
Activities

ThemesThemes

The Road to
Successful ITS Software

Acquisition

Volume II: Software Acquisition Process
Reference Guide

Checklists

SUCCESSFUL
SOFTWARE

ACQUISITION

The Road to
Successful ITS Software

Acquisition

Volume II: Software Acquisition Process
Reference Guide

July 1998

Prepared for the Federal Highway Administration
by Mitretek Systems

1. Report No.
FHWA-JPO-98-036

2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle

The Road to Successful ITS Software Acquisition
 Volume II: Software Acquisition Process Reference Guide

5. Report Date
July, 1998

6. Performing Organization Code

7. Author(s)

Dr. Arthur E . Salwin

8. Performing Organization Report
No.

9. Performing Organization Name and Address

Mitretek Systems
600 Maryland AVE SW STE 755
Washington, DC 20024

10. Work Unit No.

11. Contract or Grant No.
DTFH61-95-C-00040

12. Sponsoring Agency Name and Address

Department of Transportation
Federal Highway Administration
ITS Joint Program Office
400 Seventh ST SW
Washington, DC 20590

13. Type of Report and Period
Covered

14. Sponsoring Agency Code
HVH-1

15. Supplementary Notes

Bill Jones and Lee Simmons

16. Abstract

This document assembles best practices and presents practical advice on how to acquire the software components of
Intelligent Transportation Systems (ITS). The intended audience is the “customers”--project leaders, technical contract
managers, decision makers, and consultants--who are responsible for one or more ITS systems.

The document presents a series of “themes” that serve as guiding principles for building a successful acquisition.
Included are people themes of collaboration, team building, open communications, and active customer involvement, which
have been likened to partnering; management themes of flexibility, “no silver bullets”, and up-front planning; and system
themes of “Don’t build if you can buy” and “Take bite-size pieces”. Software acquisition activities that build upon these
themes are presented in subsequent chapters. Among the activities covered are building a team, developing
requirements, making build/buy decisions, resolving the intellectual property rights, acceptance testing, and project and
risk management. Also included are “war stories” to illustrate the various points, as well as key point summaries and
checklists to facilitate use of the material. The document concludes with short stand-alone topic sheets that introduce
various relevant software topics.

Key Words
Software, Acquisition, Procurement, ITS, Intelligent
Transportation Systems

18. Distribution Statement

No restrictions.

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No of Pages
224

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

iii

!
CAUTION

ROADMAP TO VOLUME II

This is Volume II of The Road to Successful ITS Software Acquisition. In Volume I we
gave an overview and introduced a number of themes to guide your software acquisition.
In this volume, we discuss a number of activities that build upon those themes. Unlike
Volume I, we recognize that probably no one would ever pick up this volume and read it
cover to cover. Instead, we recommend that as your acquisition unfolds, and various
topics discussed here become relevant you turn to the appropriate chapters.

Chapters may become relevant sooner than you expect. Many acquisition
activities have to be first addressed long before they actually occur. Take
acceptance testing, for example. Even though acceptance testing does not
take place until after development activities are complete, it must be planned
for early. In other words, the chapter on acceptance testing will become

relevant long before testing actually takes place.

Parts Three through Six of the document appear in this volume.

Parts Three and Four discuss the various activities that constitute a software acquisition.
Each chapter discusses a separate activity. Collectively, these activities encompass the
entire period from the system’s initial concept, through the software development, on to
the end of the system’s operational life. The themes introduced in Part Two recur
throughout the various activities. When they do, we’ll call them out.

The activities in Part Three have defined beginning and end points.

• Chapter 6, Sequence of Acquisition Activities gives an overview of these activities
and discusses how no single timeline can be generated to describe all acquisitions.

The next two chapters discuss activities that necessarily take place early in the
acquisition.

• Chapter 7, Building A Team discusses the players that must be assembled to work
together. This must be done early, so they can work together and carry out the
acquisition.

• Chapter 8, Planning The Project discusses the project plan used to organize an
acquisition. Even activities that will not take place until late in the acquisition
must be included in this plan. The plan helps to ensure that all the team members
are trying to achieve a common goal.

The next three chapters discuss key activities that drive the rest of the acquisition:
These activities all feed off one another and to some extent take place in parallel.

• Chapter 9, Requirements is divided into two subchapters: 9A, Developing
Requirements and 9B, Requirements Management. Developing requirements
culminates in a requirements document. However, attention to requirements

Roadmap to Volume II

iv

cannot end at that point. Requirements management is still needed for the
remainder of the acquisition. Requirements creep must be avoided, but at the
same time requirements cannot be “thrown over the fence” and forgotten.
Although requirements management is an on-going activity that could have been
discussed in Part Four, we chose to include it here to keep all the requirements-
related material in one chapter. The length of this chapter reflects the importance
of requirements in a software acquisition.

• Chapter 10, Build/Buy Decision(s) urges you to give serious consideration to
using off-the-shelf systems or system components, rather than building your own.
However, this is not a panacea, and the risks in doing so are also discussed.

• Chapter 11, Selecting the Contracting Vehicle introduces the various contracting
options and discusses their applicability to software acquisitions.

• Chapter 12, Identifying The Software Environment discusses the hardware,
software, and communications context of the system.

• Chapter 13, Resolving The Intellectual Property Rights addresses the contentious
issue of who has what rights to the software once it’s developed.

• Chapter 14, Project Scheduling shows how to pull together the various planned
activities into a realistic and achievable schedule.

The last two chapters in this part address activities that do not take place until the
end of the acquisition. Nonetheless, planning and preparation for these activities
must begin much earlier.

• Chapter 15, Acceptance Testing discusses how to determine whether the system
is ready to go operational in a way that is fair to both the customer and the
contractor.

• Chapter 16, Training, Operations, and Software Maintenance discusses three
important activities that collectively will probably take up considerably more than
half the budget over the life cycle of the system.

The activities in Part Four take place throughout the entire acquisition. The contractor
may do the bulk of the technical work, but the customer still has an active and vital role to
play even after contract award. Since the various activities have no natural time sequence
to them— they all take place simultaneously— the chapters are ordered alphabetically. As
in Part Three, we call out the various themes when they occur.

• Chapter 17, Project Management focuses on gaining visibility into the project and
what to do if that visibility uncovers a schedule slippage. It also addresses quality
management steps that can be carried out to achieve various quality factors such
as reliability and maintainability of the system.

• Chapter 18, Software Configuration Management discusses configuration
management and baselining activities. Without these activities, the various parts
of the acquisition can rapidly become out of “synch” with one another.

Roadmap to Volume II

v

• Chapter 19, Software Risk Management, focuses on how to identify risks and
manage them before they become problems.

Part Five wraps things up.

• Chapter 20, Best Practices Checklist and Key Points Summary provides a final
checklist summarizing best practices. It also collects together the key point
summaries and checklists that appear throughout the document.

• Chapter 21, Where To Get More Help, suggests outside sources of information.

• Chapter 22, Concluding Remarks sets you on the road to your software
acquisition.

Part Six contains a series of stand-alone topic sheets. Typically one or two pages in
length, these introduce various software topics “offline,” without interrupting the main
flow of the document.

Throughout the document, checklists supplement the text. In addition the following icons
appear throughout:

The themes icon is used to highlight when an activity or
recommendation is a specific instance of one of the acquisition themes
introduced in Part Two of Volume I.

Key Points

Chapters end with a bulleted list of key points that summarize the main
messages of the chapter.

Sidebars are used to clarify various points or to relate “war stories” on
the software acquisition experiences of the ITS community.

The dictionary icon appears when new terminology is defined.

The stack of reference books appears when references are given to the
outside literature.

vi

The Road to Successful ITS Software Acquisition
Table of Contents

Chapter Page

Volume I: Overview and Themes

Acknowledgments iii

Preface v

Document Roadmap vii

Executive Summary ES-1

Part One: Setting the Stage: The Big Picture
 1 The Nature of Software 1-1

 2 Software Acquisition In A Larger Context 2-1

 3 Differing Perceptions of ITS Software 3-1

 4 Types of ITS Software Systems 4-1

Part Two: Themes on the Road to Successful ITS Software
Acquisition

 5 Themes of Successful Software Acquisition 5-1

Concluding Remarks to Volume I

References RE-1

Volume II: Software Acquisition Process Reference Guide

Roadmap to Volume II iii

Part Three: Activities on the Road to Successful ITS Software
Acquisition

 6 Sequence of Acquisition Activities 6-1

 7 Building A Team 7-1

 8 Planning the Project 8-1

vii

Chapter Page

 9 Requirements 9-1

9A. Developing Requirements 9-1

9B. Requirements Management 9-14

10 Build/Buy Decision(s) 10-1

11 Selecting The Contracting Vehicle 11-1

12 Identifying The Software Environment 12-1

13 Resolving The Intellectual Property Rights 13-1

14 Project Scheduling 14-1

15 Acceptance Testing 15-1

16 Training, Operations, and Software Maintenance 16-1

Part Four: On-Going Management Activities
17 Project Management 17-1

18 Software Configuration Management 18-1

19 Software Risk Management 19-1

Part Five: Putting It All Together
20 Best Practices Checklist and Key Points Summary 20-1

21 Where To Get More Help 21-1

22 Concluding Remarks 22-1

Part Six: Topic Sheets
TS-1 Rapid Prototyping TS1-1

TS-2 Security TS2-1

TS-3 Software Acquisition Capability Maturity Model (SA-CMM) TS3-1

TS-4 Software Capability Maturity Model (SW-CMM) TS4-1

TS-5 Software Safety TS5-1

TS-6 The Year 2000 Problem (Y2K) TS6-1

References RE-1

viii

The Road to Successful ITS Software Acquisition
List of Checklists

No. Page

8-1 What To Include In The Project Plan 8-3

9-1 What To Include In A Requirements Document 9-6

9-2 Suggested Agenda Items For A Requirements Walk-Through 9-18

12-1 What To Consider When Identifying The Software Environment 12-4

13-1 Intellectual Property Rights 13-4

14-1 Software-Related Activities and Milestones on the Project Schedule 14-2

15-1 What to Include In The Acceptance Test Plan 15-9

15-2 What to Include In The Acceptance Test Procedures 15-10

15-3 What to Include In The Acceptance Test Cases 15-11

15-4 What to Include In The Acceptance Test Log 15-12

15-5 What to Include In The Report Of The Test Results 15-13

16-1 Personnel Roles Needed For System Support 16-8

18-1 How To Determine If Configuration Management Is Adequate 18-4
For Your Program

Note: All of the checklists also appear together in Chapter 20.

PART THREE:

ACTIVITIES ON THE
ROAD TO SUCCESSFUL
ITS SOFTWARE
ACQUISITION

The Road to Successful ITS Software Acquisition 6-1

CHAPTER 6
SEQUENCE OF ACQUISITION ACTIVITIES

The chapters in Parts Three and Four of this document discuss software acquisition
activities; software development activities are not addressed. The activities described in
this part, Part Three, have the common feature of resulting in a specific product or event
that ends the activity; whereas the activities described in Part Four continue throughout
the acquisition process.

Two pivotal activities

Two activities should be recognized as pivotal during the acquisition process: developing
system requirements (Chapter 9) and selecting a contracting vehicle (Chapter 11). They
are not pivotal in the sense that they are more important than the others, that you only
need to focus on these and all will go well. Rather, they are pivotal because together they
are the major drivers of the sequence of activities and events during the acquisition, and
because they work in conjunction with each other in driving the events. In the broadest
terms, the relationship between the requirements and the contract can be summed up as
follows: developing the system requirements will allow the team to determine the
optimum contracting method; and the contracting method chosen determines whether the
requirements must be substantially defined before selection, or can be developed in
collaboration with the contractor after selection.

Consider for example, a small traffic signal system. The system concept along with an
initial set of needs or requirements may be sufficient for making an implicit decision to
buy an off-the-shelf product that requires no software development. As a result of these
initial requirements, the appropriate contracting mechanism to purchase an off-the-shelf
product can be determined and used. A features list taken from the initial requirements
may be sufficient to select from among competing vendors. There would be no need to
develop a comprehensive set of system requirements.

For systems that require more development, the choices are more complex. A
sophisticated regionwide ATMS that includes freeway management is at the other end of
the ITS spectrum. Here, selecting the contracting vehicle may prove to be the activity that
drives all the others. If a time and materials contract is selected, system requirements
should be developed collaboratively with the contractor after contract award. On the
other hand, if a fixed-price contract must be used, the requirements must be well enough
defined to make some initial build/buy decisions for the various subsystems. Then, for
those subsystems that need significant amounts of custom software development,
comprehensive system requirements would be developed in-house before contract award.
In fact, they become part of the RFP. For the components that are bought, only high-

Chapter 6: Sequence of Acquisition Activities

6-2 The Road to Successful ITS Software Acquisition

level requirements in the form of a features list may be needed (as in the traffic signal
control example above).

Order of activities and their presentation

Because printed material is sequential by nature, the activities are presented sequentially
here, in chapters that follow one another. Ideally, this sequence would be one that you
could follow, step-by-step, as you carry out your software acquisition. Unfortunately, the
acquisition process is not linear; it doesn’t proceed in such a neat fashion. Arguably,
many of the activities should be done first, a clear impossibility. Certainly, most activities
must be addressed before any one activity can be completed.

Tailoring the software acquisition to meet your needs instead of following a prescribed
process by rote is an example of the need for flexibility.

Furthermore, in all cases, the activities presented here will overlap, regardless of drivers
and constraints that define the actual sequence of activities for your project. The events in
a software acquisition really form more of a spiral than a sequence, with each activity
taken to a higher level after progress is made on other activities. One can think of the
activities as sharpening the definition of the project over time. Initially there may be only
a fuzzy definition. Over time, the various activities bring that definition into sharper
focus. To borrow a software term, the acquisition process will be a test of your “parallel
processing” capability.

Consider, for example, the development of system requirements. The initial cut at the
requirements will yield only needs or a general concept of what the system should do.
With these in mind, site visits may be conducted or demonstrations of vendor products
may be attended to “see what’s out there.” Combining needs with available products
allows the requirements to become more specific. As the requirements become more
specific, a number of determinations can be made: Is it better to build or buy? What
contracting options are applicable? Who will be added to the team to provide the
expertise needed? As these various decisions come into better focus, the project plan can
be updated, which in turn drives the various other activities. Decisions made in relation to
these other activities may then cause the requirements to be revised. For example, as
things become clearer, they help determine the needs in regards to intellectual property
rights to the system. This determination may in turn impact the maintenance concept for
the system, which may necessitate documentation requirements. Simply put, the various
activities feed off and build upon one another. Software acquisition is an iterative
process.

Given the potential for different sequences of activities during the acquisition process, we
have biased the information in Part Three of the document towards a sequence of
activities where development of requirements is performed prior to contracting, and the
requirements become part of the RFP.

Chapter 6: Sequence of Acquisition Activities

The Road to Successful ITS Software Acquisition 6-3

What can we say about the sequence of activities?

In spite of the many possible variations in the activity sequence, there are several
constants that stand out:

• Building a team should take place as soon after project go-ahead as possible. In
some cases, you may informally line up team members even before the official
start of the project.

• Up-front planning is critical. Even the activities that take place at the far end of the
project, such as acceptance testing, training, and maintenance must be planned up
front.

• All too many projects fail because scheduling is developed independently of the
requirements. Instead of being a natural outgrowth of the requirements, the
schedule does not reflect the realities of the time needed to perform the other
activities.

• Developing system requirements and selecting a contracting vehicle together drive
many other activities. They must be considered in conjunction with each other.

We’ve summarized these concepts in figure 6-1, which organizes software-related
activities on an approximate timeline. This timeline is very generic, and will vary
considerably across acquisitions. The activities begin with team building, which is a
precursor for all follow-on activities. Some activities are on-going, as depicted by the
arrowheads at the end of the activity boxes. The exact sequence and length of the various
activities will depend on the particular acquisition, so we’ve aligned them with respect to
the acquisition phases shown at the top of the figure (i.e., preliminary activities, software
development timeframe, and system operations). For example, the System Acceptance
milestone marks the transition between development and operations.

Noticeably absent from figure 6-1 are the procurement-related activities such as issuing a
contract. These are summarized in figure 6-2. In this figure, building a team is again
shown as a precursor for all that follows. Decisions on build/buy and the contracting
vehicle are reflected in the RFP and ultimately the contract. For public agencies, the
Source Selection step is necessarily a formal process. Even for purchasing off-the-shelf
products, an RFP or something similar must still be issued.

One state has expanded the Source Selection step to include a design competition. Two
contractors proceeded in parallel in developing prototypes, and then one was selected to
proceed with the bulk of the project.

Figure 6-2 shows that the intellectual property rights must be resolved before a contract is
signed. (See Chapter 13, Resolving the Intellectual Property Rights.) On the other hand,
the timing of the requirements walk-through depends upon the contract. If, in spite of
recommendations contained elsewhere in this report, a relatively inflexible contracting
vehicle is chosen, then the walk-through takes place before contract award. A more

C
hapter 6: Sequence of A

cquisition A
ctivities

6-4
The R

oad to Successful ITS Softw
are A

cquisition

Figure 6-1. Approximate Timeline For Software Activities

Concept

Project
Plan

Project Schedule

Build
Team

Develop
Plan

Develop Requirements

Identify
Environment

Walk-
Through

Baselined
Requirements

Requirements Management

Acceptance
Testing

Acceptance Test and
Support Planning

Acceptance Test and
Support Preparation

System
Acceptance

Project Management

Software Configuration Management

Risk Management

Preliminary Activities Software Development Timeframe Operations

Training

Maintenance

C
hapter 6: Sequence of A

cquisition A
ctivities

The R
oad to Successful ITS Softw

are A
cquisition

6-5 Figure 6-2. Approximate Timeline For Procurement Activities

Build Team

Build/Buy
Decision(s)

Select
Contracting Vehicle

Write RFP Source Selection

Resolve
Intellectual Property Rights

Issue Contract

Requirements
Walk-Through

Chapter 6: Sequence of Acquisition Activities

6-6 The Road to Successful ITS Software Acquisition

flexible vehicle can allow this act to take place after contract award. That is why the walk-
through is shown as a dashed box.

Why two figures instead of one? Why show the software-related activities and the
procurement-related activities on separate timelines? This was intentionally done because
combining the two timelines would be misleading. The timing relationships between the
two sets of activities depend upon various factors, especially the selection of a contracting
vehicle:

• Our recommended approach is to select a vehicle that allows most of the software
activities shown on figure 6-1, including requirements development and
acceptance test planning, to be carried out collaboratively by the customer and
software development contractor. Thus they will necessarily take place after
contract award.

• For an acquisition in which the build/buy decision results in a mostly “buy”
option, the requirements process can be considerably simplified, with perhaps
only a features list needed to make the purchase. (There would still have to be
sufficient requirements to formulate an acceptance strategy. Also a formal
process, such as an RFP, would still be needed to meet your agency policies for
buying the software.) This is illustrated in figure 6-3. You don’t want to go too
far initially in developing requirements. Not only will they be unnecessary for the
buy option, they may actually unnecessarily preclude the option to buy an
existing product that meets most of your needs.

 Figure 6-3. Comprehensive Requirements Only If Needed

Initial
Requirements

Build or
Buy?

Buy Build

Features
List

Product
Selection

Select
Contracting

Vehicle

Develop
Comprehensive
Requirements

Custom
Build

Award
Contract

Chapter 6: Sequence of Acquisition Activities

The Road to Successful ITS Software Acquisition 6-7

The most important point of the figure is what’s not there: the Develop
Comprehensive Requirements box does not appear on the left side under the buy
option. Other things to note in the figure are that the Develop Comprehensive
Requirement box can take place before or after contract award depending upon
the contracting vehicle you select. This again brings forth the idea that figures 6-1
and 6-2 can slide with respect to one another.

A final point regarding the figure is that teaming would still be needed under either
option essential for custom build box, it is also mandatory in working with the
supplier if any customization is needed after the buy. Only the supplier knows
which of your proposed changes are simple and which will require significant
software development risk. Customer intuition cannot be relied upon for this.

• The software configuration management procedures used by the contractor would
probably not be of concern to the customer and could be removed from figure 6-
2.

• For fixed-price contracting with a relatively inflexible contract, the requirements
will be developed before the “Issue Contract” box in figure 6-2. As noted above,
the requirements walk-through would also take place before the contract is issued.

In short, the two timelines can be thought of as sliding horizontally with respect to one
another, depending upon circumstances. The sequence of activities between figures will
vary, even though the relative order within a figure should remain roughly constant.

• There is no simple step-by-step activity sequence that applies to all software
acquisitions.

• Developing system requirements and selecting a contracting vehicle drive many
of the other activities.

• Many acquisition activities take place in parallel. They feed off and build upon
one another.

Key Points

The Road to Successful ITS Software Acquisition 7-1

CHAPTER 7
BUILDING A TEAM

"A team is a small number of people with complementary skills who are
committed to a common purpose, performance goals, and approach for
which they hold themselves mutually accountable.” — [Katzenbach and

Smith, 1993 as quoted in Higuera et al., 1994]

Transportation planners and civil engineers are well qualified to carry out the core mission
of a transportation or transit agency. However, software acquisition requires additional
areas of expertise beyond those traditionally found in these agencies. To be successful,
you must build a team of professionals with the right skill mix. Do not attempt to go it
alone. The overall philosophy is not just a collection of skills, but one of forging a team
that works together to achieve common objectives. Potential bureaucratic adversaries will
need to be won over. This often requires considerable management and negotiating skills.
Egos will have to be stroked; you’ll have to use your best schmoozing techniques. Your
success should be perceived as their successes as well.

Several interviewees attempted to more or less go it alone and then discovered they
lacked certain critical skills as their projects progressed. So they wisely took a step back
and added additional players. We hope to help you benefit from their experiences by
relating where they found they needed help.

Who should be on the team?

The following are some of the skills that will be needed on your team:

• Software technical expertise is needed to assess the realism of the requirements,
give independent size and cost estimates, review technical documents, serve as a
technical liaison to the software contractor, and provide general guidance to the
program manager throughout the acquisition activities. As can be seen from the
range of activities, this expert (or experts) needs to have experiences beyond
computer programming. Software engineering, system engineering, or software
management experience is desirable. These individuals are difficult to find, hire,
and retain, especially for public agencies. All the more reason for teaming with
the contractor.

• End user(s) participate in the development of user requirements and are heavily
involved in rapid prototyping activities. They interact with the software
contractor, and assess the system from an operational perspective. End users have
a different perspective than engineers. Engineers often have considerable
computer experience; end users do not. What’s easy or natural for an engineer,

Chapter 7: Building A Team

7-2 The Road to Successful ITS Software Acquisition

may not be at all intuitive for the end user. Similarly, common terminology
among designers, the contractor, and the users must be developed to ensure open
and clear communications. Therefore, one or more end users should be brought
on board early in the process, even though they will not actually use the system
until later. Further, having end user participation is a wise political move. It
achieves greater buy-in, as the users feel they were part of the development
process. The system becomes a shared goal instead of a threat, and the users
understand the basis for design decisions and the trade-offs that are made. The
system becomes their own instead of something foisted upon them. One source
cites the user “as the most important member of the team.” [Farbman, 1980]
Another cites user involvement as the number one reason why successful projects
succeed. [Standish Group, 1994]

• Maintainers and system administrators of the ITS system are end users also, but
of a different sort. They do not use the system operationally, but are responsible
for keeping it running and making upgrades to it. They will undoubtedly have
valuable insights into the system maintenance concept and knowledge of the
legacy system interfaces, which can be properly reflected in the RFP and contract.
Because of their unique roles, they will review the design with a different
perspective than the software technical experts or the end users. They can suggest
the “hooks” to be included in the system that facilitate troubleshooting problems
and bringing the system back on-line quickly. They can help to define software
documentation requirements, as well as review documentation to see whether it
conveys the information they need to do their jobs.

• Domain experts determine that the system will have the intended effect within
their areas of expertise. For example, traffic engineers can provide reality checks
to requirements, determine if the system meets the needs of those responsible for
traffic and transit management, and estimate the effects that the system will have
on facilities. Domain experts will also be useful in developing training for system
users. They can help the operators understand how and when the various
capabilities of the system should be used.

• Contracting and purchasing officials can help select the most appropriate
contracting vehicles. Bringing these officials on board early gives you the
opportunity to explain the unusual aspects of software acquisitions. For example,
you can stress the need for contract flexibility in such areas as requirements,
incremental development, and rapid prototyping. This will not be “business as
usual” for many contracting and purchasing officials; it will be your responsibility
to make sure that you jointly explore alternatives to the rigid contracting vehicles
and source selection procedures that are typically used for construction projects.
You may jointly identify the need to bring in outside expertise in this area, if your
agency has no software contracting experience. Bringing these officials on board
early will also give them the lead time they need to accommodate the various
acquisition activities into their schedules. Approaching them at the last minute

Chapter 7: Building A Team

The Road to Successful ITS Software Acquisition 7-3

!
CAUTION

with requests to use unfamiliar contracting practices will probably just be met with
negative responses.

• Software-specific legal staff is needed to resolve intellectual property rights issues
that are peculiar to software. They will need to address the thorny issues
associated with licensing, warranties, ownership, and copyright. Because software
legal issues are a hard-to-find sub-specialty, you will probably need to hire outside
help in this area.

• Translators are people having knowledge in multiple areas that can translate
technical points, jargon, and concepts across disciplines. An example would be
someone who is knowledgeable in both software and transit management, or
someone who can work with the National ITS Architecture and apply it to local
needs. This ensures that true communication is flowing and that everyone is
speaking the same language.

Where can I find the team members?

Where can this expertise be found? Often the best places are other parts of your agency.
Those responsible for information resource management functions may have relevant
experiences that you need in acquiring geographic information systems (GIS) or database
management systems (DBMS). This recommendation is made with the realization that, in
real-world situations, not all these people will be accessible to you. Further, they may
view your project as a diversion from the best interests of their long-term career paths in
their “home” department. You may need to find ways to incentivize them to join your
team.

One transit agency found that their information resource management personnel were
invaluable in preparing acceptance test plans since they had experience in writing them
for other types of projects.

Be sensitive to the risk that apparent expertise and experience in a discipline
may not directly and explicitly apply to your ITS software acquisition. Even
if a person’s previous software experiences were successful, they may not
necessarily apply to ITS systems. For example, the standard database
management system acquired by the agency, which works so well for

personnel records, may be totally inappropriate for the complex real-time demands of a
freeway management system or for transit fleet tracking.

If the expertise is not available in-house, you may have to resort to issuing a contract to
acquire the needed expertise. This has worked well on some ITS projects. (See
Resolving The Intellectual Property Rights, Chapter 13 for how well this has worked in
acquiring software-specific legal expertise.) However, contracting for expertise has

Chapter 7: Building A Team

7-4 The Road to Successful ITS Software Acquisition

caused problems on other ITS projects. Vendors complained about acquisitions in which
a software expert is hired to write a requirements document and then is allowed to
competitively bid to develop the system. In addition to giving the expert a time advantage
in developing an RFP, the requirements often reflect the expert’s own product. This may
also subject the follow-on contract award to a legal challenge regarding conflict-of-
interest. In another case that describes a potential problem with contracting for expertise,
a state DOT hired a software expert to represent them in interactions with the software
development contractor. The development contractor complained that the authority of
the contracted software expert during interactions was not clear: was the software expert
stating the DOT’s perspective or position? Or was he just expressing his own views?

In some cases, there may not be any pre-existing source of expertise or even any existing
positions. (There are no freeway management system operators if there is no freeway
management system!) In such cases, personnel may have to be transferred from other
types of positions to represent the end user. If this is done, try to use personnel who will
have similar backgrounds to those who will eventually use the system. And remember, a
critical qualification for selection to the team is an interest in the system and its success.

The last team member

At this point in the acquisition, you will (by necessity) be missing an important member
of your team: the software contractor. Once a contract is issued, however, be sure to
expand your team by adding the software contractor to it. They are a critical member of
your post-contract award team. This is true whether you build or buy the system.

Treating the contractor as a team member may seem somewhat unusual. An adversarial
contractual relationship may be more familiar and feel more comfortable. If so, this is
another example of how software is different. However, including the contractor as part
of your team will seem familiar if you have practiced partnering on construction projects.
Partnering is a cooperative and highly interactive way of dealing with the inevitable
problems of scope, cost, and schedule. (See also Software Risk Management, Chapter 19
for teaming in risk management activities.)

One ITS manager successfully teamed with his contractor by treating them as part of his
staff. They were invited to attend staff meetings and participated in setting milestones for
the project.

Even after the contractor joins your team, other members of the pre-contract award team
should still be retained after contract award. End users will continue to have particularly
important roles. However, there may be lesser roles for contracting and purchasing
officials and software-specific legal expertise once a contract is issued.

Chapter 7: Building A Team

The Road to Successful ITS Software Acquisition 7-5

• Build a team of professionals that contains the variety of skills needed to make
the project succeed.

• If possible, consider tapping other resources in your agency to gain access to
the needed skills. When this is not possible, you may have to contract for these
skills to gain access to them.

• Be sure to add the software contractor to your team as soon as the contractor
comes on-board.

Key Points

The Road to Successful ITS Software Acquisition 8-1

CHAPTER 8
PLANNING THE PROJECT

As with the outset of any acquisition, you should begin by writing a project plan. This
need not be a lengthy document; it should be terse and to the point. The plan should
present the overall goal and objectives of the project from a global perspective, and
highlight the high level strategic decisions associated with your acquisition. Initially, you
may not have all the answers. That’s fine. Just leave placeholder sections in the plan and
come back to them later.

Your organization may have different names for what we are calling a project plan. Terms such
as “acquisition strategy,” “project management plan,” or “software development management
plan” are often used. In some cases, the plan may be split into two or more documents, such
as a management plan and an acquisition plan. Whatever it is called, or however it is bound, a
plan should be written.

When to write the plan

Although this chapter on writing the project plan follows the one on building a team, in
practice the two steps are typically iterative. You may have to write a first draft of the
plan on your own, as initially you may be a team of one member. This draft can help you
identify who must be added to your team, and can be used to explain the acquisition and
your current thinking to potential team members. Then as the team is assembled, other
members can participate in writing the plan. Not only are their inputs valuable, but by
participating in planning the acquisition from the outset, they will have a greater stake in
its success.

Although the plan is initially written at the outset of the project, it should be regarded as a
living document. You will need to revise it periodically to keep it consistent with current
program objectives and approaches.

Uses for the plan

A project plan is a good communications vehicle among the members of your acquisition
team. You will also find that a plan will serve as a valuable political document for
communicating with those external to your project, especially your management. When
decision makers and budget analysts ask for descriptions of your project, you have the
plan ready as a handout for them. This gives a good impression of “having your act
together,” which is especially important during various budget review cycles. It can also
serve as a handout for those seeking general information. By having a documented plan,
you save having to write up a project description in fire drill mode every time a request is
made. You’ll find it useful to cut-and-paste sections from it, knowing that the words and
ideas have already been coordinated.

Chapter 8: Planning The Project

8-2 The Road to Successful ITS Software Acquisition

Don’t underestimate the value of putting the plan together in helping to crystallize your
thinking and organize your thoughts. For example, if the plan states that the information
management organization will provide training, then that can serve as your reminder to
coordinate with that organization and identify the person who will carry out the training
role. Even the placeholder sections are valuable as they serve as “tinglers” to remind you
of what needs to be done. The particular approach that gets documented in the plan is
probably not as important as the fact that, by writing a plan, you have gone through the
thought process.

What should go in the plan?

There are no universal rules about what has to be included in a project plan. Checklist 8-1
has some suggestions. Since many of the items in the checklist would apply to all
projects, we’ve italicized the ones that are unique to software (or are more critical for
software than they may be for some other types of projects). The information in the
National ITS Architecture is another good source of ideas for what to include in the plan.
Your organization may have its own standards for what to include.

Why have a why section?

A project plan section on justification (the why’s) helps to keep the acquisition consistent
with the global vision. Sometimes a project can take on a life of its own. It continues on,
even if the assumptions under which it had been approved at the outset no longer apply.
Perhaps the system was justified on the basis of saving money. But if it turns out the
original budget estimate to build the system was low by an order of magnitude, then
maybe the projected cost savings won’t be realized. There is no need to continue under
those circumstances. If your project does run into trouble, the why’s can be used as a
periodic sanity check to determine whether continuation is justified. If the why’s are no
longer valid, then project termination may be the best answer. Why prolong the agony or
waste resources?

The why’s are also important as you develop system requirements. It’s easy to become
enamored with “glitzy” or expensive features. You see them in various products or in
other implementations, and the natural tendency is to say, “I’ve just got to have one of
those.” Use the why’s to ask yourself whether these features really support your overall
needs.

As a counter-argument you may argue that project goals and objectives evolve over time.
For example, office automation systems (word processing, etc.) were originally justified
on the basis of increased productivity. In most cases this increased productivity has not
materialized. Yet few organizations would be willing to go back to the days of typewriters;
other, unanticipated, benefits have been realized. So if your project’s original justification
is no longer valid, but there are still good reasons for its continuation, change the why’s in
the project plan to reflect current reality and proceed.

Many of the items in the checklist concern activities that won’t take place for some time.
For example, system acceptance, training, and maintenance don’t take place until after the
software development activities. Nonetheless, they must be planned and budgeted early.
You may not have the information to address them in initial versions of the plan. But

Chapter 8: Planning The Project

The Road to Successful ITS Software Acquisition 8-3

planning does not stop when the plan is first published. You will certainly need to think
through these topics before a software development contract is issued. Don’t get

Chapter 8: Planning The Project

8-4 The Road to Successful ITS Software Acquisition

Checklist 8-1. What To Include In The Project Plan

ü Project Description: A brief narrative of what the project is all about, its goals,
objectives and scope.*

ü Justification: Why the acquisition will take place; saving money, alleviating
congestion, providing better on-time service are all possibilities; although
increased productivity is sometimes offered as justification, in practice, this
seldom materializes.

ü Project Schedule: An overall schedule showing when the major milestones
take place.*

ü Roles: Who will manage the project? What is the size and composition of
your acquisition team? What organizations will be involved? Who are the
contact points within each of these organizations? What are their respective
roles? Who will be responsible for training? For maintenance? Can include
an organization chart.

ü Funding Estimates and Sources: You can refer back to these to ensure that you
are living within your constraints.

ü Facilities: Where will the work be carried out? Where will the system and its
users be housed upon completion? Will any special tools or equipment be
needed?*

ü Acquisition Strategy: Will the system be built from scratch? To what extent
will off-the-shelf components be used or sought?* How will such components
be integrated into the system? Are there pieces of the system that can be
reused from other projects?* Will the system be build incrementally using a
multi-phase approach, in which each phase contains a task to define and scope
the next phase? Will a prototype be built? How will off-the-shelf products be
integrated with each other?

ü Environment: Are there any legacy systems that must be interfaced with?
Field sensors, roadway or transit vehicle devices? How about other
organizations or neighboring jurisdictions?

ü Standards: What technical standards must be complied with?

ü Major Risks and Risk Management Approach: How will risks be managed?
Have any key risks been identified?*

ü Contracting Strategy: What work will be done in-house? What will be
contracted for? Will consultants be hired?

[Checklist continued on next page]

Chapter 8: Planning The Project

The Road to Successful ITS Software Acquisition 8-5

Checklist 8-1. What To Include In The Project Plan
(Concluded)

ü Type of Contract(s):* What options are being considered? Fixed price, cost-
plus, or time and materials? Design/build or system manager? How many
contracts will be needed?

ü Contract Management: How will oversight be accomplished? How will
progress be tracked and monitored?*

ü The End Users: Who will operate the system? Administer it? Maintain it?
What will be the sources of staffing and funding for these activities?

ü Acceptance Strategy:* What will be the basis for accepting the system?

ü Training Concept: How will user training be accomplished?

ü Maintenance Concept: How will the system be maintained once it is
accepted?

ü Constraints:* What are the realities that you must live within?

* Recommended in the “Software Acquisition Capability Maturity Model (SA-CMM),” [Ferguson, 1996,
 pages L2-4 and L2-5].

NOTE: Italicized items are unique to software, or are more critical for software then they may be for
some other types of projects.

into the situation of the interviewee who told us, “Maintenance kind of caught us by
surprise.”

Again, when you begin the plan you may not have answers to all the items in the
checklist. Leave a placeholder in the plan and add the information as it develops.

• Write a short project plan that documents your major approaches to the
acquisition.

• The project plan is a living document during the acquisition process; new
information will be added, and existing information may need to be revised.Key Points

The Road to Successful ITS Software Acquisition 9-1

CHAPTER 9
REQUIREMENTS

“The hardest single part of building a software system is deciding
precisely what to build. No other part of the work so cripples the

resulting system if done wrong. No other part is more difficult to rectify
later.” — [Brooks, 1987]

9A. Developing Requirements

The importance of requirements

Developing a good set of requirements is one of the most important things you can do on
a software acquisition. This lesson is repeatedly emphasized in the software engineering
literature. Indeed, our public-sector and private-sector interviewees from the ITS
community confirmed that this general lesson applies equally well on ITS acquisitions.

This chapter addresses the requirements that characterize the operation of the eventual
system. Project requirements (testing requirements, legal requirements associated with
the contract, documentation requirements, contractor reporting requirements, etc.) are
covered elsewhere.

Research showed that, of the various software engineering practices used on real world
projects, emphasis on requirements had the strongest positive impact on software quality
and productivity. [Glass, 1982, page 235] Conversely, problems encountered on projects
are often due to poor requirements. Another study surveyed 8,000 projects. It showed
that three problems attributable to requirements— lack of user input, incomplete
requirements, and changing requirements— are the major reasons that projects were late,
over budget, or had less functionality than desired [Standish Group, 1994 as quoted in
McConnell, 1996].

Requirements are important because they “establish a common understanding” between
the customer and the software developer. “This agreement with the customer is the basis
for planning and managing the software project.” [Paulk 1993] Requirements are the
basis for: size, schedule, and cost estimates; build vs. buy decisions; design and
development activities; and acceptance testing.

Having good requirements is also important from a cost perspective. Problems uncovered
during latter stages of a project can often be traced back to flaws in the requirements.
However, the later these flaws are uncovered, the more they cost to correct. In fact, the

Chapter 9: Requirements

9-2 The Road to Successful ITS Software Acquisition

conventional wisdom is that as you progress from one phase of the software life cycle to
the next, the cost for fixing a requirements error increases by a factor of ten. This cost
inflation factor also applies to changes in requirements— the later they are made, the more
they cost.

Who develops the requirements?

It is important that various types of expertise represented on the customer’s team actively
participate in developing the requirements. Our interviewees all agreed that the
transportation engineer should not write the requirements alone. Here are some roles for
the various team members:

This is an example of our themes of team building and collaboration.

• Domain experts ensure that the system addresses the operational needs that it is
being built for.

• The software expert helps write the requirements, and reviews them to see that
they are complete, clear, consistent, testable, and feasible to implement.
[Ferguson, 1996] The expert can also carry out the rapid prototyping activities
before contract award rather than having the contractor do it after contract award.
(See Develop human interface requirements using rapid prototyping
techniques, in Chapter 9B below.)

• The user operators assess the requirements to see that they meet their needs.
(Operators typically have different perspectives and ways to approach systems
than do engineers or software developers.)

• The system administrators and maintainers bring a different perspective on the
system than the user operators. Accordingly, they can specify requirements that
facilitate diagnosing problems or bringing portions of the system on-line or off-
line. These capabilities are often overlooked by engineers or end users with only
an operational perspective.

Joint Application Development is a current management practice that is in vogue. It
involves having users, executives, and developers going off-site to define requirements
and design the user interface in a structured, negotiated process.

Note that the requirements are developed collaboratively as a negotiated process. Give
the user operators feedback on excessive requirements; do not just accept them as gospel.
Offer the following tradeoff: “We may not be able to acquire a system that meets all your
requirements, but we’ll be able to get it for you much sooner.”

Chapter 9: Requirements

The Road to Successful ITS Software Acquisition 9-3

This is another example of the flexibility theme. In this case, the user operators need a
flexible mindset.

How do you determine what the requirements are?

Before you can develop the requirements, you first need to understand what you want
and why. Work with all the members of your team to develop the requirements. Team
brainstorming sessions, interviews with users and system operators, and the National ITS
Architecture are good sources of information for determining requirements.

Be prepared for multiple iterations of the requirements. Initial team meetings may be
needed just to achieve consensus on what problems you are trying to solve and what the
system must do to solve them. Assign responsibility for committing meeting notes and
interview sessions to paper. Review these drafts at subsequent meetings. At various
points, be sure to prioritize the requirements; you can’t do it all.

As discussed in Software Acquisition In A Larger Context, Chapter 2, the system
concept is the basis for the requirements. With your needs firmly in mind, you may want
to attend trade shows or visit other sites that have implemented similar systems. This
provides you with the opportunity to see what features have been implemented elsewhere
that would address your needs. In some cases, this opens up possibilities for valuable
features that may not be apparent otherwise. In other cases, it may serve to lower
expectations as to the limits of what’s reasonably achievable within the state-of-the-
practice. This should help minimize the risk of specifying high risk or unmeetable
requirements. But those who don’t have their needs firmly in mind before the site visits
may be swayed by the glitzy features that they see. They could decide to require
capabilities, not because they’re needed, but because they look nice.

You can also ask to see demonstrations (perhaps at your site) of existing products and
look at the documentation. Doing so will allow you to find out what’s available in the
marketplace. This gives you the opportunity to identify requirements that are nice to have
but preclude the use of off-the-shelf solutions. Often, small, seemingly minor
requirements, prove to be overly restrictive. You may decide to relax or eliminate such
requirements. In other words, your goal is to develop the least demanding set of
requirements that both meets your needs and allows as many existing products to be bid
as possible. Even if you decide not to go with an off-the-shelf solution, the
demonstrations offer the same advantages noted in the previous paragraph regarding site
visits.

Chapter 9: Requirements

9-4 The Road to Successful ITS Software Acquisition

!
CAUTION

The consideration of the availability of existing products and the willingness to trade off
functionality to decrease cost and schedule has been cited as a “best commercial
practice” that is used by the private sector. [Ferguson and DeRiso, 1994.]

As is true for other recommended software practices, site visits and product
demonstrations are not a panacea. They have potential downsides too.
Several of our private-sector interviewees suggested the use of customer site
visits and viewed them favorably. At the same time, they also identified the
risk that site visits will cause the customer to want one feature from System

A and another feature from System B. There is a danger that customers will be
“mesmerized by gee-wizz technology.” The resulting requirements will in effect specify a
composite or hybrid system, “a little bit of everything.” This not only precludes using
existing off-the-shelf products, it may even result in mutually exclusive requirements that
cannot all be met. Again we emphasize the importance of first understanding your high-
level needs or having a system concept. Then embark on site visits or product
demonstrations to determine specific requirements.

Also beware that just because you see operational software working at another site, that
does not necessarily mean it will work at yours without significant modification. It will
only “plug and play” at your location if your environments are identical. Otherwise,
depending on the software, you may incur significant cost and development risk if you try
to obtain rights to their software “as is.”

The requirements document

Because the requirements are so important, be sure to record them in a formal,
configuration-controlled requirements document. (See Software Configuration
Management, Chapter 18.) Our interviewees repeatedly stressed that writing this
document is worth the time and effort it takes to produce it. As one ITS manager warned,
“Don’t shortchange this phase!”

In the software engineering community, the requirements document is often referred to as a
“requirements specification.” However, “specification” seems to connote “design” to many
transportation engineers, as in “design spec.” Therefore, we will not use the term “requirements
specification.”

What are the characteristics of good requirements?

The requirements should tell what but not how. This is very different from the design
specs that transportation engineers are familiar with. There, detailed technical standards
are cited on how a road or bridge is to be built. Do not include design decisions in the
requirements.

Chapter 9: Requirements

The Road to Successful ITS Software Acquisition 9-5

Although the what, not how philosophy is generally sound, it is sometimes hard to follow
in practice: one person’s what is another’s how. Guidance obtained from our interviews
with transportation officials may be somewhat clearer. They told us that a requirements
document should contain performance requirements and not technical requirements.
Nonetheless, vendors complain that customers can’t resist the temptation to engineer the
system, and resort to overly restrictive technical specifications. This can result in a more
expensive and less effective product. It may also unnecessarily preclude buying a viable
existing off-the-shelf system.

We are using the terms “performance requirements” (the what’s) and “technical requirements”
(the how’s) for the two types of requirements. These seem to be the words most commonly
used within the transportation community. However, there are no uniformly accepted definitions
and other words are used as well. Technical requirements are also called design requirements;
performance requirements are sometimes called functional requirements. To further complicate
matters, the military and aviation communities distinguish between functional requirements and
performance requirements. To them, an example functional requirement would be detecting
and tracking enemy aircraft. The corresponding performance requirement would be processing
4000 aircraft target reports per second, with a 1.5 second response time for displaying their
positions.

A customer’s design can also constrain the contractor and inhibit innovation. This is a
particular danger on fixed-price contracts or when the contractor is not allowed to deviate
from rigid requirements or specifications. One way to overcome this problem is to allow
offerors to document deviations to the requirements in their proposals. The customer is
then given the flexibility to make best value judgments based upon what the offerors
submit. If the customer determines that an offeror has a satisfactory cost-effective
alternative to a requirement, then the deviation can be accepted. If you follow this best
value approach, make sure to document the deviations in the resulting contract.
Otherwise there is the risk that the deviation will not subsequently be allowed because it is
not in strict compliance with the documented (and possibly over-specified) requirements.

A good requirement should be clearly stated, unambiguous, testable, feasible to
implement, and consistent with all other requirements. In general, requirements are
documented as shall statements. (“The system shall input...”). A good practice is to use
a separate sentence for each shall. Each shall can be assigned a number, which facilitates
tracking requirements later on (against project completion status or acceptance test cases,
for example).

What goes in the requirements document?

Checklist 9-1 has items for you to consider incorporating in your requirements document.
The requirements have been grouped into several categories including functional
requirements, performance requirements, and interface requirements. However, there are
other ways of grouping them, so the order of presentation in the checklist does not imply
a table of contents for the requirements document.

Chapter 9: Requirements

9-6 The Road to Successful ITS Software Acquisition

In keeping with the philosophy of not specifying design in the requirements, some
strongly urge that even the computing platforms and operating systems not be identified
in the requirements. There is, however, one exception to “no design”: identify required
interfaces to legacy systems. In fact, even if the development of requirements is deferred
until after contract award, it is still a good idea to identify legacy systems and other
aspects of the environment in the RFP. (See Identifying The Software Environment,
Chapter 12.) The National ITS Architecture is a useful source of information in
identifying these interfaces.

Chapter 9: Requirements

The Road to Successful ITS Software Acquisition 9-7

Checklist 9-1. What to Include in a Requirements Document

Functional requirements
ü What capabilities the system must have. The trick is to stay at a functional

level and not prescribe a solution.
ü Each required function takes the form of a sentence with the word “shall” and

should be testable. (e.g., “The system shall display a congestion warning
message on variable message signs.”)

ü Define whether the function is manual, automated, or semi-automated (e.g., the
system shall choose a message and display it; the operator shall type in a
message which gets displayed; the operator chooses from among several pre-
defined messages and causes the system to display it).

ü High-level human interface requirements. More detailed human interface
requirements may also be included, but rapid prototyping is the preferred
approach for them.

ü Algorithms or equations.
ü Year 2000 compliant (see topic sheet 1 on The Year 2000 Problem (Y2K)).
ü Conforms to the National ITS Architecture.

Performance requirements
ü Response times, expressed as averages, standard deviations, 90 percentile, etc.

(“The systems shall have a mean response time of 30 seconds with 90 percent
of all responses within 45 seconds.”)

ü Loading requirements (e.g., being able to handle simultaneous inputs from a
specified number of sensors), including degradation requirements, if any,
under excessive load.

ü Throughput (e.g., number of transactions per hour).
ü Capacity (“The system shall be able to store 30 days of incident reports.”)
ü False alarm rates, including the algorithms to be used in determining the rates.
ü Accuracy, specifying the algorithms.
ü Reliability and maintainability (e.g., mean time between failures; mean time to

repair).
ü Security (see topic sheet 2 on Security).
ü Safety (see topic sheet 5 on Software Safety).

[Checklist continued on next page]

Chapter 9: Requirements

9-8 The Road to Successful ITS Software Acquisition

Checklist 9-1. What to Include in a Requirements Document
(Concluded)

Interfaces, external and internal, including the data (inputs and outputs)
and controls that flow across the interface*

ü To/from field devices.
ü To/from displays.
ü To/from users.
ü To/from other systems, including legacy systems.
ü To/from other jurisdictions.
ü Between major subsystem components (e.g., between a vehicle subsystem and

a transit management center).
ü Between software components (e.g., between incident detection algorithms and

data collections.

Inputs

ü Identify its source (automated and human).

ü Frequency of arrival.

ü Valid ranges and units of measures.

ü Give each one a unique name and identifier.

Outputs

ü Include real-time outputs (e.g., alerts to a display) and non-real-time (e.g.,
summary reports printed out on paper).

ü Identify its destination (devices or users).

ü Frequency of generation.

ü Valid ranges and units of measure.

ü Give each one a unique name and identifier.

*Data flows in the National ITS Architecture are a good source of candidate
 interface requirements, including the data flows and their descriptions.

Chapter 9: Requirements

The Road to Successful ITS Software Acquisition 9-9

!
CAUTION

Documentation standards are another source for determining what to put in the
requirements document. If your agency doesn’t have a standard, consider using the
IEEE Recommended Practice for Software Requirements Specifications [IEEE, 1993a].

Caution: don’t ask for too much

One of the most common problems on software acquisitions is that the
systems are over-specified. There’s always the temptation to add “just one
more requirement, it’s only a matter of some more software.” An
experienced systems engineer once observed that there’s nothing wrong with

adding new features to the solid base of an implemented system. However,
adding requirements for these same features for an as yet unbuilt system just weighs the
whole thing down.

In fact, there’s a truism that “less is more”: if you ask for a little bit, you’ll get it; if you
require too much, you risk spending a lot of money and heartache and getting less (or
maybe nothing at all) in the end. It’s fine to have an ambitious long-range vision, but the
vision should be implemented one step at a time. New capabilities can always be added
incrementally, as long as the vision is in place.

This highlights our theme of taking bite-size pieces. Another advantage of keeping the
requirements in check is that it allows for another one of our themes, don’t build if you can
buy.

Once an initial system is built, users gain operational experience with it. The results are
often unanticipated. In some cases, deficiencies in the system may not surface until then.
New requirements will arise out of the day-to-day use. In other cases, user roles may
change in unanticipated ways as a result of the automation. Regardless of their origin,
these new requirements can then be incorporated into the project plans. Often they will
turn out to be more important than the nice-to-haves that were contained in the original
requirements. Some of those anticipated needs will turn out to be not that important after
all, while wholly unexpected needs will arise. But the only way to find out is to get the
system fielded sooner. And that can best be done by holding the requirements to a
manageable size.

Requirements “scrub sessions” are one technique to weed out nonessential requirements.
The philosophy behind a requirements scrub is that when a requirement is removed, it
eliminates all the costs and time for the associated design, test, integration, and
documentation activities. As noted previously, the effort, complexity, and schedule will
be reduced disproportionately; the system reliability may also increase disproportionately.
Depending upon your contracting approach, you may want to carry out at least two scrub
sessions: the first before the RFP is issued; the second, as part of a requirements walk-
through after the software contractor is on board. To avoid unnecessary repetition, the

Chapter 9: Requirements

9-10 The Road to Successful ITS Software Acquisition

details on conducting a requirements scrub are included only once in this document. (See
Conduct a requirements walk-through, below in Chapter 9B.)

Another way to avoid requirements creep is to periodically revisit the system concept in
your project plan. (See the Planning The Project, Chapter 8.) As you develop the
requirements, examine them in the light of the concept. Consider the following
questions: Do the requirements support the concept or are you losing sight of the big
picture? Are you getting sidetracked adding nice-to-haves that don’t really address the
why’s for the system?

How thorough should the requirements document be?

The answer to this question is somewhat controversial: consultants generally recommend
that the requirements document be “complete, specific, and comprehensive.” This allows
the requirements to serve as the basis for all that follows, without ambiguity. However,
this viewpoint is not shared by product vendors who sell software systems. They feel that
comprehensive requirements almost inevitably preclude an off-the-shelf solution. They
also cite the problems that are inherent in any requirements document. (See The need for
requirements management, below in Chapter 9B.)

Instead of going with a comprehensive document, product vendors generally prefer a
short list of high-level requirements (incident detection, surveillance, etc.). These would
then be used to select the best off-the-shelf product. (See the matrix in Build/Buy
Decision(s), Chapter 10.)

One option that may be satisfactory to both communities is to develop a high level set of
requirements that are issued as part of the RFP. These give the offerors something to
base their proposals on and can also be used as the basis for build/buy decisions. (See
Build/Buy Decision(s), Chapter 10.) Then for the portions of the system that you decide
to build, work with the development contractor after they come on board to
collaboratively flesh out a comprehensive set of requirements. (See also figure 6-3.)

How about human interface requirements?

Human interface requirements are those that address how operators and other end users
will interact with the software system. Although we have included human interface
requirements in checklist 9-1, rapid prototyping is a better approach for determining them.
(See Develop human interface requirements using rapid prototyping techniques, in
Chapter 9B below.)

Quality factors

Related to requirements is the subject of quality: “how well” the system meets the
requirements. Quality factors are more difficult to measure or test than performance or
functional requirements. In many cases, formal acceptance testing may not be

Chapter 9: Requirements

The Road to Successful ITS Software Acquisition 9-11

practicable. You may have to resort to less rigorous procedures, such as inspecting the
software or analyzing its ability at a design review. Nonetheless, quality factors are still
important. Even if the contractor cannot directly measure or test them adequately, the
factors place emphasis and may make a difference in the design of the system. Let us
briefly examine some of the quality factors that help define quality. We concentrate on
the more practical ones, and briefly mention some others.

• Reliability. The extent which software will perform without failures within a
specified time period. Usually measured in terms of the number of failures per
unit time, it can also be measured in terms of defects. A defect may not lead to a
failure, for example a document error or some malfunction that does not interrupt
the operation. Thus, reliability requires a definition of what exactly one means by
failure. If the user is simply concerned with the operation of the system we can
use the factor Availability.

• Availability. The extent that the system is available for operation without
interruption. The time between failures is measured and is converted to a percent
that gives the amount of “up time” for the system. If we say that the system has a
95% availability, it means that in one hundred hours the system will be down for
only five hours. We have to consider how to handle partial non-availability. Does
the entire system have to be available or is some degradation allowable?

• Maintainability. Ease of effort for locating and fixing a problem or failure within
a specified time period. How long, on average, does it take to repair a single
failure or problem (which ones— all failures may not crash the system)?

• Usability. Relative effort required for training or for using the system. This is a
tough one. It has to do with human factors which are hard to measure. Some
ways that it can be specified are in the number of key strokes or operator actions
required, or the response time of the system.

• Expandability. How easy is it to increase the performance or capability of the
system. This usually has to be built into that design of the system so that future
enhancements can be easily accommodated. Usually this means ensuring that the
system can accommodate additional resources such as memory. It could also
mean that the system is designed with standard internal and external interfaces
such that future changes can be accommodated without major changes to the
architecture and implementation of the system. (See also Planning for flexibility,
the next section below.)

Requirements for the first three (reliability, availability, and maintainability) should take
into consideration the skill levels of the personnel who will be responsible for operations
and maintenance; this is a key ingredient in determining what can reasonably be achieved.
Other quality factors that are more difficult to specify, measure, and test are sometimes
used. Two of them are:

• Portability. Relative effort to transport the software for use in another
environment.

Chapter 9: Requirements

9-12 The Road to Successful ITS Software Acquisition

• Reusability. Relative effort to convert the hardware or software component for
use in another application. Applies in cases where the system, or parts of the
system, may be reused in another similar application. It is to the suppliers’
advantage to accommodate this requirement as they might want a marketable
system that can be reused in other applications. However, trying for too broad a
development on one customer’s money is risky, and can jeopardize trust and
teamwork.

See also the discussion on quality management, in Project Management, Chapter 17.

Planning for flexibility

Another subject related to requirements is system flexibility. Software is inherently more
flexible than hardware during the development stage. Ironically, deployed systems that
use software are often inflexible: they can’t incorporate new capabilities, and existing
components can’t be replaced. In some cases, antiquated computers are kept running
because the cost and effort of migrating the software to a new computer would be too
disruptive and expensive. As a result, the rapid advances in computer and peripheral
devices are not taken advantage of.

Systems that are acquired without flexibility in mind may not even survive long enough
to become operational, dying before their development is complete. [Horowitz, 1991;
Saunders, Horowitz, Mleziva, 1992]

The essence of planning for flexibility is to accommodate change. Planning for flexibility
addresses the components of a system, the interactions and connections between them,
and the constraints. It considers how each of these can evolve over time. [Garlan and
Perry, 1995] Note that we are talking at a higher level than the design of software
algorithms or data structures. Instead, we are addressing the overall organization of the
system.

The software engineering community uses the terms “software architecture” and “system
architecture” in conjunction with the overall organization of a system. However, to avoid
confusion with the National ITS Architecture, we will refrain from using “architecture” in our
discussions.

For example, the design of ramp metering algorithms is not of concern here. Rather, we
are interested in where these algorithms fit into a freeway management system, what data
sources are available, what additional data sources may become available in the future,
what other components will use the output of the algorithms, even what are the likely
changes to these other components in the future.

One way to approach planning for flexibility is to ask yourself, “What features of the
system are likely to change or grow over the next five years?” Will new vehicles be added

Chapter 9: Requirements

The Road to Successful ITS Software Acquisition 9-13

to a vehicle tracking system? Will more roads be put under surveillance of a traffic
management system? Will surveillance be upgraded from loops to video? Will any of the
legacy systems be replaced? Will traffic data be shared with neighboring jurisdictions in
the future? Then, as you work with your contractor or conduct design reviews, play
“what if.” See if the system will be able to accommodate these changes. The goal is to
make the changes as painless as possible.

In general, you don’t want to specify the overall organization of the system in the RFP.
Vendors are almost always the most qualified to do this for their own software. (If your
vendor is not qualified, you should find another vendor!) In fact, the private-sector
interviewees were adamant that customer-supplied technical specifications are a bad idea.
“Leave it to the supplier.”

Nonetheless, there are some aspects of planning for flexibility that do need to be
considered as part of the acquisition:

• Identify the environment in which the software system is to operate. This
frequently includes other systems that are yet to be acquired in addition to
systems that you already own. You may want to require the software to support
standard interfaces and communications (e.g., the National Transportation
Communications for ITS Protocol or NTCIP) so that you have a free choice of
vendors when it comes to acquiring other components of your system. However,
it is generally best not to identify the hardware platform or operating system for
the system, unless absolutely necessary, so as to not constrain the design
unnecessarily.

• Require the contractor to document the overall organization of the system as a
contract deliverable early in the development process. This can be done regardless
of whether a build or buy approach is used and should happen before the software
is built or bought.

• If this is a custom implementation, include contract language that allows you to
review and approve the vendor’s approach. This will help you judge whether the
vendor is properly addressing your future needs and may surface problems with
your requirements. (If you will be responsible for maintaining the software,
review the vendor’s products to verify that you will be able to do so.) If you
retain software technical expertise on your team in addition to the contractor,
those experts should be involved in the reviews.

• For off-the-shelf software (See Build/Buy Decision(s), Chapter 10), determine
how much “tailoring” may be required. This can include work that needs to be
done to interface the software to other components, or to customize the software
to your local environment. Verify that you have the ability to do the necessary
tailoring.

Chapter 9: Requirements

9-14 The Road to Successful ITS Software Acquisition

When should the requirements be documented?

Almost everyone agrees that the requirements should be documented and stabilized
before system design or development takes place. In general, if you’re going with an off-
the-shelf buy, then high-level requirements (perhaps a features list) will be needed before
vendors are formally solicited. At the other extreme, if time-and-materials contracting is
used to develop the system from scratch, then the requirements should be collaboratively
developed with the contractor after contract award. However, beyond that there does not
seem to be a consensus as to what point in the acquisition the requirements document
should be written. Here are some of the options:

Option: The customer documents the requirements early in the life cycle. The
requirements are included in the RFP. Since transportation engineers are generally
inexperienced in writing these types of requirements documents, this activity calls for
heavy involvement of the software expert on the team.

Pros: Allows the bidders to understand the system that they are bidding on. The
more specific the requirements are, the more clear and more focused will be the
bidders’ responses. This, in turn, makes source selection easier for the customer.
Cons: There is concern from the private sector that when customers specify
requirements, they inevitably specify the design instead. This almost guarantees
that a custom-built approach will be needed and precludes existing off-the-shelf
solutions. Also, it may result in a premature selection of the technology, which
becomes obsolete or constraining when the system is implemented. There is also
a danger that the customer will view the requirements as being “final” and will not
carry out a requirements management process.

Option: This is a variation on the preceding option, with similar pros and cons. The
customer documents the requirements early in the life cycle. But in this option, the
requirements are included in the RFP only as draft requirements. Soon after the
contractor comes on board, they will work with the customer to finalize and scrub the
requirements. (Depending upon the contracting mechanism, the requirements may
have to be finalized as part of the contract negotiations process, before the contract is
signed.)

Pros: Allows the bidders to understand the system that they are bidding on, while
explicitly acknowledging the need for collaboration on refining the requirements.
Cons: Same as in preceding option, except that the requirements will not be
viewed as final.

Option: The contractor develops the requirements soon after contract award. The
RFP has only a high-level set of requirements. These may include some combination
of a features list, system needs, system concept, or identification of the system
environment including interfaces to legacy systems. Time and materials contracting
and task-ordered contracts are especially appropriate for this option. If a task-ordered
contract is used, requirements development may be the only task that is initially

Chapter 9: Requirements

The Road to Successful ITS Software Acquisition 9-15

funded. When this task is completed satisfactorily, the customer and contractor will
have a mutual understanding of the requirements. Then the optional tasks for the
other software development activities (design, coding, testing, etc.) are funded. Under
this option, the RFP contains such items as an operational perspective and a general
scoping document for the potential contractors to bid against.

Pros: Enables those with software project experience and expertise to write the
requirements. Once the requirements are mutually understood, there is a sound
basis for scoping the remaining tasks.
Cons: Does not provide a firm basis of understanding for the contractors to bid
against. The contract must be carefully constructed to accommodate the
uncertainties. A firm, fixed-price contract for the entire development effort would
be inappropriate. (See Selecting The Contracting Vehicle, Chapter 11.)

Option: An RFP is issued for developing the requirements. Then these requirements
are included as part of a second RFP to implement the system.

Pros: Fills the void created by lack of customer software expertise. As with the
first option, allows the bidders on the second RFP to understand the system they
are bidding on.
Cons: If the contractor who writes the requirements is later allowed to respond to
the RFP for implementing the system, this creates a conflict of interest. The
contractor may write the requirements in such a way that only his system can
effectively meet them or unfairly position themselves for the second contract. On
the other hand, if the contractor who writes the requirements is precluded from
implementing the system, (or if another contractor is selected to implement the
system) then there will be multiple interpretations of what the requirements mean.
There is also the danger that a consultant with strong transportation credentials but
lacking the needed software expertise will be chosen to write the requirements.

In short, the option you select will to a large extent define your contracting approach.
There is no easy answer here, or one right solution. It is up to the customers to assess the
situation from the perspective of their acquisition. Hopefully, the options presented here
will help you proceed with “your eyes open” as to the implications of the chosen
approach.

However, regardless of your decision, you will need to remain actively involved with the
requirements for the duration of the project. Although it would be nice to set aside the
requirements and go on to other tasks once the requirements are documented, you
unfortunately cannot dismiss them as a “done deal.” Ignoring the requirements will risk
the success of the entire project.

9B. Requirements Management

Chapter 9: Requirements

9-16 The Road to Successful ITS Software Acquisition

“...it is necessary to allow for extensive iteration between the client and
the designer as part of the system definition.” — [Brooks, 1987]

“Requirements are not completely known at the start of a system’s
development. They cannot be specified completely up front in one

voluminous document, but rather will evolve during the analysis phases
of a project and beyond.” — [Christel and Kang, 1992, page 14]

The need for requirements management

Fundamental flaw of software acquisition: “One can specify a
satisfactory system in advance, get bids for its construction, have it

built, and install it...this assumption is fundamentally wrong.”
— [Brooks, 1987]

A complete set of well documented requirements would be ideal, but is probably
unachievable. At one time it was thought that the key to a successful software project
was to i) develop a rigorous, complete set of requirements; ii) freeze them for the entire
project; and iii) insist that the contractor meet all the shall’s. However, this ideal does not
jibe with real world project experience. “The demand for firm and unchanging
requirements is mostly wishful thinking.” [Humphrey, 1989, page 25] “The initial
requirements are often wrong and will change.” [Humphrey, 1989, page 26] At a
minimum, the requirements will have to be clarified.

Why is this so?

It turns out that English is an imperfect vehicle for documenting requirements.
Requirements documents are notorious for being vague, inconsistent, ambiguous,
incomplete, untestable, and just plain wrong. The writer and reader of a requirement can
have honestly differing interpretations of it. As a result, the requirements are subject to
multiple interpretations. The requirement whose meaning seems so clear to the customer
who wrote it may be unclear or subject to an entirely different interpretation by the
software developer who reads it. If these different interpretations are not resolved early in
a project, the misunderstandings will eventually lead to mistrust between the two.

“Rule 1 of Systems Integration: The agency and the integrator will never interpret the
functional definition in the same manner.” [Phil Tarnoff]

Even if a totally clear, perfect requirements document not subject to multiple
interpretations could be written, requirements can (and often do) change over the course
of a project. As the acquisition progresses, new insights are gained and the requirements
must change to accommodate them.

Chapter 9: Requirements

The Road to Successful ITS Software Acquisition 9-17

Instead of freezing the requirements, the management approach must take these realities
into account. Our recommended requirements management approach is discussed in the
following paragraphs.

Obtain vendor feedback

After the requirements are documented, formally or informally float draft copies past
potential vendors, seeking their feedback. (You may want to consult with the contracting
and legal expertise on your team to ensure that this is done in a legal manner that does not
show favoritism to particular vendors.) Ask them if they can meet the requirements and
what changes they would recommend. Re-evaluate your needs based on the comments
you receive. In this way, your requirements are likely to be more reasonable. If you find
there are no commercial products available to meet certain requirements, ask yourself
whether these requirements are truly necessary and what the risk would be in developing
software from scratch to meet them. Perhaps there is a reason that no one has
implemented them. You can also use peer agencies— perhaps those in other jurisdictions
who have previously procured a similar system— to peer review your requirements
document.

Vendors may be reluctant to give honest appraisals of your requirements. Their
responses could be interpreted as admissions of inadequacies in their products. They
may fear that by being honest, they would, in effect, preclude themselves from further
consideration in a competitive procurement. The Department of Defense found this can
be overcome by having the comments submitted anonymously. When this was done,
vendor responses improved and were much more valuable.

A pre-bid conference is another way to practice open communications for improving the
requirements. Hold this conference after draft requirements are circulated but before a
final RFP is issued. At this stage, contractors are generally willing to make constructive
comments and suggestions, since they won’t be revealing their proposal approach to
competitors. Similarly, customers are still in a position to make changes, since
requirements have not yet been “finalized.” Once the final RFP is issued,
communications are necessarily more constrained on both sides.

Obtaining vendor feedback and improving the requirements is not the end of the
requirements management process.

While discussing requirements, one interviewee from the ITS community told us . . . “A
formal document is not a substitute for teaming.” Requirements management will be
carried out by the expanded team that now includes the contractor.

The requirements document is a good starting point for establishing communications with
the software developer or product vendor as to your needs. However, it is not a substitute
for the primary means of communication that will take place: human communications

Chapter 9: Requirements

9-18 The Road to Successful ITS Software Acquisition

and interactions through meetings, work groups, prototypes, system demonstrations, and
system tests. Knowledge and new insights will be gained as the project progresses. This
knowledge must be captured, rather than prohibited by a static requirements document.
[Christel and Kang, 1992] Plan to have on-going collaboration with the contractor and
revisit the requirements throughout the remainder of the project. To be sure, changes to
the requirements must be carefully controlled. (See Establish a stable requirements base
to work from, below.) However, you cannot take the requirements, “throw them over the
fence” at the contractor, and forget them.

Conduct a requirements walk-through

Hold a requirements walk-through with the software development contractor when the
requirements document becomes available. Having the right people present at the walk-
through is key to its success. The other members of your customer team should also
participate. On the contractor side, make sure that people who are responsible for the
coding are present.

One of the mistakes that have been made on past projects is that the software
developer’s project manager is present at the walk-through, but the individuals
responsible for coding the software are not.

The project schedule, RFP, and contract should explicitly call out this activity. Plan for it
to take place early in the development process before software design or coding activities
begin. The walk-through may even have to take place before the contract is signed;
depending upon the contracting vehicle, afterwards may be too late.

At the walk-through, go through the requirements together, line by line. Because a
customer and contractor approach the requirements from different perspectives,
differences in interpretation are inevitable. Discuss your respective interpretations of each
requirement and reconcile your differences. Also discuss the implications of the various
requirements and their impacts on the project.

This is an example of our themes on the need for open communication between customer
and contractor and the need for them to work together (collaboration).

During the walk-through, the requirements should not be viewed as being cast in stone,
even if they are part of the signed contract. Checklist 9-2 identifies what should take place
at the walk-through; you may identify additional items to include on the agenda.

You can also use the requirements walk-through as another opportunity to scrub
requirements. Once the requirements have been clarified, go through them again with the
contractor and prioritize them by their desirability and the cost or effort needed to

Chapter 9: Requirements

The Road to Successful ITS Software Acquisition 9-19

implement them. Accordingly, Checklist 9-2 also identifies what the scrub session can be
used to accomplish. As shown, in the checklist, deferring low priority requirements is one
of the options to consider.

Walking through the requirements and scrubbing them is important whether you build
your system or buy it. For off-the-shelf products, a walk-through provides the
opportunity to identify which modifications are easy to make and which ones are difficult.
The product supplier is in a better position than anyone else to know this. Intuition of
outsiders often fails: a seemingly innocent change can be difficult to implement; a
seemingly ambitious one may actually be easy.

By using incremental development and keeping the size of the project builds small (bite-
size pieces), users are more willing to defer capabilities into the next release of the
program. If they see a long development cycle, they will try to cram as much capability as
possible into the initial release. In that case, the problem exacerbates itself.

You may object that such a thorough walk-through will take considerable time. It will.
However, the time spent will be well worth it. Again citing the advice of an ITS manager,
“Don’t shortchange this phase.” If requirements issues are not addressed at this point,
they will surface later during design, integration, or operational phases of the project. At
that time they will be considerably more costly to correct. More costly in time, dollars,
and frayed working relationships. The conventional wisdom is that if you delay fixing a
requirements problem for one phase of the life cycle, the cost to correct the problem goes
up by a factor of ten. Correcting a requirements problem after design can cost ten times
more than correcting it during a requirements walk-through. If you wait until after
operational use of the system begins, you can incur a hundred-fold increase over what it
would have cost to correct earlier.

Chapter 9: Requirements

9-20 The Road to Successful ITS Software Acquisition

Checklist 9-2. Suggested Agenda Items For A Requirements Walk-Through

ü Clarify ambiguous or vague requirements.
ü Remove inconsistencies between requirements.
ü Supply missing requirements.
ü Replace existing requirements with better alternatives that are identified.
ü Eliminate unnecessary or hard-to-meet requirements, or mark them as low

priority.

ü Prioritize the remaining requirements.

Scub session

ü Eliminate low priority or high cost requirements; “retain only those that are
absolutely necessary.”

ü “Simplify all requirements that are more complicated than absolutely
necessary.”

ü “Substitute cheaper options” when they are available.

ü Defer lower priority requirements into later versions of the software.

*Quotations taken from S. McConnell, Rapid Development: Taming Wild Software Schedules,
Microsoft Press, 1996, page 329.

Chapter 9: Requirements

The Road to Successful ITS Software Acquisition 9-21

Suppose a requirements walk-through is not held. What happens if agreements are not
reached on the requirements?

Probably nothing at first. But when requirements problems do become visible (and they
will!), they ultimately manifest themselves as a system that is unsatisfactory in some
respect. The system will fail to meet customer expectations. (“I thought the system was
going to do...”) And unmet expectations mean a disappointed customer. In the long run,
that can’t be good for anyone involved in the project, including the contractor.

One ITS software developer cites the example of an unnamed customer who refused to
carry out a requirements walk-through. So the contractor proceeded as best they could
in designing the system. Then came the critical design review, a major milestone. But
instead of addressing design issues, the review quickly back-tracked to the unaddressed
requirements issues. The contractor and customer finally reached a mutual
understanding of the requirements, but not without cost. By then, much of the previous
design work had to be discarded and re-done. This could have been avoided with a
timely walk-through of the requirements.

Sign the requirements and place them under configuration control

Document any agreements reached during the walk-through. In many cases, a
memorandum of understanding between you and the contractor may be sufficient to
record the clarifications and understandings that were reached. In some cases, the
requirements document may have to be changed. (Interviewees did not find that this
presented any legal obstacles even when requirements were a formal part of the contract.
This is an area that should be explored ahead of time with the contracting officer who is a
member of the customer’s team. It may be that a walk-through will need to be held
before a contract is signed.)

Once all the requirements have been agreed upon, both parties (customer and contractor)
should sign the document and any memoranda of understanding. (Remember to include
contract language for this to occur.) It is desirable to have the end user member of your
team be one of those signing the requirements. This documents their agreement and
establishes their buy-in. Then baseline the requirements. From this point on,
requirements changes should be incorporated only in a controlled (formal) manner.
[Ferguson, 1996, page L2-7] (See also Software Configuration Management, Chapter
18.)

A document or piece of software is said to be baselined if procedures are in place so that the
current version is identified and controlled at all times.

Formal implies that the customer and contractor have to agree on the change using a defined
process.

Chapter 9: Requirements

9-22 The Road to Successful ITS Software Acquisition

Okay, so I don’t freeze the requirements at contract award. But now that they’re under
configuration control, can we put them aside and go on to other things?

A baselined requirements document is not the end of the story. You will still need to
address requirements issues as they arise as part of the requirements management
process.

Two opposing needs: address requirements issues as they arise and establish a stable
requirements base to work from

The following paragraphs address two needs. On the one hand, there must be the
flexibility to address the requirements issues that will inevitably arise.
On the other hand, there is the need to establish and work from a
stable base of requirements. Walking a tight rope and balancing
between these two, somewhat opposing, needs will be a key factor in
the success of your project.

Address requirements issues as they arise

“Myth: Once the agreed functionality has been documented and signed,
the user can relax and let [the developer] build the system.

“Fact: The user...should be in almost continuous contact with [the
developer].” — [Farbman, 1980]

Even after formal sign-off takes place, the requirements are not frozen. Placing the
requirements under configuration control should not be equated with freezing them for
the duration of contract. Some changes are inevitable. Even if the requirements
document is part of the signed contract with the contractor, there is still the need for some
flexibility. It is natural and prudent to take advantage of insights gained as the project
progresses. You may also find the opportunity to exploit advances in technology. You
will need to address requirements issues as they arise. Most often it will mean only
clarifications or agreements, perhaps documented in a memorandum. In some cases this
may mean changes to the requirements. Such changes, whether proposed by the
developer or requested by the customer, are normal and should be treated as such.
(Again, the need to have flexibility in the contracting process. It is best to have a process
that minimizes the number of contract change orders.)

However, forcing a contractor to interpret the original requirements as incorporating bona
fide additions and insisting that they do so within the original schedule and budget should
not be a cost of doing business. It only destroys trust and leads to adversarial
relationships that are not good for either party or for the system. Instead, collect the list
of additions and use them to define additional releases of the software. That way you
minimize on-going development, while planning and budgeting for new features. But be
sure to keep the additional stages small and of manageable size.

Chapter 9: Requirements

The Road to Successful ITS Software Acquisition 9-23

Whereas walking through the requirements is a one-time, scheduled event, addressing
requirements issues as they arise will be an on-going process. Requirements will need the
contractor’s attention and yours throughout the development process. As a customer,
you should be particularly attentive when the software development contractor raises
requirements issues or suggests changes to the requirements. This does not mean blindly
relaxing requirements or accepting any changes suggested for them. It does mean
entering into open and honest discussions.

When the contractor raises a requirements issue, do not respond with an attitude of “Back
to requirements again? I thought we were finished with them.” Not only should you be
receptive to addressing requirements issues, you should actually foster an atmosphere
that encourages the contractor to bring them forth.

Suppose the contractor seeks clarification about an unclear or ambiguous requirement.
This is a positive sign that contractor personnel are doing their job correctly. Respond
accordingly: “Thank you for bringing that to our attention. Let’s address it now.”

Suppose the contractor has identified the need for a new requirement. Perhaps in
designing the software, they have uncovered an area in which the requirements are
incomplete. There must be flexibility to allow the requirement to be added to the baseline
system. The implications of adding the new requirement should be jointly considered by
you and the contractor. You will need to explore tradeoffs and alternatives together.
Maybe you will jointly agree to eliminate a lower priority, pre-existing requirement. This
will compensate for the new requirement while maintaining schedule and cost. Or
perhaps you will agree that the schedule must slip. Maybe, the best of all worlds, the
contractor will be able to say, “Since we agreed to this change at this early stage in the
project, we’ll be able to accommodate it in our design without any cost or schedule
implications.” And don’t forget to have the relevant members of your customer team
present for the discussion.

Sometimes the contractor will discover that a certain requirement is going to be more
difficult to meet than originally anticipated. Again, such news should not be met with a
“shoot the messenger” approach. The news may be bad, but the earlier you find out
about it the better. In such a case, you may have to relax the requirement to live within
schedule constraints. Or if the requirement is essential, you may have to forego other
requirements to accommodate it. As you make your decisions, recognize that you may
not be able to get everything you asked for: insisting on everything may have significant
cost or schedule impacts, or it may preclude the use of an otherwise perfectly acceptable
off-the-shelf solution. Remember that the goal is to solve problems and build a system;
not to fix blame.

The contracting mechanism must contain the flexibility to relax requirements when
necessary.

Chapter 9: Requirements

9-24 The Road to Successful ITS Software Acquisition

One satisfied customer told his long-time contractor “The reason we’re so successful
together is because you always give me 80% of what I ask for.”

But whatever way the new requirement is handled, there must be sufficient flexibility to
allow the change to take place. Further, the issues that are raised should be dealt with
promptly, with agreed upon changes documented and adopted in a timely fashion.

One ITS software developer complained about an unnamed customer. “We wrote
questions and . . . couldn’t get them to respond. [We] couldn’t make progress.”

Why not just leave the decisions up to the contractor? After all, you hired them for their
software expertise. The reason is that the members of your customer team are often in
the best position to assess the operational impact of a change. Your domain experts are
the ones with the operational perspective. Who better than the domain experts to clarify
the intent of an ambiguous requirement? Without your team’s inputs, a computer
programmer will be the one who is forced to make the decision during the coding process.
The programmer may be a “computer wiz” but undoubtedly lacks the traffic or transit
perspective needed to assess the operational impact of the change. The programmer can
only consider its impact on the internal workings of the software. This perspective should
be brought forth in the discussions. But it should not be the sole basis for making
decisions.

Here is where having the right expertise on the customer team comes into play (team
building). The end users of the system and domain experts are often in the best position
for assessing the impact of proposed changes. After all, it is their day-to-day working lives
that will be affected. They have the operational perspective that the project manager may
lack. And they will feel better about using the eventual system if they know that they had
an input into shaping it.

Establish a stable requirements base to work from

Notwithstanding the discussion in the previous paragraphs, resist the temptation to add or
make changes in the requirements and minimize the number of changes you do make.
Having a stable set of requirements is essential for successful software development. That
is why we recommend having requirements signed and baselined; it provides some
stability to the acquisition. Ever-changing requirements lead to cost and schedule
overruns as rework is induced with each change. The government continually changing
requirements during the course of development is one of the most common reasons for
over-running cost or schedule. The authors of this document have personal experience
with several such systems. Scope or requirements creep should be resisted whenever
possible. This is why we recommend having the requirements signed, to provide some
stability to the acquisition. As noted previously, proposed changes or additions to the
requirements can be examined in the light of the system concept documented in the

Chapter 9: Requirements

The Road to Successful ITS Software Acquisition 9-25

project plan. Ask yourself, “Does the proposed change support the concept? Or is it
tangential to the real objectives, the why’s for the system?”

Coming full circle in our argument however, stability in requirements should not be an
excuse for rigidity.

“Good” changes, “bad” changes

How do you balance the conflicting needs of addressing requirements issues and
stabilizing the requirements? One way may be to ask yourself whether a proposed
change is “good” or “bad.” Act accordingly in deciding whether to accept or reject the
change.

“Good” changes “Bad” changes

clarifies ambiguities

simplifies the design

derives lower-level
requirements in support of
high-level requirements

increases system
functionality

adds new requirements

increases the scope of the
project

Another way to assess the desirability of proposed changes is to increase the threshold for
making the change as time progresses. Initially, there can be more give and take. But
once a requirements baseline is established for a system increment, then the “pain level”
for making changes to that baseline should be high. Although not rigidly frozen,
baselined requirements should be carefully controlled. Scrutinize changes in regards to
their necessity and for their impact on scope, cost, and schedule. The software
engineering expertise on your team can assist in making these determinations.

In short, treating the requirements as a non-frozen, living document should not be
mistaken for treating the requirements as fluid. As usual, good engineering and
management judgment is needed to achieve the proper balance.

Use formal procedures and sign off on them

One ITS manager recommends that before you address requirements issues, you first
establish “some rules of engagement.” By this, she means making prior agreements as to
how the customer and contractor will work together to adopt changes to the requirements.
Things such as, “How will agreed upon changes be formally documented?” “How long
does the customer have in responding to issues raised by the contractor?”

She cites what can happen where there are no “rules of engagement” in place. Without
them, there is the danger that a brainstorming idea can be misinterpreted as a formal

Chapter 9: Requirements

9-26 The Road to Successful ITS Software Acquisition

commitment. Perhaps the customer and contractor attend a meeting together, in which
they discuss some possible changes to the requirements. From the contractor’s
perspective, this was just a brainstorming session, and so the proposed changes are
quickly forgotten. From the customer’s perspective, the contractor has tacitly agreed to
make the changes. So the customer has false expectations that the changes will be
incorporated. Later on, of course, the customer is faced with unmet expectations: a
system that does not have the “agreed upon” changes. Accusations of not living up to
agreements will soon follow. In the meantime, the contractor complains that the
customer wants more and more for free. This leads to mistrust and jeopardizes
maintaining open communications over the long term.

Some suggested “rules of engagement” are:

• No changes take effect until they are formally documented and signed off by both
parties. Oral agreements are not sufficient to effect a change. Of course, this
presupposes a non-bureaucratic procedure. Having to formally re-negotiate an
entire contract with both parties’ contracting offices for every change is not
acceptable. (See also Software Configuration Management, Chapter 18.)

• All proposed changes are discussed in regards to their impact on scope, cost, and
schedule. This discussion takes place in the context of possible features trade-
offs.

• Reach agreement as to how long the requirements document will be maintained as
a living document. As the project progress, the requirements document may
outlive its usefulness. There would be no point in going through a bureaucratic
exercise of changing a requirements document if no one will refer to this
document again. On the other hand, if you decide that the requirements
document will be the reference for the system throughout operations and
maintenance, then by all means incorporate any changes in it. In some cases, the
requirements document can serve as the basis for future changes or replacement
systems. For this reason, some recommend that the requirements document be
kept as a living document throughout the life of the system.

To ensure the requirements management process works, the customer and the software
development contractor each have certain responsibilities. Table 9-1 summarizes them.
Customer and contractor responsibilities are juxtaposed. Each row gives a customer
responsibility and its “flip side,” the corresponding contractor responsibility. For
example, you should resist making changes to the requirements, but the flip side is that
the contractor should not reject all changes out of hand.

“Myth: The user must tell [the developer] what he needs. You [the
developer] document it. He signs it. All changes to
applications are indications of the user’s failure to know what
he wants.

“Fact: Most users don’t know what they want; they almost never know

Chapter 9: Requirements

The Road to Successful ITS Software Acquisition 9-27

what they need. Your [the developer’s] job is to...suggest
alternative solutions...” — [Farbman, 1980]

The responsibilities shown in the table can also serve as the basis for the “rules of
engagement.” Discuss them with your contractor to achieve an understanding of your
mutual expectations and obligations.

Table 9-1. Responsibilities for Requirements Management

0Maintain open communications with the
contractor. Work together as a team and
communicate on a regular basis.

Customer ResponsibilitiesCustomer Responsibilities Contractor ResponsibilitiesContractor Responsibilities

0Maintain open communications with the
customer. Work together as a team and
communicate on a regular basis.

0Discuss the requirements with the
contractor in a non-threatening, non-
recriminating manner. Remember that
the contractor’s differing interpretations
may be honest ones.

0Discuss the requirements with the
customer in a non-threatening, non-
recriminating manner. Remember that
the customer’s differing interpretations
may be honest ones.

0Sign off on the requirements once a
mutual understanding has been reached
with the contractor.

0Sign off on the requirements once a
mutual understanding has been reached
with the customer.

0Remember that proposed changes do not
take effect until signed off by you and
the contractor.

0Follow configuration control procedures
in updating the requirements. Do not
implement changes until they have been
signed off by you and the customer

0Recognize that it may not be possible to
have everything. Some requirements
may have to go unmet or be deferred.

0Do not take a legalistic view of the
requirements by narrowly satisfying the
shall’s, while ignoring the true needs of
the customer. Avoid the attitude of “they
didn’t ask for it, so we didn’t provide it.”
Try to satisfy the intent of the
requirements. A satisfied customer
should be your goal.

0Resist the temptation to change the
requirements or add new ones. Avoid
“requirements creep.”

0Do not be too rigid in rejecting changes
proposed by the customer. Not all
changes are invalid. Recognize that some
change is inevitable.

Responsibilities for Requirements ManagementResponsibilities for Requirements Management

Chapter 9: Requirements

9-28 The Road to Successful ITS Software Acquisition

Table 9-1. Responsibilities for Requirements Management
(Concluded)

0Foster an atmosphere that not only
allows, but encourages, the contractor to
bring forth requirements issues as they
arise.

0Be receptive to requirements issues that
are raised and changes that are proposed
by the contractor or other members of
your team.

Customer ResponsibilitiesCustomer Responsibilities Contractor ResponsibilitiesContractor Responsibilities

0Bring forth requirements issues. Point
out problems as they arise; do not hide or
attempt to bury them. No cover ups.

0Identify requirements that are causing
particular difficulties. These may be high
risk requirements that are technically
difficult to implement, ones that drive the
design or cost of the entire system, or
requirements that present schedule or
budget risks.

0Use your software expertise to educate
the customer as to what to expect. Point
out what various requirements imply with
respect to risk, system usability,
functionality, etc.

0Have an open mind. Show a willingness
to be flexible. Do not become wedded to
bad ideas. This does not mean blind
acceptance of all proposed changes.

0Work with the contractor to find
alternatives.

0Suggest alternatives that would better
meet the true needs of the customer or
would save money.

0Work with the customer to find
alternatives.

0Be responsive. Answer questions and
respond to issues that are raised in a
timely manner. When changes are agreed
upon, adopt them in a timely fashion.

0Recognize that the customer has the final
say in accepting or rejecting your
proposed changes.

0When requirements change, or new
requirements are necessary, do not attempt
to squeeze the contractor by insisting the
new requirements be added within the
framework of the existing schedule and
budget. Recognize that the contractor is in
this to make a profit, not as a public
service.

0If requirements change, or new
requirements become necessary, discuss
how they will be accommodated. In some
cases, they may have to be substituted for
lower priority requirements; in other
cases, schedule or budget relief may be
necessary.

0Do not try to gouge the customer by
viewing a requirement change as an
excuse to “get well” on an underbid
project. Some requirement changes can
be easily folded into the design and
accommodated without schedule or
budget impact. Others may actually have
positive impact, lowering the contract
costs or shortening the schedule.

Responsibilities for Requirements ManagementResponsibilities for Requirements Management

Chapter 9: Requirements

The Road to Successful ITS Software Acquisition 9-29

Develop human interface requirements using rapid prototyping techniques

“For the truth is, the client does not know what he wants. ...The client
usually does not know what questions must be answered, and he has
almost never thought of the problem in the detail necessary for
specification.” — [Brooks, 1987]

“The customer doesn’t generally know what is needed and neither does
anyone else!” — [Humphrey, 1989, page 26]

Our previous discussion emphasizes that the customer and contractor resolve their
differing interpretation of the requirements at a walk-through. This presupposes that the
customers have an interpretation that they can bring to the table, that they know what
they want. In fact, they generally do not. Throughout the software engineering literature,
we are warned that part of the difficulty in documenting requirements is that customers
don’t really know what they want. Several of our interviewees who had participated on
ITS procurements also acknowledged this truism. That is one of the reasons why we’ve
been emphasizing the need for continual and direct customer involvement in revisiting the
requirements as the project proceeds.

“Not knowing what they want” is especially true for the human interface requirements.

The interface that provides human interactions with a computer system is sometimes called the
GUI. That stands for “Graphical User Interface” and is pronounced goo’ ee.

It is almost impossible for users to generate the exact requirements of a system before
they have tried out some version of it. A static written document is a poor
communications medium for describing the highly interactive nature of an ITS system. It
is hard to visualize how written requirements will manifest themselves or how interactions
with a system will “feel” to the user.

A few ITS examples illustrate what can happen when human interface requirements are
specified on paper. In the transit arena, a box on a bus needed multiple keystrokes for a
simple function like changing the volume control. This was not apparent from reading the
written requirements and was not realized until the box was used operationally. In the
traffic arena, incident reports could not be filed until all the fields of an on-line form were
filled out. Many of the fields were not particularly important and filling them out delayed
the transmission of critical information. But the requirements did not specify the capability
to transmit a partially filled out form or allow the ability to retrieve a form and add the
missing fields later. Because rapid prototyping techniques had not been used in either
case, it was not possible to visualize the implication of the written requirements. Only
real-world interactions with the system revealed the flaws that were inherent in the
requirements. If you buy existing products, you will at least gain the benefits of someone
else’s experiences.

For these reasons, it is best if the requirements do not go into too much detail in this area.

Chapter 9: Requirements

9-30 The Road to Successful ITS Software Acquisition

Instead, rapid prototyping is the technique of choice for defining the human interface
requirements. (See the Rapid Prototyping topic sheet.) The end users will need to work
closely with the software developers. Basically, the developers will try out different
human interfaces and allow the users to “try it out,” make suggestions, and iterate until an
acceptable solution is found.

Be sure to include funds in the contract to cover rapid prototyping activities. Do not
expect the contractor to bear the costs.

Several of our recurrent themes come into play. First, rapid prototyping requires open,
non-threatening communications between customer and contractor. Second, the two
should work together (collaboration) as a team (team building) to address requirements
issues. Finally, there must be the flexibility to incorporate the requirements developed
through rapid prototyping into the system.

The use of rapid prototyping does not mean that the human interface can be completely
ignored in the requirements document. Define human interface requirements broadly,
with further definition deferred as an activity for the customer/contractor team. For
example, you can document the numbers and types of users. At first, the operators who
monitor traffic or schedule buses may be the only users who come to mind. But more
careful analysis will show that there are other types of users as well: those who administer
the system to keep it running, managers who read computer-generated reports,
technicians who repair the system.

General human interface capabilities should also be documented. For example, it would
be appropriate to include a functional requirement that the system accept incident reports
filed by an operator. However, do not include details on the keystrokes, screen layouts,
etc. that are to be used for achieving this function. Instead, have the requirements
document reference the prototype, letting it serve as a “living document.” (Of course, this
assumes you have contract and funding flexibility to incrementally define and refine the
requirements.)

Perhaps what we’re really saying is that the human interface is just another example of
“specifying the requirements, not the design,” the what’s not the how’s.

Chapter 9: Requirements

The Road to Successful ITS Software Acquisition 9-31

• Develop a good set of requirements. It is one of the most important things that
you can do on a software acquisition.

• Have the various members of the customer’s team participate in developing the
requirements.

• Document the requirements in a formal configuration-controlled document.
• Develop functional and performance requirements (the “what’s”) and not the

design or technical requirements (the “how’s”).
• Scrub the requirements to avoid asking for too much. Avoid requirements or

scope creep.
• Address quality factors and the ability of the system to accommodate anticipated

changes.
• As soon as possible after contract award, hold a requirements walk-through with

the contractor and other members of your team. Then sign the requirements
and place them under configuration control. Make sure the contract calls for
these activities.

• Establish a stable base of requirements. It is essential for the success of your
project.

• Address requirements issues as they arise, as part of the on-going requirements
management process.

• Flesh out the human interface requirements using rapid prototyping.
• Use the requirements as the basis for size, schedule, and cost estimates; build

versus buy decisions; design and development activities; and acceptance
testing.

Key Points

The Road to Successful ITS Software Acquisition 10-1

CHAPTER 10
BUILD/BUY DECISION(S)

“The most radical possible solution for constructing software is not to
construct it at all.” — [Brooks, 1987, page 16]

“Where use of an existing component is both possible and feasible, it is
no longer acceptable for the government to specify, build, and maintain

a comparable product when a commercial solution is available.”
— [Carney and Oberndorf, 1997]

When acquiring software, one of your most important decisions is whether to “build” the
software (i.e., develop a custom system) or to “buy” already developed software.

This chapter amplifies our don’t build if you can buy theme.

The build/buy decision is not necessarily an either/or choice; you may end up doing some
of each. Even if your overall system is a custom build, some of it could be constructed
with off-the-shelf products. The compilers used during software development and the
underlying, low-level components that implement communications protocols (e.g.,
TCP/IP drivers) would be examples. In fact, most ITS systems will be a hybrid, having
some off-the-shelf components, some tailored commercial products, and some custom-
developed software. It’s the degree to which each of these is appropriate that is at issue.

Kinds of off-the-shelf software

The term “off-the-shelf” is used to cover any software that was developed outside of your
own organization, i.e. software that you “buy” rather than “build.” It comes in many
varieties. “Shrink wrapped” software (e.g., word processors) is developed by large
commercial software vendors. For ITS, some of the underlying components (database
management systems, communications protocol drivers, software development tools,
etc.) may be shrink wrapped. Be especially wary of building software components that
are most commonly bought (word processors, compilers, operating systems, database
management systems, geographic information systems, etc.). If you find yourself in this
situation, carefully review the rationale for building the software and the requirements that
constitute the basis for this decision. Finally, if you decide that you must build this kind
of software, hire specialists in that area to build it.

For most of the ITS systems shown in figure 4-1, off-the-shelf product offerings are
available, often from more than one vendor. These offerings range from almost

Chapter 10: Build/Buy Decision(s)

10-2 The Road to Successful ITS Software Acquisition

!
CAUTION

commodity products (e.g., traffic signal control for isolated intersections; transit fleet
tracking) to components that would be integrated into a larger system (e.g., variable
message sign control). However, for the most part there are currently no off-the-shelf
products that integrate different types of ITS systems (e.g., traffic management with
transit management) or that integrate peer systems in neighboring jurisdictions.

Build/buy decision factors

“Using [off-the-shelf] components in any given circumstance may either
be beneficial or it may cause greater problems...choosing an [off-the-
shelf] component may be a reasonable solution; however the decision...
should be the product of analysis, reasoning, and engineering decisions,
not the desire to jump on the latest bandwagon.” — [Carney and
Oberndorf, 1997]

There are a number of factors that go into making a build/buy decision, including:
your needs (e.g., meeting functional and performance requirements and

required standards).

An over-specified system will unnecessarily preclude satisfactory off-
the-shelf solutions.

• Local phenomena may lead to unique local requirements that must be addressed
by the software. These will have to be accommodated through customization of
off-the-shelf products or through custom-built software. However, give careful
scrutiny to unique requirements and examine the need to be different.

One city has unique requirements for their freeway management system to interface with
water pumps in highway underpasses.

• The extent of modification, customization, and integration required.

• Whether the software operates in your system environment. However, beware of
prematurely specifying the environment or over-specifying it, as this will also
unnecessarily preclude satisfactory off-the-shelf solutions. (See Identifying The
Software Environment, Chapter 12.)

• Interface capabilities of the software to other ITS components and subsystems.
Are interfaces of available products open and documented or are they closed (i.e.,
proprietary and undocumented)?

Chapter 10: Build/Buy Decision(s)

The Road to Successful ITS Software Acquisition 10-3

• Whether the software fits budgetary constraints, including costs of initial
purchase, modification and integration, and continuing license and maintenance.

• The availability and cost of internal and external developers who are
knowledgeable about intelligent transportation functions and needs.

• The availability of product documentation that meets your needs.

• Your organization’s plans and abilities to maintain and enhance the software.
(See also the Software Maintenance section in Training, Operations, and
Software Maintenance, Chapter 16.)

• Time frame in which the system must be implemented.

• The ability to incrementally expand or implement the software.

Risks associated with buying the software

Generally, buying off-the-shelf components reduces risk. On the other hand, the risks of
building custom software are well known. (See, for example, The Nature Of Software,
Chapter 1.) Furthermore, buying software is very attractive, as someone else has already
gone through the pain and agony associated with building it. And it is certainly true that a
great deal of time and effort can be saved by using someone else’s software when it will
work for you in your environment.

That is not to say, however, that buying off-the-shelf software is a panacea. There are
risks, but these risks are manageable. And, as vendors and consumers gain more
experience with off-the-shelf software, standards emerge, and technology improves, the
risks are being reduced. Table 10-1 lists some of the risks and provides some suggestions
for mitigating them.

This discussion reinforces our theme that there are no silver bullets.

How to buy software

If you want to investigate using off-the-shelf software, first conduct a “market” survey to
see what software, if any, is available that seems to meet your functional, system, and
budgetary requirements and constraints. Review product literature, and discuss your
concepts and needs with vendors to determine if their products fit well with your
concepts. You can also check with other DOTs or transit agencies to see if they have
software performing this same function.

In some cases, the job of acquiring and integrating off-the-shelf software can be
simplified if the selection can be done in conjunction with other agencies. For example,
transit and freeway management could jointly select the same geographic information
system to ensure compatibility. However, you must ensure that the selected software

Chapter 10: Build/Buy Decision(s)

10-4 The Road to Successful ITS Software Acquisition

meets the needs of both organizations.

Once you’ve decided to acquire off-the-shelf software, the major steps and considerations
for selecting a specific package are:

• In developing requirements, identify mandatory vs. optional requirements. Keep
requirements as functional and flexible as possible, focusing on what is needed
rather than how to do it.

• Select an evaluation team and prepare a schedule.

Chapter 10: Build/Buy Decision(s)

The Road to Successful ITS Software Acquisition 10-5

Table 10-1. Risk Areas for Buying Off-the-Shelf Software
and How to Mitigate Them

0Cannot satisfy requirements perfectly.

Risk Area How to Mitigate the Risk Area

0Attitude of “compromise requirements
with reality”--the 80% solution may be
good enough.

0Poorly debugged product. In worst case,
may not be usable or even installable.

0Be skeptical about new releases or
version 1.0 of a product; ask for
evaluation copy to test.

0Be circumspect about building schedules
that rely on future shipping dates for
software; rely on released products.

0Poor or non-existent documentation. 0Understand what types of documentation
are included in the license.

0Examine documentation before purchase.

0Ability of the software to meet vendor
claims; true vs. advertised capabilities.

0At a minimum, require live, hands-on
demo. Preferably, use the demo or
borrow a product to confirm value of
software before purchase.

0Integration and test risks--interfaces may
be closed, undocumented, and
proprietary.

0Test evaluation copies of all products
under consideration in combination with
each other before making a final decision
to buy them.

0Obtain documentation on the interfaces.
0Do not over-specify the environment.

0Vendor lock-in. (Note: this is also a risk
area for custom built software.)

0Use open systems based on standards.
0Use open data formats that allow external

processing of data files.

0Vendor will stop supporting the product
or go bankrupt. (Note: this is also a risk
area for custom built software.)

0Consider the financial stability of the
vendor and the market penetration of the
software package. Place products in
escrow (admittedly an imperfect
solution).

0Shipping dates.

Chapter 10: Build/Buy Decision(s)

10-6 The Road to Successful ITS Software Acquisition

Table 10-1. Risk Areas for Buying Off-the-Shelf Software
and How to Mitigate Them

(Concluded)

Risk Area How to Mitigate the Risk Area

0Plan for change. Have a strategy for
incorporating new releases of the
software by the vendor.

0Plan for ongoing license, maintenance,
and administrative costs.

0May be forced to purchase unwanted
functions bundled with the desired ones.
May be forced to install, use, work
around unwanted functions.

0Off-the-shelf software can change
quickly.

0Realizing new features in an upgrade of
one product may force you to upgrade
another product as well.

0Look for modular software with
separately priced parts, looking for
severable features and extensible
products.

Chapter 10: Build/Buy Decision(s)

The Road to Successful ITS Software Acquisition 10-7

• Identify evaluation criteria and selection factors and priorities, including degree to
which package must satisfy requirements and the relative importance of function
vs. budget vs. schedule. Criteria can be application-specific, or they can be
generic issues such as adherence to standards or vendor upgrade policy.

• Make a matrix to determine which products meet which requirements. (See
table 10-2.) Include functional requirements and performance requirements. (An
example of the latter in a transit management system would be the capacity to
track 100 transit vehicles simultaneously.) Depending upon the requirement, it
can be scored on a yes/no basis or on a numeric scale (e.g., 1 to 5). Sources of
information for making this determination include: product literature, vendor-
supplied information, product demonstrations, and use of evaluation copies of the
software. [Oh, 1993; Reed, 1994.]

Table 10-2. Sample* Matrix for Evaluating Off-the-Shelf Products

Product AProduct A

0Requirement #1
0Requirement #2
0

0

0

0

Product BProduct B Product CProduct C

Mandatory RequirementsMandatory Requirements

Other CriteriaOther Criteria

0Life cycle costs
0User interface
0Data rights
0Licensing
0Upgrades
0Security
0Training
0Vendor stability

*Matrix shown is a sample only. Some of the rows shown under “Other Criteria” may belong
under “Mandatory Requirements” on your acquisition.

Chapter 10: Build/Buy Decision(s)

10-8 The Road to Successful ITS Software Acquisition

• Weed out software that doesn’t meet mandatory requirements. (However, make
sure that your “mandatory” requirements really are mandatory.) Be especially
wary if not products meet your requirements. Perhaps they’re beyond the state-
of-the-art.

• Evaluate the remaining proposals more thoroughly. Hands-on evaluation of the
products is preferred, but at a minimum, require a product demonstration in an
environment as similar to your own as possible. Significant evaluation factors
should include package flexibility, degree to which users can customize/tailor
package to their needs, extent of required customization, ease of package
integration, and risks associated with each package. You may want to consider
vendor solvency and financial viability in your evaluation criteria. In some non-
transportation project areas, it is common for state and local agencies to request
financial data for the division of the companies responsible for carrying out the
work.

• Obtain lists of previous customers of the vendors and talk to them. Ask about the
quality of the product and vendor support. Be sure to know if they bought the
same product or a different one from the vendor.

• Select a product from among the qualified offerings.

• Contract for the software; include a contracting mechanism to accommodate
changes (e.g., in requirements, functionality, costs). Pre-negotiate the billing rates
to ensure you have a flexible licensing agreement that takes account of
geographical factors, numbers of users and upgrades.

• Have built any custom software that is needed to the integrate the off-the-shelf
product into your overall system (to legacy systems, to other ITS subsystems,
etc.).

Software used to integrate off-the-shelf components is sometimes called glueware.

• Use operational experience with the off-the-shelf product as the basis for
requesting future enhancements. Before embarking on any such upgrades, team
with the vendor to explore which changes are easy and which would be difficult to
implement.

• If you go with a combination of custom development and off-the-shelf products,
be sure to consider the intellectual property rights implications. Even though you
may have unlimited rights to the custom software, you may need to buy
additional licenses to replicate the commercial components on each user
workstation. Your overall rights to the custom system may not cover these
components.

Chapter 10: Build/Buy Decision(s)

The Road to Successful ITS Software Acquisition 10-9

Note that in most agencies, these steps will have to be carried out as part of a formal,
competitive process. For example, the matrix may have to be formally scored by several
agency personnel. Work with your contracting office to define the process.

In summary, the key to successful off-the-shelf buys is to look beyond the marketing
brochures and understand what you are getting, and what it will take to integrate the
product into your environment.

• Consider buying your software, if at all possible, rather than building it.
• Consider a mix of build and buy, if buying alone does not meet project needs.
• The buy option is not without risk; however, the risks are manageable.
• Understand the off-the-shelf products and the implications of their use before

buying them.

Key Points

The Road to Successful ITS Software Acquisition 11-1

CHAPTER 11
SELECTING THE CONTRACTING VEHICLE

This chapter contains what is probably the most controversial material in this document.
There is no consensus as to what is the correct contracting vehicle for acquiring software.
This stems from the fact that the various existing contracting types and approaches were
created without software in mind. Consequently, none of them is particularly well suited
for software. In fact, there has been some movement in the ITS community to define new
contracting vehicles that explicitly address the needs of software acquisitions.

The good news is that even contracting vehicles not particularly well suited for software
can be made to work. Indeed several have been made to work when the various themes
of collaboration, team building, bite-size pieces, etc. were applied. There is also evidence
that at least some of the problems attributed to contracting vehicles were really the result
of other more important problems, such as the failure of the customer and contractor to
maintain open communications. Even an ideal contracting vehicle will fail if the
acquisition is not properly managed.

Although there is no consensus on what to do, there does appear to be some consensus
on things that don’t work— on what not to do. But before getting into our
recommendations, let us review the contracting alternatives that are available to you.

In selecting an appropriate contracting vehicle, we need to consider the contract type and
the contract approach.

Types of contracts

Three general types of contracts, which have many variations, are relevant to our
discussion. These general types address how the contractor will be paid:

• Fixed-price contracts, sometimes referred to as “low bid” or “lump sum”

• Cost-reimbursement contracts or “cost plus”

• Time-and-materials contracts or “T&M” require that the contractor deliver
specified types of labor at specified rates. Costs for materials are also reimbursed.

Within the overall framework of these general types of contracts, there are four contract
types that specifically apply to Federal-aid procurements [Booz-Allen, 1997]:

• Construction contracts are the ones traditionally used for transportation projects
and are the most familiar to state DOTs. These are usually awarded on a low-bid
basis. For ITS, these may be appropriate for installing field devices or
constructing the room to be used as a traffic management center.

Chapter 11: Selecting The Contracting Vehicle

11-2 The Road to Successful ITS Software Acquisition

• Engineering and design services contracts are generally issued to consulting
firms for design work. Software development has sometimes been procured using
this type of contract. Consulting contracts are a variation of this type.

• Non-engineering, non-architectural contracts are used for such things as
procuring property.

• Innovative contracts encompass a range of contract types. The design/build
contract is the most relevant to our discussion. Commonly used in domains other
than transportation, it combines two types of contracts— construction and
engineering and design services— into one. A single contractor takes on all the
responsibility. (However, see below about the need for customer involvement.)
This type of contract is intended for projects that are defined by functional or
performance specifications or for complex systems that require major integration
activities. ITS projects would seem to fall into this category.

Innovative contracts can also encompass innovative contracting practices, such as
the use of life cycle costing, which are encouraged under FHWA’s Special
Experimental Project No. 14 (SEP-14). Other types of innovative contracts
include incentive arrangements and multiple phase contracts. FHWA approval is
needed if an innovative contract is to be used on contracts with FHWA funding.

Contracting approaches

“Contracting approaches” refers to how one or more contracts are used in combination
during an acquisition [Booz-Allen, 1997]:

• The engineer/contractor or design-bid-build approach. This is the one usually
used on construction projects.

• The systems manager approach.

• Design/build, listed above as one of the types of innovative contracts, may also be
considered an alternative approach to the two traditional approaches.

• Design to cost and schedule

• Build to budget

Table 11-1 weighs the pros and cons of the various contracting approaches. As can be
seen in the table, none of the choices is perfect. One of the problems common to many
of the approaches, is that the software is acquired separately from the rest of the system.
Even if you go with existing products, buying the computing hardware or field devices on
a low-bid basis without regard to software may result in the need to significantly re-tailor
the software. Thus significant cost and software development risk could be incurred. In
other words, computing hardware, field devices, and the software that drives them should
be acquired in conjunction with one another.

Table 11-1 Contracting Approaches

The engineer is selected using a
conventional consultant
procurement process that is based
on qualifications and experience to
perform the work. The engineer
typically prepares the contract
documents (plans and
specifications). Construction
contractors are invited to submit
bids in accordance with the
requirements of the contract
documents. Once the bid has been
awarded, the contractor builds the
project per bid documents. The
engineer may inspect construction
and interpret bid documents. The
agency is the responsible entity.

ContractingContracting
ApproachApproach AdvantagesAdvantages

0Long history of use
0Well-defined roles
0Legal precedent for handling

disputes
0End-product well defined at

early stage
0Contractor manages

subcontractors
0Well-suited to highway

construction

Description of AlternativeDescription of Alternative DisadvantagesDisadvantages

Engineer/Contractor 0Artificial line between design
and construction

0Not well-suited to software
development work

– Difficult to specify
– Buyer may not know

needs
0Software/systems integration

not usually performed by
prime contractor

0Contractor has financial
incentive to find deficiencies
in bid documents and
“changed” site conditions to
seek change orders

0Limits customer and software
developer communications
when software is developed
by a subcontractor.

The systems manager is selected
using conventional consultant
procurement process (i.e.,
qualifications-based followed by
competitive negotiation). The
systems manager is responsible for
design (plans and specifications),
software development, hardware
procurement, integration, training,
and overall quality control.
Equipment and electrical
contracting services procured on
low bid basis. System managers
are often used for technology-
based projects.

0Overall system design,
software development, system
integration, and testing
controlled by a single entity

0Software developer is usually
prime contractor

0Minimizes shifting of fault
0More flexibility to allow

changes than traditional
approach

0Well-suited to ITS projects
0Avoids use of low-bid

selection
0Gives customer access to

systems manager

0Fewer firms in marketplace
with requisite blend of skills

0May be unfamiliar to local
engineers and procurement
officials

0Heavy reliance on successful
performance of system
manager

0End-product less well defined
than engineer/contractor
approach

0Public agency responsible for
low-bid services, including
their inspection and
acceptance

0Low-bid hardware procured
without regard to software

Systems Manager

The R
oad to Successful ITS Softw

are A
cquisition

11-3

C
hapter 11: Selecting the C

ontracting V
ehicle

Table 11-1. Contracting Approaches
(continued)

Same as system manager, except
the system integrator can bid on
equipment and electrical
contracting services.

ContractingContracting
ApproachApproach AdvantagesAdvantages

0Single point of responsibility
0Simplified contracting

Description of AlternativeDescription of Alternative DisadvantagesDisadvantages

System Integrator 0Not well-known by agencies
0Direct bidding to system

integrator may violate
agency procurement process

The agency must commission the
concept plan(s). The concept plan
is normally 15 to 30 percent
complete at the design level before
the contractor is selected. This
approach relies on a single entity
to be responsible for the design
and construction of a project. The
agency’s role is to monitor the
design/build work. The
design/build approach is
frequently used for federal
procurements involving structures.
Partnering is generally involved.

0Full transfer of responsibility
to design/build team

0Eliminates imperfect transfer
of design knowledge from
designer to contractor [Pearce,
1997]

0Rapid completion possible;
significant time-savings
reported [Pearce, 1997]

0Streamlined procurement
possible

0Engineer and construction
work done cooperatively with
a single entity to resolve
problems

0Financial incentive to rapidly
complete work

0May include warranty of
operations management

0Agency assumes greater
responsibility for inspection
and approval process

0May be indistinguishable
from engineer/contractor
approach when detailed
plans with a significant
amount of design are
developed by the engineer

0May increase costs because
of contractor risk and high
proposal costs (design not
complete)

0May violate statutes (17
states)

0Significant agency
commitment to quality
control

Design/Build

11-4
The R

oad to Successful ITS Softw
are A

cquisition

C
hapter 11: Selecting the C

ontracting V
ehicle

Table 11-1. Contracting Approaches
(Concluded)

A prioritized requirements list is
generated. The contractor
supplies all the mandatory items
and as many optional items that fit
within the cost and schedule
constraints.

ContractingContracting
ApproachApproach AdvantagesAdvantages

0Reduces requirements creep
0Reduces cost and schedule

risks

Description of AlternativeDescription of Alternative DisadvantagesDisadvantages

Design to Cost and
Schedule

0Bidders may be unwilling to
propose not meeting all the
optional features

0Overly optimistic proposals
will win

0Build, Own,
Operate, and
Transfer (Boot)

0Franchise or Lease

This approach involves long-term contracts with consortium to finance, design, build, operate, and collect
revenue. For the system implementation phase, it is equivalent to either the design/build or the build to
budget alternatives. The differences occur during the system operations and maintenance phases. These
alternatives are typically considered because they do not involve an up-front capital cost for the owner.

Different from design/build in that
functional requirements used in
place of detailed design.
Proposers develop designs based
on their best solution to meeting
functional requirements using
existing elements where practical.
This approach has been used in
toll projects.

0Similar to design/build
0Allows maximum flexibility

to proposers to use their most
cost-efficient designs

0Reduced risk based on
previous developments and
applications

0May allow added
functionality for given budget

Build to Budget 0Similar to design/build
0Very unusual practice for

agencies
0Risk based on lack of

detailed designs
0Detailed design document

may prove contentious point
and delay project

0Very expensive for
proposers

The R
oad to Successful ITS Softw

are A
cquisition

11-5

C
hapter 11: Selecting the C

ontracting V
ehicle

Chapter 11: Selecting The Contracting Vehicle

11-6 The Road to Successful ITS Software Acquisition

What type of contract should I use for ITS software?

Now that we’ve introduced the various types of contracts and contracting approaches, the
question remains as to which should be used for ITS software.

Time-and-materials contracts, especially if task-order based, are well suited for ITS
software. They provide the opportunity for a flexible approach. Instead of defining
everything up front, they allow incremental development to be used, in which you plan as
you go. As new needs or capabilities are uncovered from previous work, the contractor
can proceed to work on them. Pre-negotiated billing rates are used throughout the
contract. That way, as changes are identified and mutually agreed to, the contractor can
say “That will take us n hours to accomplish” and the resultant cost will be known. This
alleviates the need to go back at each point to ground zero and re-negotiate labor rates.

A leading-edge traffic management center was successfully built using a time-and-
materials contract. A “rolling” development approach was used. The system evolved
over time by having new pieces of the system put in place at frequent intervals, typically
on the order of several weeks. The contracting approach was credited with being able to
adapt quickly to the Internet when that became a viable vehicle for transmitting traffic
information. The popularity of the Internet could not have been anticipated in advance,
and yet time and material contracting provided the flexibility to take advantage of it when
it arose. Under other contracting vehicles, lengthy delays would have likely ensued as
new contracts would have had to be issued to provide Internet access.

In spite of its advantages, time-and-materials contracting also has its downsides. There
are no silver bullets.

Time-and-materials contracting is a legal type of contract, which is allowed on Federal-aid
procurements. Nonetheless, its use may not be politically palatable in many states.
(Teaming with your contracting shop may help overcome some of the resistance.) Also
time-and-materials contracting may not be the best choice for systems with low
development risk for which turn-key, off-the-shelf products exist. In addition, some
contractors complain that time-and-materials contracting can encourage the customer to
micro-manage the project in such areas as who works on the contract, profit margins, or
markups on equipment obtained from third parties.

While time-and-materials contracting may best facilitate the use of the various themes, it
also effectively mandates their use. In particular, its relatively informal nature mandates
active customer involvement and on-going collaboration with the contractor. If formal
mechanisms were relaxed, but the customer were not actively engaged, a lot of money
could be wasted.

At first glance, it would seem that fixed-price contracts would be the best option for the
customer. They produce a system at a guaranteed price. On the surface, all the risk is
borne by the contractor. In fact, many a customer delights in the prospects of a win-lose
situation: contractors underbid the project, the low-bid contractor is selected, the

Chapter 11: Selecting The Contracting Vehicle

The Road to Successful ITS Software Acquisition 11-7

customer “holds the contractor’s feet to the fire,” and the customer gets a system at a
bargain price.

This philosophy of “win-lose” flies in the face of establishing teaming relationships,
which are essential for successful software acquisition. In practice, the anticipated win-
lose often turns out to be lose-lose. Fixed-price contracting assumes it is possible to
know all the requirements ahead of time and just “throw them over the fence.”
Customers lose on fixed-price when changes need to be made. With software, multiple
changes are inevitable because requirements can’t be firmly established ahead of time.
As a result, realistic low bids cannot be established.

Fixed-price contracting illustrates the differing perceptions of the public and private
sectors in the ITS community. The public sector perceives the contractors as being in the
driver’s seat on fixed-price contracts. The public-sector interviewees complain that
contractors can extract high costs for even small changes. It is viewed as a way for them
to recoup their losses from underbidding the contract. On the other side, contractors
complain that they lose money on fixed-price contracts because they must respond to
requirements changes without being given budget relief. Otherwise they won’t be paid.
Also there is no flexibility to accommodate unanticipated problems.

Because of these difficulties, the Department of Defense long ago moved away from
fixed-price contracting for software intensive systems, especially those that are analogous
to ITS. Cost-reimbursement contracts, often cost-plus-fixed-fee, are used instead. A true
cost-reimbursement contract can provide the needed flexibility. For example, contractors
should be more receptive to resolving differing interpretations of the requirements, since
they will be paid for their effort. In a true cost-plus contract (see caveat #1, below), you
have access to whatever needed skills are available because contractor costs are
reimbursed. (Reimbursement is not limited to negotiated labor rates, as in time and
materials contracting.) Conversely, with fixed-price, contractors are loath to agree with
any changes, since they will have to “eat” the associated costs. Cost-reimbursement also
accommodates addressing unexpected problems that are encountered as the acquisition
proceeds, without having to re-negotiate the contract.

Cost-reimbursement contracts also have some disadvantages. They subject the customer
and contractor to additional paperwork as contractor charges are subject to auditing.
With fixed-price, costs that the contractor experiences are to some extent irrelevant to the
customer; a defined product will be bought at a negotiated price. How the contractor
arrived at that price is not as much an issue. But clearly, if a contractor is to be
reimbursed for its costs, then there has to be an audit trail as to what costs are incurred.
This entails additional overhead.

Cost-reimbursement contracts with stated deliverables and a fully allocated dollar ceiling
have the worst aspects of both fixed-price and cost-reimbursement contracts. (See caveat
#1, below for more discussion on this topic.) However, some would argue that without a
low ceiling there is the opposite danger that the contractor will have no incentive to deliver
because of a guaranteed paycheck. (This argument can be overcome if no fee is paid on

Chapter 11: Selecting The Contracting Vehicle

11-8 The Road to Successful ITS Software Acquisition

costs above the contracted amount. From the contractor’s perspective, increased costs
without fee reduces profitability.)

If you decide to go with cost-reimbursement contracting for software, there are three
important caveats. If these caveats are not heeded, or cannot be implemented under your
agency’s procurement policies, then perhaps fixed-price is the way to go, as the lesser of
evils.

• Caveat #1: Do not go fixed-price under the guise of a cost-reimbursement
contract. Our private-sector interviewees complain that “Every cost-plus contract
is really fixed-price” with a low overall dollar ceiling. When there is no reserve on
the overall project, there is no flexibility. As a result, the potential advantages of
cost-reimbursement contracting are not realized. At the same time the added
administrative costs of cost-reimbursement contracting are incurred. The
contractors also lose. In theory, they can walk away from a cost-plus project if
additional expenses are not reimbursed. But in practice, maintaining good
customer relations and protecting their business reputation precludes this from happening.

In summary, going with what amounts to fixed-price on a cost-reimbursement
contract has the disadvantage of incurring additional overhead, for both customer
and contractor, without realizing any of the advantages. It also encourages the
contractor to spend to the ceiling to maximize profits. (This, too, can be overcome
through incentive provisions.)

• Caveat #2: Do not use a cost-reimbursement contract for the software in
conjunction with a fixed-price contract for the computing platform (computing
hardware). Often software development can be expedited by simply using a faster
computer, buying more memory, or adding another computer to the network. But
with fixed-price contracting for the hardware, any additional hardware will “come
out of the contractor’s hide.” Therefore, the contractor has a disincentive to make
hardware changes. At the same time, with cost-reimbursement contracting for the
software, the contractor gets paid for making software changes, even those that
result from having too little hardware. As a result, in an attempt to make the
software run faster or take less memory, the contractor can spend considerable
customer resources to avoid spending even a little of their own resources on
hardware. Overall, time and money is wasted as the contractor tries to “shoe
horn” the software into too little hardware.

In short, the hardware and software contracting mechanisms must be compatible.
The contractor and customer need the flexibility to make tradeoffs between
hardware, software, and also the communications.

• Caveat #3: For purchasing off-the-shelf software that requires little or no
customization (such as for the systems near the bottom of figure 4-1 in Types of
ITS Software Systems, Chapter 4), fixed-price may be the preferred way to go.
This is another advantage of going with off-the-shelf software whenever possible.

Chapter 11: Selecting The Contracting Vehicle

The Road to Successful ITS Software Acquisition 11-9

Which contracting approach should I use for ITS software?

There are several underlying assumptions that serve as the basis for the
engineer/contractor approach [Booz-Allen, 1997; Pearce, 1997]. They do not apply to
software or even to ITS in general. Therefore, one of the few areas on which there
appears to be consensus regarding contracting is that the engineer/contractor approach
should not be used for software acquisition:

• Engineer/contractor is intended for systems with firmly established specifications.
If nothing else, this document has stressed how software cannot be acquired using
firm specifications that are “thrown over the fence,” because detailed requirements
cannot be known in advance.

• With an engineer/contractor approach, an adversarial relationship between the
customer and the contractor is not uncommon. This flies in the face of the need
for a collaborative teaming arrangement.

• With an engineer/contractor approach, the customer has limited opportunity to
provide inputs. This, too, flies in the face of the need for a collaborative approach
between customer and contractor.

Engineer/contractor often leads to multiple layers of subcontracting. One ITS software
contractor found themselves third tier down on the subcontracting arrangement of a
construction contract. They were effectively shut off from all direct contact with the
customer. The lack of contact predictably led to a very bad software experience for all
parties. Even if contracts had been initiated, they would have to have been formal ones
under the auspices of the prime contractor. And, even then, there would have been no
flexibility, since the prime contractor would have been affected.

• Engineer/contractor is best suited for systems that employ familiar technologies.
In general, ITS does not fit the category of “familiar technology.”

• Engineer/contractor is based on the assumption that the cost of design is relatively
inexpensive when compared with construction costs. With software, the opposite
is true: the production of diskettes, etc., which is analogous to construction, is far
less expensive than the development costs. (See The Nature of Software,
Chapter 1.)

• The low-bid selection of a contractor is based on initial price. However, for
software, typically more than half the cost is incurred during maintenance, after
system installation.

If engineer/contractor approach is not to be used, let us consider some of the remaining
alternatives. They aren’t ideally suited to software, but they can be used with success.

Chapter 11: Selecting The Contracting Vehicle

11-10 The Road to Successful ITS Software Acquisition

The systems manager approach has the advantage that the consultant is kept on board
throughout the project. The consultant has the “big picture,” understands the reasons for
various decisions, and can maintain continuity throughout the project. (In the
engineer/contractor approach, the consultant “throws the requirements over the fence”
and exits the picture.) The consultant works with the customer to develop the
requirements. The systems manager may also be responsible for the software
development or can be the team member with the software technical expertise. (See the
Building A Team, Chapter 7.) However, contractors who have worked as systems
managers complain that they really don’t have control over the project. Multiple
contracts are issued by the agency, and not by the systems manager. The agency decides
when to accept various subsystems developed on these contracts, sometimes overriding
or ignoring system manager recommendations. The systems manager may have to make
the software work with systems that they wouldn’t have accepted. In effect, the systems
manager is in the unenviable position of having responsibility without authority.

In one case, the customer signed off on a communications subsystem that wasn’t
thoroughly tested. Later on, problems arose in implementing the software. At its own
expense, the systems manager had to demonstrate that these problems were due to
flaws in the communications subsystem and not the fault of its software.

On another ITS software acquisition, the communications subsystem was acquired
independently from the software. The communications subsystem met specifications,
and worked in the sense that data could be transferred back and forth. The
communications were to be used as the backbone for controlling video surveillance
cameras. However, the communications subsystem used polling, a technique not well
suited for this function. When the software to control the cameras was implemented, it
was not at all responsive to operator commands. For example, upon command, the
camera would begin to zoom, but this operation could not be stopped in a timely fashion,
so the camera would zoom well beyond the operators intent. This problem is directly
attributable to the use of polling for the communications. However, because of the
contracting approach, no one could be held responsible: the communications worked as
specified, but there was no technical way for the software to be made to work with it.
Presumably if one contractor had been responsible for the entire system, they would have
taken a total systems approach and chosen communications that work better with camera
control software. Even if they picked wrong, they would clearly have had full
responsibility to make the entire system work.

The design/build approach offers the possibility of overcoming many of the problems
encountered with the other approaches. It gives one contractor full responsibility for the
system. This provides the flexibility, for example, to trade off hardware, software, and
communications. It also provides a single point of responsibility and authority. The
design/build approach has been tried on several ITS acquisitions, with mixed results.

Chapter 11: Selecting The Contracting Vehicle

The Road to Successful ITS Software Acquisition 11-11

Unfortunately, the design/build approach did not work well for a large freeway
management system project. It ran into the usual software problems of functionality not
meeting requirements and the contractor losing money. (There are no silver bullets!)
Whether the problems encountered are intrinsic to design/build, or were due to other
factors is not totally clear. For example, fixed-price contracting was used, which limited
contractor flexibility and the ability for the customers to provide inputs. In addition,
customer-developed requirements were kept rigid. The procuring agency feared that
flexibility would open them up to legal challenges by the losing contractors, who could
then say: “We could have done the project, if you’d also given us requirements relief.”

One of the lessons learned on design/build is the need to manage expectations. The use
of a single design/build contractor may alleviate some of the overhead associated with
multiple contract administration. However, it is unrealistic to expect that overall system
costs will be materially affected. This is because fundamental costs (e.g., purchase and
installation of variable message signs) will not be impacted, whether incurred on the same
contract as the software or on a separate contract.

Another lesson learned from a design/build experience was stated as follows by one of
the participants: “Just because the project is design/build this does not mean the DOT can
just sit back and expect the final product to be produced as they expect. Constant
interaction and guiding of a complex ITS project is required.”

Fixed-price contracting also causes problems for design/build. Not only is the budget not
derived from the requirements, but the overall price for the contract is set before the
requirements are even known. Then the build phase is squeezed on both ends, by too
ambitious requirements and too little money.

Consider other alternatives

Task-order contracting has been used by several state DOTs. Under this approach, a
contract with multiple tasks is issued for the project. However, only one task is funded;
the rest are options that the customer can choose to exercise (“turn on”) at a later date.
The first task is used for initial work, such as requirements analysis or the development of
a detailed design. It also includes planning for the next phase of activities, perhaps
building a baseline capability. If the initial task is performed satisfactorily, then the next
one is funded. This optional task also includes planning for the next one, perhaps for
adding functionality to the baseline system. Subsequent tasks are handled in a similar
manner, with costs negotiated on a task-by-task basis.

One transit agency successfully used a similar approach on an ITS project, in which the
initial task was for a “needs analysis.”

This phased approach offers several advantages: it breaks the development into bite-size
pieces, provides the contractor with incentive to do well so that subsequent phases will be
funded, and allows customer and contractor to “learn as you go.” Also it recognizes the

Chapter 11: Selecting The Contracting Vehicle

11-12 The Road to Successful ITS Software Acquisition

reality of schedule and budget uncertainty on a large software development, by providing
some costing flexibility. Money initially planned for the “out phases” can be shifted to
earlier tasks as the needs arise. You may not get everything you initially hoped for, but
you will succeed in getting a working capability. (Or at least learning from an early task
that the contractor will not be able to deliver, in which case you should terminate them
and not fund the optional tasks.)

On-call services are another option, but are not considered very often.

A variation of the contracting approaches discussed above is to include a design
competition phase as part of the source selection process. Two or more contractors are
chosen to proceed in parallel at the beginning of the project. Their progress is then used
as input to the final selection. Thus actual ability to perform, rather than just written
proposals, becomes a factor in selecting the ultimate contractor. However, care must be
taken during the design competition phase to treat the two (or more contractors) equally,
and to keep their designs confidential from the other contractor(s). This approach was
employed successfully in the development of the National ITS Architecture.

Other states have found that their state contracting mechanisms are simply too rigid for
software. So they have resorted to funding the work through other entities.
Metropolitan planning organizations (MPOs) or state universities can be given full
responsibility for issuing a contract and managing the project. The risk here is ensuring
that these organizations understand your needs and have the requisite software
management skills.

Another possibility for using an outside organization exists, although it has not yet been
tried out on any ITS acquisitions. It is the use of an Information Technology Omnibus
Procurement (ITOP) run by U.S. DOT’s Transportation Administrative Service Center.

The Transportation Equity Act for the 21st Century (TEA 21) calls for “appropriate
methods of procurement for intelligent transportation system projects … including
innovative and nontraditional methods such as the Information Technology Omnibus
Procurement.”

They maintain a list of pre-approved contractors, and provide other procurement services,
such as assistance in writing an RFP. However, the state agency would still retain
responsibility for managing the contract. (Where To Get More Help, Chapter 21 tells how
to obtain more information about ITOP.) In addition to being untried for ITS, ITOP has
the risk that you may not be able to get access to all the vendors who have the requisite
ITS products or skills. Only the listed contractors would be accessible.

Finally, keep in mind that you may be able to avoid the risks of software development
contracts altogether by going with an off-the-shelf purchase. (See Build/Buy Decision(s),
Chapter 10.)

Chapter 11: Selecting The Contracting Vehicle

The Road to Successful ITS Software Acquisition 11-13

Several states are trying out some innovative approaches for their ITS software
acquisitions;
• One state DOT is using an obscure contracting mechanism they found under the

state’s procurement laws: non-professional services contracting. It seems to offer
several advantages for ITS software and is allowed under Federal Aid regulations.

• Another state funded four contractors. They worked independently and carried out a
portion of the software development in parallel. An evaluation was then held, and
one contractor was selected to proceed with the rest of the project.

• Several states have used best-value procurement or life cycle costing instead of
going strictly low-bid.

• One state has had success with cost-plus contracting in conjunction with a reserve
fund for contingencies. The state agencies and the contractors viewed this approach
as “win-win.”

The bottom line is: look at your full range of options before selecting a contracting
approach for software. As one private-sector interviewee told us, “challenge traditional
thinking.”

How the choice of contracting alternatives impacts project planning

Your choice of the contracting vehicle will to a large extent determine the sequence of the
various software activities. Under some of the contracting choices, the requirements, for
example, will be developed before an RFP is issued. These would then be given to the
software development contractor and serve as the basis for their work. Under other
choices, the requirements would be developed collaboratively with the development
contractor after contract award; only preliminary requirements or a features list would be
available before the RFP is issued. (See also Sequence of Acquisition Activities,
Chapter 6.)

Use best software acquisition practices regardless of the contracting approach

Although none of the contract types and approaches were developed specifically for
software, probably all of them can be made to work. The important thing is to ensure that
the contract allows best software acquisition practices to be followed. Ensure that the
various themes stressed in this document are not negated by the contract. For example:

• Regardless of the contract type, the contract should allow frequent and open
communications between customer and contractor. This may require explicit
contracting language, especially if the software is to be developed under a
subcontract.

• Make sure that the contract allows for the needed flexibility. It must do so in a
way that will not open up the contract to legal challenges.

In order to ensure that an appropriate contract vehicle is chosen, you will need to work
closely with your contracting and legal offices. Team with them from the inception of the
project. Early teaming will give you the opportunity to explain the goals of your project,
and discuss how software is different and therefore requires different approaches. Jointly

Chapter 11: Selecting The Contracting Vehicle

11-14 The Road to Successful ITS Software Acquisition

explore alternatives and determine whether previously untried approaches are illegal or
simply unfamiliar. Doing this effectively may take considerable management know-how
and political savvy; no one said it would be easy. On the other hand, if you wait until the
last minute to approach them with the proposed use of unfamiliar contracting vehicles,
contracting officials will naturally be resistant.

One transportation agency ran into trouble when, late in the procurement cycle, they
found that construction and union wage scales were going to be imposed on a software
project. A consultant to the project acknowledged that they may have been able to avoid
this problem if there had been a better job of teaming with the contracting office earlier in
the procurement.

• The familiar engineer/contractor (design-bid-build) used for construction projects
is not appropriate for software; it should not be used for software acquisitions.

• Work with your contracting or purchasing office and legal office early in the
project to explore your full range of options; challenge traditional thinking.

• Fixed-price contracting may not provide the needed flexibility for building
software. Consider a time-and-materials type of contract and/or innovative
contracting approaches as alternatives to fixed-price.

• Do not use fixed-price contracting practices under the guise of a cost-
reimbursement contract.

• Do not use a fixed-price contract for computer hardware in conjunction with a
cost-reimbursement contract for software.

• Fixed-price contracting may be appropriate for off-the-shelf software.
• Whatever approach is chosen, that approach will still require the application of

sound acquisition practices; a contract is not a substitute for them.

Key Points

The Road to Successful ITS Software Acquisition 12-1

CHAPTER 12
IDENTIFYING THE SOFTWARE ENVIRONMENT

An important part of engineering a software system is identifying the environment in
which the software will be operating. This allows the software design to accommodate
any constraints imposed by the environment and ensures that all the necessary interfaces
are implemented.

Identifying the environment for a software system is much the same as performing a site
survey for a civil engineering project.

The environment refers to the combination of conditions external to the software under
which the software must function. For a simple off-the-shelf word processing
application, identifying the environment may be as simple as listing the existing
computer, operating system, and printer on which the application will be used. The more
extensive and complex the software, the more likely that identifying the environment will
result in a longer list, for example, computer(s), printer(s), drive(s), other hardware
peripherals, operating system, network hardware and software, database, and other
software or applications with which the software must operate. If interfaces will be
needed to pre-existing systems (“legacy systems”) then those systems constitute an
important part of the environment.

The software environment identified typically leads to specifying requirements for the
software acquisition. The requirements for the environment can be described in two
ways: as functional requirements or as technical requirements or constraints. The selected
way generally depends on the scope of the acquisition and your own information system
or software standards. If the software is being acquired in conjunction with the other
components for a complete system, then the components are likely to be described in
functional terms. However, if the software needs to run on a specific platform (e.g.,
hardware, operating system, network, or data base), the requirements will specifically
identify the platform, which becomes a technical requirement or constraint. It is not
unusual that both forms of specification are used.

The environment-related requirements specified will depend on the purpose and scope of
the acquisition. For example, if you are acquiring software to run in a standalone
environment, there is no network or communications environment to be specified. If you
are acquiring software that will run on a remote system and provide data back to a traffic
control center, it is likely that the communications and remote application management
environment will need to be specified. If you are planning to acquire custom developed
software, your organization may have programming languages, databases, data formats,

Chapter 12: Identifying The Software Environment

12-2 The Road to Successful ITS Software Acquisition

or other development standards that need to be specified as technical requirements or constraints.

Determining an appropriate environment can be complex and require the help of experts
who are familiar with the components of the environment. Without specifying the
environment, one risks purchasing a potentially excellent software application only to find
that it can’t use your existing communications lines, won’t interface with another critical
application, or that you need to purchase additional memory or data storage. One source
of help is your information systems staff; they can provide descriptions of your current
computer system and network environment. Given their experience and level of
expertise, they may even be able to identify recommended platforms, provide insights
into their ability to support and maintain different platforms and components, identify
existing platforms and tools that could be used, and provide information on applicable
information systems and software standards. Another potential source of help are other
city, county, and state DOT offices. In particular, their information systems staff may be
able to provide the expertise needed to ensure that a reasonable and appropriate
combination of environmental components are being specified in your acquisition.

Over-specifying the environment in the requirements, however, also carries risks. An
overly specified environment may severely restrict the options available to the contractor
and significantly increase development time and costs. An overly specified environment
also carries the following risks in regards to off-the-shelf products:

• You may unnecessarily preclude an otherwise satisfactory product solution.

• You may incur significant unnecessary costs in having the off-the-shelf product
re-engineered to run under your choice of operating system or with a particular set
of field devices.

• The resulting modified product may prove less reliable than the off-the-shelf
version, which has already been “wrung out” over a larger customer base.

• You may be off the upgrade path for future upgrades and offerings by the vendor.

Environment specifications should be kept to those truly required, and not include those
that are only “preferred.” Avoid specifying the computing platform (hardware and
operating system) ahead of time unless it’s imperative. If you’re considering a particular
platform, do the reasons for choosing it (e.g., it supports your agency’s information
management systems) apply to the real-time demands of an ITS system? Similarly, do
not acquire other components of the environment (e.g., field devices) separately without
considering their impact on the software. Flexibility on the part of the customer and
contractor are needed to ensure the system operates in the environment, accommodates
the preferences of the customer, and allows the contractor to design for the best, cost-
effective solution.

The environment also determines how much customization is needed for existing
products. Software that works in one location will probably not “plug and play” in
another unless the total environment (field devices, communications, computing
hardware, other software such as the operating system or database management system)

Chapter 12: Identifying The Software Environment

The Road to Successful ITS Software Acquisition 12-3

is identical in the two locations. A software product that would work without
modification with one set of field devices may require significant re-tailoring if it is to be
used with another set. By insisting on a particular vendor’s field device or on a particular
database management system, you may incur significant cost and development risk in the
software. This can happen inadvertently if you purchase hardware on a low-bid basis
without regard to the implications for the software.

Checklist 12-1 identifies what to consider when identifying the environment for your
system.

• Identify the environment -- including the interfaces to legacy systems -- in which
the software will be operating.

• Do not unnecessarily constrain the system design by prematurely specifying the
computing hardware or operating system.Key Points

Chapter 12: Identifying The Software Environment

12-4 The Road to Successful ITS Software Acquisition

Checklist 12-1. What to Consider When Identifying the
Software Environment

ü Interfaces to legacy and other existing systems or applications (what legacy
software and systems must the new software interoperate or interface with,
including application monitoring and management systems?). *

ü Existing communications and networks (including protocols, characteristics
such as line speed, bandwidth, dedicated or dial-up, type of network,
significant components).

ü Interfaces to planned future applications or systems (what other software is
planned for the future and will need to interoperate or interface with this
software?). *

ü User population and user interface (e.g., graphical user interface (GUI), point-
and-click).

ü Location/physical environment (e.g., office, computer room, outside; lighting
conditions, space constraints impacting use of mouse or keyboards;
uninterruptable power supply).

ü Security measures that implement security policies and procedures, to include
physical safeguards (locked rooms), software protection (passwords), and
hardware systems (so-called firewalls to the Internet).

ü Performance (how much data to be processed and how fast it must be
processed, data accuracy).

ü Standards.

ü Hardware (e.g., PC, mini, or mainframe).**

ü Operating system.**

ü Data base management system (DBMS).**

ü Programming languages, development methodologies, maintenance
requirements. **

 * The National ITS Architecture can assist in identifying interfaces to other systems.
**Only if absolutely necessary.

1 Problems can also arise in regards to hardware, computers, peripherals, database software, compilers, etc.
that are bought under the contract: who has the rights to these items at the conclusion of the contract?

The Road to Successful ITS Software Acquisition 13-1

CHAPTER 13
RESOLVING THE INTELLECTUAL PROPERTY

RIGHTS

Software licensing and ownership issues were brought up more often than any other in
our interviews with ITS project personnel. Almost every interviewee raised this as an
issue, whether they were from the public or private sector. In fact, many offered it as their
first choice for a topic that this document should address. Several interviewees even
indicated that they currently were, or recently had been, involved in litigation over
licensing and ownership issues. Although public sector and private sector interviewees
had different perspectives on how to address such issues, they all agreed on one thing:
this is a very contentious area that leads to conflicts between customer and contractor.1

We will use the term “intellectual property rights” to encompass a broad range of topics
associated with ownership, licensing, copyright, etc.

Who has the rights to the software once the project is complete?— a major point of
contention

The following scenario seems typical. When the contract is initially signed, both parties
think they’ve reached a mutually satisfactory agreement with respect to the intellectual
property rights issues. Indeed, the contract may contain words about owning, licensing,
copyrighting, selling, or leasing the software. Unfortunately, unbeknownst to both
parties, they interpret these terms differently

Even the meaning of the word “software” in the contract language has been a frequent
point of contention between customers and software contractors. Often the customer
interpreted “software” to include the source code, whereas the contractor meant for
“software” to apply only to executable or object code.

These different interpretations don’t surface until much later, towards the end of the
contract. At that time, the customer claims the rights they think they signed up for.
“Okay, turn over the software so I can maintain it [or sell it or make a copy of it or...].”
That’s when the contractor responds, “Hey, wait a minute. You don’t have the right to
do that. You can only...” This leads to accusations of not bargaining in good faith or not
living up to prior agreements. Protracted negotiations, and sometimes litigation, then
follow.

Chapter 13: Resolving The Intellectual Property Rights

13-2 The Road to Successful ITS Software Acquisition

Determine your true needs with respect to intellectual property rights

Before you enter into negotiations over intellectual property rights, consider what your
true needs really are. Doing so may enable you to avoid unnecessary fights over the
rights.

Your software maintenance concept partially determines your needs in regards to
intellectual property rights. (See the “Software Maintenance” section in Training,
Operations, and Software Maintenance, Chapter 16.) If you are considering software
maintenance by in-house staff, ask yourself whether you really want to take on that
responsibility. Ask yourself, “If I do take possession of the source code, does my agency
have people who are capable of maintaining it? Or will we just turn around and hire
maintainers, perhaps the original development contractor?” You may be able to avoid
unnecessary fights over intellectual property rights, if you determine that you won’t be
able to maintain the code and don’t insist on additional rights in the first place.

Taking on responsibility for software maintenance implies the following:

• Having qualified staff. Note that programming experience on information systems
does not qualify an individual to work on demanding, real-time ITS software.
Such staff are in short supply. If you currently do have them on board, will your
agency salary structure allow you to pay them enough to attract them? If you
train existing staff, will you then be able to hold onto them?

• Familiarizing the staff with the internals of the software and the support
environment and tools used to maintain it. This will require close collaboration of
the maintenance staff and the contractor developers from the outset of the project.

• Taking over such tasks as documentation and software configuration management
(See Software Configuration Management, Chapter 18), for which contractors
normally have prime responsibility.

• Setting up and running a support environment (see next section, below)

• Having access to the following items:
– source code, in compilable computer files; listings are not sufficient
– documentation on databases, data structures, and interface protocols
– development tools used to compile the software, keep it under configuration

control, test it, etc.

Note that there are costs associated with having access to these items. The full
support environment for a commercial database package, for example, is
considerably more expensive than run-time license for the same package. There is
no point in paying more for extra rights if you don’t have the skill base to take
advantage of them.

Sometimes public sector customers insist on having full rights to the software so they will
not get “locked in” to a particular vendor. But in practice, only the original developer may

Chapter 13: Resolving The Intellectual Property Rights

The Road to Successful ITS Software Acquisition 13-3

have the technical expertise to maintain the code. So winning full rights to the code may
be a hollow victory. You may pay more, yet still have to contract with the original vendor
for maintenance. In fact, one software vendor indicated that it doesn’t mind giving its
customers access to the source code, knowing that they (the vendor) are the only ones
who could make sense of the code and maintain it anyway.

In some cases, you may decide to obtain rights to only certain parts of the software. But
where to draw that line raises other questions. For example, you may decide that you
should have complete ownership to all software developed on your project, but not to the
pre-existing software that the contractor brought to the project. That software would be
retained by the contractor. But will having the developed software do you any good if it
can’t be run without the contractor’s software? Recognize that off-the-shelf software is
most often delivered as object code only.

Sometimes state agencies retain the rights to redistribute software to other states for a
nominal fee. In return, they get all the enhancements developed by the other state. This
approach may have previously worked well for you on a stand-alone program used in an
office environment. But ask yourself whether it makes sense for an ITS system. Do you
really want to get into having to supply technical maintenance and support? Conversely,
if you are considering using another state’s software, do you really want someone else’s
undocumented, unsupported package? The ITS environment is complex, so the software
will probably need changes to adapt to the interfaces (sensors, signs, etc.) and operating
environments that differ between the two states.

Be explicit with respect to intellectual property rights

To avoid problems with respect to intellectual property rights, have your contract
explicitly call out what rights each of you— the customer and the contractor— has to the
software.

Checklist 13-1 suggests some of the rights that should be explicitly considered. Then,
before the contract is signed, walk through the language together line-by-line and discuss
it. That way, there will be no surprises later on. Also you’re more likely to have a co-
operative relationship at this point than later on when differences suddenly become
apparent and feelings harden. As you walk through the contract, make sure that it clearly
states your agreements. It should also clearly and explicitly differentiate the rights each
party has with respect to the source code, the object code, and the documentation. The
rights may or may not be the same for each of these.

This is an example of our theme that customer and contractor must maintain open
communications throughout the project. Here there is a need for open dialogue even
before the contract is signed. Similarly, we recommend that in the technical arena, you
and the contractor walk through the requirements together line-by-line to reach a mutual
understanding of them.

Chapter 13: Resolving The Intellectual Property Rights

13-4 The Road to Successful ITS Software Acquisition

Checklist 13-1. Intellectual Property Rights

General Rights

ü Who owns the software? What rights does that entail?

ü Who holds the copyright to the software? What rights does that entail?

ü Should copyright notices be included as source code comments? Who should
be listed as retaining the copyright?

Customer Rights

ü Can the customer make additional copies of the operational software for their
internal use on this project? On other projects?

ü Can the customer distribute copies of the operational software to other
agencies or departments within their state?

ü Can the customer distribute copies of the operational software or issue licenses
to other states? Can such a license allow the other state to make changes or
enhance the software, or does it only give them the right to use it?

ü Can the customer give away copies of the operational software for free?
Charge a fee?

ü Can the customer change the operational software or make derivative works?

ü Can the customer disclose the source code of the operational software to other
vendors or allow them to make changes to the software?

ü For the previous six items on the checklist, which portions of the operational
software can be copies or distributed: the source code? the object code? the
documentation? how many copies may be made?

ü Does the customer have rights to any subsequent upgrades made by the
contractor?

ü Are there portions of the software that are needed to run the system that are not
covered by the licensing agreements? Such items could include the operating
system (e.g., Windows, UNIX), a commercial database management system, a
geographic information system, or a digital map. For these items, there may
be a different number of copies that can be made, run, distributed, etc. than
there is for the rest of the software.

ü Will the customer have access to the source code? If so, as compilable files or
only as listings?

[Checklist continued on next page]

Chapter 13: Resolving The Intellectual Property Rights

The Road to Successful ITS Software Acquisition 13-5

Checklist 13-1. Intellectual Property Rights
(Concluded)

ü Will the customer have access to the support tools and development
environment that were used to compile the software, keep it under
configuration control, test it, etc.?

ü Will the customer have rights to all the training material?

ü Will the customer have rights to the executable environment needed to run the
software or must these be purchased separately from other vendors?

ü Will the customer have access to documentation on database formats and
interface protocols?

ü How many computers can contain copies of the software? How many can run
the software? (Note: These numbers may be different to allow for backup
copies.)

ü How many computers can simultaneously run or access the software? (Note:
On a network, all computers may be able to run a piece of software or access a
database, but the licensing agreement may restrict the simultaneous number.)

ü How many users have license to run the software? How many
simultaneously?

ü Can the software be run across a network? (Note: There are two options here.
the software could be run remotely, that is, on the “other” machine where the
copy resides; or, a temporary copy could be made on your machine and run
locally.)

Contractor Rights

ü Can the contractor distribute the software to other customers? If so, can they
charge for it?

ü Can the contractor reuse portions of the software on other contracts?

ü Can the contractor copyright or patent the software or patent other parts of the
system? If so, will the customer have to pay royalty rights?

ü Does the contractor have rights to any upgrades made by the customer?

Chapter 13: Resolving The Intellectual Property Rights

13-6 The Road to Successful ITS Software Acquisition

An interview with an ITS project manager was published over the Internet and indicates
what can happen when explicit agreements are not reached up-front on intellectual
property issues [available 4/23/97 at ITS Online
<URL:http://www.itsonline.com/travinfo1.html>].
Q: “Who owns the software that [the contractor] developed for [your project]?”
A: “That’s been a very difficult issue for us with [the contractor. We] did our best in our
procurement process to say we wanted to own the source code. However, we definitely
did not articulate that precisely enough. In the early days of the project, when everything
was still rosy, we thought we articulated it and everything felt fine. As time went on, it
was clear that [the contractor] did not intend to deliver the source code. We had to hire
intellectual property lawyers to negotiate it, and we still haven’t finished the source-code
agreement. We’ve finished the boiler plate, and now we’re agonizing through the exhibits
as to what constitutes the system itself.”
Q: “What’s the bottom line of the “boiler plate” that you mentioned?”
A: “The philosophy of the agreement is that [the contractor] owns the software and the
source code, but we have a license to the software and source code. So we can, if we so
desire, contract out to a third party to modify the software.”
Q: “So you will have access to the source code?”
A: “That’s correct. We can have one backup copy of it, but cannot distribute the code to
other agencies. That meets our needs. The Federal Highway’s language we originally
used was not as comprehensive as we had believed it to be.”

As a result of trying to explicitly define both parties’ rights, you may not be able to reach
agreement and cannot enter into a contracting arrangement. But that is far better than the
alternative of procuring a system under differing assumptions and then having to go to
court later on. In court, at least one party, and likely both, will get less than what they
thought they had agreed to. The point is not that terms such as ownership or licensing
may have precise legal definitions that could be resolved in a court of law. Rather, such
terms seem to connote different things to different people (or at least to different non-
lawyers). So it’s best to clarify the understandings up front and avoid legal battles in the
first place.

The ownership language in a contract can lead to subtle misinterpretations on either side.
For example, a contract allowing the right to distribute software to agencies in other
states may seem less restrictive than one that allows distribution only within your own
state. However, on one Commercial Vehicle Operations (CVO) project, distribution
language in the contract was interpreted differently by the lead state and the contractor.
Both agreed that the lead state could distribute the software to peer agencies in other
states that were participating in the project, but disagreed on the use of the software
within the lead state on a project closely associated with, but not part of, the original CVO
project.

Access legal expertise

Intellectual property rights are a specialty area of the legal profession. Intellectual
property rights as they pertain to software are an even narrower area, and a relatively new
and rapidly evolving one to boot. Therefore lawyers who are knowledgeable in this area
are hard to find. Probably none exist in most transportation or transit agencies.
Therefore, as you build your team, consider acquiring the services of a lawyer with this
subspecialty as his or her area of expertise.

Chapter 13: Resolving The Intellectual Property Rights

The Road to Successful ITS Software Acquisition 13-7

One ITS project hired an intellectual property attorney and termed it “money well spent.”
Another project ran into troubles, hired a nationally known software attorney, and “that
really helped.”

• Regardless of whether or not they have precise legal meanings, terms such as
“ownership” or “licensing” have different connotations to different people.

• Before a contract is signed, reach agreements on intellectual property rights for
the software.

• Walk through the contracting language together; discuss the implications,
resolve issues, and ensure the contracting language clearly and explicitly states
your understandings.

• Be explicit with respect to source code and object code and the media on which
it will be delivered.

• You may wish to acquire the services of a lawyer who specializes in software
intellectual property rights.

• Think through your true needs before insisting on certain rights at the negotiating
table.

Key Points

The Road to Successful ITS Software Acquisition 14-1

CHAPTER 14
PROJECT SCHEDULING

“More software projects have gone awry for lack of calendar time than
for all other causes combined.” — [Brooks,1975]

“[You] can reduce effort, cost, (and defects) by planning a little longer
schedule.” — [Putnam and Myers, 1996]

At this point you’ve written a project plan, developed a set of requirements, made a
build/buy decision, and selected a contracting vehicle. Now it’s time to incorporate it all
on a project schedule.

What to include on the project schedule

Checklist 14-1 suggests software-related activities and milestones to include on the project
schedule. Clearly, the schedule will also include other major activities that are not
software-related (site preparation, installation of field devices, etc.). Also include
milestones that commit the customer to key activities. This includes dates for supplying
any government-furnished equipment or facilities, submitting comments on
documentation, and accepting deliverables.

Setting schedule milestones

A project schedule shows activities and milestones. The following are two good
management practices for setting the milestones. They are applicable on any project, but
seem to be particularly important for software.

• Milestones should be well defined and unambiguous. That way, there can be no
argument as to whether they have been met or not.

On one ITS project, milestones were so ill-defined that the participants were openly
puzzled as to whether they had met them or not.

• Milestones should be binary; that is, they’ve been met, or they haven’t been. Do
not get into a situation where you’re “90% of the way there.” Instead, divide the
milestone into several smaller ones, each with a binary completion criterion.

Chapter 14: Project Scheduling

14-2 The Road to Successful ITS Software Acquisition

Putting these practices together, a milestone might be “the coding is 100% complete”
where “complete” is explicitly defined. (Does it include any testing? documentation?
placing the software under configuration control?)

Chapter 14: Project Scheduling

The Road to Successful ITS Software Acquisition 14-3

Checklist 14-1. Software-Related Activities and Milestones
on the Project Schedule

Contract negotiations
ü Walk-through of the intellectual property rights issues.
ü Signing the contract (milestone).
ü Dates on which the agency furnishes contractually-required items to the

contractor (equipment, space, services, etc.) (milestones)
Requirements

ü Requirements walk-through.
ü Signing the requirements (milestone).
ü Rapid prototyping.

Size estimates
ü Independent size and schedule estimates by contractor.
ü Resolving differences.

Management controls
ü Risk management reviews
ü Project reviews.
ü Inspections.
ü Document reviews.
ü Document approvals (milestones).

Acceptance testing
ü Detailed acceptance test planning.
ü Conducting acceptance tests.
ü Analysis of acceptance test results.
ü System acceptance (milestone).

Training
ü Training preparation and planning.
ü Conducting the training.

Support
ü Support facility development.
ü Transition from development to operations and maintenance (milestone).

Chapter 14: Project Scheduling

14-4 The Road to Successful ITS Software Acquisition

Typical scheduling flaws to avoid

Two flawed practices are encountered more often than not in scheduling software
projects:

• No technical basis for the schedule. One of the fatal flaws of many software
acquisitions, and the reason why so many projects are late, is that the schedule is
developed independently of the requirements. All too often there is “false
scheduling to match the patron’s desired date.” [Brooks, 1975] The target date of
a system is selected arbitrarily, picked for political reasons, or “imposed from
above.”

• Excessive schedule pressure. Target dates are overly optimistic, sometimes
unrealistically so. As a result, necessary activities are bypassed or short changed
because there isn’t enough time to do them.

Let us now discuss good practices that avoid these flaws.

Use requirements-based scheduling

Derive the schedule from the requirements. The required functionality determines how
long the project will take. Have the requirements, schedule, and budget agree at all times,
not just at the outset of a project. If you revise the requirements and add new features to
a system, be sure to adjust the schedule accordingly.

Now we recognize that in some cases the end date cannot slip. For example, major
events such as the Olympics are not going to wait until a city puts a traffic management
center in place. In such cases, the requirements and schedule need to be developed
iteratively. If there isn’t enough time to do all that was planned, cut back on the
requirements until the planned activities can fit into the time allotted for them.

In other cases, you may find that the schedule and resources needed to meet the
requirements are “budget busters.” In fact, a good rule of thumb is that they probably
will be if the requirements include “any functions that are not absolutely essential.” Like
potential home buyers, customers of software “generally want more than they can
afford.” [Humphrey, 1989, page 84] And like home buyers who are forced to scale back
on their expectations, the system must be pared back to fit the resources allocated for it.

These are another illustration of the need for flexibility. Either there must be some give in
the requirements, the schedule dates, or both.

The bottom line is that regardless of the project and its circumstances, the schedule and
requirements should be in concert with one another.

Chapter 14: Project Scheduling

The Road to Successful ITS Software Acquisition 14-5

Allow sufficient time

"The tried and true ways of blasting through a schedule barrier— more
workers, money, overtime, computer time— don’t seem to work for
software.” [Putnam and Myers, 1992]

Project data show that a realistic schedule is one of two main keys to a successful project.
(The other is a stable requirements base.) [Jones, 1997]

Unfortunately, most schedule estimates are not realistic; they are almost invariably
optimistic. There is misplaced faith that “all will go well” and take only as long as they
“ought to.” [Brooks, 1975] Generally speaking, when people are asked to give a range of
estimates, the “best estimate” turns out to be optimistic, while the “worst case estimates”
cluster around actual performance. [McConnell, 1996]

Some managers compensate for human nature and natural optimism by applying a factor
to all size and schedule estimates given to them; a factor of two is often suggested.

One of the most effective ways to reduce costs is simply stretch out the schedule! “One
would think off-hand that extending the development period would increase effort and
cost— there is more time over which people would be working.” [Putnam and Myers,
1992] However, that doesn’t happen. Instead the converse is true: if you squeeze the
schedule, costs go up dramatically. It is not surprising that when you compress the
schedule, more people are needed at any point in time and the peak staffing increases.
But what is surprising is that the total staffing, development effort, and cost also increase.
Another example of how intuition gained elsewhere doesn’t necessarily apply to
software.

Multiplying the number of staff by the length of a project gives the number of staff-
months. On other types of projects, staff and project length can be traded off for one
another, since staff-months reflect the size of the job. This is not the case for software. A
famous quote summarizes the situation: “The man-month is a fallacious and dangerous
myth, for it implies that men and months are interchangeable.” [Brooks, 1975, page 231]
In fact, the tradeoff between schedule (“months”) and development effort (“men”) is far
from linear. A little schedule relief results in significant cost reduction.

There are two explanations for this somewhat surprising result. First, as more people are
added to a project, you must communicate and interact with them. In effect, with each
new hire, all the previous employees become marginally less productive. Second, as the
schedule is compressed, you turn sequential activities into parallel ones. This can be done
to some extent, but with a price of lowered productivity.

Even if you have an unlimited budget or inflexible end dates, and are willing to pay the
price of a condensed schedule, you can only squeeze the schedule so much. There is a

Chapter 14: Project Scheduling

14-6 The Road to Successful ITS Software Acquisition

lower limit; the project simply can’t be done in less time. You pay a high price to
approach the limit, and there’s no way to go below it. Yet schedules are often set in the
“Impossible Zone.” (See figure 14-1.)

Fi
gu

re
 1

4-
1.

 I
m

pa
ct

 o
f S

qu
ee

zi
ng

 th
e

Sc
he

du
le

T
im

e
A

llo
w

ed
 o

n
Sc

he
du

le

Total Cost or Effort ($)

Impossible Zone Impossible Zone

N
ot

e:
 T

he
 to

ta
l c

os
t a

nd
 e

ff
or

t g
o

up
 d

ra
m

at
ic

al
ly

 a
s

th
e

sc
he

du
le

 is
 c

om
pr

es
se

d.
H

ow
ev

er
, n

o
m

at
te

r h
ow

 m
an

y
re

so
ur

ce
s

yo
u

ap
pl

y,
 y

ou
 c

an
no

t s
qu

ee
ze

 th
e

sc
he

du
le

in
to

 th
e

“I
m

po
ss

ib
le

 Z
on

e”
.

T
im

e

Chapter 14: Project Scheduling

The Road to Successful ITS Software Acquisition 14-7

To summarize, first develop a realistic schedule. Then stretch it out somewhat.

Determining how much time is needed on the schedule

Typically you begin by estimating the size of the software. These estimates can be
expressed in various units, such as lines of code or function points. Then this size
estimate is used to derive the time and effort that will be needed to develop the software.

Figure 14-2. Size, Schedule, and Staffing

Software
Size

Estimate

Scheduled
Time

Staffing
Required

Unfortunately, at the outset of a project, it may be impossible to know the eventual size of
the project; only a very broad range is possible. (See Estimate ranges, below.) This is
especially true for those with limited software acquisition experience who may not have a
clue as to the eventual size of the software that will be built. Once again, the advantage of
using existing products is evident: there is no need to estimate the size of the software for
them.

Where To Get More Help, Chapter 21, lists some references for estimating the size of the
software. Generally, the approach is to divide the system into as many components as
possible, estimate the size for each, and then sum them up. For example, it is much easier
to estimate the size of an incident management sub-component (e.g., determining which
messages to put on the variable message signs) than it is to estimate the size of the overall
incident management function.

Some recommended practices in estimating software size are:

• Utilize the resources of the software experts on your team to estimate the size.

• Get multiple size estimates; the more people who estimate the size the better.
There are mathematical techniques for combining their estimates into estimate
ranges that have means and standard deviations. There are also mathematical

Chapter 14: Project Scheduling

14-8 The Road to Successful ITS Software Acquisition

techniques to combine pessimistic, optimistic, and best guesses into an expected
size and a standard deviation for the estimate.

• Obtain independent estimates whenever possible. Independent estimates are
better than the ones from those who have a vested interest in the project, such as
project managers.

• After requirements walk-throughs (See Requirements Management, Chapter 9B),
have the contractor produce independent estimates for the size of the system.
You will undoubtedly find significant differences between their estimates and
your estimates. Compare your estimates and resolve all differences.

Comparing schedule estimates is an effective technique for team building and
collaboration.

• Estimate at the lowest level of detail possible.

• Never give off-the-cuff schedule or size estimates. People won’t remember the
caveats you place on them. [McConnell, 1996]

Once the size estimate has been obtained, various productivity factors can be applied to
determine how much staffing and time will be needed to carry out the project. There are
software tools that can assist in making these tradeoffs between cost and schedule.
However, the productivity factors you need to plug into the models are not easy to obtain.
Generally they are based on a track record. But if this is your first ITS project, you will
have no prior project experience to go on. And since a contractor is not yet on board,
you cannot use their organization’s experience. (Once they come on board, you can
work with the contractor to refine these estimates based on their experiences.)

Estimate ranges

Of course you would like to have a reliable point estimate for the size of any project.
Unfortunately, obtaining one at the outset of a software project is beyond the state-of-the-
art. Only an estimate with a range of values is possible. These can then be refined over
time to produce a narrower range as the project proceeds and more information becomes
available. (See figure 14-3.) For example, only an estimate with a broad range is possible
after the requirements are initially developed. Once the contractor has carried out a
detailed software design, an estimate with a tighter range can be given.

The dilemma for a project manager is that a range of cost and schedule will not be
acceptable to decision makers who approve projects. “We want to develop a system that
will take from 8 months to 2 years and cost somewhere between $300,000 and
$1,500,000” is unlikely to be met with approval.

Chapter 14: Project Scheduling

The Road to Successful ITS Software Acquisition 14-9

Chapter 14: Project Scheduling

14-10 The Road to Successful ITS Software Acquisition

Fi
gu

re
 1

4-
3.

 R
an

ge
 o

f S
iz

e
E

st
im

at
es

 O
ve

r
T

im
e

Estimated Size

N
ot

e:
 A

t t
he

 o
ut

se
t o

f t
he

 p
ro

je
ct

, t
he

 s
iz

e
of

 th
e

pr
oj

ec
t c

an
 o

nl
y

be
 e

st
im

at
ed

 w
ith

in
 a

br
oa

d
ra

ng
e.

 A
s

th
e

pr
oj

ec
t p

ro
ce

ed
s,

 th
e

es
tim

at
es

 c
an

 b
e

re
fin

ed
 to

 a
 n

ar
ro

w
er

 m
ar

gi
n.

C
on

ce
pt

R
eq

ui
re

m
en

ts
D

es
ig

n
C

od
in

g
Te

st
in

g

T
im

e

Chapter 14: Project Scheduling

The Road to Successful ITS Software Acquisition 14-11

Suggested techniques for addressing the dilemma

How does a project manager resolve the dilemma of needing an accurate point estimate
when only an estimate range is possible? We have no good answers, but here are some
suggestions that may help:

• Start with an overall schedule and budget. But use a phased contract approach, in
which development of only a small part of the system is “turned on” at any given
time. Perhaps the first phase would be for detailed design of a subsystem. An
output of this phase would be an estimate of the schedule and budget for
developing the software (coding, testing, etc.) for this subsystem. Since the design
is in hand, the estimates should have a narrower range than any previous ones
based only on requirements.

These suggestions are further justifications for the themes of bite-size pieces and
flexibility.

• Carefully track progress and use that as feedback for future estimates. Subsequent
phases can be estimated more realistically based on the experience of the initial
phase. Even if you don’t go with a phased approach, the actual progress can be
plotted against time and compared with the planned progress. That way you can
update the scheduled completion date and get a more realistic estimate for it. That
is generally better, than slipping the project one day at a time or unrealistically
hoping to make up for lost time. (See also the “How to handle schedule slips”
section in Project Management, Chapter 17.)

Chapter 14: Project Scheduling

14-12 The Road to Successful ITS Software Acquisition

• Two flawed practices are common with software schedules:
– They are established independently of requirements
– They are set in the impossible-to-do zone

• Develop a schedule that realistically matches the requirements and what you’ve
set out to accomplish. Don’t use best case estimates; they won’t be met.
Pessimistic estimates often turn out to be the most realistic ones.

• Adjust the schedule, requirements, and budget so that they are consistent with
one another throughout the project.

• Stretching out a realistic schedule is one of the most cost-effective ways of
lowering the cost and overall development effort of a project.

• Use well-defined “yes/no,” “done/not done” milestones.
• Get as many independent size estimates for the system as possible, including

those of the contractor and the software expert on your team. Resolve the
differences.

• Use feedback on actual progress to derive more realistic schedule estimates for
future activities.

Key Points

The Road to Successful ITS Software Acquisition 15-1

CHAPTER 15
ACCEPTANCE TESTING

The purpose of acceptance testing is to formally validate that the system meets all of its
requirements. Planning for acceptance testing, along with planning for training,
operations, and maintenance covered in the next chapter, serves as the bridge between the
development of a system and its operation. Recognizing that software is never “done,”
acceptance testing addresses the question, “When is the system good enough to begin
using it?” On many acquisitions, system acceptance is accompanied by handing off
responsibility for the software from the contractor to the customer or from one contractor
to another. When a system passes acceptance testing, it indicates the contractor is entitled
to payment for its services.

It is important to understand that passing acceptance testing does not mean the software
is 100% error-free. All software contains hidden problems (“bugs”) of various severity
that will surface from time to time. Bugs may not be found during acceptance testing
because they occur only when unexpected data or an unusual series of events occur.
Sometimes the “bug” is really the system reacting as it was designed to react, in a rarely
encountered situation not clearly covered by the requirements. Whatever the source, the
contractor cannot be expected to fix them for free forever. How you intend to deal with
them is part of your maintenance strategy and is discussed in the next chapter (Training,
Operations, and Software Maintenance).

We are recommending a more formal and better documented acceptance testing approach
than is customary in the transportation community, and that formal approach must be
integrated into the acquisition processes very early. To accommodate this approach, your
planning will have to take acceptance testing into account before a contract is signed and
even before an RFP is issued. Even if the contracting mechanism that you choose allows
for the acceptance test to be developed jointly with the contractor, it must be planned for
in the initial stages.

This chapter discusses formal acceptance testing only. It does not address other types of
software testing that necessarily take place as well. For example, there will be various
levels of developmental testing carried out on pieces of the software as they become
available. For the most part, these informal tests are the contractor’s responsibility and
do not directly affect the customer.

You may decide not to ignore the informal tests completely. You may choose to witness
some of this testing and use it as one means to informally monitor progress. Further,
during the selection process, you could ask the bidders to describe their informal testing
approach along with other aspects of their software engineering process. Although there
would be no one “right answer,” the responses may indicate the experience and “maturity
level” of the various bidders.

Chapter 15: Acceptance Testing

15-2 The Road to Successful ITS Software Acquisition

Acceptance testing is requirements-based for software systems

On most transportation projects, acceptance testing is based on the design specs. In
contrast, for software systems the requirements document serves as the basis for
acceptance testing:

• To protect the customer, explicitly trace every requirement to one or more
acceptance tests. This ensures that there is adequate testing coverage.

• To protect the contractor, explicitly trace every acceptance test back to one or
more requirements. This ensures that extra requirements are not being “slipped
in,” and the system is not being asked to do more than was required for it.

A corollary is “tie the tests to the requirements and test only to the requirements.”

Two acceptance testing approaches

In the ITS community, two approaches appear for acceptance testing. The first one places
the system into operational use to see how it performs. The criterion for acceptance is the
system performing in accordance with its requirements for a specified period of time. The
second approach, the one we will focus on in this document, is more formal. It carries
out end-to-end tests on as much of the total system as is possible and reasonable. These
tests are specifically constructed for use during acceptance testing and are conducted in
accordance with an approved test plan. The criterion for acceptance is the successful
outcome of these tests.

In the preceding paragraph, we presented the selection of an acceptance testing approach
as being a choice between two extremes. In practice, a mix of the two approaches may be
right for your system. For example, acceptance of the system could be contingent upon
its passing a set of formal tests followed by successful operational use for a limited period
of time, say one month. Also, it may be useful to acceptance test a limited deployment of
the eventual system, prior to providing the contractor with the go ahead to deploy the
entire system. For example, a limited deployment could be formally tested using only
one equipped bus for a transit vehicle tracking system, or a single ramp meter for a
freeway management system. Passing these tests would provide contractor go-ahead to
install the rest of the system on the remaining buses or at the remaining entrance ramps.
Acceptance of the full system would then be contingent upon formal system tests and its
successful operation over a period of time.

Incorporating acceptance testing into the project

Whichever testing approach, or combination of approaches is used, the approach should
be decided upon up front, and incorporated in the project plan, project schedule, RFP,
and contract. Let’s discuss each of these in turn.

Chapter 15: Acceptance Testing

The Road to Successful ITS Software Acquisition 15-3

The project plan (See Planning the Project, Chapter 8) includes a section that briefly
describes the overall acceptance testing strategy, with the testing approach that has been
chosen. You may also wish to address such high level testing issues as

• Where will acceptance testing will take place? (e.g., at a contractor location or an
operational site)

• Who will participate in the testing process? (contractor personnel versus
operational personnel)

• What are the overall acceptance criteria requirements that will need to be satisfied?

The project schedule shows the period of time during which the acceptance tests will be
conducted. This includes the time needed to analyze the test data. The schedule should
allow a reasonable amount of time for the customer to review test results and make a
determination as to whether the system meets the overall acceptance criteria. Time
should also be set aside for making repairs and repeating some or all of the acceptance
tests in the event that the system fails on the first attempt.

One ITS customer complained that the development contractor wanted the customer to
accept the system immediately upon conclusion of testing. Since, under many contracts,
contractors don’t get paid until the system is accepted, it is understandable that they don’t
want any unreasonable delay. However, sufficient time to analyze the results should be
in the test plan and schedule, and agreed to by all.

The schedule should also address test planning, with the delivery of a collaboratively
developed acceptance test plan shown as a milestone. Allow adequate time for customer
review and approval of this important document. Do not promise a turnaround time that
is not possible to meet!

Schedule test planning and preparation activities to begin as early as possible after
contract award. Recognize that the plan will evolve as requirements are fleshed out (e.g.,
during a requirements walk-through). Test planning and preparation will proceed
throughout the development period in parallel with the system development activities.
Why is this necessary? For one thing, acceptance testing takes considerable time and
resources to plan; you cannot wait until the last minute. Test cases must be designed, test
software written, and test facilities established. Also, experience shows that activities near
the end of a project often get squeezed, and this is particularly true for testing. So it’s
best not to wait until near the end of the project to plan the testing and write the testing
documentation. Another advantage of planning the testing early on is that it helps focus
on the meaning of the documented requirements, thereby providing feedback into the
requirements process. As discussed in Requirements, Chapter 9, good requirements are
testable. If a requirement is not testable, it is not adequately defined. By asking, “How
will we test this requirement?” questions like “What does this requirement really mean?”
get raised. The earlier the answer to that is known, the better. If a test can’t be devised to
determine whether a shall statement has been met, then perhaps that requirement should

Chapter 15: Acceptance Testing

15-4 The Road to Successful ITS Software Acquisition

be recast or deleted. For quality factors that are difficult to measure, ask the contractor to
suggest a validation method.

From a legal perspective, acceptance testing cannot be unilaterally imposed on the
contractor at the end of a project. Therefore, you must address acceptance testing in both
the RFP and contract, reflecting the overall testing approach given in the project plan.
Explicitly call out test planning activities and test plan deliverables, too. At a high level,
the RFP and contract should identify roles and responsibilities for acceptance testing and
test planning, identifying customer responsibilities and assigning any contractor
responsibilities in this area: Who will write the test plan? Who will conduct the tests?
Who will analyze test results? Who determines whether acceptance criteria have been
met? (More detailed answers to these questions will be needed in the acceptance test
plan.) We also recommend that the contract call for both the customer and contractor to
sign off on an approved acceptance test plan.

You should also define the overall system acceptance criteria in the RFP and contract,
with the understanding that the detailed criteria will be jointly developed. As an example,
the criteria might be that the system has to pass all the tests designated as critical and
eighty percent of the remaining tests. The test documentation will go into more detail,
providing pass/fail criteria for each individual test.

Including acceptance criteria in the RFP and contract protects both customer and
contractor. Historically, customers complain about poorly functioning systems that do not
meet expectations. At the same time, contractors complain that without formal
acceptance criteria, public sector customers have no incentive to accept a system and
continually ask for more and more enhancements to that system. In the meantime, the
contractors don’t get paid.

One final reason for making planning for acceptance testing a priority early is that some
software requirements may result from test criteria. If, for example, an algorithm is to be
tested and the test plan indicates that certain input and output data are to be viewed as
part of the test, extra software “hooks” into the data stream may be needed to capture the
data for the test. Often such hooks can be easily incorporated early in the design and
development, but only with greater effort later on.

Another item for consideration that was suggested by our interviewees was distinguishing
between conditional sign-offs (after formal acceptance testing) and full acceptance (after
a limited period of operation). After the formal acceptance test, the customer withholds
10 to 20 percent of the contract costs to be released after full acceptance. The bottom
line is that if conditions similar to this are to be reflected in the contract, they need to be
thought through up front, before an RFP is issued. And remember: money costs money!
The contractor has already paid the software developers, but has to wait for payment (in
effect, reimbursement) until the acceptance period of operation is over. The cost the
contractor incurs by using internal funds will be included explicitly or implicitly in their bid.

A note of caution

Chapter 15: Acceptance Testing

The Road to Successful ITS Software Acquisition 15-5

!
CAUTION

Be very careful about accepting the software independently of the rest of the system.
Although software is just one more component, it is the “glue” that holds the rest of the
system together. Yes, this presents the chicken and egg dilemma: It is best to test the
software with as complete a hardware configuration (sensors, variable message signs,
surveillance cameras, communications infrastructure, etc.) as possible. On the other
hand, you don’t want to accept the hardware until you are sure it supports the software
you are acquiring. There are risks, either way.

Having the hardware available early in the software acquisition can add to the costs.
Since the hardware is typically the most expensive part of the system, there are
advantages to acquiring it as late as possible. (By “hardware” we’re including the field
devices and other components of the system. In this context, the computing platform
hardware may not be a significant cost item, for it is often less expensive than the
software it hosts.) This is particularly true if the software is delayed. In the worst case, if
the project were canceled because of software problems, you don’t want to be stuck with
a full complement of unused hardware devices. Furthermore, hardware technology is
advancing rapidly. Deferring hardware purchases may enable you to take advantage of
some of the advances that occur during the period that software development is taking
place.

On one large Federal acquisition, the customer accepted the computers as the first
deliverable. The software wasn’t ready, so the computers were put into warehouses.
The customer then had to pay for several years of storage costs while the software
development encountered the inevitable delays. By the time the software was finally
made to work, the hardware vendor no longer provided hardware maintenance or
operating system support for the aged computers.

On the other hand, if the hardware acquisition is deferred, or if the components are not
available for software acceptance testing, the software may have to be accepted before it
runs as part of the complete system. The obvious risk is that the software won’t work
with the complete system: when the hardware— the most expensive parts of the
system— is delivered, accepted, and paid for, you find that the software doesn’t work.
Since software is the “glue,” nothing useful comes from the system as a whole. You will
have paid most of the project funds and yet have nothing that is usable. Even if the
software is made to work eventually, the hardware has aged and you are not going to be
able to take advantage of the rapid gains in technology that occur in the meantime.

Often field hardware and communications systems are accepted with limited testing and
when an attempt is made to integrate the software, many problems are encountered.
One integrator complained: “We frequently find ourselves in a position of having to spend
project resources investigating a ‘software problem’ that turns out to be a communications
or hardware problem.” Since the hardware has been “accepted,” the software is
(sometimes unfairly) “blamed.” This can lead to unplanned, unbudgeted activities on the
part of the contractor(s) to debug the system. Identifying the nature of the problem is
greatly aided by a teamwork approach.

Chapter 15: Acceptance Testing

15-6 The Road to Successful ITS Software Acquisition

A better alternative is to accept the various subsystems, with each subsystem having the
software, hardware, and communications components.

Testing is a teaming activity

Many of the team members can and should participate in acceptance testing. End users
and system administrators should have inputs into the plan. Any software technical
expert(s) on your customer team can assist in preparing and reviewing test plan
documentation. As noted above, regardless of who writes the test plan, the customer and
contractor should both sign off on it. Consider having several members of your team,
including end users, sign off on the plan on behalf of the customer. Similarly, the
customer and contractor should jointly conduct the actual tests. One party can carry out
the tests while the other records the data or monitors the activity. End users and system
administrators can participate in testing the functions that pertain to them. The software
technical expert(s) on your team should also participate in the testing activities. Make
sure the contract allows for this participation and any training of customer staff that is
needed prior to the test.

Types of formal acceptance tests

Assuming you decide to go with formal tests, what types of tests should be carried out?
Acceptance testing should comprise a range of thorough and rigorous testing, not simply
benign tests that show, for example, that the system can communicate with a field device.
That is a demonstration, not a test. Acceptance testing should be carried out to show that
the system performs in accordance with its requirements, and with all field devices.
Stressing the system is a good idea:

• If a requirement calls for only numeric parameters to be entered in a field, test the
system with nominal values of those parameters, but also with extreme values of
the parameters and erroneous values of the parameters (e.g., entering “11” for a
parameter when only values from 1 to 9 is allowed; entering a letter when only
numeric constants are allowed).

• Measure system performance (e.g., ability to respond in a certain amount of time)
under heavy load (large number of users, transactions, inputs, outputs, etc.). If
there is a load requirement, make sure the system meets that requirement.

• You may also want to test the system to see what happens when the system is
overloaded— does the system degrade gracefully? or does it simply crash? (If you
test for graceful degradation, make sure that graceful degradation is reflected in the
requirements.) Another option is to stress the system until it “breaks.” (The
corresponding requirement would be for the breaking point to exceed a certain
threshold.) The ability of a transit management system to support a fleet of at
least 100 buses would be an example of this.

Chapter 15: Acceptance Testing

The Road to Successful ITS Software Acquisition 15-7

In addition to carrying out tests on the operational use of the system, conduct tests on
systems administration. For example, how long does the system take to make a “cold
start”? Or, what happens if the communications line to a device goes down? (This could
be simulated by turning off the appropriate modem.)

The above items are not meant to be complete, but are presented to provide a flavor for
the formal acceptance tests that can be used.
The following are the types of tests that should be carried out for software systems
[Royer, 1993]:

• Functional tests: the ability of the software to transform its inputs into desired
outputs. Functional tests generally comprise more than half of all tests conducted.
They could include some of the simple demonstrations, such as the example cited
above of communicating with a single device as well as more rigorous tests. If
there are a multiple number of devices, phone lines, displays, etc., each should be
independently tested to show that it functions properly. (This is an example of
multiple test cases all following the same test procedure.) Other functional tests
would show that the system can correctly input sensor data, process it (perform
calculations), generate the proper outputs, and store it appropriately. The ability
of the system to display proper error messages when failures are inserted should
also be tested. Year 2000 compliance may also be tested. (See The Year 2000
Problem (Y2K), topic sheet 6.)

• Maximum capacity and stress tests: what happens when the system is heavily
loaded, such as when all the operational positions at a traffic management center
are actively in use, or all the vehicles in a transit fleet are transmitting data. Tests
should be performed to ensure that the system continues to function and that it
meets required response times when subjected to heavy load. Often these tests
will require the use of simulation software that artificially generates inputs at high
rates. The schedule and resources must be allocated to develop (and test) the
simulation software, which must be developed in addition to the regular
operational code.

How do you go about stressing a transit system when there are only a few equipped
vehicles available? You need assurances that the system will continue to function
satisfactorily as more and more vehicles gradually come on-line over a period of time.
Simulation software can be written and used for this purpose. It generates a load
simulating inputs from a full fleet of transit vehicles. Unless the simulator was already
available, writing such software would have to be one of the scheduled tasks. Similarly,
hardware test simulators may need to be specified.

• Erroneous input tests: entering data beyond allowed ranges.

• Stability tests: the ability of the system to continue its operation over an extended
period of time without intervention. Also called continuous operations testing.
Often these tests are some of the most difficult ones to pass.

Chapter 15: Acceptance Testing

15-8 The Road to Successful ITS Software Acquisition

A Navy contractor proudly demonstrated the system they had developed. They ran it
through its paces and it apparently met all of the requirements. However, the wise old
admiral was not impressed. “Leave the system running all night long,” he said, “and we’ll
see how it’s doing in the morning.” Alas, the system crashed during the night. It took
several more months of development before the system was reliable enough to field.

• Integrity tests: the ability of the system to prevent unauthorized access.

How thorough should the testing be?

In deciding what tests to conduct, it is important to keep the overall objectives of the
project in mind. Previously, we recommended periodically revisiting the system concept
in your project plan to help control requirements creep. Similarly, the system concept can
serve as a guide for how much testing is needed. If a project is intended to control a
corridor for many years, then it should be thoroughly tested. However, if the project is to
develop throw-away software for an operational test, then only test it for its ability to
perform the operational test. A system that may not be acceptable for long-term
operational use may suffice for an operational test.

In determining the level of performance needed to pass the acceptance test, keep in mind
the limitations of legacy or other existing software within the system. Nearly all software,
including off-the-shelf “shrink-wrapped” software, will not prove to be crash-proof and
will fail given strenuous enough testing. For example, trying to hold software applications
to a higher availability than can be expected from the operating system is clearly not
feasible. This is true even if the operating system is “shrink-wrapped.”

Acceptance test documentation

Acceptance testing should be sufficiently documented to ensure that test results will be
reproducible if a test is rerun. Acceptance test documentation is grouped into five parts: a
test plan, test procedures, test cases, test logs, and test results. How these parts are
actually packaged— whether combined into one document or bound separately— is not a
key consideration.

The acceptance test plan summarizes the overall approach to acceptance testing. It
fleshes out the various testing issues that were previously addressed in the project plan,
schedule, RFP, and contract. Begin writing the plan shortly after contract award. The
customer can take the lead in writing the plan, or the contractor can. In either case, the
plan must be collaboratively written and should be a formal document, signed off by both
the customer and the contractor and placed under configuration control.

The test procedures are detailed step-by-step instructions for carrying out the tests. The
same procedure may be used several times with different sets of input data. Each set of
input data is termed a test case. Each test case addresses one or more requirements. This
can be ensured by tracing test cases to tests which, in turn, are traced back to the

Chapter 15: Acceptance Testing

The Road to Successful ITS Software Acquisition 15-9

requirements (cf. Acceptance testing is requirements-based for software systems,
page 15-2). The test log is a simple form to record outputs of tests as they are run. The
test results are the report of your findings. The test-by-test results could be combined
with the test logs. The overall results on whether the system passed could be a separate
document, perhaps just a short memo.

Checklists 15-1 to 15-5 suggest items to include in the acceptance test documentation.
The following paragraphs provide some more details.

Chapter 15: Acceptance Testing

15-10 The Road to Successful ITS Software Acquisition

Checklist 15-1. What to Include in the Acceptance Test Plan

Organizations and their respective roles; who will be responsible for:
ü Conducting the tests?
ü Recording the data?
ü Analyzing the data and reporting the results?

Where will the acceptance tests take place
ü The contractor’s location?
ü An operational facility?
ü In transit vehicles?

Testing schedule (should allow time for data to be analyzed; may want to
include a dry run phase)

ü Computers to run the tests.
ü Field devices (e.g., installed variable message signs; bus sensors).
ü Other systems (e.g., legacy systems; systems in neighboring jurisdictions).

Software needed
ü Special test software (simulators to stress the system, spreadsheets to analyze

results, etc.).
Overall system acceptance criteria (Note: the pass/fail criteria for an
individual test are listed below under “List of tests to be run.”)

ü Acceptable failure rate (e.g., pass all the tests designated as critical and 80
percent of the remaining tests).
What happens when tests fail or do not proceed as planned

ü Role of regression testing
List of tests to be run; for each test, indicate:

ü Test identifier (e.g., Test 1A)
ü Purpose of test (brief statement)
ü Data to be recorded
ü Pass/fail criterion (depending upon the test, the test case may be a better place

to provide this information).
Traceability

ü For each test, show to which requirement(s) the test traces (shows that test is
requirements-based; can be viewed as protection for the contractor so that the
new requirements are not “slipped in”).

ü For each requirement, show to which test(s) the requirement traces (shows the
coverage of testing; can be viewed as protection for the customer so that all of
the requirements are tested)

Chapter 15: Acceptance Testing

The Road to Successful ITS Software Acquisition 15-11

Checklist 15-2. What to Include in the Acceptance Test Procedures

For each test, include the following:

ü Pre-test activities needed to set up the test (e.g., turn on or off certain pieces of
equipment, load a piece of software).

ü Step-by-step procedures used to carry out the test.

ü Procedures used to reduce and analyze the data (explicitly state equations,
statistical formula, averaging techniques, etc.)

ü Computers needed (to run tests; to analyze results)

ü Field devices needed to run tests (e.g., installed variable message signs).

ü Other systems (e.g., legacy systems; systems in neighboring jurisdictions).

Chapter 15: Acceptance Testing

15-12 The Road to Successful ITS Software Acquisition

Checklist 15-3. What to Include in the Acceptance Test Cases

ü Input values

ü Source of input (manual entry, field device, simulated data, etc.)

ü How long the test is to be run (e.g., collect loop detector data for one hour)

ü Expected value(s) of the output

ü Pass/fail criterion for the test (depending upon the test, the test plan may be a
better place to provide this information)

ü Traceability between test cases and tests to ensure that a test case exists for all
tests.

Chapter 15: Acceptance Testing

The Road to Successful ITS Software Acquisition 15-13

Checklist 15-4. What to Include in the Acceptance Test Log

ü Name of test

ü Date and time test started

ü Date and time test ended (only for tests that last for extended duration; for
many tests only the start time is needed)

ü Who carried it out

ü Any deviations from the test procedures (e.g., test conductor inadvertently left
out a step; error was found in test procedure, so it was modified “on the fly”)

ü Recorded outputs

Chapter 15: Acceptance Testing

15-14 The Road to Successful ITS Software Acquisition

Checklist 15-5. What to Include in the Report of the Test Results

ü Overall information (e.g., when the tests were conducted)

ü Overall report on whether the system passed and what follow-on steps are
needed

Test-by-test results

ü Test identifier, also indicate which test procedure was used and which test case
was used

ü Any deviations from the test procedure

ü Recorded data from the test log

ü Computed data

ü Whether the test passed or failed (in accordance with the documented criteria)

Chapter 15: Acceptance Testing

The Road to Successful ITS Software Acquisition 15-15

As discussed above, the acceptance test plan is a formal document. The degree of
formality of the remaining acceptance test documents will be project dependent. The
same is true for whether there will be several pieces of testing documentation or whether
the various items are merged into a single document. In any case, the RFP needs to call
out any documents that are contract deliverables. You may also decide to require
preliminary versions of the testing documentation to be issued at various times. These
can be used as the basis for informal tests that allow you to “kick the tires” of your
system as it is being assembled. You can use the results of this testing to give feedback to
the contractor.

For the feedback to have any value, there has to be some flexibility built into the acquisition
process so that the contractor can accommodate it.

As shown in checklist 15-1, the test plan defines what happens when tests fail. This topic
is somewhat complicated. There are several alternatives for dealing with a failed test: the
test can be rerun after corrections are made to the system or the entire suite of tests may
be repeated. This latter process is referred to as regression testing. Corrections may
have unexpected side effects in other parts of a system. A “fix” that corrects one problem
may inadvertently introduce a new one. Regression testing to show that all tests pass
successfully is, therefore, often a good idea. However, rerunning all the tests can be a
costly proposition. Here’s a case where common sense and available resources will have
to dictate to what extent regression testing will be used.

The recorded outputs portion of the test log could be numeric values or simply
confirmation that some event occurred, for example a status light went out. For some
tests the outputs may not be recorded on the form but would consist of supplemental
material such as printouts of computer data. In some cases, the outputs would
correspond to the test results and the outcome of the test would be known immediately.
For example, the status light either did or did not come on. In other cases, the outputs
may have to be analyzed later (e.g., computing an average value or performing a statistical
test) to determine whether the outcome of the test was successful. In some cases, the
outputs (and possibly a pass/fail indication) may be recorded separately from the rest of
the logs. In that case, the logs would contain only the administrative data such as the date
and time of the test.

Chapter 15: Acceptance Testing

15-16 The Road to Successful ITS Software Acquisition

• Plan a formal acceptance test strategy, including the use of formal
documentation, before an RFP is issued. Reflect this approach in the contract.

• Schedule test planning and preparation activities to begin as early as possible
after contract award, and to proceed throughout the development period in
parallel with the system development activities.

• Base acceptance testing on the requirements.
• Carry out several varieties of rigorous testing; simple, benign tests are not

sufficient.
• Carry out testing as a teaming activity.

Key Points

The Road to Successful ITS Software Acquisition 16-1

CHAPTER 16
TRAINING, OPERATIONS, AND SOFTWARE

MAINTENANCE

You will probably look forward to the day when the software has been completely
developed and you can begin to operate the system. However, there are a number of
support activities that must be considered in conjunction with system operations. Two
primary support activities are training the end users who will operate the system, and
maintaining the software. Other support activities include system administrative functions
to keep the system running, and training for those who will be involved in the
administrative and maintenance activities.

The general experience is that on many software projects, the operations and support
activities are often forgotten until late in the acquisition life cycle. Actions that should
have occurred earlier, during software development, are not accomplished, making it more
difficult and costly to carry them out later. Then they are done in a rush, in order to meet
deadlines for fielding the system. In this rush, key issues are not adequately addressed or
even forgotten until the system is delivered.

ITS appears to be no exception to the general experience. One ITS manager told us that
“maintenance kind of caught us by surprise.”

This chapter is intended to give you a “heads up” for what the support activities entail.

Even though they don’t take place until late in the project, operations and support (training
and maintenance) must be prepared for early, and documented in the project management
plan (up-front planning). Support requirements and activities must be addressed in the RFP
and contract. Preparation for support (setting up facilities, etc.) is then carried out in parallel
with the software development activities.

Planning for the support activities

Issues that need to be addressed during planning to ensure proper support for system
operations include:

• How to implement the system, integrating it into the operational environment

• How to operate the system effectively

• Staffing the system

• Training the end users in the operation of the system

Chapter 16: Training, Operations, and Software Maintenance

16-2 The Road to Successful ITS Software Acquisition

• Providing on-line and telephone support for timely response to operational
problems

• Answering questions from users and operations staff

• Making sure that any off-the-shelf software used in the system will be supported
when the system is delivered. For example, are proper licensing agreements in
place?

• Software maintenance

• Ensuring that a support system is available, along with a facility to house it.
Without access to a support facility, the system maintainers may have to bring
down the operational system whenever maintenance activities are performed.

• Migration planning for upgrading the system

A key decision for each of these is determining who will carry it out.

Let us examine some of these issues in more detail.

Training

There are several types of training. First, there is the training that is required for the end
users to operate the system. Clearly, they need training on how to invoke various system
functions, on “which buttons to push.” But they also need training on the overall system
concept and how to respond to various situations. In other words, users also need domain
knowledge so they know “when to push those buttons.”

End users of a freeway management system will need domain knowledge on how to
interpret the various displays and maps. End users of a transit management system will
need domain knowledge on how to react if a bus runs behind schedule.

Another type of training is training on what it takes to maintain, support, and administer
the system.

You must also decide who will conduct the training: the development contractor, a
separate support contractor, or your in-house staff. If you decided to carry out your own
training in-house, then that begs the question, “Who trains the trainers?”

Finally, be sure to get the rights to all training materials.

Support for off-the-shelf software

When off-the-shelf software is used in a system it presents special issues, both from a
development perspective and a support perspective. We previously addressed the
development issues. (See Build/Buy Decision(s), Chapter 10.) Let’s concentrate on the

Chapter 16: Training, Operations, and Software Maintenance

The Road to Successful ITS Software Acquisition 16-3

support issues. Off-the-shelf software is normally maintained (or not maintained) by the
supplier. Ordinarily only use licenses are granted. Don’t expect to be given the
intellectual property rights that are necessary for carrying out in-house maintenance. The
supplier might not provide what we would consider to be periodic maintenance (i.e., the
identification and correction of errors). The supplier will hopefully provide fixes in new
versions of the software. These are normally “marketing” enhancements that may not
respond to your problems. Even if these enhancements do address your needs, they
present a new issue— should you upgrade to this new version of the product?

Arguments in favor of upgrading include:

• The desirability of having access to new system functionality

• Bug fixes

• The consideration that staying with an older version may obsolete the product
capability or cause you to lose access to vendor support.

Arguments against upgrading include:

• The operational impact of incorporating the change. Will the rest of the software
integrate smoothly with the new version? In some cases, new hardware may be
needed to host the new software, since vendors tend to take advantage of
advances in hardware technology.

• The new version may not be backwards compatible with the previous one. Other
system components may depend on features in the older version that no longer
exist in the newer one. In other words, a simple upgrade to one piece of software
could make the rest of the system “break.”

• The need to train the users on the new version of the software because of changes
in the user interface.

• Cost of obtaining the upgrade.

Recognize that regardless of the pro’s and con’s, in many situations upgrading is an
unpleasant fact of life that you may just have to accept. If you decide to upgrade, be sure
to run test versions of the system with the new software before making it operational.

If the off-the-shelf software is not a shrink-wrapped product, it is generally easier to
negotiate a special agreement for support. Normally, the suppliers will provide some form
of help service, usually an 800 number. If this is not sufficient, make special arrangements
to have more responsive help. A “hot-line” that the user can call if a problem or some
operational question arises is one possibility. Special support such as this should only be
used when it is absolutely necessary, since it will add cost, and may not be as responsive as
desired. It is often better to count on a sound training program that provides operators
and users that are trained and can respond to anomalies during operation. As with the
shrink-wrapped product, decisions will have to be made on whether to upgrade when a
new product version is announced.

Chapter 16: Training, Operations, and Software Maintenance

16-4 The Road to Successful ITS Software Acquisition

You need to ensure that licenses to off-the-shelf software products are put into place that
are appropriate and timely for operational use of the system. Other off-the-shelf software
products may be needed to support the system, so licenses for their use are also required.
Some questions to consider in regards to what is covered by the support license include:

• Are upgrades included? If so, how many per year?

• Is there telephone support? If so, how many hours per day? how many days per
year?

• What is the required time for the contractor to initially respond to your problems
by giving you access to trained personnel?

Software maintenance

What is software maintenance?

Except for the simplest systems, software is seldom “done.” Instead it is “maintained”
throughout its operational life. (Recall from Acceptance Testing, Chapter 15, that your
acceptance of the system does not mean that the system is perfect.) In fact, various
studies have shown that over the life cycle of a system, typically 60% to 80% of the
overall software costs will be for maintenance, dwarfing the amount originally spent on
software development. [Pigoski, 1997, page 30]

Software maintenance is defined as the “modification of a software product after delivery.”
Maintenance includes correcting software faults (“bugs”) that are found during system operation
(corrective maintenance), improving performance or enhancing functionality (perfective
maintenance), keeping the software usable in a changing environment (adaptive maintenance),
and keeping the system operational (unscheduled emergency maintenance). [IEEE, 1993b,
pages 3 and 4]

Consider software maintenance in the context of an overall system maintenance concept
that includes hardware maintenance. (See Software Acquisition In A Larger Context,
Chapter 2.) Ask yourself whether software functionality depends upon a certain level of
hardware maintenance. Often, the software is critically dependent on having most of the
field sensors up and running. For example, ramp metering algorithms implemented in
software cannot work without the inputs from loop detectors.

The maintenance concept provides a systematic maintenance approach for the system.
The maintenance concept deals with the extent of the software maintenance, who will
perform it, and an estimate of life-cycle costs. Depending on the size and complexity of
your system, the concept can be documented in its own plan or incorporated into the
project management plan. The concept addresses the following:

• Establishing a method for reporting bugs

• Making suggestions for new features or extending old ones.

Chapter 16: Training, Operations, and Software Maintenance

The Road to Successful ITS Software Acquisition 16-5

• Assigning priorities, scheduling fixes and enhancements, and seeing that they get
implemented.

• Testing changes to see that they work and that to ensure that they don’t cause
something else to “break”

• Using established configuration management procedures (See Software
Configuration Management, Chapter 18.) to maintain records of:

– problems and how they were resolved, enhancements, and changes to the
software

– the tests conducts
– all associated software code and documentation

Who should maintain the software?

As with the other support activities, you have to assign responsibilities for the various
software maintenance activities. In particular, who will:

• extend existing capabilities of the system?

• improve system performance?

• add new functions and train users on them?

• find and report bugs?

• correct bugs?

• document changes to the system?

Factors such as long-term cost, space, qualifications of the contractor and agency staff,
and personnel availability all bear on this decision. In some case, responsibilities can be
shared, with some maintenance activities carried out by the contractor, for example, while
others would be performed in-house.

In many cases, the most attractive option is to have the software developer maintain the
software. After all, they are the ones most familiar with the internal design of the
software, and have staff with the requisite skills and the necessary tools for maintaining it.
“The best people to maintain a software product are those who know it.” If you decide to
have the development contractor carry out software maintenance, reflect this as a task in
their original contract or in a separate software maintenance contract. Use this section of
this document as a guide for the key items to be included in the maintenance contract.

Product vendors complain that their public-sector customers do not use contract
maintenance by the development contractor as often as they should. This attractive
option is too often dismissed out-of-hand for fear of getting “locked in”. (See Differing
Perceptions of ITS Software, chapter 3.) Instead, customers take on in-house
maintenance, a task for which they may not have the qualified staff, on software whose
internals they are not familiar with.

Chapter 16: Training, Operations, and Software Maintenance

16-6 The Road to Successful ITS Software Acquisition

If you intend to out-source maintenance to a different contractor, then preparations for
this must begin early. Use the material presented here as a guide for items for
consideration in selecting the contractor. The maintenance contract must be in place when
operational use of the system begins.

If you are considering software maintenance by in-house staff, ask yourself whether you
really want to take on that responsibility. Taking on responsibility for software
maintenance implies the following:

• Having qualified staff. Note that programming experience on information systems
does not qualify an individual to work on demanding, real-time ITS software.
Such staff are in short supply. If you currently do have them on board, will your
agency salary structure allow you to pay them enough to attract them? If you train
existing staff, will you then be able to hold onto them?

• Familiarizing the staff with the internals of the software and the support
environment and tools used to maintain it. This will require close collaboration of
the maintenance staff and the contractor developers from the outset of the project.

• Taking over such tasks as documentation and software configuration management
(See Software Configuration Management, Chapter 18), for which contractors
normally have prime responsibility.

• Setting up and running a support environment (see next section, below)

• Having access to the following items:
– source code, in compilable computer files; listings are not sufficient
– documentation on databases, data structures, and interface protocols
– development tools used to compile the software, keep it under configuration

control, test it, etc.

Note that there are costs associated with having access to these items. The full
support environment for a commercial database package, for example, is
considerably more expensive than run-time license for the same package. These
costs must be factored into your decision as to whether you should contract for
maintenance or perform it in-house.

As can be seen on the above list, your software maintenance concept partially determines
your needs in regards to intellectual property rights. Remember though, that your
intellectual property rights need to be clearly spelled out; possession of code is different
from rights to the code. (See Resolving The Intellectual Property Rights, Chapter 13.)
However, you may be able to avoid unnecessary fights over intellectual property rights, if
you determine that you won’t be able to maintain the code and don’t insist on additional
rights in the first place. Ask yourself, “If I do take possession of the source code, does my
agency have people who are capable of maintaining it? Or will we just turn around and
hire maintainers, perhaps the original development contractor?”

In deciding who will maintain the software, examine the documentation to determine
whether it will be adequate for you or a third party to support in-house maintenance. You

Chapter 16: Training, Operations, and Software Maintenance

The Road to Successful ITS Software Acquisition 16-7

may be forced to go with vendor maintenance even if that was not your first choice at the
outset.

Often the customer gets locked into the development contractor for maintenance, yet most
of the maintenance activities are simple “tweaks” that produce new outputs (management
reports, on-line forms, etc.) or revise the formats of old ones. One way around this is to
require that report generators and graphical user interface tools be delivered as part of the
system. With these easy-to-use software tools, the system administrator can revise screen
formats for the users, generate new reports when needed, or revise old ones.

You also need to decide where software maintenance will take place. For large systems,
you may decide to have the maintainers on site. Space considerations must factor into this
decision.

The support environment

The support environment is all of the hardware and software used to maintain the system,
including software tools for analysis and testing. This environment is generally different
from the one used to develop the system. For example, tools used during development
may not be the same as those used during operation, and licenses that the developer has
with suppliers may not carry over into support. During the support phase of the system,
maintenance requires diagnostic tools to troubleshoot the system, trace tools that can
track the flow of data and messages, and special test scenarios. It needs to be clear in the
contract that this support environment is distinct from the operational system or from the
development environment that the contractor uses at its facilities. If a support
environment is to be used, it needs to be called out as a contract deliverable. Its
acquisition goes through all the same steps as those used for the operational
system— software development, testing, and acceptance; operations; and
maintenance— and its software has to be placed under configuration control. Intellectual
property rights issues also have to be addressed.

There is also the issue of having a place to house the support environment. One option is
to have the contractor carry out support on existing facilities at its own site. However, if
a new, separate facility needs to be established, the support facility should also be called
out as a contract deliverable. After all, the developer’s environment may be part of their
larger facility, and not available for transition into a support facility. The rights to the data
associated with the facility need to be specified so that the customer acquires those rights.

The support facility has similar integration requirements to those listed above for the
operational system, including adequate space, air-conditioning and power, scheduling,
budgeting, and staffing.

Personnel roles

Chapter 16: Training, Operations, and Software Maintenance

16-8 The Road to Successful ITS Software Acquisition

An early step in planning for support is to identify all the personnel roles that will be
needed. The end user operator is an obvious one, but other equally necessary roles may
not be so apparent at first. Checklist 16-1 has some roles to consider. Clearly some of
these roles can be combined. For example, the administration role can include diagnosing
problems and contacting hardware vendors to make needed repairs.

Chapter 16: Training, Operations, and Software Maintenance

The Road to Successful ITS Software Acquisition 16-9

Checklist 16-1. Personnel Roles Needed For System Support

ü Shift supervision of the end-user operators

ü Administration of the system to keep it running

ü Generation of management reports from the system

ü Review of data produced by the management reports

ü Installation of new computing hardware or displays

ü Integration of additional field devices into the system

ü Fixing software bugs

ü Upgrading the software

– Installing new releases of off-the-shelf software
– Adding functionality to custom software
– Modifying control algorithms

ü Diagnosis of problems and repairing hardware

ü Training for all the above, both when the system first comes on-line and, later,
when personnel turnover occurs

Chapter 16: Training, Operations, and Software Maintenance

16-10 The Road to Successful ITS Software Acquisition

Next, and most importantly, give thought and consideration to specifying, as clearly as
you can, the needed skill and experience levels of the personnel who will perform the
support roles. Then decide who will be responsible for carrying out each of these roles. If
it’s the development contractor, that responsibility must be reflected in the contract. If
support is to be performed in-house by the customer, then staff may have to be hired. If a
separate support contractor is to be used (i.e., distinct from the development contractor),
then acquisition activities for this contract must begin early, so that this contractor will be
available at the completion of development. These may be used in combination; for
example, training could be performed in-house, while software maintenance could be done
under contract.

The support organization must be on-board, trained, and ready to take over the operation
of the system once it has been accepted. There can be a transition period as the system is
handed off from the development organization, but this role must be planned and specified
in the contract.

The support budget

Support has to be budgeted up front and decisions as to who pays for support settled. If
the buyer is not going to provide total support that should be made clear and agencies that
are expected to pick up support notified beforehand so that they can budget for the
support and provide the necessary facilities and resources. In either case, the life cycle
cost estimate for the system should include the cost of support.

Support costs have to include training, obtaining a support environment (if needed),
licenses, and maintenance costs.

Training costs. Estimate the number of people who have to be trained, including users,
administrators, and operators. Include the costs of the trainer, materials, and staff time
charges.

Support environment. The cost of the support environment is usually specified in the
developer’s cost proposal. Remember to include on-going maintenance costs of this
facility, license renewal costs, and space costs if you take over this facility for
maintenance.

Maintenance costs. Traditionally, in large system development, the cost of development
accounts for only 30% or less of the life cycle cost, while support over a ten year period
or so accounts for the other 70%. This support is not merely fixing errors that are found
during operation, but enhancing the system based on new requirements and more efficient
operation. In fact, fixing errors typically accounts for only about a fifth of the total
maintenance effort. [Pigoski, 1997, page 34] There are several ways to estimate this
support cost. Here are three:

• A quick way is to take a percentage of the number of developers. If 20 persons
were used to develop the software, a range of maintainers would be anywhere

Chapter 16: Training, Operations, and Software Maintenance

The Road to Successful ITS Software Acquisition 16-11

from 20% to 50%, or 4 to 10 persons. Naturally, this is a level of effort that must
be converted to a dollar figure. At the bottom level one would only expect a
minimum level of error correction and minimal enhancements. The top level
would provide for a higher level of enhancements and allows for a more complex
support environment. Remember, it also takes resources to operate the support
facility.

• A second method is to use the 30%/70% rule. If we assume that 20 persons is
30% of total life cycle cost then 70% of total life cycle cost is approximately 46
persons. If the period of support is ten years then approximately 5 persons are
required. We can see that this quick and dirty method is within the bounds of the
first method.

• The third method relies on more scientific cost estimation tools that calculate the
maintenance cost on the basis of the estimated level of change to the code.

• Plan for support activities early, and reflect your approach in the contract.
Prepare for support in parallel with development activities.

• Allow adequate budget for support activities to take place. Over the life of the
system, support activities generally consume more budget resources than do the
development activities.

Key Points

PART FOUR:

ON-GOING
MANAGEMENT
ACTIVITIES

The Road to Successful ITS Software Acquisition 17-1

CHAPTER 17
PROJECT MANAGEMENT

This chapter discusses the management activities that take place once a contract is issued.
The contractor is of course responsible for the technical activities associated with software
development, whether that be building custom software, tailoring pre-existing products,
or integrating off-the-shelf products. However, as customer, you also have a vital role to
play. As we’ve stressed elsewhere throughout this document, software acquisition is a
collaborative process. You and the other members of the customer team will need to be
actively involved with the contractor on such technical activities as rapid prototyping,
revisiting the requirements, and acceptance testing, which are discussed elsewhere in this
document. This chapter focuses on the complementary management activities that you
will need to perform. The degree to which they are carried out should be geared to the
size and complexity of the acquisition.

This chapter shows how the active customer involvement theme manifests itself after a
contract is issued.

Managing risks and gaining adequate visibility into contractor progress are the two key
aspects of managing the contract. Software Risk Management is discussed in Chapter 19.
Here we focus on what can be done to gain visibility into the development activities. As
we discussed in The Nature of Software, Chapter 1, one of the complaints commonly
expressed by project managers is the difficulty in gaining visibility into the software
development progress. This chapter is intended to help in this area. We also discuss
corrective action tracking, what to do in case the schedule slips, requirements
management, quality management, and managing the expectations of others.

Techniques for gaining visibility

The customer can utilize three sets of management tools to monitor the development
effort: project reviews, document reviews, and measurement data such as cost and
schedule data.

Project reviews

Project reviews are held to determine status and to surface issues and problems, but not to
solve them. Conduct your project reviews in a spirit of cooperation and not in an
adversarial fashion. They can be formal or informal. Formal reviews are scheduled

Chapter 17: Project Management

1Under a fixed-price contract, the contractor would naturally be resistant to participating in reviews that are
not specifically called out in the contract. However, under a time-and-materials contract they may be less
resistant, since they will be paid. Thus time-and-materials contracts may offer some flexibility and
informality, in that not all the management events need to be planned up front; they can be scheduled as the
need arises. The activities, of course, still must be budgeted for.

17-2 The Road to Successful ITS Software Acquisition

events specifically called out in the contract.1 These can be used to track progress against
an agreed upon set of metrics. They can also be used to review the contractor’s software
engineering process for adequacy and for adherence to that which was proposed.
Informal reviews are those meetings such as technical interchange meetings held on a
periodic basis. Attendance should be limited to those directly involved, so that the review
does not degrade into a “dog and pony show.”

Provision for customer participation in project reviews should be clearly stated in the
contract. The contract can also allow customer attendance at some of the contractor’s
internal reviews on such areas as requirements, design, and risk. This is useful, provided a
teaming environment has been achieved. Otherwise, there may be added cost and no
value if the contractor holds their “real” internal meetings separately, away from the
customer.

Document Reviews

There are also two types of document reviews. The first type is a formal review. A
formal review can be a project milestone. A formal document walk-through by members
of the customer and contractor team is an example of this. Requirements Management,
Chapter 9B discusses formal walk-throughs in regards to the requirements document.
Alternatively, a formal review can also be conducted in conjunction with another
milestone. An example would be the review of a design document as part of a design
review.

The second type of document review is the review of documentation that is produced by
the contractor for its internal use. Such documentation is normally not required as a
formal deliverable, but is produced as part of the development effort. An example might
be a software development file. These are informal documents that record the activity
associated with the development of a unit (of code) or of a software component. They are
normally checked through inspection by the developer’s quality assurance process.
Results are recorded and open to inspection by the customer.

There are three good practices to keep in mind in planning document reviews:

• Prior to a document review, circulate copies of the document to all the participants
to help them prepare for the review.

• A formal document review should generally not be the first opportunity that the
customer has to see the product. Instead, there should be continual informal
reviews and opportunities for feedback between customer and contractor. If the

Chapter 17: Project Management

The Road to Successful ITS Software Acquisition 17-3

resulting products are collaborative ones, there should be few surprises at the
formal review.

• Do not defer document reviews until the end of the project. When this happens,
there is no opportunity to take corrective actions that are uncovered by the review.
As a result, the review either becomes a meaningless exercise, or it results in an
almost guaranteed schedule slip.

Measurement data

Quantitative measurement data (sometimes called “metrics”) are used to provide project
status and are often discussed during project reviews. Metrics can take many forms. Let
us examine some of them. The first two apply to all types of contracts, not just software:

• Costs are reported as a normal part of the contractor’s financial reporting system.
These may be as simple as labor hours expended to date to more extensive
systems based on earned value. Cost data are normally received because cost and
resource data associated with financial reporting are required for progress
payments to be made to the contractor.

• Schedules can range from a simple milestone chart to a PERT chart.

• Software-specific metrics. Table 17-1 lists some metrics that are commonly used
for software. (See also [MITRE Corporation, 1985].) Plotting expected and actual
values against time creates a useful tool called a management indicator. A
variance in one management indicator does not necessarily mean that action is
called for, or that a real problem exists. An example of a management indicator is
shown in Figure 17-1.

Contract language is needed for gaining access to measurement data. While it is generally
not good practice to detail the exact metrics that will be used by the contractor, it is
reasonable to ask the bidders what metrics they use. There’s no one correct answer, but
their responses may give you some indication of the maturity level of their software
development practices. (See also Software Capability Maturity Model (SW-CMM),
Topic Sheet 4.)

Other techniques

Some of the techniques that we’ve discussed elsewhere can also be used to provide
increased visibility into the project:

• Rapid prototyping gives insight into how the final system will “look and feel”.
(See Rapid Prototyping, Topic Sheet 1.)

• Iterative development and multiple builds allow progress to be monitored by
watching the system evolve. The trick is to not put too much functionality into
any one build.

Chapter 17: Project Management

17-4 The Road to Successful ITS Software Acquisition

• Continual open communications with the contractor allows problems to be
surfaced and addressed as they occur.

Chapter 17: Project Management

The Road to Successful ITS Software Acquisition 17-5

Table 17-1. Software Metrics

Development Progress

The actual and expected number of units or components, plotted against time. Separate
plots are generated for designed, implemented (coded), and integrated units or
components.

Test Progress

The actual number of tests that have been conducted, and the scheduled number of tests,
plotted against time. The number of tests passed or failed can also be plotted against time.
Test aging data on failed tests that have still not been passed can also provide insight. If
long periods have elapsed since the test initially failed, that may indicate “sticky”
problems that cannot be fixed, or lack of necessary resources. (It can also simply mean
that the problem was fixed, but the test was not re-run.)

Staffing

The actual and planned number of software personnel plotted against time. Another
variant of this chart shows key personnel loading. This can be more insightful then total
loading as a project is usually dependent upon having the right skills at the right time.

Software Size

The actual and originally estimated size, plotted against time. Growth in the size of the
system over the original estimates is a good indicator of impending cost and schedule
overruns. Size is commonly measured in lines of code, although other units are
sometimes recommended. Among these are function points, modules, or number of
objects.

Computer Resource Utilization

The CPU utilization, memory, and input/output resources are plotted as a percent of
designated maximums for these resources. This gives an indication as to whether the
software will fit into the hardware resources to which it has been allocated. It can also be
used to control resource utilization when a limited amount is available or when a reserve
of some percent is necessary (e.g., for contingencies or future expansion).

Problem Reports and Problem Report Closures

The cumulative number of problems discovered and the number corrected, plotted against
time. It is useful to know whether the number of outstanding problems is increasing or
decreasing over time.

Requirements Stability

The cumulative number of changes in requirements and the total number of requirements,
plotted against time. This is a useful tool to manage requirements growth. If the number
of new requirements exceeds 20 percent of the total requirements before the design is
complete, it is considered a warning sign.

Chapter 17: Project Management

17-6 The Road to Successful ITS Software Acquisition

Fi
gu

re
 1

7-
1

 S
am

pl
e

M
an

ag
em

en
t I

nd
ic

at
or

Problem Reports

N
ot

e:
 P

ro
bl

em
s

ar
e

ca
pt

ur
ed

 b
y

a
pr

ob
le

m
 re

po
rt.

 T
he

se
 a

re
 c

lo
se

d,
 a

nd
 th

e
ch

ar
t c

ap
tu

re
s

th
e

di
sc

ov
er

y
of

 re
po

rts
 a

nd
 th

ei
r c

lo
su

re
.

Th
e

cu
rv

es
 s

ho
ul

d
ap

pr
oa

ch
 e

ac
h

ot
he

r a
s

on
e

ge
ts

cl
os

er
 to

 d
el

iv
er

y
of

 th
e

sy
st

em
; h

ow
ev

er
, i

n
re

al
ity

, t
he

re
 w

ill
 a

lw
ay

s
be

 o
pe

n
pr

ob
le

m
s.

Pr
og

ra
m

 S
ch

ed
ul

e
(M

on
th

s)

Te
st

Im
pl

em
en

ta
tio

n
D

es
ig

n

1020304050

D
is

co
ve

re
d

C
lo

se
d

T
im

e

Pr
ob

le
m

 R
ep

or
t S

ta
tu

s

Chapter 17: Project Management

The Road to Successful ITS Software Acquisition 17-7

Gaining visibility into subcontractor activities

One of the most difficult aspects in managing an acquisition is getting visibility into the
activities of the subcontractors. The prime contractor may even intentionally try to
insulate you from the subcontractors. This situation can lead to disaster, especially if the
subcontractor is responsible for critical parts of the project— the software, in particular.
There are ways to prevent this from happening.

One ITS software vendor complained about being third tier down in a subcontracting
arrangement and not having access to the customer. Similarly, the customer
complained about not having access to the subcontractor.

Let the contractor know, up front, that full visibility and participation of all developers is
necessary and required for the management of the program. Subcontracting must be
addressed early, as a part of the project plan, with appropriate language inserted into the
RFP and contract. Points to consider for the RFP and contract are as follows:

• Have subcontractor personnel participate in all reviews, particularly in informal
technical exchange meetings.

• Require that subcontractor data, such as the metrics discussed above, be made
available without change.

• Request that the customer be afforded access to the subcontractor’s facility.

• Ensure that subcontractor personnel participate in all testing as appropriate. The
subcontractor should perform all testing of their subsystems and participate in
systems level testing.

• Ensure that the customer is able to monitor subcontractor testing.

• Ensure that specific reports are provided for critical (contractor) subsystems and
are not embedded in the contractor’s reports and their meaning lost.

An attractive method for gaining visibility is to establish teams of developers and end
users who are included on the team regardless of their affiliation. Built on the tenets of
cooperation, teamwork, and breaking down institutional barriers, this technique has been
successfully employed as Integrated Product Teams in the Department of Defense and
other Federal agencies [Department of Defense, 1996], and as Product Development
Teams in private industry [Prasad, 1996, volume 2 Chapter 10]. It is, however, a difficult
concept to introduce, particularly in a culture that does not understand it and has not been
exposed to it.

In summary, our open communications theme applies, whether or not the software is
developed by a subcontractor. Open communications implies ready access to the

Chapter 17: Project Management

17-8 The Road to Successful ITS Software Acquisition

customer without having to go through a formal process that requires prime contractor
approval for each interchange.

Corrective action tracking

Another management technique is the use of corrective action tracking. As problems
arise in the project or in the software, they are logged as Problem Trouble Reports (PTRs).
Problems can be rated according to their severity. For example,

• Highest — problem causes system to crash

• High — problem results in reduced functionality

• Low — system does not work as specified, but is workable

• Lowest — documentation error or trivial problem

Action items are assigned to correct the problems. The whole process is tracked to ensure
that problems reach closure. Because the reports are under configuration control, their
status and the number of problems outstanding are known at all times.

One large Department of Defense project was in danger of being canceled. It had
slipped its schedule and there were still a large number of outstanding trouble reports.
A project audit generated a historical plot of the number of trouble reports versus time.
It showed a decreasing function, and was extrapolated to zero to indicate when project
completion could be expected. This proved to be a reliable estimate, and a successful
project was saved from unnecessary cancellation.

Problem trouble reports are generally the contractor’s responsibility. Make sure that the
contract calls this out and requires status reports on them, perhaps at project reviews.

How to handle schedule slips

Suppose you’re successfully using the management techniques discussed above and they
show a schedule slip. Consider the hypothetical example of a six month project in which
the month two milestone is not met until the end of month three. Now what?

We consider five options. At the outset, the first option may appear to be the most
attractive, but it is almost guaranteed not to work. The second probably won’t work
either. The last three options are seemingly less palatable, but offer a real possibility of
working. [McConnell, 1996]

• option 1: Plan to catch up and make up for lost time later. However, experience
has shown that projects hardly ever make up the lost time; they just get further
and further behind. The fallacy in this option is that the schedule was too
optimistic to begin with. In our hypothetical example, it took three months to

Chapter 17: Project Management

The Road to Successful ITS Software Acquisition 17-9

accomplish what was scheduled to be done in two. Yet, under this option, the get-
well plan is to exceed the schedule estimates for the remainder of the project.
That is, to do four months of planned work in the remaining three months.

Nonetheless, this is the option that is most often chosen. “When the schedule
slippage is recognized, the natural (and traditional) response is to add manpower.
Like dousing a fire with gasoline, this makes matters worse, much worse.”
[Brooks, 1975] “Oversimplifying outrageously,” this is often stated as the famous
“Brook’s Law”: “Adding manpower to a late software project makes it later.”
[Brooks, 1975]

Brook’s Law is an illustration of how “software is different.” Intuition gained from other
endeavors for meeting a schedule “more workers, money, overtime, computer time--
doesn’t seem to work for software.” [Putnam and Myers, 1992, page 43]

• option 2: Extend the project by the amount of the lost time. In our hypothetical
example, all the remaining milestones would slip by one month, with project
completion at the end of the seventh month (instead of the sixth). The fallacy
behind this option is that it assumes only the first part of the schedule was under-
estimated and that the remaining schedule estimates are accurate. In some cases,
that may be true. For example, if the project started a month late, but was
otherwise able to proceed along at the anticipated pace, then this option may
work. But in most cases, it probably won’t.

• option 3: Use the lost time as a multiplier for the remaining work. Although it may
not be much to go on, the experienced delay is the best feedback available as to
the true pace of the project. In our example, since two months stretched into three
(a fifty percent stretch factor), the remaining four months of planned effort can be
expected to take six months to complete; the overall project will take nine months
and not six.

• option 4: Relax some of the requirements to make them easier to implement.

• option 5: Cut back on the planned functionality of the project. By removing
requirements, all work associated with implementing them vanishes, and project
complexity is reduced. “Don’t expect to recover from a schedule slip of ten
percent or more without a ten percent or greater reduction in software
functionality to be delivered.” [Condensed Guide To Software Acquisition Best
Practices, 1997]

Options 3, 4, and 5 are examples of our themes on the importance of flexibility. In Option
3, flexibility is used to trade off time so that functionality can be maintained. In Options 4
and 5, a firm schedule date may be maintained by trading off some of the functionality.
But, without flexibility, these tradeoffs cannot be made.

Requirements management

Chapter 17: Project Management

17-10 The Road to Successful ITS Software Acquisition

An important part of project management is the on-going requirements management
process. We covered this important topic in Chapter 9B.

Quality management

“Quality must be built into the products of software development
from the beginning through the definition of an effective development

environment and the controlled application of monitoring procedures.”
— [Evans and Marciniak, 1987]

Managing the project and gaining visibility into contractor activities are really only a
means to an end. The “end” in this case is a system. Not just any system, but a useful,
operational system; in short, a quality product. In Chapter 9A, we discussed some of the
quality factors for software. Here we discuss quality management steps to ensure that the
quality factors will be achieved.

Quality management refers to a broad program consisting of all efforts to ensure that a
quality product is built within the performance, cost, and schedule envelope of the
program. It requires that quality requirements be planned for and made a part of the
contractual effort. Everyone should be concerned with the quality of the effort, not just
the quality function in the developer’s organization.

Quality management is a broader term and practice then quality assurance. In fact,
quality management encompasses quality assurance. Quality management as it has
developed over the past ten or so years places the responsibility for a quality product
across the entire project organization, not just the quality assurance organization. It is the
quality assurance organization, or function, that acts as the eyes and ears of the project to
assure that the quality program is being carried out, and that the goals of the quality
program are achieved.

Quality management includes both the quality of the product and the quality of the
process that is used to develop the product.

How do we achieve a quality product?

There are three complementary approach that the customer can use to achieve a quality
product. Depending on the acquisition, these approaches can be used singly or in
conjunction with one another.

First, and fundamental, quality requirements have to be specified in the system
requirements document or the statement of work. (See the Quality factors section in
Developing Requirements, Chapter 9A.) Project personnel have to decide and prioritize
what is important. For those factors that are measurable, such as Availability, the

Chapter 17: Project Management

The Road to Successful ITS Software Acquisition 17-11

performance requirements should be specified. For those that are difficult to measure,
such as Portability, project personnel can describe what is meant by the factor in this
application, its priority, and how they will evaluate it in the developer’s design.

The second approach is to ensure that a quality assurance program is in place within the
developer’s organization and determine how it will be applied to the program. An
effective way to do this is to require, in the statement of work, that the developer institute
a software quality program and provide a software quality assurance program plan for
review by the customer. A further step toward achieving a quality product is to also
require that the developer undergo (or have already undergone) a successful audit of its
software quality program by an appropriate professional organization. The developer’s
audited achieved level should be at the level appropriate for the acquisition. During the
development process, the customer monitors the quality program to ensure that it is being
carried out and to judge its effectiveness.

A third approach is to require, in the statement of work, an Independent Verification and
Validation (IV&V) review. Usually the IV&V effort is performed by an organization or
contractor clearly independent of and having no conflict of interest with the developer.
However, IV&V can also be conducted by staff in the development organization who are
not designers that work on the project. They would typically report to a line of
management that is independent of the one responsible for developing the project.

How do we ensure that the developer has a quality process that will result in a quality
product?

A quality development process is key to attaining a quality product. This has been
recognized in the Department of Defense with the innovation of the Software Capability
Maturity Model. Using this model as the basis for a process improvement program is one
of the ways that a software development organization can achieve a quality development
process. (See Software Capability Maturity Model (SW-CMM™), topic sheet 4.)

An organization with a continuous process improvement program is better able to
perform. The demonstration of such a program by a prospective developer should be
viewed as a plus by the acquiring agency. However, continuous process improvement is
an expensive investment and is usually an overhead expense. Contractors who invest in
such improvements expect to recoup their costs in some fashion and this usually results
in higher overhead rates. If the customer puts low caps on overhead rates, that may
dissuade some of the better developers/integrators from participating. While a customer
might reason that the contractor’s resulting increased productivity should pay for the
investment and this would be true in a fixed-price contract (with the problems that we
have discussed), this is not possible under cost-reimbursement or time-and-materials
contracts. In fact, under these contract arrangements, the contractor would be further
penalized for being too productive because reduced labor hours would generate less
overhead reimbursement. Another example of software acquisitions being different.

Chapter 17: Project Management

17-12 The Road to Successful ITS Software Acquisition

Expectations management

ITS project experience has shown the importance of managing the expectations of
stakeholders not directly working on your project. This includes the public and upper
management in your agency. The danger is that a successful project that meets all its
goals and objectives can still be deemed a failure, if the project fails to meet overly
optimistic expectations for it. To reduce the possibility of false expectations, do not over-
promise: do not propose an overly optimistic schedule. Do not promise more
functionality than you can reasonably deliver.

However, be aware that unreasonable expectations need not arise from any overt actions
on your part. There is a natural tendency for others to have a rosy vision that goes
beyond what you are claiming for the project. Therefore, you will need to be continually
on guard to see if this is taking place. If it is, take immediate steps to correct others of
their misperceptions.

• The customer has an active role to play even after a contract is issued.
• Project reviews, documentation reviews, and quantitative measurement data are

three techniques for gaining visibility into the project and the software
development process.

• Reflect the management techniques you choose in the contract.
• Make sure the contract allows for direct access to, and open communications

with, any software contractors.
• If the project slips, do not try to “play catch up.” Either stretch the remaining

schedule or reduce functionality in the same proportion as the slip.
• Ask bidders to describe their development process, specifically with regard to

software quality assurance and process improvement. Monitor the developer’s
quality assurance program during in-process reviews and through spot checks of
their quality assurance program.

• Manage the expectations of stakeholders not directly working on the project.

Key Points

1 Note, however, that if you decide to maintain the software with in-house staff, then you will also take on
sole responsibility for configuration management during the maintenance phase. (See also Training,
Operations, and Software Maintenance, Chapter 16.)

The Road to Successful ITS Software Acquisition 18-1

CHAPTER 18
SOFTWARE CONFIGURATION MANAGEMENT

“The discipline of Configuration Management is vital to the success of
any software effort. Configuration Management is an integrated

process of identifying, documenting, monitoring, evaluating,
controlling, and approving all changes made during the life-cycle of the
program for information that is shared by more than one individual or
organization.” — [The Condensed Guide to Software Acquisition Best

Practices, 1997]

Experts have identified software configuration management as one of the Principal Best
Practices that are widely used and deemed essential to the success of any large-scale
software project. [Arlie Software Council, cited in The Condensed Guide to Software
Acquisition Best Practices, 1997] Software configuration management is primarily the
responsibility of the development contractor.1 Here we focus on the customer’s role in
this process.

What is configuration management?

Before describing software configuration management, we first introduce the concept of a
baseline. A baseline is a “snapshot” of the system at a defined point in time. It provides
a controlled basis for future work. Because the requirements are so important, they are
recorded in a formal configuration-controlled document. (See Requirements, Chapter 9,
page 9-4.) All the other items associated with the software are also part of the baseline.
This includes the software itself (source code and object code), technical documentation,
test cases, problem reports and their status, and whatever else is used in conjunction with
producing the software. A baseline is not something abstract; you should be able to
physically point to the entire collection of all the items that constitute any given baseline,
assembled together. (We recognize that this is not literally true, since some of the items
may be in electronic format. But you should be able to readily put your fingers on and
collect together all of the items that constitute a baseline.)

At certain points, a new baseline is established while the old one is retained. Any
subsequent changes are made to the new baseline and the older baselines are no longer
disturbed. That way, at any point in time, you can go back to the previous baseline(s) and
re-establish things as they were.

Chapter 18: Software Configuration Management

18-2 The Road to Successful ITS Software Acquisition

Baselines represent “what you have and what you know” about the software system at a
point in time. During the software requirements analysis phase you don’t have any
design or code, so the requirements baseline is, in effect, the system. Then as you move
into design, the requirements (now allocated to the design) and the design collectively
become the system. When the code is developed, the requirements and design and code
and whatever else is needed to support the software become the system.

Baselining carries with it the notion that all the constituent elements of a baseline are
consistent with each other. For example, the set of baselined requirements is the one that
matches the design, and the design is the one that matches the code. Indeed, one purpose
of a design review is to ensure that the design implements all of the requirements. Any
subsequent change to an element of the baseline must be reflected in all the other
elements of the baseline so that they remain in “synch” with one another. This is the
essence of configuration control.

An analogy to an automobile may be useful. A given model automobile consists of a well-
defined set of parts. If the muffler fails on your 1993 sedan, you can easily ascertain what
the replacement part number is and have a high level of confidence that the replacement
part will fit together with the other parts of your automobile’s configuration. Similarly,
software can be considered to be constructed from a set of parts, albeit not necessarily
tangible ones.

Configuration management is concerned with making changes to the baseline. For this
reason, configuration management is sometimes called “change management.”

“Configuration Management is defined as the discipline of identifying the configuration of a
system at discrete points in time for purposes of systematically controlling changes to this
configuration and maintaining the integrity and traceability of this configuration throughout the
system life cycle.” [Bersoff, Henderson, and Siegel, 1980, page 20]

Changes are controlled using a documented process and all changes to the baseline have
to be approved. Changes are jointly managed by both the customer and the contractor.
You don’t want either party to make changes without the concurrence of the other,
though the customer does have the ultimate authority in determining whether a change
should be made.

What happens if you don't use configuration management?

Without proper configuration management procedures, the software development rapidly
gets out of control. The various items and pieces of work get out of “synch” with each
other. Typical symptoms of poor configuration management include [STSC, 1994]:

• The latest version of source code cannot be found.

• Bugs that were fixed in a previous software version reappear again.

Chapter 18: Software Configuration Management

The Road to Successful ITS Software Acquisition 18-3

• No one knows which modules comprise the software system delivered to the
customer.

• Programmers are working on the wrong version of the code.

• The wrong version of the code was tested.

• There is no traceability between the requirements, documentation, and code.

Configuration management steps

The following is a simplified view of some of the steps that take place during software
configuration management:

• Write and approve a configuration management plan.

• Identify the software components that will be placed under configuration control.

• Identify the components via a numbering or some other scheme.

• Maintain a current status of all parts (revision number, etc.) that are in a baseline.
(configuration control).

• Maintain a backup copy of the baseline. At any point in time you should be able
to go back and faithfully reproduce a previous baseline on the system.
(configuration control)

• Get approvals before making changes to the baseline. Make the changes in
accordance with your plan and document the changes.
(change control)

• Check to see that the requirements, design, code, test cases, etc. all track one
another, especially when it comes time to install the software
(configuration audit)

Configuration management responsibilities

The developer has primary responsibility for implementing configuration management,
establishing and controlling the baselines. However, the customer also has some
responsibilities that must be considered:

• Require the developer to implement a configuration management process and
describe that process in a configuration management plan.

• Review and approve the plan.

• Check to see that the plan is followed.

• Decide what baselines will be established and how they will be controlled. A
Configuration Control Board may be established to oversee the configuration
management process.

• Establish a process for controlling interfaces between separate contractors where

Chapter 18: Software Configuration Management

18-4 The Road to Successful ITS Software Acquisition

their products interact, and between the vendor products and other systems that
the products must interface with.

If the requirements are developed before the RFP is issued, the customer would also have
responsibility for establishing the requirements baseline.

Checklist 18-1 can assist you in determining whether the contractor’s configuration
management process is adequate for your program [The Condensed Guide to Software
Acquisition Best Practices, 1997; Paulk, 1993]:

Checklist 18-1. How To Determine If Configuration Management
Is Adequate for Your Program *

ü Is a configuration management plan documented for the project?

ü Have the products that will be placed under configuration control been
identified?

ü Is the configuration management process integrated with the project plan and
followed as an integral part of the culture?

ü Are all versions (of configuration items) controlled?

ü Has an electronic library been established that can store and retrieve multiple
baselines?

ü Are configuration control tools used for status accounting and configuration
identification tracking?

ü Are change requests and problem reports for all configuration recorded,
approved, and tracked according to a documented procedure?

ü Are all changes to baselines controlled in accordance with procedures?

ü Are all baselines periodically reviewed and audited to assess the effectiveness
of the configuration management process?

ü Are all pieces of information shared by two or more organizations placed
under configuration management?

* “The Condensed Guide to Software Acquisition Best Practices, 1997” and [Paulk, 1993].

Chapter 18: Software Configuration Management

The Road to Successful ITS Software Acquisition 18-5

Don't over-do it

Although lack of software configuration management can result in the problems listed
above, too much configuration management is not good either. If you require the
contractor to put configuration management procedures into place prematurely, they can
stifle progress on the project. For example, early drafts of documents, when there is still
much iteration and revision, should not be placed under configuration control. Only
when documentation and other software products are mature enough to be baselined,
should configuration management be employed. Similarly, if programmers are trying out
little tests to see how something would pan out, or exploring the capabilities of a database
package, do not require that such software be subject to configuration control procedures.
Nonetheless, the requirements and all formal baselines that have been established must be
controlled. Let the development contractor control the development configuration.
Clearly, deciding when to use configuration management is a judgment call that requires
good practical sense.

• A formal software configuration management process is essential to the health
of your program.

• Establish baselines and employ formal procedures for making changes to them.
A baseline is a “snapshot” of everything associated with the software.

• Check to ensure that the developer establishes sound configuration
management procedures and follows them.

Key Points

The Road to Successful ITS Software Acquisition 19-1

CHAPTER 19
SOFTWARE RISK MANAGEMENT

“The Airlie Software Council identified nine Principal Best Practices
observed to be used generally and successfully in industry, and deemed
essential for nearly all [Department of Defense] software development
projects.” Formal risk management is the first practice on the list.

— [The Condensed Guide to Software Acquisition Best Practices, 1997, page 8]

Project planning is, by its nature, optimistic. It assumes everything will go right. But as
we have seen, problems often arise on software acquisitions. Sometimes without
apparent warning. Use risk management techniques to avoid such surprises (or at least to
minimize the number of them!). By its nature risk management is pessimistic. It is the
process of continually learning from experience, assessing what things can go wrong, and
implementing strategies to deal with them. [Higuera et al., 1994]

Risk management is carried out from the inception of a project until its completion. The
purpose is to identify the risks before they become problems, and handle them while
there is still time. This avoids crisis management situations in which the options are
restricted and schedule slippage is the only “solution.” Ironically, if you do a good job of
risk management, then it appears to be unnecessary.

What is a risk? A risk is not a problem. A problem is something that has occurred, and must be
dealt with. A risk is something undesirable that may or may not happen -- a potential problem,
not a certainty. [Higuera, 1994] A risk can be assessed in terms of its impact on performance
(not achieving some requirement), schedule, or cost.

One way in which software projects are different is in the magnitude of the risks. On
other types of engineering projects, if the risk results in a 50 percent multiplier (on cost,
for example), it is considered a high impact risk. On software projects, risk impact can be
several hundred percent.

Is risk management needed for my project?

The short answer is “yes.” However, in spite of the quote at the top of the page, we
recognize that risk management has to be geared to the size of the project and the
development risk inherent in the system. (See the ordered list in figure 4-1 of Types of
ITS Systems, Chapter 4.) The amount of new development, customization, and type of
system will all contribute to the amount of risk. To avoid overkill, feel free to modify the
full, formal treatment described here. For example, a “top ten list,” in which the top ten

Chapter 19: Software Risk Management

19-2 The Road to Successful ITS Software Acquisition

risks are kept and watched on a periodic basis, may be sufficient for small systems or
those with low risk.

The most effective risk management technique may simply be to go with an existing
product. Much of the software development risk will automatically be removed, and the
risk will reflect the amount of customization that you undertake. On the other hand, there
is also a risk that an off-the-shelf system that works elsewhere may not work for you. As
we’ve indicated, off-the-shelf is not a panacea. Software that works in one environment
with one set of computing hardware and field devices may not work in another with a
different set.

To summarize, every software acquisition has risk, and risk must be managed on every
software acquisition.

The risk management steps

While various references differ somewhat in the details and in the terminology, the
following steps represent the essence of risk management.

Risk
Identification

Risk
Analysis

Risk
Planning*

Risk
Resolution

Risk
Monitoring

* Also called “Risk Mitigation” or “Risk Resolution”

Figure 19-1. Risk Management Steps

The first step in risk management is risk identification. This involves anticipating what
things might go wrong and listing them. If desired, the risks can be assigned to various
categories, such as technical risks or schedule risks. The taxonomy of software risks
shown in table 19-1 can serve as a starting point for identifying the risks on your project.
(See Where To Get More Help, Chapter 21 for references to alternative lists of software
risks.)

Next, risk analysis characterizes the identified risks by their likelihood of occurrence and
severity of impact. This is difficult to do quantitatively, so the likelihood and impact of a
risk are normally rated qualitatively as high, medium, or low. (That’s why we use
“likelihood of occurrence” instead of “probability of occurrence,” which is sometimes
found in the literature. The latter term implies a quantitative assessment.) From these
ratings, a risk characterization table can be created. As shown in table 19-2, a risk
characterization table provides the information needed for risk prioritization; that is,
deciding which risks to address. This establishes a risk strategy for the project. Generally,
the high impact risks with high likelihood of occurrence will be addressed first and receive

Chapter 19: Software Risk Management

The Road to Successful ITS Software Acquisition 19-3

the most attention. Generally, some resources are required to mitigate such risks. Or the
requirements, schedule, or cost may need to be adjusted. A risk scoring low in both
categories would generally receive low priority. (Unless, perhaps, the risk mitigation
strategy for it were immediately obvious and so simple that you decide you may as well
go ahead and eliminate the risk.)

1. Requirements
a. Stability
b. Completeness
c. Clarity
d. Validity
e. Feasibility
f. Precedent
g. Scale

A. Product EngineeringA. Product Engineering

Table 19-1. Taxonomy of Software Risk: An Overview

B. Development EnvironmentB. Development Environment C. Program ConstraintsC. Program Constraints

2. Design
a. Functionality
b. Difficulty
c. Interfaces
d. Performance
e. Testability
f. Hardware

Constraints
g. Non-Developmental

Software

3. Code and Unit Test
a. Feasibility
b. Testing
c. Coding/

Implementation

4. Integration and Test
a. Environment
b. Product Integration
c. System Integration

5. Engineering Specialties
a. Maintainability
b. Reliability
c. Safety
d. Security
e. Human Factors
f. Specifications

1. Development Process
a. Formality
b. Suitability
c. Process Control
d. Familiarity
e. Product Control

2. Development System
a. Capacity
b. Suitability
c. Usability
d. Familiarity
e. Reliability
f. System Support
g. Deliverability

3. Management Process
a. Planning
b. Project Organization
c. Management

Experience
d. Program Interfaces

4. Management Methods
a. Monitoring
b. Personnel

Management
c. Quality assurance
d. Configuration

Management

5. Work Environment
a. Quality Attitude
b. Cooperation
c. Communication
d. Morale

1. Resources
a. Schedule
b. Staff
c. Budget
d. Facilities

2. Contract
a. Type of Contract
b. Restrictions
c. Dependencies

3. Program Interfaces
a. Customer
b. Associate Contractors
c. Subcontractors
d. Prime Contractor
e. Corporate

Management
f. Vendors
g. Politics

NOTE: This table is reproduced from [Sisti, 1997], which also provides (a) descriptions of all
the potential risks listed above, and (b) questions to ask that can assist you in determining whether
the risk is a real one for your project.

Chapter 19: Software Risk Management

19-4 The Road to Successful ITS Software Acquisition

Table 19-2. Risk Characterization Table

HighHigh

0Risk #1
0Risk #5

MediumMedium LowLow

Likelihood of OccurrenceLikelihood of Occurrence

0Risk #7 ---

0Risk #3 0Risk #2
0Risk #4

0Risk #6

0Risk #8 --- ---

Im
pa

ct
Im

pa
ct

HighHigh

MediumMedium

LowLow

The next step is determining what should be done for each of the risks listed in the table.
(This step is variously called “risk planning,” “risk mitigation,” or “risk resolution” in the
literature.) The strategies and specific actions you decide upon generally fall into several
categories:

• Avoid the risk. One way to do this is by relaxing requirements that cause the risk
in the first place. For example, the risk of not meeting a system availability
requirement of 99% could be avoided by decreasing the availability requirement to
95%.

Here is where flexibility comes into play. You may decide that meeting the relaxed
requirements is “good enough.” Or the relaxed requirement may be the lesser of evils, if
the alternative is having to devote significant additional resources to meet the requirement.
This example also illustrates the value of team building. Probably only the software
contractor would be in a position to understand the full ramifications of what it would take to
meet the requirement, hence the need to have open communications with the contractor
who should be involved in the risk management activities.

• Eliminate the root cause of the risk. An example would be to provide additional
computing resources if a lack of resources was imposing schedule risk.

• Control the risk. This generally takes the form of trading off cost, schedule, and
performance to reduce the probability of the risk occurring. An example might be
the attainment of a difficult performance objective, perhaps implementing an
incident detection algorithm. You could decide to spend some up-front money to
research its feasibility before contracting for the full development of the system.
This is an example of starting risk management early in the project while there is
still time to be effective. In some cases, you may decide to control the risk by
exploring other options or funding an alternate path in parallel with the main
system. The alternate could be used as a fallback in case the risk materializes.

Chapter 19: Software Risk Management

The Road to Successful ITS Software Acquisition 19-5

This may be the preferred approach if a scheduled date must be met, no matter
what.

• Assume the risk. This is generally done for the lower priority risks. (However, see
the risk monitoring step below, about watching the risk to make sure that its
likelihood doesn’t rise over time, thereby increasing its priority.)

The next step is risk resolution, which is simply the execution of the strategy planned in
the previous step.

The final step in risk management is the monitoring or tracking step. Monitor the
controlled risks for progress towards resolution. Periodically review all the risks listed in
the risk characterization table. This review can take place as part of the normal review
process that was described previously. Reassess the other risks to determine if there is a
change in likelihood or impact. Did a deferred risk go away, or should its priority be
raised? Are there new risks that should be added? (If so, go back to the risk identification
step.)

Risk management is carried out throughout the project

Risk management should be an on-going process throughout the project. During the
initial phases, risk identification is a useful tool for influencing the acquisition strategy.
For example, if a major performance risk is identified, it could be addressed before major
procurement action is initiated.

During source selection, consider the bidders’ proposed risk management approach. The
RFP can ask the bidders to describe their risk management approach. It is understandable
that bidders might be reluctant to identify actual risks in their proposal. However, they
should be able to describe their approach for risk management during the conduct of the
program. (You can also use the RFP as an opportunity to inform bidders about your
intended risk management strategy.)

After contract award, risk management can be used to monitor and control the software
development risks. This is normally accomplished by participating in periodic program
reviews, where risk is one of the agenda topics.

One of the most effective risk management methods is the establishment of a software
quality management program early in the project. (See the Quality management section
in Project Management, Chapter 17.) This program’s charter can include looking at
issues that impact product performance, cost, and schedule. Some of the things they can
evaluate are the adequacy of the development environment (tool sets, compilers,
computing hardware, etc.), appropriateness of the selected computer language, the clarity
of requirements, and the adequacy of the prototyping, testing, and configuration
management activities.

Chapter 19: Software Risk Management

19-6 The Road to Successful ITS Software Acquisition

Treat risk management as a teaming activity

It is best if risk management is jointly carried out by the customer and contractor. Here’s
one way of opening up communications to make this happen: have each party
independently generate its own list of risks. Then sit down together and compare the lists.
You may be surprised at your differing perspectives on the project. Then work together
to prepare one set of prioritized risks. Jointly plan and carry out the risk management
steps discussed above. If you go with such an approach, be sure to include the
appropriate language in the RFP.

To summarize, risks should be addressed at the start of the project in order to influence
the acquisition approach. A risk management program should be put into place to
monitor and control risks throughout the development project. Risk management relies
upon open communications and collaboration. Risk management discussions can serve
as a vehicle used towards achieving the open communications needed for the rest of the
parts of the project.

We previously gave an example of relaxing an availability requirement to avoid a risk.
For that scenario to work, the software contractor would need to come forward, identify
the requirement as risky, and note that meeting the requirement would require significant
development resources. In other words, the example presupposes a teaming activity. It
also presupposes that the customer and contractor have a shared vision and are working
together to achieve a common goal. [Higuera et al., 1994]

Making risk management work

• The key to successful risk management is non-threatening communications.
[Higuera and Haimes, 1996]. Ask yourself, “Do information flow patterns and
reward criteria within the organization support the identification of risk by all
project personnel?” [The Condensed Guide to Software Acquisition Best
Practices, 1997 page 8]

• Describe your risk management approach in the program plan and in the RFP.

• Ask the bidders to describe their risk management approaches.

• Continually carry out risk management activities throughout the life of a software
project.

• Risk management steps comprise risk identification, analysis, planning,
resolution, and monitoring.

• Risk management is most effective when done as a teaming activity between
the customer and contractor.

• For risk management to work, there must be an atmosphere that fosters people
to come forward with risks without “finger pointing.”

Key Points

PART FIVE:

PUTTING IT ALL
TOGETHER

The Road to Successful ITS Software Acquisition 20-1

CHAPTER 20
BEST PRACTICES CHECKLIST AND KEY POINTS

SUMMARY

Checklist 20-1 lists best practices that summarize the key activities you carry out as part
of software acquisition. As you pull together your program, it can be used in determining
your readiness to proceed with the acquisition.

Following the summary checklist, we have reproduced in one place for your convenience,
all key point summaries and checklists that appear throughout the document.

Chapter 20: Best Practices Checklist And Key Points Summary

20-2 The Road to Successful ITS Software Acquisition

Checklist 20-1. Best Practice Activities for Software Acquisition *

ü Use existing products to the maximum extent practicable.

ü Document the software acquisition plan that addresses the entire project
through operations and maintenance.

ü Build a team and collaborate with them to acquire the system.

ü Maintain on-going, open communications with the contractor and other
members of your team.

ü Prepare independent cost and schedule estimates.

ü Document requirements and have them serve as the basis of other activities
(test cases, budget and schedule, design, etc.).

ü Trade off requirements to decrease cost and schedule. Keep all three in synch.

ü Develop formal source selection criteria, which, for a software development
process, include assessment of the bidders’ software engineering process.

ü Identify problems, record them, and track their status.

ü Track expenditures and progress.

ü Manage risks: identify and resolve them. Conduct risk management in
conjunction with your contractor and other team members as an integral part of
the acquisition process.

ü Include system acceptance criteria in the contract.

ü Develop an acceptance test plan and carry out acceptance testing in accordance
with it. (Note: This plan could be developed by the contractor subject to your
review and approval.)

ü Have explicit contract language documenting licensing and ownership rights.

ü Develop training materials and carry out a training program for use and
operation of the system.

ü Develop a support strategy for the system.

ü Ensure software meets Federal requirements for architecture and standards
consistency.

* This checklist has been adapted to ITS systems from the Software Acquisition Capability
 Maturity Model (SA-CMM) [Ferguson, 1996] and The Program Managers Guide to Software
 Acquisition Best Practices, 1997.

Chapter 20: Best Practices Checklist And Key Points Summary

The Road to Successful ITS Software Acquisition 20-3

Key Points To Remember From Volume I

The Nature of Software:

• Software acquisitions are different from other types of projects.
• Missed schedules, cost overruns, and lack of visibility into the software and

software development are common.
• Different approaches are therefore needed to manage software projects.
• There are established managerial techniques that can be relied upon to

overcome the problems.
• ITS software experiences are similar to those encountered on other types of

software projects.
• This document is intended to help you find your way through what has been

termed the “software thicket.”

Key Points

Software Acquisition In A Larger Context:

• Although we will focus our attention on the software acquisition activities, they
take place in the context of a system acquisition, which in turn is part of an
overall process.

Key Point

Differing Perceptions of ITS Software:

Key Points

• The public and private sectors have very different perceptions of software.
These differences manifest themselves in the ways that they approach software
acquisitions and each other.

• Each sector perceives the situation as lose-win: they lose while the other sector
wins. In fact, it’s lose-lose; both sectors lose.

Themes of Successful Software Acquisition:

• Build your software acquisition around certain themes that should recur
throughout the various acquisition activities:

– People themes, which are akin to partnering.
– Management themes, on how to approach the acquisition.
– System themes, relating to the end product.

• The themes can guide you as to the best practices to employ in approaching
your software acquisition.

• Collectively, the themes address the problems commonly associated with
software and represent our response to the overarching theme that “software is
different.”

Key Points

Chapter 20: Best Practices Checklist And Key Points Summary

20-4 The Road to Successful ITS Software Acquisition

Key Points To Remember From Volume II

Sequence of Acquisition Activities:

• There is no simple step-by-step activity sequence that applies to all software
acquisitions.

• Developing system requirements and selecting a contracting vehicle drive many
of the other activities.

• Many acquisition activities take place in parallel. They feed off and build upon
one another.

Key Points

Building A Team:

• Build a team of professionals that contains the variety of skills needed to make
the project succeed.

• If possible, consider tapping other resources in your agency to gain access to
the needed skills. When this is not possible, you may have to contract for these
skills to gain access to them.

• Be sure to add the software contractor to your team as soon as the contractor
comes on-board.

Key Points

Planning The Project:

• Write a short project plan that documents your major approaches to the
acquisition.

• The project plan is a living document during the acquisition process; new
information will be added, and existing information may need to be revised.Key Points

Chapter 20: Best Practices Checklist And Key Points Summary

The Road to Successful ITS Software Acquisition 20-5

Requirements:

• Develop a good set of requirements. It is one of the most important things that
you can do on a software acquisition.

• Have the various members of the customer’s team participate in developing the
requirements.

• Document the requirements in a formal configuration-controlled document.
• Develop functional and performance requirements (the “what’s”) and not the

design or technical requirements (the “how’s”).
• Scrub the requirements to avoid asking for too much. Avoid requirements or

scope creep.
• Address quality factors and the ability of the system to accommodate anticipated

changes.
• As soon as possible after contract award, hold a requirements walk-through with

the contractor and other members of your team. Then sign the requirements
and place them under configuration control. Make sure the contract calls for
these activities.

• Establish a stable base of requirements. It is essential for the success of your
project.

• Address requirements issues as they arise, as part of the on-going requirements
management process.

• Flesh out the human interface requirements using rapid prototyping.
• Use the requirements as the basis for size, schedule, and cost estimates; build

versus buy decisions; design and development activities; and acceptance
testing.

Key Points

Build/Buy Decision(s):

• Consider buying your software, if at all possible, rather than building it.
• Consider a mix of build and buy, if buying alone does not meet project needs.
• The buy option is not without risk; however, the risks are manageable.
• Understand the off-the-shelf products and the implications of their use before

buying them.

Key Points

Chapter 20: Best Practices Checklist And Key Points Summary

20-6 The Road to Successful ITS Software Acquisition

Selecting The Contracting Vehicle:

• The familiar engineer/contractor (design-bid-build) used for construction projects
is not appropriate for software; it should not be used for software acquisitions.

• Work with your contracting or purchasing office and legal office early in the
project to explore your full range of options; challenge traditional thinking.

• Fixed-price contracting may not provide the needed flexibility for building
software. Consider a time-and-materials type of contract and/or innovative
contracting approaches as alternatives to fixed-price.

• Do not use fixed-price contracting practices under the guise of a cost-
reimbursement contract.

• Do not use a fixed-price contract for computer hardware in conjunction with a
cost-reimbursement contract for software.

• Fixed-price contracting may be appropriate for off-the-shelf software.
• Whatever approach is chosen, that approach will still require the application of

sound acquisition practices; a contract is not a substitute for them.

Key Points

Identifying The Software Environment:

• Identify the environment -- including the interfaces to legacy systems -- in which
the software will be operating.

• Do not unnecessarily constrain the system design by prematurely specifying the
computing hardware or operating system.Key Points

Resolving The Intellectual Property Rights:

• Regardless of whether or not they have precise legal meanings, terms such as
“ownership” or “licensing” have different connotations to different people.

• Before a contract is signed, reach agreements on intellectual property rights for
the software.

• Walk through the contracting language together; discuss the implications,
resolve issues, and ensure the contracting language clearly and explicitly states
your understandings.

• Be explicit with respect to source code and object code and the media on which
it will be delivered.

• You may wish to acquire the services of a lawyer who specializes in software
intellectual property rights.

• Think through your true needs before insisting on certain rights at the negotiating
table.

Key Points

Chapter 20: Best Practices Checklist And Key Points Summary

The Road to Successful ITS Software Acquisition 20-7

Project Scheduling:

• Two flawed practices are common with software schedules:
– They are established independently of requirements
– They are set in the impossible-to-do zone

• Develop a schedule that realistically matches the requirements and what you’ve
set out to accomplish. Don’t use best case estimates; they won’t be met.
Pessimistic estimates often turn out to be the most realistic ones.

• Adjust the schedule, requirements, and budget so that they are consistent with
one another throughout the project.

• Stretching out a realistic schedule is one of the most cost-effective ways of
lowering the cost and overall development effort of a project.

• Use well-defined “yes/no,” “done/not done” milestones.
• Get as many independent size estimates for the system as possible, including

those of the contractor and the software expert on your team. Resolve the
differences.

• Use feedback on actual progress to derive more realistic schedule estimates for
future activities.

Key Points

Acceptance Testing:

• Plan a formal acceptance test strategy, including the use of formal
documentation, before an RFP is issued. Reflect this approach in the contract.

• Schedule test planning and preparation activities to begin as early as possible
after contract award, and to proceed throughout the development period in
parallel with the system development activities.

• Base acceptance testing on the requirements.
• Carry out several varieties of rigorous testing; simple, benign tests are not

sufficient.
• Carry out testing as a teaming activity.

Key Points

Training, Operations, and Software Maintenance:

• Plan for support activities early, and reflect your approach in the contract.
Prepare for support in parallel with development activities.

• Allow adequate budget for support activities to take place. Over the life of the
system, support activities generally consume more budget resources than do the
development activities.

Key Points

Chapter 20: Best Practices Checklist And Key Points Summary

20-8 The Road to Successful ITS Software Acquisition

Project Management:

• The customer has an active role to play even after a contract is issued.
• Project reviews, documentation reviews, and quantitative measurement data are

three techniques for gaining visibility into the project and the software
development process.

• Reflect the management techniques you choose in the contract.
• Make sure the contract allows for direct access to, and open communications

with, any software contractors.
• If the project slips, do not try to “play catch up.” Either stretch the remaining

schedule or reduce functionality in the same proportion as the slip.
• Ask bidders to describe their development process, specifically with regard to

software quality assurance and process improvement. Monitor the developer’s
quality assurance program during in-process reviews and through spot checks of
their quality assurance program.

• Manage the expectations of stakeholders not directly working on the project.

Key Points

Software Configuration Management:

• A formal software configuration management process is essential to the health
of your program.

• Establish baselines and employ formal procedures for making changes to them.
A baseline is a “snapshot” of everything associated with the software.

• Check to ensure that the developer establishes sound configuration
management procedures and follows them.

Key Points

Software Risk Management:

• Continually carry out risk management activities throughout the life of a software
project.

• Risk management steps comprise risk identification, analysis, planning,
resolution, and monitoring.

• Risk management is most effective when done as a teaming activity between
the customer and contractor.

• For risk management to work, there must be an atmosphere that fosters people
to come forward with risks without “finger pointing.”

Key Points

Chapter 20: Best Practices Checklist And Key Points Summary

The Road to Successful ITS Software Acquisition 20-9

Checklist 8-1. What To Include In The Project Plan

ü Project Description: A brief narrative of what the project is all about, its goals,
objectives and scope.*

ü Justification: Why the acquisition will take place; saving money, alleviating
congestion, providing better on-time service are all possibilities; although
increased productivity is sometimes offered as justification, in practice, this
seldom materializes.

ü Project Schedule: An overall schedule showing when the major milestones
take place.*

ü Roles: Who will manage the project? What is the size and composition of
your acquisition team? What organizations will be involved? Who are the
contact points within each of these organizations? What are their respective
roles? Who will be responsible for training? For maintenance? Can include
an organization chart.

ü Funding Estimates and Sources: You can refer back to these to ensure that you
are living within your constraints.

ü Facilities: Where will the work be carried out? Where will the system and its
users be housed upon completion? Will any special tools or equipment be
needed?*

ü Acquisition Strategy: Will the system be built from scratch? To what extent
will off-the-shelf components be used or sought?* How will such components
be integrated into the system? Are there pieces of the system that can be
reused from other projects?* Will the system be build incrementally using a
multi-phase approach, in which each phase contains a task to define and scope
the next phase? Will a prototype be built? How will off-the-shelf products be
integrated with each other?

ü Environment: Are there any legacy systems that must be interfaced with?
Field sensors, roadway or transit vehicle devices? How about other
organizations or neighboring jurisdictions?

ü Standards: What technical standards must be complied with?

ü Major Risks and Risk Management Approach: How will risks be managed?
Have any key risks been identified?*

ü Contracting Strategy: What work will be done in-house? What will be
contracted for? Will consultants be hired?

[Checklist continued on next page]

Chapter 20: Best Practices Checklist And Key Points Summary

20-10 The Road to Successful ITS Software Acquisition

Checklist 8-1. What To Include In The Project Plan
(Concluded)

ü Type of Contract(s):* What options are being considered? Fixed price, cost-
plus, or time and materials? Design/build or system manager? How many
contracts will be needed?

ü Contract Management: How will oversight be accomplished? How will
progress be tracked and monitored?*

ü The End Users: Who will operate the system? Administer it? Maintain it?
What will be the sources of staffing and funding for these activities?

ü Acceptance Strategy:* What will be the basis for accepting the system?

ü Training Concept: How will user training be accomplished?

ü Maintenance Concept: How will the system be maintained once it is
accepted?

ü Constraints:* What are the realities that you must live within?

* Recommended in the “Software Acquisition Capability Maturity Model (SA-CMM),” [Ferguson, 1996,
 pages L2-4 and L2-5].

NOTE: Italicized items are unique to software, or are more critical for software then they may be for
some other types of projects.

Chapter 20: Best Practices Checklist And Key Points Summary

The Road to Successful ITS Software Acquisition 20-11

Checklist 9-1. What to Include in a Requirements Document

Functional requirements
ü What capabilities the system must have. The trick is to stay at a functional

level and not prescribe a solution.
ü Each required function takes the form of a sentence with the word “shall” and

should be testable. (e.g., “The system shall display a congestion warning
message on variable message signs.”)

ü Define whether the function is manual, automated, or semi-automated (e.g., the
system shall choose a message and display it; the operator shall type in a
message which gets displayed; the operator chooses from among several pre-
defined messages and causes the system to display it).

ü High-level human interface requirements. More detailed human interface
requirements may also be included, but rapid prototyping is the preferred
approach for them.

ü Algorithms or equations.
ü Year 2000 compliant (see topic sheet 1 on The Year 2000 Problem (Y2K)).
ü Conforms to the National ITS Architecture.

Performance requirements
ü Response times, expressed as averages, standard deviations, 90 percentile, etc.

(“The systems shall have a mean response time of 30 seconds with 90 percent
of all responses within 45 seconds.”)

ü Loading requirements (e.g., being able to handle simultaneous inputs from a
specified number of sensors), including degradation requirements, if any,
under excessive load.

ü Throughput (e.g., number of transactions per hour).
ü Capacity (“The system shall be able to store 30 days of incident reports.”)
ü False alarm rates, including the algorithms to be used in determining the rates.
ü Accuracy, specifying the algorithms.
ü Reliability and maintainability (e.g., mean time between failures; mean time to

repair).
ü Security (see topic sheet 2 on Security).
ü Safety (see topic sheet 5 on Software Safety).

[Checklist continued on next page]

Chapter 20: Best Practices Checklist And Key Points Summary

20-12 The Road to Successful ITS Software Acquisition

Checklist 9-1. What to Include in a Requirements Document
(Concluded)

Interfaces, external and internal, including the data (inputs and outputs)
and controls that flow across the interface*

ü To/from field devices.
ü To/from displays.
ü To/from users.
ü To/from other systems, including legacy systems.
ü To/from other jurisdictions.
ü Between major subsystem components (e.g., between a vehicle subsystem and

a transit management center).
ü Between software components (e.g., between incident detection algorithms and

data collections.

Inputs

ü Identify its source (automated and human).

ü Frequency of arrival.

ü Valid ranges and units of measures.

ü Give each one a unique name and identifier.

Outputs

ü Include real-time outputs (e.g., alerts to a display) and non-real-time (e.g.,
summary reports printed out on paper).

ü Identify its destination (devices or users).

ü Frequency of generation.

ü Valid ranges and units of measure.

ü Give each one a unique name and identifier.

*Data flows in the National ITS Architecture are a good source of candidate
 interface requirements, including the data flows and their descriptions.

Chapter 20: Best Practices Checklist And Key Points Summary

The Road to Successful ITS Software Acquisition 20-13

Checklist 9-2. Suggested Agenda Items For A Requirements Walk-Through

ü Clarify ambiguous or vague requirements.
ü Remove inconsistencies between requirements.
ü Supply missing requirements.
ü Replace existing requirements with better alternatives that are identified.
ü Eliminate unnecessary or hard-to-meet requirements, or mark them as low

priority.

ü Prioritize the remaining requirements.

Scrub session

ü Eliminate low priority or high cost requirements; “retain only those that are
absolutely necessary.”

ü “Simplify all requirements that are more complicated than absolutely
necessary.”

ü “Substitute cheaper options” when they are available.

ü Defer lower priority requirements into later versions of the software.

*Quotations taken from S. McConnell, Rapid Development: Taming Wild Software Schedules,
Microsoft Press, 1996, page 329.

Chapter 20: Best Practices Checklist And Key Points Summary

20-14 The Road to Successful ITS Software Acquisition

Checklist 12-1. What to Consider When Identifying the
Software Environment

ü Interfaces to legacy and other existing systems or applications (what legacy
software and systems must the new software interoperate or interface with,
including application monitoring and management systems?). *

ü Existing communications and networks (including protocols, characteristics
such as line speed, bandwidth, dedicated or dial-up, type of network,
significant components).

ü Interfaces to planned future applications or systems (what other software is
planned for the future and will need to interoperate or interface with this
software?). *

ü User population and user interface (e.g., graphical user interface (GUI), point-
and-click).

ü Location/physical environment (e.g., office, computer room, outside; lighting
conditions, space constraints impacting use of mouse or keyboards;
uninterruptable power supply).

ü Security measures that implement security policies and procedures, to include
physical safeguards (locked rooms), software protection (passwords), and
hardware systems (so-called firewalls to the Internet).

ü Performance (how much data to be processed and how fast it must be
processed, data accuracy).

ü Standards.

ü Hardware (e.g., PC, mini, or mainframe).**

ü Operating system.**

ü Data base management system (DBMS).**

ü Programming languages, development methodologies, maintenance
requirements. **

 * The National ITS Architecture can assist in identifying interfaces to other systems.
**Only if absolutely necessary.

Chapter 20: Best Practices Checklist And Key Points Summary

The Road to Successful ITS Software Acquisition 20-15

Checklist 13-1. Intellectual Property Rights

General Rights

ü Who owns the software? What rights does that entail?

ü Who holds the copyright to the software? What rights does that entail?

ü Should copyright notices be included as source code comments? Who should
be listed as retaining the copyright?

Customer Rights

ü Can the customer make additional copies of the operational software for their
internal use on this project? On other projects?

ü Can the customer distribute copies of the operational software to other
agencies or departments within their state?

ü Can the customer distribute copies of the operational software or issue licenses
to other states? Can such a license allow the other state to make changes or
enhance the software, or does it only give them the right to use it?

ü Can the customer give away copies of the operational software for free?
Charge a fee?

ü Can the customer change the operational software or make derivative works?

ü Can the customer disclose the source code of the operational software to other
vendors or allow them to make changes to the software?

ü For the previous six items on the checklist, which portions of the operational
software can be copies or distributed: the source code? the object code? the
documentation? how many copies may be made?

ü Does the customer have rights to any subsequent upgrades made by the
contractor?

ü Are there portions of the software that are needed to run the system that are not
covered by the licensing agreements? Such items could include the operating
system (e.g., Windows, UNIX), a commercial database management system, a
geographic information system, or a digital map. For these items, there may
be a different number of copies that can be made, run, distributed, etc. than
there is for the rest of the software.

ü Will the customer have access to the source code? If so, as compilable files or
only as listings?

[Checklist continued on next page]

Chapter 20: Best Practices Checklist And Key Points Summary

20-16 The Road to Successful ITS Software Acquisition

Checklist 13-1. Intellectual Property Rights
(Concluded)

ü Will the customer have access to the support tools and development
environment that were used to compile the software, keep it under
configuration control, test it, etc.?

ü Will the customer have rights to all the training material?

ü Will the customer have rights to the executable environment needed to run the
software or must these be purchased separately from other vendors?

ü Will the customer have access to documentation on database formats and
interface protocols?

ü How many computers can contain copies of the software? How many can run
the software? (Note: These numbers may be different to allow for backup
copies.)

ü How many computers can simultaneously run or access the software? (Note:
On a network, all computers may be able to run a piece of software or access a
database, but the licensing agreement may restrict the simultaneous number.)

ü How many users have license to run the software? How many
simultaneously?

ü Can the software be run across a network? (Note: There are two options here.
the software could be run remotely, that is, on the “other” machine where the
copy resides; or, a temporary copy could be made on your machine and run
locally.)

Contractor Rights

ü Can the contractor distribute the software to other customers? If so, can they
charge for it?

ü Can the contractor reuse portions of the software on other contracts?

ü Can the contractor copyright or patent the software or patent other parts of the
system? If so, will the customer have to pay royalty rights?

ü Does the contractor have rights to any upgrades made by the customer?

Chapter 20: Best Practices Checklist And Key Points Summary

The Road to Successful ITS Software Acquisition 20-17

Checklist 14-1. Software-Related Activities and Milestones
on the Project Schedule

Contract negotiations
ü Walk-through of the intellectual property rights issues.
ü Signing the contract (milestone).
ü Dates on which the agency furnishes contractually-required items to the

contractor (equipment, space, services, etc.) (milestones)
Requirements

ü Requirements walk-through.
ü Signing the requirements (milestone).
ü Rapid prototyping.

Size estimates
ü Independent size and schedule estimates by contractor.
ü Resolving differences.

Management controls
ü Risk management reviews
ü Project reviews.
ü Inspections.
ü Document reviews.
ü Document approvals (milestones).

Acceptance testing
ü Detailed acceptance test planning.
ü Conducting acceptance tests.
ü Analysis of acceptance test results.
ü System acceptance (milestone).

Training
ü Training preparation and planning.
ü Conducting the training.

Support
ü Support facility development.
ü Transition from development to operations and maintenance (milestone).

Chapter 20: Best Practices Checklist And Key Points Summary

20-18 The Road to Successful ITS Software Acquisition

Checklist 15-1. What to Include in the Acceptance Test Plan

Organizations and their respective roles; who will be responsible for:
ü Conducting the tests?
ü Recording the data?
ü Analyzing the data and reporting the results?

Where will the acceptance tests take place
ü The contractor’s location?
ü An operational facility?
ü In transit vehicles?

Testing schedule (should allow time for data to be analyzed; may want to
include a dry run phase)

ü Computers to run the tests.
ü Field devices (e.g., installed variable message signs; bus sensors).
ü Other systems (e.g., legacy systems; systems in neighboring jurisdictions).

Software needed
ü Special test software (simulators to stress the system, spreadsheets to analyze

results, etc.).
Overall system acceptance criteria (Note: the pass/fail criteria for an
individual test are listed below under “List of tests to be run.”)

ü Acceptable failure rate (e.g., pass all the tests designated as critical and 80
percent of the remaining tests).
What happens when tests fail or do not proceed as planned

ü Role of regression testing
List of tests to be run; for each test, indicate:

ü Test identifier (e.g., Test 1A)
ü Purpose of test (brief statement)
ü Data to be recorded
ü Pass/fail criterion (depending upon the test, the test case may be a better place

to provide this information).
Traceability

ü For each test, show to which requirement(s) the test traces (shows that test is
requirements-based; can be viewed as protection for the contractor so that the
new requirements are not “slipped in”).

ü For each requirement, show to which test(s) the requirement traces (shows the
coverage of testing; can be viewed as protection for the customer so that all of
the requirements are tested)

Chapter 20: Best Practices Checklist And Key Points Summary

The Road to Successful ITS Software Acquisition 20-19

Checklist 15-2. What to Include in the Acceptance Test Procedures

For each test, include the following:

ü Pre-test activities needed to set up the test (e.g., turn on or off certain pieces of
equipment, load a piece of software).

ü Step-by-step procedures used to carry out the test.

ü Procedures used to reduce and analyze the data (explicitly state equations,
statistical formula, averaging techniques, etc.)

ü Computers needed (to run tests; to analyze results)

ü Field devices needed to run tests (e.g., installed variable message signs).

ü Other systems (e.g., legacy systems; systems in neighboring jurisdictions).

Chapter 20: Best Practices Checklist And Key Points Summary

20-20 The Road to Successful ITS Software Acquisition

Checklist 15-3. What to Include in the Acceptance Test Cases

ü Input values

ü Source of input (manual entry, field device, simulated data, etc.)

ü How long the test is to be run (e.g., collect loop detector data for one hour)

ü Expected value(s) of the output

ü Pass/fail criterion for the test (depending upon the test, the test plan may be a
better place to provide this information)

ü Traceability between test cases and tests to ensure that a test case exists for all
tests.

Chapter 20: Best Practices Checklist And Key Points Summary

The Road to Successful ITS Software Acquisition 20-21

Checklist 15-4. What to Include in the Acceptance Test Log

ü Name of test

ü Date and time test started

ü Date and time test ended (only for tests that last for extended duration; for
many tests only the start time is needed)

ü Who carried it out

ü Any deviations from the test procedures (e.g., test conductor inadvertently left
out a step; error was found in test procedure, so it was modified “on the fly”)

ü Recorded outputs

Chapter 20: Best Practices Checklist And Key Points Summary

20-22 The Road to Successful ITS Software Acquisition

Checklist 15-5. What to Include in the Report of the Test Results

ü Overall information (e.g., when the tests were conducted)

ü Overall report on whether the system passed and what follow-on steps are
needed

Test-by-test results

ü Test identifier, also indicate which test procedure was used and which test case
was used

ü Any deviations from the test procedure

ü Recorded data from the test log

ü Computed data

ü Whether the test passed or failed (in accordance with the documented criteria)

Chapter 20: Best Practices Checklist And Key Points Summary

The Road to Successful ITS Software Acquisition 20-23

Checklist 16-1. Personnel Roles Needed For System Support

ü Shift supervision of the end-user operators

ü Administration of the system to keep it running

ü Generation of management reports from the system

ü Review of data produced by the management reports

ü Installation of new computing hardware or displays

ü Integration of additional field devices into the system

ü Fixing software bugs

ü Upgrading the software

– Installing new releases of off-the-shelf software
– Adding functionality to custom software
– Modifying control algorithms

ü Diagnosis of problems and repairing hardware

ü Training for all the above, both when the system first comes on-line and, later,
when personnel turnover occurs

Chapter 20: Best Practices Checklist And Key Points Summary

20-24 The Road to Successful ITS Software Acquisition

Checklist 18-1. How To Determine If Configuration Management
Is Adequate for Your Program *

ü Is a configuration management plan documented for the project?

ü Have the products that will be placed under configuration control been
identified?

ü Is the configuration management process integrated with the project plan and
followed as an integral part of the culture?

ü Are all versions (of configuration items) controlled?

ü Has an electronic library been established that can store and retrieve multiple
baselines?

ü Are configuration control tools used for status accounting and configuration
identification tracking?

ü Are change requests and problem reports for all configuration recorded,
approved, and tracked according to a documented procedure?

ü Are all changes to baselines controlled in accordance with procedures?

ü Are all baselines periodically reviewed and audited to assess the effectiveness
of the configuration management process?

ü Are all pieces of information shared by two or more organizations placed
under configuration management?

* “The Condensed Guide to Software Acquisition Best Practices, 1997” and [Paulk, 1993].

The Road to Successful ITS Software Acquisition 21-1

CHAPTER 21
WHERE TO GET MORE HELP

Software is a very rich topic area. Clearly this document can only scratch the surface.
Indeed a comprehensive software bibliography would probably be longer than the entire
document. Nonetheless, we’ll make a stab at listing some key references where more
help is available. We begin by giving some general references, and then follow with
references that are pertinent to the various individual chapters of the document.

General references

A good starting point are two classic works by Frederick P. Brooks, which are must
reading for anyone about to embark on a software acquisition. The first is a journal
article; the second a book. Both are easy reading, widely quoted, and contain many
pearls of wisdom. Their messages are as relevant today as when they were first written:

• F. Brooks, “No Silver Bullet: Essence and Accidents of Software Engineering,”
Computer, Vol 20, issue 4, pages 10-19, April 1987.

• F. Brooks, The Mythical Man-Month: Essays on Software Engineering,
Addison-Wesley, 1975. If your time is really limited, then be sure to a least read
Chapter 2, “The Mythical Man Month.”

The two works have more recently been combined into a single volume:

• F. Brooks, The Mythical Man-Month: Anniversary Edition, Addison-Wesley,
1995 (ISBN 0-201-83595-9). However, this volume does not have the striking
graphics that were included in the original journal article listed above.

We found the following book to be a good source of practical advice in managing
software projects:

• Steve McConnell, Rapid Development: Taming Wild Software Schedules,
Microsoft Press, 1996.

The Software Engineering Institute (SEI), an arm of Carnegie Mellon University, is a
Federally Funded Research and Development Center set up by the Department of
Defense to assist with the transition of software engineering technology. (Even though
SEI products were developed for Department of Defense acquisitions, they contain good
commonsense software management principals that are also applicable to ITS.) SEI
technical documents can be downloaded for free at <URL:http://www.sei.cmu.edu>. The
Software Engineering Institute can be reached at (412) 268-5800. Their mailing address is
Software Engineering Institute, Carnegie Mellon University, 4500 Fifth Avenue,
Pittsburgh, PA 15213-3890.

Chapter 21: Where To Get More Help

21-2 The Road to Successful ITS Software Acquisition

The Software Technology Support Center (STSC) provides telephone support, technical
consulting, and documentation for government agencies. Their on-line documentation,
white papers, and back issues of their Crosstalk magazine can be downloaded for free at
<URL:http://www.stsc.hill.af.mil/>. STSC Customer Service can be reached at (801) 775-
5555 or via e-mail at custserv@software.hill.af.mil. Their mailing address is Software
Technology Support, Ogden Air Logistics Center TISE, Hill Air Force Base, UT 84056.

The Software Program Managers Network, another Department of Defense initiative,
wrote four very focused pocket-sized pamphlets. They highlight the essence of good
software practice in checklist format. You may want to keep them close at hand and refer
to them often during your acquisition. They are entitled:

• The Condensed Guide to Software Acquisition Best Practices

• Little Yellow Book of Software Management Questions

• The Little Book of Bad Excuses

• Project Breathalyzer

The Software Program Managers Network can be reached at (703) 521-5231. Their
mailing address is Software Program Manager’s Network, P.O. Box 2523, Arlington VA
22202. They can be reached over the Internet at <URL:http://www.spmn.com>.

The International City/County Management Association (ICMA) prepared a guide for
local government managers who have been called upon to make decisions about the
acquisition and implementation of information systems. For more information, call
(312) 977-9700.

• Roscoe Sandlin, Manager’s Guide to Purchasing an Information System, 1996.

The Institute of Electrical and Electronics Engineers has written a number of software
standards and recommended practices over the years. IEEE Recommended Practice for
Software Acquisition, IEEE Std 1062-1993 provides general acquisition guidance for
organizations that use software they acquire from suppliers. It describes useful
acquisition practices and activities, and includes a number of checklists for organizing and
planning your project. IEEE standards on more specific topic areas that are felt to be
useful on ITS acquisitions are noted under the appropriate headings below. IEEE
documents can be ordered from: The Institute of Institute of Electrical and Electronics
Engineers, at (800) 678-4333 or by mail from IEEE Operations Center, Sales Office, 445
Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331. A list of IEEE software standards
appears at <URL:http://standards.ieee.org/catalog/software.html>.

As identified in various places throughout this document, the U.S. National ITS
Architecture provides valuable information that can assist in your ITS acquisition. It is
available in several formats, including a CD-ROM that can be ordered from the ITS Joint
Program Office at (202) 366-9536 or on-line at
<URL:http://www.its.dot.gov/architecture/cd_order.html>; downloadable documents

Chapter 21: Where To Get More Help

The Road to Successful ITS Software Acquisition 21-3

from ITS America at <URL:http://www.itsa.org/archdocs.nsf>; on-line browsable
hypertext format in HTML at <URL:http://www.odetics.com/itsarch>; or in paper copy
that can be purchased from ITS America.

U.S. Government software publications are distributed through the following sources, and
are available in electronic or paper media:

Asset Source for Software Engineering Technology (ASSET), Science Application
International Corporation, 1350 Earl L. Core Road, P.O. Box 3305, Morgantown,
West Virginia 26505. Phone: (304) 284-9000. FAX: (304) 284-9001. e-mail:
sei@asset.com Internet: <URL:http://www.asset.com/sei.html>

National Technical Information Service, U.S. Department of Commerce,
Springfield, VA 22161-2103, Phone: (703) 487-4600

Defense Technical Information Center, 8725 John J. Kingman Road Suite, 0944
Ft. Belvoir, VA 22060-6218. Phone: (800) 225-3842 or (703) 767-8222.

Chapter-specific references

The following references provide useful information specific to individual chapters of this
document.

Chapter 8: Planning The Project

To assist in writing the project plan:
IEEE Standard for Software Project Management Plans, IEEE Std 1058.1-1987
(revised 1993). (See General references above for ordering IEEE standards.)

Chapter 9: Requirements

The content and suggested outlines for requirements documents:
IEEE Recommended Practice for Software Requirements Specifications, IEEE
Std 830-1993. (See General references above for ordering IEEE standards.)

Literally hundreds of texts have been written on the subject of requirements
analysis. A widely used book in this area is:
Al Davis, Software Requirements: Objects, Functions, and States , Prentice Hall,
1993 (ISBN 0-138-05763-X)

Chapter 11: Selecting the Contracting Vehicle

An excellent report that describes the different types of contracts and contracting
approaches used under Federal Aid regulations and discusses the applicability of
each:
Booz-Allen, FHWA Federal-Aid ITS Procurement Regulations and Contracting
Options, August 1997. Distributed by FHWA as one of the procurement

Chapter 21: Where To Get More Help

21-4 The Road to Successful ITS Software Acquisition

guidance initiative documents, it is also available over the Internet at
<URL:http://www.tfhrc.gov/qkref/gene/title.htm>

The Information Technology Omnibus Procurement (ITOP) is one of the
information technology services run by Transportation Administrative Services
Center in U.S. DOT. They provide one-stop-shopping for contractual services, in
the areas of information systems engineering, systems facility management, and
information systems security services. This includes access to over twenty pre-
certified contractor teams comprising over one hundred contractors with access to
many others and other mechanisms to assist in contracting for software. They
also provide consulting support such as preparing an RFP, developing an
acquisition strategy, drafting an SOW, or gaining access to information
management personnel. For more information, contact Dell Berry at
(202) 366-1211 or click on the link to the ITOP procedural handbook on the
Internet at <URL:http://itop.dot.gov/>.

Chapter 14: Project Scheduling

A good introduction to estimating the size of a software project written by two of
the leaders in the field:
Lawrence Putnam and Ware Myers, Executive Briefing: Controlling Software
Development, IEEE Computer Society Press, 1996.

An overview on cost estimation that contrasts the characteristics of various cost
estimation methods such as Price, Slim, COCOMO:
Donald J. Reifer, “Cost Estimation,” Encyclopedia of Software Engineering by
J. Marciniak, Vol. 1., John Wiley and Sons, 1994, pp. 209-220.

The classic text on software cost estimation:
Barry W. Boehm, Software Engineering Economics, Prentice-Hall, 1981
(ISBN 0-13-822122-7).

A number of authorities believe that a technique called function points is better for
estimating projects that are the more traditional lines of code. Beyond the scope
of this document, function points are described in many places including:
David Garmus and David Herror, Measuring the Software Process: A practical
Guide to Functional Measurements, Yourdon Press, 1996 (ISBN 0-13-349002-5).
Capers Jones, Applied Software Measurement: Assuring Productivity and
Quality, McGraw-Hill 1991 (ISBN 0-07-032813-7).

Chapter 16: Training, Operations, and Software Maintenance

The Institute of Transportation Engineers is developing a recommended practice
entitled “Operations and Management of Intelligent Transportation Systems.” It
includes a chapter on computer systems that addresses software issues. When it
receives final approval (expected in early 1998), the document can be ordered
from the ITE Bookstore, 525 School St. SW, Suite 410, Washington, DC 20024-
2797.

Chapter 21: Where To Get More Help

The Road to Successful ITS Software Acquisition 21-5

The text by T. Pigoski, Practical Software Maintenance: Best Practices for
Managing Your Software Investment, John Wiley & Sons, 1997 provides an up-
to-date view of software maintenance by a professional who has a number of
“practicing” years of experience in this discipline.

Chapter 17: Project Management

An excellent source for information on the various plots of software metrics and
their use:
The MITRE Corporation, Software Reporting Metrics Revision 2, November
1985. It can be ordered for free by writing to Document Control, The MITRE
Corporation, 202 Burlington Road, Bedford MA 01730. Ask for document
ESD-TR-85-145.

Contents of software quality assurance plans:
IEEE Standard for Software Quality Assurance Plans, IEEE Standard 730-1989.
(See General references above for ordering IEEE standards.)

To assist with independent verification and validation (IV&V):
IEEE Standard for Software Verification and Validation Plans, IEEE Standard
1012-1986 (revised 1992). (See General references above for ordering IEEE
standards.)

Chapter 19: Software Risk Management

Tables of software risk areas:
Robert N. Charette, Software Engineering Risk Analysis and Management, 1989,
page 186, table 5.2.
J. Marciniak, Software Acquisition Management, page 131, table 6-1.

Topic Sheet 2: Security

The National Institute of Standards and Technology maintains a comprehensive
Computer Security Resource Clearinghouse at:
<URL:http://csrc.ncsl.nist.gov/>

The CERT Coordination Center provides 24-hour technical assistance for
responding to computer security incidents, provides product vulnerability
assistance, takes proactive steps to raise the community’s awareness of computer
security issues through technical documents and seminars, has security tools, and
conducts research targeted at improving the security of existing systems.
<URL:http://www.cert.org/>

There are a number of commissions and committees addressing security issues:
• The President’s Commission on Critical Infrastructure Protection (PCCIP)

<URL:http://www.pccip.gov>

Chapter 21: Where To Get More Help

21-6 The Road to Successful ITS Software Acquisition

• The International Institute for Surface Transportation Policy Studies
(IISTPS) <URL:http://transweb.sjsu.edu>

• The National Science and Technology Council (NSTC) Research and
Development Committee is investigating information security in the
transportation domain. <URL:http://www.volpe.dot.gov/pubs/nstc/>

See also the bibliography of texts, periodicals, and Internet material listed in the
ITS Information Security Analysis report cited in the topic sheet.

Topic Sheets 3 and 4: SA-CMM and SW-CMM

See General references above for ordering SEI and other government publications
through ASSET, NTIC, and DTIC.

Topic Sheet 5: Software Safety
IEEE Standard For Software Safety Plans, IEEE Standard 1228-1994. (See
General references above for ordering IEEE standards.)

Two leading texts on software safety are:
• Nancy Leveson, Safeware: Systems Safety and Computers, Addison-

Wesley 1995 (ISBN 0-201-11972-2)
• Peter Neuman, Computer-Related Risks, ACM Press, Addison-Wesley

1995 (ISBN 0-201-55805-X)

The Road to Successful ITS Software Acquisition 22-1

CHAPTER 22
CONCLUDING REMARKS

We hope we have been able to help you with your ITS software acquisition. We started
out by explaining how software is different. The rest of the document is essentially our
recommended response to that difference. We didn’t give you the classic answer
traditionally used on large government acquisitions. That “solution” imposes an
excessive documentation burden on an acquisition in an attempt to control it. And in
spite of all the paper products that are required (or perhaps, because of them), the projects
are still late, over budget, and perform poorly if at all.

Instead, we have taken a process-oriented approach. It is centered around a series of
themes that deal with the system, the management approach, and most importantly, the
people. Then we built upon those themes, showing how they play out in certain key
activities.

To be sure, we haven’t been able to give you all the answers. Your software acquisition
will still be hard work, requiring your hands-on, active management involvement. There
are no quick fixes, panaceas, or cure-alls. No silver bullets. The road ahead may not be a
totally smooth one. But perhaps it will be less bumpy because you’ll know the potholes
to avoid. And that may keep small risks from growing into major problems.

As Brooks wrote in his classic paper No Silver Bullet: Essence and Accidents of Software
Engineering, “There is no easy road, but there is a road.” Good luck!

PART SIX:

TOPIC SHEETS

The Road to Successful ITS Software Acquisition TS1-1

The human interface represents all the interactions between a person and a computer system.
It includes user inputs (including data and commands), the system’s output to the user, and how
those outputs sound or appear (such as on a screen or in a printed report). It also includes how
data and commands are specified by the user to the computer: does the user type something
in, select something from a menu, click on a button, use a mouse or a keyboard or a touch
screen or voice input, and other considerations.

TOPIC SHEET 1
RAPID PROTOTYPING

Rapid prototyping is the recommended technique for fleshing out human interface
requirements. This topic sheet provides more information on this subject.

In rapid prototyping, the developers build a “mock-up” of a human interface. The users
are then given the opportunity to “kick the tires” of the prototype. The users provide
comments on what they’ve seen, and suggest changes to the interface. The developers
then refine the prototype based upon this feedback, show the revised interface to the
users, who then provide further comments. This iterative process is repeated until it
converges on an acceptable human interface for the system. The actual system is then
built using this interface, with the rapid prototype serving as the requirements
“document.”

Rapid prototyping is an effective method for collaboration and open communications
between users and developers. It provides a way for end-users to give direct feedback to
the software developers who act upon what they have heard and solicit further feedback
from the users. Success is achieved through continuous, on-going interactions between
customer and developer; thus, end-users must be made available for any rapid prototyping
activity.

How can rapid prototyping achieve such fast turn-around when actual systems can take
months or even years to develop? The answer is that the prototype is only a partial
solution to the final product. There is nothing “behind the screen.” “Canned” or
“dummy” data are used. Databases are not updated; messages and data are not sent to
other systems; and the prototype does not fully edit all data. The software needed to
provide the full functionality and keep a system running accurately and smoothly, even if
some components fail, is often the most difficult and time consuming to develop; such
software is generally not part of a prototype.

Rapid prototyping offers a number of advantages:

• Better human interfaces. Because of the iterative process described above, rapid
prototyping results in a human interface that has been refined and improved many
times. The interface is tailored to the needs and wants of the user. Contrast this

Topic Sheet 1: Rapid Prototyping

TS1-2 The Road to Successful ITS Software Acquisition

with the traditional approach, in which the first cut of the human interface (often
built from the developer’s viewpoint) is the one that gets implemented and used.

• User ownership and “buy in.” Users see their suggestions take shape in various
iterations of the prototype. They take a sense of ownership on what is built.

• Visibility. Rapid prototyping directly addresses the problem that paper design
documents may give little insight as to how the final system will look or feel.
Rapid prototyping gives the customer something tangible to review. Similarly, for
those who are defining the requirements, it gives them an opportunity to see how
their ideas might work.

Depending on the application, rapid prototyping can be limited or can result in extensive
representations of the eventual system. In some cases, pictures of sample computer
screens may suffice. Paper drawings or software could be used to produce them without
any actual programming taking place. This would be appropriate, for example, in defining
the layout of various management reports. In other cases, a more extensive prototype
may be needed. This would allow users to interact with the prototype and see how it
responds. Users can conduct a hands-on “test drive” of menus, commands, buttons, data
entry and error correction techniques, etc. There are modern software products that can
be used to develop these higher fidelity prototypes quickly.

There are also some negatives to rapid prototyping:

Rapid prototyping is not a silver bullet.

• People sometimes (too often) mistake the rapid prototype for the “real thing.”
They see the prototype working and don’t understand why that same capability
can’t be replicated at once in the real system. They don’t appreciate that there is
little to nothing behind the panel in the prototype. This is very different from
hardware, where no one would mistake an automobile mock-up for the real thing.

• Rapid prototyping activities can take on a life of their own. Rapid prototyping can
be fun when users see how their ideas come to life. “The customer goes crazy
adding features and making changes.” [Gordon and Bieman, 1995]

Several good practices can help make rapid prototyping activities a success and overcome
the problems cited above:

• Carefully plan the activities. What will be prototyped? How will users evaluate
the prototype? Will questionnaires be used? (If so, they must be developed.)

• Set a rigid deadline for cutting off all rapid prototyping activities.

• If rapid prototyping surfaces new requirements, carefully consider their schedule
and budget impact before deciding to implement them. Don’t try to squeeze more

Topic Sheet 1: Rapid Prototyping

The Road to Successful ITS Software Acquisition TS1-3

into the existing project. Either provide schedule and budget relief for
implementing the new requirements, or keep to the existing schedule by foregoing
other requirements and implementing the new ones instead.

Reference cited

V. Gordon and J Bieman, “Rapid Prototyping: Lessons Learned,” IEEE Software,
Vol. 12, No. 1, page 85, 1995

The Road to Successful ITS Software Acquisition TS2-1

TOPIC SHEET 2
SECURITY

With the development and deployment of ITS, there is a growing reliance on information
and information systems. Unfortunately, events that can harm these systems, known as
threats, are evolving almost as rapidly as the technologies themselves. Furthermore, as
the ITS systems are opened up to make traveler information more available to the public,
the security risks from outside attacks increase. The potential impacts of such threats lead
to significant concerns regarding public safety and emergency-response effectiveness,
corruption of financial transactions, violations of citizen privacy, and the loss of
credibility. Thus there is need for information security to protect these systems on which
we all depend.

Incorporate security from the outset

Frequently, information security has been neglected during system acquisition. Then an
event occurs that causes some harm. And, almost always, much embarrassment! Only
then are attempts made to retrofit a system with the necessary information security
mechanisms. Do not make this mistake. Instead, plan security into your system from the
outset. This not only avoids problems, but it is also more cost effective: As with other
types of system requirements, the cost of incorporating security increases at a significant
rate as system development proceeds from concept, through development, to operations
and maintenance.

What can go wrong if you don’t?

In one state a hacker displayed an obscene message with the governor’s name on a
variable message sign. Although this incident was only embarrassing and caused no real
damage, a similar intrusion could pose risk of death or serious personal injury. Consider
what would happen if, for example, messages were altered to direct freeway traffic onto a
entrance ramp of an unfinished bridge. Other hypothetical, but realistic examples of what
can happen without adequate security measures are:

• Personal information collected to establish electronic toll transaction account
could be compromised, threatening its confidentiality or leading to unauthorized
use of credit cards.

• Traveler privacy could be violated by unauthorized access to a database of toll
transactions. This would reveal travel patterns, including time and place of trips.
Indeed, in a related real-world example, hackers have publicly targeted a transit
fare card database that records all trips taken by transit riders.

• By gaining access to information systems, travelers could set up unauthorized
accounts to bypass paying electronic tolls and get free trips.

Topic Sheet 2: Security

TS2-2 The Road to Successful ITS Software Acquisition

• By forging border-clearance information, an illicit commercial vehicle operator
could be authorized to make illegal shipments.

What types of security are needed?

Following are some of the technical and non-technical security services that are need to
counter the major security threats.

Technical security services include:

• Confidentiality helps restrict sensitive information from disclosure.
Confidentiality applies to both information storage and transmission.

• Authentication verifies one’s identity or membership in a group.

• Data integrity ensures that information is not modified while stored or
transmitted except by authorized users.

• Non-repudiation prohibits the sender or receiver of a transaction from
subsequently denying the action.

• Access control regulates who can access a system or specific information and
what they are allowed to do with it (e.g., read, write, modify, execute).

• Accountability attributes actions to the users who perform them.

Non-technical security services include:

• Administrative security includes establishing and implementing procedures to
protect the organization’s information resources.

• Personnel security assures that employees, both local and remote to the
information systems that they access, can be trusted in ways appropriate to their
responsibilities.

• Physical security is concerned with protecting the organization’s personnel as
well as its buildings, offices, equipment, and products from harm, destruction, and
unauthorized access.

How is security achieved?

Technical security services are implemented by various software, hardware, and/or
procedures, known as security mechanisms. Some of the more common mechanisms
are:

• Encryption disguises data so that it cannot be read unless decrypted (“secret
codes”). Encryption is used to provide confidentiality. Depending upon the
specific technique, it also provides authentication, integrity, and non-repudiation.

• Digital signatures are the electronic equivalent of a hand-written signature and
can be attached to electronic transactions. This security mechanism is primarily

Topic Sheet 2: Security

The Road to Successful ITS Software Acquisition TS2-3

used to provide non-repudiation; however, authentication and integrity can be
provided as well.

• Passwords allow users to identify themselves to a system. They are used for
authentication.

• A firewall is a collection of hardware and software components placed between
networks to protect one network from another (e.g., to protect a private network
from the Internet). Firewalls provide access control to an organization’s internal
network.

Firewalls are currently very popular. Unfortunately, some organizations mistakenly view
them as a panacea for their security needs. However, they are only a partial answer and
must be used in conjunction with other information security mechanisms. In particular,
confidentiality, integrity, and authentication are not provided by firewalls and must be
provided by other mechanisms. Also, firewalls do not protect against internal threats.

Security planning

To be effective, security should be implemented in accordance with an information
security program plan that ties together the technical and non-technical services.
Regardless of the specifics, here are some of the key points to consider:

• Security must be multi-faceted. No one service or mechanism addresses all the
threats. Focus on the entire system, not just database security or physical
security.

• Designate a central point of contact for the information security program.

• Obtain “buy-in” (i.e., acceptance, concurrence) from the major players such as
acquisition managers, development teams, end-users, and other stake-holders.

• Only provide as much security as warranted by the value of the information. Ask
yourself the following question: How serious would the consequences be if a
certain type of information is manipulated, disclosed, or destroyed? Then act
accordingly. In other words, balance the costs and risks.

• Determine which types of services you will need; only then should the appropriate
mechanisms be specified (i.e., requirements first, design later).

• Recognize that because of the rapid evolution of information technologies, no
security solution will be permanent and that you will never achieve total security.

Topic Sheet 2: Security

TS2-4 The Road to Successful ITS Software Acquisition

The U.S. DOT Intelligent Transportation Systems Joint Program Office (JPO) is distributing
a packet of documents that specifically address ITS security. Contact
Mr. William S. Jones of the JPO at (202) 366-2128 or william.s.jones@fhwa.dot.gov
for copies. Included in the packet are the following documents:

“Protecting Our Transportation Systems: An Information Security Awareness Overview,”
Mitretek Systems, Inc., 1997.

[A brief, easy-to-read security awareness overview gives answers to security-
related questions. This high-level paper is directed at transportation agency senior
management.]

“Intelligent Transportation Systems (ITS) Information Security Analysis,” Mitretek Systems,
Inc., 1997.

[A security analysis of the National ITS Architecture. This document characterizes
the various threats to ITS subsystems, their exchanging of information, and the
supporting communications infrastructure. It also recommends solutions that can
be used to reduce or eliminate the identified threats.]

“Maryland ITS Security Requirements Recommendations” and “Maryland ITS Security
Implementation Recommendations,” Computer Sciences Corporation for Volpe National
Transportation Systems Center (NTSC), 1997.

[Follow-on studies to the above documents. They recommend implementation of
security guidelines and describe steps necessary to achieve a minimal level of security
for Maryland ITS.]

For more information on security

The Road to Successful ITS Software Acquisition TS3-1

TOPIC SHEET 3
SOFTWARE ACQUISITION CAPABILITY MATURITY

MODEL (SA-CMMSM)

What is the SA-CMM?

The Software Acquisition Capability Maturity Model (SA-CMM) specifies a set of
desirable software acquisition practices. (In contrast, the Software Capability Maturity
Model, or SW-CMM, specifies a set of desirable software development practices.) The
SA-CMM is intended to be used by individuals and organizations who are planning and
managing software acquisitions. Developed by the Software Engineering Institute for use
by the Department of Defense, the SA-CMM has potential for use by traffic and transit
agencies. In particular, agencies can use it as a self-assessment tool for determining their
readiness to embark on ITS software acquisitions.

The practices set forth in the SA-CMM are collected into five levels called maturity levels
with higher levels building upon the lower ones. Most agencies start at level 1. For the
SA-CMM, the maturity levels are characterized as follows:

• Level 1 Initial. Acquisition processes are ad hoc, and occasionally even chaotic.

• Level 2 Repeatable. Basic software acquisition project management processes are
established to plan and manage all aspects of the acquisition.

• Level 3 Defined. The software acquisition process is documented and
standardized. All projects use approved, tailored versions of this process.

• Level 4 Quantitative. Detailed measures are collected. Acquisitions are
quantitatively and qualitatively understood and controlled.

• Level 5 Optimizing. Continuous process improvement is achieved by quantitative
feedback from the process.

As shown in the chart below, each maturity level includes a set of Key Process Areas
(KPAs). In turn, each Key Process Area has a set of goals and activities that define
objectives and the actions to be taken to meet those objectives. An agency at level 2, for
example, would carry out the activities that define such Key Process Areas as “Contract
Tracking and Oversight” or “Requirements Development and Management.” The
“focus” of level 2 Key Process Areas is to achieve basic project management skills. This
may be sufficient for most agencies.

An organization is operating at a given maturity level when it satisfies the requirements
for all Key Process Areas in that level and all lower levels. A maturity level is associated
with an organization’s capability to acquire software. In general, as organizations move
up in maturity level, they improve their capability.

Topic Sheet 3: Software Acquisition Capability Maturity Model (SA-CMM)

TS3-2 The Road to Successful ITS Software Acquisition

Software Acquisition Capability Maturity Model (SA-CMM)

Continuous Process
Improvement

Level Key Process Areas

0Acquisition Innovation Management
0Continuous Process Improvement

Focus

5
Optimizing

Quantitative
Management

0Quantitative Acquisition Management
0Quantitative Process Management

4
Quantitative

Process
Standardization

0Training Program
0Acquisition Risk Management
0Contract Performance Management
0Project Performance Management
0Process Definition and Maintenance

3
Defined

Basic
Project

Management

0Transition to Support
0Evaluation
0Contract Tracking and Oversight
0Project Management
0Requirements Development and Management
0Solicitation
0Software Acquisition Planning

2
Repeatable

Competent People and Heroics
1

Initial

Although maturity levels and Key Process Areas may sound intimidating, they actually
only represent desirable practices that are good managerial common sense. Consider,
for example, Contract Tracking and Oversight, one of the level two Key Process Areas.
Contract Tracking and Oversight has four goals and six activities. One of the goals is
stated as “The project team and contractor maintain ongoing communication and
commitments are agreed to by both parties.” One of the activities is stated as “The
project team conducts periodic reviews and interchanges with the contractor,” with a sub-
activity of “The actual progress and cost of the contractor’s software engineering process
is compared to planned schedules and budgets.” An assessment would ascertain
whether these activities are carried out.

How can the SA-CMM be used for ITS software acquisitions?

Realistically, most transportation agencies will probably not use the SA-CMM in carrying
out a multi-year process to move up to higher maturity levels. The higher levels are more
appropriate for organizations that repeatedly perform software acquisitions of significant
scope and magnitude; level 2 is more appropriate for smaller organizations with one-time
projects. Instead, for ITS, an agency would probably use the SA-CMM primarily as a
tool for assessing its software acquisition practices before embarking on an ITS project.
Areas of strength and weakness would be identified. The assessment results could then
form the foundation for making improvements. In using the SA-CMM in this fashion, it
should be kept in mind that it was originally developed for organizations that repeatedly
perform software acquisitions of significant scope and dollar value. So it may be overly

Topic Sheet 3: Software Acquisition Capability Maturity Model (SA-CMM)

The Road to Successful ITS Software Acquisition TS3-3

formal for many ITS acquisitions. For example, it calls for having a project training plan
(a good idea) that is written in accordance with training program procedures (may be
overkill). If you stick with the essence of the SA-CMM (in particular, the activities),
ignore much of the other material (e.g., defining maturity levels for your acquisition
agency), and do not treat it as a rigid standard, it may prove valuable for you.

For smaller acquisitions, the SA-CMM can be tailored by omitting non-applicable
portions, and by scaling to fit. For example, the SA-CMM calls for a number of
management plans and it outlines what practices should be addressed in the plans. For a
large acquisition, such a plan might be many pages long, but for a small acquisition it
could be only one or two pages. Or you may decide to carry out the various practices
without formally documenting them in a plan. Decisions can be made as to which
practices will be performed in-house, which must be contracted for, and which are not
applicable to your particular project. Also, the Key Process Areas can be modified for
internal use to fit the project; activities can be added, deleted, or changed if desired.

The SA-CMM can also serve as a framework for a process improvement program. In
particular, the maturity levels can serve as goals: “We want this organization to operate at
Level 3.” The Key Process Areas provide further definition of the goals by defining
functional areas of improvement, such as planning, doing the solicitation, overseeing the
contractor, and so on. However, implementing a process improvement program is not a
trivial undertaking. It requires serious organizational commitment and management
involvement to ensure positive results.

An SA-CMM assessment can also produce a maturity rating, from 1 to 5. This
benchmarks the organization relative to the SA-CMM, and relative to other organizations
that have been assessed using the SA-CMM.

What the SA-CMM is NOT

The SA-CMM defines what you should do within a given Key Process Area, but it does
not prescribe how to carry out a software acquisition. Instead, it characterizes practices at
the various maturity levels, with the idea that the project or organization will develop or
acquire practices with the desired characteristics. Procedures to satisfy the desired
practices are the responsibility of the implementing organization.

Nor is the SA-CMM a process improvement method. The SA-CMM can form the basis
for a process improvement effort, when used as a diagnostic and goal-setting tool. But it
does not articulate the steps an organization must take to succeed at process
improvement.

Finally, the SA-CMM is not a commercial or proprietary product.

Topic Sheet 3: Software Acquisition Capability Maturity Model (SA-CMM)

TS3-4 The Road to Successful ITS Software Acquisition

The SA-CMM is described in the SEI technical report CMU/SEI-96-TR-020, “Software
Acquisition Capability Maturity Model (SA-CMMSM), Version 1.01,” by J. Ferguson et al. It
can be viewed and downloaded without charge through the SEI’s World Wide Web site at:
<URL:http://www.sei.cmu.edu/technology/risk/Risk_SW_Acq/SA-CMM.html>

For more information on the SA-CMM

The Road to Successful ITS Software Acquisition TS4-1

TOPIC SHEET 4
SOFTWARE CAPABILITY MATURITY MODEL

(SW-CMMSM)

What is the SW-CMM?

The Software Capability Maturity Model (SW-CMM) specifies a set of desirable software
development processes. (In contrast, the Software Acquisition Capability Maturity
Model, or SA-CMM, specifies a set of desirable software acquisition practices.)
Developed by the Software Engineering Institute for the Department of Defense, the
SW-CMM has been successfully applied in the defense and other sectors. On ITS
software acquisitions, it has two potential types of applications:

• The SW-CMM could be used by traffic and transit agencies (the customers) to
assess the capability of a contractor to develop software.

• It could be used by the software development contractors as a basis for their
process improvement programs.

The SW-CMM was developed upon the central premise that the quality of a software
system is largely governed by the quality of the process used to develop and maintain it.
This premise is not new— it has been the foundation of Total Quality Management (TQM)
programs world-wide for several decades. The desirable software development processes
are grouped into five maturity levels as shown in the chart below.

Each maturity level represents a level of refinement and integration of an organization’s
processes for software development. For the SW-CMM, the maturity levels are
characterized as follows:

• Level 1 Initial. Processes are informal, ad hoc, and largely unrepeatable. Results
depend upon the initiative of competent personnel and often involve “heroics” to
achieve objectives.

• Level 2 Repeatable. The process has become documented, disciplined, and
repeatable.

• Level 3 Defined. The process is promulgated organization-wide into a standard,
consistent process.

• Level 4 Managed. The process becomes predictable. Metrics can be used to
maintain performance within expected boundaries.

• Level 5 Optimizing. Process improvement is systematically applied to the
software process, and is institutionalized.

Topic Sheet 4: Software Capability Maturity Model (SW-CMM)

TS4-2 The Road to Successful ITS Software Acquisition

Software Capability Maturity Model (SW-CMM)

Continuous Process
Improvement

LevelLevel Key Process AreasKey Process Areas

0Defect Prevention
0Technology Innovation
0Process Change Management

FocusFocus

5
Optimizing

Product and
Process Quality

0Process Measurement and Analysis
0Quality Management

4
Managed

Engineering
Process

0Organization Process Definition
0Organization Process Focus
0Peer Reviews
0Training Program
0Intergroup Coordination
0Software Product Engineering
0Integrated Software Management

3
Defined

Project
Management

0Software Project Planning
0Software Project Tracking and Oversight
0Software Subcontract Management
0Software Quality Assurance
0Software Configuration Management
0Requirements Management

2
Repeatable

Competent People and Heroics
1

Initial

Each level of maturity includes a set of Key Process Areas (KPAs) as shown in the chart.
An organization is operating at a given maturity level when it satisfies the requirements
stated for all the Key Process Areas in that level and all lower levels. Each Key Process
Area has a set of goals and activities. These define objectives, and the actions to be taken
to meet those objectives, which a development organization should follow in order to
achieve a given level of process maturity.

Although the use of maturity levels and Key Process Areas may sound intimidating, they
actually only represent desirable practices that are good managerial common sense. For
example, consider Requirements Management, one of the level two Key Process Areas.
Requirements Management has two goals and three activities. One of the goals is stated
as “System requirements allocated to software are controlled to establish a baseline for
software engineering and management use.” One of the activities is stated as “Changes
to the allocated requirements are reviewed and incorporated into the software project,”
with a sub-activity of “The impact to existing commitments is assessed, and changes are
negotiated as appropriate.” An assessment would ascertain whether these activities are
carried out.

Topic Sheet 4: Software Capability Maturity Model (SW-CMM)

The Road to Successful ITS Software Acquisition TS4-3

How can the SW-CMM be used for ITS software acquisitions?

There are several ways that the customer can use the SW-CMM:

• To assess and compare the ability of bidders to develop the software. (Or, stated
negatively, to assess the risk of a contractor not being able to successfully develop
the software.) Some of the SW-CMM practices could be posed as questions to
bidders during source selection. (“Describe how your organization does...”)
Consider doing this orally in face-to-face meetings with bidders, instead of
requesting written responses in the RFP.

• To require that bidders be at a certain level of maturity. RFPs have been written
that require bidders to demonstrate that they “satisfy the requirements of Level X
of the SW-CMM.” However, this may not be the best use of the SW-CMM for
ITS. Among smaller companies and niche segments of the software marketplace,
the SW-CMM may not yet have been applied (or even heard of!). A possible
result is that an RFP with maturity level requirements may attract no qualified
bidders or significantly reduce the competition. To overcome this, the RFP can
ask the offerors what level of software process maturity has been achieved
according to the SW-CMM. This places the burden on the developers without
undue restrictions in the RFP and the procurement process.

When used by software development contractors, the SW-CMM serves as a framework
for process improvement. This is the originally intended purpose of the SW-CMM. An
organization can strive to achieve a certain level of maturity. However, moving “up the
ladder” takes time (typically 18 months to go up one level), commitment, and resources.
In spite of documented cases of the benefits of moving up to higher levels, it is probably
not cost-beneficial or necessary for all organizations to achieve level five; level two may
be sufficient for much of the ITS software.

Section 5204 of the Transportation Equity Act for the 21st Century (TEA 21) calls for
the use of the SW-CMM or “another similar recognized standard risk assessment
methodology, to reduce the cost, schedule, and performance risks associated with the
development, management, and integration of intelligent transportation system
software.” However, this does not mean that you should blindly apply the SW-CMM to
your project. Guidance will be forthcoming from U.S. DOT on tailoring the SW-CMM
and using it in an appropriate manner for ITS.

Topic Sheet 4: Software Capability Maturity Model (SW-CMM)

TS4-4 The Road to Successful ITS Software Acquisition

The SW-CMM should be exercised with judgment. For simple and/or off-the-shelf
software products (like signal controllers), the SW-CMM would be overkill. (If an off-
the-shelf product has proven itself in the marketplace, who really cares what processes
were used to develop that product?) It is most effective where the software is
significant in terms of dollar value or program risk, and where it is applied with common
sense and tailoring appropriate to the situation.

Transportation officials are encouraged to:
• Discuss intended use of the SW-CMM as a performance metric with potential bidders

to determine their understanding and use of the CMM prior to committing to an
acquisition strategy.

• Consider a “carrot” approach (rewards for achieving maturity levels) rather than a
“stick” (penalties or disqualification for not being at a certain maturity level).

• Consider requiring the contractor to have a plan to achieve a maturity level and
demonstrate progress against that plan as opposed to a hard requirement to be at a
certain level. This allows the transportation community of software providers to grow
their maturity gracefully.

• Use the results of an assessment to evaluate and compare a bidder’s capability, rather
than as a pre-qualification to bidding on an RFP.

• Seek assistance from organizations experienced with the CMM, when developing an
acquisition strategy that uses the SW-CMM as a requirement.

Who carries out capability assessments using the SW-CMM?

Capability assessments are used to benchmark the performance of a software
development organization and determine its maturity level. Although the Software
Engineering Institute (SEI) developed the SW-CMM, it does not carry out these
assessments. Instead, the SEI authorizes individuals, not companies, to perform
assessments and maintains a roster of those individuals that meet SEI’s qualifications.
Assessments can be performed in two ways:

• By an outside auditing group conducting a Software Capability Evaluation under
the leadership of an SEI-authorized Lead Evaluator. This is the approach used by
customers to assess contractors.

• By an organization using its own personnel and guided by an SEI-authorized Lead
Assessor. This is the preferred approach for process improvement programs.

Of course, the SW-CMM could be used less formally. Instead of a formal assessment, it
can serve as the basis for questions to ask contractors, or as a contractor’s checklist of
good development practices to follow.

What results has the SW-CMM produced?

The SW-CMM’s use began with Department of Defense contractors in the early ’90s in
response to RFPs. Recently there has been a surge of commercial developers beginning
to use the CMM as a means to improve. Acquisition agencies have also found the
SW-CMM to be a useful tool in source selection.

Topic Sheet 4: Software Capability Maturity Model (SW-CMM)

The Road to Successful ITS Software Acquisition TS4-5

In addition to the extremely important qualitative benefits of process maturity described
above, there are now available documented cases [Fox, 1997; Vu, 1997] of the
quantitative benefits of maturity-based process improvement efforts that are based on the
SW-CMM. Returns on investment in the range of 5:1 to 7.7:1 have been reported, and
cost and schedule performance improvements quantified. Published data across many
projects [Jones, 1998] show that the risk of project failure is much lower for organizations
at higher maturity levels.

References cited

C. Fox and W. Frakes, “The Quality Approach: Is it Delivering?” Communications of the
ACM, Vol.40 No. 6, June 1997.
C. Jones, “Becoming Best in Class: Application Development and Productivity,”
Software Productivity Research, 1998.
J. Vu, “Software Process Improvement Journey (From Level 1 to Level 5),” 2nd
European Software Engineering Process Group Conference, June 1997.

The SW-CMM is described in two SEI technical reports by M. Paulk, et al.: CMU/SEI-93-
TR-024, “Capability Maturity Model for SoftwareSM, Version 1.1”; and CMU/SEI-93-TR-025,
“Key Practices of the Capability Maturity ModelSM, Version 1.1.” These reports and related
material may be viewed and downloaded without charge through the SEI’s World Wide Web
site at:
<URL:http://www.sei.cmu.edu/publications/>

An SEI Appraiser Directory lists individuals qualified to carry out assessments and their
firms. The directory is available at:
<URL:http://www.sei.cmu.edu/topics/managing/appraiser.listing.html/>

A hard copy can be obtained without charge through the SEI’s Customer Relations office at:
(412) 268-5800 or customer-relations@sei.cmu.edu

For more information on the SW-CMM

The Road to Successful ITS Software Acquisition TS5-1

TOPIC SHEET 5
SOFTWARE SAFETY

“Safety is not an attribute that can be added to software after the event;
it must be designed into the software from the start, and it must be

constantly checked to ensure that unexpected, unsafe, functions have not
been added or necessary functions have not been removed.”

— [Place and Kang, 1993, page 45]

“The Sydney Harbour Tunnel was closed to traffic today following a
computer problem, which threw peak hour traffic into chaos.”

— [AAP Newsfeed, August 19, 1997]

“‘Serious interruptions’ on AT&T’s high-speed fiber optic data network
began Monday afternoon and caused problems for hundreds of
multinational banks, travel agencies, insurance and credit card

companies. The problem appeared to be the result of software errors.”
— [USA Today, April 14, 1998]

Software safety is concerned with ensuring that the software does not cause hazardous or
life-threatening conditions to occur during its operation. Obvious examples would be
simultaneous green lights for crossing traffic at an intersection or open entrance ramps at
either end of a reversible HOV lane. Depending upon your definition, software safety can
also be said to concern highly undesirable conditions, even if they’re not life threatening.
You clearly don’t want all the lights to be green, but you don’t want all of them to be red
either.

As software takes over more and more functions, there is increasing danger that it will
allow just such conditions to occur. In the future, if software provides collision avoidance
and vehicle control functions, software safety issues will be even more critical.

There have been several well documented cases of unsafe software. Perhaps the most
notorious was the Therac-25 therapeutic X-ray machine that literally fried several patients
to death because of a software bug. Another example was the Ariane-5 rocket that
exploded shortly after launch because of a software problem.

Safe software is not the same thing as reliable software or secure software. All software
has bugs and will fail from time to time. Software safety is concerned with taking steps to
mitigate the problems that arise from the bugs or from breaches in security.

Topic Sheet 5: Software Safety

TS5-2 The Road to Successful ITS Software Acquisition

What can be done to ensure that your software is safe?

Software safety is a highly technical area that sometimes involves mathematical analyses
and formal software design and verification techniques. We can only scratch the surface
here. The important point is to make sure your acquisition has a mechanism to address
safety issues. If there are significant safety considerations, then a safety analysis should
be carried out by competent, expert sources. Consider contracting separately for a safety
analysis to be conducted by persons who have expertise in this area. If nothing else, ask
your development contractor what techniques they will use to address software safety. If
that draws a blank stare, you may have problems.

How can you ensure that life-threatening, hazardous, or other highly undesirable events
that you absolutely, positively, never what to happen, indeed do not occur? In other
words, what can be done to ensure that your software is safe?

First of all, don’t eliminate hardware interlocks. Interlocks are devices that prevent some
(bad) state from occurring. When it comes to safety, don’t succumb to the economic
incentives to replace hardware with software. If you want to supplement hardware
interlocks with software, that’s fine. Software can be used as a back-up for the hardware.
But don’t rely exclusively on software to maintain the safety of your system. There is no
such thing as a software interlock!

Earlier “old fashioned” versions of the Therac X-ray machine had hardware interlocks to
prevent people from receiving excessive X-ray doses. The newer “more modern” model
25 relied exclusively on the software, resulting in a loss of life.

Second, incorporate safety subsystems into your overall system. No single point of
failure within a safety system should prevent it from managing unsafe events.

Third, there are managerial techniques that can be applied to minimize the risk. Roughly,
they comprise the following steps:

• Recognize that the software does not operate in an ideal world, and that no matter
how much you test, it will still have bugs and will never be error-free.

• Make a list of all the hazardous conditions that could conceivably arise from your
system. This is best done by domain experts, not software experts.

• Working backwards, taking each hazardous condition one at a time, identify what
could conceivably cause the condition to occur. Consider such things as operator
failures, something in the environment, hardware failures, software processes
running out of sequence, inputs triggering the wrong module to be run, software
processes aborting due to bugs, or hardware failures.

Topic Sheet 5: Software Safety

The Road to Successful ITS Software Acquisition TS5-3

• To the greatest extent possible, isolate from the rest of the system those portions
of the software that are deemed to have a potential safety impact. A well designed
system will have a relatively small number of safety-critical components relative to
the total number. Subject these portions of the software to extra scrutiny and
special so-called “formal” design and test techniques. (Note: It is overkill to treat
an entire system as safety critical. For one thing, it would be prohibitively
expensive. For another, it would probably result in less safety, not more, as
attention would be spread across the entire system. It is better to focus the extra
attention where it is truly needed.)

• If you change safety-critical software, repeat the entire safety analysis before
releasing the software.

• Supplement the software with hardware and administrative protections.

At least one state visually inspects the entrances to reversible lanes to ensure that both
ends are not open simultaneously. There are also reports of surveillance cameras being
used to check messages on variable message signs. In other words, administrative
procedures are used just in case the software has failed.

Finally, here are some safety-related questions that you can ask your developer:

• Have the life-threatening, hazardous, and other highly undesirable events for this
system been identified and documented?

• How is the system designed to address each such event?

• Has an analysis been performed and documented to ensure that no single failure
within the safety system can prevent successful management of these events?

• Has a single-point-failure analysis been performed and documented to assure that
no single failure within the safety system can prevent successful management of a
such an event?

• Has a separate review been performed to identify common cause failures that
could occur? These would include manufacturing errors, operator errors,
maintenance errors, and potential system design defects.

• Does normal system operation include tests conducted at scheduled intervals to
detect failures and verify system operability?

• Has an independent verification and validation review been performed on the
system? on the software? If so, was the software review in accordance with IEEE
Standard for Software Verification and Validation?

• Have coding standards that prohibit “error prone” coding techniques been used?

• Does the software incorporate continuous, self-checking diagnostics?

Topic Sheet 5: Software Safety

TS5-4 The Road to Successful ITS Software Acquisition

• Are security algorithms in place to prevent intentional software tampering?

• When the software encounters an abnormal condition, at any point, due to power
failure, missing or bad data, can it re-start or initialize automatically and
successfully? Does this activity include start-up diagnostics?

• Has an abnormal conditions and events analysis been performed and documented
on this software?

References cited

Institute of Electrical and Electronics Engineers, IEEE Standard for Software
Verification and Validation, IEEE Std 1012-1998.

P. Place and K. Kang, Safety-Critical Software Status Report and Annotated
Bibliography, SEI Technical Report CMU/SEI-92-Tr-5, June 1993. Available at
<URL:http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.005.html>.

Nancy Leveson, “An Investigation of the Therac-25 Accidents,” IEEE Computer, Vol. 26,
July 1993, pages 18-41.

[A readable and scary account of what can go wrong when safety is not properly
considered. The lessons are applicable to a wide range of applications.]

Bradford Ulery and Charles C. Howell, “Safety-Critical Software on Our Highways,” Mitretek
Publication WN 96W25, March 1996.

[A closer look at what’s been done on software safety in other domains and the
applicability to ITS.]

For more information on software safety

The Road to Successful ITS Software Acquisition TS6-1

JANUARY 2000
1

2 3 4 5 6 7 8
9 10 11 12 13 14 15

18 19 20 21 221716
25 26 27 28 29

3130
2423

TOPIC SHEET 6
THE YEAR 2000 PROBLEM (Y2K)

Nature of the problem

The Year 2000 Problem, also known as Y2K, has recently received a lot of media
attention (some would say media hype). Essentially it boils down to problem software
not being able to handle the transition from the 20th century to the 21st correctly. In
some cases, the year 2000 is treated as 1900. So according to the computer,
December 31, 1999 is followed by January 1, 1900. In other cases, there may be more
bizarre manifestations.

One interviewee pointed out that this is not the first time the transportation industry has
faced date and time problems with software. A similar situation arose when Congress
changed the law that specifies the dates when Daylight Savings Time takes effect. Some
traffic controllers had the old dates built into them, and had to be reprogrammed. This
rework was eligible for Federal Aid funds with a proviso: The fix had to make the
controllers programmable to readily accommodate any future changes in the Daylight
Savings Time law.

What happens if your software has the Y2K problem? The consequences can range from
mildly irritating (e.g., entries in management report are incorrectly sorted by date) to
significant (e.g., traffic signal controllers begin using weekend timing plans on weekdays)
to profound or even life threatening (e.g., emergency management systems fail to work
altogether).

Related problems

There are three other Y2K type of problems to be aware of:

• The year 2000 is a leap year. That is, there will be a February 29, 2000. Some
software incorrectly assumes that 2000 is not a leap year and that February will
only have 28 days that year.

The Y2K problem is most commonly encountered with older systems whose software is
written in the COBOL programming language. People, therefore, erroneously assume
that the problem will not affect their newer systems. However, this is not necessarily true;
new systems are not immune to the problem and there are recently-developed systems
that have the problem. Consider, for example, a recent best-selling textbook on Java, a
new and popular software language. An early chapter contains a sample program that
incorrectly does away with February 29, 2000. Undoubtedly, this flawed code will be
copied and appear in new state-of-the-art operational systems.

• Some systems do not handle the year 1999 correctly since “99” (the last two digits
in the year) is sometimes used as a special code in computer systems. For such

Topic Sheet 6: The Year 2000 Problem (Y2K)

TS6-2 The Road to Successful ITS Software Acquisition

systems, the Y2K problems will manifest themselves even sooner.

• Although not strictly a Y2K problem, the GPS satellites will reinitialize their dates
on August 22, 1999. Software that cannot handle this so-called “GPS week 1024
rollover” will reset their clocks to January 6, 1980. This could cause problems for
transit vehicle fleet tracking systems.
[<URL:http://www.navcen.uscg.mil/gps/geninfo/y2k/default.htm>]

Addressing the problems

The bottom line is: don’t wait. Do something now to determine what impact, if any, there
will be on your software. By doing this as soon as possible, there may still be time to fix
the problems before they manifest themselves. This is a case of a hard deadline that
cannot be pushed back. Also there is a shortage of people who can deal with the
problems, and they will come even more into demand as the time approaches.

For new software:

• Test for Y2K problems as part of your acceptance testing program.

• Include system requirements to handle dates correctly.

For existing software, run special tests to see how the systems perform.

How to test for Y2K problems

Some of the tests that can be run to address the Y2K problem include:

• Set the computer’s clock ahead to sometime early in the next century and see
what happens.

• Set the clock for the end of the day on December 31, 1999 and watch what
happens as the new year “arrives.” This “rollover test” is a more rigorous test
since some systems that work correctly in either century do not handle the
transition between them correctly.

• For database applications, retrieve data that span the turn of the century.

• Conduct analogous tests for the related problems discussed above.

Taking remedial actions if testing fails

Your testing may show that the software works correctly. If so, fine. Or there may be
problems with minor impact that you can tolerate. Perhaps all that needs to be done is to
shut down your system for a few minutes on either side of midnight. (Depending on the
system, it may be shut down anyway during that holiday weekend.) But if you uncover
problems during testing, take steps to correct them before they have operational impact.
This may even mean having to replace some existing systems before the turn of the
century.

Topic Sheet 6: The Year 2000 Problem (Y2K)

The Road to Successful ITS Software Acquisition TS6-3

A comprehensive Web site on the Year 2000 Problem:
<URL:http://www.it2000.com/>

For more information on Y2K

RE-1

REFERENCES

E. Bersoff, V. Henderson, and S. Siegel, Software Configuration Management: An
Investment in Product Integrity, Prentice-Hall, 1980

Booz-Allen, FHWA Federal-Aid ITS Procurement Regulations and Contracting
Options, August 1997

F. Brooks, “No Silver Bullet: Essence and Accidents of Software Engineering,”
Computer, vol. 20, pp. 10-19, April 1987. (Also reprinted in The Mythical Man-Month:
Anniversary Edition, Addison-Wesley, 1995)

F. Brooks, The Mythical Man-Month: Essays on Software Engineering, Addison-
Wesley, 1975. (Also reprinted in The Mythical Man-Month: Anniversary Edition,
Addison-Wesley, 1995)

J. Cappelletti and P. Gerdes, Nondevelopmental Item (NDI) and the System Acquisition
Process, MITRE Corporation Technical Report MTR 94W22, 1994

D. Carney and P. Oberndorf, “The Commandments of COTS: Still in Search of the
Promised Land,” Crosstalk: The Journal of Defense Software Engineering, Vol 10 No 5,
May 1997

M. Christel and K. Kang, Issues in Requirements Elicitation, Software Engineering
Institute Technical Report CMU/SEI-92-TR-12, 1992

The Condensed Guide to Software Acquisition Best Practices, 1997. pamphlet available
from Software Program Managers Network

J. Costantino et al., “Air Traffic Control: Lessons Learned for Surface Transportation,”
ITS Quarterly, Vol III No. 1, 1995.

Department of Defense, Guide to Integrated Product and Process Development (IPPD),
Version 1.0, February 5, 1996. Available at over the Internet in HTML and Word formats
at <URL:http://www.acq.osd.mil/te/survey/survmain.html>

M. Evans and J. Marciniak, Software Quality Assurance and Management, John Wiley
& Sons, 1987

D. Farbman, “Myths That Miss,” Datamation, pp. 109-112, November 1980

References

RE-2

Federal Highway Administration, Key Findings from the Intelligent Transportation
Systems (ITS) Program: What Have We Learned?, U.S. DOT Publication
FHWA-JPO-96-0036, 1996

J. Ferguson et al., Software Acquisition Capability Maturity Model (SA-CMMSM)
Version 1.01, SEI Technical Report CMU/SEI-96-TR-020, 1996

J. Ferguson and M. DeRiso, Software Acquisition: A Comparison of DoD and
Commercial Practices, Software Engineering Institute Special Report CMU/SEI-94-SR-9,
1994

D. Garlan and D. Perry, “Introduction to the Special Issue on Software Architecture,”
IEEE Transactions on Software Engineering, Vol 21 No 4, 1995

W. Gibbs, “Software’s Chronic Crisis,” Scientific American, pp. 86-, September 1994

R. Glass, Modern Programming Practices, Prentice-Hall, 1982

R. Higuera and Y. Haimes, Software Risk Management, Software Engineering Institute
Technical Report 96-TR-012, 1996

R. Higuera et al., Team Risk Management: A New Model for Customer-Supplier
Relationships, SEI Special Report CMU/SEI-94-SR-5, 1994

B. Horowitz, The Importance of Architecture in DOD Software, The MITRE
Corporation, M91-35, July 1991

W. Humphrey, Introduction to Software Process Improvement, SEI Technical Report
CMU/SEI-92-TR-7, revised June 1993

W. Humphrey, Managing the Software Process, Addison-Wesley, 1989

IEEE, IEEE Recommended Practice for Software Acquisition, IEEE Std 1062-1993, 1993

IEEE, IEEE Recommended Practice for Software Requirements Specifications,
IEEE Std 830-1993, 1993a

IEEE, IEEE Standard for Software Maintenance, IEEE Std 1219-1993, 1993b

C. Jones, Software Project Management: What Works and What Doesn’t, talk at SD ’97
Conference, Washington DC, September 29, 1997

J. Marciniak and D. Reifer, Software Acquisition Management: Managing the
Acquisition of Custom Software Systems, John Wiley & Sons, 1990

References

RE-3

S. McConnell, Rapid Development: Taming Wild Software Schedules, Microsoft
Press, 1996

MITRE Corporation, Software Reporting Metrics, MTR-9650 Rev 2, November 1985

M. Paulk, Key Practices of the Capability Maturity Model, Version 1.1, SEI Technical
Report CMU/SEI-93-TR-025, February 1993

V. Pearce, “Procurement: Hard Work Pays Off,” Traffic Technology International,
pp. 70-, Oct/Nov 1997

T. Pigoski, Practical Software Maintenance: Best Practices for Managing Your
Software Investment, John Wiley & Sons, 1997

P. Place, P. and K. Kang, K., Safety-Critical Software: Status Report and Annotated
Bibliography, SEI Technical Report CMU/SEI-93-TR-005

B. Prasad, Concurrent Engineering Fundamentals (Volume 1: Integrated Product and
Process Organization; Volume 2: Integrated Product Development), Prentice-Hall, 1996

The Program Manager’s Guide to Software Acquisition Best Practices, 1997. available
from Software Program Managers Network

L. Putnam and W. Myers, Executive Briefing: Controlling Software Development, IEEE
Computer Society Press, 1996

L. Putnam and W. Myers, Measures for Excellence: Reliable Software on Time, within
Budget, Yourdon Press, 1992

T. Royer, Software Testing Management: Life on the Critical Path, P T R Prentice Hall,
1993

T. Saunders, B. Horowitz, and M. Mleziva, A New Process for Acquiring Software
Architecture, The MITRE Corporation, M92-B126, 1992

The Standish Group, Charting Seas of Information Technology, 1994

STSC (Software Technology Support Center), Software Configuration Management
Technology Report, <URL: http://stscols.hill.af.mil/cm/REPORT.HTML>, 1994

