPRO 3500 is an inclinometer-based 

device that is supported by two wheels 9.8 inches apart. It is pushed along a test section at 

walking speed, and constructs a profile by accumulating changes in height using a series of slope 

values recorded at a constant longitudinal distance interval.  

At the tangent section, three repeat passes were made in each wheel path. The distance between 

the wheel paths was 69 inches. The overall IRI of the tangent section was 112 inches/mi in the 

left wheel path and 111 inches/mi in the right wheel path.  

Test Section Boundaries 

Static GPS readings were collected over a 50-second time interval with the receiver on the 

pavement surface at the test section boundaries. On the tangent section, the receiver was placed 

at the intersection of each wheel path of interest with the longitudinal center of the start and end 

stripe. Table 8 lists the mean latitude, longitude, and height above sea level observed over 50 

seconds for the left and right side of the lane at the start and end of each test section. 

Table 8. Test section boundaries. 

Landmark Latitude (deg) Longitude (deg) Height (ft) 

Tangent, Left Start 45.265437474 –93.715535338 963.235 

Tangent, Right Start 45.265424849 –93.715548998 962.820 

Tangent, Left End 45.262924594 –93.710912428 970.906 

Tangent, Right End 45.262912107 –93.710925729 970.839 
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Table 9 lists the standard deviation of position and speed measurements observed over the 50-

second measurement interval. Many of the probability distributions were not normally 

distributed. In particular, distributions of position quantities at some locations included positive 

excess kurtosis (i.e., thin at the center with long tails). Typically, this system applied a new 

position correction every 0.8 to 1.2 seconds. The largest step changes in position quantities and 

larger speed values often corresponded to a recorded sample with a fresh position correction. 

Noise observed in the position quantities from this source was often correlated among the 

position signals (latitude, longitude, and height). 

Table 9. Static measurement noise. 

Landmark Latitude 

(deg) 

Longitude 

(deg) 

Vertical 

Speed 

(ft/s) 

Horizontal 

Speed 

(ft/s) 

Height 

(inches) 

Tangent, Left Start 3.02x10–8 6.00x10–8 0.544 0.098 0.75 

Tangent, Right Start 1.40x10–8 1.77x10–8 0.157 0.036 0.16 

Tangent, Left End 4.79x10–8 5.47x10–8 0.215 0.077 0.26 

Tangent, Right End 1.46x10–8 1.73x10–8 0.175 0.035 0.17 

At this location, an increase in latitude of 10–8 deg corresponds to a shift northward of 0.044 

inches, and a change in longitude of 10–8 deg corresponds to a shift eastward of 0.031 inches. 

Local Coordinates 

Measurements of latitude and longitude collected by the master GPS antenna were transformed 

to local Cartesian coordinate systems with axes aligned eastward, northward, and upward. On 

each section, the origin was placed at the intersection of the left wheel path with the starting 

stripe. Locations north (dN) and east (dE) of the section origin were calculated from 

instantaneous readings of latitude () and longitude () as shown in figure 70 and figure 71. 

   

Figure 70. Equation. Northward travel from the section start. 

  

Figure 71. Equation. Eastward travel from the section start. 

The symbols , , and H denote the latitude, longitude, and height above sea level, 

respectively, at the test section origin. R(,) is an estimate of the Earth’s radius at the origin. For 

both test sections, this was approximately 3,956.94 mi. The influence of changes in height at 

points away from the origin was neglected in these calculations. 

Data were further transformed in the horizontal plane to distance forward dF and distance 

leftward dL along the section. This re-oriented the horizontal axes to include an axis (with the 

original origin) that passed through the left-side endpoint, as described in figure 72 and 

figure 73. 
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Figure 72. Equations. Forward and leftward distance along the test section. 

  

Figure 73. Equation. Test section orientation. 

Subsequently, the coordinates were offset to provide the location of the left-side profiler instead 

of the position of the GPS antenna. 

AGREEMENT TO THE REFERENCE 

Several test runs were performed over the tangent section at various host-vehicle travel speeds to 

examine the influence of speed on profile measurement repeatability and agreement to the 

reference profile measurement. The runs included 28 passes: 3 passes at each speed in the range 

from 15 mi/hr to 50 mi/hr in 5 mi/hr increments, 2 passes at 10 mi/hr, and 2 passes at 60 mi/hr.  

Cross correlation analysis using profile traces filtered by the IRI algorithm produced an average 

agreement score of 0.914 when the profiles were compared to the reference measurement. The 

comparisons were made over a 0.1-mile-long segment of the left wheel path. The IRI of the 

reference profile over this range was 115.6 inches/mi. The overall range of agreement scores for 

the 28 passes was 0.823 to 0.990. However, the individual agreement scores did not correlate to 

travel speed. Rather, agreement to the reference profile measurement was strongly influenced by 

errors in lateral tracking.  

Unfortunately, none of the constant-speed runs tracked perfectly over the trace followed by the 

reference profiler. Figure 74 shows the lateral position of the left side profiler footprint relative 

to the reference trace for three of the runs. Local coordinates of the left profiler footprint were 

derived using local coordinates position of the master GPS antenna (derived using the equations 

in figure 70 through figure 73), GPS-based measurements of the pitch and roll attitude of the 

measurement platform, and the lever arm between the master GPS antenna and the left profiler 

footprint. The passes shown in figure 74 ran at 20 mi/hr and 50 mi/hr. Each pass followed a 

similar trajectory with an average of 5.5 inches left of the reference track. The agreement score 

for each profile was 0.949. 
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Figure 74. Graph. Leftward tracking error. 

Figure 75 shows the profile agreement score versus leftward tracking bias for the 28 test runs. 

The figure demonstrates a strong association between leftward tracking bias and agreement score 

for this test section. The agreement score is above 0.98 for the three runs with an average 

leftward tracking error below 2.6 inches. A value of 0.98 has been proposed as the threshold for 

“reference quality” agreement in past studies.(75,86,93) 

 

Figure 75. Graph. Agreement score versus lateral tracking error. 

REPEATABILITY 

For the 28 passes examined in figure 75, cross correlation analysis using profile traces filtered by 

the IRI algorithm produced an average repeatability score of 0.944 for the 378 permutations of 

two profiles from the group, with a range from 0.808 to 0.998.  

Like agreement to the reference measurement, lateral tracking strongly influenced the 

repeatability scores. Figure 76 shows the repeatability scores versus average lateral separation. 

The average lateral separation is the average absolute difference in lateral position between the 
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paths followed by the two runs over the length of the test segment. The 14 pairs of passes with an 

average lateral separation of 1.2 inches or less produced repeatability scores above 0.98 with one 

exception (0.976). For the passes shown in figure 74, the average lateral separation was 

2.0 inches, and their agreement score was 0.993.  

 

Figure 76. Graph. Repeatability score versus average lateral separation. 

The results in figure 75 and figure 76 imply that production measurement of profile in two wheel 

paths, which is common in practice, provides only a sampling of the true roughness of a 

pavement section. Using a lane keeping assist system on inertial profilers is likely to improve the 

interpretation of changes in a pavement’s roughness over time by reducing the confounding 

effects of inconsistent lateral tracking. Measurement of the road surface in three dimensions 

coupled with detection of lane edges would offer further improvement. 

Measurements collected to establish the accuracy and repeatability of profilers should, at 

minimum, include a record of lateral position versus distance along the test section. To establish 

the maximum capability of the profiler sensors and processing software, the use of automated 

steering control is recommended. For profilers that are steered manually, clear guide marks 

should be provided. 

 



 60 

CHAPTER 5. ERROR SUPPRESSION 

This chapter presents algorithms for suppressing artificial localized roughness at locations where 

an inertial profiler host vehicle brakes, stops, or operates at low speed. The proposed error 

suppression algorithms operate using only the nominal profiler sensors: an accelerometer, a 

height sensor, and a distance encoder. That is, the proposed algorithms are designed to reduce 

measurement errors as much as possible on typical commercial profilers without incorporating 

additional sensors. Chapter 6 addresses the use of additional sensors. 

Double integration of profiler accelerometer signals with slowly varying bias causes drift in the 

calculated vertical position of the profiler reference point. During low-speed operation and 

during stops, the calculated elevation change is concentrated over a small longitudinal distance 

and registers as roughness. The algorithms presented attempt to limit the magnitude of this 

change while removing as little of the profile content in the waveband of interest as possible. In 

particular, the algorithms reduce artificial localized roughness at stops without adversely 

affecting measurement of profile at host-vehicle travel speeds above 10 mi/hr.  

The chapter introduces a basic temporal profile calculation algorithm and a basic spatial profile 

calculation algorithm, which use methods that are common in commercial inertial profilers. The 

proposed error suppression algorithms include additions or modifications to the basic algorithms. 

The performance of the basic algorithms serves as a baseline for comparison to the error 

suppression algorithms.  

The chapter reviews the engineering requirements that influenced the design of the proposed 

error suppression algorithms. The chapter also describes the test conditions used to challenge 

each algorithm. The chapter proposes and evaluates four error suppression algorithms for use 

with temporal profile calculation architecture and two error suppression algorithms for use with 

spatial profile calculation architecture. The performance of each algorithm is characterized for 

test runs at low speed, during braking, and with stops. Performance is characterized by 

comparing profile (via cross correlation) and roughness to that of a reference run.  

PROFILE CALCULATION ALGORITHMS 

This chapter examines both temporal and spatial profile calculation algorithms, because both 

types are used in practice. Temporal algorithms calculate profile in the time domain, and then 

resample the profile to a constant distance interval afterward using the distance encoder signal. 

As such, temporal algorithms double integrate the accelerometer signal to obtain the floating-

reference-height signal and combine it with the height-sensor signal in the time domain. Spatial 

algorithms resample the accelerometer and height-sensor signals to a constant distance interval 

before calculating profile. When a spatial algorithm is used, temporal signals only exist in analog 

form in the time domain, and the distance encoder triggers digital sampling at each distance 

increment. That process is simulated here on stored temporal signals using algorithms that could 

function in real time.  

The chapter presents basic temporal and spatial profile calculation algorithms and variations on 

them intended to suppress artificial localized roughness during host-vehicle stops. The basic 
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algorithms include high-pass filtering on the profile to remove the low-frequency content. This is 

done in common practice because the low-frequency content is often contaminated by low signal 

strength in the accelerometer or slowly fluctuating accelerometer misalignment from a truly 

vertical orientation.  

Variations on these algorithms used for error suppression include: 

Mean Removal: This procedure removes the bias from the accelerometer signal prior to each 

stage of integration. 

High-Pass Filtering, Pre-Integration: This procedure applies high-pass filtering to the 

individual sensor signals in addition to applying high-pass filtering to the computed 

profile. In particular, application of high-pass filtering to the accelerometer signal before 

each stage of the integration reduces drift.  

Other variations on the basic temporal profile calculation algorithm specifically apply provisions 

for suppressing integrator drift in areas where the profiler host-vehicle travel speed passes below 

10 mi/hr:  

Local Suppression: This procedure augments the pre-integration high-pass filtering. It uses 

discrete-time proportional-integral (PI) control to suppress bias in the integrated 

accelerometer signal at low speed. 

Adaptive High-Pass Filtering: This procedure modifies the pre-integration high-pass filtering 

algorithm by adapting the high-pass filter cut-off frequency as a function of host-vehicle 

speed. In particular, this algorithm maintains a constant cut-off wavelength in areas of 

high-speed operation, and transitions to a set temporal cut-off frequency as speed 

diminishes.  

The basic spatial profile calculation algorithm offers fewer options for suppressing integrator 

drift, because of the long time interval associated with consecutive distance samples digitized at 

low host-vehicle travel speed and at a stop. In addition to high-pass filtering, variations on the 

basic spatial algorithm apply the following provisions in areas where the speed passes below 

10 mi/hr: 

Timer Distortion: This procedure artificially limits the integration time interval associated 

with consecutive spatial profile samples in areas of low-speed operation. 

Height-Sensor Reflection: This procedure works in conjunction with timer distortion. Height-

sensor reflection enforces cancelation of fluctuations in the height-sensor signal in areas 

where timer distortion has suppressed content within the floating-reference-height signal. 

These algorithms function in typical fashion in areas where the host-vehicle speed is above 

10 mi/hr. However, each suppression algorithm introduces error into the profile in areas where 

the host-vehicle speed is below 10 mi/hr.  

The chapter compares the performance of each modification to the basic profile calculation 

algorithms in light of the following design objectives: 
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1. Reduction in the magnitude of artificial roughness caused by braking and stops: This is 

quantified using the peak value of the short-interval roughness profile in the area where 

the host vehicle stopped or released the brakes. An artificially high peak value in the 

short-interval roughness profile is undesirable for two reasons. First, the corresponding 

error in the average roughness of the overall road segment affects statistics used for 

pavement management and assessment of pavement network health. Second, the high 

peak value causes a false positive for an area of localized roughness that needs attention. 

2. Valid measurement of profile and roughness at speeds above 10 mi/hr: This is quantified 

by comparing the average values of segment-wide roughness from runs collected at 

various host-vehicle travel speeds and cross correlation to profile measured under ideal 

conditions. A minimum threshold value for cross correlation of 0.92 is adopted from 

AASHTO R56-14.(87) This depends on maintaining content within the profile in the 

waveband of interest for the measurement of IRI. In terms of wavelength, this is 2.0 ft to 

140.7 ft. (See Chapter 2.) 

3. Standardized high-pass filtering: Whenever it is possible, these algorithms adhere to the 

high-pass filtering requirement in AASHTO M 328-14 of 3 dB reduction in gain for the 

wavelength range of 300 ft and above.(40) Retaining the waveband of interest for general 

roughness measurement (0.48 ft to 215 ft) is preferred.  

4. Minimization of signal storage: The design of these algorithms prioritizes real-time 

analysis of sensor signals, particularly in the time domain. This minimizes the burden of 

storing all of the signals needed for profile computation until the end of a measurement 

run. To support real-time operation, these algorithms apply infinite impulse response 

(IIR) high-pass filters. These algorithms apply equivalent reverse-running filters to cancel 

the phase shift imposed in the real-time filtering stages. The reverse-running filters are 

applied as late in the process as possible to avoid increasing the storage burden. 

The chapter describes the test conditions used to evaluate the performance of each algorithm. 

The sections that follow describe each algorithm and their performance in light of the design 

objects listed above. The description of the basic temporal profile calculation algorithm includes 

an illustrative example of drift in the floating-reference-height signal from a run that included a 

stop. 

TEST CONDITIONS 

The error suppression algorithms examined in this chapter are evaluated using test runs collected 

on the tangent section at MnROAD. (See figure 69.) The test runs include seven staged stop-and-

go runs, a near stop with movement at low speed for a short time, seven runs with braking (but 

no stop), and two passes at low speed. These runs were selected to challenge the performance of 

the proposed algorithms as much as possible. 

During each stop-and-go run, the host vehicle entered the test section with cruise control set at 

approximately 45 mi/hr, decelerated to a stop near a designated landmark, remained still for a 

short time interval, then accelerated to a target speed of 36 mi/hr. Figure 77 shows the temporal 

speed profile from one of these runs, and figure 78 shows the spatial speed profile. In this run the 
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average deceleration of the host vehicle over the speed range from 43.8 mi/hr to 0.3 mi/hr was 

0.20 g. The profiler stopped 710.3 ft from the test section starting location and remained stopped 

for 10.7 seconds. Table 10 describes each of the seven stop-and-go runs by average deceleration, 

stop duration, and stop location. The table also provides a designation used to identify each run 

in tabulated results throughout the rest of this document. 

 

Figure 77. Graph. Stop-and-go run temporal speed profile. 

 

Figure 78. Graph. Stop-and-go run spatial speed profile. 

Table 10. Stop-and-go run characteristics and designations. 

Designation Average Decel. 

(g) 

Stop Duration 

(sec) 

Stop Location 

(ft) 

S&G, 1.1-sec stop, 0.17 g 0.171 1.07 705.8 

S&G, 1.1-sec stop, 0.20 g 0.203 1.12 708.8 

S&G, 2.1-sec stop, 0.33 g 0.329 2.10 710.7 

S&G, 5.8-sec stop, 0.17 g 0.167 5.77 703.9 

S&G, 5.7-sec stop, 0.20 g 0.202 5.69 706.8 

S&G, 5.8-sec stop, 0.20 g 0.201 5.78 710.3 

S&G, 10.7-sec stop, 0.20 g 0.200 10.70 710.3 

In the pass with a near stop, the host vehicle entered the test section with cruise control set at 

approximately 44.5 mi/hr, reduced its speed to 7.1 mi/hr with an average deceleration of 0.196 g, 
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coasted for 2.19 seconds, and then accelerated to 36 mi/hr. The coast occurred while the profiler 

passed over a range from 705.6 ft to 724.6 ft from the test section start. 

During each “braking run” (i.e., run with braking but no stop), the host vehicle entered the test 

section traveling at a constant speed, applied the brakes to slow to a lower target speed, and 

continued to the end of the test section at the new target speed. Figure 79 shows the temporal 

speed profile from one of these runs, and figure 80 shows the spatial speed profile. In this run, 

the driver applied the brakes while the vehicle traveled over a range from 578.9 ft to 717.3 ft 

from the test section starting location. Over this interval, 4.2 seconds elapsed and the host vehicle 

decelerated from 31 mi/hr to 14 mi/hr. This corresponds to an average deceleration of 0.18 g. 

Table 11 describes each of the seven braking runs and the near stop by average deceleration, 

initial speed, final speed, and the location where the brakes were released. The table also 

provides a designation used to identify each run in tabulated results throughout the rest of this 

chapter. 

 

Figure 79. Graph. Braking run temporal speed profiles. 

 

Figure 80. Graph. Braking run spatial speed profiles. 
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Table 11. Braking run characteristics and designations. 

Designation Average  

Decel. (g) 

Speed Range During 

Braking  (mi/hr) 

Location, End 

of Braking (ft) 

NS, 45–7 mi/hr, 0.20 g 0.196 44.5–7.1 705.6 

Brk, 44–19 mi/hr, 0.19 g 0.195 44.4–18.6 698.8 

Brk, 45–18 mi/hr, 0.39 g 0.390 44.6–18.1 660.0 

Brk, 31–14 mi/hr, 0.16 g 0.163 30.5–13.7 722.6 

Brk, 31–14 mi/hr, 0.18 g 0.178 30.6–14.4 726.5 

Brk, 31–14 mi/hr, 0.18 g 0.178 30.6–14.1 717.3 

Brk, 31–12 mi/hr, 0.25 g 0.248 30.6–12.2 714.1 

Brk, 30–21 mi/hr, 0.84 g 0.842 30.4–21.2 648.8 

The test conditions also include three passes at (relatively) constant speed. In one pass, profile 

data were collected with cruise control set to 45 mi/hr. Since this pass was conducted under 

favorable test conditions, the roughness values it produced serve as reference values. In another, 

the host vehicle operated at a speed near 10 mi/hr over the entire test section. This pass is 

included to confirm that the proposed error suppression algorithms and sensor augmentation do 

not affect the validity of profile measured at a travel speed of 10 mi/hr or above. In the third 

pass, the host vehicle traveled over the test section at speeds in a range from 2.5 mi/hr to 

3.1 mi/hr. This pass is included to demonstrate the performance at very low speed. 

For the stop-and-go, near stop, and braking runs, this chapter quantifies the artificial roughness 

caused by measurement error using the peak value of the short-interval roughness profile in the 

range from 600 ft to 750 ft from the test section start. This is the area where the vehicle came to a 

stop in the stop-and-go runs. (See table 10.) It is also the area where the brakes were released in 

the runs with braking but no stop. (See table 11.) 

Figure 81 shows the short-interval roughness profile from a measurement run performed at a 

constant speed of 45 mi/hr. In the range near the stop location for stop-and-go runs and the coast 

for the near stop, the peak value of this short-interval roughness profile is 151.9 inches/mi. This 

is considered a reference roughness value, since the run was performed under ideal conditions. 

The average roughness measured at 45 mi/hr over the range from 528 ft to 1056 ft is 100.0 

inches/mi. This is the reference value for average IRI over the test section. 

 

Figure 81. Graph. Short-interval roughness profile measured under favorable conditions. 
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BASIC TEMPORAL ALGORITHM 

The basic temporal algorithm represents a baseline case. The algorithm includes common 

practices among commercial profilers with temporal data collection architecture, with no added 

provisions for error suppression. Figure 82 describes the basic temporal profile calculation 

algorithm. The digitized accelerometer signal, azp(tk), is integrated twice. This produces the 

floating-reference-height signal, which is a time history of vertical position of the profiler 

reference point, rzp(tk). The height-sensor signal, h(tk), provides the relative height of the profiler 

reference point above the road. Subtraction of it from the vertical position of the profiler 

reference point produces the time history of relative road elevation beneath the profiler. This is 

the temporal profile, rzr(tk). Note that the second character of the subscript on position and 

motion variables indicates whether a quantity represents the profiler reference point (p) or the 

road surface (r). The index, k, on time (t) indicates progression at a constant time interval, t. 

 

Figure 82. Block Diagram. Basic temporal profile calculation algorithm. 

All of the profile computation algorithms discussed in this chapter use the following procedures 

for anti-aliasing, numerical integration, and conversion from the time domain to the distance 

domain: 

 The accelerometer and height-sensor signals are low-pass filtered to avoid aliasing. The 

filter is a third-order Butterworth type with a cut-off frequency of 1,000 Hz. (See LPFB3 

in Appendix A.) At this cut-off frequency, the gain of the filter is very close to unity 

(>0.9999) in the wavelength range of interest for the IRI and general roughness 

measurement at practical levels of host-vehicle travel  

 Digital integration is performed using the trapezoidal rule.  
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 The temporal profile, rzr(tk), is decimated to obtain spatial profile, rzr(xk), as a function of 

distance at a constant interval x. Temporal data were digitized at a sampling rate of 

16,000 Hz, and the profile was decimated to a constant distance interval of 0.2 inches. 

The decimation factor, M, varies with host-vehicle speed, vxp. In this implementation, the 

decimation factor depends directly on the progression of pulses from the distance encoder 

at the left rear wheel. The block diagram represents this signal as host-vehicle 

longitudinal travel distance, rxp(tk). 

In the basic temporal algorithm, a high-pass filter removes very long wavelength content from 

the spatial profile. This is done to eliminate content outside of the waveband of interest, which is 

often contaminated by low signal strength in the accelerometer or slowly fluctuating 

accelerometer alignment. High-pass filtering of the spatial profile was performed using a set of 

Butterworth filters. Butterworth filters are IIR type. As such, they impose a non-linear phase 

shift on the profile. To avoid this, equivalent third-order filters were applied in the forward and 

reverse directions to cancel the phase shift. (See HPFB3x2 in Appendix A.) 

The cut-off wavelength setting, c, for the filter (in each direction) was set to 347.47 ft. This 

results in a reduction of 3 dB at a wavelength of 300 ft for the forward and backward passes 

combined. The gain of this filter is 0.996 at the upper limit of the wavelength range of interest 

for the IRI (140.7 ft) and 0.947 at the upper limit of the wavelength range of interest for general 

roughness measurement (215.2 ft). 

The basic temporal algorithm contains no provisions for avoiding drift in the integrated 

accelerometer signal. As such, a very small bias in the accelerometer signal during the stop 

translates to a large error in the computed vertical position of the profiler reference point. For 

example, figure 83 shows a portion of the accelerometer signal for a run with a 10.7-second-long 

stop. The trace shows a reduction in the severity of acceleration as the speed diminishes. The 

profiler oscillates vertically at about 2 Hz for a short time after coming to a stop because of pitch 

motion of the host-vehicle sprung mass. The accelerometer also detects motion at about 13.7 Hz 

(~820 rpm) caused by engine vibration.  

 

Figure 83. Graph. Accelerometer signal, 10.7-second-long stop. 

A small bias exists in the accelerometer signal over the duration of the stop. This is caused by a 

combination of misalignment of the sensitive axis from true vertical, local variations in the 
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acceleration due to gravity from the assumed nominal value of 32.17405 ft/s2, fluctuations 

caused by temperature variations, etc. For this run, the vehicle is stopped for 10.7 seconds, and 

the average value of the accelerometer signal is 0.00115 g over this interval. This translates to a 

2.11 ft increase in elevation after double integration. 

The profile also includes the cumulative effect of drift before the stop. Figure 84 shows a portion 

of the integrated accelerometer signal. At the beginning of the stop, the computed velocity of the 

profiler reference point is 2.21 ft/s. When it is combined with the bias in acceleration, this initial 

velocity translates to a change in vertical position of the profiler reference point of 25.79 ft while 

the vehicle is stopped. Most of this change is artificial, and it is not cancelled by a commensurate 

change in the height-sensor signal. Since the profiler was not progressing forward over this 

interval, the elevation change is concentrated at the location of the stop in the spatial profile. 

 

Figure 84. Graph. Integrated accelerometer signal, 10.7-second-long stop. 

Figure 85 shows the spatial profile after high-pass filtering. The total magnitude of the change in 

elevation is greater than 25.79 ft because of the additional effects of drift during very low speed 

operation near the stop. The concentrated elevation change registers as severe localized 

roughness in the short-interval roughness profile, as shown in figure 86. The short-interval 

roughness profile rises to a peak value of 209,076 inches/mi. This implies a contribution to the 

average IRI value for a 0.1-mile-long segment of 9,899 inches/mi. 

 

Figure 85. Graph. High-pass filtered profile, 10.7-second-long stop. 
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Figure 86. Graph. Short interval roughness profile, 10.7-second-long stop. 

Table 12 lists the peak roughness, the percentage error in average roughness, and cross 

correlation to the reference profile for each test run processed using the basic temporal 

algorithm. Peak roughness is the highest value in the short-interval roughness profile in the range 

from 600 ft to 750 ft from the test section start. This is the area where the host vehicle came to a 

stop in the stop-and-go runs or released the brakes in the braking runs without a stop. 

Table 12. Results for the basic temporal algorithm. 

Run Designation Peak Roughness 

(inches/mi) 

Average Roughness 

Error (Percent) 

Cross Correlation 

S&G, 1.1-sec stop, 0.17 g 26,195 1,736.8 < 0.2 

S&G, 1.1-sec stop, 0.20 g 54,170 3,588.0 < 0.2 

S&G, 2.1-sec stop, 0.33 g 13,693 862.6 < 0.2 

S&G, 5.8-sec stop, 0.17 g 73,282 4,678.9 < 0.2 

S&G, 5.7-sec stop, 0.20 g 60,130 3,784.1 < 0.2 

S&G, 5.8-sec stop, 0.20 g 66,733 4,222.7 < 0.2 

S&G, 10.7-sec stop, 0.20 g 209,076 13,139.7 < 0.2 

NS, 45–7 mi/hr, 0.20 g 1,798 195.3 < 0.2 

Brk, 44–19 mi/hr, 0.19 g 214 10.5 0.836 

Brk, 45–18 mi/hr, 0.39 g 150 1.7 0.841 

Brk, 31–14 mi/hr, 0.16 g 309 17.7 0.650 

Brk, 31–14 mi/hr, 0.18 g 301 15.3 0.668 

Brk, 31–14 mi/hr, 0.18 g 393 27.9 0.605 

Brk, 31–12 mi/hr, 0.25 g 142 0.0 0.944 

Brk, 30–21 mi/hr, 0.84 g 164 9.3 0.889 

10 mi/hr 147 9.2 0.863 

3 mi/hr 3,435 1622.7 < 0.2 

 Reference peak roughness value: 152 inches/mi. Adequate cross correlation > 0.92. 

The test runs with a stop or a near stop produced profile with very high peak roughness. This 

caused a large error in the average roughness for the test section and very low cross correlation. 

The high peak roughness was caused by a large artificial change in the floating reference height, 

which was concentrated over a short distance. This is the phenomenon illustrated in figure 83 

through figure 86. 



 70 

The test runs with braking also produced erroneously high peak roughness and a commensurate 

error in the average roughness. Cross correlation for the majority of braking runs is well below 

the threshold value of 0.92. Integrator drift caused artificially high roughness throughout the test 

section for the lower-speed runs. In particular, the integrated signal grew very large in magnitude 

relative to the terms that are added at each time step. This reduced the effective numerical 

precision of the calculation. Performing the calculations with higher precision arithmetic would 

mitigate this error for these test runs. High-precision arithmetic was not incorporated into the 

algorithm because it would not eliminate this phenomenon during very long production runs. 

The basic temporal algorithm performed inadequately for runs with low speed, with braking, and 

with stops. The performance of the basic temporal algorithm serves as a baseline for 

demonstrating improvement offered by the other temporal algorithms because it includes no 

explicit procedures for error suppression. The temporal error suppression algorithms described 

below are designed to improve the performance of the temporal algorithm. 

TEMPORAL MEAN REMOVAL 

This algorithm removes the mean from azp(tk) and vzp(tk) before integration. This is done to 

reduce the drift that accumulates at each stage of integration. In turn, this reduces the magnitude 

of the artificial elevation change at stops. For example, removal of the mean from the 

accelerometer signal in the run with the 10.7-second-long stop reduced the mean value during 

the stop to –0.000454 g. Subsequent removal of the mean from the integrated accelerometer 

signal produced a value of 0.303 ft/s for velocity of the profiler reference point at the beginning 

of the stop. Together, these conditions produced a calculated change in vertical position of the 

profiler reference point of 2.37 ft. As a result, mean removal reduced the peak value of the short-

interval roughness profile for the 10.7-second-long stop to 20,119 inches/mi. However, this value 

remains very high, and implies a contribution to the average IRI value for a 0.1-mile-long section 

of 952.6 inches/mi.  

Table 13 provides roughness and cross correlation results for profiles processed using mean 

removal. Mean removal offered some improvement in cross correlation over the basic temporal 

algorithm for the braking test runs, and eliminated the issues with numerical integration for the 

test run at 3 mi/hr. However, test runs with stops register very large errors in peak roughness and 

very low cross correlation.  

Temporal mean removal is an undesirable method for suppressing integrator drift, because it 

requires storage of the accelerometer, height-sensor, and encoder signals in the time domain until 

the end of the profile measurement run. (For algorithms that do not convert signals to spatial 

coordinates in real time, the encoder signal is most likely replaced by distance or speed as a 

function of time.) Further, removal of the global mean from each signal does not guarantee a 

reduction in accelerometer bias during each stop, so drift in the floating-reference-height signal 

is still possible. This is particularly true in profile measurements for pavement network 

monitoring. In that application the profile measurement runs often go on for more than an hour 

and cover tens of miles of roadway. In such cases, mechanisms that determine the level of 

accelerometer bias often change between stops, such as temperature, road grade, and cross slope. 
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Table 13. Results for temporal mean removal. 

Run Designation Peak Roughness 

(inches/mi) 

Average Roughness 

Error (Percent) 

Cross Correlation 

S&G, 1.1-sec stop, 0.17 g 6,560 417.2 < 0.2 

S&G, 1.1-sec stop, 0.20 g 6,261 398.5 < 0.2 

S&G, 2.1-sec stop, 0.33 g 3,687 220.9 < 0.2 

S&G, 5.8-sec stop, 0.17 g 15,950 998.2 < 0.2 

S&G, 5.7-sec stop, 0.20 g 14,156 871.2 < 0.2 

S&G, 5.8-sec stop, 0.20 g 14,740 920.1 < 0.2 

S&G, 10.7-sec stop, 0.20 g 20,119 1258.2 < 0.2 

NS, 45–7 mi/hr, 0.20 g 566 47.5 0.332 

Brk, 44–19 mi/hr, 0.19 g 156 2.4 0.954 

Brk, 45–18 mi/hr, 0.39 g 142 0.5 0.848 

Brk, 31–14 mi/hr, 0.16 g 149 –0.9 0.930 

Brk, 31–14 mi/hr, 0.18 g 150 –0.8 0.941 

Brk, 31–14 mi/hr, 0.18 g 181 1.1 0.953 

Brk, 31–12 mi/hr, 0.25 g 137 –0.1 0.942 

Brk, 30–21 mi/hr, 0.84 g 161 9.4 0.891 

10 mi/hr 146 –0.7 0.985 

3 mi/hr 150 –4.5 0.903 

 Reference peak roughness value: 152 inches/mi. Adequate cross correlation (> 0.92) is shown in bold. 

An alternative form of mean removal was considered that set the accelerometer signal to zero 

during stops. This was not viable for two reasons. First, this introduces a concentrated change in 

curvature into the profile at the beginning and end of the stop. Second, the content that captures 

true vertical vibration of the profiler reference point during the stop is needed to cancel the equal 

and opposite fluctuations in distance to the road surface measured by the height sensor. 

TEMPORAL HIGH-PASS FILTERING, PRE-INTEGRATION 

This proposed algorithm applies high-pass filtering to the accelerometer signal before integration 

to suppress drift in the floating reference height. In particular, by reducing the mean value of 

each signal before integration, the concentrated elevation change that appears in areas with 

braking and stops is reduced.  

Figure 87 shows a block diagram of the time-domain portion of the basic temporal algorithm 

with temporal high-pass filtering added. Accelerometer and height-sensor signals are high-pass 

filtered in the time domain. Once the temporal profile is computed, the cascaded version of the 

third-order Butterworth high-pass filter is applied in reverse order and in the reverse direction 

(HPFB3S2R, HPFB3S1R). The reverse passes cancel the phase shift imposed by the forward passes. 

Appendix A describes each filter stage in detail. To support the reverse filtering stage, the 

temporal high-pass filtering algorithm requires storage of the pre-filtered temporal profile, rzr(tk), 

and the encoder signal, rxp(tk), in the time domain until the end of the profile measurement run. 
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Figure 87. Block diagram. Temporal profile calculation algorithm with high-pass filtering. 

The high-pass filtering in the temporal portion of this algorithm is applied in lieu of spatial high-

pass filtering. That is, no additional filtering is performed after decimation to spatial profile. The 

cut-off frequency values for the individual high-pass filtering stages shown in figure 87 were 

adjusted to place the cut-off frequency of the collective set at 0.0489 Hz. This corresponds to a 

cut-off wavelength of 300 ft at a host-vehicle speed of 10 mi/hr. 

Temporal high-pass filtering suppressed integrator drift more effectively than mean removal. For 

example, the change in profiler reference point height during the 10.7-second-long stop was 

reduced to 0.699 ft. This reduced the peak value of the short-interval roughness profile to 

1,837 inches/mi.  

Table 14 provides roughness and cross correlation results for profiles processed using temporal 

high-pass filtering. Temporal high-pass filtering consistently lowered the errors in peak 

roughness values relative to the basic temporal algorithm and relative to mean removal for the 

stop-and-go runs and the near stop. However, in the runs with a stop, cross correlation values 

were very low, and the artificial roughness values exceed the typical range for very rough 

localized road features. With one exception, use of temporal high-pass filtering reduced peak 

roughness values relative to the basic temporal algorithm.  
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Table 14. Results for temporal high-pass filtering. 

Run Designation Peak Roughness 

(inches/mi) 

Average Roughness 

Error (Percent) 

Cross Correlation 

S&G, 1.1-sec stop, 0.17 g 2,072 117.1 < 0.2 

S&G, 1.1-sec stop, 0.20 g 1,976 107.2 < 0.2 

S&G, 2.1-sec stop, 0.33 g 781 36.8 0.256 

S&G, 5.8-sec stop, 0.17 g 2,699 151.5 < 0.2 

S&G, 5.7-sec stop, 0.20 g 1,522 78.7 < 0.2 

S&G, 5.8-sec stop, 0.20 g 1,958 106.5 < 0.2 

S&G, 10.7-sec stop, 0.20 g 1,837 99.5 < 0.2 

NS, 45–7 mi/hr, 0.20 g 316 17.7 0.578 

Brk, 44–19 mi/hr, 0.19 g 157 2.3 0.954 

Brk, 45–18 mi/hr, 0.39 g 141 1.2 0.848 

Brk, 31–14 mi/hr, 0.16 g 145 –1.0 0.929 

Brk, 31–14 mi/hr, 0.18 g 148 –0.8 0.941 

Brk, 31–14 mi/hr, 0.18 g 170 0.6 0.963 

Brk, 31–12 mi/hr, 0.25 g 144 0.1 0.948 

Brk, 30–21 mi/hr, 0.84 g 159 8.6 0.898 

10 mi/hr 146 –0.7 0.985 

3 mi/hr 147 –4.2 0.940 

 Reference peak roughness value: 152 inches/mi. Adequate cross correlation (> 0.92) is shown in bold. 

Temporal high-pass filtering increased cross correlation for all braking test runs relative to the 

basic temporal algorithm (see table 12), and adequate cross correlation is achieved for five of the 

seven runs as shown in table 14. Cross correlation was improved relative to the basic temporal 

algorithm (see table 12) for the low-speed runs, and was well within the adequate range as shown 

in table 14. However, the use of a constant cut-off frequency of 0.0489 Hz caused a reduction in 

the IRI value for the test run at 3 mi/hr. This is because 0.0489 Hz corresponds to a cut-off 

wavelength of 90 ft at 3 mi/hr, and some of the wavelength range of interest for the IRI is 

removed. This demonstrates the trade-off imposed by using temporal high-pass filtering with a 

constant cut-off frequency: removal of low-frequency content reduces artificial localized 

roughness during braking and at stops by suppressing integrator drift but removes some of the 

content of interest at very low speed. 

LOCAL SUPPRESSION 

The “local suppression” algorithm applies digital control to eliminate bias in the integrated 

accelerometer signal when the host vehicle is traveling at low speed. This algorithm is applied in 

conjunction with temporal high-pass filtering. At higher host-vehicle speeds, the algorithm 

applies temporal high-pass filtering as shown in figure 87. When the travel speed passes below 

10 mi/hr, the portion of the algorithm where the accelerometer signal is integrated switches to the 

procedure shown in figure 88.  
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Figure 88. Block diagram. Local suppression algorithm applied at low speed. 

The concept of the local suppression algorithm is to artificially suppress the absolute value of the 

integrated accelerometer signal, vzp(tk), when the travel speed is low. In turn, this suppresses the 

computed change in height of the profiler reference point after the next stage of integration. A 

controller is used in place of directly setting the integrated accelerometer signal to zero in 

regions with low travel speed because preliminary analysis showed that doing so introduced a 

sudden change in slope into the computed profile. As an alternative, the suppression algorithm 

proposed here attempts to mitigate the slope break by introducing a gradual reduction in the 

magnitude of vzp(tk) in regions of low travel speed. This is done using a simple PI controller with 

a slow time constant. The controller is designed to retain content at frequencies above 2 Hz with 

minimal phase shift. The procedure retains high-frequency content because it is needed to cancel 

relative motion between the profiler reference point and the road surface detected by the height 

sensor. 

In the procedure illustrated in figure 88, a discrete-time PI controller operates on vertical velocity 

(i.e., integrated vertical acceleration) with a set point of zero. The integrated accelerometer signal 

serves as a disturbance, d(tk). The controller rejects the initial offset at the instant of the switch 

and low-frequency content from the disturbance. 

Figure 89 provides the expression for the controller time constant () for a step response, and 

figure 90 provides the frequency response function for the output relative to the disturbance. 

  

Figure 89. Equation. Controller time constant. 

  

  

Figure 90. Equation. Frequency response relative to the disturbance. 



 75 

In figure 90,  is angular frequency. The controller settings (KP = 0.001, KI = 0.834 sec–1) 

produce a time constant of 1.2 seconds. At 2 Hz, this frequency response function has a gain of 

0.996 and a phase shift of 1.9 degrees. At 14 Hz, the gain is 0.999 and the phase shift is 

0.3 degrees. For very high frequency content, the gain approaches 0.999 and the phase shift 

diminishes to zero. 

The criterion for activating local suppression depends on host-vehicle speed. Direct numerical 

differentiation of the wheel encoder signal at a sampling rate of 16,000 Hz produces a very noisy 

estimate of speed. As such, the decision to switch at any instant is based on the accumulated 

progression of encoder pulses over the preceding 0.05 seconds. 

Table 15 provides roughness and cross correlation results for test runs with stops, with a near 

stop, and at low speed using local suppression together with temporal high-pass filtering. In 

every case, the error in peak roughness was reduced by a factor of at least 10 relative to the basic 

temporal algorithm. With one exception, adding local suppression reduced the error in peak 

roughness values relative to temporal high-pass filtering alone for the runs with a stop. In many 

cases, the peak roughness values were reduced to less than half. However, the peak roughness 

values for the runs with stops remain several times larger than the reference value in many of the 

test runs. As a result, large errors remain in the average roughness values and cross correlation is 

well below 0.92 in all of the runs. Note that local suppression was not activated in the other runs 

with braking, so those results are unchanged relative to temporal high-pass filtering. 

Table 15. Results for local suppression combined with temporal high-pass filtering. 

Run Designation Peak Roughness 

(inches/mi) 

Average Roughness 

Error (Percent) 

Cross Correlation 

S&G, 1.1-sec stop, 0.17 g 510 20.9 0.374 

S&G, 1.1-sec stop, 0.20 g 888 42.3 0.219 

S&G, 2.1-sec stop, 0.33 g 967 46.0 < 0.2 

S&G, 5.8-sec stop, 0.17 g 428 18.3 0.443 

S&G, 5.7-sec stop, 0.20 g 486 14.9 0.379 

S&G, 5.8-sec stop, 0.20 g 359 12.1 0.530 

S&G, 10.7-sec stop, 0.20 g 446 16.4 0.460 

NS, 45–7 mi/hr, 0.20 g 214 10.5 0.702 

10 mi/hr 146 –0.7 0.985 

3 mi/hr 127 –14.4 0.588 

 Reference peak roughness value: 152 inches/mi. Adequate cross correlation (> 0.92) is shown in bold. 

At 10 mi/hr, the switch to local suppression was not activated. As such, the profile and the 

resulting roughness were the same as in the temporal high-pass filtering algorithm. In the run at 

3 mi/hr, removal of content from the integrated accelerometer signal caused a reduction in the 

measured roughness. The cut-off frequency for disturbance response in the local suppression 

procedure is 0.13 Hz. At frequencies near this value and below, the floating-reference-height 

signal derived from the accelerometer contributes much more heavily to the profile than the 

height-sensor signal. Attenuating it removed some of the measured roughness. 
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Local suppression offers an improvement over temporal high-pass filtering alone and a major 

improvement over the basic temporal algorithm. However, profile content measured at low speed 

is lost, and the overall performance in not adequate. 

ADAPTIVE HIGH-PASS FILTERING 

The performance of the temporal high-pass filtering algorithm with a fixed cut-off frequency is 

limited because the effective cut-off wavelength increases in proportion to speed. The cut-off 

frequency was set to 0.0489 Hz to enforce a cut-off wavelength of 300 ft at a host-vehicle speed 

of 10 mi/hr. At higher travel speeds where the effective cut-off wavelength is greater than 300 ft, 

additional drift in the integrated accelerometer signal accumulates that is not needed to retain 

content of interest. This mechanism is illustrated conceptually in figure 83 and figure 84.  

A modified high-pass filter is proposed with a cut-off frequency that adapts to host-vehicle speed 

to address this shortcoming of the temporal high-pass filtering algorithm. To do this, the adaptive 

high-pass filtering algorithm imposes an upper limit on the cut-off wavelength at progressively 

higher travel speeds and an upper limit on cut-off frequency at progressively lower travel speeds. 

The adaptive high-pass filtering algorithm includes the same components as the temporal high-

pass filtering algorithm, with the exception that the high-pass filter cut-off frequency (fc) is 

adjusted at each time step as shown in figure 91. 

  

Figure 91. Equation. High-pass filter cut-off frequency. 

In figure 91, vxp(tk) is the current value of host-vehicle speed in ft/s, fls is the desired cut-off 

frequency for low-speed operation in Hz, and c is the desired cut-off wavelength for high-speed 

operation in ft. Parameters v0 and  determine the speed range where the cut-off transitions from 

the high-speed wavelength setting to the low-speed frequency setting and the steepness of the 

transition. Like the local suppression algorithm, real-time estimates of speed are averaged over 

0.05 seconds. 

In this implementation, fls is 0.45 Hz, c is 347.47 ft, v0 is 9.11 ft/s, and  is 0.762 (for speed 

expressed in ft/s). Figure 92 shows the cut-off frequency as a function of speed using these 

settings, and figure 93 shows the effective cut-off wavelength as a function of speed. The plots 

produced by this function include three features that affect the performance of the algorithm. 
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Figure 92. Graphs. Adaptive high-pass filter cut-off frequency. 

 

Figure 93. Graphs. Adaptive high-pass filter cut-off wavelength. 

First, the function limits the cut-off wavelength explicitly at high speed. This avoids rapid 

changes in the cut-off wavelength as host-vehicle speed changes during braking, which would 

introduce artificial curvature into the floating-reference-height signal. Similarly, the gradual 

transition between the high-speed and low-speed limits for speeds below 10 mi/hr helps mitigate 

this problem. 

Second, the function maintains the wavelength range of interest for host-vehicle speeds of 

10 mi/hr and above. At 10 mi/hr, the cut-off frequency is 0.0481 Hz, which is an effective cut-off 

wavelength of 305.24 ft. For the combined filtering applied by this algorithm, this is a gain of 

0.991 at the upper limit of the wavelength range of interest for the IRI (140.7 ft) and 0.891 at the 

upper limit of the wavelength range of interest for general roughness measurement (215.2 ft). 

Third, the function limits temporal frequency rather than spatial frequency at low speeds to avoid 

an infinite cut-off wavelength as speed approaches zero. This helps reduce drift in the double-

integrated accelerometer signal. However, the filtering removes a progressively larger portion of 

the wavelength range of interest as speed diminishes.  

This algorithm requires storage of the computed profile and the encoder signal (or an equivalent) 

until the end of the measurement run. To avoid this, a version of the algorithm is proposed in 

which the backward filtering pass is performed after decimation to spatial profile. As such, the 
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algorithm performs all temporal calculations in real-time. Figure 94 presents the details of the 

adaptive high-pass filtering algorithm with the spatial backward pass.  

 

Figure 94. Block diagram. Adaptive high-pass filtering algorithm, spatial backward pass. 
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In this implementation the speed signal, vxp(tk), is derived in real-time in the temporal portion of 

the algorithm using the progression of encoder pulses over the preceding 0.05 seconds. Like the 

temporal profile, the temporal speed record is decimated and converted to the distance domain. 

To accommodate the backward filtering pass, the spatial record of speed must be stored until the 

end of the measurement run. 

Table 16 and table 17 list the peak roughness, the percentage error in average roughness, and 

cross correlation to the reference profile for each test run processed using the two adaptive 

filtering algorithms. Both adaptive algorithms demonstrated a major improvement over the basic 

temporal algorithm. (See table 12.) Relative to their non-adaptive counterpart (i.e., the temporal 

high-pass filtering algorithm), both adaptive high-pass filtering algorithms reduced the errors in 

peak roughness level in all of the runs with a stop and the near stop. In all of the runs with a stop, 

the artificial localized roughness was less severe using the real-time adaptive high-pass filtering 

algorithm than the temporal high-pass filtering algorithm, both with and without with local 

suppression. (See table 15 and table 14, respectively.) Neither of the adaptive algorithms offered 

consistently better results than the other for the test runs with braking and stops.  

Both algorithms removed valid content in the wavelength range of interest from the profile 

measured at 3 mi/hr, and reduced the measured roughness by half. This is reflected in the low 

cross correlation levels. 

Table 16. Results for adaptive high-pass filtering. 

Run Designation Peak Roughness 

(inches/mi) 

Average Roughness 

Error (Percent) 

Cross Correlation 

S&G, 1.1-sec stop, 0.17 g 334 10.3 0.742 

S&G, 1.1-sec stop, 0.20 g 237 3.1 0.831 

S&G, 2.1-sec stop, 0.33 g 447 18.9 0.565 

S&G, 5.8-sec stop, 0.17 g 753 38.7 0.302 

S&G, 5.7-sec stop, 0.20 g 282 5.8 0.764 

S&G, 5.8-sec stop, 0.20 g 296 10.1 0.716 

S&G, 10.7-sec stop, 0.20 g 290 9.0 0.727 

NS, 45–7 mi/hr, 0.20 g 150 1.3 0.852 

Brk, 44–19 mi/hr, 0.19 g 159 2.6 0.951 

Brk, 45–18 mi/hr, 0.39 g 140 1.7 0.844 

Brk, 31–14 mi/hr, 0.16 g 148 –0.8 0.931 

Brk, 31–14 mi/hr, 0.18 g 151 –0.7 0.943 

Brk, 31–14 mi/hr, 0.18 g 173 0.8 0.958 

Brk, 31–12 mi/hr, 0.25 g 147 0.3 0.950 

Brk, 30–21 mi/hr, 0.84 g 167 8.5 0.859 

10 mi/hr 146 –0.8 0.985 

3 mi/hr 75 –52.0 0.321 

 Reference peak roughness value: 152 inches/mi. Adequate cross correlation (> 0.92) is shown in bold. 
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Table 17. Results for adaptive high-pass filtering with a backward pass. 

Run Designation Peak Roughness 

(inches/mi) 

Average Roughness 

Error (Percent) 

Cross Correlation 

S&G, 1.1-sec stop, 0.17 g 180 1.6 0.880 

S&G, 1.1-sec stop, 0.20 g 263 4.7 0.815 

S&G, 2.1-sec stop, 0.33 g 366 17.5 0.581 

S&G, 5.8-sec stop, 0.17 g 416 20.1 0.576 

S&G, 5.7-sec stop, 0.20 g 179 0.3 0.854 

S&G, 5.8-sec stop, 0.20 g 343 12.1 0.655 

S&G, 10.7-sec stop, 0.20 g 291 9.3 0.724 

NS, 45–7 mi/hr, 0.20 g 250 4.9 0.793 

Brk, 44–19 mi/hr, 0.19 g 159 2.7 0.950 

Brk, 45–18 mi/hr, 0.39 g 141 1.6 0.846 

Brk, 31–14 mi/hr, 0.16 g 149 –0.8 0.932 

Brk, 31–14 mi/hr, 0.18 g 152 –0.7 0.943 

Brk, 31–14 mi/hr, 0.18 g 176 1.0 0.955 

Brk, 31–12 mi/hr, 0.25 g 159 1.1 0.952 

Brk, 30–21 mi/hr, 0.84 g 205 10.5 0.841 

10 mi/hr 146 –0.8 0.985 

3 mi/hr 75 –51.9 0.322 

 Reference peak roughness value: 152 inches/mi. Adequate cross correlation (> 0.92) is shown in bold. 

The adaptive high-pass filtering algorithms offered the greatest reduction in artificial localized 

roughness for runs with braking and stops. However, a high percentage error in peak roughness 

remains for most of the runs with stops, and cross correlation levels are below the threshold 

value of 0.92 for all of the runs with stops, two of the runs with braking, and the run at 3 mi/hr. 

The adaptive high-pass filtering algorithm with the spatial backward pass is recommended for 

use on profilers with temporal architecture, but only as a means of avoiding large error in 

roughness measurement when it is not practical to use additional sensors. 

BASIC SPATIAL ALGORITHM 

The basic spatial algorithm represents a baseline case. The algorithm includes common practices 

among commercial profilers with spatial data collection architecture, with no added provisions 

for error suppression. Figure 95 describes the basic spatial profile calculation algorithm.  

This algorithm includes the same processing steps as the basic temporal algorithm with one 

exception. The algorithm converts the accelerometer and height-sensor signals to spatial 

coordinates before combining them to calculate the profile. As a result, numerical integration of 

the accelerometer signal is performed in the distance domain. A high-pass filter removes very 

long wavelength content from the spatial profile. As described in Appendix A (see HPFB3x2), 

equivalent third-order IIR filters are applied in the forward and reverse directions to cancel the 

phase shift. 
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Figure 95. Block diagram. Basic spatial profile calculation algorithm. 

The basic spatial calculation algorithm shown in figure 95 typically operates in real time. Real-

time operation was simulated using the stored time-domain signals. The simulated algorithm 

“captures” accelerometer and height-sensor readings from the time-domain signals each time it is 

triggered by a distance encoder pulse. To accommodate changes in host-vehicle speed, the 

algorithm must calculate a time step for integration corresponding to each distance increment. To 

support integration in the distance domain, the simulated algorithm stores the time associated 

with each distance sample. In turn, the numerical integration algorithm computes the elapsed 

time between spatial samples (t), as shown if figure 96. Numerical integration proceeds using 

the elapsed time associated with each distance increment, as shown in figure 97 and figure 98. 

  

Figure 96. Equation. Elapsed time between distance samples. 

  

Figure 97. Equation. First state of numerical integration. 
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Figure 98. Equation. Second stage of numerical integration. 

Like the basic temporal algorithm, this algorithm often produces a large artificial change in 

elevation at the location where the host vehicle stops. For example, in the run with the 

10.7-second-long stop, the time difference between the readings surrounding the stop was 

10.7643 seconds. The accelerometer reading at the sample preceding the stop was –0.01865 g 

and the trailing reading was 0.00910 g. This resulted in a change of the integrated accelerometer 

signal to –1.66484 ft/s from a leading value of –0.01045 ft/s. After the second stage of 

integration, these readings translated to a computed change in vertical position of the profiler 

reference point of 9.017 ft downward. This is not balanced by the height-sensor reading, which 

indicated an upward change of 0.6 inches. The peak value of the short-interval roughness profile 

at the stop for this run was 135,657 inches/mi. 

Table 18 lists the peak roughness, the percentage error in average roughness, and cross 

correlation to the reference profile for each test run processed using the basic spatial algorithm. 

All test runs with a stop or a near stop produce profiles with very high errors in peak localized 

roughness. This caused a large error in the average roughness for the test section and very low 

cross correlation.  

Table 18. Results for the basic spatial algorithm. 

Run Designation Peak Roughness 

(inches/mi) 

Average Roughness 

Error (Percent) 

Cross Correlation 

S&G, 1.1-sec stop, 0.17 g 28,028 1859.7 < 0.2 

S&G, 1.1-sec stop, 0.20 g 50,679 3374.5 < 0.2 

S&G, 2.1-sec stop, 0.33 g 13,534 852.5 < 0.2 

S&G, 5.8-sec stop, 0.17 g 56,955 3668.3 < 0.2 

S&G, 5.7-sec stop, 0.20 g 28,342 1807.1 < 0.2 

S&G, 5.8-sec stop, 0.20 g 55,755 3544.9 < 0.2 

S&G, 10.7-sec stop, 0.20 g 135,657 8607.7 < 0.2 

NS, 45–7 mi/hr, 0.20 g 1,761 190.8 < 0.2 

Brk, 44–19 mi/hr, 0.19 g 216 10.8 0.848 

Brk, 45–18 mi/hr, 0.39 g 151 1.9 0.838 

Brk, 31–14 mi/hr, 0.16 g 301 15.8 0.671 

Brk, 31–14 mi/hr, 0.18 g 301 16.7 0.684 

Brk, 31–14 mi/hr, 0.18 g 390 27.2 0.621 

Brk, 31–12 mi/hr, 0.25 g 141 0.1 0.942 

Brk, 30–21 mi/hr, 0.84 g 181 10.3 0.879 

10 mi/hr 150 0.2 0.985 

3 mi/hr 1459 928.5 < 0.2 

 Reference peak roughness value: 152 inches/mi. Adequate cross correlation (> 0.92) is shown in bold. 

Cross correlation for the majority of braking test runs is well below the threshold value of 0.92. 

In the test run at 3 mi/hr, excessive drift in the floating-reference-height signal caused issues with 

numerical precision during integration. Overall, the basic temporal calculation algorithm 

demonstrated inadequate performance at stops, during braking, and at 3 mi/hr. 
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The performance of the basic spatial algorithm serves as a baseline for demonstrating 

improvement offered by the other spatial algorithms because it includes no explicit procedures 

for error suppression. The spatial error suppression algorithms described below are designed to 

improve the performance of the spatial algorithm. 

SPATIAL HIGH-PASS FILTERING, PRE-INTEGRATION 

This proposed algorithm is a variation on the basic spatial algorithm in which high-pass filtering 

is applied to the accelerometer signal before each stage of integration. Application of high-pass 

filtering to the accelerometer signal before each stage of integration suppresses drift in the 

integrated accelerometer signal. This algorithm applies forward-running filtering stages to the 

height sensor and accelerometer signals after conversion to spatial coordinates, but before 

combining them into profile. The backward-running filtering stages are applied to the profile. 

(Appendix A describes each filtering stage.) The backward-running filters are applied to cancel 

the phase shift imposed by the filters that are applied to the sensor signals. Figure 99 provides the 

details of this algorithm. 

 

Figure 99. Block diagram. Spatial high-pass filtering, pre-integration. 

In the spatial algorithms, the magnitude of the computed change in vertical position of the 

reference point during a stop no longer depends on the prevailing level of bias in the 
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accelerometer signal. Instead, it depends on the values from the accelerometer signal at the 

specific temporal samples when each spatial sample was established. All of the information 

about vehicle vibration between the distance samples is lost in the conversion to spatial 

coordinates. Together, the temporal gap in the spatial accelerometer signal and the large 

numerical value of time step used in the integration reduce the effectiveness of high-pass 

filtering. 

Table 19 provides roughness and cross correlation results for profiles processed using the spatial 

algorithm with pre-integration high-pass filtering. High-pass filtering before integration 

consistently reduced the peak roughness values in runs with a stop. However, the level of 

reduction is somewhat arbitrary, since the artificial change in elevation at the location where the 

host vehicle stops depends primarily on the average of two accelerometer samples surrounding 

the stop. The influence of these accelerometer readings grows very large because they are 

multiplied by a large time step at each stage of integration. 

Table 19. Results for the spatial algorithm with pre-integration high-pass filtering. 

Run Designation Peak Roughness 

(inches/mi) 

Average Roughness 

Error (Percent) 

Cross Correlation 

S&G, 1.1-sec stop, 0.17 g 1,562 96.8 < 0.2 

S&G, 1.1-sec stop, 0.20 g 4,810 295.1 < 0.2 

S&G, 2.1-sec stop, 0.33 g 3,695 231.3 < 0.2 

S&G, 5.8-sec stop, 0.17 g 16,035 1022.7 < 0.2 

S&G, 5.7-sec stop, 0.20 g 27,429 1788.8 < 0.2 

S&G, 5.8-sec stop, 0.20 g 9,875 616.4 < 0.2 

S&G, 10.7-sec stop, 0.20 g 75,192 4946.6 < 0.2 

NS, 45–7 mi/hr, 0.20 g 173 8.1 0.713 

Brk, 44–19 mi/hr, 0.19 g 163 3.3 0.891 

Brk, 45–18 mi/hr, 0.39 g 145 1.4 0.789 

Brk, 31–14 mi/hr, 0.16 g 145 0.5 0.871 

Brk, 31–14 mi/hr, 0.18 g 151 0.5 0.889 

Brk, 31–14 mi/hr, 0.18 g 178 1.8 0.900 

Brk, 31–12 mi/hr, 0.25 g 152 1.7 0.902 

Brk, 30–21 mi/hr, 0.84 g 226 13.2 0.781 

10 mi/hr 149 –1.0 0.927 

3 mi/hr 175 14.5 0.746 

 Reference peak roughness value: 152 inches/mi. Adequate cross correlation (> 0.92) is shown in bold. 

Spatial high-pass filtering reduced errors in peak roughness in the most severe cases among the 

braking runs, but increased peak roughness in others. This algorithm failed to produce cross 

correlation above the 0.92 threshold value in any of the test runs.  

Table 18 and table 19 demonstrate that spatial high-pass filtering of the accelerometer signal, 

applied before or after integration, does not offer adequate performance. Large errors in 

roughness and very low cross correlation are shown for runs with a stop. Additional provisions 

are needed to address the artificial roughness at the stop caused by the large integration time 

step. 
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TIMER DISTORTION AND HEIGHT-SENSOR REFLECTION 

Walker and Becker recommended timer distortion during low-speed profiler operation as a 

means to minimize “wide swings” that appear in computed profile during stop-and-go 

operation.(15) Timer distortion artificially adjusts the elapsed time between spatial samples in 

areas where the host vehicle travels at low speed. This approach offers a way to address the main 

weakness in the spatial high-pass filtering algorithm because it reduces the potentially large 

changes in elevation that occur over distance increments that are associated with a large time 

step. This section describes the application of a version of Walker’s approach to the spatial high-

pass filtering algorithm shown in figure 99. 

This procedure replaces time interval associated with consecutive samples used for numerical 

integration (as shown in figure 97 and figure 98) with an adjusted value based on travel speed. At 

high host-vehicle speed, no adjustment is applied, and this procedure is equivalent to the pre-

integration spatial high-pass filtering algorithm. At low speed, this algorithm imposes an 

artificial limit on the time step associated with each distance increment. This suppresses the 

magnitude of the changes in floating reference height after double integration. 

The time interval used for numerical integration is unaffected at high speed and limited to a 

maximum value of t0 at low speed, as shown in figure 100.  

  

Figure 100. Equation. Limit value for time interval. 

In figure 100, x is the distance increment of the spatial profile and v0 is a low-speed threshold. 

The adjusted time interval (tAdj) is calculated based on the actual time interval (t) and the limit 

value as shown in figure 101.  

  

Figure 101. Equation. Adjusted time interval. 

The function in figure 101 returns an adjusted value of time step close to the actual value at high 

host-vehicle speed (i.e., low t). At very low speed, when the actual time interval is much larger, 

this function returns the limit value. The coefficient  determines the sharpness of the transition 

between the unaltered and limited ranges. 

This implementation uses a value for  of 25 and t0 of 0.0014205 seconds. The time interval 

threshold corresponds to a distance interval of 0.2 inches and a speed of 11.733 ft/s. Figure 102 

shows the ratio of adjusted values to actual values of time interval as a function of speed. Note 

that the ratio shown in figure 102 approaches 1 as speed increases. At speeds of 10 mi/hr and 

above, the actual and adjusted time interval values agree to within 0.004 percent. 
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Figure 102. Graph. Timer adjustment versus speed 

Table 20 provides roughness and cross correlation results for test runs with braking and stops 

using the spatial algorithm with high-pass filtering and timer distortion. (The adjusted time 

interval is virtually equal to the actual time interval in the braking runs, and their results are the 

same as in table 19.) Timer distortion greatly reduces the peak roughness values for the runs with 

stops by removing the large artificial change in height of the profiler reference point. For 

example, in the run with the 10.7-second-long stop, the time difference between the readings 

surrounding the stop was adjusted from 10.7643 to 0.0014205 seconds. This, and the change to 

the integrated accelerometer signal leading to the stop, reduced the magnitude of the step change 

in height of the profiler reference point from 9.017 ft to 0.00035 inches.  

Table 20. Results for stops and the near stop, timer distortion. 

Run Designation Peak Roughness 

(inches/mi) 

Average Roughness 

Error (Percent) 

Cross Correlation 

S&G, 1.1-sec stop, 0.17 g 553 31.4 0.327 

S&G, 1.1-sec stop, 0.20 g 820 45.8 0.230 

S&G, 2.1-sec stop, 0.33 g 1,139 66.3 < 0.2 

S&G, 5.8-sec stop, 0.17 g 612 36.5 0.263 

S&G, 5.7-sec stop, 0.20 g 824 46.6 < 0.2 

S&G, 5.8-sec stop, 0.20 g 877 54.0 0.208 

S&G, 10.7-sec stop, 0.20 g 867 52.4 0.236 

NS, 45–7 mi/hr, 0.20 g 221 10.9 0.609 

 Reference peak roughness value: 152 inches/mi. Adequate cross correlation > 0.92. 

Timer distortion greatly reduced peak roughness on runs with a stop relative to the spatial 

algorithms without timer distortion. However, the peak roughness values remain more than three 

times the reference values in all of those runs, and the cross correlation values were all well 

below the threshold value of 0.92. Further provisions are needed to suppress artificial localized 

roughness at stops. 

The remaining artificial localized roughness in the runs with a stop is caused by a step change 

between the height-sensor readings surrounding the stop. Figure 103 shows the floating-

reference-height signal and height-sensor signal for the run with a 10.7-second-long stop. The 
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stop occurred 710.3 ft from the start of the test section. Timer distortion removed the large 

change in the floating-reference-height signal at the stop and attenuated the fluctuations in the 

signal in the region near the stop (704 ft to 719 ft). 

 

Figure 103. Graph. Height-sensor and floating-reference-height signals, timer distortion. 

As shown in figure 103, the height sensor detected a 0.6-inch change in road height relative to 

the profiler during the stop. This indicates a net downward motion of the profiler over the 

10.7 seconds that elapsed between distance samples, due primarily to settling of pitch motion 

caused by deceleration leading to the stop. The floating-reference-height signal, which was 

attenuated at the stop by timer distortion, does not properly detect this aspect of vehicle motion 

or the dynamics detected by the height sensor in the area surrounding the stop. Similarly, timer 

distortion caused the peak roughness to increase in the run with a near stop due to a lack of 

cancellation of content from the height sensor. 

Walker and Becker passed the computed profile through a “slew” to mitigate the cancellation 

error caused by attenuating the floating-reference-height signal.(15) The slew limited the rate of 

change in elevation of the profile near the stop. The method applied here superimposes 

fluctuations onto the floating-reference-height signal that are equal and opposite to those of the 

height-sensor signal in the attenuated area.  

This procedure is based on the assumption that the floating-reference-height signal is not valid in 

the area near the stop, and that removing the roughness from the profile in this area is preferable 

to introducing artificial roughness. In this procedure, the equation shown in figure 104 replaces 

the second stage of integration of the accelerometer signal. 

  

Figure 104. Equation. Second stage of numerical integration with height-sensor reflection. 

In figure 101, the second term after the equal sign represents integration using the adjusted time 

interval. Since this algorithm also applies the adjusted time interval in the first stage of 

integration, fluctuations in the floating-reference-height signal are reduced in proportion to the 
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square of tAdj/t. The third term after the equal sign imposes the opposite of changes that appear 

in the height-sensor signal. This term is scaled in proportion to attenuation imposed on the 

accelerometer signal.  

Figure 105 shows the height-sensor signal and the adjusted floating-reference-height signal 

produced by this process for the run with the 10.7-second-long stop. In the region near the stop 

(704 ft to 719 ft), the adjusted time interval is below the actual time interval and the floating-

reference-height signal includes reflected content from the height sensor. In this region, the 

content cancels and the profile is essentially flat. However, a rapid change in slope appears in the 

profile at the end of the affected region, which registers as roughness.  

 

Figure 105. Graph. Height-sensor and floating-reference-height signals, timer distortion 

and height-sensor reflection. 

Table 21 lists roughness and cross correlation results for test runs at low speed, with stops, and 

with a near stop using the spatial algorithm with high-pass filtering, timer distortion, and height-

sensor reflection. Together, these provisions reduced the peak roughness values to a small 

fraction of those produced by the basic spatial algorithm. Cross correlation values are greatly 

improved, yet well below the 0.92 threshold value.  

Table 21. Results for stops and the near stop, timer distortion and height-sensor reflection. 

Run Designation Peak Roughness 

(inches/mi) 

Average Roughness 

Error (Percent) 

Cross Correlation 

S&G, 1.1-sec stop, 0.17 g 263 7.4 0.693 

S&G, 1.1-sec stop, 0.20 g 275 7.5 0.702 

S&G, 2.1-sec stop, 0.33 g 291 11.7 0.587 

S&G, 5.8-sec stop, 0.17 g 281 12.3 0.616 

S&G, 5.7-sec stop, 0.20 g 244 6.2 0.696 

S&G, 5.8-sec stop, 0.20 g 306 13.8 0.652 

S&G, 10.7-sec stop, 0.20 g 300 11.8 0.678 

NS, 45–7 mi/hr, 0.20 g 146 3.4 0.756 

10 mi/hr 149 –1.0 0.927 

3 mi/hr 21 –86.6 < 0.2 

 Reference peak roughness value: 152 inches/mi. Adequate cross correlation (> 0.92) is shown in bold. 
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The provisions used to suppress errors at the stop removed more than 85 percent of the valid 

roughness in the test run at 3 mi/hr. Note that adjustment of the speed threshold to capture more 

valid profile content for constant-speed runs at low speed reduced error suppression at stops. 

Overall, spatial high-pass filtering combined with timer distortion and height-sensor reflection 

greatly reduced the artificial localized roughness registered at stops. However, this reduction was 

achieved at the cost of valid profile measurement at very low speed. In particular, the profile 

measured at 3 mi/hr was completely invalid. Further, runs with a stop correlated poorly to the 

reference runs, because of missing profile content in the vicinity of the stop.  

SUMMARY 

This chapter presented algorithms for suppressing artificial localized roughness at locations 

where an inertial profiler host vehicle brakes, stops, or operates at low speed. The chapter 

examined each algorithm using only the sensors that appear in a typical commercial profiler. 

As a baseline, the chapter presented results for basic profile calculation algorithms that use 

methods found in common practice. This included a basic temporal algorithm and a basic spatial 

algorithm. Both of the basic algorithms demonstrated errors in profile and roughness 

measurement at low speed, during braking, and at stops. This included very large errors in 

roughness for runs with a stop, including extremely high values of peak roughness in the location 

of the stop. 

Application of high-pass filters to the accelerometer signal before each stage of integration (i.e., 

“temporal high-pass filtering, pre-integration”) demonstrated adequate performance for runs at 

low speed and a majority of runs with braking. This algorithm greatly reduced the error in 

roughness measurement for runs with stops, but large errors in roughness remained. The stages 

of this algorithm that occur before decimation to the distance domain do not run in real time, and 

storage of the temporal profile and distance encoder output in the time domain are required. 

Modification of the temporal high-pass filter to use an adaptive cut-off frequency reduced errors 

in roughness measurement at stops further. However, the performance for runs with stops was 

not adequate, and the improvement came at the cost of errors in measurement of profile at very 

low speed. This filter enforces a limit of cut-off wavelength at high speed and a limit of cut-off 

frequency at low speed. This adaptation allows for application of the filter in the time and 

distance domain. Application of a backward-running filter after digitizing the profile to a 

constant distance interval cancelled the phase shift associated with the forward-running 

(temporal) filter applied to the sensor signals. Applying the backward pass in the distance 

domain avoids the burden of storing any time-domain signals. 

Pre-integration high-pass filtering was not as effective in the spatial profile calculation 

algorithm. Digitizing the accelerometer signal to a constant distance step before filtering and 

integration removes an opportunity for effective removal of drift in the integrated signals. 

Further, it causes the integrator to use a very large time step for the distance interval that includes 

the stop. 

A specialized version of an algorithm recommended by Walker and Becker is proposed here that 

includes pre-integration high-pass filtering, temporal distortion at very low speed, and height-
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sensor reflection at very low speed.(15) Together, these provisions remove profile content at very 

low speed without introducing a large step change in elevation or slope, and rapid changes in 

curvature are minimized. As a result, errors in roughness measured at stops are greatly reduced. 

However, the performance for runs with stops was not adequate, and the improvement came at 

the cost of errors in measurement of profile at very low speed. 

These algorithms establish performance limits that can be attained without adding sensors to the 

nominal commercial profiler design. The adaptive pre-integration high-pass filtering algorithm is 

recommended for profilers with temporal profile calculation architecture. The pre-integration 

high-pass filtering algorithm with temporal distortion and height-sensor reflection is 

recommended for profilers with spatial profile calculation architecture. Neither algorithm offers 

adequate performance during braking or at stops, nor are they capable of roughness measurement 

at speeds below 10 mi/hr. However, they both reduce errors in roughness measurement from a 

factor of 10 and above to 20 percent and below.  

These algorithms are only recommended for error mitigation when the resources are not 

available for adding sensors. Chapter 6 demonstrates a profiler design that achieves adequate 

performance using additional sensors. 
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CHAPTER 6: SENSOR AUGMENTATION 

This chapter describes the use of additional sensors to improve inertial profiler performance at 

very low speed, during braking, and in stop-and-go operation. Like a strap-down inertial 

navigation system, the augmented profiler uses measurements from body-fixed accelerometers 

and rate gyroscopes in three dimensions to calculate position of the profiler reference point. In 

this application, only the change in vertical position of the profiler reference point is of interest. 

However, measurements are needed in three dimensions to resolve body-fixed acceleration into a 

truly vertical direction (i.e., aligned with gravity).  

A multi-rate extended Kalman filter with a Rauch-Tung-Striebel (RTS) smoother eliminates drift 

in the integrated acceleration and rate signals using GPS measurements of host-vehicle height, 

vertical velocity, pitch, and roll. In the Kalman filter, the core of the process includes kinematic 

resolution of acceleration into the vertical direction, as well as integration of acceleration and 

rate of rotation to obtain position and orientation. Measurements of acceleration and rate of 

rotation drive the system, and determine its high-frequency output. The GPS sensors provide an 

absolute reference, and establish the low-frequency output of the system and impose a limit on 

integrator drift. 

This application required a multi-rate implementation, because the frequency range of interest 

exceeded the waveband of the outputs from the GPS. Further, the inertial sensors provided inputs 

at 16,000 Hz, whereas the GPS provided observations at 20 Hz. Additionally, this application 

required a Kalman smoother to help eliminate drift in the floating-reference-height signal that 

occurred during braking, particularly near stops.  

The Kalman smoother produced better reproduction of the reference profile measurement during 

braking and at stops than the error suppression algorithms proposed in Chapter 5. Unlike the 

error suppression algorithms, the smoother demonstrated improvement in profile measurement at 

low speed. Adaptation of the Kalman filtering stage to use the height sensor in place of the GPS 

outputs at speeds below 0.1 mi/hr further reduced profile measurement error at stops. Additional 

implementations of the Kalman smoother that do not depend on GPS measurements are 

demonstrated for cases in which GPS readings are unavailable.  

The chapter presents a review of Kalman filtering, the RTS smoother, and relevant kinematics of 

rotating and accelerating reference frames. The chapter also presents the system equations used 

in this application of the Kalman filter and smoother, and estimates of system and measurement 

noise. Five implementations of the Kalman filter and smoother are demonstrated. The 

performance of each is presented for test runs at low speed, with braking, and with stops. Results 

are quantified using cross correlation to profile measured in a reference test run and comparison 

of IRI values. 

THE KALMAN FILTER 

The Kalman filter is an optimal state estimation algorithm, which was originally proposed for 

prediction of random signals and separation of random signals from noise.(94–96) The algorithm 

combines discrete-time models of system and sensor dynamics with statistical descriptions of 

system noise and measurement errors to estimate the system state.(97) In this manner, the Kalman 
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filter infers values of state variables that are not measured directly or are measured imperfectly. 

State estimates are optimal in that the Kalman filter minimizes the estimated error covariance, so 

long as the system is linear with additive Gaussian noise in both the system dynamics and the 

measurement.(98,99) The Kalman filter is recursive, in that it updates estimates of the state using a 

weighted average of the previous state estimate and new values based on the latest measurement 

data.(100) The relative efficiency of the recursive approach has lead to broad application in 

numerous fields, including as terrestrial navigation.(98,101) 

Welch and Bishop provide an introductory description of the Kalman filter and the extended 

Kalman filter.(98) Portions of those descriptions are summarized here with changes in notation. 

Linear Kalman Filter 

The Kalman filter estimates the state recursively for a linear stochastic system in state space 

form, as shown in figure 106. 

  

Figure 106. Equations. Kalman filter, discrete linear system equations. 

In figure 106, the subscript k represents the time step. If the system has ns state variables, is 

monitored by nm measurements, and is driven by ni inputs, then:  is the state,  
 is the input, and  is the output (i.e., measurements). The system equation 

includes a state transition matrix  and an input matrix . The 

measurement equation includes an observation matrix , which relates the state to the 

available measurements. 

The system includes independent zero-mean, Gaussian process noise  and 

independent zero-mean, Gaussian measurement noise , as described in figure 107 and 

figure 108.  

  

Figure 107. Equation. Zero mean Gaussian process noise. 

  

Figure 108. Equation. Zero mean Gaussian measurement noise. 

The Kalman filtering equations do not include the noise signals directly. Rather, they incorporate 

noise using the process noise covariance matrix  and the measurement noise 

covariance matrix , as defined in figure 109. 

  

Figure 109. Equations. Process and measurement noise covariance matrices. 
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At each time step the Kalman filter performs a time update and a measurement update. The time 

update makes the best possible estimate of the state at time step k, given the sequence of inputs 

and measurements up to time step k–1 and the known system dynamics, as shown in figure 110. 

  

Figure 110. Equations. Kalman filter time update. 

In figure 110, 
 

is the a priori (i.e., predicted) estimate of xk and  is the a priori 

estimate of the error covariance at time step k. Figure 111 provides the expression for the error 

covariance matrix. 

  

Figure 111. Equation. Error covariance matrix. 

The measurement update refines the estimates of the state and the error covariance at time step k 

using the measurements at time step k and the predictions produced in the time update, as shown 

in figure 112. 

  

Figure 112. Equations. Kalman filter measurement update. 

Figure 112 shows the equations for the measurement update, where  and  are the a 

posteriori (i.e., corrected) estimates of xk and Pk, respectively. The matrix  is the 

Kalman gain, and is often referred to as the blending factor. The Kalman gain determines the 

relative influence of measurements and system dynamics in the refined state estimate. The 

Kalman gain is optimal, because it minimizes the mean square state estimation error by 

minimizing the trace of the error covariance matrix. 

The filter typically runs from k=1 to N, where N is the number of time steps. At the first time 

step, initial estimates of the state vector  and error covariance matrix  take the place of the 

previous measurement update. Note that, for the linear Kalman filter, the subscripts on A, B, w, 

H, v, Q, and R only appear to accommodate time-variant systems. 

Extended Kalman Filter 

The extended Kalman filter estimates the state for a non-linear discrete time process, as shown in 

figure 113. Where f is a set of nn non-linear functions in the state equation, and h is a set of nm 

non-linear functions in the measurement equation. Like the linear Kalman filter, the extended 

Kalman filter includes a time update and a measurement update.  
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Figure 113. Equations. Extended Kalman filter system equations. 

The time update estimates the state using non-linear system equations, as shown in figure 114. 

  

Figure 114. Equation. Extended Kalman filter state estimates. 

However, the estimate of the state error covariance depends on linearized versions of the state 

transition matrix A and process noise matrix W, as shown in figure 115. Where  is a 

Jacobian matrix of partial derivatives of f with respect to the system state, as shown in 

figure 116. 

  

Figure 115. Equation. Extended Kalman filter state error covariance estimates. 

  

Figure 116. Equation. Extended Kalman filter linearized A matrix. 

Note that a one-to-one mapping may not exist between process noise terms and state variables. 

As such, the process noise covariance matrix, , corresponds to nn noise terms, and 

 is a Jacobian matrix of partial derivatives of f with respect to process noise, as 

shown in figure 117. 

  

Figure 117. Equation. Extended Kalman filter linearized W matrix. 

The measurement update incorporates the non-linear measurement equation, but the Kalman 

matrix and state error covariance updates depend on linearization of the measurement equation, 

as shown in figure 118. Figure 119 and figure 120, respectively, provide expressions for the 

linearized H and V matrix. 

  

Figure 118. Equations. Extended Kalman filter measurement update. 

  

Figure 119. Equation. Extended Kalman filter linearized H matrix. 
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Figure 120. Equation. Extended Kalman filter linearized V matrix. 

Each element in the matrices A, W, H and V are linearized using the first term in the Taylor 

expansion. Since they are evaluated using the most recent input and the most recent available 

estimates of the state, they change with time. With this formulation, the filter is linearized about 

the estimated system trajectory.(101) This has three consequences relative to the standard Kalman 

filter. First, the covariance estimates change with changes in system dynamics, even with 

constant estimates of system and measurement noise. As such, the Kalman gain and state error 

covariance matrix must be evaluated at every time step.(99) Second, convergence of the filter is 

not guaranteed. Third, the extended Kalman filter is not optimal, because propagating Gaussian 

random variables through the non-linear equations does not always produce Gaussian outputs. 

This violates the assumptions in the minimization of state error covariance.(98) 

Multi-Rate Kalman Filter 

The Kalman filtering application described in this chapter applies the process model (i.e., the 

dynamical equations) at a higher rate than the updates prompted by observations. This is because 

the sensors detect system inputs (e.g., acceleration, rate of rotation) at a higher rate than 

measurements used to adjust the state estimates (e.g., GPS position, velocity, and orientation). 

As such, the measurement update is only applied when an observation is available. At time steps 

with no corresponding observation, the a posteriori estimates of xk and Pk are equal to the a priori 

estimates, as shown in figure 121. 

  

Figure 121. Equations. A posteriori estimates with no measurements. 

Jones, and Cipra and Romero established this procedure as optimal for linear systems.(102,103) 

Smyth and Wu demonstrated the efficacy of this approach for multi-rate Kalman filters that 

estimate position based on integrated acceleration.(104) 

Kalman Smoother 

The Kalman filter estimates current and future values of state variables based only on existing 

measurements, whereas a smoother applies the available measurements to past values.(105) That 

is, the smoother improves the state estimates at a given time using measurements that occur 

afterward.(104,106) The improvement comes at the cost of reduced computational efficiency. 

Further, the possibility of obtaining state estimates in real time is lost. 

The RTS smoother “starts with the filtered estimate at the last point and calculates backward 

point by point determining the smoothed estimate as a linear combination of the filtered estimate 

at that point and the smoothed estimate at the previous point.”(105) This procedure requires the 

application of a Kalman filter over a specified time interval; followed by a backward pass to 

improve the state estimates based on statistics influenced by all of the available measurements. 
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Meditch describes this as fixed-interval smoothing.(107) (See Brown and Huang or Aslan for 

straightforward descriptions of the numerical procedure.(101,108)) 

For an interval including N time steps, the smoothing stage runs backward from time step N–1 to 

1. The smoothed state estimates, , are computed recursively as shown in figure 122. 

  

Figure 122. Equations. Kalman smoother backward pass. 

For a system with non-linear dynamics, Ak is a Jacobian matrix of partial derivatives of the state 

equations with respect to the system state, as shown in figure 123. 

  

Figure 123. Equation. Kalman smoother linearized A matrix. 

For the initial step in the backward pass (k=N–1), the smoothed versions of the state estimate, 

, and the state error covariance matrix, , are obtained from the final step in the forward 

pass. 

Note that the notation used for estimated state corresponds to the distinction between the outputs 

of the Kalman filter and the Kalman smoother. In the Kalman filter,  represents an estimate 

of the state at time step k+1, given the information available up to time step k. In the RTS 

Kalman smoother,  represents an estimate of the state at time step k+1, given the 

information available up to time step N (i.e., over the entire testing interval). 

The smoother equations above require storage of the inputs; the a priori states and state error 

covariance matrix; and the a posteriori states and state error covariance matrix. Some of the 

storage burden is eliminated by redundantly calculating a priori variables using stored values of a 

posteriori variables and inputs, as shown in figure 124. 

  

Figure 124. Equations. Kalman smoother redundant calculations. 

The state error covariance for the smoothed state estimates is calculated as shown in figure 125. 

  

Figure 125. Equation. Kalman smoother state error covariance. 
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Calculation of the smoothed state estimates does not require knowledge of . 

COORDINATE REFERENCE FRAMES 

Each rate gyroscope and accelerometer provides measurements relative to the inertial reference 

and resolved along their sensitive axes. This section introduces coordinate reference frames in 

support of discussions that follow of measurements and system dynamics. The axis systems 

defined here are dextral and orthogonal. 

Inertial Frame (i): A non-rotating, non-accelerating reference frame with respect to distant 

stars with its origin fixed in the center of the Earth. Its Z-axis is aligned with the Earth’s 

spin axis running northward. 

Earth-Fixed Frame (e): A reference frame fixed in the Earth. Its origin and its Z-axis are 

coincident with the Inertial Frame. The Earth frame X-axis passes through the 

intersection of the plane of the Greenwich meridian with the equatorial plane. 

Navigation Frame (n): A local geographic frame with its origin fixed at a reference point on 

the vehicle. The Z-axis is aligned with the gravity vector running upward. The X-axis and 

Y-axis are parallel to the ground plane, running eastward and northward, respectively.  

Body Frame (b): A reference frame fixed in the sprung mass of a vehicle with its origin fixed 

at a reference point on the vehicle. The X-axis is parallel to the vehicle plane of 

symmetry running forward, and is approximately parallel to the road surface when the 

vehicle is at rest. The Y-axis is perpendicular to the vehicle plane of symmetry running 

leftward. The Z-axis runs upward, and is approximately perpendicular to the road surface.  

Wander Frame (w): A reference frame whose Z-axis coincides with the navigation frame, 

and whose origin coincides with the body frame and the navigation frame. The X-axis 

and Y-axis are parallel to the ground plane. The X-axis is aligned with the vertical 

projection of the body X-axis into the ground plane. 

The inertial frame and Earth-fixed frame are adopted from terrestrial navigation. The body frame 

and wander frame correspond to the vehicle and intermediate axis systems as defined in SAE 

J670, respectively.(91) The navigation frame is similar to the east-north-up navigation frame, 

except the horizontal plane is normal to gravity, rather than referenced to the Earth ellipsoid. A 

reference point is established for each of the left and right profilers where the sensitive axes of 

their vertical and longitudinal accelerometers intersect. For each profiler, the reference point is 

used as an origin for the navigation, wander, and body frames. 

Coordinate Frame Rotation 

Orientation of one coordinate frame relative to another is parameterized in this research using 

Euler angles for successive body-axis rotations. This is defined by yaw rotation (ψ) about the 

reference Z-axis, a pitch rotation () about the reoriented Y-axis, and a roll rotation () about the 

reoriented X-axis. A vector in the rotated frame, b, can be resolved to the un-rotated frame, n, as 

follows shown in figure 126. In figure 126, s and c represent sine and cosine functions, 
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respectively, of the angle that appears in the subscript. C
nb

 is the direction cosine matrix. 

Resolving a matrix in the reference system to the rotated system requires the transpose of C
nb

, as 

shown in figure 127. 

  

Figure 126. Equation. Vector transformation from frame b to frame n. 

  

Figure 127. Equation. Vector transformation from frame n to frame b. 

Formulation of the kinematic measurement equations and system dynamic equations required 

elements of the direction cosine matrix and their time derivatives. The time rate of change is 

caused by an instantaneous rate of rotation of frame b relative to frame n, which is defined in 

figure 128. 

  

Figure 128. Equation. Rate of rotation of frame b relative to frame n. 

In figure 128, the subscript on the term to the left of the equal sign indicates rotation of the first 

frame relative to the second, and the vector is resolved into the frame that appears in the 

superscript. 

The rate of change of the direction cosine matrix is given in figure 129, where  is the skew 

symmetric matrix that corresponds to the angular rate vector .(109) 

  

Figure 129. Equation. Rate of change of a direction cosine matrix. 

The equation in figure 129 allows the expression of the rate of change of a direction cosine 

matrix element as a function of direction cosine matrix elements and angular rates measured in 

the rotated frame. In turn, the rate of change of the pitch and roll angle can be derived as shown 

in figure 130 and figure 131, respectively. 

  

Figure 130. Equation. Rate of change of pitch angle. 
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Figure 131. Equation. Rate of change of roll angle. 

SYSTEM EQUATIONS 

This section presents the system dynamics used by the Kalman filter. Prior work in sensor fusion 

for human and vehicle motion tracking guided the formulation of the process model and the 

sensor error modeling.(110,111) The purpose of the process model is estimation of changes in 

vertical position of the profiler reference point, , using inputs from body-mounted 

accelerometers and rate gyroscopes.  

The state equations follow the same signal flow as a typical strap-down navigation system, as 

shown in figure 132. Three-dimensional measurements of specific force and rate of rotation by 

body-fixed sensors provide the means to derive vertical acceleration of the profiler reference 

point in the navigation frame. In turn, vertical acceleration is integrated twice to obtain relative 

vertical position. As described below, the measurement model compares independent 

measurements of height, vertical velocity, pitch inclination, and roll inclination to estimates from 

the state equations. 

 

Figure 132. Block diagram. Process model signal flow. 

Angular Rate 

The angular rate vector, , of the body frame relative to the inertial frame can be expressed 

using the components shown in figure 133. 

  

Figure 133. Equation. Angular rate vector, body frame relative to inertial frame. 

The rotation rate of the Earth relative to the inertial frame, , has a magnitude of 

approximately 7.3x10–5 rad/sec. The rate of rotation of the navigation frame relative to the Earth, 

which is the magnitude of , depends on the motion of the vehicle reference point with respect 

to the Earth. This is referred to as the transport rate.(112) For surface travel along a meridian at 

speeds below 100 mi/hr, the magnitude of the transport rate is less than 10 percent of the Earth 

rotation rate. For surface travel at speeds below 100 mi/hr along a circle of latitude below 82 

degrees, the magnitude of the transport rate is below the Earth rotation rate. 
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In this formulation, the transport rate and the Earth’s rotation rate are considered components of 

the time-varying bias, and output of the gyroscopes are interpreted as angular rate of the body-

fixed frame relative to navigation frame. 

The gyroscopes produce a measurement of each component of angular rate, u, along their 

sensitive axis resolved into the body-fixed frame, as shown in figure 134. In figure 134,  is 

considered the true angular rate,  accounts for slowly time-varying bias, and each component 

of e accounts for additive Gaussian white noise measurement error. 

  

Figure 134. Equation. Angular rate measurement. 

Linear Acceleration 

Acceleration of the profiler reference point at the navigation frame origin  as the Earth rotates 

relative to the inertial frame can be expressed as the sum of linear acceleration of the navigation 

frame relative to the Earth , Coriolis acceleration, and centrifugal acceleration. Figure 135 

provides the equation for profiler reference point acceleration. 

  

Figure 135. Equation. Profiler reference point acceleration. 

At sea level, the centrifugal acceleration due to the Earth’s rotation is limited to 0.0035 g. For 

horizontal or vertical motion at speeds below 100 mi/hr, the Coriolis acceleration is limited to 

0.00066 g. In this formulation, centrifugal acceleration due to the Earth’s rotation is considered a 

bias in the local gravity vector and Coriolis acceleration is considered a component of the slowly 

time-varying bias. 

The accelerometers produce a measurement of each component of specific force, ua, along their 

sensitive axis in the body-fixed frame, as shown in figure 136. Where  is the true specific 

force,  is slowly time-varying bias, and each component of  is additive Gaussian white 

noise.  

  

Figure 136. Equation. Acceleration measurement. 

The specific force includes a contribution due to gravity. Figure 137 provides the expression for 

specific force written as a vector resolved into the body-fixed frame, and figure 138 represents 

the accelerometer measurements as a vector. 

  

Figure 137. Equation. Specific force vector. 
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Figure 138. Equation. Acceleration measurement vector. 

Rearranging this expression in figure 138 to obtain acceleration as a function of sensor output, 

gravity, and error terms produces the equation in figure 139. Only the vertical component is 

required for calculation of profiler reference point height. Figure 140 provides the expression for 

the vertical component of acceleration. 

   

Figure 139. Equation. Acceleration measurement in terms of sensor output. 

  

Figure 140. Equation. Vertical component of measured acceleration. 

Only the third row of the direction cosine matrix is required to make this calculation, which only 

requires knowledge of the pitch and roll angle. In order to minimize the number of state in the 

system equation, this formulation uses pitch and roll angle directly, as shown in figure 141. 

  

Figure 141. Equation. Measured vertical acceleration in terms of pitch and roll. 

This expression combines terms for accelerometer noise and time-varying bias from each sensor 

into a consolidated error model. The consolidated error terms correspond to vertical acceleration 

in the navigation reference frame. These terms incorporate the influence of input measurement 

errors, errors in sensor mounting and alignment, numerical approximation errors, local 

fluctuations in the acceleration due to gravity, etc. 

Sensor Drift 

Slowly varying bias in the roll rate, pitch rate, and the resultant vertical acceleration all modeled 

using random walk with the discrete representation shown in figure 142. 

  

Figure 142. Equations. Discrete representations of random walk. 

Since the system dynamics do not require a measure of yaw angle, no random walk is assigned to 

yaw rate. 

GPS Position and Velocity 

The system includes height and vertical velocity measured by a GPS using an antenna mounted 

to the host-vehicle body. Figure 143 shows a schematic of the measurement system hardware in 
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the rear view with some roll of the body frame relative to the navigation frame. The figure shows 

the position of the GPS antenna relative to the profiler reference point , which is considered 

constant in the body-fixed frame.  

 

Figure 143. Schematic. GPS antenna offset, rear view. 

Figure 144 shows the vertical offset of the GPS antenna relative to the profiler reference point in 

the navigation frame. The vertical offset is a function of elements of the direction cosine matrix 

that depend on pitch and roll rotation and the locally horizontal (ly) and locally vertical offset (lz) 

of the GPS antenna. Figure 145 shows the vertical velocity of the GPS antenna relative to the 

profiler reference point is. 

  

Figure 144. Equation. GPS antenna vertical offset. 

  

Figure 145. Equation. GPS antenna relative vertical velocity. 

Figure 146 shows the model for measured GPS height, yrz, and figure 147 shows the model for 

measured GPS vertical velocity, yvz. 

  

Figure 146. Equation. GPS height measurement model. 

  

Figure 147. Equation. GPS velocity measurement model. 

In figure 146 and figure 147,  and  are height and velocity of the profiler reference point 

relative to the Earth ellipsoid expressed in the navigation (and wander) frame. Each measurement 
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includes independent Gaussian white noise (erz and evz). The additional terms are required to 

calculate the vertical offset between the profiler reference point and the GPS antenna. 

GPS Pitch and Roll 

Figure 65 shows a schematic of the GPS-based attitude measurement system. (See Chapter 3.) A 

master antenna is placed at the rear left corner of the vehicle. A “pitch rover” antenna appears 

forward of the master antenna, and is aligned with it in the body-fixed longitudinal (X) direction. 

A “roll rover” antenna appears rightward of the master antenna, and is aligned with it in the 

body-fixed lateral (Y) direction. The GPS-based attitude measurement system provides 

inclination of the body-fixed X-axis and Y-axis relative to the horizontal plane. For each axis, 

inclination is positive when the rover antenna is above the master antenna. 

Inclination of the X-axis (gps) is equivalent to the Euler pitch angle, as shown in figure 148. 

Euler rotation in both pitch and roll of the body-fixed axis system relative to the navigation 

system affect inclination of the Y-axis (gps). The equation in figure 149 relates roll inclination to 

the Euler angles. 

  

Figure 148. Equation. Pitch inclination and Euler pitch angle. 

  

Figure 149. Equation. Roll inclination and Euler roll angle. 

Figure 150 and figure 151 provide the measurement models for GPS pitch and roll inclination, 

respectively. Each measurement includes independent Gaussian white noise (eand e). 

  

Figure 150. Equation. GPS pitch inclination measurement model. 

  

 Figure 151. Equation. GPS roll inclination measurement model. 

Discrete System Equations 

The process model includes seven state variables ( ) and seven system error 

terms ( ). Figure 152 presents the equations for the process model in 

discrete form. 
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Figure 152. Equations. Process model discrete equations. 

In figure 152, t is the interval between time steps, and index for time step (e.g., k or k—1) is 

appended to the subscript of any quantity that varies with time. 

The measurement model includes four measurements ( ), and four measurement error 

terms ( ). Figure 153 presents the equations for the measurement model in discrete 

form. 

  

Figure 153. Equations. Measurement model discrete equations. 

Appendix C provides the linearized matrices used in the extended Kalman filter and smoother.  

SENSOR ERRORS 

This section examines noise sources in the rate gyroscopes and GPS outputs using Allan 

deviation, and describes the approach used to tune the noise estimate for the Kalman filter. 

Allan Variance 

Allan variance was originally developed to characterize the frequency instability in precision 

oscillators.(113) The formulas presented here use notation adapted from subsequent applications of 

Allan variance to sensors from inertial navigation systems, such as fiber-optic gyroscopes.(114–116) 

Allan variance is calculated by comparing adjacent cluster averages. As shown in figure 154, a 

cluster average is calculated by averaging a set of consecutive sampled values. 
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Figure 154. Equation. Cluster average. 

The corresponding cluster time is nt, where n is the number of samples in the cluster and t is 

the time interval between samples. For a signal with N samples, the overlapping Allan variance 

is defined for a given cluster time as shown in figure 155. 

Figure 155. Equation. Allan variance from cluster averages. 

The term “overlapping” applies here to signify that each time the index, k, increments forward, 

the two new clusters overlap the clusters used in the previous step by n–1 samples. Typically, 

this formula is applied for many possible values of cluster time and displayed in a plot as Allan 

deviation (A) versus cluster time.  El-Sheimy et al. describe Allan variance as a representation 

of “the RMS random-drift errors as a function of averaging times.”(116)

Computational effort is greatly reduced by preprocessing the signal using simple (rectangular) 

integration and substituting differences from the integrated signal for the cluster averages, as 

shown in figure 156 and figure 157. 

Figure 156. Equation. Rectangular integration. 

Figure 157. Equation. Allan variance from the integrated signal. 

Rate Gyroscopes 

Three tests were performed with a rate gyroscope still (in the Earth-fixed frame) to characterize 

its noise and bias using Allan deviation. In two of the tests, the sensitive axis was parallel to a 

circle of latitude (i.e., pointing east-west). As such, the sensor was subjected to a zero rate input. 

In the third, the axis was aligned with a meridian (i.e., pointing north-south), and could detect the 

rotation of the Earth. Each test proceeded for at least 17.5 hours, and data were obtained at 

100 Hz. Figure 158 shows the Allan deviation for a zero-input test performed over 21.5 hours.  
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Figure 158. Graph. Allan deviation, rate gyroscope. 

IEEE Std 952 recommends the use of an empirical curve fit to measured Allan variance to 

determine the coefficients associated with each class of noise in fiber-optic gyroscopes.(114) The 

standard form of the fitting function is as shown in figure 159. 

  

Figure 159. Equation. Allan variance fitting function. 

The terms to right of the equal sign correspond to ramp instability (RA), rate random walk (KA), 

bias instability (BA), angle random walk (NA), and quantization (QA).  

For the rate gyroscope examined in figure 158, angle random walk dominates the signal for 

cluster times less than or equal to 100 seconds. This manifests as a slope of –1/2, due to the 

logarithmic scaling. Angle random walk is estimated using the value of Allan deviation for a 

1-second cluster time, which is 7.56x10–4 deg/s. This implies the coefficient for angle random 

walk shown in figure 160. Often, angle random walk is specified in alternate units, as shown. 

  

Figure 160. Equation. Angle random walk value. 

None of the other idealized mechanisms described in IEEE Std 952 fit the data for cluster times 

above 100 seconds very closely. However, addition of rate random walk and ramp instability 

improves the curve fit for cluster times between 100 seconds and ½ hour. Figure 161 lists the 

coefficient values. 

  

Figure 161. Equations. Rate random walk and ramp instability coefficients. 
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The actual spectral content of the rotation rate signals approximated the idealized (one-sided) 

spectral density function, SΩ, expected using the three noise parameters derived in the Allan 

variance analysis, as shown in figure 162. 

  

Figure 162. Equation. Idealized spectral content from Allan variance. 

The actual spectral content is flat, and approximates white noise rotation rate, for frequencies 

above 0.002 Hz. As frequency decreases below 0.002 Hz, the spectral density increases. For 

frequencies below 0.0005 Hz, the contributions of rate random walk and ramp instability effects 

outpace angle random walk. 

Other relevant observations from the three trials include: 

 For the test examined in figure 158, the standard deviation with the bias removed was 

0.00752 deg/s. This is the value of the Allan deviation for a cluster time of 0.01 sec (i.e., 

using 1-point clusters). 

 Auto correlation using 20,000 sampled data points did not produce a value above 

0.5 percent of the signal variance for a non-zero lag. This implies that the signal is 

dominated by white noise at high frequencies. 

 Normalized probability distributions produced values of skew below 2x10–3 and excess 

Kurtosis below 2.6x10–2.  

 Normalized probability distributions produced Kolmogorov-Smirnov test for normality 

produces scores of 0.00504–0.00546. The high number of samples (> 6,400,000) implies 

confidence that the distribution is not normal, yet a similar level of confidence that the 

cumulative distribution differs from normality by less than 0.0055.  

GPS Outputs 

Figure 163 shows the Allan deviation for GPS height collected over 3.0 hours. These data 

included RTK corrections, and carrier phase ambiguities resolved to “narrow-lane integers.” The 

empirical function in figure 159 produces a reasonable fit to the data for cluster times less than 

10 seconds, but not the rest. Inspection of the autocorrelation function reveals the presence of 

several distinct noise sources with specific time constants and characteristic frequencies. (See 

figure 164.) The same is true of GPS pitch inclination and GPS roll inclination. 



 108 

 

Figure 163. Graph. Allan deviation, GPS height. 

 

Figure 164. Graph. GPS height, normalized autocorrelation. 

It is likely that tightly coupled integration with the GPS system would be required to capture the 

noise sources evident in the Allan deviation and autocorrelation functions. For simplicity, the 

measurement model for all of the GPS outputs only includes normally distributed random noise. 

These are quantified using estimates of standard deviation.  

Tuning 

Table 22 summarizes the approach used to tune the Kalman filter. The table lists each error 

quantity, the associated symbol for standard deviation, the corresponding model (measurement 

or process), and the value. The table also identifies which values were established before tuning 

and fixed, and which values were tuned based on the outcome of preliminary test runs.  
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Table 22. Kalman filter tuning approach. 

Error Estimate Symbol Model Status Value 

GPS height pz Measurement Fixed 0.47 inches 

GPS vertical velocity vz Measurement Fixed 0.098 ft/s 

GPS pitch inclination  Measurement Fixed 0.12 deg 

GPS Roll inclination  Measurement Fixed 0.2 deg 

Acceleration a Process Tuned 6x10–4 g 

Acc. random walk  Process Tuned 1.64x10–9 ft/s3 

Roll rate  Process Fixed 7.7x10–3 deg/s 

Roll rate random walk  Process Tuned 4.2x10–6 deg/s2 

Pitch rate  Process Fixed 7.7x10–3 deg/s 

Pitch rate random walk  Process Tuned 2.2x10–4 deg/s2 

Yaw rate  Process Fixed 0 deg/s 

Of the 11 estimates of standard deviation, only four were designated for tuning. Preliminary 

analysis revealed that tuning the full set of values improved the results. However, it required a 

very complicated optimization process that was not guided by insight into the system kinematics 

or knowledge of signal processing. Further, the reported performance of the system would have 

been difficult to reproduce in a practical application.  

Fixed quantities were set using information that could be easily obtained, as follows: 

GPS height, GPS roll inclination, and GPS pitch inclination: The GPS provided a real-time 

estimate of standard deviation with each observation of height, roll, and pitch. Table 22 

lists the median values of those estimates observed during preliminary runs, excluding 

bounce tests and quiescent tests. Use of the individual estimates in real time may lead to 

some improvement, but was not found to be necessary. Note that the performance 

reported in this chapter is not maintained if the carrier phase ambiguities are not resolved 

to “narrow-lane integers,” except in the constant height and attitude reference 

implementation. 

GPS vertical velocity: The manual for the GPS hardware and firmware reported “velocity 

accuracy” to less than 0.098 ft/s. 

Pitch and roll rate: Standard deviation values for pitch rate and roll rate are fixed at 

0.0077 deg/s. This is the average value from the three laboratory tests used to examine 

Allan deviation. This value can be obtained by monitoring the output of each sensor over 

several minutes of zero-input operation.  

Yaw rate: Since the influence of yaw rate on system performance for the test runs used in this 

demonstration is small, a value of zero is used for it standard deviation. Using a value of 

zero for yaw rate changes the results very little. However, this may not be the case for a 

testing program that includes operation on a curve. 

Tuning of the remaining four quantities using profiles from the left- and right-side using at least 

six test runs is recommended: (1) constant speed of 5 mi/hr or less, (2) constant speed of 

45 mi/hr or greater, (3) braking at 0.15–0.2 g, (4) braking at 0.3 g or greater, (5) a stop no more 
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than 2 seconds long preceded by braking at 0.3 g or greater, and (6) a stop no less than 5 seconds 

long preceded by braking at 0.2 g or less. In the braking runs, the final speed should be at least 

15 mi/hr. In the runs with stops, the speed before braking begins should be greater than 25 mi/hr.  

In this research, the tuning procedure optimized the same quantities in the preliminary runs that 

are used here to report the performance of the system in the regular test runs. This includes: (1) 

maximizing cross correlation for all preliminary runs, (2) maximizing agreement in average IRI 

for preliminary runs at constant speed, and (3) maximizing agreement in peak IRI at the critical 

location for all runs with braking and stops. The “critical location” is either the location of a stop, 

or the location where the brakes were released for runs with braking but no stop. Visual 

inspection of short-interval roughness profiles, PSD plots, and filtered profile plots is 

recommended. 

Although a tuning process based on blind optimization would have succeeded, some preliminary 

constraints on the process were applied: 

1. Set the values for pitch rate random walk and roll rate random walk at the level derived 

from the Allan variance analysis described above. If the required test data are not 

available, use values of zero. 

2. Define a space of error estimates for acceleration and acceleration random walk that 

perform as well or better than the nominal profiler for the constant (high) speed run (i.e., 

do no harm) and the run with light braking. In this case, the “nominal profiler” means 

profile derived with this system using only the body-fixed component of vertical 

acceleration, the height sensor, and the distance encoder.  

3. Using the lowest values found in step 2, define the range of values for pitch rate random 

walk that maximizes performance for the run with heavy braking and improves 

performance for the runs with stops. Prioritize the left side profile. Deprioritize values of 

pitch rate random walk that degrade performance for the runs examined in step 2. 

4. Using the lowest values found in steps 2 and 3, define the range of values for roll rate 

random walk that maximizes the performance for the run at low speed and the run with 

heavy braking. Prioritize the right side profile. Deprioritize values of roll rate random 

walk that degrade performance on the other runs. 

5. Repeat steps 2 through 4 until no incremental performance improvement is observed. 

Each time step 2 is re-applied, fix pitch rate random walk and roll rate random walk at the 

lowest values found in the previous iteration. 

6. Fix the acceleration error estimate. Find the combination of the three random walk error 

estimates that provide the best collective performance for all preliminary runs. This will 

often require a trade-off between maintaining performance at constant speed and 

improving performance with braking. 

Blind optimization beginning with results from the steps above may further improve 

performance. However, if performance improvements depend on adjustment of the error 

estimates to a precision level lower than several percent, it is less likely the same level of 
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performance will exist in all conditions. With the tuning approach described here, the overall 

performance of each Kalman filtering and smoothing implementation presented in this chapter is 

maintained for changes in each standard deviation value in table 22 of up to 40 percent. (The 

variations were tested using scale factors with a constant step on a logarithmic scale of ½ 

octave.) That is, the performance does not depend on precise tuning. 

The overall objective of the tuning is to determine the frequency range where the inertial sensors 

(i.e., the process model) dominate the content within the kinematic state variables, the frequency 

range where the GPS observations dominate, and the frequency range where their influence is of 

the same order of magnitude. Note that the three random walk values represent the collective 

influence of several factors, including slowly varying sensor bias, omissions in the process 

model, numerical imprecision, and imprecise sensor mounting. 

IMPLEMENTATION FOR PROFILE CALCULATION 

Figure 165 summarizes the flow of sensor outputs used to calculate profile with the Kalman 

smoother. Inertial sensors (accelerometers and rate gyroscopes) drive the process model within 

the Kalman filter, and GPS sensors provide inputs to the measurement model. The Kalman filter 

passes estimates of the system state and state error covariance to the Kalman smoother. The 

system state variables include floating reference height. The Kalman smoother produces refined 

estimates of the system state and updated estimates of covariance based on stored readings from 

the inertial sensors and stored Kalman filter outputs. The smoother requires stored signals 

because it steps backward in time through them to make the calculations. 

 

Figure 165. Block diagram. Sensor signal flow for profile computation. 
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Profile elevation ( ) at each time step (k) is calculated as shown in figure 166. 

  

Figure 166. Equation. Profile elevation calculation using Kalman smoother. 

In figure 166,  is the floating reference height produced by the Kalman smoother, and hk is 

the height-sensor reading. The temporal profile (i.e., road elevation versus time), , is 

decimated to obtain spatial profile, , as a function of distance at a constant interval of 

0.2 inches. The decimation factor, M, varies with host-vehicle speed and depends on longitudinal 

travel distance, rxp. An optical distance encoder measures longitudinal distance. 

This system uses a constant time step of 1/16,000 seconds because analog data from the height 

sensors, vertical accelerometers, and longitudinal accelerometers were digitized at 16,000 Hz. 

However, the rate gyroscopes and the lateral accelerometer update their readings at 100 Hz, and 

the height sensors provide readings at a rate near 3,240 Hz. At each time step, the calculations 

use the most recent reading from each sensor.  

The GPS provides updates at a rate of 20 Hz. As such, the Kalman filter only applies a 

measurement update at time steps when a new GPS observation is available. The Kalman 

smoother performs all of its calculations at 16,000 Hz because it depends on estimates of the 

state and state error covariance calculated at 16,000 Hz in the forward-running Kalman filter. 

Independent Kalman filters and smoothers are applied for each of the left and right profiles. The 

measurement system included accelerometers (vertical and longitudinal) and height sensors on 

both sides of the vehicle. Profiles from each side depend on readings from the same rate 

gyroscopes, lateral accelerometer, optical distance encoder, and GPS. This chapter presents 

results for the left profile. 

RESULTS 

Use of the additional sensors with Kalman smoothing improved profile measurement accuracy at 

low speed, during braking, and at stops considerably. Three mechanisms contributed to the 

improvement. 

First, three-dimensional measurement of acceleration and rotation rate provided a more accurate 

measurement of profiler vertical motion. Resolution of acceleration into the direction aligned 

with gravity reduced the artificial vertical curvature that appeared in the floating-reference-

height signal during braking, particularly in locations where the brakes were released. However, 

it did not reduce the bias in the integrated accelerometer signal (vzp) in the range leading to and 

during a stop sufficiently to avoid large levels of artificial localized roughness. 

Second, use of a Kalman filter to incorporate GPS measurements of height and velocity arrested 

drift in the floating-reference-height signal. Similarly, incorporation of GPS measurements of 

pitch and roll inclination arrested drift in the estimates of pitch and roll orientation. The 

independent measurements by the GPS were necessary because of slowly varying bias in the 

inertial sensors. 
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Third, the use of a Kalman smoother provided necessary additional reduction in drift of the 

floating-reference-height signal. Use of past and future measurements to refine estimates of the 

system states reduced erroneous low-frequency responses to disturbances that appeared as drift. 

The backward pass by the Kalman smoother allowed absolute measurements by the GPS sensors 

to better influence the estimates of low-frequency system response, and confined the influence of 

the inertial sensors to the high-frequency range. 

Results are provided below using: (1) three-dimensional measurement of kinematics by inertial 

sensors with incorporation of the GPS using Kalman filtering, and (2) additional refinement of 

state estimates from the Kalman filter using a Kalman smoother. Results are also provided for 

three additional implementations of the Kalman smoother: 

1. Height-sensor reflection: When the host-vehicle speed is less than 0.1 mi/hr, this 

procedure uses the height-sensor signal as an independent measurement of floating 

reference height in place of GPS measurements. This is based on the assumption that the 

road surface elevation at a point is constant, and that equal and opposite fluctuations 

should appear in the floating-reference-height signal and the height-sensor signal. 

2. Constant attitude reference: This implementation of the Kalman smoother replaces GPS 

measurement of pitch and roll inclination with a constant estimate of zero. This is 

intended to demonstrate the potential performance of the system if GPS-based attitude 

measurement is not present or is experiencing an outage.  

3. Constant height and attitude reference: This implementation of the Kalman smoother 

replaces all GPS measurements with a constant estimate of zero. This is intended to 

demonstrate the potential performance of the system during a GPS outage. In this mode 

of operation, no actual measurements are provided to the Kalman smoother. Rather, the 

“constant reference” signals (and the associated elements of the measurement noise 

covariance matrix) place a limit on the absolute level of position and orientation drift, and 

the Kalman smoother functions as a high-pass filter. 

Kalman Filter 

Table 23 provides roughness and cross correlation results for profiles processed using the 

Kalman filter without the smoother. Peak roughness is the highest value in the short-interval 

roughness profile in the range from 600 ft to 750 ft from the test section start. This is the area 

where the host vehicle came to a stop in the stop-and-go runs or released the brakes in the 

braking runs without a stop. In the reference profile, the peak roughness is 152 inches/mi. The 

percentage error in average roughness for the 0.1-mile-long test section is provided. When a 

large error in peak roughness occurs, it accounts for most of the error in average roughness. 

Cross correlation values provide a rating of agreement to the reference profile in the waveband 

of interest for the IRI on a scale from –1 to 1. High cross correlation ensures that the details of 

the profile, as well as the overall roughness and spatial distribution of roughness, agree with the 

reference profile. Cross correlation of 0.92 or above is required for adequate profile agreement 

per AASHTO R56-14, and 0.98 is required to demonstrate reference-grade performance.(87) 
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Table 23. Results for the Kalman filter. 

Run Designation Peak Roughness 

(inches/mi) 

Average Roughness 

Error (Percent) 

Cross Correlation 

S&G, 1.1-sec stop, 0.17 g 292 7.8 0.629 

S&G, 1.1-sec stop, 0.20 g 208 3.0 0.840 

S&G, 2.1-sec stop, 0.33 g 817 40.3 < 0.2 

S&G, 5.8-sec stop, 0.17 g 1,379 73.0 < 0.2 

S&G, 5.7-sec stop, 0.20 g 1,086 52.4 < 0.2 

S&G, 5.8-sec stop, 0.20 g 994 50.6 < 0.2 

S&G, 10.7-sec stop, 0.20 g 1,744 90.7 < 0.2 

NS, 45–7 mi/hr, 0.20 g 174 5.5 0.921 

Brk, 44–19 mi/hr, 0.19 g 174 8.2 0.915 

Brk, 45–18 mi/hr, 0.39 g 162 4.3 0.930 

Brk, 31–14 mi/hr, 0.16 g 163 3.7 0.915 

Brk, 31–14 mi/hr, 0.18 g 151 1.8 0.944 

Brk, 31–14 mi/hr, 0.18 g 204 7.2 0.904 

Brk, 31–12 mi/hr, 0.25 g 218 6.6 0.882 

Brk, 30–21 mi/hr, 0.84 g 160 6.6 0.914 

10 mi/hr 150 1.5 0.986 

3 mi/hr 152 2.7 0.855 

 Reference peak roughness value: 152 inches/mi. Adequate cross correlation (> 0.92) is shown in bold. 

For the test runs with braking but no stop, the Kalman filter offered some improvement in road 

profile measurement over the basic temporal algorithm examined in Chapter 5. However, the 

adaptive high-pass filtering algorithm offered better performance and did not require additional 

sensors beyond the nominal inertial profiler design. The Kalman filter failed to produce adequate 

cross correlation in five of the braking runs. 

Without the smoother, the Kalman filter produced large errors peak roughness and 

commensurately low cross correlation. This is because the Kalman filter did not suppress drift 

sufficiently to eliminate artificial roughness caused by drift in the floating-reference-height 

signal at locations where the host vehicle stops. Figure 167 provides an example for the test run 

with a 10.7-second-long stop. The figure compares the floating-reference-height signal produced 

by the Kalman filter to the GPS height observations provided to the filter as measurements. 

During the stop (from 15.7 to 26.4 seconds), the net change in height measured by the GPS was 

0.69 inches downward. The height sensor measured a similar decrease in distance between the 

profiler and the road surface of 0.72 inches during this time increment. 



 115 

 

Figure 167. Graph. Drift in Kalman filter output, 10.7-second-long stop. 

Braking, which began at 5.3 seconds in this test run, caused the floating-reference-height signal 

to drift. During the stop, the net downward change in floating reference height is 3.7 inches. The 

portion of this change that was not compensated by the height sensor appears in the profile as a 

step change in elevation at the location of the stop. The combined effects of drift at the stop and 

in the low-speed range near the stop caused an artificial peak in the short-interval roughness 

profile of 1744 inches/mi. 

After the onset of drift the Kalman filter enforced abrupt corrections to the floating-reference-

height signal each time it obtained a new observation from the GPS. Figure 168 provides an 

example using a close-up view of a portion of the traces in figure 167. In this region, the floating 

reference height has drifted 0.2 ft above the prevailing GPS readings. Between GPS 

observations, the inertial sensors and the process dynamics solely determine the progression of 

floating reference height. Each 0.05 seconds a GPS observation is available, and the Kalman 

filter imposes a correction to the floating-reference-height signal that appears as a step change. 

For the range shown in figure 168, these are downward step changes of approximately 0.08 ft. 

These step changes appear in the final profile as artificial roughness.  
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Figure 168. Graph. Kalman filter corrections during drift, 10.7-second-long stop. 

Drift of the floating-reference-height signal relative to the GPS observations is attributed to the 

recursive nature of the Kalman filter and resulting delay in its low-frequency response. 

Reduction in the process noise covariance estimate associated with acceleration random walk 

(i.e., a reduction in the ratio of  to sigma ) reduces this drift. However, it raises the relative 

influence of GPS height readings on the content of the state estimates, such as the floating-

reference-height signal. This causes noise in the GPS height readings to contaminate the profile 

in the wavelength range of interest, particularly in areas that do not include braking and in test 

runs performed at constant speed. 

Since the Kalman filter did not produce results as good as the best temporal or spatial error 

suppression algorithms described in Chapter 5, sensor augmentation with the Kalman filter (and 

no smoother) is not expected to provide a return on the additional sensor cost. 

Kalman Smoother 

Relative to Kalman filtering alone, the smoother provided additional suppression of drift in the 

floating-reference-height signal. For example, figure 169 compares the floating-reference-height 

signal produced by the Kalman smoother to the GPS height measurements for the test run with a 

10.7-second-long stop. Much less drift appears relative to the output of the Kalman filter, and the 

artificial downward change in elevation in the profile is reduced from 2.8 inches to less than 

0.1 inches. 
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Figure 169. Graph. Drift in Kalman smoother output, 10.7-second-long stop. 

Table 24 provides roughness and cross correlation results for profiles processed using the 

Kalman smoother. All braking test runs without a stop correlated to the reference pass with a 

score above the AASHTO requirement of 0.92, and many were at the “reference quality” level of 

0.98.(87) Further, the error in average roughness was less than 5 percent and the upward bias in 

peak roughness was less than 10 percent relative to the reference pass in eight of the nine test 

runs. Much of the variation in peak roughness among these runs is attributed to variations in 

lateral tracking. 

Table 24. Results for the Kalman smoother. 

Run Designation Peak Roughness 

(inches/mi) 

Average Roughness 

Error (Percent) 

Cross Correlation 

S&G, 1.1-sec stop, 0.17 g 218 2.6 0.886 

S&G, 1.1-sec stop, 0.20 g 187 0.1 0.957 

S&G, 2.1-sec stop, 0.33 g 170 3.0 0.963 

S&G, 5.8-sec stop, 0.17 g 189 6.2 0.925 

S&G, 5.7-sec stop, 0.20 g 184 0.9 0.904 

S&G, 5.8-sec stop, 0.20 g 149 3.0 0.954 

S&G, 10.7-sec stop, 0.20 g 161 2.9 0.938 

NS, 45–7 mi/hr, 0.20 g 155 2.1 0.977 

Brk, 44–19 mi/hr, 0.19 g 155 1.7 0.978 

Brk, 45–18 mi/hr, 0.39 g 144 –0.8 0.975 

Brk, 31–14 mi/hr, 0.16 g 143 –0.8 0.963 

Brk, 31–14 mi/hr, 0.18 g 145 –0.9 0.978 

Brk, 31–14 mi/hr, 0.18 g 174 0.9 0.981 

Brk, 31–12 mi/hr, 0.25 g 159 1.2 0.985 

Brk, 30–21 mi/hr, 0.84 g 165 3.9 0.942 

10 mi/hr 147 –0.6 0.988 

3 mi/hr 151 –1.8 0.973 

 Reference peak roughness value: 152 inches/mi. Adequate cross correlation (> 0.92) is shown in bold. 
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Five of the seven runs with a stop produced cross correlation values above the AASHTO 

requirement. The largest upward bias in peak roughness compared to the reference value was 

66 inches/mi. The reduction in peak roughness errors for runs with a stop demonstrates the 

additional removal of drift in the floating-reference-height signal offered by adding the Kalman 

smoother. 

The run with braking from 44 mi/hr to 19 mi/hr at 0.19 g offers a good illustration of the quality 

in profile and roughness measurement at the cross correlation threshold levels. Figure 170 

compares the short-interval roughness profiles for the reference pass to the run with braking 

processed using the Kalman filter only. Comparison of the two profiles produced a cross 

correlation level of 0.915. (See table 23.) This is near the threshold for adequate agreement. The 

average roughness agrees to within 8.2 percent, and many of the details of the distribution of 

roughness throughout the section are similar, as shown in figure 170.  

 

Figure 170. Short-interval roughness profile comparison, Kalman filter. 

Figure 171 compares the short-interval roughness profiles for the reference pass to the run with 

braking processed using the Kalman smoother. Comparison of the two underlying profiles 

produced a cross correlation level of 0.975. (See table 24.) This is near the threshold for 

“reference level” agreement. In this case, the average roughness in the run with braking was 

within 2 percent of the average roughness in the reference pass. In addition, the details of the two 

short-interval roughness profiles are very similar throughout the section. (The reference trace is 

not visible behind the trace from the run with braking in many areas.) A high cross correlation 

value is only possible if agreement exists in the overall roughness, the spatial distribution of 

roughness, and the shape of the underlying features in the profile. 
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Figure 171. Short-interval roughness profile comparison, Kalman smoother. 

The Kalman smoother also improved measurement of profile at low speed. As described in 

Chapter 5, high-pass filtering of the accelerometer signal eliminated numerical integration errors 

for the test run at 3 mi/hr. Application of the filters produced cross correlation to the reference 

pass of 0.938. The Kalman smoother offered a much greater improvement in measurement 

quality for this test run, due to elimination of errors associated with accelerometer alignment. As 

speed decreases, sensor alignment errors caused by pitch and roll dynamics of the host-vehicle 

sprung mass correspond to progressively shorter wavelengths. In turn, the resulting measurement 

error has a progressively larger effect on content within the profile that affects the IRI. The 

motion is exacerbated at very low speed by difficulties maintaining a consistent throttle 

command. Resolution of acceleration into a consistent vertical direction reduced alignment 

errors, and produced a cross correlation value of 0.973. 

The additional sensors and Kalman smoothing algorithm proposed in this research removed most 

of the measurement error that was present when the test runs are processed using only elements 

of the basic inertial profiler design (i.e., the nominal sensor set and the basic temporal profile 

calculation algorithm). In addition, the system proposed here improved reproduction of the 

reference profile significantly over the best error suppression algorithms described in Chapter 5, 

which use only the nominal sensor set that appears in a typical commercial profiler. However, 

this system did not achieve adequate performance for all of the runs with a stop. The remaining 

error is caused primarily by drift in the GPS height signal that occurs while the profiler is 

stopped, which is introduced into the floating-reference-height signal during the measurement 

update in the Kalman filter. The following section describes a specialized provision that is 

proposed for mitigating this error source. 

Kalman Smoother with Height-Sensor Reflection 

Height-sensor reflection offers further reduction of profile measurement error at stops. This 

procedure switches to an alternate mode of operation when the host-vehicle speed is less than 

0.10 mi/hr. In the “stopped” mode, the Kalman filter replaces the GPS with the height sensor as 

an external source of position information. This is based on the assumption that at very low 

speed the road surface elevation is constant and changes to the height-sensor signal are caused 

solely by vertical motion of the profiler reference point. This is not universally true when speed 
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is below 0.10 mi/hr. However, GPS readings of height are prone to drift over time intervals of 

several seconds or more. (See figure 163.) This is not included in the measurement error model. 

As such, the height sensor is considered a more accurate measure of profiler reference point 

movement during a stop. Height-sensor reflection is implemented using the four provisions 

described here. 

The first provision replaces fluctuations in GPS measurements with fluctuations in height-sensor 

measurements in the very low speed range, as shown in figure 172. 

Figure 172. Equation. Height measurement in “stopped” mode. 

In figure 172, yh,k is the height-sensor reading at each time step. The quantities yrz,ref and yh,ref are 

the last values of GPS height and height-sensor output, respectively, obtained before initiation of 

the stopped mode. These remain constant throughout the very low speed interval, and are 

included in the calculation to offset the fluctuating height-sensor signal to a level consistent with 

the prevailing GPS height. This changes the measurement equation for height to the expression 

in figure 173. In figure 173, the error term, eh,k, represents noise in the height sensor.  

Figure 173. Equation. Height measurement model in “stopped” mode. 

The second provision replaces  with  in the measurement covariance matrix to account for 

the modified source of measurement noise, where h = 0.06 inches. This value is higher than the 

prevailing noise level in the height sensor. Tuning of h using preliminary test runs with stops 

was required, and the final value depended on profiler host-vehicle pitch dynamics as it 

approached the stop.  

The third provision removes the influence of the other GPS observations. The measurements 

provided to the Kalman filter are replaced as shown in figure 174. 

Figure 174. Equation. Measurement model components in “stopped” mode. 

In figure 174, yvz,ref is the last observation of GPS vertical velocity obtained before initiation of 

the quasi-stopped mode. Values of zero are maintained for pitch and roll inclination. Estimates of 

standard deviation for GPS vertical velocity and pitch inclination angle are increased by a factor 

of 10. This removes their influence on the state estimates throughout the stop. No factor is 

applied to the standard deviation for the measurement of roll inclination, because excessive drift 

in roll inclination introduced drift into the measurement equation for high of the profiler 

reference height for the right-side profiler.  
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The fourth provision accommodates the sampling rate of the height sensor. In this 

implementation, the process dynamics are updated at a rate of 16,000 Hz, whereas the height 

sensor provides measurements at a rate near 3,240 Hz. As such, the Kalman filter applies the 

measurement update when a new reading from the height sensor is available. No change to the 

format of the Kalman smoother is required. 

Table 25 lists the roughness and cross correlation results for test runs with stops using the 

Kalman smoother with height-sensor reflection. All seven test runs produced cross correlation 

values above the AASHTO requirement and above the cross correlation produced by the Kalman 

smoother without height-sensor reflection. In some cases, peak roughness values were lower than 

the reference value. This is due in part to variations in lateral tracking of the profiler, and in part 

to the exclusion of actual roughness from the measurement in the area where height-sensor 

reflection was applied. The average roughness was within 5 percent of the reference values in all 

runs. 

Table 25. Results for the Kalman smoother with height-sensor reflection. 

Run Designation Peak Roughness 

(inches/mi) 

Average Roughness 

Error (Percent) 

Cross Correlation 

S&G, 1.1-sec stop, 0.17 g 134 –1.8 0.969 

S&G, 1.1-sec stop, 0.20 g 138 –2.3 0.963 

S&G, 2.1-sec stop, 0.33 g 154 1.9 0.972 

S&G, 5.8-sec stop, 0.17 g 160 4.4 0.949 

S&G, 5.7-sec stop, 0.20 g 138 –1.5 0.952 

S&G, 5.8-sec stop, 0.20 g 141 2.3 0.967 

S&G, 10.7-sec stop, 0.20 g 168 3.0 0.958 

 Reference peak roughness value: 152 inches/mi. Adequate cross correlation (> 0.92) is shown in bold. 

Kalman Smoother with a Constant Attitude Reference 

This implementation of the Kalman smoother demonstrates the potential performance of the 

system if GPS-based attitude measurement is not present or is experiencing an outage. GPS 

measurement of pitch and roll inclination are replaced with constant estimates of zero, as shown 

in figure 175. 

  

Figure 175. Equation. Constant attitude measurement. 

GPS measurements of height and velocity remain intact, and the Kalman filter applies the 

measurement update at 20 Hz using actual height and velocity measurements together with the 

artificial attitude measurements. The net effect of imposing a constant reference signal on pitch 

and roll rotation is removal of their low-frequency content. That is, the constant attitude 

reference functions within the Kalman filter as a high-pass filter on integrated outputs from the 

rate gyroscopes.  

The specific outcome of using the constant attitude reference depends on estimates of standard 

deviation provided to the measurement covariance matrix. Figure 176 provides the estimates. 

Further, the performance of this implementation for test runs with a stop depended on application 
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of height-sensor reflection previsions described above. During the stopped mode, the error 

estimate for height measurement is increased as shown in figure 177. 

  

Figure 176. Equation. Standard deviation estimates for attitude. 

  

Figure 177. Equation. Standard deviation estimate for the height sensor. 

Preliminary calculations showed that performance of the system was not very sensitive to these 

values within a “valid” range. However, a sufficiently high value was needed for each item to 

retain valid measurement of vehicle dynamic response within the state estimates, and a 

sufficiently low value was needed to mitigate the effect of drift. Tuning of the error estimates 

using preliminary test runs was required, and the final values were influenced by the host 

vehicle’s propensity for dynamic motion in pitch and roll.  

Table 26 lists the roughness and cross correlation results for test runs processed using the 

Kalman smoother with a constant attitude reference. The constant attitude reference produced 

results equivalent to using actual measurements of pitch and roll attitude when both options 

applied height-sensor reflection at stops. The lowest cross correlation value is well above the 

threshold of 0.92 for adequate performance. Note that reproduction of this result depends on 

tuning as described above, and is not guaranteed for profilers mounted to a host vehicle with a 

greater propensity for misalignment in pitch and roll. 

Table 26. Results for the Kalman smoother with a constant attitude reference. 

Run Designation Peak Roughness 

(inches/mi) 

Average Roughness 

Error (Percent) 

Cross Correlation 

S&G, 1.1-sec stop, 0.17 g 134 –1.6 0.973 

S&G, 1.1-sec stop, 0.20 g 138 –2.2 0.953 

S&G, 2.1-sec stop, 0.33 g 159 2.6 0.968 

S&G, 5.8-sec stop, 0.17 g 149 3.7 0.957 

S&G, 5.7-sec stop, 0.20 g 131 –1.9 0.949 

S&G, 5.8-sec stop, 0.20 g 148 2.6 0.964 

S&G, 10.7-sec stop, 0.20 g 157 2.4 0.967 

NS, 45–7 mi/hr, 0.20 g 156 2.1 0.976 

Brk, 44–19 mi/hr, 0.19 g 154 1.6 0.980 

Brk, 45–18 mi/hr, 0.39 g 144 –0.7 0.976 

Brk, 31–14 mi/hr, 0.16 g 142 –0.8 0.963 

Brk, 31–14 mi/hr, 0.18 g 145 –0.7 0.979 

Brk, 31–14 mi/hr, 0.18 g 171 0.6 0.983 

Brk, 31–12 mi/hr, 0.25 g 153 1.0 0.987 

Brk, 30–21 mi/hr, 0.84 g 164 4.2 0.942 

10 mi/hr 146 –0.7 0.987 

3 mi/hr 147 –2.5 0.963 

 Reference peak roughness value: 152 inches/mi. Adequate cross correlation (> 0.92) is shown in bold. 
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Kalman Smoother with a Constant Height and Attitude Reference 

This implementation of the Kalman smoother demonstrates the potential performance of the 

system if the GPS is not present or is experiencing an outage. All GPS measurements are 

replaced with constant estimates of zero, as shown in figure 178. 

  

Figure 178. Equation. Constant height and attitude measurement. 

Since all GPS readings are simulated the Kalman filter applies the measurement update at every 

time step. In this implementation, the measurement model within the Kalman filter functions as a 

high-pass filter on estimates of height, vertical velocity, pitch, and roll produced by the process 

model.  

In addition to the changes specified when using a constant attitude reference, error estimates for 

height and vertical velocity measurement are altered as shown in figure 179. 

  

Figure 179. Equation. Standard deviation estimates for GPS height and velocity. 

Like the error estimates for orientation, these values required tuning using preliminary test runs 

as described above. 

Table 27 provides the results for the Kalman smoother with the constant height and attitude 

reference in conjunction with height-sensor reflection. This implementation produced results 

equivalent to using actual GPS measurements. The ability to apply the Kalman smoother in areas 

without a sufficient sky view for accurate GPS would make this system much more robust. 

Eliminating the need for GPS sensors altogether reduces equipment cost. However, additional 

tuning of the measurement model is required. Further, verification for vehicles with diverse pitch 

and roll response properties and for a greater number of speed change scenarios may be needed. 
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Table 27. Results for the Kalman smoother with a constant height and attitude reference. 

Run Designation Peak Roughness 

(inches/mi) 

Average Roughness 

Error (Percent) 

Cross Correlation 

S&G, 1.1-sec stop, 0.17 g 141 –0.8 0.981 

S&G, 1.1-sec stop, 0.20 g 140 –2.3 0.962 

S&G, 2.1-sec stop, 0.33 g 156 1.7 0.971 

S&G, 5.8-sec stop, 0.17 g 162 4.4 0.952 

S&G, 5.7-sec stop, 0.20 g 139 –1.4 0.949 

S&G, 5.8-sec stop, 0.20 g 127 1.4 0.974 

S&G, 10.7-sec stop, 0.20 g 147 1.9 0.970 

NS, 45-7 mi/hr, 0.20 g 151 1.9 0.977 

Brk, 44-19 mi/hr, 0.19 g 154 1.4 0.980 

Brk, 45-18 mi/hr, 0.39 g 143 –0.7 0.977 

Brk, 31-14 mi/hr, 0.16 g 143 –0.8 0.963 

Brk, 31-14 mi/hr, 0.18 g 146 –0.6 0.979 

Brk, 31-14 mi/hr, 0.18 g 170 0.3 0.985 

Brk, 31-12 mi/hr, 0.25 g 158 1.1 0.986 

Brk, 30-21 mi/hr, 0.84 g 164 3.7 0.943 

10 mi/hr 147 –0.5 0.988 

3 mi/hr 148 –2.6 0.957 

 Reference peak roughness value: 152 inches/mi. Adequate cross correlation (> 0.92) is shown in bold. 
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 

SUMMARY 

Inertial profilers are limited in their ability to measure IRI during challenging operational 

conditions. In particular, they are prone to errors in the floating-reference-height signal when the 

host vehicle travels at low speed, decelerates during braking, or comes to a stop. These errors 

reduce the accuracy of profiles measured on urban road networks and low-speed roadways and 

render the measurements of IRI unusable at important locations, such as signalized intersections. 

Two important mechanisms contribute to errors in the floating-reference-height signal derived 

from accelerometer output in typical inertial profilers.  

First, the accelerometers are typically fixed in the host-vehicle body. As such, they experience 

dynamic changes in pitch and roll orientation as the host vehicle reacts to driver inputs, such as 

braking and steering. Tilt of the sensitive axis causes errors in the measurement of true vertical 

acceleration and contamination by components of the longitudinal and lateral acceleration. The 

most common example of this error source occurs when the host vehicle tilts in pitch during 

braking and a portion of the rearward acceleration projects onto the sensitive axis of the 

accelerometer. After double integration, this appears as errors in curvature in the floating-

reference-height signal, which appears in the profile over the region where the braking occurred.  

Accelerometer tilt also causes profile measurement error at very low travel speed because of 

dynamic response of the profiler host vehicle in pitch and roll to road roughness. When the host 

vehicle travels at progressively lower speed, the accelerometer signal is contaminated in a 

frequency range that increasingly corresponds to the wavelength range of interest for measuring 

the IRI.  

Second, bias in the output of the accelerometers causes drift in the floating-reference-height 

signal. Causes of bias include road grade, cross slope, local variations in the acceleration due to 

gravity, and temperature changes. During constant-speed operation, the effects of drift are 

typically confined to very low frequencies and do not contaminate the wavelength range of 

interest within the profile. However, when the host vehicle decelerates to a very low speed or 

comes to a stop, the temporal drift in floating-reference-height signal appears within the 

measured profile over a very small distance range. Often, this manifests as a steep change in 

elevation. This registers as severe localized roughness and a large upward bias in the average 

roughness for the road section where the stop occurred. 

This research developed and tested the following options for addressing these sources of profile 

measurement error: 

Error suppression algorithms: These algorithms use specialized numerical procedures applied 

at low travel speed combined with standard filtering techniques to reduce artificial 

roughness measured at a stop. These techniques depend only on the use of output from 

sensors included in the nominal profiler design. As such, they are proposed as short-term 

solutions for adapting the processing software in existing profilers, and for new profilers 

when funds are not available to support the cost of additional sensors. In these 
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algorithms, reduction of artificial roughness at stops comes at the cost of invalid profile 

measurement at very low speed. 

Sensor augmentation: These designs require additional sensors to improve profile 

measurement at low speed, during braking, and at stops. The additional sensors include 

body-fixed measurement of profiler acceleration and rotation rate in three dimensions to 

help resolve acceleration into a consistent vertical direction. The system also includes 

GPS measurement of host-vehicle height, vertical velocity, pitch inclination, and roll 

inclination. A multi-rate extended Kalman filter combines the inertial sensors with the 

GPS outputs to reduce drift in the floating-reference-height signal and errors associated 

with host-vehicle tilt. Use of an RTS smoother improves the mitigation of drift. Sensor 

augmentation is proposed as a long-term solution because it requires major changes to 

profiler hardware and software design.  

A custom measurement system was developed and built for this research to enable an 

experimental demonstration of profile measurement errors caused by accelerometer 

misalignment and an investigation of the effectiveness of the proposed solutions. The 

measurement system included the nominal set of sensors that appear in typical profilers, and 

several additional sensors to support the augmentation approach described above. 

The nominal measurement system demonstrated excellent performance in three ways. First, it 

demonstrated accurate sensor calibration and very low system noise in stationary tests, such as 

the bounce test and the quiescent test. Second, it measured profile with a high degree of 

repeatability in the wavelength range of interest for the IRI. Third, it reproduced profiles 

measured by an inclinometer-based reference device accurately in the wavelength range of 

interest for the IRI. The system obtained cross correlation for repeatability and accuracy above 

the level expected for a reference device, but only under specific conditions. These include: (1) 

operation at a constant speed of 15 mi/hr and above, and (2) consistent lateral tracking for the 

two measurements under comparison to within 3 inches or less.  

The relative performance of error suppression algorithms and sensor augmentation proposed in 

this research was evaluated using the results from several test runs collected under challenging 

conditions, including operation at low speed, braking, and operation through a stop. For all test 

runs, performance is quantified using standard measures for accuracy of longitudinal profile and 

IRI used by road agencies for pavement network quality assurance and pavement network 

management.(87,92) These include: 

1. Reduction of bias in the peak value of short-interval roughness profiles relative to a 

reference measurement in test runs with braking and a stop. Peak values are reported in 

the region where braking ended or the test vehicle came to a stop. This is where the most 

severe bias typically occurs. 

2. Agreement to a reference measurement of average IRI measured over a 0.1-mile test 

section. 
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3. Cross correlation to a reference profile measurement using the output of the IRI 

algorithm over a 0.1-mile test section. Cross correlation of 0.92 or higher is deemed 

adequate. 

Unfortunately, the test runs performed at low speed, with braking, and with stops did not follow 

the same lateral track followed by the inclinometer-based device. To reduce the confounding 

effects of tracking errors, the reference profile was measured using a test run at 45 mi/hr with 

similar tracking to the evaluation runs. 

Table 28 summarizes the performance of the suppression algorithms and sensor augmentation 

options examined in this research. The options appear in three groups: (1) temporal profile 

calculation algorithms using the nominal sensor set, (2) spatial profile calculation algorithms 

using the nominal sensor set, and (3) the use of an augmented sensor set and Kalman filtering. In 

each group, results are provided for incremental improvements on the basic option or alternative 

implementations. 

Table 28 provides cross correlation results and percent error in roughness for selected test runs at 

low speed, with braking, and with stops. Text in cells with cross correlation above a threshold 

value of 0.92 is shown in bold. Some cells in table 28 are marked with a dash. In those instances, 

the results are the same as in the cell above, because the improvement to the algorithm over the 

one listed in the row above was not in effect for that test run. 

In table 28, the basic temporal and spatial algorithms represent use of the nominal inertial 

profiler sensors and no improvements to the baseline profile calculation algorithm. These 

algorithms suffer from large errors in measured roughness at low speed, during braking, and at 

stops. The adaptations “with high-pass filtering” apply the high-pass filters to the accelerometer 

signal prior to each stage of integration. Application of high-pass filtering in this manner is 

recommended for both spatial and temporal profile measurement architectures. Although pre-

integration high-pass filtering alone does not offer sufficient improvement, it is recommended as 

an error mitigation strategy.  

Adaptive high-pass filtering is recommended for architectures with temporal profile calculation, 

and high-pass filtering with timer distortion and height sensor reflection is recommended for 

architectures with spatial profile calculation. Note that each of these algorithms greatly reduces 

(i.e., suppresses) the erroneous peak roughness for the test runs with the stop and the near stop. 

However, the algorithms do so by removing both valid and invalid content at low speed, and they 

both underestimate roughness for the test run at 3 mi/hr. These algorithms offer a short-term 

option for reducing the largest errors in measured roughness in cases where the funds do not 

exist for implementing the sensor augmentation strategy proposed in the research. 
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Table 28. Cross correlation to the reference test run for selected conditions. 

Algorithm Constant Speed 

3 mi/hr 

Constant Speed 

10 mi/hr 

Braking 

31–14 mi/hr  

0.18 g 

Near Stop 

45–7 mi/hr 

0.20 g 

Stop & Go 

2.1-sec stop 

0.33 g 

Stop & Go 

10.7-sec stop 

0.20 g 

Basic Temporal Algorithm (TA) < 0.2 

(1622.7) 

0.863 

(9.2) 

0.605 

(27.9) 

< 0.2 

(195.3) 

< 0.2 

(862.6) 

< 0.2 

(13,139.7) 

TA with High-Pass Filter (HPF) 0.940 

(–4.2) 

0.985 

(–0.7) 

0.963 

(0.6) 

0.578 

(17.7) 

0.256 

(36.8) 

< 0.2 

(99.5) 

TA with Adaptive HPF 0.322 

(–51.9) 

0.985 

(–0.8) 

0.955 

(1.0) 

0.793 

(4.9) 

0.581 

(17.5) 

0.724 

(9.3) 

Basic Spatial Algorithm (SA) < 0.2 

(928.5) 

0.985 

(0.2) 

0.621 

(27.2) 

< 0.2 

(190.8) 

< 0.2 

(852.5) 

< 0.2 

(8,607.7) 

SA with Spatial HPF 0.746 

(14.5) 

0.927 

(–1.0) 

0.900 

(1.8) 

0.713 

(8.1) 

< 0.2 

(231.3) 

< 0.2 

(4,946.6) 

SA with HPF, Timer Distortion, and 

Height-Sensor Reflection (HSR) 

< 0.2 

(–86.6) 

— — 0.756 

(3.4) 

0.587 

(11.7) 

0.678 

(11.8) 

Kalman Filter (KF) 0.855 

(2.7) 

0.986 

(1.5) 

0.904 

(7.2) 

0.921 

(5.5) 

< 0.2 

(40.3) 

< 0.2 

(90.7) 

KF with smoother (KS) 

 

0.973 

(–1.8) 

0.988 

(–0.6) 

0.981 

(0.9) 

0.977 

(2.1) 

0.963 

(3.0) 

0.938 

(2.9) 

KS with HSR 

 

— — — — 0.972 

(1.9) 

0.958 

(3.0) 

KS with HSR and a Constant Reference 0.957 

(–2.6) 

0.988 

(–0.5) 

0.985 

(0.3) 

0.977 

(1.9) 

0.971 

(1.7) 

0.970 

(1.9) 

Cells in bold correspond to cross correlation above 0.92. Percent error in roughness is shown in parentheses. 
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Sensor augmentation with Kalman filtering offered substantial improvement over the basic 

temporal and spatial algorithms but was not universally better than the error suppression 

algorithms. However, the Kalman smoother produced results well above the cross correlation 

threshold of 0.92. Values close to 0.98 imply high-quality measurement of average IRI, peak 

roughness, and of details within the profile in the wavelength range of interest for the IRI. 

Further improvement is evident using height-sensor reflection, which uses the height-sensor 

signal to help mitigate drift in the floating-reference-height signal during stops. 

Sensor augmentation and the use of the Kalman smoother with height-sensor reflection is 

recommended as a long-term option for improving profile measurement at low speed, during 

braking, and at stops. Implementation of this option is strongly encouraged for road network 

survey vehicles with profilers that already include some of the additional sensors for other 

functions, and for any network survey vehicle that is expected to operate on urban and low-speed 

roads.  

The “constant reference” option uses the Kalman filter and smoother but replaces GPS outputs 

with artificial signals. Rather than using GPS observations to correct low-frequency content in 

the integrated outputs from the inertial sensors, the constant reference serves as a limit on drift in 

the position and orientation estimates. This method is recommended as an “urban canyon” mode 

for systems with GPS sensors. The constant reference option also offers the possibility to reduce 

sensor cost and mounting complexity. 

The “constant reference” option uses the Kalman filter and smoother, but replaces GPS outputs 

with artificial reference signals. Rather than using genuine GPS observations to correct low-

frequency content in the integrated outputs from the inertial sensors, the constant reference 

serves as a limit on drift in the position and orientation estimates. This method is recommended 

as an “urban canyon” mode for systems with GPS sensors. The constant reference option also 

offers the possibility to reduce sensor cost and mounting complexity. 

SUGGESTIONS FOR FUTURE RESEARCH 

Practical Implementation 

The measurement system developed for this research benefited from several advantages that may 

not exist in typical inertial profilers. These include: (1) mounting of the profile measurement 

hardware directly to the host-vehicle frame, (2) a high level of protection from electrical noise, 

(3) recording raw signals at a high rate, (4) redundant provisions to synchronize signals from 

different subsystems, and (5) the selection of a host vehicle with favorable dynamics. The field 

performance of a system using the techniques recommended in this research depends, to some 

extent, on all of these factors. To facilitate retrofit of existing inertial profilers, an examination of 

these issues is recommended. In particular, work is needed to determine the maximum 

performance that is possible using a less favorable host vehicle (e.g., shorter wheelbase, higher 

center of mass) and less favorable mounting practices (e.g., trailer hitch). 
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Three-Dimensional Surface Measurement 

Commercial inertial profilers are now available that provide measurements of the road surface in 

three dimensions. The typical design includes replacement of the height sensors with a sweeping 

laser, which is mounted high above the road surface to help capture a wide transverse profile in 

each sweep. This increases the vulnerability of the range-to-ground measurement to alignment 

errors. It also places the inertial sensors in a location with a different vibration environment. The 

methods demonstrated in this research offer potential benefits for those three-dimensional 

systems. However, some additional provisions may be needed. These include: (1) consideration 

of the pitch and roll inclination of the sweeping laser, and (2) development of a custom tuning 

approach to account for the change in vibration environment.  

Alternative Measurement Concepts 

This research provided options to reduce or eliminate errors in measured longitudinal road 

profile by improving measurement of the accelerometer-established inertial platform. This 

approach was taken to create options for improving the performance of a large existing fleet of 

inertial profilers. Several other measurement concepts have the potential to measure valid profile 

without the use of an inertial platform.  

Many alternative measurement concepts have been proposed in the classical literature but were 

never adapted for use on a road with live traffic. These options, and others, should be considered 

for two reasons. First, sufficient computing power is available to leverage data processing and 

fusion techniques, like those demonstrated in this research, to use multiple sensors and benefit 

from the strengths of each. Second, other options are available to serve as the host vehicle that 

may provide more favorable dynamics (e.g., drones).  

Computational Efficiency 

Using the Kalman filter required only a modest computational load, in part because the 

calculations associated with the measurement model were only needed when the GPS system 

provided new observations. In contrast, the RTS smoother required heavy computation at the 

same rate as the analog sensor outputs were digitized, and storage of more than 50 signals for 

processing after the completion of each test run. Additional research may reveal methods for 

decreasing the required storage and computational load. Substantial savings are possible if a 

valid method can be found to reduce the frequency at which the state error covariance and 

Kalman gain matrices are updated. 

This research used a fixed-interval smoother to improve the state estimates from the Kalman 

filter. Use of a fixed-interval smoother is cumbersome for very long pavement sections or test 

runs that include a long stop. A fixed lag smoother offers the option to reduce demands on signal 

storage at the cost of an increase in computational load. A fixed-lag smoother was not used 

because the lag required for an accurate estimate of the floating reference height depends heavily 

on the host-vehicle speed profile. For example, no lag is needed at constant speed, and a lag that 

goes well beyond the stop is needed for stop-and-go operation. Development of an adaptive 

fixed-lag smoother may improve the trade-off between performance and storage demand 

compared to the fixed-interval smoother used in this research.  
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APPENDIX A. DIGITAL FILTERING TECHNICAL NOTES 

This appendix describes digital filters used in support of the research. All of the filters are based 

on a cascaded form of the third-order Butterworth filter.  

DESIGNATIONS 

For the high-pass filter, the transfer function, H(s), is shown in figure 180. 

  

Figure 180. Equation. High-pass filter transfer function. 

In figure 180, a is the analog (angular) cut-off frequency and s is the Laplace operator. In this 

implementation, the filter comprises a first-order Butterworth filter, H1(s), and a complementary 

second-order stage, H2(s). Their transfer functions are shown in figure 181 and figure 182, 

respectively. 

  

Figure 181. Equation. First order Butterworth high-pass transfer function. 

  

Figure 182. Equation. Second order complementary high-pass transfer function. 

Likewise, the cascaded form of the low-pass filter includes the transfer functions shown in 

figure 183 and figure 184. 

   

Figure 183. Equation. First order Butterworth low-pass transfer function. 

  

Figure 184. Equation. Second order complementary low-pass transfer function. 

This document assigns the following designations to the filter stages: 

LPFB3S1: Low-pass filter, first-order stage. 

LPFB3S2: Low-pass filter, second-order stage. 

HPFB3S1: High-pass filter, first-order stage. 
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HPFB3S2: High-pass filter, second-order stage. 

These designations pertain to application of the filters beginning at the earliest available sample 

and progressing forward. In some cases, these filtering stages are applied in reverse to cancel the 

phase shift imposed by the forward-running stages. That is, filtering is initiated at the latest 

available sample and progresses backward. In such cases, the designations include an “R” at the 

end of the subscript (e.g., HPFB3S1R). 

An abbreviated designation for the high-pass filter (HPFB3) and low-pass filter (LPFB3) indicates 

that the first-order and second-order stages were applied in succession. For example, LPFB3 

implies the application of LPFB3S1 followed by LPFB3S2. 

When both stages of the forward and reverse filters are applied without other processing steps 

between any of them, they are applied in a specific order to minimize initial transient responses: 

first-order stage, forward; second-order stage, reverse, first-order stage, reverse; and second-

order stage, forward. Together, these four stages make up a sixth-order filter. The abbreviated 

designations for these filter sets are: 

HPFB3x2: HPFB3S1, HPFB3S2R, HPFB3S1R, and HPFB3S2. 

LPFB3x2: LPFB3S1, LPFB3S2R, LPFB3S1R, and LPFB3S2. 

DIGITIZATION 

The bilinear approximation recasts the transfer functions into the z-domain, as shown in 

figure 185. In figure 185, t is the sampling period of the digital signal. Using the substitution 

shown in figure 186 accounts for the non-linear relationship between the analog cut-off 

frequency and the digital cut-off frequency. In figure 186, fc is the digital cut-off frequency in 

Hertz. 

   

Figure 185. Equation. Bilinear approximation. 

  

Figure 186. Equation. Substitution for the cut-off frequency. 

Manipulation of the z-domain transfer functions into the form shown in figure 187 provides the 

coefficients for the digital filtering equations. 

  

Figure 187. Equation. Z-domain transfer functions. 
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In figure 187, n is the order of the filter, z–i represents a delay of i samples, and Di and Ni are 

filter coefficients. Figure 188 shows the discrete equation for the forward-running filter. In 

figure 188, x(tk) and y(tk) are the input and output signals at discrete sample number k, and K is 

the number of samples in each signal. Figure 189 shows the discrete equation for the backward-

running filter. 

  

Figure 188. Equation. Forward-running filter. 

  

Figure 189. Equation. Backward-running filter. 

Table 29 provides the coefficients for the four basic filtering stages. For notational simplicity, the 

substitution shown in figure 190 is used. 

   

Figure 190. Equation. Notational substitution. 

Table 29. Filter coefficients. 

Filter D0  D1 D2  N0  N1  N2  

LPFB3S1 c + 1 c – 1 — c c — 

LPFB3S2 c2 + c + 1 2(c2 – 1)  c2 – c + 1 c2 2c2 c2 

HPFB3S1 c + 1 c – 1 — 1 –1 — 

HPFB3S2 c2 + c + 1 2(c2 – 1)  c2 – c + 1 1 –2 1 

INITIALIZATION 

Figure 191 through figure 194 provide the initialization equations for the forward-running filters. 

  

Figure 191. Equation. Initialization of LPFB3S1. 

  

Figure 192. Equation. Initialization of LPFB3S2. 

  

Figure 193. Equation. Initialization of HPFB3S1. 
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Figure 194. Equation. Initialization of HPFB3S2. 

Figure 195 through figure 198 provide the initialization equations for the forward-running filters. 

  

Figure 195. Equation. Initialization of LPFB3S1R. 

  

Figure 196. Equation. Initialization of LPFB3S2R. 

  

Figure 197. Equation. Initialization of HPFB3S1R. 

  

Figure 198. Equation. Initialization of HPFB3S2R. 

CUT-OFF FREQUENCY 

The cut-off frequency for these filters is expressed in terms of the cut-off frequency for the third-

order filter, which is the cut-off for the combination of the first- and second-order stages. Note 

that the gain of the first-order stage is also reduced by 3 dB at the cut-off frequency, because it is 

a Butterworth filter. The gain of the second-order complementary filter is unity at the cut-off 

frequency. The gain of the second-order complementary high-pass filter is reduced by 3 dB at 

0.78615fc, and the gain of the second-order complementary low-pass filter is reduced by 3 dB at 

1.27202fc. 

To obtain 3 dB gain reduction for the sixth-order combination of forward and reverse high-pass 

filtering stages (i.e., HPFB3x2) at a desired frequency, f–3dB, the cut-off frequency for the third-

order filters must be set as shown in figure 199. Figure 200 provides the setting for the low-pass 

filter. 

  

Figure 199. Equation. High-pass filter cut-off frequency. 

  

Figure 200. Equation. Low-pass filter cut-off frequency. 



 135 

SPATIAL FILTERING 

Spatial filtering is performed in the distance domain, rather than the time domain. The filters 

operate as described above. However, the independent variable xk replaces tk and the distance 

increment x replaces the time increment t. For convenience of interpretation, cut-off values 

for spatial filtering are expressed in terms of wavelength (c), rather than spatial frequency. To 

obtain a 3 dB reduction for the sixth-order combination of forward and reverse high-pass 

filtering stages (i.e., HPFB3x2) at a desired wavelength, –3dB, the cut-off wavelength for the third-

order filters must be set as shown in figure 201. 

  

Figure 201. Equation. High-pass filter cut-off wavelength. 
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APPENDIX B: MEASUREMENT SYSTEM PHOTOS 

All images in Appendix B are provided by Steve Karamihas. 

 

Figure 202. Image. Left side view. 

 

 

Figure 203. Image. Right side view. 

 

 

Figure 204. Image. Lower sensor rack. 
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Figure 205. Image. Rear view. 

 

Figure 206. Image. Rotational encoder mounting hardware. 
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Figure 207. Image. Right sensor pod, underside, lower cover removed. 

 

Figure 208. Image. Right sensor pod, upper cover removed. 
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Figure 209. Image. Center sensor pod, cover removed. 

 

 

Figure 210. Image. Forward camera and lane tracker camera. 
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Figure 211. Image. Front left GPS antenna (pitch rover). 

 

Figure 212. Image. Left front laser. 
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Figure 213. Image. Vehicle interior. 

 

Figure 214. Image. DAS exterior. 
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Figure 215. Image. DAS, power supply, and GPS receivers. 

 

 

Figure 216. Image. Vehicle interior with outer hardware stowed. 
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APPENDIX C: LINEARIZED SYSTEM EQUATIONS 

The figures in this appendix present the linearized system equations for the extended Kalman 

filter described in Chapter 6. For ease of interpretation, the subscripts for time step are omitted.  

  

Figure 217. Equation. Abbreviations for sine and cosine functions. 

   

Figure 218. Equation. State vector. 

  

   

Figure 219. Equations. Linearized state transition matrix. 

  

Figure 220. Equation. Linearized process noise covariance. 

  

Figure 221. Equations. Q matrix. 
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Figure 222. Equation. W matrix. 

  

Figure 223. Equation. Measurement vector. 

  

   

Figure 224. Equation. Linearized measurement matrix. 

  

Figure 225. Equation. Linearized measurement noise covariance. 
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