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Webinar Series

• Sponsored by Federal Highway 
Administration

• “Towards Sustainable Pavement Systems: A 
Reference Document”
– http://www.fhwa.dot.gov/pavement/sustainability/

• Total of 5 webinars from April to September
• Webinars recorded for posting on FHWA 

website
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Housekeeping

• Formal Presentations:
– 1 hour 40 min

• Questions:
– 20 minutes
–Use chat box to submit
–Use dropdown menu to

“send questions to staff”
• Professional Development Hours (PDHs) 

Certificates
– 2 hours per webinar
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Today’s Webinar
• Topic: Sustainable Strategies for Concrete Pavements: 

Materials, Design, Construction
• Speakers:

– Gina Ahlstrom, FHWA
– Tom Van Dam, NCE
– John Harvey, University of California-Davis
– Jeff Roesler, University of Illinois
– Mark Snyder, Engineering Consultant

• Moderators:
– Kurt Smith, Applied Pavement Technology, Inc.
– Tom Van Dam, NCE
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Background and Overview

Gina Ahlstrom

FHWA Sustainable Pavements Program



US DOT is Committed to 
Advancing Sustainability

• DOT will incorporate sustainability principles into 
our policies, operations, investments and research 
through innovative initiatives and actions such as:

– Infrastructure investments and other grant programs,
– Innovative financial tools and credit programs,
– Rule- and policy- making,
– Research, technology development and application,
– Public information, and
– Enforcement and monitoring.

Policy Statement
Signed Secretary Anthony R. Foxx, June 2014 6 of 108



FHWA 
Sustainable Pavements Program

• Support the US DOT goals for sustainability

• Increase the body of knowledge regarding 
sustainability of asphalt and concrete 
materials throughout the pavement life cycle

• Increase the use of sustainable technologies 
and practices in pavement design, 
construction, preservation, and maintenance
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“Towards Sustainable Pavements: 
A Reference Document”

• Guidelines for the design, construction, 
preservation and maintenance of sustainable 
pavements using asphalt and concrete 
materials

• Educate practitioners on how sustainability 
concepts can be incorporated into pavements

• Encourage adoption of sustainable practices
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A Collaborative Effort

• Comprehensive review of current literature

• Extensive review by representative from key 
stakeholders groups:
– State Departments of Transportation
–Other Public Agencies
– Asphalt and Concrete Industries
– Academia
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• Materials and Consideration of Life Cycle
• Aggregate Materials
• Hydraulic Cement Materials and Concrete 

Mixtures

Tom Van Dam

FHWA Sustainable Pavements Program



Materials and Consideration of 
the Life Cycle

• Must consider material choices from a life 
cycle perspective
–What are the agency’s sustainability goals?
–What are the impacts of using a material once 

versus multiple times?
–What are the trade-offs in increasing the use of 

recycled, co-product, or waste materials 
(RCWMs)?
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Recycled, Co-Product, or Waste 
Materials (RCWMs)

• Recycled materials are obtained from old 
pavement and are included in new pavement
– e.g. reclaimed asphalt pavement (RAP) and 

recycled concrete aggregates (RCA)
• A co-product is from another process (often 

industrial) that brings value
– e.g. slag cement

• Waste are materials that would normally be 
landfilled
– e.g. fly ash? air-cooled blast furnace slag 

aggregate?
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Considerations When Using 
RCWMs

• Does the RCWM result in equivalent or 
better performance?
–What if it is just slightly worse?

• Does the RCWM have to be transported 
great distances?

• Does the RCWM make it more difficult to 
recycle the pavement in the future?
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Other Material Considerations

• Does longer life justify increased material 
transportation or production-related impacts?

• Does the pavement design make best use of 
lower impact materials?

• Are the impacts of transporting materials 
considered?

• Are specifications protecting the owner’s 
interest or a barrier to innovation? 

• Are there impacts on construction variability?
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Aggregate Materials

• Largest share of mass and volume in a 
pavement structure
–Have relatively low environmental footprint per 

unit mass
–Consumed in large quantities

• Impact incurred in mining, processing, and 
transporting aggregates
– Impact of transportation can be very large  
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Aggregates

• Used in asphalt and concrete mixtures, 
bound and unbound base and subbase

• Natural aggregates are classified as crushed 
stone or sands and gravels

• Manufactured aggregates are often created 
to possess unique characteristics
– Lightweight most common
–Can also include RCWMs such as air-cooled 

blast furnace slag
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Typical Volumes of Aggregate

Tayabji, Smith, and Van Dam 2010 17 of 108



Aggregates – The Facts (2012)

• Produced in all 50 states
• 1,324M tons of crushed 

stone worth $12B 
– 82% used as construction 

materials and 10% used in 
cement manufacturing

• 927M tons of sand & 
gravel worth $6.4B
– 93% used in road 

construction
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RCWMs Used as Aggregate

• Reclaimed asphalt 
pavement (RAP)

• Recycled concrete 
aggregate (RCA)

• Recycled asphalt 
shingles (RAS)

• Air-cooled blast furnace 
slag (ACBFS)

• Steel furnace slag (SFS)
• Foundry sand 19 of 108



Aggregates and Environmental 
Impacts

• Energy consumption and GHGs – depends 
on source of electrical power and transport 
distance
–Crushed stone has greater impacts

• Other impacts include fugitive dust, water 
consumption, land-use issues, and 
community impacts

• Impacts make it difficult to permit new 
aggregate sources
– Transport distance increasing
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Aggregate Impacts: Energy and 
GHGs
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Transportation Mode and Fuel 
Consumption

About 22 lbs of CO2 from burning one gallon of diesel fuel
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Strategies for Improving 
Sustainability

• Reduce use of virgin 
aggregate over the life 
cycle

• Reduce impact of virgin 
aggregate acquisition 
and processing

• Reduce impact of 
transporting aggregates
–Use barges or rail if 

possible
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Example: The Illinois Tollway
• Committed to 

recycling 100% of 
existing pavements

• Two-lift composite 
concrete using 
RCWM in bottom lift

• In-place recycling of 
existing pavements 

• Decisions are first 
economic, then 
environmental

Photo compliments of Steve 
Gillen, Illinois Tollway Authority
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Aggregate Issues and Future 
Directions

• Proximity of aggregate sources to urban 
centers
– Trade-off between transportation and local 

community impacts
• Increasing pressures to increase use of 

RCWMs
– Trade-off with regards to performance

• Increased use of marginal aggregates
• Demand for specialty aggregates increasing 

to meet specific sustainability goals
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Hydraulic Cement and Concrete 
Mixtures

• Hydraulic cement concrete is humankinds 
most commonly used material after water
– Approximately 1 yd3/person/year

• Large economic, environmental, and social 
impacts
– 80.5 million tons of cement manufactured in the 

U.S. in 2014
– In 2013, linked to just under 0.5% of US GHGs

• About 5 percent of cement is used in paved 
roads

26 of 108



27 of 108



Portland Cement in Concrete

Typical concrete at the gate:
0.26 t CO2 /yd3 concrete
0.24 t CO2 from portland cement

Cement

Gravel
Sand
Water
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Sustainability is Enhanced by 
Using Less Portland Cement

• Reduce clinker in cementitious material
• Reduce cementitious content in concrete

– From 564+ lbs/yd3 to 500 lbs/ft3 or less
–Context sensitive

• Reduce concrete needed over the life cycle
– Improved design – thinner structures
– Improved durability

29 of 108



Reducing Clinker Content in 
Cement

• Replace clinker with ground limestone and 
inorganic processing additions
– AASHTO M 85 portland cement can have up to 

5% limestone and 5% inorganic additions
– AASHTO M 240 Type IL blended cement can 

have up to 15% limestone
• Replace clinker with supplementary 

cementitious materials (SCMs)
– Added at concrete plant
–Obtained as blended cement (AASHTO M 240)
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Supplementary 
Cementitious Materials 

(SCMs)
• Fly ash 

–Collected from flue gases 
of coal burning power 
plant

• Slag cement
– From iron blast furnace

• Natural pozzolan
–Calcined clay, volcanic 

ash, ground pumice, etc.
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Typical Replacement Levels for 
SCMs in Paving Concrete

• Class F fly ash: 15% - 25%
• Class C fly ash: 15% - 40%
• Slag: 25% - 50%

Note that replacement levels can be 
much higher in mass concrete 
placements, as high as 85%
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Fly Ash Utilization

ACAA 2014

33 of 108



Shipments of Slag Cement
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AASHTO M 240 Blended 
Cements

• Produced by cement manufacturers
• Type IP(X), Type IS(X), Type IL(X), 

and Type IT (X)(Y)
– Blended with pozzolan, slag cement, 

limestone or ternary blend
• Also designated as air entrained (A), 

moderate of high sulfate resistant (MS or 
HS), or moderate or low heat of hydration 
(MH or LH)
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SCMs and CO2 Emissions
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Reduce Cement By Increasing 
Aggregate Volume in Concrete

• Maximize aggregate content 
–Use of optimized aggregate grading for paving

• Ensure volume stability of aggregates
– Porous aggregates require special handling

• Ensure aggregate durability
– Freeze-thaw
– Alkali-aggregate reactivity
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Cement Content, SCMs, and CO2
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Making Concrete Durable
• Good mixture design 

with relatively low 
permeability and 
shrinkage

• Resistance to freezing 
and thawing
– In the presence of 

deicers
• Mitigation of alkali-

aggregate reactivity
• Resistance to sulfate 

attack

Reduced 
cementitious content 
and the use of SCMs 
helps create durable 
concrete
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Strategies to Improve 
Sustainability of Concrete

• Reduce energy and GHGs during cement 
production

• Reduce energy and GHGs during concrete 
production

• Reduce water use
• Increase use of RCWMs and marginal 

materials as aggregate
• Improve durability of concrete
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Water Recycling at Concrete 
Plant
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• Key Issues for Pavement Design
• Example Case Studies

John Harvey

FHWA Sustainable Pavements Program



Key Issues for Pavement Design
• Surface performance

– Smoothness affects vehicle fuel use 
and maintenance

– Consider life cycle smoothness, not 
just initial

– Importance increases with increased 
traffic

• Design life selection
– Longer life usually means lower life 

cycle cost and impact
– Also means higher initial investment 

(cost, environmental impact)
– Should include consideration of end-

of-life alternatives

Gillespie and Sayers
EB Lee
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Key Issues for Pavement Design
• Pavement type selection

– Impacts every phase of the pavement life cycle
– Relative sustainability of different types depends 

on location, design traffic, and available 
materials

• Construction and materials selection 
interaction
– See discussion of concrete materials
– Consider ability to get high quality construction 
– Consider work zone traffic delays

• Construction quality requirements
• End-of-Life recycling strategies

Paramics, Lee et al.
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Consideration of Payback Time
Example:  Design Life

• Return time and uncertainty for high early environmental impact choices

Santero et al.
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• Grinding effect on IRI (-2σ; mean; +2σ):

• IRI progression on rehabilitated lanes:

• Vs. Do Nothing (Maintenance Only)

Consideration of Payback Example: Different Grinding 
Construction Smoothness and Traffic Scenarios

From (1) Caltrans Pavement Condition Survey; and (2) R. Stubstad, M. Darter, et al. The 
Effectiveness of Diamond Grinding Concrete pavements in California, 2005

( )
( )

1 51.74 10 9.66 10

1.15

IRI m km CumulativeESAL

InitialIRI m km

− −= − × + × ×

+ ×

( ) ( )0.6839 0.6197 _IRIchange m km IRI beforeGrinding m km= − + ×
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Case Study 2 (LA-5):
Effect of construction smoothness

10 mile (16 km) segment in need of rehab
Rural freeway
4 lanes, southbound
AADT:  ~80,000; ~25% trucks

Cars Trucks IRI
Lane 1 (Inner) 38% 0.2% 186
Lane 2 34% 8% 186
Lane 3 16% 42% 217
Lane 4 (Outer) 13% 49% 248

Compare:
- Do Nothing
- 10 year CPR B

- Slab replacement, grind 
Wang et al.
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Case Study 4 (IMP-86):
Effect of Construction Smoothness

5 mile (16 km) segment in need of rehab
Rural highway
2 lanes, southbound
AADT:  ~11,200; ~29% trucks

Cars Trucks IRI
Lane 1 (Inner) 76% 8% 155
Lane 2 24% 92% 170

Compare:
- Do Nothing
- 10 year CPR B

- Slab replacement, grind 
Wang et al.
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Mechanistic-Empirical Design Methods
• Permit rapid evaluation of:

– Materials
 Increased recycled content
 Materials with lower environmental impact
 Changes in mix design
 Locally available, lower quality specifications

– Construction
 Improved quality (smoothness and durability in particular)
 Less variability

– Pavement structures
 Climate, traffic and subgrade specific designs
 With materials and construction noted above
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Process for Considering 
Sustainability in Pavement Design
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Process for Considering Sustainability in 
Pavement Design (cont’d)

Step 4: Calculate and Evaluate:
- Performance
- Cost
- Environmental Impact
- Societal Impact

Step 5: Modify initial design using LCCA, LCA, and rating systems
(to reduce cost and minimize environmental and societal impact 

while still meeting performance and agency objectives and policies)

Modified 
Alternative 1

Modified 
Alternative 2

Modified 
Alternative 3

Modified 
Alternative n

Step 6: Select preferred design alternative 
based on agency goals and policies.
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• Concrete Pavement/Rehabilitation Types
• Sample Sustainable Design Strategies
• Future Directions/Emerging Technologies

Jeff Roesler

FHWA Sustainable Pavements Program



Selection of Concrete Pavement 
Types for Sustainable Design

• Select candidate pavement types based on 
material, construction, M&R, use, and end of 
life phases
–New or rehabilitated concrete pavement

• Define pavement layers/materials and inputs

• Perform pavement structural designs
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Sustainable Pavement Design 
Initial Evaluation

• Define goals / policies of agency or owner
– Sustainability objectives & metrics

LCA, LCCA, rating system, etc.

– Performance objectives
Structural (cracking, faulting)
Functional (smoothness, safety, noise)

–Drainage
–Design life / end-of-life

• Project constraints – traffic management
• Construction process
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Concrete Pavement Types:
New or Reconstructed

• Tradeoffs
– Design life, smoothness, maintenance/repair, rehabilitation options
– Initial vs. life cycle costs
– Life cycle assessment (LCA) impact factors (e.g. GWP)
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Composite Pavement Type:
Two-Lift Concrete

• Considerations
– Single lift paving vs. two lift
– Recycled or marginal materials in bottom lift
– Premium concrete surface, e.g., noise and friction
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Longer Life Concrete Pavement
• Principal arterial

– 30 to 60 year design life

• Durable concrete materials & reinforcement
• Non-erodible base layer & drainage
• Edge support – widen lane or tied shoulder

Long Life Example:
CRCP
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Concrete Pavement Types:
Overlays of Concrete

• Considerations
– Design life, existing pavement condition, end of life, elevation 

restrictions, reflective cracking, traffic constraints, funding resources
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Concrete Pavement Types:
Stormwater Management

• Considerations
– Management of stormwater discharge and peak flow
– Lower speed roadways
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Modular Pavement:
Precast Concrete Slabs

Fort Miller Group
Super-SlabTM
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Concrete Pavement Surface Options
• Friction, noise, surface runoff

– Tining
– Diamond grinding and grooving
– Turf drag

• Future considerations:
– Urban Heat Island (Albedo)
– Photocatalytic cement

UCPRC Better RoadsBeeldens & Boonen (2011)

Grooving

Grinding
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Layer and Material Type Selection
• Existing or new pavement structure

– Proposed roadway cross-section
• Options for using recycled materials

– subbase, base, shoulders, concrete layer

• Construction & Traffic 
Management Process

• Limit handling & hauling for 
more sustainable design
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Local Materials/ 
Low-Impact Transportation

• Transporting materials has major environmental and social 
impacts
– Consider materials specifications and whether designs can be 

developed to maximize use of local materials

• Consider adoption of a zero-waste approach that includes 
recycling of all pavement materials on-site or nearby

• Avoid compromising 
pavement longevity

• Reduce environmental 
impact of materials over the 
life cycle
– Cannot just consider initial 

construction
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Sustainable Pavement Design:
Reconstruction Example
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Accelerated Construction
• Can reduce cost and environmental 

impact
– Less mobilization and demobilization
– Less worker travel
– Short intense pain vs. prolonged delays

• Techniques:
– Designs and specifications to minimize 

thickness, speed construction
– Continuous and full direction closures
– Extensive traffic management planning, 

traffic monitoring and adjustments
– Extensive public outreach
– Provision of alternative transportation
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Yes,
44%No,

56% Yes,
70%

No,
30%

Before- construction After-construction

Do you support future 
“Rapid-Rehab” projects? 

Do you support I-15 Devore “Rapid 
Rehab” approach?

Public Perception Changes for 
Accelerated Construction

Lee et al. for Devore I-15 project 68 of 108



I-88 Tollway Example (September 2012)
• Illinois Tollway’s first two-lift pavement 
• Bottom lift was a ternary blend (cement, slag, fly ash) with 

21% coarse FRAP
• Bottom lift was 8 inches with 3.5-inch top lift 
• Bottom lift had lower compressive and flexural strengths but 

similar fracture properties to the top lift 
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I-90 Existing Pavement Structure
• Existing Roadway:

– 4” HMA
– 10” PCC (JPCP)
– 12” Granular Subbase

• Shoulders (HMA):
– 5 – 11 ft wide
– 6 – 7” thick

ADT= 317,000 veh.
Trucks = 11%
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I-90 Reconstruction Plan (2013-2015)

• Agency Goals/Constraints:
– Recycle 100% of existing 

roadway
– Maintain traffic revenue!!
– Provide land for construction 

staging areas
– Use:

 Two-lift concrete
 WMA
 Recycled materials – FRAP, 

RAS, RCA, existing granular 
subbase
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Use Phase Considerations
• Depends on roadway functional class 

(arterial, collector, etc.; rural vs. urban)
• Principal arterials

– Smoothness - maintained
 reduces environmental impact

– Longevity
 low level distress means less maintenance/repair

• Lower volume roads
–Material and construction dominate 

environmental impact
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Other Use Phase Factors
• Traffic

– Fuel efficiency is correlated to 
smoothness

– Also affected by texture, 
structural response

– Noise, skid, pollution, and 
particulates 

• Stormwater
– Urban issues include flooding 

and stormwater treatment
– Safety – splash/spray

• Aesthetics, urban heat island 
effect, artificial lighting, utility 
cuts, manholes
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Summary of Design Considerations

• Achieve longer life, thinner 
pavement, or more efficient 
design for same life by integrating
– Structural design 
– Materials selection and layers
– Construction (& traffic) process

• Maximize use of recycled and 
locally available materials
– Consider specifications changes

• Consider 
– Use phase impacts
– End-of-life scenarios
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Future Directions/Emerging 
Technologies

• Improved ME design capabilities
• Performance related construction 

specifications
• New materials including more recycled 

materials and multi-functional cements
• Integration of cost and environment 

impact in design criteria
• More consideration of future preservation, 

rehabilitation and recycling in design
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• Construction Considerations
• Strategies to Improve Sustainability of 

Concrete Pavement Construction Practices

Mark B. Snyder

FHWA Sustainable Pavements Program



Key Construction Issues 
Impacting Sustainability

• Energy consumption
– Transport of materials and construction operations

• Impacts on surrounding areas
– Exhaust and particulate emissions (local and global), 

impact on wetlands and streams
– Traffic delays, congestion and noise

• Impact of construction quality on pavement 
performance and overall service life
– Surface texture (friction [safety], noise)
– Roughness (impact on use phase fuel consumption)

• Economics of construction practices
– Agency costs, user costs (construction-related, use phase)
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Energy Consumption
• Construction: an energy-intensive process

– Activities may include: excavation, earthwork, 
material processing and placement 
compaction/consolidation of paving layers, 
texturing, jointing

– Equipment may include: excavators, haul 
equipment, crushers, mixers, graders, rollers, 
placers and pavers, and more.

• Energy consumption factors:
– Internal: Operational efficiencies
– External: Site operations and site conditions
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Construction:
Total Emissions and Emission Intensity

EPA (2009) 

Highway/Road/Bridge Construction EI =0.49 MT/$1000 (2002)
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Quantifying Sustainability Impact 
of Traffic Delays

• Energy and emissions contribution of traffic 
delays due to construction activities are often 
ignored in pavement LCAs

• Impact on environment, associated with traffic 
delays, may be quantified using appropriate tools:
– Traffic simulator to estimate driving schedule under 

changing roadway capacity
– EPA’s MOVES software to calculate additional 

emissions and energy consumption with changing 
driving schedules 
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Vehicle Emissions Simulations
• EPA’s MOVES

– Emission modeling 
system for mobile 
sources

– Energy consumption
– Emissions to air

 120+ emissions

• EPA’s NONROAD
– Emission modeling 

system for non-road 
equipment

– Energy consumption
– Emissions to air

 HC, CO, NOx, PM, SO2, 
and CO2

Also available: PE-2, GreenDOT 81 of 108



Case Study: Work Zone Scenarios 
and Impacts Using MOVES

• Traffic scenarios considered a 7.6 mi work zone (Kang et al., 
2014):
– Partition the project into 4 work zones and use night time closure to 

complete each 
– Partition the project into 2 work zones and use 16-hr closure between 10 

pm and 2 pm
– No partition with 32-hr closure starting from 9 pm and finishing 5 am

GWP due to traffic delay 
was 1.3 % (best case 
scenario) to 2.7 % (worst 
case scenario) of the total 
GWP including material and 
construction phases.
However , if no queue 
develops, there can be 
energy savings (Wang et al., 
2014) 
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Impacts of Construction on 
Surrounding Areas

• Emissions from Equipment Exhaust
• Airborne Particulates from Construction 

Operations
• Noise Generated from Construction 

Operations
• Construction Impacts on Local Traffic, 

Residences, and Business Operations
• Construction in Streams, Wetlands, and 

Environmentally Sensitive Areas
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Impacts of Construction:
Traffic Delays and Congestion

• Work zones can cause user delay, increased fuel 
consumption, and compromised roadway safety 

• Indirect economic and environmental impact result 
from construction activities due to reduction in 
roadway capacity and delays 
– Highway construction zones account for 24% of 

nonrecurring congestion equivalent to 482 million vehicle-
hours per year (USDOT 2006)

– Loss of highway capacity (60 million vehicles per day -
Wunderlich and Hardesty, 2003)
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Impacts of Construction Quality
Performance expectations from durable 
materials and effective designs will be 

unrealized with poor construction quality.

• Quality must be reflected in both structural and 
functional (e.g., friction, noise, IRI) characteristics.
– Example: strong, durable pavements with poor ride may 

have high costs of fuel, vehicle maintenance, and 
damage to transported goods.

• Durability/longevity is a primary factor impacting 
pavement sustainability.
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Economics of Construction Practices: 
Initial and Long-term, Agency and User
• Work zones cause 24% of nonrecurring U.S. 

congestion: 482 million annual vehicle-hours of delay 
(USDOT 2006) and $700M annual fuel loss 
(Antonucci et al, 2005)

• Construction changes to enhance sustainability often 
increase costs.
– Examples: noise and pollution reduction, erosion control, 

improving local access during construction

• Costs must be weighed against expected benefits.  
High-cost changes may not be adopted, even with 
potential environmental and societal benefits.
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Improving General Construction 
Sustainability: Fuel Use and Emissions

• Minimize haul distances
• Select appropriate equipment type and size
• Reduce idling times
• Retrofit/upgrade equipment and/or use 

hybrid equipment
–Dual-fuel generators, grid electricity

• Use alternative fuels
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Improving General Construction 
Sustainability: Alternative Fuels

• Diesel (non-road): 3000-5000 ppm sulfur
• Ultra-low Sulfur Diesel (ULSD): <15 ppm

– Lower energy content, higher price

• Biodiesel (B5 and B20)
– Reduced PM, CO and HC emissions, reduced engine 

wear
– Higher price, increased NOx, lower power and fuel 

economy, hose/gasket degradation

Fuel Type Emissions (lb CO2) GHG Reduction – 3% Fuel GHG Reduction, 10% Fuel

Diesel 22.37/gallon 600 M lbs CO2 2000 M lbs CO2

Gasoline 19.54/gallon 186 M lbs CO2 621 M lbs CO2

Nat. Gas 11.7/1000ft3 106 M lbs CO2 353 M lbs CO2
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Improving General Construction 
Sustainability: Erosion and Runoff

• Minimize extent and duration of disturbed areas
– Construction phasing

• Use perimeter control barriers
– Fences, straw bales, etc.

• Apply erosion control matting or blankets
• Re-vegetate ASAP
• Store/stockpile materials away (e.g., > 40 ft) from 

water courses.
• Cover stockpiles or provide barriers for rain events
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Improving General Construction 
Sustainability: Noise Reductions

• Construction time restrictions
–Reduced productivity? Increased emissions due 

to prolonged construction?
• Equipment maintenance/modifications

–Requires capital investment
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Improving General Construction 
Sustainability: Accelerated Construction

• Establish performance goals and measures for work 
zones 
– e.g., target work zone delay to be less than 6% of all traffic 

delays (The Netherlands); U.S. value estimated at 10%.

• Incorporate lane/road closure analysis strategies during 
project planning
– Use project management programs such as FHWA’s 

QuickZone, CalTrans’ CA4PRS, and Dynasmart 

• Implement effective road and lane closure strategies 
during construction

• Implement intelligent transportation systems (ITS) to 
provide alternative routes or modes to drivers
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Case Study: QuickZone
• Quickzone is a software tool for traffic analysis that 

compares traffic impacts for work zone mitigation 
strategies and estimates traffic delays and cost

• Quickzone was used during the planning stage for 
Woodrow Wilson Bridge replacement project with an 
objective to minimize impact on road users

– Duration of project was 
reduced from an estimated 6 
months to 2 months

– Efficient communication was 
created between the 
contractor and bridge 
management team 
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Case Study: I-15 Devore Selection of 
Closure Type Using CA4PRS

Total 
Closures

Closure 
Hours

User 
Delay

Agency 
Cost

Total 
Cost

1 Roadbed    
Continuous 2 400 5.0 15.0 20.0 80

72-Hour Weekday 
Continuous 8 512 5.0 16.0 21.0 50

55-Hour Weekend 
Continuous 10 550 10.0 17.0 27.0 80

10-Hour Night-time 
Closures 220 2,200 7.0 21.0 28.0 30

Max. 
Peak
Delay
(Min)

Construction
Scenario

Schedule 
Comparison

Cost Comparison ($M)

Lee et al. from I-15 Devore project
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Improving General Construction 
Sustainability: Contracting Alternatives

• Emissions control through contract-required EPA 
certification of equipment or emissions-reducing retrofit 
pollution controls.
– Examples: MassDOT Central Artery, IDOT Dan Ryan, various 

NY Metro Transportation Agency projects

• Alternative bidding and contracting to encourage 
reduced GHG and other pollutant emissions
– A + B (cost plus time) bidding to reduce project duration
– A + B + C (C = environmental costs) bidding has been 

proposed (Ahn 2012)
 Use LCA to estimate emission and energy consumption values for C
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Concrete Pavement Construction:
Overview

(fuel factor source: Skolnik, Brooks, and Oman 2013) 95 of 108



Improving the Sustainability of Concrete 
Pavement Construction Practices

• Reduce use of virgin materials
– On-site recycling
– Two-lift paving

• Minimize construction fuel use and emissions
– On-site recycling (foundation layers)
– Match construction equipment and production 

capacities
– Single-lift construction
– Use of roller-compacted concrete (RCC)
– Use of early-entry saws

• Conserve and protect water resources
– Collect and re-use concrete wash water 96 of 108



Improving the Sustainability of Concrete 
Pavement Construction Practices

• Improve initial ride quality (reduce use phase fuel 
consumption and emissions)
– Two-lift paving
– Real-time profile (RTP) measurement and control

• Increase pavement service life
– Improved construction QA (including dowel alignment)
– Improved curing materials and practices

• Balance surface friction requirements with tire-
pavement noise impacts
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On-site Recycling
• Reduced project 

(material) costs
• Reduced haul costs
• Reduced fuel 

consumption
• Reduced GHG 

emissions
• Reduced consumption 

of resources
• Reduced use of landfills
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Considerations for Concrete Recycling

• Many potential applications
– Base/subbase materials (most common), 

new concrete and asphalt paving layers, 
riprap, fill and embankment, many others

• Suitability may be limited by quality of 
source concrete
– Pavements vs building demolition debris
– Materials-related distress (AAR, freeze-

thaw)

• Production processes impact product 
quality

• Stockpile runoff and drainage effluent
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Two-lift Paving
• Pros:

– Potential improvement in initial ride quality, with 
resulting reduction in use-phase user costs, fuel 
consumption and emissions

– Potential for improved use of local and recycled 
materials

• Cons:
– Possible increased 

construction cost (slight)
– More energy consumed in 

construction

100 of 108



Use of Roller-Compacted Concrete
• Pros:

– Significant construction 
cost savings (primarily 
materials)

– Lower fuel consumption 
and GHGs in construction

– Adequate ride quality for 
low-speed pavements

• Cons:
– Overlay or diamond 

grinding for higher-speed 
pavements (added cost, 
fuel and possibly material
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Collect and Re-Use Concrete 
Wash Water

• Increased costs for collection and 
removal

• Reduced costs for remediation and 
clearing drains

• Eliminate 
localized 
vegetation kills

• Eliminate pH 
impact on local 
surface waters
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Real-Time Profile (RTP) 
Measurement

• What is it?
– An integrated system of profile data collection 

sensors and processing software that provides 
real-time profile feedback to the contractor.

Photo credits: Gary Fick, SHRP2 R06E Contractor
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Real-Time Profile (RTP) 
Measurement

• Pros:
– Better ride quality, lower vehicle operating costs
–Reduced need for construction corrections
– Potential reductions in use-phase fuel 

consumption and GHGs

• Cons:
–Capital cost of 

equipment

Photo credit: Gary Fick, SHRP2 R06E Contractor
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Improved Construction QA
• Examples: Dowel alignment measurement, Super 

Air Meter (SAM)

• Pros:
– Potential for increased 

service life, more time 
between M&R activities, 
lower user costs

• Cons:
– Additional testing costs
– Equipment costs
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Texture to Balance Surface 
Friction and Noise Concerns

• Surface friction (sustainability 
through safety, reduced crash 
rates)

• Minimize generation of tire-
pavement noise

• Texture type selection and 
proper construction prevent 
premature surface 
corrections ($) and safety 
problems
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Remarks
• Construction has an impact on energy consumed and 

resulting local and global environmental impacts
• Pavement construction activities offer many opportunities 

to adopt practices that improve pavement sustainability 
• The construction phase is a phase over which engineers 

and contractors have a great deal of influence
• Achieving specification targets and maintaining good 

construction quality are keys to reducing life-cycle impact  
• Tools are available for sustainable management of 

pavement construction
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Thank You!
• Gina Ahlstrom: Gina.Ahlstrom@dot.gov
• Kurt Smith: ksmith@appliedpavement.com
• Tom Van Dam: tvandam@ncenet.com
• John Harvey: jtharvey@ucdavis.edu
• Jeff Roesler: jroesler@illinois.edu
• Mark Snyder: mbsnyder2@yahoo.com

• Please join us at these upcoming webinars!

Schedule Webinar Event

Aug 20
1-3 pm EDT #4: Maintenance, Rehabilitation, and End-of-Life

Sep 9
1-3 pm EDT #5: Use Phase, Livable Communities, and Path Forward
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