U.S. Department of Transportation
Federal Highway Administration
1200 New Jersey Avenue, SE
Washington, DC 20590
202-366-4000


Skip to content
Facebook iconYouTube iconTwitter iconFlickr iconLinkedInInstagram

Federal Highway Administration Research and Technology
Coordinating, Developing, and Delivering Highway Transportation Innovations

 
REPORT
This report is an archived publication and may contain dated technical, contact, and link information
Back to Publication List        
Publication Number:  FHWA-HRT-12-030    Date:  August 2012
Publication Number: FHWA-HRT-12-030
Date: August 2012

 

Estimation of Key PCC, Base, Subbase, and Pavement Engineering Properties From Routine Tests and Physical Characteristics

PDF Version (4.44 MB)

PDF files can be viewed with the Acrobat® Reader®

FOREWORD

Material characterization is a basic aspect of pavement engineering and is critical for analysis, performance prediction, design, construction, quality control/quality assurance, pavement management, and rehabilitation. Advanced tools like the American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement Design Guide, Interim Edition: A Manual of Practice (MEPDG) can be used to estimate the influence of several fundamental engineering material parameters on the long-term performance of a pavement.(1) Consequently, there is a need for more information about material properties, which are addressed only to a limited extent with currently available resources for performing laboratory and field testing. Reliable correlations between material parameters and index properties offer a cost-effective alternative, and the derived material property values are equivalent to the level 2 inputs in the MEPDG. This study initially verified the adequacy of the Long-Term Pavement Performance (LTPP) data and also made a preliminary assessment of the feasibility of developing the correlation models. In the next phase of the study, prediction models were developed to help practicing engineers estimate proper MEPDG inputs. This report describes the basis for selecting material parameters that need predictive models, provides a review of current LTPP program data, and proposes several statistically derived models to predict material properties. The models developed under this effort have been incorporated into a simple software program compatible with current versions of Microsoft Windows® operating system.

Jorge E. Pagán-Ortiz Director, Office of Infrastructure Research and Development

Notice

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document.

Quality Assurance Statement

The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. FHWA uses standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. It also periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.

 

 

Federal Highway Administration | 1200 New Jersey Avenue, SE | Washington, DC 20590 | 202-366-4000
Turner-Fairbank Highway Research Center | 6300 Georgetown Pike | McLean, VA | 22101