Step Frequency Ground Penetrating Radar Characterization and Federal Evaluation Tests

PUBLICATION NO. FHWA-HRT-10-037

OCTOBER 2010

U.S. Department of Transportation Federal Highway Administration

Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296

FOREWORD

The objective of this report is to provide a comprehensive emissions characterization and evaluation of a step frequency ground penetrating radar (SF GPR) system. These study results will help officials determine whether SF GPR can be operated safely, that is, without interfering with other tools, in a proposed configuration that may include frequency notching in specific frequency bands. The final system configuration results present evidence that the SF GPR system will work without interfering with other systems. This report provides detail and raw data for all the tests so that decisionmakers may make their own evaluations of the data.

Joseph Peters Director, Office of Operations Research and Development

Notice

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

Quality Assurance Statement

The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.

TECHNICAL REPORT DOCUMENTATION PAGE

		AL KEPUK			HONTAGE	
1. Report No. FHWA-HRT-10-037	2. Gover	rnment Accessio	on No. 3. R	ecipien	t's Catalog No.	
4. Title and Subtitle			5. R	eport D	ate	
Step Frequency Ground Penetrating Radar Characteri				ober 20		
and Federal Evaluation Tes					ng Organization Code	e:
7. Author(s)	~		8. Pe	erformi	ng Organization Repo	ort No.
M. Scott, J. Arnold, and D.						
9. Performing Organization	1 Name an	d Address	10. \	Nork U	Init No.	
Starodub, Inc.					~	
3504 Littledale Road					t or Grant No.	
Kensington, MD 20895					8-C-10032	
12. Sponsoring Agency Na					Report and Period C	
Research and Special Prog		inistration			netic Emissions Testi	ing and
Federal Highway Administ	ration		Cha	racteriz	ation Report	
6300 Georgetown Pike			14. 5	Sponso	ring Agency Code	
McLean, VA 22101-2296			HRI	DO-04 #	and RVA-21	
15. Supplementary Notes						
The FHWA Contracting O	fficer's Te	chnical Represe	entative (COTR)) was D	avid Gibson, P.E.	
James A. Arnold contribute	ed signific	ant electrical en	gineering and c	ommur	ications input.	
16. Abstract						
A step frequency ground pe	enetrating	radar (SF GPR)	system was cha	aracteri	zed and evaluated to	determine
whether it can be operated						
frequency bands. This emis						
turned off to allow for both						
measurements suitable for computer analysis of potential interference with relevant systems. After initial testing was completed, needs for follow-up testing were defined. This follow-up testing was completed, and results are						
included in this report.						
Results from initial emissions testing showed that the SF GPR met National Telecommunications and						
Information Administration (NTIA) criteria for most frequencies, but some emissions frequencies still exceeded						
NTIA criteria. In addition, unintentional emissions below 140 MHz were observed to exceed intentional emission						
criteria at many frequencie						
conducted using a final sys						
emissions as described in the report. Unintentional emissions below 140 MHz were characterized to allow them						
to be evaluated as needed.						
17. Key Words			18. Distributio			
Electromagnetic emissions					document is available	
measurement testing, Step	frequency	ground		nical Ir	formation Service, S	pringfield, VA
penetrating radar, SF GPR	penetrating radar, SF GPR 22161.					
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price						
Unclassified		Unclassified			89	N/A
E DOT E 1500 5 (0 53)				Dar	and and an of a survey last	

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

PROXIMATE CONVERSI w Multiply By LENGTH 25.4 25.4 0.305 0.914 1.61 AREA 645.2 645.2 0.093 0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 NOTE: volumes greater than 1000 I MASS 28.35 0.454 0.907 TEMPERATURE (exact 5 (F-32)/9) or (F-32)/1.8 ILLUMINATIC 10.76 3.426 FORCE and PRESSURI 4.45 are inch 6.89	To Find millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters shall be shown in m ³ grams kilograms megagrams (or "metric ton" ct degrees) Celsius DN lux candela/m ² E or STRESS newtons	Symbol mm mm mkm mm ² m ² ha km ² mL L m ³ m ³ m ³ Support Mg (or "t") °C Ix cd/m ² N kPa
LENGTH 25.4 0.305 0.914 1.61 AREA 645.2 0.093 0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 NOTE: volumes greater than 1000 I MASS 28.35 0.454 0.907 TEMPERATURE (exat 5 (F-32)/9 or (F-32)/1.5 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cons celsius cons cons cons cons cons cons cons con	mm m m km m ² m ² ha km ² mL L m ³ m ³ m ³ g kg Mg (or "t") °C lx cd/m ²
25.4 0.305 0.914 1.61 AREA 645.2 0.093 0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 NOTE: volumes greater than 1000 I MASS 28.35 0.454 0.907 TEMPERATURE (exa 5 (F-32)/9 or (F-32)/1.8 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubi	m m km m ² m ² ha km ² m kg Mg (or "t") °C kg Mg (or "t") °C
0.305 0.914 1.61 AREA 645.2 0.093 0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 0.028 0.765 0.028 0.765 0.028 0.765 0.028 0.765 0.028 0.765 0.028 0.765 0.454 0.907 TEMPERATURE (exa 5 (F-32)/9 or (F-32)/1.6 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubi	m m km m ² m ² ha km ² m kg Mg (or "t") °C kg Mg (or "t") °C
0.914 1.61 AREA 645.2 0.093 0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 NOTE: volumes greater than 1000 I MASS 28.35 0.454 0.907 TEMPERATURE (exa 5 (F-32)/9 or (F-32)/1.5 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	meters kilometers square millimeters square meters square meters square meters hectares square kilometers cubic meters cubic meters cos cos cos cos cos cos cos cos cos cos	m km mm ² m ² ha km ² mL L m ³ m ³ m ³ c l kg Mg (or "t") °C
1.61 AREA 645.2 0.093 0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 NOTE: volumes greater than 1000 I MASS 28.35 0.454 0.907 TEMPERATURE (exa 5 (F-32)/9 or (F-32)/1.6 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters shall be shown in m ³ grams kilograms megagrams (or "metric ton" ct degrees) Celsius TON lux candela/m ² E or STRESS newtons	km mm ² m ² ha km ² mL L m ³ m ³ m ³ or c lx cd/m ² N
AREA 645.2 0.093 0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 NOTE: volumes greater than 1000 I MASS 28.35 0.454 0.907 TEMPERATURE (exat 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 FORCE and PRESSURI 4.45	square millimeters square meters square meters hectares square kilometers itters cubic meters cubic meters cu	m ² m ² ha km ²
0.093 0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 NOTE: volumes greater than 1000 I MASS 28.35 0.454 0.907 TEMPERATURE (exat 5 (F-32)/9 or (F-32)/1.8 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	square meters square meters hectares square kilometers cubic meters cubic meters cu	m ² m ² ha km ²
0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 NOTE: volumes greater than 1000 I MASS 28.35 0.454 0.907 TEMPERATURE (exa 5 (F-32)/9 or (F-32)/1.8 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	square meters hectares square kilometers cubic meters cubic meters cub	m ² ha km ² L m ³ m ³ g kg Mg (or "t") °C Ix cd/m ²
0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 NOTE: volumes greater than 1000 I MASS 28.35 0.454 0.907 TEMPERATURE (exa 5 (F-32)/9 or (F-32)/1.8 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	hectares square kilometers uiters cubic meters cubic met	ha km ² mL L m ³ m ³ m ³ (or "t") °C lx cd/m ²
2.59 VOLUME 29.57 3.785 0.028 0.765 NOTE: volumes greater than 1000 I MASS 28.35 0.454 0.907 TEMPERATURE (exa 5 (F-32)/9 or (F-32)/1.6 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	square kilometers milliliters liters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters silograms megagrams (or "metric ton" ct degrees) Celsius Celsius Celsius Celsius Celsius candela/m ² E or STRESS newtons	km ² mL L m ³ m ³ (or "t") °C lx cd/m ²
VOLUME 29.57 3.785 0.028 0.765 NOTE: volumes greater than 1000 I MASS 28.35 0.454 0.907 TEMPERATURE (exa 5 (F-32)/9 or (F-32)/1.6 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	milliliters liters cubic meters cubic meters L shall be shown in m ³ grams kilograms megagrams (or "metric ton" ct degrees) Celsius Celsius B DN lux candela/m ² E or STRESS newtons	mL L m ³ m ³ Mg (or "t") °C lx cd/m ²
29.57 3.785 0.028 0.765 NOTE: volumes greater than 1000 l MASS 28.35 0.454 0.907 TEMPERATURE (exa 5 (F-32)/9 or (F-32)/1.6 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	liters cubic meters cubic meters cubic meters cubic meters sites and the shown in m ³ grams megagrams (or "metric ton" ct degrees) Celsius Celsius Celsius Celsius Celsius Celsius Celsius Celsius Celsius Celsius Celsius Celsius Celsius Celsius Celsius	L m ³ m ³ Mg (or "t") °C lx cd/m ²
3.785 0.028 0.765 NOTE: volumes greater than 1000 I MASS 28.35 0.454 0.907 TEMPERATURE (exa 5 (F-32)/9 or (F-32)/1.6 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	liters cubic meters cubic meters cubic meters cubic meters sites and the shown in m ³ grams megagrams (or "metric ton" ct degrees) Celsius Celsius Celsius Celsius Celsius Celsius Celsius Celsius Celsius Celsius Celsius Celsius Celsius Celsius Celsius	L m ³ m ³ Mg (or "t") °C lx cd/m ²
0.028 0.765 NOTE: volumes greater than 1000 I MASS 28.35 0.454 0.907 TEMPERATURE (exat 5 (F-32)/9 or (F-32)/1.5 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	cubic meters cubic meters L shall be shown in m ³ grams kilograms megagrams (or "metric ton" ct degrees) Celsius Celsius DN lux candela/m ² E or STRESS newtons	m ³ m ³ m ³ (kg Mg (or "t") °C lx cd/m ²
0.765 NOTE: volumes greater than 1000 I MASS 28.35 0.454 0.907 TEMPERATURE (exa 5 (F-32)/9 or (F-32)/1.8 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	cubic meters L shall be shown in m ³ grams kilograms megagrams (or "metric ton" ct degrees) Celsius Celsius DN lux candela/m ² E or STRESS newtons	m ³ g kg Mg (or "t") °C lx cd/m ² N
MASS 28.35 0.454 0.907 TEMPERATURE (exa 5 (F-32)/9 or (F-32)/1.8 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	grams kilograms megagrams (or "metric ton" ct degrees) Celsius	g kg Mg (or "t") °C Ix cd/m ²
28.35 0.454 0.907 TEMPERATURE (exa 5 (F-32)/9 or (F-32)/1.8 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	kilograms megagrams (or "metric ton" ct degrees) Celsius	kg Mg (or "t") °C Ix cd/m ² N
0.454 0.907 TEMPERATURE (exa 5 (F-32)/9 or (F-32)/1.8 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	kilograms megagrams (or "metric ton" ct degrees) Celsius	kg Mg (or "t") °C Ix cd/m ² N
0.907 TEMPERATURE (exac 5 (F-32)/9 or (F-32)/1.8 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	megagrams (or "metric ton" ct degrees) Celsius B DN lux candela/m ² E or STRESS newtons	kg Mg (or "t") °C Ix cd/m ² N
TEMPERATURE (exa 5 (F-32)/9 or (F-32)/1.{ ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	ct degrees) Celsius DN lux candela/m ² E or STRESS newtons	°C Ix cd/m² N
5 (F-32)/9 or (F-32)/1.8 ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	Celsius B DN lux candela/m ² E or STRESS newtons	lx cd/m² N
or (F-32)/1. ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	3 DN Lux candela/m ² E or STRESS newtons	lx cd/m² N
ILLUMINATIO 10.76 3.426 FORCE and PRESSURI 4.45	DN lux candela/m ² E or STRESS newtons	cd/m ²
10.76 3.426 FORCE and PRESSURI 4.45	lux candela/m ² E or STRESS newtons	cd/m ²
3.426 FORCE and PRESSURI 4.45	candela/m ² E or STRESS newtons	cd/m ²
FORCE and PRESSURI 4.45	E or STRESS newtons	Ν
4.45	newtons	
	kilopascals	
	•	
ROXIMATE CONVERSIO		Symbol
LENGTH	TO FINd	Symbol
0.039	inches	in
3.28	feet	ft
1.09	yards	yd
0.621	miles	mi
AREA		
0.0016	square inches	in ²
10.764	square feet	ft ²
1.195	square yards	yd²
2.47	acres	ac mi ²
0.386	square miles	III
VOLUME	fluid ourses	flor
0.034	fluid ounces	fl oz gal
		gal ft ³
1.307	cubic yards	yd ³
	·	-
0.035	ounces	oz
2.202	pounds	lb
etric ton") 1.103	short tons (2000 lb)	Т
	ct degrees)	
TEMPERATURE (exa		°F
TEMPERATURE (exa 1.8C+32		
TEMPERATURE (exa 1.8C+32 ILLUMINATIO	ON	
TEMPERATURE (exact 1.8C+32 ILLUMINATIC 0.0929	foot-candles	fc
TEMPERATURE (exac 1.8C+32 ILLUMINATI(0.0929 0.2919	foot-candles foot-Lamberts	fc fl
TEMPERATURE (exact 1.8C+32 ILLUMINATIC 0.0929 0.2919 FORCE and PRESSUR	The foot-candles foot-Lamberts	fl
TEMPERATURE (exac 1.8C+32 ILLUMINATI(0.0929 0.2919	foot-candles foot-Lamberts	fl Ibf
e	MASS 0.035 2.202 etric ton") 1.103	35.314 cubic feet 1.307 cubic yards MASS 0.035 ounces 2.202 pounds etric ton") 1.103 short tons (2000 lb) TEMPERATURE (exact degrees)

EXECUTIVE SUMMARY	1
INTRODUCTION	
OBJECTIVE	5
BACKGROUND EMISSIONS MASK	7
TEST DESIGN	11
ANALYSIS	15
RESULTS	17
SUMMARY	
RECOMMENDATION	
APPENDIX A: DRAFT LANGUAGE FOR SF GPR COORDINATION	
APPENDIX B: INDEX OF DATA FILES	
APPENDIX C: GRAPHS SHOWING FOLLOW-UP MEASUREMENTS	
APPENDIX D: DATA IMPORT PROCEDURES MICROSOFT EXCEL [®] PROCEDURE MATLAB PROCEDURE	45
APPENDIX E: CERTIFIED LABORATORY TEST REPORT: FOLLOW-UP TE	ST 47
APPENDIX F: STEP FREQUENCY GPR (SF GPR) TRANSMISSION LOSS CALCULATIONS THROUGH A TYPICAL CONCRETE BRIDGE DECK	77
REFERENCES	

TABLE OF CONTENTS

LIST OF FIGURES

Figure 1. Chart. SF GPR emissions and their characteristics	7
Figure 2. Diagram. SF GPR emissions characterization test configuration	
Figure 3. Diagram. Orthogonal position of antenna array relative to figure 2	
Figure 4. Photo. SF GPR testing at the FAA Technical Center	
Figure 5. Photo. SF GPR test site at the FAA Technical Center	
Figure 6. Diagram. Antenna array with a bank of 23 transmitter elements and 23 receiver	
elements	. 14
Figure 7. Graph. EIRP peak measurement values for horizontal measurement antenna	
orientation and maximum transmitter emission orientation without emission notching	. 17
Figure 8. Graph. EIRP peak measurement values for vertical measurement antenna	
orientation and maximum transmitter emission orientation without emission notching	. 18
Figure 9. Graph. EIRP RMS measurement values for horizontal measurement antenna	
orientation and maximum transmitter emission orientation without emission notching	. 18
Figure 10. Graph. EIRP RMS measurement values for vertical measurement antenna	
orientation and maximum transmitter emission orientation without emission notching	. 19
Figure 11. Graph. EIRP peak measurement values for horizontal measurement antenna	
orientation and maximum transmitter emission orientation with emission notching	. 19
Figure 12. Graph. EIRP peak measurement values for vertical measurement antenna	
orientation and maximum transmitter emission orientation with emission notching	. 20
Figure 13. Graph. EIRP RMS measurement values for horizontal measurement antenna	
orientation and maximum transmitter emission orientation with emission notching	. 20
Figure 14. Graph. EIRP RMS measurement values for vertical measurement antenna	
orientation and maximum transmitter emission orientation with emission notching	. 21
Figure 15. Screen shot. General measurement data summary table (part 1 of 2)	. 31
Figure 16. Screen shot. General measurement data summary table (part 2 of 2)	. 31
Figure 17. Screen shot. Federal system data summary table (part 1 of 2)	. 32
Figure 18. Screen shot. Federal system data summary (part 2 of 2)	. 33
Figure 19. Graph. Outdoor peak emission measurement with horizontal polarization without	
notching	. 35
Figure 20. Graph. Outdoor peak emission measurement with horizontal polarization with	
A1 notch configuration	35
Figure 21. Graph. Outdoor peak emission measurement with horizontal polarization with	
	36
Figure 22. Graph. Outdoor peak emission measurement with horizontal polarization with	
A3 notch configuration	. 36
Figure 23. Graph. Outdoor peak emission measurement with vertical polarization without	
notching	. 37
Figure 24. Graph. Outdoor peak emission measurement with vertical polarization with	
A1 notch configuration	. 37
Figure 25. Graph. Outdoor peak emission measurement with vertical polarization with	•
A2 notch configuration	. 38
Figure 26. Graph. Outdoor peak emission measurement with vertical polarization with	20
A3 notch configuration	. 38

Figure 27. Graph. Outdoor RMS emission measurement with horizontal polarization without	
notching	39
Figure 28. Graph. Outdoor RMS emission measurement with horizontal polarization with	
A1 notch configuration	39
Figure 29. Graph. Outdoor RMS emission measurement with horizontal polarization with	
A2 notch configuration	40
Figure 30. Graph. Outdoor RMS emission measurement with horizontal polarization with	
A3 notch configuration	40
Figure 31. Graph. Outdoor RMS emission measurement with vertical polarization without	
0	41
Figure 32. Graph. Outdoor RMS emission measurement with vertical polarization with	
A1 notch configuration	41
Figure 33. Graph. Outdoor RMS emission measurement with vertical polarization with	
	42
Figure 34. Graph. Outdoor RMS emission measurement with vertical polarization with	
A3 notch configuration	42
Figure 35. Graph. Indoor emission measurements using vertically polarized measurement	
antenna at low frequencies	43
Figure 36. Graph. Indoor emission measurements using horizontally polarized measurement	
antenna at low frequencies	43

LIST OF TABLES

Table 1. Maximum back lobe equivalent isotropic radiated power (EIRP) levels for both peak	
and average power (1-MHz resolution bandwidth	8
Table 2. Emissions suppressed in specified bandwidths	
Table 3. Frequency notch configuration A1	9
Table 4. Frequency notch configuration A2	
Table 5. Frequency notch configuration A3 10	

LIST OF ABBREVIATIONS

3D	Three-dimensional
ASR-11	Airport surveillance radar release 11
dB	decibel
dBm	decibels relative to 1 milliwatt
EIRP	Equivalent isotropic radiated power
FAA	Federal Aviation Administration
FCC	Federal Communications Commission
FHWA	Federal Highway Administration
GHz	Gigahertz (10 ⁹ hertz)
GPS	Global positioning system
GPS L1	Global positioning system down link frequency 1
kHz	Kilohertz (10 ³ hertz)
MHz	Megahertz (10^6 hertz)
MMIC	Monolithic microwave-integrated circuit
NTIA	National Telecommunications and Information Administration
NTIA SPS	NTIA Spectrum Planning Subcommittee
RBW	Resolution bandwidth
SF GPR	Step frequency ground penetrating radar
VBW	Video bandwidth
SARSAT	Search And Rescue Satellite-Aided Tracking
RF	Radio frequency
RMS	Root mean squared
USDOT	United States Department of Transportation

EXECUTIVE SUMMARY

Step frequency ground penetrating radar (SF GPR) technology offers unprecedented subsurface three-dimensional (3D) imaging capabilities. Subsurface material deterioration, void imaging, and precise material and geometry measurements of civil infrastructure are all accurately and efficiently carried out using this specialized technology. Through previous evaluations and reports, the Federal Highway Administration (FHWA) has determined that SF GPR can be applied to subsurface infrastructure evaluation problems to meet needs in the national interest.^(1,2) In addition to infrastructure applications described in these reports, it is notable that land mines, runway pavements, and buried historic sites can be imaged using SF GPR technology.

Due to SF GPR operating principles, system emissions testing is required to support an FHWA/United States Department of Transportation (FHWA/USDOT) application for a National Telecommunications and Information Administration (NTIA) Stage 3 (developmental) and NTIA Stage 4 (operational) certificate of spectrum support under NTIA rules for out-of-band operations. This testing is described in this report along with a proposed coordination procedure between NTIA and system users to ensure appropriate system operation. Results of the emissions testing indicate that the system can operate safely without violating emissions criteria in Annex K of the *Manual of Regulations and Procedures for Federal Radio Frequency Management*.⁽³⁾

SF GPR emissions tests were conducted by Federal Aviation Administration (FAA) staff at the FAA Technical Center in New Jersey during the week of March 9, 2009. The emissions tests used a standardized test configuration across a measurement spectrum from 50 MHz to 6 GHz. These tests characterized SF GPR emissions relative to an emissions mask defined by NTIA rules (described in detail in the background section of this report). Tests included general measurements that covered the full range of operating frequencies of the SF GPR and detailed emission measurements in narrow frequency ranges corresponding to specific Federal systems identified by NTIA. Based on initial results from these SF GPR emissions tests, needs for follow-up testing were defined. Follow-up data are included in appendix C of this report. The data were collected by a Federal Communications Commission (FCC)-certified emissions test laboratory after final tuning changes were made to reduce emissions at specific frequencies. This test laboratory also produced a test report based on collected emissions data (see appendix E).

INTRODUCTION

Potential interference testing of an FHWA/USDOT SF GPR system was conducted by FAA staff at the FAA Technical Center in New Jersey during the week of March 9, 2009. The testing was designed to evaluate whether SF GPR can be operated safely in a proposed configuration that may include frequency notching in specific frequency bands. Testing was conducted with all notches turned on and then with all notches turned off to allow for both scenarios to be evaluated. Testing focused on emissions characterization measurements suitable for computer analysis of potential interference with relevant systems.

Data from SF GPR emissions testing described and summarized in this report are expected to be used to determine whether FHWA/USDOT SF GPR meets NTIA criteria. An initial data analysis is provided in this report. Electronic test data are also provided with this report to the NTIA Spectrum Planning Subcommittee (SPS) for further analysis by individual Federal agencies as needed.

In addition, follow-up SF GPR emissions test data were collected in September 2009 at an FCCcertified laboratory after the SF GPR was fine-tuned to reduce emissions at specific frequencies (based on results from the initial March 2009 emissions tests). Data from this follow-up testing are presented in appendix C, and a test report produced by the certified test laboratory is presented in appendix E.

OBJECTIVE

Initially, SF GPR emission characterization measurements were conducted to achieve the following primary objectives:

- Evaluate SF GPR capabilities to meet SPS requirements for operation under NTIA rules for out-of-band operations.
- Measure emissions from a proposed SF GPR configuration with the frequency spectrum notching off and analyze data to evaluate potential interference issues relative to critical Federal systems.
- Measure emissions from a proposed SF GPR configuration with the frequency spectrum notching on and analyze data to evaluate potential interference issues relative to critical Federal systems.
- Measure emissions relative to individual notches anticipated to be implemented based on proximity to relevant facilities.

Data collected at the FAA Technical Center in March 2009 indicated that follow-up measurements were needed to achieve the objectives listed above (with minor revisions) and to evaluate the SF GPR in greater detail at low frequencies.

The revised objectives for the follow-up measurements were as follows:

- Evaluate SF GPR capabilities to meet SPS requirements for operation under NTIA rules for out-of-band operations.
- Measure emissions from a proposed SF GPR configuration with the frequency spectrum notching off and analyze data to evaluate potential interference issues relative to critical Federal systems.
- Measure emissions from a proposed SF GPR configuration with the frequency spectrum notching on and analyze data to evaluate potential interference issues relative to critical Federal systems. Three options for frequency spectrum notching configurations were defined and tested, A1, A2, and A3, and are presented in the background section.
- Collect detailed emissions data at frequencies from 50 to 200 MHz to evaluate system performance in this low frequency range.

In addition, a coordination procedure was proposed to provide a framework for system users to operate SF GPR responsibly under NTIA rules. The proposed coordination procedure is described in detail in appendix A.

BACKGROUND

This section provides a brief description of SF GPR technology, system emission characteristics, and emissions limits under NTIA rules.

Capabilities of FHWA/USDOT SF GPR are made possible by efficient techniques used to transmit and receive radar energy and subsequently store and process the corresponding data. Proposed SF GPR output signal characteristics are presented in figure 1.

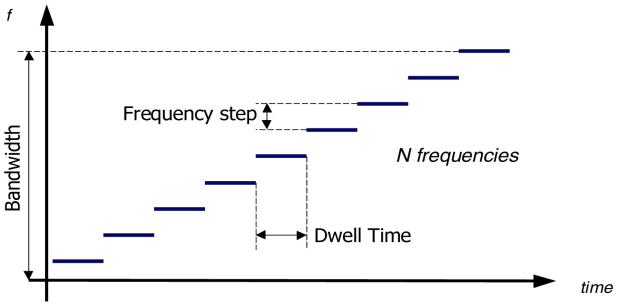


Figure 1. Chart. SF GPR emissions and their characteristics.

SF GPR signal output consists of continuous sine waves transmitted at a series of discrete frequencies during programmed dwell times. Frequency domain data collected by the receiver antenna are subsequently transformed into the time domain for display as range profiles and are later processed with data from many antenna array elements to produce tomographic images.

In order to accurately image subsurface defect and deterioration features such as cracks and voids in concrete, asphalt, and other civil engineering materials, SF GPR must have high range resolution and cross-range resolution capabilities. SF GPR resolution is directly dependent on the operating bandwidth of the system. Broad frequency availability is necessary to achieve the high resolution required to image features such as cracks, voids, and reinforcing steel. Operating parameters of the SF GPR system under test include the following:

- Frequency step = 2 MHz.
- Dwell time = $2.5 \,\mu s$.
- Bandwidth = 140–3,000 MHz.
- Cycle time (single antenna element cycling through all frequencies) = 3.58 ms.

EMISSIONS MASK

Providing adequate bandwidth to accurately image features such as subsurface cracks, voids, and reinforcing steel is anticipated to require a system that complies with the recommended emission mask presented in table 1 and table 2. The tables specify maximum back lobe emissions because SF GPR equipment is operated with the antenna directed at the ground; unintentional emissions into the air will always be back lobe emissions. For instances where an SF GPR was used on a bridge deck that vehicles traveled under, calculations were made to determine the attenuation of the radar energy that propagated through the bridge deck. The internal report *Step Frequency GPR (SF GPR) Transmission Loss Calculations Through a Typical Concrete Bridge Deck* (SPS-16371/1) provides transmission loss calculations for a typical concrete bridge deck, showing that emissions transmitted through the bridge deck are reduced below back lobe emission levels (see appendix F).

and average power (1 miliz resolution bandwite			
Frequency	Peak EIRP	Average EIRP	
(MHz)	(dBm)	(dBm)	
< 140	-60.7	-93.7	
140–216	-25.7	-58.7	
216–960	-23.2	-56.2	
960–1,610	-32.3	-65.3	
1,610–1,990	-20.3	-53.3	
1,990–3,000	-18.3	-51.3	
> 3,000	-53.3	-86.3	

Table 1. Maximum back lobe equivalent isotropic radiated power (EIRP) levels for both peak and average power (1-MHz resolution bandwidth).⁽³⁾

In addition to the radiated emission limits specified in table 1, SF GPR was programmed to suppress emissions according to the limits in table 2.

Frequency (MHz)	Average EIRP (dBm) in 1 kHz Bandwidth
1,164–1,240	-75.3
1,559–1,610	-75.3

Table 2. Emissions suppressed in specified bandwidths.⁽³⁾

In addition to the recommended emissions mask in table 1 and table 2, notches that may be implemented in the recommended SF GPR emissions mask are summarized in table 3 through table 5. These notches correspond to frequencies of critical Federal systems that the NTIA SPS requested to include in SF GPR emissions testing. These frequencies are candidates for notching from the SF GPR emissions spectrum. One notch configuration, A1, was tested during initial testing, and all three notch configurations, A1, A2, and A3, were tested during follow-up testing. Regarding the practical implementation of notching configurations, they were accomplished by not transmitting at specific frequencies in the SF sequence (always generated sequentially within the SF GPR system). Therefore, the cycle time of the system remained constant for notched and unnotched configurations.

Frequency	
Range (MHz)	Purpose
161–174	Land mobile operations
328.6-335.4	Aeronautical radionavigation operations
406-406.1	SARSAT (Search And Rescue Satellite-Aided Tracking)
406.1-420	Land mobile operations
608–614	Radio astronomy
960–1,215	Aeronautical radionavigation operations
1,240–1,370	Aeronautical surveillance radars
	Aeronautical radionavigation operations/global positioning
1,559–1,610	system downlink frequency 1 (GPS L1)
1,400–1,427	Radio astronomy
1,660.5-1,668.4	Radio astronomy
2,025–2,110	Meteorological satellite
	Aeronautical telemetry/space ground link sub/
2,200-2,290	satellite earth stations
2,290-2,300	Deep space network facility
	Next generation weather/airport surveillance radar
2,700-2,900	release 11(ASR-11)
2,900-3,000	Maritime radar

 Table 3. Frequency notch configuration A1.

Table 4. Frequency notch configuration A2.

Frequency	
Range (MHz)	Purpose
328.6-335.4	Aeronautical radionavigation operations
406-406.1	SARSAT
608–614	Radio astronomy
960–1,215	Aeronautical radionavigation operations
1,240-1,370	Aeronautical surveillance radars
1,559–1,610	Aeronautical radionavigation operations/GPSL1
1,400–1,427	Radio astronomy
1,660.5-1,668.4	Radio astronomy
2,025-2,110	Meteorological satellite
	Aeronautical telemetry/space ground link sub/
2,200-2,290	satellite earth stations
2,290-2,300	Deep space network facility
2,700-2,900	Next generation weather/ASR-11

Frequency	
Range (MHz)	Purpose
328.6-335.4	Aeronautical radionavigation operations
406-406.1	SARSAT
608–614	Radio astronomy
1,240–1,370	Aeronautical surveillance radars
1,559–1,610	Aeronautical radionavigation operations/GPSL1
1,400–1,427	Radio astronomy
1,660.5–1,668.4	Radio astronomy
2,025–2,110	Meteorological satellite
	Aeronautical telemetry/space ground link sub/
2,200-2,290	satellite earth stations
2,290–2,300	Deep space network facility
2,700-2,900	Next generation weather/ASR-11

 Table 5. Frequency notch configuration A3.

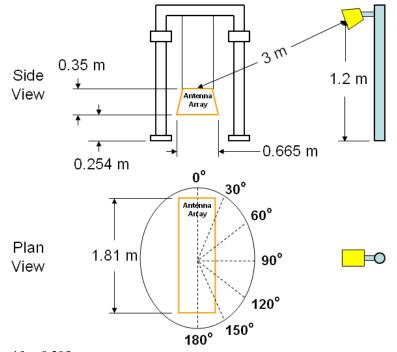
TEST DESIGN

SF GPR emissions characterization testing was conducted using the configuration shown in figure 2 and figure 3 and pictured in figure 4 and figure 5. The side view in figure 2 illustrates the maximum 9.84-ft (3-m) distance that was maintained between the SF GPR array under test and the emission measurement antennas. A biconic antenna was used to measure frequencies in the 50–299-MHz range, a log periodic antenna was used to measure frequencies in the 300–2,000-MHz range, and a horn antenna was used to measure frequencies in the 2,001–3,000-MHz range. Detailed make and model information for the test equipment is provided below. Figure 2 illustrates the seven angles that the SF GPR antenna array was aligned with for each test configuration to determine the orientation corresponding to maximum emissions. Due to antenna array symmetry, angles from 0 to 180 degrees were representative. As the test plan required, the antenna array was always directed at the ground and was suspended 10 inches (254 mm) above a standard sand pit.

Emission measurement equipment included the following:

- Agilent Technologies E4440 power spectrum analyzer.
- A.H. Systems, Inc. biconic antenna, model SAS-542, S/N 769 (9.84 ft (3 m)).
- A.H. Systems, Inc. log periodic antenna, model SAS-510-2, S/N 1053 (9.84 ft (3 m)).
- A.H. Systems, Inc. double ridge guide horn antenna, model SAS-571, S/N 549 (9.84 ft (3 m)).
- Electronic Cable Specialists cable P/N 310801 (two each at 6 ft (1.83 m) and one at 12 ft (3.66 m)).
- 3D Radar/Curtiss-Wright SF GPR system, model Geoscope GS3F.

The SF GPR system consists of a laptop computer, a rack mountable radar control unit, a 26.24-ft (8-m)-long cable bundle, and an antenna array that has 23 antenna elements (see figure 6).


The SF GPR emission characterization test procedure follows:

- 1. Measure ambient emissions to establish a baseline (50–6,000 MHz).
- 2. Position the SF GPR antenna array in each of the seven orientation angles (see figure 2).
- 3. Measure emissions from the SF GPR array using each of the three emission measurement antennas (biconic, log periodic, and horn) using the unnotched SF GPR emission spectrum for peak and root mean squared (RMS) measurements (50–6,000 MHz).
- 4. Determine SF GPR antenna array orientation corresponding to maximum emissions for the unnotched SF GPR emission spectrum configuration.

- 5. Measure the peak and RMS for the notched SF GPR emission spectrum with the SF GPR antenna array orientation corresponding to maximum emissions using each of the three emission measurement antennas (biconic, log periodic, and horn).
- 6. Collect the complete general measurement set by collecting data corresponding to the test matrix (see figure 15 and figure 16 in appendix B).
- 7. Make measurements to characterize SF GPR emissions in frequency bands corresponding to critical Federal systems. Make measurements for maximum emissions orientations of the SF GPR antenna array according to the test matrix (see figure 17 and figure 18 in appendix B).

Maximum SF GPR emissions corresponding to the worst case orientation of the SF GPR antenna array relative to the emissions measurement antenna were determined by comparing emission measurement plots for each unnotched measurement configuration in the frequency range of interest and selecting the configuration corresponding to the maximum emissions.

Another set of measurements was made using the same procedure previously defined, but for these measurements, the number of active antenna array elements in the SF GPR array varied. These measurements were made in the event that Federal agencies would analyze emission characteristics when a subset of antenna array elements is active. The original test scenario, using all antenna array elements, represents worst case emissions. Therefore, the supplemental measurements are only expected to be used for a deeper analysis of SF GPR emission characteristics if needed.

1 ft = 0.305 m

Figure 2. Diagram. SF GPR emissions characterization test configuration.



Figure 3. Diagram. Orthogonal position of antenna array relative to figure 2.

Figure 4. Photo. SF GPR testing at the FAA Technical Center.

Figure 5. Photo. SF GPR test site at the FAA Technical Center.

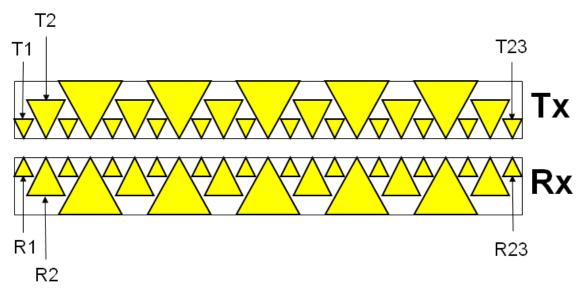


Figure 6. Diagram. Antenna array with a bank of 23 transmitter elements and 23 receiver elements.

Additional follow-up emission measurements were made using procedures described in the test report in appendix E. The minimum distance between the SF GPR antenna array and the measurement antenna was 6.88 ft (2.1 m), as illustrated in figure 3. This distance often corresponded to the orientation where maximum emissions were measured.

ANALYSIS

The analysis procedure for the SF GPR emissions characterization data followed equations defined in NTIA Annex K.⁽³⁾ The analysis steps are as follows:

- 1. Determine the orientation of maximum emissions for each measurement and use this measurement data for subsequent analysis.
- 2. Calculate EIRP values at each frequency using the following equations. Equation 1 defines field strength as a function of field strength plus adjustments. Equation 2 further refines the definition of field strength as a function of field strength adjusted by the antenna factor and cable loss in terms of a unit length. Equation 3 converts from units in terms of unit length back to units in terms of decibels relative to 1 mW.

Field Strength (
$$dB\mu V$$
) = Field Strength (dBm) + 107 (1)

Field Strength $(dB\mu V/m)$ = Field Strength $(dB\mu V)$ + Antenna Factor + Cable Loss ((2)
---	-----

.

EIRP in dBm = Field Strength
$$(dB\mu V/m) - 95.2$$
 (3)

RESULTS

Measured emission data were collected to determine whether SF GPR emissions levels were below the emissions mask that was proposed in the background section of this report. General measurements were used to make an overall assessment of emission levels using a resolution bandwidth (RBW) of 1 MHz and a video bandwidth (VBW) of 3 MHz. More detailed measurements were made in narrow frequency ranges corresponding to critical Federal systems using appropriate RBW and VBW settings. The operating spectrum for the SF GPR was 140–3,000 MHz, while the measured spectrum used for the emission measurements was 50–6,000 MHz.

This section provides a summary of general measurement results to illustrate system compliance with the proposed emissions mask. In instances where measurements indicate frequencies at which the system did not meet NTIA criteria, information is provided to describe ambient phenomena that were often present. To further address any noncompliant phenomena observed, supplemental follow-up data from an FCC-certified laboratory are provided in appendix C. Figure 19 through figure 36 provide follow-up data collected after final system tuning was complete. The three notch configurations, A1, A2, and A3, were tested during the follow-up testing in September 2009, while only one notch configuration, A1, was tested during the initial testing in March 2009.

Figure 7 through figure 10 correspond to measured emissions from the SF GPR when its emissions were unnotched. Figure 11 through figure 14 correspond to measured emissions responses from the SF GPR when its emissions were notched. Measured responses from the SF GPR with notched emissions were typically compliant with a few isolated exceptions.

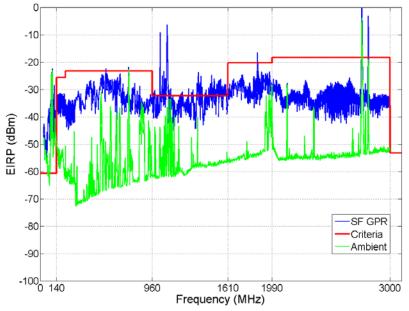


Figure 7. Graph. EIRP peak measurement values for horizontal measurement antenna orientation and maximum transmitter emission orientation without emission notching.

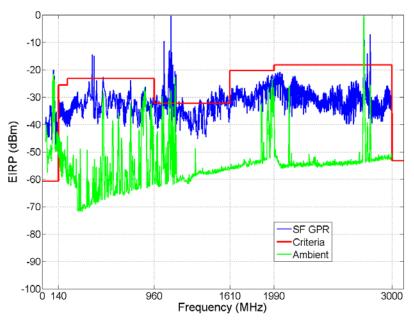


Figure 8. Graph. EIRP peak measurement values for vertical measurement antenna orientation and maximum transmitter emission orientation without emission notching.

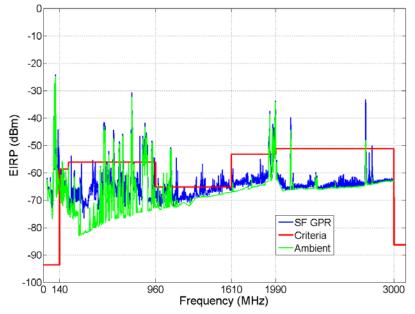


Figure 9. Graph. EIRP RMS measurement values for horizontal measurement antenna orientation and maximum transmitter emission orientation without emission notching.

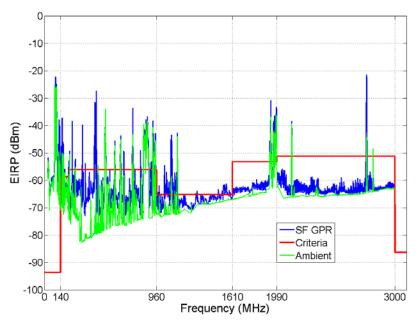


Figure 10. Graph. EIRP RMS measurement values for vertical measurement antenna orientation and maximum transmitter emission orientation without emission notching.

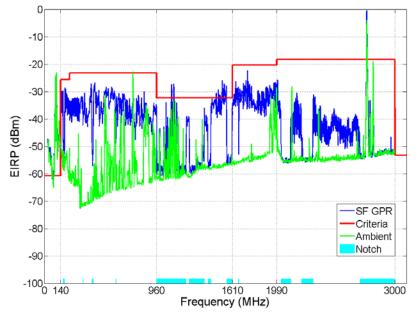


Figure 11. Graph. EIRP peak measurement values for horizontal measurement antenna orientation and maximum transmitter emission orientation with emission notching.

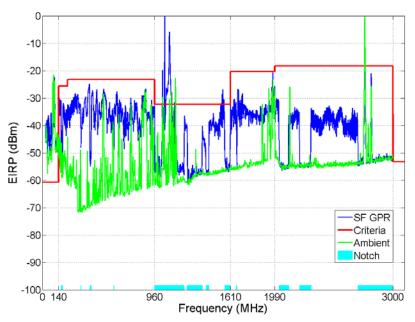


Figure 12. Graph. EIRP peak measurement values for vertical measurement antenna orientation and maximum transmitter emission orientation with emission notching.

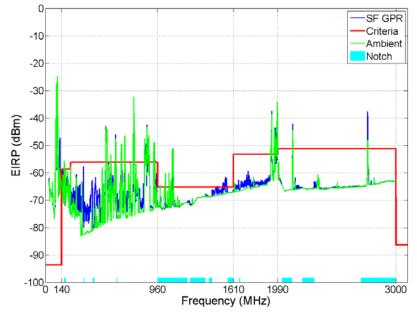


Figure 13. Graph. EIRP RMS measurement values for horizontal measurement antenna orientation and maximum transmitter emission orientation with emission notching.

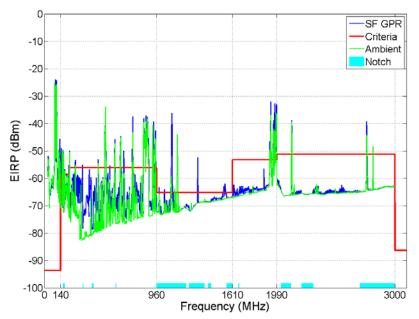


Figure 14. Graph. EIRP RMS measurement values for vertical measurement antenna orientation and maximum transmitter emission orientation with emission notching.

Unnotched SF GPR responses exhibited several frequencies that exceeded compliance criteria in the original emissions data from March 2009, while original notched emissions data rarely exceeded emission criteria. Emissions data collected during follow-up testing after system tuning in September 2009 illustrated that system performance met NTIA criteria in both notched and unnotched operating configurations with only a few exceptions. In instances where exceptions occurred in follow-up data and emissions exceeded NTIA criteria, the reasons were addressed (provided in this section).

Emissions data collected for the proposed compliant operating configuration (see figure 11 through figure 14) were obtained using the following methodologies corresponding to each figure. Data presented in figure 11 show the EIRP level received by emissions measurement antennas oriented horizontally while measuring peak emissions from the SF GPR with a notched emissions spectrum. Data in figure 12 show the EIRP level received by emissions measurement antennas oriented vertically while measuring peak emissions from the SF GPR with a notched emissions spectrum. Data in figure 13 show the EIRP level received by emissions measurement antennas oriented horizontally while measuring RMS emissions from the SF GPR with a notched emissions spectrum. Data in figure 14 show the EIRP level received by emissions measurement antennas oriented vertically while measuring RMS emissions from the SF GPR with a notched emissions spectrum. Data in figure 14 show the EIRP level received by emissions measurement antennas oriented vertically while measuring RMS emissions from the SF GPR with a notched emissions spectrum. Data in figure 14 show the EIRP level received by emissions measurement antennas oriented vertically while measuring RMS emissions from the SF GPR with a notched emissions spectrum. Data in figure 14 show the EIRP level received by emissions measurement antennas oriented vertically while measuring RMS emissions from the SF GPR with a notched emissions spectrum.

In figure 11, (which generally illustrates compliant peak measurements), there are values that are a small number of decibels above the threshold criteria of 1,530 and 1,560 MHz. Other values exceeding the criteria corresponded to locations where significant ambient measurement values are present. In figure 12, peak measurements are also typically compliant. Frequencies of approximately 1,555 MHz are a small number of decibels above the threshold criteria. Frequencies in the 1,040-MHz range that exceed criteria correspond to substantial ambient emissions. Figure 13 and figure 14 present RMS data that are generally compliant as well.

Several SF GPR measurement peaks correspond to ambient measurement spikes in figure 13 and figure 14 and therefore do not indicate compliance issues. In the frequency range of 1,500–1,550 MHz, there are RMS values that are a small number of decibels above the threshold criteria.

Appendix C provides additional SF GPR data that were collected at an FCC-certified laboratory after attenuation adjustments were programmed into the system in an effort to bring the remaining system emissions into compliance. Figure 19 through figure 34 illustrate that the peak and RMS emissions greater than 140 MHz had few emissions that did not meet NTIA criteria for the adjusted configuration used during the additional emission measurements in September 2009. Below 140 MHz, peak values exceeded compliance criteria at several frequencies primarily due to unintentional emissions caused by radio frequency (RF) switches in the SF GPR. Unfortunately, there is not a practical way to reduce these unintentional emissions using current SF GPR technology. Detailed measurements are provided in figure 35 and figure 36 to illustrate low frequency phenomena occurring between 50 and 200 MHz. A clear transition between the characteristics of intentional emissions above 140 MHz can be observed relative to unintentional emissions below 140 MHz.

The following list provides potential reasons why SF GPR emissions exceeded NTIA criteria for some tested frequencies in September 2009 test data (follow-up data plots corresponding to these listed descriptions are provided in appendix C):

- The test report in appendix E indicates that during emission measurements, some SF GPR antenna array elements were as close as 6.88 ft (2.1 m) from the measurement antenna when it was rotated into the 90-degree position (see figure 2). For frequencies between 960 and 1,600 MHz (far field frequencies for this scenario), the free space loss should be related to the distance by 20*log(R). Therefore, the correction factor for a 6.88-ft (2.1-m) distance versus a 9.84-ft (3-m) standard distance is 20*log(2.1/3) = 3.1 dB. This correction factor can be applied to data from 960 to 1,600 MHz for figure 19 to figure 34. Most emission issues in this frequency range are addressed by this correction. This correction factor applies to SF GPR emission measurements made at the FAA Technical Center as well.
- Ambient emissions exceeded NTIA criteria at several localized frequencies between 50 and 3,000 MHZ in RMS data presented in figure 27 through figure 34. These ambient emissions accounted for localized features that exceeded NTIA criteria in SF GPR data in figures 26 through 33.
- Isolated peaks that exceeded NTIA criteria in figure 23, figure 25, figure 26, figure 28, figure 30, and figure 34 appear to be related to intermittent ambient phenomena that occurred during SF GPR emission measurements. This hypothesis is supported by measurement results obtained using similar measurement configurations that do not include these isolated peaks.
- Unintentional peak and RMS emissions below 140 MHz exceeded NTIA criteria, as shown in figure 35 and figure 36. These unintentional emissions were caused by monolithic microwave-integrated circuit (MMIC) switching devices, and they occurred

each time the antenna array switched between antenna array elements. These emissions were a side effect of the operation of the MMIC devices within the SF GPR and were common in all RF solid state switches.

Data collected in narrow frequency bands corresponding to critical Federal systems were not analyzed for this report because this data are anticipated to be evaluated individually by appropriate Federal agencies. The original measurement data from this test are available in electronic form to accompany this report. Figure 17 and figure 18 in appendix B provide the data file matrix corresponding to critical Federal system data collected in March 2009. The data file matrix describing all other data files collected in March 2009 is provided in figure 15 and figure 16 in appendix B. Procedures for data file import are provided in appendix D.

SUMMARY

SF GPR emissions characterization testing has been performed to measure emissions of FHWA/USDOT technology relative to criteria established by the NTIA. Testing was conducted using standardized equipment at the FAA Technical Center in New Jersey. Measurements were carried out in a standardized GPR test geometry. Results show that the SF GPR was largely compliant with the proposed emissions mask when notches were implemented (with exceptions noted in the results section of this report). In the few frequency ranges where FAA Technical Center measurement data indicated that there were compliance issues, emissions were reduced to meet NTIA criteria by adjusting the system attenuation to frequencies above 140 MHz during follow-up measurements at an FCC-certified laboratory. Below 140 MHz, an MMIC switching device in the SF GPR produced emissions that exceeded NTIA criteria during measurements and for reducing the unintentional SF GPR emissions below 140 MHz, but it was notable that NTIA emissions criteria were substantially below typical ambient signal levels in this range.

As described above, emission measurement data were collected for SF GPR emissions over a broad range of frequencies at and around the operating frequencies of the SF GPR equipment being tested. In addition, detailed emissions data were collected over significantly narrower bandwidths corresponding to critical Federal systems. The general data were analyzed and described in this report, while the detailed Federal system data will be provided to appropriate agencies in electronic form (along with this report).

RECOMMENDATION

SF GPR technology was characterized in this study via standardized methods relative to emissions criteria established by the NTIA. This technology has been demonstrated to be an effective tool for evaluating civil infrastructure materials and structures, as well as many other Federal applications in the national interest, such as land mine and unexploded ordinance detection. The results from SF GPR testing show that this technology meets proposed NTIA criteria for all of the configurations evaluated during follow-up testing in September 2009 for intentional emissions above 140 MHz. Unintentional emissions below 140 MHz may require a waiver at some frequencies.

Emissions measurement data were collected to evaluate general emissions over a broad range of frequencies that the SF GPR operates in. In addition, detailed emissions data were collected over significantly narrower bandwidths corresponding to critical Federal systems. General test data were analyzed and described in this report, while detailed Federal system data will be provided to appropriate agencies in electronic form (along with this report).

A proposed coordination procedure for operational use of SF GPR has also been developed and is summarized in appendix A. The proposed coordination procedure requires SF GPR users to register their systems with NTIA and also requires that they notify NTIA if SF GPR operations are going to take place at an airport facility.

This measurement study has shown that SF GPR technology meets NTIA criteria and that an efficient coordination mechanism can be implemented that provides safety through a registration process and limited usage based on proximity to airport facilities. FHWA/USDOT has also shown that operational use of SF GPR technology will have critical implications for a variety of important subsurface evaluation applications in the national interest.

APPENDIX A: DRAFT LANGUAGE FOR SF GPR COORDINATION

SF GPR coordination with the NTIA is anticipated to be accomplished by registering entities that own SF GPR systems. The registration process will be used to define the entity responsible for the system, to provide a list of qualified system users, and to provide detailed technical specifications for each registered system. After registration, system users will receive a letter from NTIA defining coordination procedures that they are required to follow. If system users are operating an SF GPR in a location that is on airport facility grounds controlled by FAA, they must notify NTIA via a coordination form. The notification for SF GPR work on airport facility grounds should take place at least 3 days prior to SF GPR operation. If the operation of an SF GPR occurs off airport facility grounds, a valid NTIA registration for the system is required, but no notification is necessary to operate the system.

APPENDIX B: INDEX OF DATA FILES

This appendix shows an index of data files with a description of relevant files that are provided electronically in American Standard Code of Information Interchange (ASCII) format for Federal agencies to evaluate, with instructions for import into Microsoft Excel[®], MatLab, MathCad, or other data processing software/programs.

Test #	Frequency (MHz)	Antenna	RBW	VBW	QP Amb (dBm)	Az	El	Pol	Ambient Datafile	Ambient Datafile	Notch Off Datafile	Notch Off DataFile	Notch On Datafile		QP Notch off	QP Notch on
									(Peak)	(RMS)	(Peak)	(RMS)	(Peak)	(RMS)		
- A0	30 - 3 <mark>00</mark>	Biconic	1MHz	3 MHz	-96	0	*	v	378	379	381	380	417	416	-84	-95
A30		3 ft. 9 in.			·····	30	····	v			382	383			·····	
A60					· · · · · · · · · · · · · · · · · · ·	60		v		·····	385	384				·····
A90						90		V	·····		386	387	·····		·····	
A120						120	· · · · ·	v			395	394			·····	
A150	·····					150		v	······		392	393				
A180				· · · · · · · · · · · · · · · · · · ·		180	·	V			396	398	·····		·····	
BO	30 - 3 <mark>00</mark>	Biconic	1 MHz	3 MHz	-96	0	*	Н	414	415	413	412				
B30						30		Н			410	411				
B60						60		Н			409	408				
B90						90		Н			406	407	418	419	-83	-96
B120						120		Н			405	404				
B150						150		Н			402	403				
B180						180		Н			400	399				
CO	300 - 2000	LPA ant	1MHz	3 MHz	-113	0	*	V	457	456	458	459				
C30						30		v			461	460	491	490	-82	-96
C60						60		V			462	463				
C90						90		V			465	464				
C120						120		V			466	467				
C150						150		V			469	468				
C180						180		V			470	471				
DO	300 - 2000	LPA ant	1MHz	3 MHz	-113	0	*	Н	486	487	485	484				
D30						30		Н			482	483				
D60						60		Н			481	480	488	489	-82	-90
D90						90		Н			478	479				

Figure 15. Screen shot. General measurement data summary table (part 1 of 2).

Test	Frequency	Antenna	RBW	VBW	QP Amb	Az	El	Pol	Ambient	Ambient	Notch Off	Notch Off	Notch On	Notch On	Datafile
#	(MHz)				(dBm)				Datafile	Datafile	Datafile	DataFile	Datafile	DataFile	QP
									(Peak)	(RMS)	(Peak)	(RMS)	(Peak)	(RMS)	
D120						120	·	Н			477	476			
D150	·····					150		Н			474	475			· · · · · · · · · · · · · · · · · · ·
D180						180		Н	·····		473	472	·····		
EO	2000 - 3000	Horn	1 MHz	3 MHz		0	* -	V	420	421	423	422			N/A
E30	Preamp on					30		v			424	425	454	455	
E60						60		v			426	427			
E90					· · · · · · · · · · · · · · · · · · ·	90		v			429	428			
E120						120	·	v			430	431			
E150						150		v			433	432			
180	· · · · · · · · · · · · · · · · · · ·					180		v	·····		434	435		·····	
FO	2000 - 3000	Horn	1 MHz	3 MHz		0	*	Н	450	451	449	448	453	452	
F30	Preamp on				· · · · · · · · · · · · · · · · · · ·	30		Н			446	447			
F60	·····					60		Н	·····		445	444			
F90			_	·····		90	·	Н			442	443			
F120						120		Н			441	440		·····	
F150						150		Н			438	439			
F180						180		Н			437	436			N/A

Figure 16. Screen shot. General measurement data summary table (part 2 of 2).

Test #	Federal System	Frequency Band	Receiver BW	RBW	VBW	Sweep Time	Az	Pel	Ambient Datafile (Peak)	Ambient Datafile (RMS)	Notch Off Datafile (Peak)	Notch Off DataFile (RMS)	Notch On Datafile (Peak)	Notch On DataFile (RMS)	DataFile QP
А	general measurement	50 MHz - 300 MHz	Biconic ant	10 kHz	30 kHz		*	V							
B	general measurement	50 MHz - 300 MHz	Biconic ant	10 kHz	30 kHz		*	H							
D	general measurement general measurement	300 - 700 MHz 300 - 700 MHz	LPA ant LPA ant	100 kHz 100 kHz	300 kHz 300 kHz		*	V H		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
E.	general measurement	700 MHz - 6300 MHz	Horn antenna	1 MHz	3 MHz		*	V		······					N/A
F	general measurement	700 MHz - 6300 MHz	Hom antenna	1 MH7	3 MHz		*	н						-	N/A
1	ILS Marker Beacon	70- 80 MHz	65.2 kHz/100 kHz	10 kHz	30 kHz		30	V	373	372	370	371		·····	N/A
2	VHF VOR	108-118 MHz	8 Hz/10 Hz	10 kHz	30 kHz	·····	150	V	367	366	369	368			N/A
3	ILS	Localizer: 108.1-111.95 MHz	8 Hz/10 Hz	10k Hz	30 kHz			L.F.F.			covered by #		Same and		N/A
4		Glideslope: 325-340 MHz	8 Hz/10 Hz	10 kHz	30 kHz	<u> </u>	30	V	334	333	331	332	335	336	N/A
5	VHF Comm	118-138 MHz	16 kHz	10 kHz	30 kHz		120	V	365	364	362	363			N/A
5a	VHF Comm	118-138 MHz	16 kHz	10 kHz	30 kHz		180	H			530	531			
6	VHF Digital Link System	118-137 MHz	16 kHz								covered by #	5			N/A
7	LAAS VHF Data	108-118 MHz	16 kHz								covered by #	15			N/A
8	AN/PRC-117	50-88 MHz	25 kHz/30 kHz	30 kHz	100 kHz		120	V	358	359	361	360		·····	N/A
8a	Communications System	50-88 MHz		30 kHz	100 kHz	·····	180	v			532	533		·····	
9		117 - 138 MHz		10 kHz	30 kHz		120	V	104	103	covered by #	5			N/A
10	·····	138-151 MHz		10 kHz	30 kHz		90	Н	105	106	136	137	108	107	N/A
11		138-151 MHz		10 kHz	30 kHz		90	Н	105	106	136	137	108	107	N/A
12		138-151 MHz		10 kHz	30 kHz		90	Н	105	106	136	137	108	107	N/A
13		150-160 MHz		10 kHz	30 kHz	ha the fire	120	V	114	115	131	130	117	116	N/A
14		162-174 MHz	·····	10 kHz	30 kHz	ag ing alar	90	Н	113	112	139	138	110	111	N/A
15		162-174 MHz	·····	10 kHz	30 kHz		90	Н	113	112	139	138	110	111	N/A
16		225-300 MHz		10 kHz	30 kHz		150	V	374	375	377	376	118	119	N/A
17		300-400 MHz		10 kHz	30 kHz		150	V	143	142	343	344			N/A
18	·	400-420 MHz		10 kHz	30 kHz		150	V	339	340	342	341	338	337	N/A
19	Motorola XTL 1500, XTL	138-144 MHz	12.5 kHz (and 25	10 kHz	30 kHz										N/A
20	2500, XTL 5000 Land mobile	148-149.9 MHz	kHz)	10 kHz	30 kHz			1			covered by 1	0 - 18			N/A
21	system	150.05-150.8 MHz		10 kHz	30 kHz		-								N/A
22		162.0125-173.2 MHz		10 kHz	30 kHz	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-							N/A
23	a series and a series of the s	173.4174 MHz		10 kHz	30 kHz										N/A
24		380-399.9 MHz		10 kHz	30 kHz			100 March 100							N/A
25		406.1-420 MHz		10 kHz	30 kHz			-							N/A
26	Universal Access Transceiver	970 - 990 MHz	2 MHz/3 MHz	3 MHz	8 MHz		180	V	348	347	345	346	349	350	N/A
27	DME Interrogator	950-1250 MHz	650 kHz/1 MHz	1 MHz	3 MHz		30	V	354	353	355	356	351	352	N/A
28	DME	1025-1150 MHz	0.8 MHz/1MHz	1 MHz	3 MHz		50		354	555	covered by #			374	N/A
29	ATC Radio Beacon System	1070-1110 MHz	9 MHz/10 MHz	8 MHz	50 MHz		30	V	218	219	221	220	241	242	N/A
30	ATC Radio Beacon System	1010-1050 MHz	5.5 MHz/3 MHz	3 MHz	8 MHz		30	V	178	179	181	180	227	228	N/A
31	ASR-4	1240-1400 MHz	690 kHz/1 MHz	1 MHz	3 MHz		30	H	185	184	182	183	230	229	N/A
32	ASR-4		420 kHz/300 kHz	300 kHz	1 MHz		30	Н	186	187	189	188	231	232	N/A
32a	ASR-4	1240-1400 MHz	420 kHz/300 kHz	300 kHz	1 MHz		120	н		107	536	537	538	539	
33	Search and Rescue Satellite Land User Terminal	1540-1550 MHz	800 kHz/1 MHz	1 MHz	3 MHz	**************************************	180	Н	190	191	193	192			N/A

Figure 17. Screen shot. Federal system data summary table (part 1 of 2).

Test	Federal System	Frequency Band	Receiver BW	RBW	VBW	Sweep	Az	Pol	Ambient	Ambient		Notch Off		Notch On	
#						Time			Datafile (Peak)	Datafile (RMS)	Datafile (Peak)	DataFile (RMS)	Datafile (Peak)	DataFile (RMS)	QP
34	Global Positioning System	1164-1188 MHz	1 MHz	1 MHz	3 MHz		60	v	(reak) 202	203	205	204	(reak) 233	234	N/A
35		1215-1240 MHz		1 MHz	3 MHz		30	H	217	216	214	215	200	201	N/A
35a		1215-1240 MHz	-	1 MHz	3 MHz		120	н			477	476			
36		1555-1615 MHz		1 MHz	3 MHz		180	Н	197	196	194	195	237	238	N/A
37		1164-1188 MHz	l kHz	l kHz	3 kHz		60	V	209	208	206	207	235	236	N/A
38		1215-1240 MHz		l kHz	3 kHz		30	Н	210	211	213	212			N/A
38a		1215-1240 MHz		l kHz	3 kHz		120	н			534	535			
39		1555-1615 MHz		l kHz	3 kHz		180	Н	198	199	201	200	239	240	N/A
40	Meteorological Aids	1668-1700 MHz	0.150 MHz/100	100 kHz	300 kHz	· · · · · · · · · · · · · · · · · · ·	30	Н	226	225	222 and 223	224	N/A	N/A	N/A
41	Meteorological Satellite	2025-2110 MHz	5.8 MHz	6 MHz	50		60	H	251	252	281	282	245	249	N/A
41a			5.8 MHz	6 MHz	50		180	V	······································		552	553	540	541	
42			34 MHz (DSN)	$8 \mathrm{MHz}$	50		60	Η	254	253	284	283	247	248	N/A
42a			34 MHz (DSN)	8 MHz	50		180	V			554	555	542	543	
43			5.6 MHz (Processed Data	6 MHz	open						covered by	41			N/A
44			Relay) 1.2 MHz Low	1 MHz	3 MHz		60	н	255	256	285	286	258	257	N/A
45			Rate 0.050 MHz	30 kHz	100 kHz		60	н	262	261	287	288	259	260	N/A
45a			Command 0.050 MHz	30 kHz	100		180	v			556	557	544	545	
			Command	···	kHz				0.00	0/1			0.00	0.00	
46			0.060 MHz Weather Info	100 kHz			60	н	263	264	289	290	266	265	N/A
46a			0.060 MHz Weather Info	100 kHz	300 kHz		180	v			558	559	546	547	
47			0.060 MHz DCP								covered by	46			N/A
48	Space Ground Link Subsystem Earth Station Receiver	2200-2290 MHz	1 MHz/1 MHz	1 MHz	3 MHz		150	н	275	276	279	280	278	277	N/A
49	Satellite Earth Station Receivers	2200-2290 MHz	1.5 to 360 MHz	l MHz	3 MHz						covered by	4.9			N/A
50	Deep Space Network Earth Station Receiver	2290-2300 MHz	1 MHz/1 MHz	1 MHz	3 MHz		60	V	270	269	291	292	267	268	N/A
51	Aeronautical Telemetry Ground-Based Receiver	2360-2390 MHz	25 MHz	8 MHz	open		0	Н	271	272	293	294	274	273	N/A
51a	Aeronautical Telemetry Ground-Based Receiver	2360-2390 MHz	25 MHz	8 MHz	50 kHz		180	v			550	551			
52	ASR-9	2700-2900 MHz	653 kHz/1MHz	1 MHz	3 MHz						covered by	54		·····	N/A
53	ASR-11		1.1 MHz/1 MHz	1 MHz	3 MHz						covered by				N/A
54	Next Gen Weather Radar	2700-3000 MHz	600 kHz/ 1MHz	1 MHz	3 MHz		180	V	295	296	298	297	305	306	N/A
55	Maritime Radar	2900-3100 MHz	4 MHz	3 MHz	10 MHz	····	180	V	302	301	299	300	303	304	N/A
56	Radar Altimeters	4200-4400 MHz	Pulsed 25 MHz	8 MHz	open		0	V	307	308	310	309	N/A	N/A	N/A
57			FMCW 90 kHz/ 100 kHz	100 kHz	300 kHz		0	V	314	313	311	312	N/A	N/A	N/A
58	Microwave Landing System	5030-5091 MHz	150 kHz/100 kHz	100 kHz	300 kHz		0	V	315	316	318	317	N/A	N/A	N/A
59	Terminal Doppler Weather Radar	5600-5650 MHz	0.910 MHz/ 1MHz	1 MHz	3 MHz		0	V	322	321	319	320	N/A	N/A	N/A
60	General	3000 - 6300 MHz		1 MHz	3 MHz		0	v	326	325	323	324	N/A	N/A	N/A
61	General	3000 - 6300 MHz		1 MHz	3 MHz			H	327	328	330	329	N/A	N/A	N/A
62	General	5000 - 6300 MHz		1 MHz	3 MHz								N/A	N/A	N/A

Figure 18. Screen shot. Federal system data summary (part 2 of 2).

APPENDIX C: GRAPHS SHOWING FOLLOW-UP MEASUREMENTS

This section provides graphs of the emission data from the SF GPR antennas and contrasts them to the background ambient emissions from the rural environment and to the maximum emissions criteria. In cases where there was emissions notching, the notch frequencies are provided on the bottom axis of the graphs.

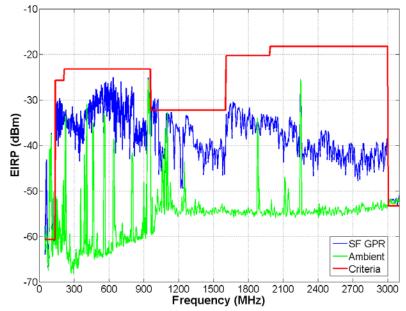


Figure 19. Graph. Outdoor peak emission measurement with horizontal polarization without notching.

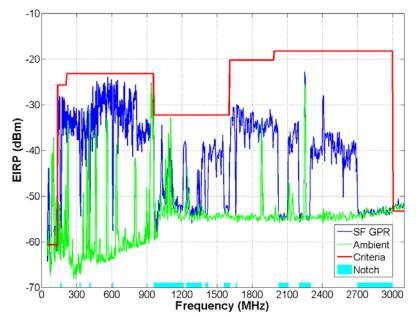


Figure 20. Graph. Outdoor peak emission measurement with horizontal polarization with A1 notch configuration.

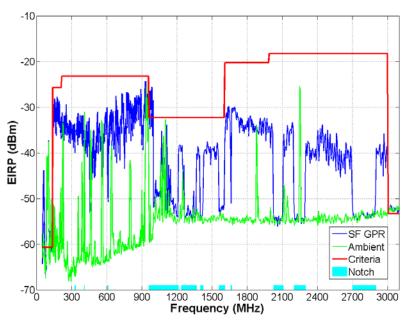


Figure 21. Graph. Outdoor peak emission measurement with horizontal polarization with A2 notch configuration.

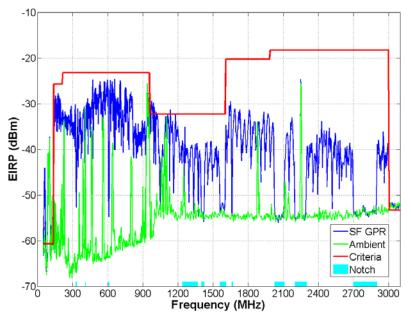


Figure 22. Graph. Outdoor peak emission measurement with horizontal polarization with A3 notch configuration.

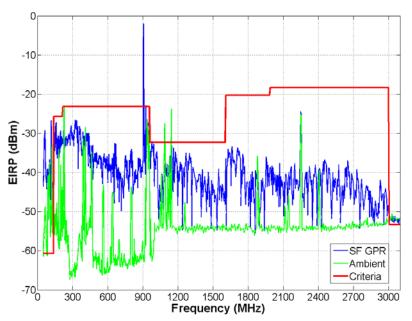


Figure 23. Graph. Outdoor peak emission measurement with vertical polarization without notching.

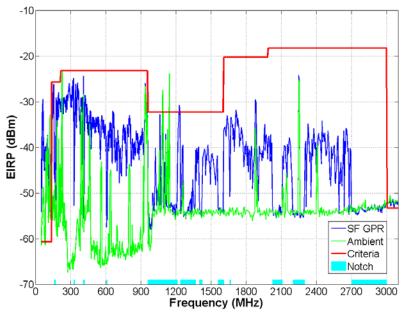


Figure 24. Graph. Outdoor peak emission measurement with vertical polarization with A1 notch configuration.

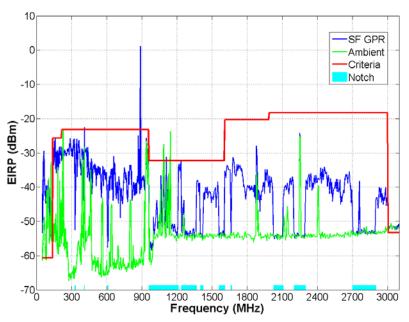


Figure 25. Graph. Outdoor peak emission measurement with vertical polarization with A2 notch configuration.

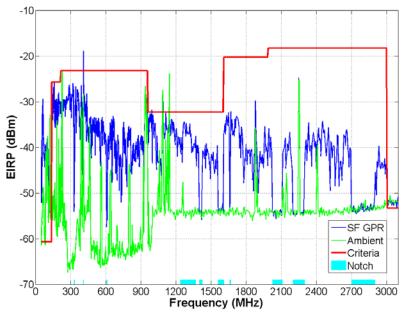


Figure 26. Graph. Outdoor peak emission measurement with vertical polarization with A3 notch configuration.

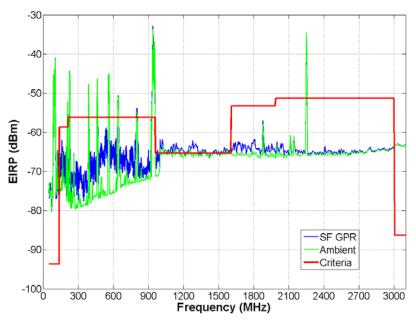


Figure 27. Graph. Outdoor RMS emission measurement with horizontal polarization without notching.

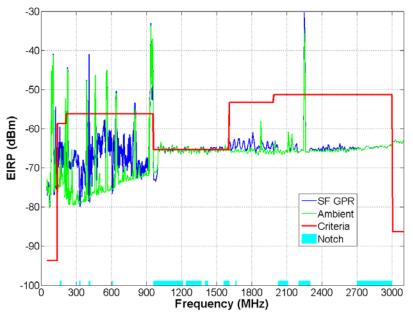


Figure 28. Graph. Outdoor RMS emission measurement with horizontal polarization with A1 notch configuration.

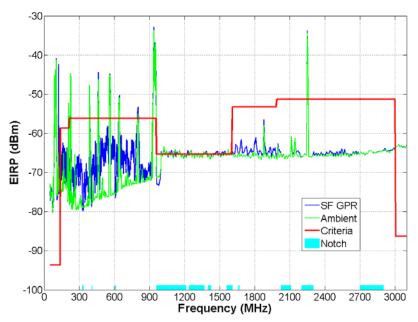


Figure 29. Graph. Outdoor RMS emission measurement with horizontal polarization with A2 notch configuration.

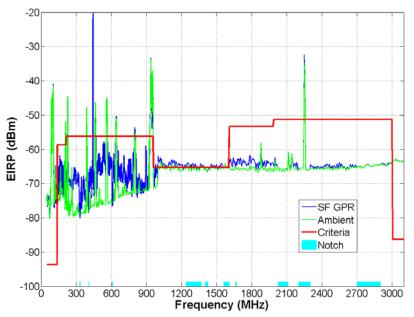


Figure 30. Graph. Outdoor RMS emission measurement with horizontal polarization with A3 notch configuration.

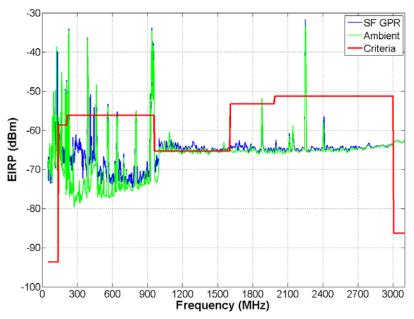


Figure 31. Graph. Outdoor RMS emission measurement with vertical polarization without notching.

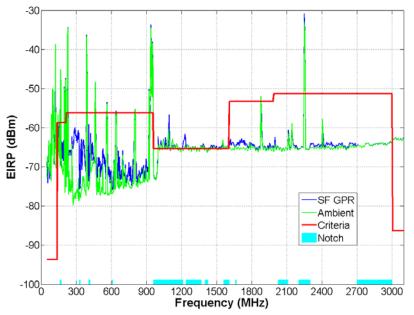


Figure 32. Graph. Outdoor RMS emission measurement with vertical polarization with A1 notch configuration.

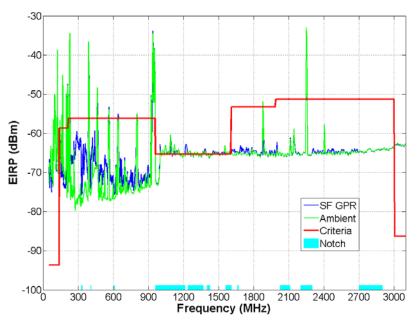


Figure 33. Graph. Outdoor RMS emission measurement with vertical polarization with A2 notch configuration.

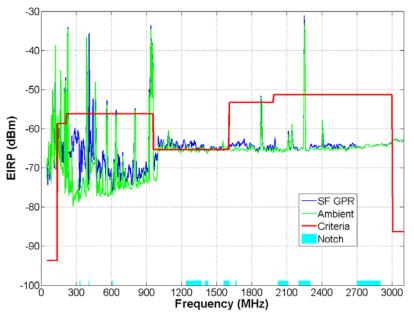


Figure 34. Graph. Outdoor RMS emission measurement with vertical polarization with A3 notch configuration.

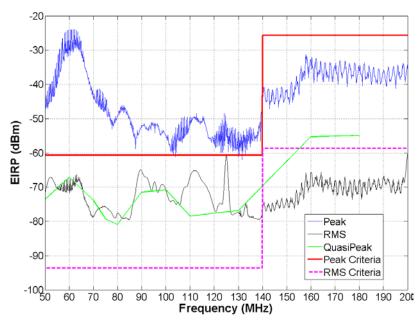


Figure 35. Graph. Indoor emission measurements using vertically polarized measurement antenna at low frequencies.

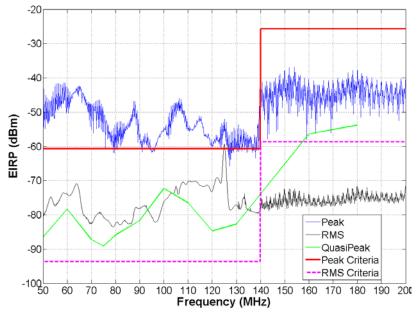


Figure 36. Graph. Indoor emission measurements using horizontally polarized measurement antenna at low frequencies.

APPENDIX D: DATA IMPORT PROCEDURES

The following section shows example data import procedures for SF GPR emissions characterization data.

ASCII data files are all named using the convention "TRACE###" where "###" is a three-digit number indicating the test number associated with the file. Antenna gain curves and cable loss factors are provided with the data files.

MICROSOFT EXCEL® PROCEDURE

- 1. Go to the Data menu.
- 2. Import External Data.
- 3. Import Data.
- 4. Select Tab Delimited Data.
- 5. Press "Next."
- 6. Press "Finish."

MATLAB PROCEDURE

```
%---reading header info------
fileID=fopen('G:\FAATestReportWork\FAANTIAtest2009\Trace381.csv','r');
```

for i = 1 : 15
 header{i}=fgetl(fileID);
end
[junk,temp0]=strtok(header{11},',');
Npoints=str2num(temp0);
fclose(fileID);

DataOffset=16;

%---Example Data File-----fileID=fopen('G:\FAATestReportWork\FAANTIAtest2009\Trace418.csv','r');

for i = 1: Npoints+DataOffset-1
 traceA{i}=fgetl(fileID);
end

fclose(fileID);

for m= DataOffset : Npoints+DataOffset-1

[junk,temp1]=strtok(traceA{m},','); freq(m)=str2num(junk); %13 RXpwr(m)=str2num(temp1(1:end));

end

freqBiconic=freq(DataOffset:end);
RXpwrBiconic=RXpwr(DataOffset:end);

APPENDIX E: CERTIFIED LABORATORY TEST REPORT: FOLLOW-UP TEST

The following certified laboratory test report contains supporting documentation and results of the testing performed for the research initiative in this report. The authors of this current study have not edited or changed the test report in this appendix except to remove more than one instance of company logo within the document and to format the report.

Test report no. : 133876/2

Item tested : B1823CH

Type of equipment : 3d-radar Geoscope

Client : 3d-Radar AS

Nemko is granted accreditation by Norwegian Accreditation under registration number TEST 033. FCC test firm registration # 994405

Federal Highway Administration/Department of Transportation

Step Frequency Ground Penetrating Radar

Characterization and federal Compliance Tests

2009-10-27

CONTENTS

GENERAL INFORMATION 1 50 1.1 T esthouse I nfo 50 1.2 Client Information 50 1.3 Manufacturer (if other than client) 50 2 **TEST INFORFMATION** 51 2.1 Tested I tem 51 2.2 Test Environment 51 2.2.1 NORMAL TEST CONDITION 51 2.3 Test Period 51 2.4 Standards and Regulations 52 2.5 Test Engineer(s) 52 2.6 Additional information 52 2.6.1 TEST METHODS 52 2.6.2 TEST EQUIPMENT 52 OTHER COMMENTS 3 53 3.1 General: 53 3.2 EUT (Equipment Under Test): 53 3.3 List of ports: 53 4 EMISSION MEASUREMENTS 54 4.1 Outdoor test 54 4.2 Indoor test 63 5 **TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS**

6 PHOTO OF EUT AND TEST SET UP 73

73

GENERAL INFORMATION

TESTHOUSE INFO

Name:	Nemko A/S
Address:	Nemko Kjeller Instituttvn 6, Box 96 N-2027 Kjeller, NORWAY
Telephone:	+47 64 84 57 00
Fax:	+47 64 84 57 05
E-mail:	comlab@nemko.com
FCC test firm registration	#: 994405
Number of Pages:	90

CLIENT INFORMATION

Name:	3d-Radar AS
Address:	Klæbuveien 196 B,
	N-7037 Trondheim, Norway
Telephone:	+ 47 72 89 32 02
E-mail	egil@3d-radar.com
Contact:	
Name:	Egil Eide
Phone:	+ 47 72 89 32 02

MANUFACTURER (IF OTHER THAN CLIENT)

egil@3d-radar.com

Name:	>
Address:	>
Telephone:	>
Fax:	>
Contact:	
<i>Contact:</i> Name:	>
	>
Name:	-

E-mail:

TEST INFORFMATION

TESTED ITEM

Name :	3d-Radar Geoscope
Model/version :	B1823CH
Serial number :	6052
Hardware identity and/or version:	-
Software identity and/or version :	-
Frequency Range :	140 MHz – 3 GHz
Type of Power Supply :	12 V dc
Desktop Charger :	No

Description of Tested Device(s)

Step frequency Geo Radar.

TEST ENVIRONMENT

Normal test condition at the test sites

Temperature:	Outdoor: 10 - 15 °C, Indoor: 22,1 - 22,6 °C
Relative humidity:	38,2 %
Normal test voltage:	237,3 – 240,0 V ac

The values are the limit registered during the test period.

TEST PERIOD

Item received date:	2009-09-10
Test period:	2009-09-10 - 2009-09-11

STANDARDS AND REGULATIONS

Federal Highway Administration/Department of Transportation Step Frequency Ground Penetrating Radar Characterization and Federal compliance Tests July 2, 2009

TEST ENGINEER(S)

Egil Hauger

ADDITIONAL INFORMATION

Test Methods

Described in the relevant basic standards.

Test Equipment

List of used test equipment, see clause 7.

THIS TEST REPORT APPLIES ONLY TO THE ITEM(S) AND CONFIGURATIONS TESTED.

TESTED BY : 10-20

DATE:

2009-

Test Engineer

Nemko Group authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any reproduction of parts of this report requires approval in writing from Nemko Group.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Group accepts no responsibility for damages suffered by any third party as a result of decisions made or actions based on this report.

OTHER COMMENTS

GENERAL:

The outdoor test was performed in rural area with no surroundings reflecting objects, see photo on fig 29 to 31.

The indoor test was performed in a semi-anechoic chamber with dimensions $22 \times 13 \times 9,5$ meters (I × w × h m), see photo on fig 32.

EUT (EQUIPMENT UNDER TEST):

EUT size 2,5x0,75x0,75 m See photo fig 30 to 33.

LIST OF PORTS:

Signal ports:	Signal cable
	Internal antenna

12 V dc

Power ports:

EMISSION MEASUREMENTS

OUTDOOR TEST

Test set up:

The outdoor measurements were performed in rural area with no reflecting objects in the surroundings, see photo on fig 29 to 31. The weather was dry with temperature around 12-15 °C. The ground was sand with some smaller stones. The test equipment was more that 5 m away from the radar.

All tests were stored as data file with frequency and EIRP in dBm.

Effective radiated power was calculated using Friis free space transmission formula with a distance of 3 m. This equals the formula presented in the test specification:

EIRP (dBm) = $dB\mu V/m - 95,2$

Test antennas used:

50 – 200 MHz:	Biconic antenna
200 – 1000 MHz:	Log.periodic antenna
1000 – 6000 MHz:	Horn antenna

All antennas were calibrated by National Physical Laboratory NPL UK. The conversion factors converting the measured values to EIRP in dBm including cables and pre.amplifier were calibrated before the test and stored in the test equipment.

Measurement instruments set up: Resolution bandwidth 1 MHz Video bandwidth 3 MHz Sweep time 15 sec Detector Peak and RMS

All test files with frequency and EIRP are enclosed.

Some of the files with the most interesting frequency spectra are converted to Excel and shown below. See fig 1 to 13.

Test file notation:

File no File no

						File no	File IIO
Test	Config	Freq	Ant	Az	Pol	Peak	RMS
A1	Ambient	50-200 MHz	Bicon	0	V	003	004
A2	No notching	50-200	Bicon	0	V	005	006
A3	Notch A1	50-200	Bicon	0	V	007	008
A4	Notch A2	50-200	Bicon	0	V	009	010
A5	Notch A3	50-200	Bicon	0	V	011	012
A6	Ambient	50-200	Bicon	90	Н	002	001
A7	No notching	50-200	Bicon	90	Н	019	020
A8	Notch A1	50-200	Bicon	90	Н	018	017
A9	Notch A2	50-200	Bicon	90	Н	015	016
A10	Notch A3	50-200	Bicon	90	Н	014	013
A11	Ambient	200-1000 MHz	Log.per	0	V	032	031
A12	No notching	200-1000	Log.per	0	V	040	039
A13	Notch A1	200-1000	Log.per		V	037	038
A14	Notch A2	200-1000	Log.per		V	035	036
A15	Notch A3	200-1000	Log.per		V	033	034
A16	Ambient	200-1000	Log.per		Н	021	022
A17	No notching	200-1000	Log.per		Н	024	023
A18	Notch A1	200-1000	Log.per		Н	025	026
A19	Notch A2	200-1000	Log.per		Н	028	027
A20	Notch A3	200-1000	Log.per		Н	029	030
A21	Ambient	1-6 GHz	Horn	0	V	041	042
A22	No notching	1-6	Horn	0	V	043	044
A23	Notch A1	1-6	Horn	0	V	046	045
A24	Notch A2	1-6	Horn	0	V	047	048
A25	Notch A3	1-6	Horn	0	V	050	049
A26	Ambient	1-6	Horn	90	Н	080	079
A27	No notching	1-6	Horn	90	Н	078	077
A28	Notch A1	1-6	Horn	90	Н	075	076
A29	Notch A2	1-6	Horn	90	Н	074	073
A30	Notch A3	1-6	Horn	90	Н	071	072
A31	Ambient	1-3	Horn	0	V	059	060
A32	No notching	1-3	Horn	0	V	058	057
A33	Notch A1	1-3	Horn	0	V	055	056
A34	Notch A2	1-3	Horn	0	V	054	053
A35	Notch A3	1-3	Horn	0	V	051	052
A36	Ambient	1-3	Horn	90	Н	062	061
A37	No notching	1-3	Horn	90	Н	063	064
A38	Notch A1	1-3	Horn	90	Н	066	965
A39	Notch A2	1-3	Horn	90	Н	067	068
A40	Notch A3	1-3	Horn	90	Н	070	069
A41		1,164-1,240 GHz		0	V	088	087

Test file notation:

						File no	File no
Test	Config	Freq	Ant	Az	Pol	Peak	RMS
A42	No notching	1,559-1,610	Horn	0	V	085	086
A43	No notching	1,165-1,240	Horn	90	Н	082	081
A44	No notching	1,559-1610	Horn	90	Н	083	084

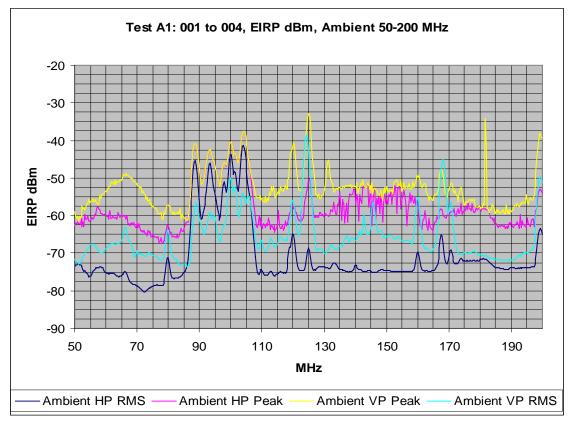


Fig 1

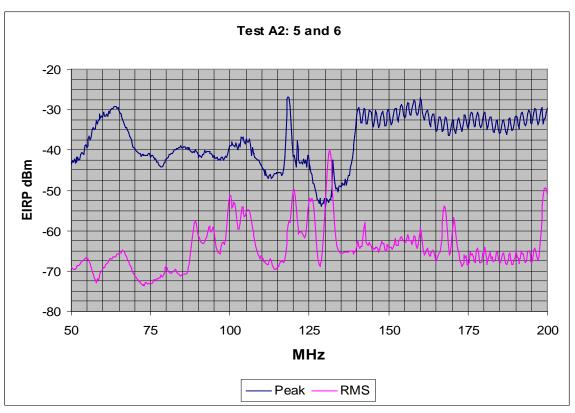


Fig 2

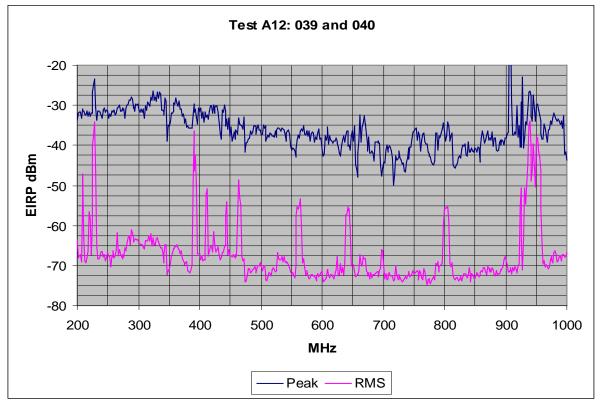


Fig 3

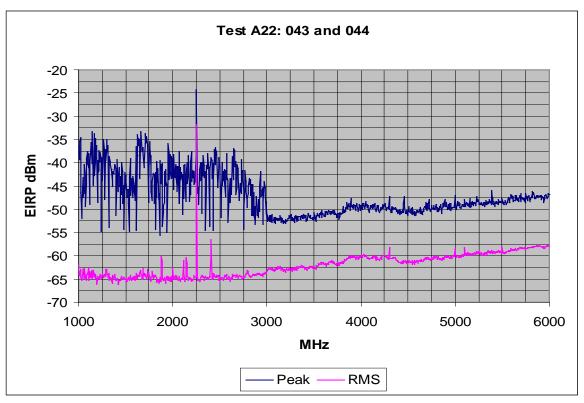


Fig 4

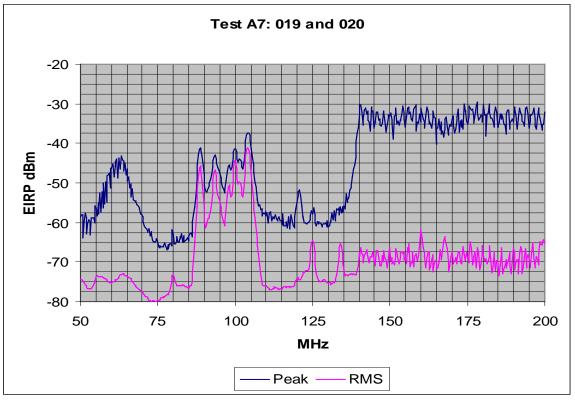
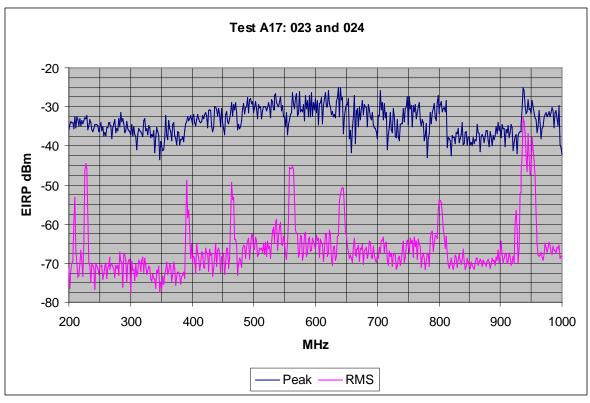



Fig 5

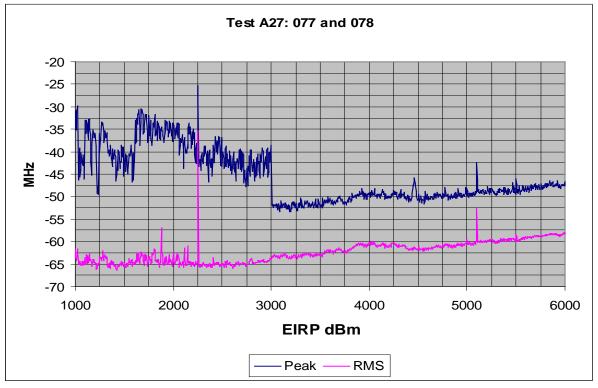
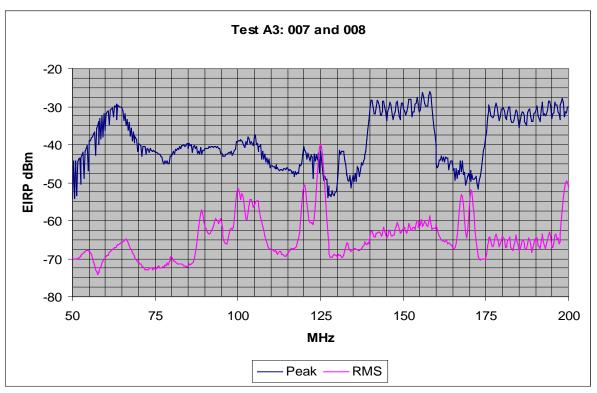



Fig 7

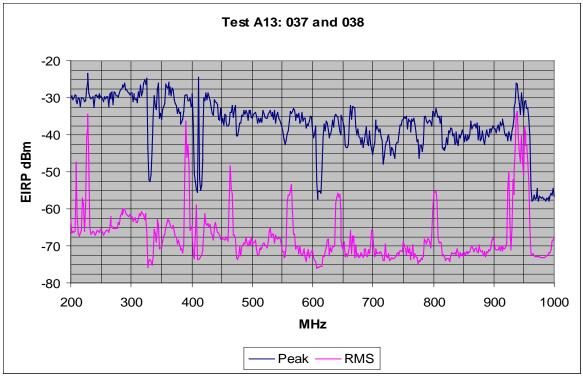


Fig 9

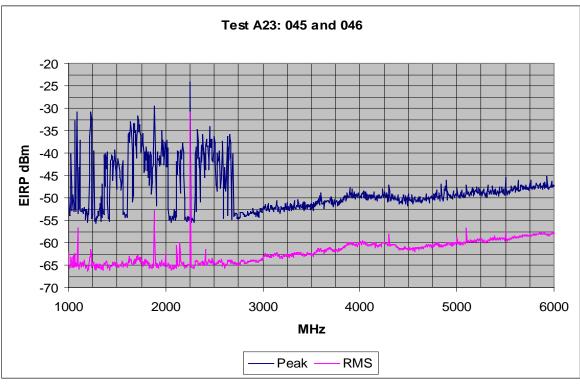


Fig 10

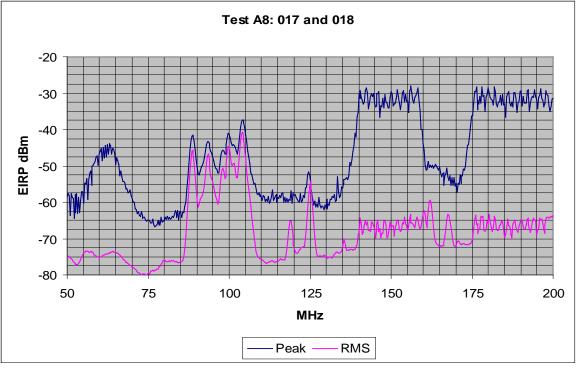
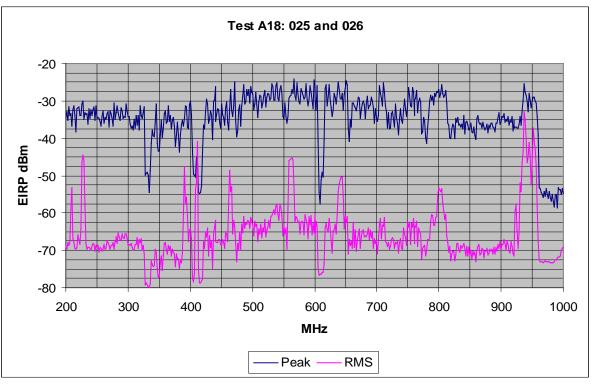



Fig 11

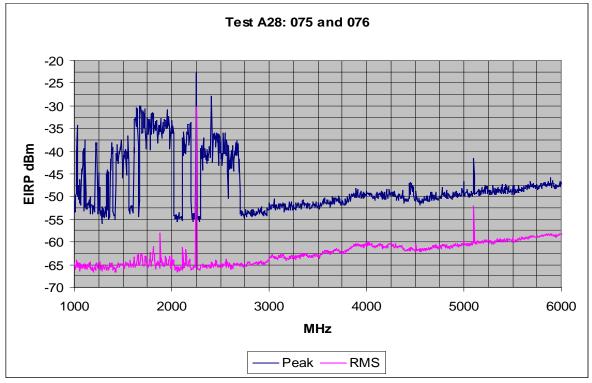


Fig 13

INDOOR TEST

Test set up:

The test is performed in a semi anechoic chamber with a size of $22 \times 13 \times 9,5$ meters $(I \times w \times h)$.

The EUT was placed on a table with a height of 80 cm. on a turntable. Absorbers with ferrite tiles were placed below the table to prevent reflection from the floor. The receiver antenna height was 2 m, both with horizontal and vertical polarisation with a distance of 3 m to EUT. The EUT was rotated in 30 dgr step from 0 to 180 dgr., see photo on fig 32.

Quasi-Peak measurement with 3 m test distance: 120 kHz BW

120 kHz BW	EUT Az	Polarization	Level
Frequency MHz	EUTAZ	HP/VP	dBm
IA11 15			ubiii
50	0	VP	-73,6
60	0	VP	-67,2
60,95	180	VP	-62,2
70	0	VP	-73,9
75	0	VP	-79,3
80	0	VP	-80,9
90	0	VP	-71,5
100	0	VP	-70,8
110	0	VP	-78,5
120	0	VP	-77,6
130	0	VP	-76,9
158	0	VP	-54,7
160	0	VP	-55,3
160	180	VP	-54,8
180	0	VP	-54,9
180	180	VP	-54,5
50	90	HP	-86,5
60	90	HP	-78,3
70	90	HP	-87,2
75	90	HP	-89,1
80	90	HP	-85,9
90	90	HP	-81,7
100	90	HP	-72,3
110	90	HP	-76,5
120	90	HP	-84,7
130	90	HP	-82,7
160	90	HP	-56,4
180	90	HP	-53,8

Sveep measurement:

Test #	Configuration	Frequency Band	Antenna	RBW	VBW	Sweep Time	Az	Pol	Datafile (Peak)	Datafile (RMS)
B1	Ambient	50 MHz - 200 MHz	Biconic	1 MHz	3 MHz	15sec	-	V	100	101
B2	No notching	50 MHz - 200 MHz	Biconic	1 MHz	3 MHz	15sec	0	V	102	103
B3	No notching	50 MHz - 200 MHz	Biconic	1 MHz	3 MHz	15sec	30	V	104	105
B4	No notching	50 MHz - 200 MHz	Biconic	1 MHz	3 MHz	15sec	60	V	106	107
B5	No notching	50 MHz - 200 MHz	Biconic	1 MHz	3 MHz	15sec	90	V	108	109
B6	No notching	50 MHz - 200 MHz	Biconic	1 MHz	3 MHz	15sec	120	V	110	111
B7	No notching	50 MHz - 200 MHz	Biconic	1 MHz	3 MHz	15sec	150	V	112	113
B8	No notching	50 MHz - 200 MHz	Biconic	1 MHz	3 MHz	15sec	180	V	114	115
B9	Ambient	50 MHz - 200 MHz	Biconic	1 MHz	3 MHz	15sec	-	Н	130	131
B10	No notching	50 MHz - 200 MHz	Biconic	1 MHz	3 MHz	15sec	0	Н	128	129
B11	No notching	50 MHz - 200 MHz	Biconic	1 MHz	3 MHz	15sec	30	Н	126	127
B12	No notching	50 MHz - 200 MHz	Biconic	1 MHz	3 MHz	15sec	60	Н	125	124
B13	No notching	50 MHz - 200 MHz	Biconic	1 MHz	3 MHz	15sec	90	Н	122	123
B14	No notching	50 MHz - 200 MHz	Biconic	1 MHz	3 MHz	15sec	120	Н	120	121
B15	No notching	50 MHz - 200 MHz	Biconic	1 MHz	3 MHz	15sec	150	Н	118	119
B16	No notching	50 MHz - 200 MHz	Biconic	1 MHz	3 MHz	15sec	180	Н	117	116

See fig 14 to 28.

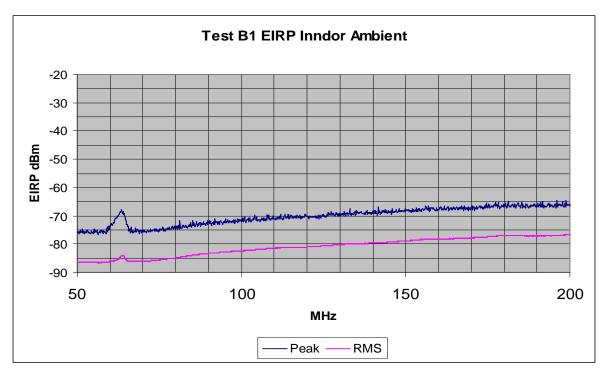


Fig 14

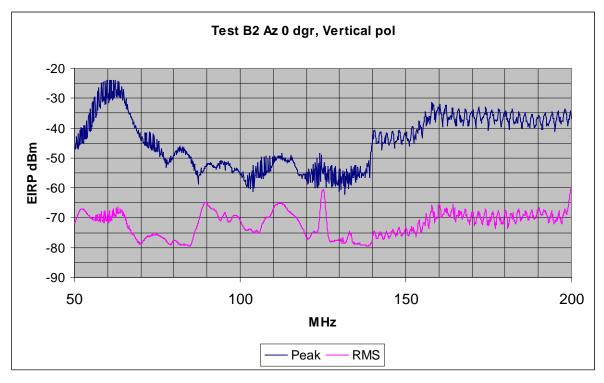
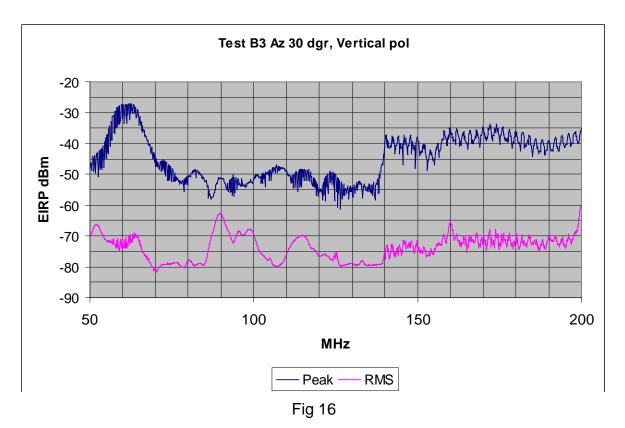



Fig 15

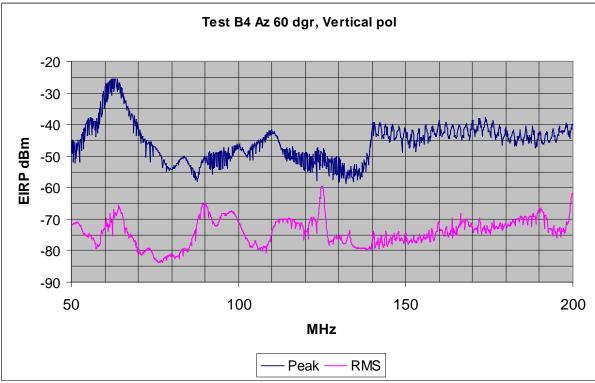
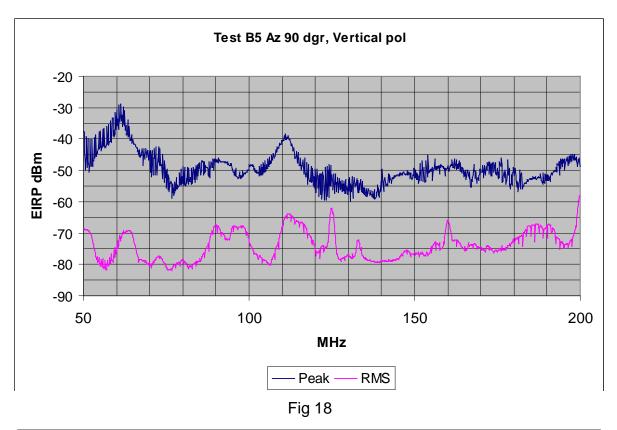



Fig 17

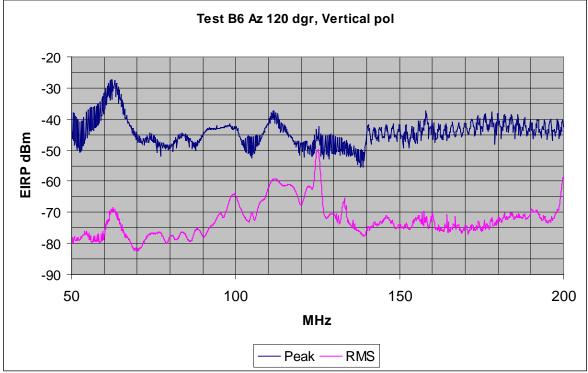
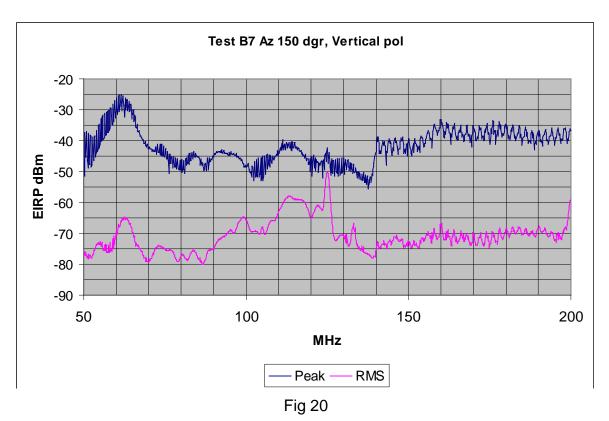



Fig 19

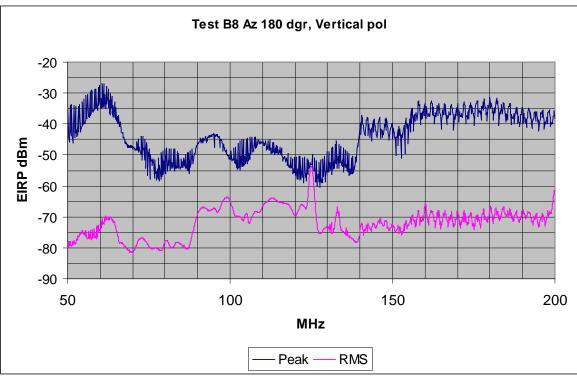
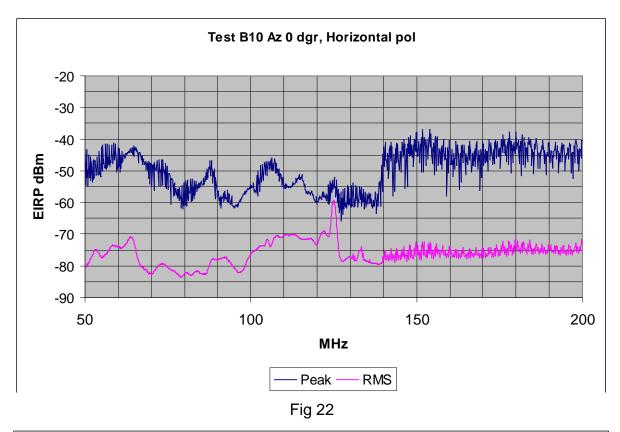



Fig 21

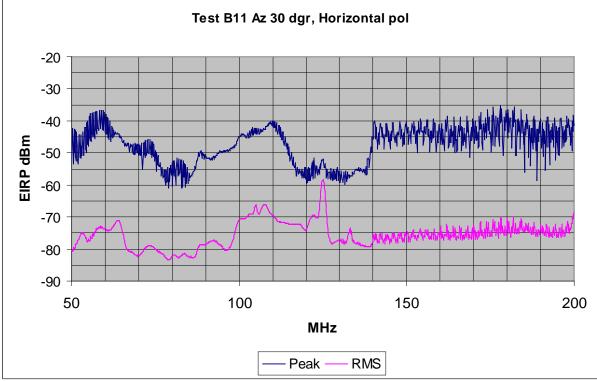
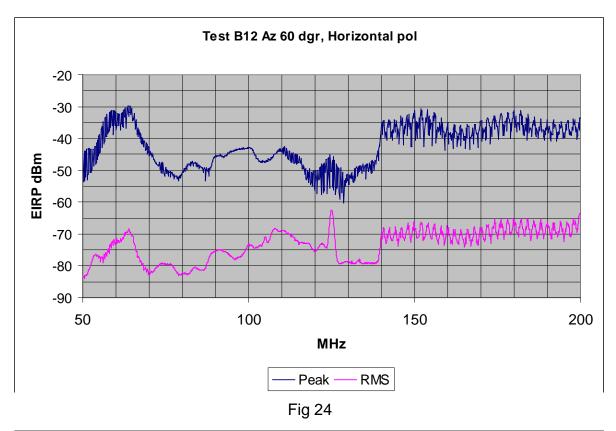



Fig 23

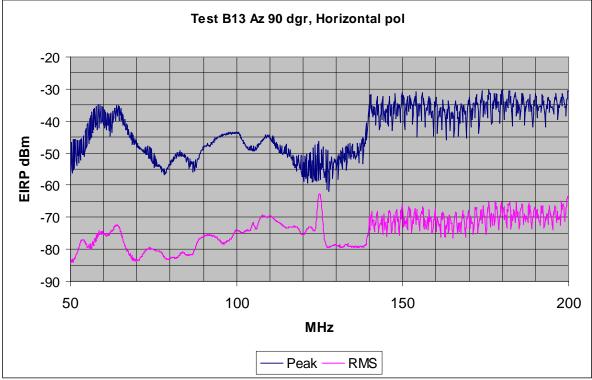
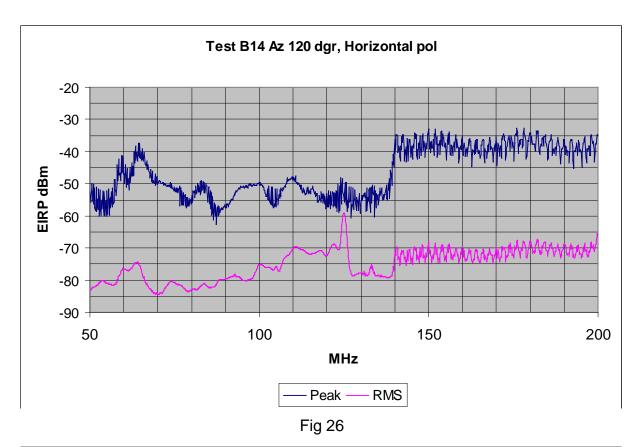



Fig 25

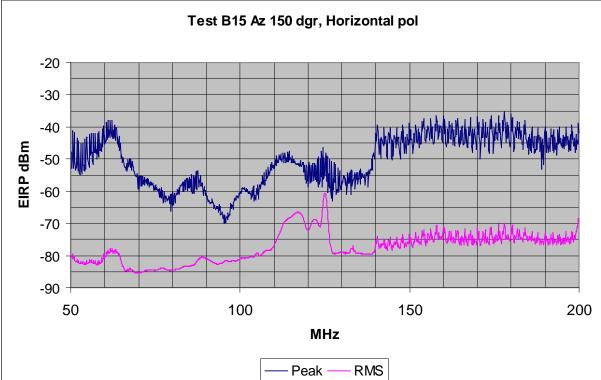
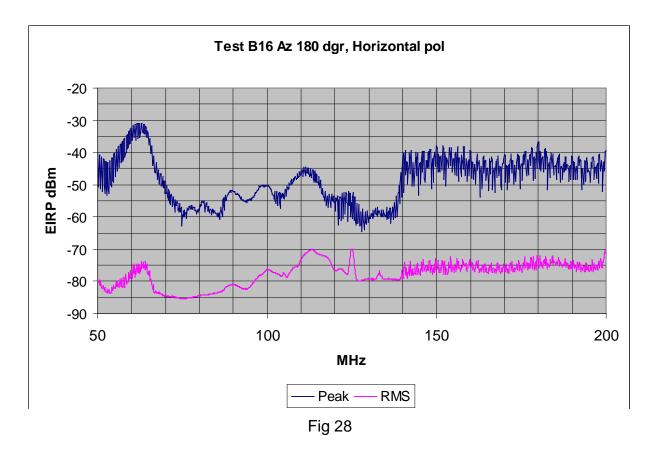



Fig 27

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory.

No	Instrument/Ancillary	Туре	Manufacturer	Ref. No.
1	Test receiver	ESN	R&S	LR 1237
2	Biconical antenna	3104C	EMCO	LR 1262
3	Log.per antenna	3146	EMCO	LR 1221
4	Horn antenna	3115	EMCO	LR 1330
5	Spectrum analyzer	FSP	R&S	LR 1551
6	Pre.amp	8447F	HP	TF 03305
7	Pre.amp	8449B	HP	TF 03475
8	Cable	Sucoflex 106 6 m	Suhner	

PHOTO OF EUT AND TEST SET UP

Fig 29 Test set up outdoor measurement

Fig 30 Test set up outdoor measurement

Fig 31 Test set up outdoor measurement

Fig 32 Test set up indoor measurement

APPENDIX F: STEP FREQUENCY GPR (SF GPR) TRANSMISSION LOSS CALCULATIONS THROUGH A TYPICAL CONCRETE BRIDGE DECK

The following report contains supporting documentation and results of the calculations performed for the research initiative in this report. Since it is an unpublished internal working paper, it would not be otherwise accessible as a reference to use for the current report. The report in this appendix has not been edited or changed in any way from its original form as a working paper that was submitted to the SPS of the Interdepartment Radio Advisory Committee (IRAC).

Note that the term $\text{Loss}_{\text{spreading}}$, is the same as the later abbreviated version Loss_{spr} found in this appendix. The terms are mathematically equivalent. The definition was inadvertently left out of the original paper. They are both defined as the spreading loss in decibels. Since the paper is being reproduced unchanged, clarification is being provided in this foreword.

Step Frequency GPR (SF GPR) Transmission Loss Calculations Through a Typical Concrete Bridge Deck

February 15, 2007

The NTIA Spectrum Planning Subcommittee (SPS) Coast Guard representative requested additional documentation regarding Step Frequency GPR Transmission losses through a concrete bridge deck. This request was made to address potential interference concerns that could arise when a vessel crosses under a bridge deck while an SF GPR is being used to evaluate the bridge deck.

The total losses are computed based on the assumption that radar energy is transmitted through a concrete bridge deck superstructure with an average thickness equal to 1 foot and at a position 1 meter or more below the bridge deck, which is provided for reasonable clearance of the vessel underneath the bridge deck. These assumptions are consistent with United States Coast Guard 2005 CFR Title 33, Volume 1, Subchapter J – Bridges.

The following equation for losses was used to account for both transmission/attenuation losses and spreading losses [Daniels]:

$$Loss_{total} = Loss_{transmission+attenuation} + Loss_{spreading}$$

where:

$$Loss_{trans} = 2 * (20 * \log_{10}(\frac{4Z_m Z_a}{|Z_m + Z_a|^2})) + Loss_{attenuation}$$

 $Z_a = Characteristic impedance of air = 377 \Omega$ $Z_m = Characteristic impedance of concrete = 160 \Omega$ $Loss_{att} = Attenuation loss in concrete = 3 dB/ft at Freq<1000 MHz$ $Loss_{att} = Attenuation loss in concrete = 6 dB/ft at Freq \ge 1000 MHz$

$$Loss_{spr} = 20 * \log_{10}(\frac{\lambda}{4\pi R})$$

 $\lambda = Wavelength$ R = Radial distance from source This equation for *Loss_{total}* was used to compute losses corresponding to each range of frequencies used by the Step Frequency GPR system. Table 1 presents the results:

Freq (Hz)	λ	Spreading Loss (dB)	Total Loss (dB)
14000000	2.142857	-15.36433275	-21.36433275
178000000	1.685393	-17.45017208	-23.45017208
588000000	0.510204	-27.82931856	-33.82931856
1285000000	0.233463	-34.61983459	-43.61983459
180000000	0.166667	-37.54722214	-46.54722214
1995000000	0.150376	-38.44063004	-47.44063004
200000000	0.15	-38.46237195	-47.46237195
1202000000	0.249584	-34.03986139	-43.03986139
1585000000	0.189274	-36.44235737	-45.44235737

Table 1. Calculations for *Loss_{total}* at representative Step Frequency GPR operating frequencies. Representative frequencies are selected as center frequencies within operating ranges defined in Tables 2 and 3.

Tables 2 and 3 describe emissions of the Step Frequency GPR within its operating range and include calculations for losses due to the concrete bridge deck compared with back lobe emission levels (subtracted from bore sight emission levels).

Frequency (MHz)	Peak EIRP (dBm)	Average EIRP (dBm)	Concrete bridge deck loss (dB)	Δ (bore sight - back lobe) (dB)
<140	-60.7	-93.7	21	5.0
140 - 216	-25.7	-58.7	23	10.1
216 - 960	-23.2	-56.2	34	14.1
960 - 1610	-32.3	-65.3	44	16.6
1610 - 1990	-20.3	-53.3	47	12.4
1990 - 2000	-18.3	-51.3	47	14.7
>2000	-53.3	-86.3	48	14.7

Table 2. Maximum back lobe EIRP levels for both peak and average power (1MHz resolution BW).

Frequency (MHz)	Average EIRP (dBm) in 1 kHz BW	Concrete bridge deck loss (dB)	Δ (bore sight - back lobe) (dB)
1164 - 1240	-75.3	43	11.7
1559 - 1610	-75.3	45	12.7

Table 3. Emissions suppressed in specified bandwidths.

Note that the fourth column of Table 1 corresponds to the third column of Tables 2 and 3. Also note that emissions are reduced more by concrete bridge deck losses than bore sight minus back lobe levels.

Reference:

Daniels, D.J., Surface Penetrating Radar, IEEE, December 1, 1996, pp. 300.

REFERENCES

- 1. Scott, M.L., Gagarin, N., Oskard, M., and Mills, M.K. (2005). "Step Frequency Ground Penetrating Radar Applications to Highway Infrastructure Measurement and System Integration Feasibility With Complementary Sensors," *Review of Progress in Quantitative Nondestructive Evaluation*, 1164–1170, Brunswick, ME.
- Scott, M.L., Gagarin, N., Mills, M.K., and Oskard, M. (2006). Step Frequency GPR Evaluation of the Natchez Trace Parkway: Pavement and Infrastructure Measurement and Assessment for FHWA Digital Highway Measurement Vehicle Applications, Highway Geophysics Nondestructive Evaluation Conference, Saint Louis, MO.
- 3. National Telecommunications and Information Administration. (2008). "Technical Standards for Federal 'Non-Licensed' Devices," Annex K, *Manual of Regulations and Procedures for Federal Radio Frequency Management*, 1–42.

HRDO-04/10-10(300)E