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CHAPTER 2 - Frequently used Symbols

k density of a traffic stream in a specified length of road

L length of vehicles of uniform length

c constant of proportionality between occupancy andk

density, under certain simplifying assumptions

k the (average) density of vehicles in substream Ii

q the average rate of flow of vehicles in substream Ii

Å average speed of a set of vehicles

A A(x,t) the cumulative vehicle arrival function over
space and time

k jam density, i.e. the density when traffic is so heavy thatj

it is at a complete standstill

u free-flow speed, i.e. the speed when there are nof

constraints placed on a driver by other vehicles on the
road
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2.
TRAFFIC STREAM CHARACTERISTICS

This chapter describes the various models that have been developments in measurement procedures.  That section is
developed to describe the relationships among traffic stream followed by one providing detailed descriptions and definitions
characteristics. Most of the work dealing with these relationships of the variables of interest. Some of the relationships between
has been concerned with uninterrupted traffic flow, primarily on the variables are simply a matter of definition. An example is the
freeways or expressways. Consequently, this chapter will cover relationship between density of vehicles on the road, in vehicles
traffic stream characteristics for uninterrupted flow. In per unit distance, and spacing between vehicles, in distance per
discussing the models, the link between theory and measurement vehicle. Others are more difficult to specify. The final section, on
capability is important since often theory depends on traffic stream models, focuses on relationships among speed,
measurement capability. flow, and concentration, either in two-variable models, or in

Because of the importance of measurement capability to theory variables. 
development,  this chapter  starts with  a  section  on  historical

those that attempt to deal simultaneously with the three

2.1  Measurement Procedures

The items of interest in traffic theory have been the following: � measurement over a length of road [usually at least 0.5

� rates of flow (vehicles per unit time); � the use of an observer moving in the traffic stream; and 
� speeds (distance per unit time); � wide-area samples obtained simultaneously from a number
� travel time over a known length of road (or sometimes the of vehicles, as part of Intelligent Transportation Systems

inverse of speed, “tardity” is used); (ITS).
� occupancy (percent of time a point on the road is occupied

by vehicles); For each method, this section contains an identification of the
� density (vehicles per unit distance); variables that the particular procedure measures, as contrasted
� time headway between vehicles (time per vehicle); with the variables that can only be estimated.
� spacing, or space headway between vehicles (distance per

vehicle); and The types of measurement are illustrated with respect to a space-
� concentration (measured by density or occupancy). time diagram in Figure 2.1.  The vertical axis of this diagram

A general notion of these variables, based on the intuitive idea road, in the direction of travel.  The horizontal axis represents
self-evident from their names, will suffice for the purposes of elapsed time from some arbitrary starting time.  Each line within
discussing their measurement. Precise definitions of these the graph represents the 'trajectory' of an individual vehicle, as
variables are given in Section 2.2. it moves down the road over time.  The slope of the line is that

Measurement capabilities for obtaining traffic data have changed overtaken and passed a slower one. (The two vehicles do not in
over the nearly 60-year span of interest in traffic flow, and more fact occupy the same point at the same time.)  Measurement at
so in the past 40 years during which there have been a large a point is represented by a horizontal line across the vehicular
number of freeways. Indeed, measurement capabilities are still trajectories:  the location is constant, but time varies.
changing. Five measurement procedures are discussed in this Measurement over a short section is represented by two parallel
section:  horizontal lines a very short distance apart.  A vertical line

� measurement at a point; time, such as in a single snapshot taken from above the road (for
� measurement over a short section (by which is meant less example an aerial photograph).  The moving observer technique

than about 10 meters (m); is represented by one of the vehicle trajectories, the heavy line in

kilometers (km)]; 

represents distance from some arbitrary starting point along the

vehicle's velocity.  Where lines cross, a faster vehicle has

represents measurement along a length of road, at one instant of
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Figure 2.1
Four Methods of Obtaining Traffic Data (Modified from Drew 1968, Figure 12.9).

Figure 2.1.  Details on each of these methods can be found in the One of the more recent data collection methods draws upon
ITE's Manual of Traffic Engineering Studies (Box 1976).  video camera technology. In its earliest applications, video

The wide-area samples from ITS are similar to having a number then subsequently played back in a lab for analysis. In these early
of moving observers at various points and times within the implementations, lines were drawn on the video monitor screen
system.  These new developments will undoubtedly change the (literally, when manual data reduction was used).  More recently
way some traffic measurements are obtained in the future, but this has been automated, and the lines are simply a part of the
they have not been in operation long enough to have a major electronics.  This procedure allows the data reduction to be
effect on the material to be covered in this chapter. conducted simultaneously with the data acquisition.  

 2.1.1  Measurement at a Point

Measurement at a point, by hand tallies or pneumatic tubes, was
the first procedure used for traffic data collection.  This method
is easily capable of providing volume counts and therefore flow
rates directly, and with care can also provide time headways.
The technology for making measurements at a point on freeways
changed over 30 years ago from using pneumatic tubes placed
across the roadway to using point detectors (May et al. 1963;
Athol 1965).  The most commonly used point detectors are
based on inductive loop technology, but other methods in use
include microwave, radar, photocells, ultrasonics, and television
cameras.

cameras were used to acquire the data in the field, which was

Except for the case of a stopped vehicle, speeds at a 'point' can
be obtained only by radar or microwave detectors.  Their
frequencies of operation mean that a vehicle needs to move only
about one centimeter during the speed measurement.  In the
absence of such instruments for a moving vehicle, a second
observation location is necessary to obtain speeds, which moves
the discussion to that of measurements over a short section. 

Density, which is defined as vehicles per unit length, does not
make sense for a point measurement, because no length is
involved.  Density can be calculated from point measurements
when speed is available, but one would have to question the
meaning of the calculation, as it would be density at a point.  In
the abstract, one would expect that occupancy could be
measured at a point, but in reality devices for measuring
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occupancy generally take up a short space on the roadway. recent data, there has been in the past decade a considerable
Hence volume (or flow rate), headways, and speeds are the only increase in the amount of research investigating the underlying
direct measurements at a point. relationships among traffic stream characteristics, which is

2.1.2  Measurements Over a Short Section

Early studies used a second pneumatic tube, placed very close to
the first, to obtain speeds.  More recent systems have used paired
presence detectors, such as inductive loops spaced perhaps five
to six meters apart.  With video camera technology, two detector
'lines' placed close together provide the same capability for
measuring speeds.  Even with such short distances, one is no
longer dealing strictly with a point measurement, but with
measurement along a section of road, albeit a short section.  All
of these presence detectors continue to provide direct
measurement of volume and of time headways, as well as of
speed when pairs of them are used.

Most point detectors currently used, such as inductive loops or
microwave beams, take up space on the road, and are therefore
a short section measurement. These detectors produce a new
variable, which was not available from earlier technology,
namely occupancy. Occupancy is defined as the percentage of
time that the detection zone of the instrument is occupied by a
vehicle. This variable is available because the loop gives a
continuous reading (at 50 or 60 Hz usually), which pneumatic
tubes or manual counts could not do.  Because occupancy
depends on the size of the detection zone of the instrument, the
measured occupancy may differ from site to site for identical
traffic, depending on the nature and construction of the detector.
It would be possible mathematically to standardize the
measurement of occupancy to a zero-length detection zone, but
this has not yet happened. For practical purposes, many freeway
management systems rely solely on flow and occupancy
information.  (See for example, Payne and Tignor 1978;
Collins 1983.)

As with point measurements, short-section data acquisition does
not permit direct measurement  of density. Where studies based
on short-section measurements have used density, it has been
calculated, in one of two ways to be discussed in Section 2.3.

The large quantity of data provided by modern freeway traffic
management systems is noteworthy, especially when compared
with the quantity of data used in the early development of traffic
flow theory.  As a consequence of this large amount of relatively

reflected in Section 2.3.

2.1.3  Measurement Along a Length of Road

Measurements along a length of road come either from aerial
photography, or from cameras mounted on tall buildings or
poles.  It is suggested that at least 0.5 kilometers (km)  of road
be observed.  On the basis of a single frame from such sources,
only density can be measured.  The single frame gives no sense
of time, so neither volumes nor speed can be measured.  

Once several frames are available, as from a video-camera or
from time-lapse photography over short time intervals, speeds
can also be measured, often over a distance approximating the
entire section length over which densities have been calculated.
Note however the shift in the basis of measurement.  Even
though both density and speed can be taken over the full length
of the section, density must be measured at a single point in time,
whereas measurement of speed requires variation over time, as
well as distance.  In general, flow refers to vehicles crossing a
point or line on the roadway, for example one end of the section
in question. Hence, flow and density refer to different
measurement frameworks: flow over time at a point in space;
density over space at a point in time.  

Despite considerable improvements in technology, and the
presence of closed circuit television on many freeways, there is
very little use of measurements taken over a long section at the
present time.  The one advantage such measurements might
provide would be to yield true journey times over a lengthy
section of road, but that would require better computer vision
algorithms (to match vehicles at both ends of the section) than
are currently possible.  There have been some efforts toward the
objective of collecting journey time data on the basis of the
details of the 'signature' of particular vehicles or platoons of
vehicles across a series of loops over an extended distance
(Kühne and Immes 1993), but few practical implementations as
yet.  Persaud and Hurdle (1988b) describe another way to make
use of measurements along a length, following the method
proposed by Makagami et al. (1971).  By constructing
cumulative arrival curves at several locations, they were able to
derive both the average flow rate and the average density within
a section, and consequently the average speeds through it. 
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(2.1)

(2.2)

2.1.4  Moving Observer Method

There are two approaches to the moving observer method.  The
first is a simple floating car procedure in which speeds and travel
times are recorded as a function of time and location along the
road.  While the intention in this method is that the floating car
behaves as an average vehicle within the traffic stream, the
method cannot give precise average speed data.  It is, however,
effective for obtaining qualitative information about freeway
operations without the need for elaborate equipment or
procedures.  One form of this approach uses a second person in
the car to record speeds and travel times.  A second form uses a
modified recording speedometer of the type regularly used in
long-distance trucks or buses.  One drawback of this approach
is that it means there are usually significantly fewer speed
observations than volume observations.  An example of this kind
of problem appears in Morton and Jackson (1992).

The other approach was developed by Wardrop and
Charlesworth (1954) for urban traffic measurements and is
meant to obtain both speed and volume measurements
simultaneously.  Although the method is not practical for major
urban freeways, it is included here because it may be of some
value for rural expressway data collection, where there are no
automatic systems.  While it is not appropriate as the primary
mode of data collection on a busy freeway, there are some useful
points that come out of the literature that should be noted by
those seeking to obtain average speeds through the moving car
method.  The technique has been used in the past especially on
urban arterials, for example in connection with identifying
progression speeds for coordinated signals.

The method developed by Wardrop and Charlesworth is based
on a survey vehicle that travels in both directions on the road.
The formulae allow one to estimate both speeds and flows for
one direction of travel. The two formulae are

where,
q is the estimated flow on the road in the direction of

interest,
x is the number of vehicles traveling in the direction of

interest, which are met by the survey vehicle while
traveling in the opposite direction,

y is the net number of vehicles that overtake the survey
vehicle while traveling in the direction of interest
(i.e. those passing minus those overtaken),

t  is the travel time taken for the trip against thea

stream, 
t  is the travel time for the trip with the stream, andw

       is the estimate of mean travel time in the direction 
       of interest.

Wright (1973) revisited the theory behind this method.  His
paper also serves as a review of the papers dealing with the
method in the two decades between the original work and his
own. He finds that, in general, the method gives biased results,
although the degree of bias is not significant in practice, and can
be overcome. Wright's proposal is that the driver should fix the
journey time in advance, and keep to it. Stops along the way
would not matter, so long as the total time taken is as determined
prior to travel. Wright's other point is that turning traffic (exiting
or entering) can upset the calculations done using this method.
This fact means that the route to be used for this method needs
to avoid major exits or entrances.  It should be noted also that a
large number of observations are required for reliable estimation
of speeds and flow rates; without that, the method has very
limited precision.

2.1.5  ITS Wide-Area Measurements

Some forms of Intelligent Transportation Systems involve the
use of communications from specially-equipped vehicles to a
central system.  Although the technology of the various
communications systems differ, all of them provide for
transmission of information on the vehicles' speeds.  In some
cases, this would simply be the instantaneous speed while
passing a particular reporting point.  In others, the information
would be simply a vehicle identifier, which would allow the
system to calculate journey times between one receiving location
and the next.  A third type of system would not be based on fixed
interrogation points, but would poll vehicles regardless of
location, and would receive speeds and location information
back from the vehicles. 
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(2.3)

(2.4)

(2.5)

The first system would provide comparable data to that obtained The major difficulty with implementing this approach is that of
by paired loop detectors.  While it would have the drawback of establishing locations precisely.  Global positioning systems
sampling only a small part of the vehicle fleet, it would also have have almost achieved the capability for doing this well, but they
several advantages.  The first of these is that system maintenance would add considerably to the expense of this approach. 
and repair would not be so expensive or disruptive as is fixing
broken loops.  The second is that the polling stations could be set The limitation to all three systems is that they can realistically be
up more widely than loops currently are, providing better expected to provide information only on speeds.  It is
coverage especially away from freeways. notgenerally possible for one moving vehicle to be able to

The second system would provide speeds over a length of road, course, with appropriate sensors, each instrumented vehicle
information that cannot presently be obtained without great effort could report on its time and space headway, but it would take a
and expense.  Since journey times are one of the key variables of larger sample than is likely to occur in order to have any
interest for ITS route guidance, better information would be an confidence  in  the  calculation  of  flow  as  the  reciprocal  of
advantage for that operational purpose.  Such information will reported time headways, or density as the reciprocal of reported
also be of use for theoretical work, especially in light of the spacings.  Thus there remains the problem of finding comparable
discussion of speeds that appears in Section 2.2.2. flow or density information to go along with the potentially

The third system offers the potential for true wide-area speed
information, not simply information at selected reporting points.

identify flow rates or densities in any meaningful way.  Of

improved speed information.

2.2  Variables of Interest

In general, traffic streams are not uniform, but vary over both The total elapsed study time is made up of the sum of the
space and time.  Because of that, measurement of the variables headways recorded for each vehicle:
of interest for traffic flow theory is in fact the sampling of a
random variable.  In some instances in the discussion below, that
is explicit, but in must cases it is only implicit.  In reality, the
traffic characteristics that are labeled as flow, speed, and
concentration are parameters of statistical distributions, not
absolute numbers.

2.2.1  Flow Rates

Flow rates are collected directly through point measurements,
and by definition require measurement over time. They cannot
be estimated from a single snapshot of a length of road. Flow
rates and time headways are related to each other as follows.
Flow rate, q, is the number of vehicles counted, divided by the
elapsed time, T:

If the sum of the headways is substituted in Equation 2.3 for total
time, T, then it can be seen that the flow rate and the average
headway have a reciprocal relationship with each other:

Flow rates are usually expressed in terms of vehicles per hour,
although the actual measurement interval can be much less.
Concern has been expressed, however, about the sustainability
of high volumes measured over very short intervals (such as 30
seconds or one minute) when investigating high rates of flow.
The 1985 Highway Capacity Manual (HCM 1985) suggests
using at least 15-minute intervals, although there are also
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(2.6)

(2.7)

(2.8)

(2.9)

situations in which the detail provided by five minute or one is termed the time mean speed, because it is an average of
minute data is valuable. The effect of different measurement observations taken over time.
intervals on the nature of resulting data was shown by Rothrock
and Keefer (1957). The second term that is used in the literature is space mean

2.2.2  Speeds

Measurement of the speed of an individual vehicle requires
observation over both time and space.  The instantaneous speed
of an individual vehicle is defined as

Radar or microwave would appear to be able to provide speed
measurements conforming most closely to this definition, but
even these rely on the motion of the vehicle, which means they
take place over a finite distance and time, however small those
may be. Vehicle speeds are also measured over short sections,
such as the distance between two closely-spaced (6 m) inductive
loops, in which case one no longer has the instantaneous speed
of the vehicle, but a close approximation to it (except during
rapid acceleration or deceleration).

In the literature, the distinction has frequently been made
between different ways of calculating the average speed of a set
of vehicles. The kind of difference that can arise from different
methods can be illustrated by the following example, which is a
kind that often shows up on high school mathematics aptitude
tests. If a traveler goes from A to B, a distance of 20 km, at an
average speed of 80 kilometers per hour (km/h), and returns at
an average speed of 40 km/h, what is the average speed for the
round trip?  The answer is of course not 60 km/h; that is the
speed that would be found by someone standing at the roadside
with a radar gun, catching this car on both directions of the
journey, and averaging the two observations. The trip, however,
took 1/4 of an hour one way, and 1/2 an hour for the return, for
a total of 3/4 of an hour to go 40 km, resulting in an average
speed of 53.3 km/h.  

The first way of calculating speeds, namely taking the arithmetic
mean of the observation, 

speed, but unfortunately there are a variety of definitions for it,
not all of which are equivalent.  There appear to be two main
types of definition.  One definition is found in Lighthill and
Whitham (1955), which they attribute to Wardrop (1952), and
is the speed based on the average time taken to cross a given
distance, or space, D:

where t  is the time for vehicle I to cross distance Di

A similar definition appears in handbooks published by the
Institute of Transportation Engineers (ITE 1976; ITE 1992), and
in May (1990), and is repeated in words in the 1985 HCM.  One
question regarding Equation 2.8 is what the summation is taken
over.  Implicitly, it is over all of the vehicles that crossed the full
section, D.  But for other than very light traffic conditions, there
will always be some vehicles within the section that have not
completed the crossing.  Hence the set of vehicles to include
must necessarily be somewhat arbitrary. 

The 1976 ITE publication also contains a related definition,
where space mean speed is defined as the total travel divided by
the total travel time.  This definition calls for specifying an
explicit rectangle on the space-time plane (Figure 2.1), and
taking into account all travel that occurs within it.  This
definition is similar to Equation 2.8 in calling for measurement
of speeds over a distance, but dissimilar in including vehicles
that did not cover the full distance.

Some authors, starting as far back as Wardrop (1952),
demonstrate that Equation 2.8 is equivalent to using the
harmonic mean of the individual vehicle speeds, as follows.
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(2.10)

(2.11)

The difficulty with allowing a definition of space mean speed as of the speeds of the vehicles traveling over a given length of road
the harmonic mean of vehicle speeds is that the measurement and weighted according to the time spent traveling that length".
over a length of road, D, is no longer explicit.  Consequently, the
last right-hand side of Equation 2.10 makes it look as if space
mean speed could be calculated by taking the harmonic mean of
speeds measured at a point over time.  Wardrop (1952), Lighthill
and Whitham (1955), and Edie (1974) among other authors
accepted this use of speeds at a point to calculate space mean
speed.  For the case where speeds do not change with location,
the use of measurements at a point will not matter, but if speeds
vary over the length of road there will be a difference between
the harmonic mean of speeds at a point in space, and the speed
based on the average travel time over the length of road.  As
well, Haight (1963) and Kennedy et al. (1973) note that
measurements at a point will over-represent the number of fast
vehicles and under-represent the slow ones, and hence give a
higher average speed than the true average.

The second principal type of definition of space mean speed
involves taking the average of the speeds of all of the vehicles on
a section of road at one instant of time.  It is most easily here )  is defined as , k  is the density of sub-
visualized with the example given by Haight (1963, 114):  "an
aerial photograph, assuming each car to have a speedometer on
its top."  Leutzbach (1972; 1987) uses a similar example.  In
Figure 2.1, this method is represented by the vertical line labeled
"along a length".  Kennedy et al. (1973) use a slightly more
realistic illustration, of two aerial photographs taken in close
succession to obtain the speeds of all of the vehicles in the first
photo.  Ardekani and Herman (1987) used this method as part of
a study of the relationships among speed, flow, and density.
Haight goes on to show mathematically that a distribution of
speeds collected in this fashion will be identical to the true
distribution of speeds, whereas speeds collected over time at one
point on the road will not match the true distribution.  In deriving
this however, he assumes an "isoveloxic" model, one in which
each car follows a linear trajectory in the space time diagram,
and is not forced to change speed when overtaking another

vehicle.  This is equivalent to assuming that the speed
distribution does not change with location (Hurdle 1994).  A
similar definition of space mean speed, without the isoveloxic
assumption, appears in HRB SR 79 (Gerlough and Chappelle
1964, viii):  "the arithmetic mean of the speeds of vehicles
occupying a given length of lane at a given instant."

Wohl and Martin (1967, 323) are among the few authors who
recognize the difference in definition.  They quote the HRB
SR79 definition in a footnote, but use as their definition "mean

Regardless of the particular definition put forward for space
mean speed, all authors agree that for computations involving
mean speeds to be theoretically correct, it is necessary to ensure
that one has measured space mean speed, rather than time mean
speed.  The reasons for this are discussed in Section 2.2.3.
Under conditions of stop-and-go traffic, as along a signalized
street or a badly congested freeway, it is important to distinguish
between these two mean speeds.  For freely flowing freeway
traffic, however, there will not be any significant difference
between the two, at least if Equation 2.10 can be taken to refer
to speeds taken at a point in space, as discussed above.  Wardrop
(1952, 330) showed that the two mean speeds differ by the ratio
of the variance to the mean of the space mean speed:

2
s     i

stream I, and K is the density of the total stream.  When there is
great variability of speeds, as for example at the time of
breakdown from uncongested to stop and go conditions, there
will be considerable difference between the two.  Wardrop
(1952) provided an example of this kind (albeit along what must
certainly have been a signalized roadway -- Western Avenue,
Greenford, Middlesex, England), in which speeds ranged from
a low of 8 km/h to a high of 100 km/h.  The space mean speed
was 48.6 km/h; the time mean speed 54.0 km/h.  On the basis of
such calculations, Wardrop (1952, 331) concluded that time
mean speed is "6 to 12 percent greater than the space mean"
speed. Note however, from the high school mathematics
example given earlier, that even with a factor of 2 difference in
speeds, there is only about a 13 percent difference between  
and . 
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(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

In uncongested freeway traffic, the difference between the two is more expensive than using single loops.  Those systems that
speeds will be quite small.  Most vehicles are traveling at very do not measure speeds, because they have only single-loop
similar speeds, with the result that    will  be  small,  while detector stations, sometimes calculate speeds from flow and

 will be relatively large.  Gerlough and Huber (1975) provide occupancy data, using a method first identified by Athol (1965).
an example based on observation of 184 vehicles on Interstate In order to describe and comment on Athol’s derivation of that
94 in Minnesota.  Speeds ranged from a low of  35.397 km/h to procedure, it is first necessary to define the measurement of
a high of 45.33 km/h.  The arithmetic mean of the speeds was occupancy, a topic which might otherwise be deferred to Section
39.862 km/h; the harmonic mean was 39.769 km/h.  As 2.3.3.
expected, the two mean speeds are not identical.  However, the
original measurements were accurate only to the nearest whole Occupancy is the fraction of time that vehicles are over the
mile per hour.  To the accuracy of the original measurements, the
two means are equal.  In other words, for relatively uniform flow
and speeds, the two mean speeds are likely to be equivalent for
practical purposes.  Nevertheless, it is still appropriate to specify
which type of averaging has been done, and perhaps to specify
the amount of variability in the speeds (which can provide an
indication of how similar the two are likely to be).

Even during congestion on freeways, the difference is not very
great, as shown by the analyses of Drake et al. (1967).  They
calculated both space mean speed and time mean speed for the
same set of data from a Chicago freeway, and then regressed one
against the other.  The resulting equation was

with speeds in miles per hour.  The maximum speeds observed
approached 96.6 km/h, at which value of time mean speed, space
mean speed would be 96.069 km/h.  The lowest observed speeds
were slightly below 32.2 km/h.  At a time mean speed of 32.2
km/h, the equation would yield a space mean speed of 29.99
km/h.  However, it needs to be noted that the underlying
relationship is in fact non-linear, even though the linear model in
Equation 2.12 resulted in a high R .  The equation may2

misrepresent the amount of the discrepancy, especially at low
speeds.  Nevertheless, the data they present, and the equation,
when applied at high speeds, support the result found by
Gerlough and Huber (1975):  at least for freeways, the practical
significance of the difference between space mean speed and
time mean speed is minimal.  However, it is important to note
that for traffic flow theory purists, the only ‘correct’ way to
measure average travel velocity is to calculate space-mean speed
directly.

Only a few freeway traffic management systems acquire speed
information directly, since to do so requires pairs of presence
detectors at each of the detector stations on the roadway, and that

detector.  For a specific time interval, T, it is the sum of the time
that vehicles cover the detector, divided by T.   For each
individual vehicle, the time spent over the detector is determined
by the vehicle's speed, u  , and its length, L , plus the length ofi     i 

the detector itself, d.  That is, the detector is affected by the
vehicle from the time the front bumper crosses the start of the
detection zone until the time the rear bumper clears the end of
the detection zone.

Athol then multiplied the second term of this latter equation by
N (1/N ), and substituted Equations 2.3 and 2.10: 

Assuming that the "fundamental equation" holds (which will be
dealt with in detail in the next section), namely

this becomes
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(2.18)

(2.19)

(2.20)

Noting that T is simply the sum of the individual vehicle
headways, Athol made the substitution, and then multiplied top
and bottom of the resulting equation by 1/N:  

(2.17)

In order to proceed further, Athol assumed a uniform vehicle
length, L, which allows the following simplification of the
equation:

Since at a single detector location, d is constant, this equation
means that occupancy and density are constant multiples of each
other (under the assumption of constant vehicle lengths).
Consequently, speeds can be calculated as

It is useful to note that the results in Equation 2.18, and hence
Equation 2.19, are still valid if vehicle lengths vary and speeds
are constant, except that L would have to be interpreted as the

mean of the vehicle lengths.  On the other hand, if both lengths
and speeds vary, then the transition from Equation 2.17 to 2.18
and 2.19 cannot be made in this simple fashion, and the
relationship between speeds, flows, and occupancies will not be
so clear-cut (Hall and Persaud 1989).  Banks (1994) has recently
demonstrated this result in a more elegant and convincing
fashion.

Another method has recently been proposed for calculating
speeds from flow and occupancy data (Pushkar et al. 1994).
This method is based on the catastrophe theory model for traffic
flow, presented in Section 2.3.6.  Since explanation of the
procedure for calculating speeds requires an explanation of that
model, discussion will be deferred until that section.

2.2.3  Concentration 

Concentration has in the past been used as a synonym for
density.  For example, Gerlough and Huber (1975, 10) wrote,
"Although concentration (the number of vehicles per unit length)
implies measurement along a distance...."  In this chapter, it
seems more useful to use 'concentration' as a broader term
encompassing both density and occupancy.  The first is a
measure of concentration over space; the second measures
concentration over time of the same vehicle stream.

Density can be measured only along a length.  If only point
measurements are available, density needs to be calculated,
either from occupancy or from speed and flow.  Gerlough and
Huber wrote (in the continuation of the quote in the previous
paragraph), that "...traffic engineers have traditionally estimated
concentration from point measurements, using the relationship

This is the same equation that was used above in Athol's
derivation of a way to calculate speeds from single-loop detector
data.  The difficulty with using this equation to estimate density
is that the equation is strictly correct only under some very
restricted conditions, or in the limit as both the space and time
measurement intervals approach zero.  If neither of those
situations holds, then use of the equation to calculate density can
give misleading results, which would not agree with empirical
measurements.  These issues are important, because this



ki 
 qi /ui i
1, 2, ...c

us 


M
i

kiui

k



M
i

qi

k



q
k

ki 
 qi /ui i
1, 2, ...c

q 
 uk

us

�� 75$)),&675($0&+$5$&7(5,67,&6

� � ��

(2.21)

(2.22)

(2.23)

(2.24)

equation has often been uncritically applied to situations that constant value.  The density as measured over one portion of the
exceed its validity. substream may well be different from the density as measured

The equation was originally developed by Wardrop (1952).  His
derivation began with the assumption that the traffic stream
could be considered to be a number of substreams, "in each of
which all the vehicles are traveling at the same speed and form
a random series" (Wardrop 1952, 327).  Note that the
randomness must refer to the spacing between vehicles, and that
since all vehicles in the substream have constant speed, the
spacing within the substream will not change (but is clearly not
uniform).  Wardrop's derivation then proceeded as follows
(Wardrop 1952, 327-328), where his symbol for speed, v , hasi

been replaced by the one used herein, u ):i

Consider the subsidiary stream with flow,  q  and speed u .i   i

The average time-interval between its vehicles is evidently
1/q , and the distance travelled in this time is u  /q .  Iti          i i

follows that the density of this stream in space, that is to say,
the number of vehicles per unit length of road at any instant
(the concentration), is given by

The next step involved calculating the overall average speed on
the basis of the fractional shares of total density, and using the
above equation to deduce the results:

The equation for the substreams is therefore critical to the
derivation to show that Equation 2.20 above holds when space
mean speed is used.

There are two problems with this derivation, both arising from
the distinction between a random series and its average.
Wardrop is correct to say that the "average time-interval"
between vehicles (in a substream) is 1/q , but he neglects toi

include the word 'average' in the next sentence, about density:
the average density of this stream in space.  The issue is not
simply one of wording, but of mathematics.  Because the
substream is random, which must mean random spacing since it
has a uniform speed, the density of the substream cannot have a

over a different portion.  The k calculated in Equation 2.21 is noti

the true density of the stream, but only an estimate.  If that is the
case, however, the derivation of Equation 2.20 is in jeopardy,
because it calls upon Equation 2.21 subsequently in the
derivation.  In short, there appears to be an implicit assumption
of constant spacing as well as constant speed in the derivation.

Gerlough and Huber (1975) reproduce some of Wardrop's
derivation, but justify the key equation,

on the basis of "analysis of units" (Gerlough and Huber 1975,
10).  That is, the units of flow, in vehicles/hour, can be obtained
by multiplying the units for density, in vehicles/km, by the units
for speed, in km/hour.  The fact that space mean speed is needed
for the calculation, however, relies on the assumption that the
key equation for substreams holds true.  They have not avoided
that dependence.

Although Equation 2.20 has been called the fundamental
identity, or fundamental equation of traffic flow, its use has often
exceeded the underlying assumptions.  Wardrop's explicit
assumption of substreams with constant speed is approximately
true for uncongested traffic (that is at flows of between 300 and
perhaps 2200 pcphpl), when all vehicles are moving together
quite well.  The implicit assumption of constant spacing is not
true over most of this range, although it becomes more nearly
accurate as volumes increase.  During congested conditions,
even the assumption of constant speed substreams is not met.
Congested conditions are usually described as stop-and-go
(although slow-and-go might be more accurate).  In other words,
calculation of density from speed and flow is likely to be
accurate only over part of the range of operating conditions.
(See also the discussion in Hall and Persaud 1989.)

Equation 2.20, and its rearranged form in Equation 2.15,
explicitly deal in averages, as shown by  in both of them.  The
same underlying idea is also used in theoretical work, but there
the relationship is defined at a point on the time space plane.  In
that context, the equation is simply presented as
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(2.25)

(2.26)

(2.27)

(2.28)

This equation "may best be regarded as an idealization, which is occupancy, using the relationship identified by Athol, as derived
true at a point if all measures concerned are regarded as in the previous section (Equation 2.18).  That equation is also
continuous variables" (Banks 1994, 12). Both Banks and Newell valid only under certain conditions.  Hall and Persaud (1989)
(1982, 60) demonstrated this by using the three-dimensional identified those as being either constant speeds or constant
surface proposed by Makagami et al. (1971), on which the vehicle lengths.  Banks has identified the conditions more
dimensions are time (t); distance (x); and cumulative number of
vehicles (N).  If one assumes that the discrete steps in N can be
smoothed out to allow treatment of the surface A(x,t),
representing the cumulative vehicle arrival function, as a
continuous function, then

and

Since

It follows that q=uk for the continuous surface, at a point.  Real
traffic flows, however, are not only made up of finite vehicles
surrounded by real spaces, but are inherently stochastic (Newell
1982).  Measured values are averages taken from samples, and
are therefore themselves random variables.  Measured flows are
taken over an interval of time, at a particular place.  Measured
densities are taken over space at a particular time.  Only for
stationary processes (in the statistical sense) will the time and
space intervals be able to represent conditions at the same point
in the time-space plane.  Hence it is likely that any measurements
that are taken of flow and density (and space mean speed) will
not be very good estimates of the expected values that would be
defined at the point of interest in the time space plane -- and
therefore that Equation 2.22 (or 2.15) will not be consistent with
the measured data.  Density is also sometimes estimated from

precisely as requiring both the covariance of vehicle length with
the inverse of vehicle speed and the covariance of vehicle
spacing with the inverse of vehicle speed to be zero. Speeds
within a lane are relatively constant during uncongested flow.
Hence the estimation of density from occupancy measurements
is probably reasonable during those traffic conditions, but not
during congested conditions. Athol's (1965) comparison of
occupancy with aerial measurements of density tends to confirm
this generalization. In short, once congestion sets in, there is
probably no good way to estimate density; it would have to be
measured.

Temporal concentration (occupancy) can be measured only over
a short section (shorter than the minimum vehicle length), with
presence detectors, and does not make sense over a long section.
Perhaps because the concept of density has been a part of traffic
measurement since at least the 1930s, there has been a
consensus that density was to be preferred over occupancy as the
measure of vehicular concentration.  For example, Gerlough and
Huber (1975, 10) called occupancy an "estimate of density", and
as recently as 1990, May referred to occupancy as a surrogate for
density (p. 186).  Almost all of the theoretical work done prior
to 1985 either ignores occupancy, or else uses it only to convert
to, or as a surrogate for, density.  Athol's work (1965) is a
notable exception to this.  On the other hand, much of the
freeway traffic management work during the same period (i.e.
practical as opposed to theoretical work) relied on occupancy,
and some recent theoretical work has used it as well.  (See in
particular Sections 2.3.5 and 2.3.6 below.) 

It would be fair to say that the majority opinion at present
remains in favor of density, but that a minority view is
thatoccupancy should begin to enter theoretical work instead of
density.   There are  two  principal  reasons  put  forward  by  the
minority for making more use of occupancy.  The first is that
there should be improved correspondence between theoretical
and practical work on freeways.  If freeway traffic management
makes extensive use of a variable that freeway theory ignores,
the profession is the poorer.  The second reason is that density,
as vehicles per length of road, ignores the effects of vehiclength
and traffic composition.  Occupancy, on the other hand, is
directly affected by both of these variables, and therefore gives
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a more reliable indicator of the amount of a road being used by impossible to measure directly in Newton's time, and difficult to
vehicles. There are also good reasons put forward by the measure even indirectly, yet he built a theory of mechanics in
majority for the continued use of density in theoretical work.  Not which it is one of the most fundamental parameters. In all
least is that it  is  theoretically useful in their work in a way that likelihood there will continue to be analysts who use each of
occupancy is not.  Hurdle (1994) has drawn an analogy with the occupancy and density: this is a debate that will not be resolved.
concept of acceleration in Newtonian physics.  Acceleration was

2.3  Traffic Stream Models

This section provides an overview of work to establish the traffic at location A. These vehicles can be considered to be in
relationship among the variables described in the previous a queue, waiting their turn to be served by the bottleneck section
section.  Some of these efforts begin with mathematical models; immediately downstream of the entrance ramp. The data
others are primarily empirical, with little or no attempt to superimposed on graph A reflect the situation whereby traffic at
generalize.  Both are important components for understanding A had not reached capacity before the added ramp volume
the relationships.  Two aspects of these efforts are emphasized caused the backup.  There is a good range of uncongested data
here: the measurement methods used to obtain the data; and the (on the top part of the curve), and congested data concentrated
location at which the measurements were obtained.  Section in one area of the lower part of the curve.  The volumes for that
2.3.1 discusses the importance of location to the nature of the portion reflect the capacity flow at B less the entering ramp
data obtained; subsequent sections then deal with the models, flows.
first for two variables at a time, then for all three variables
simultaneously. At location B, the full range of uncongested flows is observed,

2.3.1 Importance of Location to
the Nature of the Data

Almost all of the models to be discussed represent efforts to
explain the behavior of traffic variables over the full range of
operation.  In turning the models from abstract representations
into numerical models with specific parameter values, an
important practical question arises:  can one expect that the data
collected will cover the full range that the model is intended to
cover?  If the answer is no, then the difficult question follows of
how to do curve fitting (or parameter estimation) when there
may be essential data missing.

This issue can be explained more easily with an example.  At the
risk of oversimplifying a relationship prior to a more detailed
discussion of it, consider the simple representation of the speed-
flow curve as shown in Figure 2.2, for three distinct sections of
roadway.  The underlying curve is assumed to be the same at all
three locations.  Between locations A and B, a major entrance
ramp adds considerable traffic to the road.  If location B reaches
capacity due to this entrance ramp volume, there will be a
backup of traffic on the mainstream, resulting in stop-and-go

right out to capacity, but the location never becomes congested,
in the sense of experiencing stop-and-go traffic. It does,
however, experience congestion in the sense that speeds are
below those observed in the absence of the upstream congestion.
Drivers arrive at the front end of the queue moving very slowly,
and accelerate away from that point, increasing speed as they
move through the bottleneck section.  This segment of the speed-
flow curve has been referred to as queue discharge flow (Hall et
al. 1992).  The particular speed observed at B will depend on
how far it is from the front end of the queue (Persaud and Hurdle
1988a). Consequently, the only data that will be observed at B
are on the top portion of the curve, and at some particular speed
in the queue discharge segment.  

If the exit ramp between B and C removes a significant portion
of  the traffic that was observed at B, flows at C will not reach
the levels they did at B.  If there is no downstream situation
similar to that between A and B, then C will not experience
congested operations, and the data observable there will be as
shown in Figure 2.2.  None of these locations taken alone can
provide the data to identify the full speed-flow curve.  Location
C can help to identify the uncongested portion, but cannot deal
with capacity, or with congestion.  Location B can provide
information  on  the  uncongested  portion  and  on  capacity.  
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Figure 2.2
Effect of Measurement Location on Nature of Data 
(Similar to figures in May 1990 and Hall et al. 1992).

This would all seem obvious enough.  A similar discussion
appears in Drake et al. (1967).  It is also explained by May
(1990).  Other aspects of the effect of location on data patterns
are discussed by Hsu and Banks (1993). Yet a number of
important efforts to fit data to theory have ignored this key point
(ie. Ceder and May 1976; Easa and May 1980).  

They have recognized that location A data are needed to fit the
congested portion of the curve, but have not recognized that at
such a location data are missing that are needed to identify
capacity.  Consequently, discussion in the remaining subsections
will look at the nature of the data used in each study, and at
where the data were collected (with respect to bottlenecks) in
order to evaluate the theoretical ideas.  As will be discussed with
reference to specific models, it is possible that the apparent need
for several different models, or for different parameters for the
same model at different locations, or even for discontinuous
models instead of continuous ones, arose because of the nature
(location) of the data each was using.

2.3.2  Speed-Flow Models 

The speed-flow relationship is the bivariate relationship on
which there has been the greatest amount of work within the past
half-dozen years, with over a dozen new papers, so it is the first
one to be discussed here.  This sub-section is structured
retrospectively, working from the present backwards in time.
The reason for this structure is that the current understanding
provides some useful insights for interpreting earlier work.  

Prior to the writing of this chapter, the Highway Capacity and
Quality of Service Committee of the Transportation Research
Board approved a revised version of Chapter 3 of the Highway
Capacity Manual (HCM 1994).  This version contains the speed-
flow curve shown in Figure 2.3. This curve has speeds
remaining flat as flows increase, out to somewhere between half
and two-thirds of capacity values, and a very small decrease in
speeds at capacity from those values.  The curves in Figure 2.3
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Figure 2.3
Speed-Flow Curves Accepted for 1994 HCM.

do not represent any theoretical equation, but instead represent HCM (Figure 2.6) was for lower speeds and a lower capacity.
a generalization of empirical results. In that fundamental respect, Since it seemed unlikely that speeds and capacities of a freeway
the most recent research differs considerably from the earlier could be improved by replacing grade-separated overpasses or
work, which tended to start from hypotheses about first interchanges by at-grade intersections (thereby turning a rural
principles and to consult data only late in the process. freeway into a multi-lane rural highway), there was good reason

The bulk of the recent empirical work on the relationship
between speed and flow (as well as the other relationships) was Additional empirical work dealing with the speed-flow
summarized in a paper by Hall, Hurdle, and Banks (1992).  In it, relationship was conducted by Banks (1989, 1990), Hall and
they proposed the model for traffic flow shown in Figure 2.4. Hall (1990), Chin and May (1991), Wemple, Morris and May
This figure is the basis for the background speed-flow curve in (1991), Agyemang-Duah and Hall (1991) and Ringert and
Figure 2.2, and the discussion of that figure in Section 2.3.1 is Urbanik (1993).  All of these studies supported the idea that
consistent with this relationship. speeds remain nearly constant even at quite high flow rates.

It is perhaps useful to summarize some of the antecedents of the been around for over thirty years (Wattleworth 1963): is there a
understanding depicted in Figure 2.4. The initial impetus came reduction in flow rates within the bottleneck at the time that the
from a paper by Persaud and Hurdle (1988a), in which they queue forms upstream?  Figure 2.4 shows such a drop on the
demonstrated (Figure 2.5) that the vertical line for queue basis of two studies. Banks (1991a, 1991b) reports roughly a
discharge flow in Figure 2.4 was a reasonable result of three percent drop from pre-queue flows, on the basis of nine
measurements taken at various distances downstream from a days of data at one site in California.  Agyemang-Duah and Hall
queue. (This study was an outgrowth of an earlier one by Hurdle (1991) found about a 5 percent decrease, on the basis of 52 days
and Datta (1983) in which they raised a number of questions of data at one site in Ontario.  This decrease in flow is often not
about  the shape of the speed-flow curve near capacity.)  Further observable, however, as in many locations high flow rates do not
impetus for change came from work done on multi-lane rural last long enough prior to the onset of congestion to yield the
highways that led in 1992 to a revised Chapter 7 of the HCM stable flow values that would show the drop.
(1992).  That research, and the new Chapter 7, suggested a
shape for those roads very like that in Figure 2.4, whereas the The 1994 revision of the figure for the HCM (Figure 2.3)
conventional wisdom for freeways, as represented in the 1985 elaborates on the top part of Figure 2.4, by specifying the curve

to reconsider the situation for a freeway.

Another of the important issues they dealt with is one that had

for different free-flow speeds.  Two elements of these curves
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Figure 2.4
Generalized Shape of Speed-Flow Curve 

Proposed by Hall, Hurdle, & Banks
(Hall et al. 1992).

Figure 2.5
Speed-Flow Data for Queue Discharge Flow at Varied 
Distances Downstream from the Head of the Queue  

(Modified from Persaud and Hurdle 1988).
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(2.29)

Figure 2.6
1985 HCM Speed-Flow Curve (HCM 1985).

were assumed to depend on free-flow speed: the breakpoints at
which speeds started to decrease from free-flow, and the speeds
at capacity.  Although these aspects of the curve were only
assumed at the time that the curves were proposed and adopted,
they have since received some confirmation in a paper by Hall
and Brilon (1994), which makes use of German Autobahn
information, and another paper by Hall and Montgomery (1993)
drawing on British experience.  

Two empirical studies conducted recently in Germany support
the general picture in Figure 2.3 quite well.  Heidemann and
Hotop (1990) found a piecewise-linear 'polygon' for the upper
part of the curve (Figure 2.7).  Unfortunately, they did not have
data beyond 1700 veh/hr/lane, and had that only for two lanes
per direction, so could not address what happens at capacity.
Stappert and Theis (1990) conducted a major empirical study of
speed-flow relationships on various kinds of roads.  However,
they were interested only in estimating parameters for a specific
functional form,

where u is speed, Q is traffic volume, C and D are constant
"curvature factors" taking values between 0.2 and 0.003, and A,
B, and K are parameters of the model.  This function tended to
give the kind of result shown by the upper curve in Figure 2.8,
despite the fact that the curve does not accord well with the data
near capacity.  The lower curve is a polygon representation,
based on an assumed shape as well.  In Figure 2.8, each point
represents a full hour of data, and the graph represents five
months of hourly data.  Note that flows in excess of 2200
veh/hr/lane were sustained on several occasions, over the full
hour.

The relevant British data and studies are those that serve as the
basis for the manual for cost-benefit analyses (COBA9 1981).
The speed-flow curve in that manual is shown in Figure 2.9.
While it shows a decline in speed (of 6 km/h) per each additional
1000 vehicles per hour per lane) from the first vehicle on the
road, detailed inspection of the data behind that conclusion (in 
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(2.30)

Figure 2.7
Results from Fitting Polygon Speed-Flow Curves to German Data 

(Modified and translated from Heidemann and Hotop 1990).

 Martin and Voorhees 1978, and in Duncan 1974) shows that the 1935, in which he derived the following parabolic equation for
data are ambiguous, and could as easily support a slope of zero the speed-flow curve on the basis of a linear speed- density
out to about the breakpoint of 1200 vphpl (Hall and relationship together with the equation, flow = speed � density:
Montgomery 1993).   A more recent British study (Hounsell et
al. 1992) also supports the notion that speeds remain high even
out to capacity flows.  Hence there is good international support
for the type of speed-flow curve shown in Figure 2.3, and
nothing to contradict the picture put forward there and in Figure
2.4. 

The problem for traffic flow theory is that these curves are
empirically derived.  There is not really any theory that would
explain these particular shapes, except perhaps for Edie et al.
(1980), who propose qualitative flow regimes that relate well to
these curves. The task that lies ahead for traffic flow theorists is
to develop a consistent set of equations that can replicate this
reality.  The models that have been proposed to date, and will be
discussed in subsequent sections, do not necessarily lead to the
kinds of speed-flow curves that data suggest are needed.

It is instructive to review the history of depictions of speed-flow
curves in light of this current understanding.  Probably the
seminal work on this topic was the paper by Greenshields in

where u is the free-flow speed, and k  is the jam density.  Figuref      j

2.10 contains that curve and the data it is based on, redrawn.
The numbers adjacent to the data points represent the "number
of 100-vehicle groups observed," on Labor Day 1934, in one
direction on a two-lane two-way road (p. 464).  In counting the
vehicles on the road, every 10th vehicle started a new group (of
100), so there is a 90 percent overlap between two adjacent
groups (p. 451).  The groups are not independent observations.
Equally important, the data have been grouped in flow ranges of
200 veh/h and the averages of these groups taken prior to
plotting.  The one congested point, representing 51
(overlapping) groups of 100 observations, came from a different
roadway entirely, with different cross-section and pavement,
which were collected on a different day.
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Figure 2.8
Data for Four-Lane German Autobahns (Two-Lanes per Direction), 

as reported by Stappert and Theis (1990).

Figure 2.9
UK Speed-Flow Curve (Source: COBA9 1981).
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These details are mentioned here because of the importance to analysis of the data, with overlapping groups and averaging prior
traffic flow theory of Greenshields' work.  The parabolic shape to curve-fitting, would not be acceptable.  The third problem is
he derived was accepted as the proper shape of the curve for that despite the fact that most people have used a model that was
decades.  In the 1965 Highway Capacity Manual, for example, based on holiday traffic, current work focuses on regular
the shape shown in Figure 2.10 appears exactly, despite the fact commuters who are familiar with the road, to better ascertain
that data displayed elsewhere in the 1965 HCM showed that what a road is capable of carrying.
contemporary empirical results did not match the figure.  In  the
1985  HCM,  the  same  parabolic shape was retained (Figure There is a fourth criticism that can be addressed to Greenshields'
2.6), although broadened considerably.  It is only with the 1994 work as well, although it is one of which a number of current
revision to the HCM that a different empirical reality has been researchers seem unaware.  Duncan (1976; 1979) has shown
accepted. that calculating density from speed and flow, fitting a line to the

In short, Greenshields' model dominated the field for over 50 flow function, gives a biased result relative to direct estimation
years, despite at least three problems.  The most fundamental is of the speed-flow function.  This is a consequence of three things
that Greenshields did not work with freeway data.  Yet his result discussed earlier:  the non-linear transformations involved in
for a single lane of traffic was adopted directly for freeway both directions, the stochastic nature of the observations, and the
conditions.  (This of course was not his doing.)  The second inability to match the time and space measurement frames
problem is that by current standards of research the method of exactly.

speed-density data, and then converting that  line into a speed-

Figure 2.10
Greenshields' Speed-Flow Curve and Data

(Greenshields 1935).
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It is interesting to contrast the emphasis on speed-flow models
in recent years, especially for freeways, with that 20 years ago,
for example as represented in TRB SR 165 (Gerlough and
Huber 1975), where speed-flow models took up less than a page
of text, and none of the five accompanying diagrams dealt with
freeways.  (Three dealt with the artificial situation of a test
track.)  In contrast, five pages and eleven figures were devoted
to the speed-density relationship.  Speed-flow models are now
recognized to be important for freeway management strategies,
and will be of fundamental importance for ITS implementation
of alternate routing; hence there is currently considerably more
work on this topic than on the remaining two bivariate topics.
Twenty years ago, the other topics were of more interest.  As
Gerlough and Huber stated (p. 61), "once a speed-concentration
model has been determined, a speed-flow model can be
determined from it."  That is in fact the way most earlier speed-
flow work was treated (including that of Greenshields).  Hence,
it is sensible to turn to discussion of speed-concentration models,
and to deal with any other speed-flow models as a consequence
of speed-concentration work, which is the way they were
developed.

.3.3  Speed-Density Models

This   subsection   deals  with   mathematical   models   for  the

speed-density  relationship,  going  back  to  as  early  as  1935.
Greenshields' (1935) linear model of speed and density was
mentioned in the previous section.  It can be written as:The
measured data were speeds and flows; density was calculated
using Equation 2.20.  The most interesting aspect of this
particular model is that its empirical basis consisted of half a
dozen points in one cluster near free-flow speed, and a single
observation under congested conditions (Figure 2.11). The linear
relationship comes from connecting the cluster with the single
point.  As Greenshields stated (p. 468), "since the curve is a
straight line it is only necessary to determine accurately two
points to fix its direction."  What is surprising is not that such
simple analytical methods were used in 1935, but that their
results (the linear speed-density model) have continuedto be so
widely accepted for so long.  While there have been studies that

Figure 2.11
Greenshields' Speed-Density Graph and Data (Greenshields 1935).
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claimed to have confirmed this model, such as that in Figure a number of studies that found contradictory evidence, most
2.12a (Huber 1957), they tended to have similarly sparse importantly that by Drake et al. (1967), which will be discussed
portions of the full range of data, usually omitting both the lowest in more detail subsequently. 
flows and flow in the range near capacity.  There have also been

Figure 2.12
Speed-Density Data from Merritt Parkway and Fitted Curves.
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(2.32)

A second early model was that put forward by Greenberg in this comparison, and the careful way the work was done, the
(1959), showing a logarithmic relationship: statistical analyses proved inconclusive:  "almost all conclusions

His paper showed the fit of the model to two data sets, both of exaggeration.  Twenty-one graphs help considerably in
which visually looked very reasonable.  However, the first data differentiating among the seven hypotheses and their
set was derived from speed and headway data on individual consequences for both speed-volume and volume-density
vehicles, which "was then separated into speed classes and the graphs.
average headway was calculated for each speed class" (p. 83).
In other words, the vehicles that appear in one data point (speed Figure 2.13 provides an example of the three types of graphs
class) may not even have been traveling together!  While a used, in this case the ones based on the Edie model.  Their
density can always be calculated as the reciprocal of average comments about this model (p. 75) were: "The Edie formulation
headway, when that average is taken over vehicles that may well gave the best estimates of the fundamental parameters.  While its
not have been traveling together, it is not clear what that density
is meant to represent. It is also the case that lane changing was
not permitted in the Lincoln Tunnel (where the data were
obtained), so this is really single-lane data rather than freeway
data.  The second data set used by Greenberg was Huber's.  This
is the same data that appears in Figure 2.12a; Greenberg's graph
is shown in Figure 2.12b.  Visually, the fit is quite good, but
Huber reported an R of 0.97, which does not leave much room from Greenshields' hypothesis of a linear speed-density
for improvement.  relationship.  (It is interesting to note that the data in these two

These two forms of the speed-density curve, plus five others, flow shape identified earlier in Figures 2.3 and 2.4.)  The overall
were investigated in an important empirical test by Drake et al. conclusion one might draw from the Drake et al. study is that
in 1967.  The test used data from the middle lane of the none of the seven models they tested provide a particularly good
Eisenhower Expressway in Chicago, 800 m (one-half mile) fit to or explanation of the data, although it should be noted that
(upstream from a bottleneck whose capacity was only slightly they did not state their conclusion this way, but rather dealt with
less than the capacity of the study site.  This location was chosen each model separately.
specifically in order to obtain data over as much of the range of
operations as possible.  A series of 1224 1-minute observations There are two additional issues that arise from the Drake et al.
were initially collected.  The measured data consisted of volume, study that are worth noting here.  The first is the methodological
time mean speed, and occupancy.  Density was calculated from one identified by Duncan (1976; 1979), and discussed earlier
volume and time mean speed.  A sample was then taken from with regard to Greenshields' work. Duncan showed that the three
among the 1224 data points in order to create a data set that was step procedure of (1) calculating density from speed and flow
uniformly distributed along the density axis, as is assumed by data, (2) fitting a speed-density function to that data, and then (3)
regression analysis of speed on density.  The intention in transforming the speed-density function into a speed-flow
conducting the study was to compare the seven speed-density function results in a curve that does not fit the original speed-
hypotheses statistically, and thereby to select the best one.  In flow data particularly well.  This is the method used by Drake et
addition to Greenshields' linear form and Greenberg's al., and certainly most of their resulting speed-flow functions did
exponential curve, the other five investigated were a two-part not fit the original speed-flow data very well.  Duncan's 1979
and a three-part piecewise linear model, Underwood's (1961) paper expanded on the difficulties to show that minor changes in
transposed exponential curve, Edie's (1961) discontinuous the speed-density function led to major changes in the speed-
exponential form (which combines the Greenberg and flow function.  This result suggests the need for further caution
Underwood curves), and a bell-shaped curve.  Despite the in using this method of double transformations to calibrate a
intention to use "a rigorous structure of falsifiable tests" (p. 75) speed-flow curve.

were based on  intuition alone since the statistical tests provided
little decision power after all" (Drake et al., p. 76).  To assert
that intuition alone was the basis is no doubt a bit of an

R  was the second lowest, its standard error was the lowest of all2

hypotheses."  One interesting point with respect to Figure 2.13
is that the Edie model was the only one of the seven to replicate
capacity operations closely on the volume-density and speed-
volume plots.  The other models tended to underestimate the
maximum flows, often by a considerable margin, as is illustrated
in Figure 2.14, which shows the speed-volume curve resulting

figures are quite consistent with the currently accepted speed-
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Figure 2.13
Three Parts of Edie's Hypothesis for the Speed-Density Function, 

Fitted to Chicago Data (Drake et al. 1967).
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Figure 2.14
Greenshields' Speed-Flow Function Fitted to Chicago Data (Drake et al. 1967).

The second issue is the relationship between car-following Early studies of highway capacity followed two principal
models (see Chapter 4) and the models tested by Drake et al. approaches.  Some investigators examined speed-flow
They explicitly mention that four of the models they tested "have relationships at low concentrations; others discussed
been shown to be directly related to specific car-following rules," headway phenomena at high concentrations. Lighthill and
and cite articles by Gazis and co-authors (1959; 1961).  The Whitham (1955) have proposed use of the flow-
interesting question to raise in the context of the overall concentration curve as a means of unifying these two
appraisal of the Drake et al. results is whether the results raise approaches.  Because of this unifying feature, and
some questions about the validity of the car-following models for because of the great usefulness of the flow-concentration
freeways.  The car-following models gave rise to four of the curve in traffic control situations (such as metering a
speed-density models tested by Drake et al.  The results of their freeway), Haight (1960; 1963) has termed the flow-
testing suggest that the speed-density models are not particularly concentration curve "the basic diagram of traffic".
good.  Logic says that if the consequences of a set of premises
are shown to be false, then one (at least) of the premises is not Nevertheless, most flow-concentration models have been
valid.  It is possible, then, that the car-following models are not derived from assumptions about the shape of the speed-
valid for freeways.  This is not surprising, as they were not concentration curve.  This section deals primarily with work that
developed for this context. has focused on the flow-concentration relationship directly.

2.3.4  Flow-Concentration Models

Although Gerlough and Huber did not give the topic of flow-
concentration models such extensive treatment as they gave the
speed-concentration models, they nonetheless thought this topic
to be very important, as evidenced by their introductory
paragraph for the section dealing with these models (p. 55):  

Under that heading is included work that uses either density or
occupancy as the measure of concentration.

Edie was perhaps the first to point out that empirical flow-
concentration data frequently have discontinuities in the vicinity
of what would be maximum flow, and to suggest that therefore
discontinuous curves might be needed for this relationship.  (An
example of his type of curve appears in Figure 2.13.)  This
suggestion led to a series of investigations by May and his
students (Ceder 1975; 1976; Ceder and May 1976; Easa and
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May 1980) to specify more tightly the nature and parameters of  clearly below maximum flows.  Although Parts A and B may be
these "two-regime" models (and to link those parameters to the taken to confirm the implicit assumption many traffic engineers
parameters of car-following models).  The difficulty with their have that operations pass through capacity prior to breakdown,
resulting models is that the models often do not fit the data well Part C gives a clear indication that this does not always happen.
at capacity (with results similar to those shown in Figure 2.14 for Even more important, all four parts of Figure 2.15 show that
Greenshields' single-regime model).  In addition, there seems operations do not go through capacity in returning from
little consistency in parameters from one location to another. congested to uncongested conditions.  Operations can 'jump'
Even more troubling, when multiple days from the same site from one branch of the curve to the other, without staying on the
were calibrated, the different days required quite different curve.  This same result, not surprisingly, was found for speed-
parameters. flow data (Gunter and Hall 1986).

Koshi et al. (1983) gave an empirically-based discussion of the Each of the four parts of Figure 2.15 show at least one data point
flow-density relationship, in which they suggested that a reverse between the two  'branches'  of  the  usual curve during 
lambda shape was the best description of the data (p.406):  "the the  return  to  uncongested  conditions.   Because  these  were 
two regions of flow form not a single downward concave curve... 5-minute data, the authors recognized that these points might be
but a shape like a mirror image of the Greek letter lamda [sic] the result of averaging of data from the two separate branches.
(�)".  These authors also investigated the implications of this Subsequently, however, additional work utilizing 30-second
phenomenon for car-following models, as well as for wave intervals confirmed the presence of these same types of data
propagation. (Persaud and Hall 1989).  Hence there appears to be strong

Although most of the flow-concentration work that relies on branch of the curve to the other without going all the way around
occupancy rather than density dates from the past decade, Athol the capacity point.  This is an aspect of traffic behavior that none
suggested its use nearly 30 years earlier (in 1965).  His work of the mathematical models discussed above either explain or
presages a number of the points that have come out subsequently lead one to expect.  Nonetheless, the phenomenon has been at
and are discussed in more detail below:  the use of volume and least implicitly recognized since Lighthill and Whitham's (1955)
occupancy together to identify the onset of congestion; the discussion of shock waves in traffic, which assumes
transitions between uncongested and congested operations at instantaneous jumps from one branch to the other on a speed-
volumes lower than capacity; and the use of time-traced plots flow or flow-occupancy curve.  As well, queuing models (e.g.
(i.e. those in which lines connected the data points that occurred Newell 1982) imply that immediately upstream from the back
consecutively over time) to better understand the operations. end of a queue there must be points where the speed is changing

After Athol's early efforts, there seems to have been a dearth of that of the congested branch.  It would be beneficial if flow-
efforts to utilize the occupancy data that was available, until the concentration (and speed-flow) models explicitly took this
mid-1980s.  One paper from that time (Hall et al. 1986) that possibility into account.
utilized occupancy drew on the same approach Athol had used,
namely the presentation of time-traced plots.  Figure 2.15 shows One of the conclusions of the paper by Hall et al. (1986), from
results for four different days from the same location, 4 km which Figure 2.15 is drawn, is that an inverted 'V' shape is a
upstream of a primary bottleneck.  The data are for the left-most plausible  representation  of  the  flow-occupancy  relationship.
lane only (the high-speed, or passing lane), and are for 5-minute Although that conclusion was based on limited data from near
intervals.  The first point in the time-connected traces is the one Toronto, Hall and Gunter (1986) supported it with data from a
that occurred in the 5-minute period after the data-recording larger number of stations.  Banks (1989) tested their proposition
system was turned on in the morning.  In Part D of the figure, it using data from the San Diego area, and confirmed the
is clear that operations had already broken down prior to data suggestion of the inverted 'V'.  He also offered a mathematical
being recorded.  Part C is perhaps the most intriguing: statement of this proposition and a behavioral interpretation of
operations move into higher occupancies (congestion) at flows it (p. 58):

evidence that traffic operations on a freeway can move from one

rapidly from the uncongested branch of the speed-flow curve to
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Figure 2.15
Four Days of Flow-Occupancy Data from Near Toronto (Hall et al. 1986).

The inverted-V model implies that drivers maintain a them, provided their speed is less than some critical value.
roughly constant average time gap between their front Once their speed reaches this critical value (which is as fast as
bumper and the back bumper of the vehicle in front of they want to go), they cease to be sensitive to vehicle

spacing....
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2.3.5  Three-Dimensional Models 

There has not been a lot of work that attempts to treat all three
traffic flow variables simultaneously.  Gerlough and Huber
presented one figure (reproduced as Figure 2.16) that
represented all three variables, but said little about this, other
than (1) "The model must be on the three-dimensional surface u
= q/k," and (2)  "It is usually more convenient to show the model
of (Figure 2.16) as one or more of the three separate
relationships in two dimensions..." (p. 49). As was noted earlier,
however, empirical observations rarely accord exactly with the
relationship q=u k, especially when the observations are taken
during congested conditions.  Hence focusing on the two-
dimensional relationships will not often provide even implicitly
a valid three-dimensional relationship.

these figures, and the letters on Figure 2.19, a quote from the
original paper is helpful (p. 101).  

The original computer work and the photography for the
original report (Gilchrist 1988) were in color, with five
different colors representing different speed ranges.  For
this paper, black and white were alternated for the five
speed ranges, which allows each of them to stand out clearly
in many figures.  The figure (2.19) is a good example....
Area A contains the data with speeds above 80 km/hr.  Area
B (light lines) covers the range 70 to 80 km/hr; area C (dark
lines) the range 60 to 70 km/hr; area D (light lines) the
range 50 to 60 km/hr; and area E the range below 50 km/hr.

One of the conclusions drawn by Gilchrist and Hall was that
"conventional theory is insufficient to explain the data", and that
the data were more nearly consistent with an alternative model
based on catastrophe theory (p. 99).  A different approach to
three-dimensional modeling was presented by Makagami et al.
(1971), as discussed in Section 2.2.3 above (and Equations 2.25
through  2.27).    In  that  model,  the  dimensions  were  time, 

Figure 2.16
The Three-Dimensional Surface for Traffic Operations, as in Transportation Research Board

Special Report 165 (Gerlough and Huber 1975).
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Figure 2.17
Two-Dimensional Projection of Data Used in Three-Dimensional Study 

(Gilchrist and Hall 1989).
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Figure 2.18
One Perspective on the Three-Dimensional 

Speed-Flow-Concentration Relationship
 (Gilchrist and Hall 1989).

Figure 2.19
Second Perspective on the Three-Dimensional Relationship 

(Gilchrist and Hall 1989).
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distance, and cumulative vehicle count.  The derivatives of the catastrophe model could represent the speed-flow curve.  A
surface representing the cumulative count are speed,  flow,  and more fruitful model was proposed by Navin (1986), who
density.  This three-dimensional model has been applied by suggested that the three-dimensional 'cusp' catastrophe model
Newell (1993) in work on kinematic waves in traffic.  In was appropriate for the three traffic variables.  
addition, Part I of his paper contains some historical notes on the
use of this approach to modeling. The feature of the cusp catastrophe surface that makes it of

One recent approach to modeling the three traffic operations variables (the control variables) exhibit smooth continuous
variables directly has been based on the mathematics of change, the third one (the state variable) can undergo a sudden
catastrophe theory.  (The name comes from the fact that while 'catastrophic'  jump in  its  value.   Navin suggested  that  speed
most of the variables being modeled change in a continuous was the variable that underwent this catastrophic change, while
fashion, at least one of the variables can make sudden flow and occupancy were the control variables. While Navin's
discontinuous changes, referred to as catastrophes by Thom presentation was primarily an intuitive one, without recourse to
(1975), who originally developed the mathematics for seven data, Hall and co-authors picked up on the idea and attempted to
such models, ranging from two dimensions to eight.)  The first flesh it out both mathematically and empirically.  Figure 2.20
effort to apply these models to traffic data was that by Dendrinos shows the current visualization of the model. 
(1978),   in  which   he   suggested  that  the  two-dimensional

interest in the traffic flow context is that while two of the

 

Figure 2.20
Conceptualization of Traffic Operations on a Catastrophe Theory Surface 

Using the Maxwell Convention (Persaud and Hall 1989).
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Acha-Daza and Hall (1993) compared the effectiveness of the idea to develop a method that could be used for estimating
catastrophe theory model for estimating speeds with four of the speeds from single-loop detector data.  The method involves
models discussed above:  Greenshields'; Greenberg's;  Edie's; estimating parameters for the model from at least one location at
and the double linear regime model.  The comparison was done which speeds have been measured, and transferring those
using a data set in which all three variables had been  measured, parameters to other nearby locations.  
so that the speeds calculated using each model could be
compared with actual measured values.  Typical results for the The catastrophe theory model has received some confirmation
catastrophe theory model (Figure 2.21, which yielded an R  of2

0.92) can be compared with those for Edie's model (Figure 2.22;
R  of 0.80), which had been found to be best by Drake et al.2

(1967).  Although the Greenshields' and  double-linear model
resulted in higher R  values (0.87 and 0.89 respectively) than did2

Edie's, both models gave very  clustered speed estimates, with
few predictions in the 60-80 km/h range, and a similar set of
points below the diagonal in the observed range of 60 to 80
km/h.  It is worth noting that real data show very few
observations in the range of 60 - 80 km/h also, so in that respect,
both models are effective.  Pushkar et al. (1994) extended this

from its ability to replicate speed measurements.  It has two
added advantages as well on the intuitive level.  First, it
illustrates graphically that freeway operations do not have to stay
on the (e.g. speed-flow) curve; jumps are possible from one
branch to the other, and when they occur, there will be sudden
changes in speeds.  Second, it also illustrates graphically the fact
that different locations will yield different types of data (see
Figure 2.2) in that at some locations the data will go around the
discontinuity in the surface, while at others the data will cross
directly over the discontinuity.  The catastrophe theory model
provides a consistent way to explain

Figure 2.21
Comparison of Observed Speed with Speeds Estimated using 

Catastrophe Theory Model (Acha-Daza and Hall 1994).
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Figure 2.22
Comparison of Observed Speeds with Speeds Estimated 

by Edie's Model (Acha-Daza and Hall 1994).

2.3.6 Conclusions About
Traffic Stream Models

The current status of mathematical models for speed-flow-
concentration relationships is in a state of flux.  The models that
dominated the discourse for nearly 30 years are incompatible
with the data currently being obtained, and with currently
accepted depictions of speed-flow curves, but no replacement
models have yet been developed.  Part of the reason is probably
that many theoreticians continue to work with density, whereas
the empirical data are in terms of occupancy.  The relation
between those two measures of concentration is sufficiently weak
that efforts to transform one into the other only muddy the picture
further.  The other problem was noted by Duncan (1976; 1979):
transforming variables, fitting equations, and then transforming
the equations back to the original variables can lead to biased
results, and is very sensitive to small changes in the initial curve-
fitting.  

Recognition of three-dimensional relationships is also important
for improved understanding.  Consequently, it is important to
make more use of those sets of freeway data in which all three
variables have been measured and no estimation is needed, and
to work with practitioners to ensure that there are more data sets
for which all three variables have been measured.  The models

from the mid-60s (and earlier) do not measure up to those data
that are available; it is not clear whether the newer models such
as catastrophe theory will ultimately be any more successful.

Despite those words of caution, it is important to note that there
have been significant advances in understanding traffic stream
behavior since the publication in 1975 of the last TRB Special
Report on Traffic Flow Theory (Gerlough and Huber).  For
example, the speed-flow relationship shown in Figure 2.3 is
considerably different from the one in the 1965 Highway
Capacity Manual, which was still accepted in 1975.  The
recognition that there are three distinct types of operation, as
shown in Figure 2.4, will affect future analysis of traffic stream
behavior. 

Since the appearance of the 1985 Highway Capacity Manual,
there has been a sizeable amount of research on traffic stream
models, which has led to a different understanding of how traffic
operates, especially on freeways.  Efforts to implement ITS, with
regard to both traffic management and traffic information
provision, will provide challenges for applying this improvement
in understanding.  Equally important, ITS will likely provide the
opportunity for acquiring more and better data to further advance
understanding of these fundamental issues.
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