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CHAPTER 5 - Frequently used Symbols

a = dimensionless traffic parameter L = distance
A = stop-start wave amplitude L = length of periodic interval
� = sensitivity coefficient
b = net queue length at traffic signal
c = g + r = cycle length � = wave length of stop-start waves
c = coefficient0

= constant, independent of density k
ds = infinitesimal time
�t, �x = the time and space increments respectively

such that �x/�t > free flow speed 
� , � = deviationsi i+1

� = state vector
� , �  = state vector at position i, i+1i i+1

f(x, v, t ) = vehicular speed distribution function
f = relative truck portion, k  = kpass

f = equilibrium speed distribution0


 = fluctuating force as a stochastic quantity q k = arrival flow and density conditions
g = effective green interval q = capacity flow

= is the generation (dissipation) rate at node j at r = effective red interval
t = t  + n�t; if no sinks or sources exist  =0

0 and the last term of Equation 5.28 vanishes T = oscillation time
g = minimum green time required for t = timemin

undersaturation 
h = average space headway - = relaxation time as interaction time lag
i = station u = speed
j = node U (k) = equilibrium speed-density relation
k = density
k , k = density downstream, upstream shock- +

k = operating point0

k = equilibrium density10

K = constant valueA

k = density within La 2

k = density "bumper to bumper"bumper

k , q = density, flow downstreamd d

k , q = density, flow upstreamu u

k = vehicle density in homogeneous flowhom

k = jam density of the approach underj

consideration 
= density and flow rate on node j at 

t =  t  + n�t 0

k = density conditions m

k = density "bumper to bumper" for 100%pass

passenger cars y(t) = queue length at any time point t
k = reference state y = queue length from i to j assuming a positiveref

k = density "bumper to bumper" for 100% trucks direction opposite to x, i.e. from B to Atruck

ld = logarithmus dualis
l = characteristic lengtho

µ = dynamic viscosity0

µ = viscosity term
n = current time step
N = normalization constant
n , n = exponentsi 2

N = number of cars (volume)i

7 = eigenvalue
p = probability
q = actual traffic volume, flow
Q = net flow rate0

q = average flow ratea

a a

ni

) = quantity0

t = the initial time0

e

= equilibrium speed
u = free-flow speed of the approach underf

consideration
u = group velocityg

u  - u = speed rangemax min

u = shock wave speedw

u = spatial derivative of profile speedz

v(k) = viscosity
v = values of the group velocityg

W(q) = distribution of the actual traffic volume
values q

x = space
xh = estimated queue length
x , t , y = coordinates at point ii i i

X = length of any line ijij

y = street width

ij

z = x - U, t, collective coordinate
= shockspeed
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5.
CONTINUUM FLOW MODELS

5.1  Simple Continuum Models

Looking from an airplane at a freeway, one can visualize the then we can obtain speed, flow, and density at any time and point
vehicular traffic as a stream or a continuum fluid.  It seems of the roadway.  Knowing these basic traffic flow variables we
therefore quite natural to associate traffic with fluid flow and know the state of the traffic system and can derive measures of
treat it similarly.  Because of this analogy, traffic is often effectiveness, such as delays stops, total travel, total travel time,
described in terms of flow, concentration, and speed.  In the fluid and others that allow engineers to evaluate how well the system
flow analogy, the traffic stream is treated as a one dimensional is performing.
compressible fluid.  This leads to two basic assumptions: a)
traffic flow is conserved and;  b) there is a one-to-one As Section 5.1.3 suggests, solution of the simple continuum
relationship between speed and density or between flow and
density.  The first assumption is expressed by the conservation
or continuity equation.  In more practical traffic engineering
terms, the conservation equation implies that in any traffic
system input is equal to output plus storage.  This principle is
generally accepted, and there is no controversy as to its validity.

However, the second assumption has raised many objections in
the literature partly because it is not always understood and
partly because of contradicting measurements.  Specifically, if
the speed, u, is a function of density it follows that drivers adjust
their speed according to the density, k, (i.e., as density increases
with distance then speed decreases).  This is intuitively correct,
but it can theoretically lead to negative speeds or densities.  In
addition, it has been observed that for the same value of density
many values of speed can be measured.  Evidently the
assumption has to be qualified.  The qualification is that speed
(or flow) is a function of density but only at equilibrium.
Because equilibrium can rarely be observed in practice, a
satisfactory speed-density relationship is hard to obtain, and it is
often assumed or inferred theoretically.  This particular difficulty
has led some researchers to dismiss continuum models or try to
oversimplify them.  However, as subsequent sections
demonstrate, continuum models can be used successfully in
simulation and control.

Since the conservation equation describes flow and density as a
function of distance and time, one can immediately see that
continuum modeling is superior to input-output models used in
practice (which are only one dimensional, because they
essentially ignore space).  In addition, because flow is assumed
to be a function of density, continuum models have a second
major advantage, (e.g. compressibility).  The simple continuum
model referred to in this text consists of the conservation
equation and the equation of state (speed-density or flow density
relationship).  If these equations are solved together with the
basic traffic flow equation (flow equals density times speed),

model leads to the generation of shock waves.  A shock wave is
a discontinuity of flow or density, and has the physical
implication that cars change speeds abruptly without time to
accelerate or decelerate.  This is an unnatural behavior that
could be eliminated by considering high order continuum
models.  These models add a momentum equation that accounts
for the acceleration and inertia characteristics of the traffic mass.
In this manner, shock waves are smoothed out and the
equilibrium assumption is removed (i..e., the high order models
apply to non-equilibrium flows since speed is not necessarily the
equilibrium speed but is obtained from the momentum equation).
In spite of this improvement, the most widely known high order
models still require an equilibrium speed-density relationship;
recently new high order models were proposed that remove this
requirement, but they are largely untested.

It therefore appears that high order models are preferable to the
simple continuum; however, their conceptual appeal should be
tempered by the difficulty of deriving, calibrating, and
implementing a rigorous and practical momentum equation.  To
be sure, existing literature suggests that the simple continuum
model performs better than existing high order models if
properly implemented.  Intuitively, this could be true when speed
flow and density are averaged over long time spans (i.e., in the
order of 5 minutes) rather than short ones (i.e., in the order of 30
seconds).

In this chapter, both simple and high order models are presented
along with analytical and numerical methods for their
implementation.  The intent of the chapter is not to reiterate well-
known literature reviewed in the previous monograph but rather
to summarize the essence of the simple continuum theory for the
practicing engineer and demonstrate how it can be implemented
in the modeling and analysis of real life situations.  With respect
to high order models which evolved over the last three decades,
we determined that this subject has not been covered adequately;
therefore, it is covered in more detail here.
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(5.1)

5.1.1  The Conservation Equation

The conservation equation can easily be derived by considering
a unidirectional continuous road section with two counting
Stations 1 and 2 (upstream and downstream, respectively) as
shown in Figure 5.1.  The spacing between the two stations is
�x; furthermore, no sinks or sources are assumed within �x (i.e.,
there is no generation or dissipation of flow within the section).

Let N  be the number of cars (volume) passing Station i duringi

time �t and q , the flow passing station i; �t is the duration ofi

simultaneous counting at Station 1 and 2.  Without loss of
generality, suppose that N >N .  Because there is no loss of cars1 2

in �x (i.e., no sink), this assumption implies that there is a
buildup of cars between Station 1 and Station 2.  

Let  (N  - N ) = �N; for a buildup �N will be negative.  Based2 1

on these definitions we have:
Then the build-up of cars between stations during �t  will  be 

(-�q)�t.  If �x is short enough so that density (concentration)k
within it is uniform, then the increase in concentration �k
between Stations 1 and 2 during the time interval �t is

This means that the buildup of cars is

Because cars are conserved

If the medium is now considered continuous and the discrete
increments are allowed to become infinitesimal, then taking the
limit we obtain:

Figure 5.1
Road Section Used for Deriving the Conservation Equation.
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(5.1)

(5.2)

(5.4)

Equation 5.1 expresses the law of conservation of a traffic fundamental relationship:
stream and is known as the conservation or continuity equation.
This equation has the same form as in fluid flow.  If sinks or
sources exist within the section of the roadway, then the
conservation equation takes the more general form:

where g(x,t) is the generation (dissipation) rate in vehicles per
unit time per unit length.  In practice, generation of cars is
observed when flow is interrupted (such as at entrances, exits, or
intersections).

Solution of the conservation equation as it applies to traffic flow
was first proposed by Lighthill and Whitham (1955) and by
Richards (1956).  Recently, implementation to traffic analysis
simulation and control was proposed by Stephanopoulos and
Michalopoulos (1979; 1981).

5.1.2 Analytical Solution of the
Conservation Equation; 
Shock Waves

Equation 5.2 is a state equation that can be used to determine the
flow at any section of the roadway.  The attractiveness of this
equation is that it relates two fundamental dependent variables,
density and flow rate, with the two independent ones (i.e., time
t, and space x).  Solution of Equation 5.2 is impossible without
an additional equation or assumption.  The first alternative is
possible by considering the momentum equation described in
Section 5.2.  The second option is the one adapted in the simple
continuum modeling.  It simply states that flow, q, is a function
of density, k, i.e., q = f(k).  This, or equivalently, u = f(k), is a
very reasonable assumption,  but it is only valid at equilibrium.
For this reason the high order continuum models are, in
principle, more appealing but in practice have failed to prove
superior to the simple continuum alternative.  This is partly

because a rigorous form of the momentum equation is hard to
derive and partly because its calibration and implementation is
still rather complex for most practical applications.

Returning to the solution of Equation 5.2 and considering the

q = ku (5.3)

we can easily observe that if u = f(k), then in Equation 5.2, we
effectively have one equation with only one unknown which can
be solved analytically.  Analytical solution of the general case is
very involved and impractical for real life applications.
Therefore, we restrict ourselves only to the pipeline case in
which there are no generation or dissipation terms i.e., g(x,t)=0.
With this in mind, the conservation equation can be rewritten as:

or

It should be noted that f(k) can be any function, and that no
particular assumptions need to be made in order to keep the
results general.  For example, if the speed-density relationship is
linear as suggested by Greenshields (1934), Equation 5.4
becomes:

where u  represents the free flow speed and k  the jam density.f j

Equation 5.4 is a first order quasi-linear, partial differential
equation which can be solved by the method of characteristics.
Details of the solution as well as the complete formulation of the
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(5.5)

simple continuum modeling were first presented by Lighthill and connecting the two flow conditions (i.e., upstream and
Whitham (1955).  In practical terms, the solution of Equation 5.4 downstream).
suggests that:

� The density k is constant along a family of curves called moves downstream with respect to the roadway; conversely,
characteristics or waves; a wave represents the motion
(propagation) of a change in flow and density along the
roadway.

� The characteristics are straight lines emanating from the
boundaries of the time-space domain.

� The slope of the characteristics is:

This implies that the characteristics have slope equal to the
tangent of the flow-density curve at the point representing
the flow conditions at the boundary from which the
characteristic emanates.

� The density at any point x,t of the time space domain is process follows the steps of the solution of the conservation
found by drawing the proper characteristic passing through equation as outlined above.  The top of the figure represents a
that point. flow-concentration curve; the bottom figure represents

� The characteristics carry the value of density (and flow) at
the boundary from which they emanate.

� When two characteristic lines intersect, then density at this
point should have two values which is physically
unrealizable; this discrepancy is explained by the generation
of shock waves.  In short, when two characteristics
intersect, a shock wave is generated and the characteristics
terminate.  A shock then represents a mathematical
discontinuity (abrupt change) in k,q, or u. assumes that the faster flow of point B occurs later in time than

� The speed of the shock wave is: that of point A; therefore, the characteristics (waves) of point B
will eventually intersect with those of point A.  The intersection
of these two sets of waves has a slope equal to the chord

(5.6)

where k  , q  represent downstream and k , q  upstream are higher because the speed of the traffic stream is representedd d u u

flow conditions.  In the flow concentration curve, the shock
wave speed is represented by the slope of the line

It should be noted that when u  is positive, the shock wavew

when u  is negative, the shock is moving upstream.w

Furthermore, the mere fact that a difference exists in flow
conditions upstream and downstream of a point does not imply
that a shock wave is present unless the characteristics intersect.
Generally this occurs only when the downstream density is
higher than upstream.  When density downstream is lower than
upstream, we have diffusion of flow similar to that observed
when a queue is discharging.  When downstream density is
higher than upstream, then shock waves are generated and
queues are generally being built even though they might be
moving downstream.  

Figure 5.2, taken from Gerlough and Huber (1975),
demonstrates the use of traffic waves in identifying the
occurrence of a shock wave and following its trajectory.  The

trajectories of the traffic waves.  On the q-k curve, point A
represents a situation where traffic flows at near capacity
implying that speed is well below the free-flow speed.  Point B
represents an uncongested condition where traffic flows at a
higher speed because of the lower density.  Tangents at points A
and B represent the wave velocities of these two situations.  The
areas where conditions A and B prevail are shown by the
characteristics drawn in the bottom of Figure 5.2.  This figure

connecting the two points on the q-k curve, and this intersection
represents the path of the shock wave shown at the bottom of
Figure 5.2.

It is necessary to clarify that the waves of the time-space diagram
of Figure 5.2 are not the trajectories of vehicles but lines of
constant flow and speed showing the propagation of conditions
A and B.  The velocities of individual vehicles within A and B

by the line connecting the origin with A and B in the q-k curve.
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Figure 5.2
Shock Wave Formation Resulting from the 

Solution of the Conservation Equation.

5.1.3  Applications

Although the simple continuum theory was developed in the mid
50s and is extensively referenced in the literature, it is not widely
employed in practice.  This is partly because of the lack of
understanding of the physical problem under consideration and

partly because of difficulties in defining initial and boundary
conditions.  Furthermore, analytical solutions are not easily
obtainable for realistic initial and boundary conditions, complex
u-k or q-k relationships, or interrupted flows.  The first problem
can be addressed by better understanding the results of the
previous section and clearly defining the physical problem.  The
application of the next section (Stephanopoulos and
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Michalopoulos 1979) presents an example of how this can be queue length).  For fixed-time control such approximations may
achieved.  It also demonstrates how analytical solutions can be suffice, but when further accuracy or realism is required, more
very instructive in better understanding the inner workings of rigorous modeling is necessary.  Another disadvantage of input-
traffic.  Other applications of shock waves in signal control, output analysis is that the assumption of compact queues leads
analysis of platoon dynamics, arterial street, and freeway flow to miscalculations of the queue size itself and therefore results in
can be found in Stephanopoulos and Michalopoulos (1981), miscalculations of delays (Michalopoulos and Pisharody 1981).
Michalopoulos and Pisharody (1980), Michalopoulos (1988), The simple continuum model offers the advantage of taking
Michalopoulos et al. (1991).

The problem of applying the simple continuum theory in more
complex situations, such as interrupted flow, can only be
addressed by solving the conservation equation numerically.  A
numerical approach for implementing the simple continuum
modeling is also presented in this chapter.  This approach
(Michalopoulos et al. 1987) has been employed for analyzing
traffic flow in both freeways (Michalopoulos et al. 1991) and
arterials (Michalopoulos 1988).  The following section only
presents an application of the simple continuum modeling to
signalized intersections for the purpose of illustrating how the
theory can be used to better understand the formation and
dissipation of queues.  The practical implementation of the
theory to freeway and intersection simulation and control can be
found in the above-mentioned references.

5.1.4  Formation and Dissipation of 
          Queues at Signalized Intersections

Consider a single-lane queue at the beginning of the effective
green at a signalized intersection.  If the number of cars in the
queue (i.e., the queue size) at this time is x and the average space
headway is h, then the estimated queue length (i.e., the space
occupied by the x cars) is xh.  Suppose now that shortly after the
beginning of green, N  cars join the queue while N  are1 2

discharged in front.  Then following the same logic, the queue
length should be [x + (N  - N )]h.  However, generally this is not1 2

the case, since shortly after the commencement of green the
queue length is growing regardless of the net difference N  - N ;1 2

for instance, if N  = N  the effective queue size continues to be1 2

x, but the queue length can no longer be estimated from the
product xh.  Clearly, the average space headway is a function of
time because of compressibility (i.e., the changing density within
the queue in both time and space).  This observation leads to the
conclusion that although input-output analysis can be used for
describing the evolution of queuing situations in time, they yield
crude estimations of another important state variable (i.e., the

compressibility into account since u = f(k) and also it is two
dimensional in nature (i.e., in order to obtain the desired results
it is necessary to associate traffic flows and densities with time
and space).

Application of the simple continuum modeling to this problem
begins by definition of boundary and initial conditions which is
obtained by examining an approach to a signalized intersection
as shown in Figure 5.3, (Stephanopoulos and Michalopoulos
1979).  In this figure x,t represent distance and time respectively;
it is assumed that within distance L from the stop line there are
no entrances or exits.  Further it is assumed that L is long enough
so that queues do not extend beyond this section and that flow
downstream of the stop line is uncongested.  Finally, in Figure
5.3, L  and L   represent the initial  and  final  queue  length  at1 1

'

the  start  and  end of the cycle c,  respectively.

Along the x axis, of Figure 5.3, point B corresponds to the
stopline and point A to the tail end of the queue at the beginning
of the effective green interval; t = 0 corresponds to the start of
the effective green.  Within AB, jam density and zero flow
conditions prevail.  Upstream of A and in the remaining portion
L  of section L, cars arrive at an average flow rate q .  Thus,2 a

density within L  is k .  Assuming an average arrival flow q 2   a a

and density k  during the cycle, then flow and density at the a 

beginning of section L are q  and k  during the period g + r = c,a a

where c is the cycle length and g,r represent the effective green
and red times respectively.  Finally, assuming that the cycle is
saturated, capacity flow and density conditions q  and k  prevailm m

at the stopline during g (i.e., from point B to point F) while
during the effective red flow, at the stopline (point F to end of
cycle) is congested (i.e., q = 0 and k = k).   The characteristicj

lines emanating  from     t = 0, x = 0, and x = L were drawn based
on this definition of initial and boundary conditions.  These lines
are tangent to the flow-versus-density curve evaluated at the flow
and density conditions corresponding to the point of origin.  

For example, within AB, the slope of the characteristics is
negative, and it is the same as the tangent at the point 0,k  of thej

flow-density curve, where k  represents the jam density.  Toj
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Figure 5.3
Queue Length Developments at a Signalized Intersection 

During a Saturated Cycle.

visualize this, one can imagine the simple flow density curve
resulting from the Greenshields (1934) model shown at the right
of Figure 5.4.  At point B, density changes instantaneously from
k  to k , where k  is density at capacity; therefore, thej  m m

characteristics at B fan out (i.e., they take all possible slopes
from (dq/dk) ,  to zero).  Proceeding in this fashion, one can0 kj

draw the remaining characteristics as shown in Figure 5.3.

The characteristic lines emanating from the boundaries divide
the entire time-space domain [0 < x < L, 0 < t < c] into four
distinct zones of different flow and density conditions as shown
in Figure 5.3.  When the characteristics intersect, ashock wave
is generated.   At the tail end of the queue, shock wave ACMDE
is generated during the period of one cycle; therefore, this line shock is constant k .  This is the reason the shockwave CMD is
represents the trajectory of the tail end of the queue and its nonlinear, in fact, it moves with variable speed as shown by the
vertical distance to the stopline represents queue length denoted slope of line CMD.  At the end of the effective green (point F),

as y(t).  The slope of line ACMDE at any point represents the
speed at which this shock wave (or, equivalently, the tail end of
the queue) propagates upstream or downstream of the roadway.

Derivation of the queue tail trajectory proceeds by examining the
intersection of the characteristics.  To begin with, it can be seen
that at point A, a linear shock wave is generated moving
backwards with respect to the stop line.  This shock ends at C
since line BC represents the last characteristic carrying density
k emanating from the stop line.  After C, density downstream ofj

the shock is variable due to the varying densities carried by the
fanning characteristics of zone 3 while density upstream of the

a
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shock wave FD is generated and meets the tail end of the queue
at point D.  Again,  this  shock  moves  with  variable  speed  as
density 
 downstream of it (Zone 4) is constant and equals to k  whilej

upstream (Zone 3) density varies between k and k .  At point D, Based on the earlier discussion the following analyticalj m

a linear slack similar to AC takes over.  Finally, at the end of the expressions can be obtained for the queue length and dissipation
cycle, the distance L represents the final queue length, or,'

1

equivalently, the initial queue length of the next cycle.

It should be noted that if the cycle is undersaturated, line ACMD
intersects the stopline during green and point D falls on the
stopline;  after point D, the queue length is zero.   In this case,
for the remainder of the green interval, vehicles depart without
delay; at point F, the queue length starts increasing again linearly
until the end of the cycle.  This as well as other complexities,
such as gradual transition to capacity or the presence of sinks
and sources are discussed in Stephanopoulos and Michalopoulos
(1979) and Michalopoulos (1988).

5.1.4.1  Analytical Results

Each segment of line ACMDE and the coordinates of points C,
M, D and E can be derived analytically.  In order to obtain
analytical results, one must assume a specific relationship
between flow and density or, equivalently, between speed and
density.  For simplicity, the linear speed-density model
(Greenshields 1934) can be assumed, but it should be noted that
similar results can be obtained for any other model.  The
trajectory of the queue length in Figure 5.3 was derived by using
the following notation (Stephanopoulos and Michalopoulos
1979):

y(t)  = queue length at any time point t,
g = effective green interval,
r = effective red interval,
c = g + r = cycle length,
g = minimum green time required formin

undersaturation,
X = length of any line ij ,ij

u = free-flow speed of the approach underf

consideration,
k = jam density of the approach under consideration,j

q ,k = arrival flow and density conditions,a a

    x ,t ,y = coordinates of point i, and consideration,i i i

y = queue length from i to j assuming a positive ij

direction opposite to x, i.e. from B to A (Figure
5.3).

times (Stephanopoulos and Michalopoulos 1979):

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

In an undersaturated cycle, the queue dissipates in time:
(5.21)

This is the minimum green time required to dissolve the initial
queue L .  In such a cycle, the final queue length L  is1 1

'

independent of the initial L  and is given by:1

(5.22)
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Details such as gradual transition to capacity at point B and 5.1.4.3  Signalized Links and Platoon Behavior
capacity drops during green can also be taken into account.

5.1.4.2  Queue Length Stability

The analytical relations between the initial and final queue wave developments at a signalized link during a saturated cycle.
developed in the preceding section can be used for stability Line A ,C ,M ,D ,E ,F ,H  corresponds to the downstream
analysis in saturated cycles.  Equation 5.19 can be rewritten as queue, and its trajectory can be determined analytically

(5.23) is very large even under simplifying assumptions, one can see

where
(5.24)

If c and g are given, b is constant, i.e., it is independent of the
initial queue L .  Thus, Equation 5.23 can be generalized for any1

cycle N and rewritten as

(5.25)

where L  and L  are the queues at the beginning of cycle N andN N+1

N+1.  Clearly, a steady state exists if L  = L  or if L =L +b ,N  N+1 N N

i.e., if b = 0.  Therefore, for steady state:
(5.26)

and solving for g/c:
(5.27)

Since � is positive, it is easily seen that if g/c < �, the queue
length at the end of the cycle will be growing for as long as this
situation persists.  Otherwise, if b < 0 or, equivalently, if 
g/c > �, the queue at the end of the cycle will decrease.  It should
be noted that Equations 5.25 and 5.27 are meaningful for
saturated cycles (i.e., for green times less than the ones given by
Equation 5.21).  Otherwise, L  is not related to L  and it isN+1 N

given from Equation 5.22.  A final note concerning the stability
of the steady state is worthy of emphasis.  As Equation 5.25
reveals, the steady state is metastable.  If b = 0, a small variation
of the demand will change the steady state to a nearby value that
is also metastable.  Therefore, the queue length at the beginning
of each cycle will change according to the fluctuating values of
b, which depend on the demand.

Extension to similar analytical results for a system of
intersections is a rather complex analytical exercise, but it is very
useful in obtaining an insight of the nature of the problem.
Figure 5.4 presents just a possibility of queue length and shock

3 3 3 3 3 3 3

(Michalopoulos et al. 1980).  Since the number of possibilities

that we have to turn to numerical methods for solving the
conservation equation at complex situations.

A major benefit of the continuum modeling is the fact that
compressibility is built into the state equations since speed or
flow is assumed to be a function of density.  This suggests that
as groups of cars enter areas of higher density, the continuum
models exhibit platoon compression characteristics; conversely,
when they enter areas of lower density we observe diffusion or
dispersion.  This phenomenon has been shown analytically in
Michalopoulos and Pisharody (1980), where it is demonstrated
that by using continuum models we do not have to rely on
empirical dispersion models such as the ones employed today in
most signal control packages.  The result is a more realistic and
elegant modeling that should lead to more effective control.

5.1.5  Numerical Solution of the
          Conservation Equation

The advantage of the analytical results presented thus far is that
they visually depict the effects of downstream disturbances on
upstream flow.  Thus they provide a good insight on the
formation and dissipation of queues and congestion in time and
space in both freeways and arterials; further, they can be used to
demonstrate that platoon dispersion and compression are
inherent in this modeling (i.e., it does not have to be induced
externally).  The disadvantage of the analytical solution lies in
the oversimplifications needed in the derivations.

These include simple initial flow conditions, as well as arrival
and departure patterns, absence of sinks or sources, and
uncomplicated flow-concentration relationships.  Most
importantly, complexities frequently encountered in real
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Figure 5.4
Shock Wave Developments Between Two Signalized 
Intersections During a Saturated Downstream Cycle.

situations such as turning lanes, side streets, or freeway each node of the discretized network at consecutive time
entrances and exits cannot be treated analytically with ease.  As
in similar problems of compressible flow, these difficulties can
be resolved by developing numerical solutions for the state
equations.  Clearly, a numerical methodology is needed for
numerical implementation of the conservation equation in
practical situations.  This allows for inclusion of complexities
one is likely to encounter in practice (turning lanes, sinks and
sources, spillbacks, etc.) treatment of realistic arrival and
departure patterns, more complicated u-k models, as well as
inclusion of empirical considerations.  Numerical computation
of k, u, and q proceeds by discretizing the roadway under
consideration into small increments �x (in the order of 9 to 45
meters) and updating the values of these traffic flow variables on

increments �t (in the order of one second or so).  

Space discretization of a simple signalized traffic link without
side streets is presented in Figure 5.5 in which the dashed
segments represent dummy links that are necessary in the
modeling in this application (Michalopoulos 1988).  It should be
emphasized that this discretization is not physical and is only
performed for computational purposes.  Referring to the solid
segments, density on any node j except the boundary ones (i.e.,
1 and J) at the next time step n+1 is computed from density in
the immediately adjacent cells (both upstream and downstream
j-1 and j+1 respectively) at the current time step n according to
the relationship:
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(5.28)

(5.29)

(5.30)

(5.31)

in which:

= density and flow rate on node j at t=t +n�t0

t  = the initial time0

�t, �x = the time and space increments respectively such this is essential for analyzing flow regardless of the modeling and
that �x/�t > free flow speed.

= is the generation (dissipation) rate at node j at 
t = t +n�t; if no sinks or sources exist 0

and the last term of Equation 5.28 vanishes.

Once the density is determined, the speed at t+�t (i.e., at n+1)
is obtained from the equilibrium speed density relationship u (k),e

i.e.,

For instance, for the Greenshields (1934) linear model,

where u  is the free flow speed and  the jam density.  Itf

should be noted that Equation 5.28 is applicable for any speed
density model including discontinuous ones; if an analytical
expression is not available, then u can easily be obtained
numerically from the u-k curve.  Finally, flow at t+�t is obtained
from the fundamental relationship:

in which, the values of k and u are first obtained from Equations
5.28 and 5.29.  It can be demonstrated (Michalopoulos 1988)

that measures of effectiveness such as delays, stops, total travel,
etc., can be derived from k, u, and q.  Further, the generation
term can either be measured (e.g., by detection devices) or more
practically estimated in each time step (Michalopoulos 1988;
Michalopoulos et al. 1991).  It is important to note that Equation
5.28 allows congestion to propagate both upstream and
downstream rather than upstream only.

It should be evident that the above solution requires definition of
the initial state of the system (i.e., the values of k, u, and q at
t=t ) as well as boundary conditions, (i.e., k and q at j=1 and j=J ,0

upstream end of the link and stopline respectively).  However,

solution method (i.e., arrivals and departures at the boundaries
and initial flows must always be specified).  For practical
implementation of Equations 5.28, 5.29, and 5.31, one only
needs to specify arrival and departure flow rates; density at j=1
and j=J is obtained from an equilibrium q-k model.  The
discretization of Figure 5.5 and numerical solution of this section
assume that all space increments �x are equal.  Variable space
discretization is also possible; however, regardless   of   the
discretization  scheme   the  relationship
�x/�t > u  must be maintained at all times for convergence.f

Finally, direct measurement of density and initial and boundary
conditions can be obtained by wide area detection devices that
were only recently developed and implemented in the field
(Michalopoulos et al. 1992).  This is particularly important for
measuring and periodically updating initial conditions.

In conclusion it is noted that more accurate numerical methods
can be developed for solving the conservation Equation 9; such
methods are not recommended as they lead to sharp shocks
which are unrealizable in practice.  This along with numerical
examples and applications are discussed in the references cited
earlier.  One of the most interesting applications is the one in
which the simple continuum model  is implemented for
analyzing multiple lane flows (Michalopoulos et al. 1984).  The
modeling is relatively simple, but it can only be implemented by
numerical methods.

5.1.6 Application to Multi-Lane
Flow Dynamics

A simple continuum model for describing flow along two or
more homodirectional lanes can be obtained by considering the
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(5.32)

(5.33)

Figure 5.5
Space Discretization of a Simple Link.

conservation equation of each lane.  This is accomplished by where � is a sensitivity coefficient describing the intensity of
observing that the exchange of flow between lanes represents
generation (or loss) of cars in the lane under consideration.  The
generation term is obtained from the assumption that the
exchange of vehicles between two neighboring lanes is
proportional to the difference of the deviations of their densities
from equilibrium values (Gazis et al. 1962).  These values are
known lane-specific constants which can be obtained
experimentally.  Based on these considerations, the following
system describes flow on a two lane freeway (Munjal and Pipes
1971).

where, t and x are the time and space coordinates, respectively;
q (x,t) is the flow rate of the ith lane (i = 1, 2); k (x,t) is thei ¬ 

density of the ith lane (i = 1, 2); and Q (x,t) is the lane changingi 

rate (i = 1, 2).  From the assumptions stated above

Q  = �[(k  - k ) - (k  - k )]1 2 1 20 10

Q  = �[(k  - k ) - (k  - k )]2 1 2 10 20

interaction, having units of time ; k  is the equilibrium density-1
10

of the ith lane.  Since the system is conserved it can be easily
seen that Q  + Q  = 0.1 2

The above formulation does not take into account generation or
loss of cars that are introduced at entrance or exit ramps.  In
addition, when densities are equal lane changing will occur if k10

g k .  While this formulation results in lane changing even at20

very low densities, this is a rather rare behavior at nearly free
flow conditions (assuming no generation of cars).  A simple
improvement would be to assume that the sensitivity coefficient,
�, depends on the difference in density between the two lanes
rather than being constant.  With this improvement and the
inclusion of sinks and sources as well as an interaction time lag
(Gazis et al. 1962), the previous formulation can be modified to:

where g(x,t) is the generation rate in lane 1; at exit ramps g is
negative.  
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(5.34)

(5.35)

       (5.36)

Q  = �[{k (x, t--) - k (x, t--)} - (k  - k )]; 1 2 1 20 10

Q  = �[{k (x, t--) - k (x, t--)} - (k  - k )], 2 1 2 10 20

where

k  is a constant value below which no exchange of flow occurs;A

- is the interaction time lag, and k  the jam density.0

In this formulation it is assumed that cars are generated in (or
depart from) lane 1 (i.e. the right lane of the highway).  A similar
generation term could also be added to lane 2 if appropriate.
The system of governing equations (Equations 5.32 and 5.33)
can be solved numerically by discretizing in time and space
(Michalopoulos et al. 1984).  Figure 5.6 presents space
discretization of a two lane freeway section including an entrance
ramp; multiple entrances and exits can be treated similarly.
Following guidelines similar to those of Section 5.1.5, a

 numerical solution of Equations 5.32 and 5.33 is
(Michalopoulos et al. 1984):

where  : the density of the ith lane and the jth node at
t = t  + n # �t; t  = the initial time0 0

Figure 5.6
Space Discretization of a 2-Lane, One Dimensional Freeway Section.
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(5.37)

(5.38)

,

u (k ) is the equilibrium speed corresponding to ; assuminge i,j
n

the simple equilibrium model of Greenshields (1934) it can be
easily verified that G  = k u (1 - (k  /k )) where u  and kn n n

i , j i , j ƒ i , j 0 ƒ 0

represent the free flow speed and jam density, respectively.

Following computation of density at each time step, the flow rate
 and speed u  are obtained fromn

i , j

and

The upstream or downstream boundary conditions (k ; k )n n
1, j i, j

required in the solution correspond to the arrivals or departures,
and they can be constant, time varying, and/or stochastic; the
latter can be generated numerically by simulation techniques.
Initial conditions can be either constant or varying with space
depending on the particular situation under consideration.
Further, at the downstream boundary when flow is unspecified
and �x is sufficiently small, it can be assumed that;

Finally, during the initialization period 0 � t � °-,( i.e., when n -
s � 0) it can be assumed that , implying no exchange
of flow between lanes.

Extension of the simple continuum modeling to more than two
lanes is straightforward.  If I represents the number of lanes, the
general conservation equation of each lane is

where

g  = 0 for all internal lanes, i.e. for i = 2,3,..., I - 1i

alternatively

The  above  equations  are  also  valid  for  the  first  and  last
lanes  (i = 1 and i = I); in these cases one should set i - 1 = i  for
i = 1; i + 1 = i  for i = I and g  = ƒ(x,t).i

Following a similar notation as before, the general solution of
Equation 5.37 is:

where
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(5.39)

(5.40)

The models presented to this point did not include the street
width y, explicitly (i.e., they were discrete with respect to this
spatial dimension).  This discretization appears natural due to the
division of the road surface in lanes.  However, during the lane
changing process, flow and speed exhibit a second component
parallel to the y dimension.  In principle, a two dimensional
formulation with respect to space should more adequately
describe the traffic flow process.  A simple continuum
formulation based on the law of conservation alone is

x,  y,  t   are  the   space  and  time   coordinates, respectively; 
k = k(x,y,t) = the traffic density; u  = u (x,y,t) = the x componentx x

(parallel to the road axis) of the  velocity   vector;
u  = u (x,y,t) = the y component of the velocity vector; g(x,y,t) isy y

the generation rate.

Since the above equation has three unknowns, it must be
combined with two equations of state of the form

It should be noted that in this new formulation, density
represents the number of cars per unit area; for instance jam
density is defined as:

where h , h  are the minimum space headways in each directionx y

x and y respectively.

The general conservation form of Equation 5.39 is

Again Equations 5.39 and 5.40 can be solved numerically, and
expressions for u (k) and v (k) can be obtained (Michalopoulose e

1984).

5.2  High Order Models

5.2.1  Criticism of Simple
          Continuum Models

The simple continuum models used in the previous section
resulted in the kinematic wave description of traffic flow.
However, these models have some shortcomings which are given
in the following list:

� Kinematic models contain stationary speed-density relation
(i.e., the mean speed should adjust instantaneously to
traffic density) more realistic is that speed is adapted after
a certain time delay and to reflect traffic conditions
downstream.

� Kinematic wave theory shows shock wave formation by
steeping speed jumps finally to infinite sharp jumps.  A 
macroscopic theory is based on values which are average
values from an ensemble of vehicles.  Averages are taken

either over temporal or spatial extended areas.  Infinite
jumps, therefore, are in contradiction to the basics of
macroscopic description.  The only solution is to include
noninstantaneous adjusting of speed-flow characteristics
by an additional acceleration equation, which at the end
introduces diffusion and smears out sharp shocks
(compare Figure 5.7).

� Unstable traffic flow is characterized under appropriate
conditions by regular stop-start waves with amplitude-
dependent oscillation time.  Oscillatory solutions cannot be
derived from kinematic wave equations.

� The dynamics of traffic flow result in the hysteresis
phenomena.  This consists of a generally retarded behavior
of vehicle platoons after emerging from a disturbance
compared to the behavior of the same vehicles
approaching the disturbance (compare Figure 5.7).
Simple continuum models cannot describe such
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Note: Macroscopic Models are based on temporal and spatial average values which do not lead to sharp shocks even in the
case of vehicles distributed like a heaviside step function.

Figure 5.7
Macroscopic Models.

phenomena.  In Figure 5.8, hysteresis phenomenon is an essential for the design of all sorts of traffic control, this
example of dynamic behavior of traffic flow which cannot be mixing is highly questionable.
covered by simple kinematic traffic wave theory.  Volume and
density represented by the observed platoon are different after The significant shortcomings of the simple continuum models
emerging from a kinematic disturbance compared with the suggest the justification for a dynamic extension leading to an
platoon approaching the disturbance.  Data from aerial survey improved description of traffic flow.
recording (Treiterer and Myers 1974; Treiterer 1973).

� Besides hysteresis, the crucial instability effect is
bifurcation behavior (i.e., traffic flow becomes unstable
beyond a certain critical traffic density).  Once
overcrossing the critical density, the traffic flow becomes
rapidly more congested without any obvious reason.
Kinematic traffic wave theory can only show that wave
propagation direction can change from downstream to
upstream.

� Finally, with the dynamics of traffic flow the deviations of
measured state points from the approximating curve for
the speed-density relation can be explained not only as
stochastic effects.  To dispense a dynamic description by
using a steady state speed-density characteristic mixes
stationary and non-stationary measured traffic state points.
Since the speed-density relation as an operating line is

5.2.2  Transients and Stop-Start Waves

Before developing detailed higher order continuum model
(taking into account acceleration and inertia effects by regarding
non-instantaneous and spatially retarded reactions), experimental
observations are reported such as transients and the formation of
stop-start waves.

The most impressive measurements of transients and stop-start
wave formation are gained from European freeways.  Due to
space restrictions, there are numerous freeways with two lanes
per highwayin Europe.  These freeways, often equipped with a
dense measurement grid not only for volume and occupancy but
also for speed detection, show stable stop-start waves lasting in
some cases for more than three hours.  Measurement data exists
for Germany (Leutzbach 1991), the Netherlands (Verweij 1985),
and Italy (Ferrari 1989).  At first, the German data are reported.
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Figure 5.8
Hysteresis

Phenomenon as an Example 
of Dynamic Behavior of Traffic Flow. 

 The series are recorded from the Autobahn A5 Karlsruhe-Basel The data for Figures 5.9 a,b and 5.9 c,d are from the Institute of
at 617 km by the Institute of Transport Studies at Karlsruhe Transport Studies at the University of Karlsruhe, Germany
University (Kühne 1987).  Each measurement point is a mean (Michalopoulos and Pisharody 1980).  The data above shows a
value of a two-minute ensemble actuated every 30 sec.  The proportionality between amplitude and oscillation time.  This
dates stem from holiday traffic with no trucks. strong dependence is an expression for the non-linear and

All reported cases have densities beyond the critical density and harmonic oscillations, the amplitude is independent of the
show unstable traffic flow (i.e., stop-start waves with more or oscillation time as the linear pendulum shows.  Obviously, the
less regular shape and of long duration - in some series up to 12 proportionality holds only for the range between traffic flow at
traffic breakdowns).  It is possible to draw in each measurement a critical lane speed of about 80 km/h (= speed corresponding to
series and idealized strongly periodic stop-start waves and to
collect the resulting amplitudes and oscillation times.
Oscillation time, T, and stop-start wave amplitude A from an between free-flow speed and complete deadlock, saturation
idealized strongly periodic shape derived for the stop-start waves effects will reduce the proportionality.
reported in Figures 5.9a,b and 5.9c,d (Kühne 1987) are as
follows. As an example of transient effects, measurements from the

oscillation time T 16 min 15 min 7.5 min 5 min
amplitude A 70 km/h 70 km/h 40 km/h 25 km/h
measurement figure   2 a   2 b   3 a   3 b

inharmonic character of the stop-start waves.  In the case of

the critical density k  � 25 veh/km) and creeping with jam speedc
of about 10 km/h.  For oscillations covering the whole range

Netherlands are described.  The data are recorded as one-minute
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Figure 5.9 a,b
Time Series of Mean Speed for Unstable Traffic Flow ( Michalopoulos and Pisharody 1980).

 

Figure 5.9 c,d
Time Series of Mean Speed for Unstable Traffic Flow with Small 

Undulations (Michalopoulos and Pisharody 1980).

 Note:  Data from the Institute of Transport Studies at the University of Karlsruhe, Germany.  
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average values from March 30, 1983 for the freeway A16  average spacing of 500 m between each measurement site.  In
Westbound 1.1 to 4.35 km between 3:30 and 6:00 p.m.  The Figure 5.10, the one-minute mean values are plotted as a
section contains an auxiliary on ramp between 2.0 and 2.5 km sequence of adjacent measurement sites.  Figure 5.10 represents
and an exit to Rotterdam Centrum between 2.9 and 3.3 km, as the time development of mean speed from adjacent measurement
well as, an entrance from Rotterdam Centrum between 3.8 and sites taken from the freeway A16 near Rotterdam, the
4.35 km.  The motorway is a three-lane highwaywith  the Netherlands.  The transient break in runs into stationary stop-
exception between 3.3 and 3.8 km where the highwayhas only start waves with amplitude � 30 km/h and oscillation time � 4
two lanes.  Data are taken from measurement sites at 1.1, 1.6, minutes.  The traffic breakdown runs backwards with negative
2.0, 2.5, 2.9, 3.3, 3.8, and 4.35 km which corresponds an

Figure 5.10
Time Development of Mean Speed from Adjacent Measurement Sites (Verweij 1985).
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group velocity � -10 km/h.  Data from Verweij (1985).  The data  traffic breakdown runs backwards with negative group velocity,
refers to the medium lane with almost only passenger car traffic. so that upstream sites experience the breakdown later than

The transient effects are very clear to recognize.  At 4.35 km,
there is a traffic breakdown from 3:50 to 5:20 p.m. with an A number of comparable measurements exist.  For instance,
average speed of 70 km/h compared to free flow speed of about Koshi (Koshi et al. 1976) shows data from Tokyo expressway
110 km/h.  The speed development within the congested area is Radial Number 3.  Again, the one-minute values show
erratic with no marked oscillations.  This breakdown is amplified oscillations.  At the beginning, and immediately after a weaving
from measurement site to measurement site upstream and area which produces continuous disturbances, the oscillations
becomes a regular stop-start wave at 3.3 km with an oscillation are not very large in amplitude but are amplified as they
time of about four minutes and an amplitude of 30 km/h.  At the propagate to the upstream.  The highest waves reach a speed of
far away upstream measurement site 1.1 km, due to wide approximately 40 km/h, and the oscillations of the two
spreading of the original disturbance,  the traffic flow becomes neighboring lanes of the regarded two-lane highwaybecome
erratic again where the area of slow traffic motion is almost
completely damped out.  The measurements also show that the

downstream sites.

more synchronous as they propagate upstream.    (See Figure
5.11.)

Note: _____:  outer lane; -----:  inner lane, average flow rate 1600 veh/h/2 lanes.

Figure 5.11
Time Development of Speed Upstream on Toll Gate at Tokyo Expressway

(Koshi et al. 1976).
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(5.43)

Other instructive measurement series for transients and stop-start
waves are reported from Italy (Ferrari 1989).  On the A14 near
Bologna, data were collected on August 14, 1979 - the
traditional summer exodus to holiday resorts with a number of
long distance trips by drivers unaccustomed to using the
motorway.  This showed excellent examples of the formation of
stop-start waves.  For the U.S., comprehensive measurements
over a long freeway stretch exist only for Interstate 80 between
Oakland and San Jose, California.  Usually, heavy loaded
freeways are found within urban areas.  There the distances
between entrances and exits are short, usually ½ to 2 miles,
which do not allow formation of stationary stop-start waves
without being disturbed by merging traffic from extended
weaving areas.  The section between Hesperian and A-Street of
the regarded stretch extend for 9000 ft; it has extremely good
speed measurement equipment. 

5.2.3  Momentum Equations

The extension of the simple continuum models in order to
explain the dynamic effects in the preceding section was first
pointed out by Whitham (1974) and Payne (1979).  The actual
speed u(x, t) of a small ensemble of vehicles is obtained from the
equilibrium speed-density relation after a retardation time - and
from an anticipated location  x + � x:

(5.41)

How to treat this recursive equation is shown in detail by
Müller-Krumbhaar (1987).  Expanding in a Taylor series with
respect to - and �x - assuming both quantities can be kept small
- yields to the substantial acceleration of a vehicle platoon

(5.42)

where the arguments x and t are suppressed for convenience.  In
the right hand side of Equation 5.41, we used 

where .  The derivative dv/dt is the acceleration of an
observer moving along the streamline x = x (t).  In a fixed
coordinate system this transforms into 

(5.44)
(i.e., the substantial acceleration is decomposed into a
convection term indicating the acceleration due to spatial
alterations of the stream lines, and into a local acceleration
stemming from explicit time dependencies).

Continuity equation

(5.45)
and momentum equation

(5.46)
form a set of first order, partial differential equations which are
supposed to describe dynamic effects associated with the traffic
flow, such as stop-start waves formation, bifurcation into
unstable flow and transients, and traffic behavior at bottlenecks.
We mention, however, that basic equations cannot describe stop-
start waves nor correct behavior at a bottleneck.  Figure 5.12a
shows speed measurements from Interstate 80 between Oakland
and San Jose during morning peak with stop-start wave
formation.  Data for southbound shoulder lane after McCrank
(1993) and Varaija et al. (1994).  To interpret the different terms
in the resulting momentum equation, a microscopic
interpretation is given on the basis of a gas kinematic approach.
It is assumed that a vehicular speed distribution function, f(x,v,t),
describes the number of dN of vehicles lying at time, t, on the
road interval between  x  and x + dx  and having a speed
between  v  and  v + dv  by:

(5.47)
then the corresponding density increment is given by: 

(5.48)
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Note: Data for south bound shoulder lane during morning peak with stop-start formation after McCrank (1993) and 
Varaija et al. (1994). 

Figure 5.12a
Speed Measurements from Interstate 80

 between Oakland and San Jose. 
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Figure 5.12b
Measurement Array for Speed Measurements from Interstate 80 between 

Oakland and San Jose  after McCrank (1993) and Varaija et al. (1994).

while the density and mean speed are defined by: 

 (5.49)

(5.50)

Convection motion and relaxation to an equilibrium speed
distribution f  leads to an equation of motion for the distributiono

function f (Phillips and Prigogine 1979; Prigogine and Herman
1971) :

(5.51)
Calculating the first and second moments of this equation of
motion yields 

(5.52)

Multiplying the momentum Equation 5.46 with k gives:

(5.53)
Upon comparing with (Equation 5.52), we finally obtain

(5.54)
The coefficient  has therefore, the meaning of the standard
deviation of the vehicular speed distribution.  In kinematic gas
theory, this speed distribution is linked to temperature.  The gas
kinematic interpretation can be completed by an interpretation
stemming from sound propagation in compressible gases.
Without relaxation and non-linear convection term, the
continuity equation and momentum equation read

(5.55)

multiplied by  and  respectively, gives 
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(5.56)

which is the sound propagation equation in compressible gases.
The coefficient , is therefore the sound velocity for
propagation of disturbances without regarding non-linear
convection and relaxation to equilibrium speed-density relation.

Finally, comparing the momentum equation with the
hydrodynamic Navier Stokes equations

local   +  convection = volume + pressure  + viscosity 
acceleration force    gradient (5.57)

the term  can be identified with the traffic dynamic

pressure 

(5.58)

related to the potential of the traffic stream and the reversible
part of the energy flow.  These interpretations show that the

pressure term    has the meaning of an anticipation

term, which takes into account drivers´ reactions to downstream
disturbances.  As an approximation with limited application
regimes

            = constant, independent of density k (5.59) 

is used.  A density dependence of the anticipation coefficient 
is investigated by Helbing (1994) as well as in the Section 5.2.9.

The relaxation term

(5.60)

describes the non-instantaneous adaption of the actual speed to
the equilibrium speed-density relation.  The relaxation time - is
the time a platoon of vehicles reacts to speed alterations.  It has
something to do with the reaction time of an ensemble of cars
and must therefore be in the range of reaction time of drivers´
car-units

(5.61)

  
For instance, the German "tachometer - half" rule fixes the legal
safety distance, in meters, taking the half of the actual speed in
km/h - leads to a reaction time of 1.8 sec as distance in meters
during reaction leads to reaction time of 8 sec.  It corresponds to
the U.S. rule for every 10 mi/h, one more car length (old
American passenger cars!).

Anticipating Section 5.2.10, again a value of - = 1.8 sec indeed
leads to excellent agreement between the model and calculations.
Earlier papers (Cremer et al. 1993; Kühne 1991; Kühne 1984)
have used much larger figures and interpret - as a macroscopic
reaction time which summarizes drivers´ reaction times.  The use
of unnatural high figures would lead to difficult interpretations
(see e.g. Castillo, et al. 1993).

Relaxation and anticipation can be put together in a concise
driving force term

(5.62)

To anticipate drivers´ reactions, one substitutes the fundamental
diagram Q(k) by the volume-density relation Q(k)-

(5.63)

In view of this substitution, it becomes apparent that even under
steady-state conditions maximum traffic volume is not constant
but depends on the density gradient.  In particular, it is
interesting to note that it is allowed for  q  to become larger than
q , namely if k is sufficiently high and, furthermore,  k   ismax x

negative.

For the equilibrium speed-density relation, , under
homogeneous conditions several mathematical formulae have
been proposed.  A fairly general formula satisfying the boundary
conditions:

(5.64)
is given by (Cremer 1979),
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 (5.65)
with appropriate choice of the static parameters

=  free flow speed,
(5.66)

= density "bumper to bumper," and
n ,n  = exponents.1 2

As a limiting case (n  � �) the exponential functions2

(5.67)

can be used which do not approach zero at bumper to bumper
density but which appeal by their simplicity.

Sometimes polynomial formulae are used such as

(5.68)
or Padé polynomials

(5.69)

The coefficients for all trials are determined from measurement
points by the least squares method.  The difficulty is to use only
those points which refer to homogeneous and stationary
situations and to cut off inhomogeneous nonstationary points.  In
(Dressler 1949) a self-consistent method is proposed to cut off
unstable traffic flow situations.  In all cases, one has to bear in
mind that because the sample size for traffic includes only a few
particles, fluid models have certain shortcomings which restrict
their applicability in a strong mathematical sense.

5.2.4  Viscosity Models

Construction of stationary stop-start waves in the density regime
beyond the stability limit can be done by introducing a collective
coordinate

(5.70)

which contains the unknown group velocity u .  If density andg

mean speed depend only on the collective coordinate  z  

(5.71)

the system of partial differential equations transforms into a
system of ordinary differential equations.  Then the basic
equations read:

continuity equation

(5.72)
and momentum equation

(5.73)

The continuity equation can be integrated immediately 

(5.74)

This means that the density and speed, in a frame running with
group velocity u , must always serve as supplements.  Waveg

solutions with a profile moving along the highway are only
possible if the density at one site increases on the same
proportion as the mean speed decreases with respect to the
group velocity u  and vice versa.  The constant  has theg

meaning of a net flow and is a result of boundary and initial
conditions to be fulfilled.  

Substituting the integrated continuity equation into the
momentum equation leads directly to a profile equation for speed
profiles of stop-start wave solutions:

(5.75)

To simplify the mathematical manipulations, dimensionless
variables could be introduced

(5.76)
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leading to the profile equation (' suppressed) has to therefore be cancelled, otherwise ambiguous solutions

(5.77)

The profile equation, thus, is an ordinary differential equation of
first order which can be directly integrated.  It contains two
arbitrary parameters: the flow rate  and the group
velocity u .  g

The profile equation for u  has a singularity.  This singularity forz

vanishing denominator

(5.78)
(negative speeds are excluded!)

has been discussed in detail by Dressler (1949).  It is connected
with vertical slope which can be either an inflection point or an
extremum with respect to z = z (u).  An extremum would lead in
a representation u = u (z) to an ambiguous solution which has to
be excluded.  In order to get an inflection point, the conditions 

(5.79)

have to be fulfilled simultaneously.  The calculations yield 

In connection with the correct selection of solutions of the
(5.80)

(5.81)
and show that both conditions for an inflection point with
vertical slope cannot be fulfilled simultaneously.  The singularity

occur.  In order to achieve this cancellation, the zeros of the
denominator and numerator in the profile equation for u  have toz

coincide which fixes the group velocity to 

(5.82)

Group velocity u  and bottleneck capacity Q  are independentg 0

parameters; fixing their values to obtain unambiguous solutions
indicates a limitation of the underlying model.  With the values
of the group velocity v  and net flow rate Q  given by Equationg 0

5.82, a monotonic shape of the profile is obtained, and so far no
periodic solutions are available.  This situation is identical to that
of elementary shallow water theory, where the profile equations
for a steady flow do not exhibit periodic solutions, although
periodic roll waves are observed in every inclined open channel
with suitable water height.  To resolve this discrepancy, pieces
of continuous solutions, as Figure 5.13 demonstrates, must be
put together by jumps (Leutzbach 1985).  To look for such
partially continuous periodic solutions is an analogy to get
shockwave formation within the kinematic wave theory.  The
dynamic theory provided up to now gives two reasons for a
jumping solution.  First, the starting point of the continuity
equation is a conservation law for the vehicle number of a
stretch; that is an integral law which allows finite jumps in the
density.  Secondly, the linear stability analysis developed in the
subsequent section shows that higher wave numbers become
more unstable than lower ones.  This leads to a steeper shape of
the speed and density profile and to the formation of shock fronts
again containing finite jumps.  To derive the jump condition, the
profile equation is integrated over the discontinuity for an
infinitesimal increment including the jump. 

In hydrodynamics, integration is achieved by using higher order
conservation laws like conservation of energy or of entropy.  In
traffic flow, such higher order conservation laws are not obvious
and the derivation of jump conditions, therefore, is ambiguous.

kinematic wave theory, an entropy condition was formulated
(Ansorge 1990; Bui et al. 1992)

(5.83)
The ambiguity can be resolved by using the experimental results:
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Figure 5.13
Construction of Partially Continuous Wave Solutions (Leutzbach 1985).

� the transition from free traffic flow (free flow speed 100-
140 km/h Europe, 75 mi/h U.S.) to jammed-up traffic
occurs on a length of minimum 80 m,

� the speed amplitude A =  u  - u   of a stop-start wavemax min

and the oscillation time, T , have the ratio A/T � 280 km/h2

in the proportionality regime, and 

� the group velocity for upstream running shock fronts in
unstable traffic flow seldom exceeds u  = - 20 km/h.  Theg

experimental data suggest the presence of an intrinsic
dampening that is modeled by introducing a viscosity term

   

into the momentum equation.  The basic higher order traffic flow
model then reads: 

(5.84)

The dynamic viscosity, µ , is determined by scaling0

investigations.  In the shear layer, speed decreases from free flow
to deadlock local acceleration, and dynamic viscosity
overwhelms all other effects

 
(5.85)

which leads to the speed profile within the shear layer decaying
from free flow speed u  to zero along the space coordinate x:f

(5.86)

and to the characteristic length l  during the characteristic time0

-

(5.87)

There is minimal use of the viscosity model since its significance
has not been completely understood.  From the possible
solutions of the kinematic theory, the entropy condition selects
those which correspond to the lower envelope of the shock
conditions (Bui et al. 1992).  In the case of gas dynamics, this is
very reasonable because it is well known that the Euler equations
which display shocks are approximations of the Navier Stokes
equations which contain viscosity and do not exhibit shocks.
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1
c0

U �

e (k0) k̃	ũ	il
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As the numerical treatment later on shows a simple constant
dynamic viscosity,  can be assumed which leads to the
viscosity term ).  This approach is used constantly in the
following 

viscosity term = 

The difficulties arising from the higher order models without
viscosity (e.g. the inability to properly describe for bottleneck
and stop-start behavior) are reviewed by Hauer and Hurdle
(1979).  The great numerical effort by Babcock et al. (1982) as
well as the introduction of an adaptive discretization procedure
by Cremer and May (1985) are attempts as well.  From an
analytical point of view, the latter procedures are nothing more
than the introduction of a numerical viscosity in order to
continuously describe bottleneck behavior and stop-start waves.

To obtain useful results, it is essential to overcome the
mathematical problems of unphysical solutions due to vanishing
viscosity by introducing the entropy condition or a small but not
vanishing viscosity.  Nevertheless, one has to keep in mind the
limitations of the one-dimensional aggregate models presented
(Papageorgiou 1989).  In special traffic situations, the one-
dimensional description fails.  If an off-ramp throughput is less
than the traffic wishing to exit, one or more right lanes of the
main road may be blocked while traffic on the left lanes may be
fluid. Restrictions of the one-dimensional description occur
when trucks are not allowed to use the far left lane and block the
right lane while traffic on the left lane may be fluid.  Another
restriction occurs if special lanes are dedicated to buses, taxis,
and high occupancy vehicles.

5.2.5  Stability Analysis of
    Higher Order Models

The basic equations

(5.88)
admit the equilibrium solution

(5.89)

relying on the equilibrium speed-density relation U (k).  Toe

determine the stability of this solution the trial solution 

(5.90)

is substituted in the model equations and only term up to first
order in  and  are considered (for convenience dimensionless
coordinates

  

are used where ' is suppressed).  In Equation 5.90, l is the wave
number and 7 (l) is the corresponding frequency.

The continuity and the momentum equations are rewritten as:

(5.91)

with � as the inverse Reynolds number

(5.92)

The condition for non-trivial solutions yields the eigenvalues

(5.93)

where a is the dimensionless traffic parameter

(5.94)

The traffic parameter characterizes the traffic conditions by
increment of speed density relation and absolute value of the
operating point k .  Regarding only the infinitesimal vicinity of0

the operating point corresponds to the restriction on a linear
stability analysis and is similar to the wave theoretic stability
interpretations in kinematic traffic wave theory.
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The two branches of the eigenvalues correspond to two different Beckschulte 1993).  The positive values of the upper branch lead
types of excitations.  One branch leads to permanent negative to instability of the equilibrium solution.
real part (- sign) and is, therefore, stable.  The other branch (+
sign) has a real part which can change its sign independent of the The corresponding eigenfunctions can easily be calculated to 
traffic parameter a and which then leads to instability of the
equilibrium solution.  The cross-over point is given by

(5.95)

This corresponds to a real wave number if a > 0, which becomes
a necessary condition for unstability.  For a < 0, no cross over
point can be reached.  The overall stability analysis is stable a <
0 equilibrium for solution can become unstable  a > 0 was also
derived by Payne (1979).

The wave number dependence on the real part of the eigenvalue
7 together with the stability domain is shown in Figure 5.14 and
Figure 5.15.   Figure 5.14 shows the wave  number dependence
of the real part of the eigen values for  a > 0  from the linear
stability analysis of the equilibrium solution (Kühne and 

(5.96)where N is a normalization constant.  For instance at the
transition point

the upper branch reads 

(5.97)

Figure 5.14
Wave Number Dependence from the Linear Stability Analysis.
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Figure 5.15
Traffic Parameter a and Stability Domain of the Homogeneous Traffic Flow.

To interpret this upper unstable branch, the sign of density and analysis, (i.e., the unstable traffic patterns are connected with
speed deviations from the equilibrium are considered the upper non-linearity stochastics) (Kühne and Beckschulte 1993).  These
branch describes excitations where speed and density vary in non-linearity stochastics define time and length scales of
opposite direction.  A speed increase with respect to the coherence which have to be distinguished from ordinary noise
homogeneous equilibrium solution k = k , u = U (k )0 e 0

corresponds to a decrease of density.  This excitation leads to
unstable traffic flow beyond a critical density.  If it is possible to
react throughout the whole excitation by modulations of speed
and density which go in phase, the second and lower branch is
reached which leads to stable but unnatural behavior in traffic
engineering.  The drivers´ reaction to reduce the speed in heavy
traffic flow when density is increasing is the reason for
instabilities, spreading of shock waves, and formation of
congestion with stop-start waves.  Of course, this reaction is
correct with respect to safety.  With artificial distance control
systems, however, the lower branch excitation becomes feasible.
The reaction "higher density - higher speed" then leads to the
expected increase of capacity by means of distance control
systems.

In the unstable regime, the linear stability analysis indicates
exponential growing of perturbances.  Since, saturation effects
will confine the increase of a non-linear stability, analysis in the
unstable regime has to be considered.  Several methods of non-
linear stability analysis have been developed to describe the
correct behavior in the unstable regime, mostly based on a
truncated expansion using the eigenmode expansion from linear
stability analysis as a starting point.  Under certain
circumstances chaotic motion is observed by this complete

due to omnipresent random influences.

5.2.6  Numerical Solutions by
    Finite Element Method

Over a wide range, higher order models up to now have failed to
demonstrate their superiority over simple continuum models
even after improving the solution algorithms.  This situation is
similar to the application of the Euler equations in
hydrodynamics in comparison with simple hydrostatic
considerations, which do not yield improved results and even
yield wrong results (e.g., shear layers, buoyancy, and boundary
conditions for eddies). The full fluid dynamic effects can be
taken into account correctly only at the Navier Stokes level.  It
is, therefore, no surprise that traffic flow at bottlenecks,
formation of stop-start waves, and the variety of traffic patterns
in unstable traffic flow could only be described with higher order
models (including viscosity and differentiating between
vanishing viscosity and viscosity tending to zero).  Besides the
in-depth understanding of the macroscopic traffic flow
mechanisms, appropriate numerical methods have to be
provided.  Simple forward discretization schemes are not
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suitable and in many cases lead to wrong results due to the propagation speed of shock waves of about 20 km/h is chosen in
connected numerical instabilities. order to also record shock front spreading.  This gives

The numerical methods must contain:

� Implicit integration procedures with centered differences
and correct treatment of the non-linearities by a Newtonian
iteration procedure, which is stable under all conditions
and

� Correct recording of boundary and initial conditions
regarding the hyperbolic character of the basic differential
equation system.

The implicit procedure turns out to be numerically stable if the
coefficients do not alter suddenly.  Bottlenecks have therefore to
be introduced with smoothed boundaries.

Sometimes additional simplifications can be used (e.g., using
logarithmic density or separating the conservative part of the
momentum equation); these methods are linked to special forms
of an anticipation term and a fundamental diagram which cannot
be recommended in general.

Crucial for the numerical solution is the correct choice of the
spatial and temporal step size for discretization of the space and
time coordinate.  A number of papers propose a spatial step size
of about 500 m arguing that this is the coherence length of
spatial variations and is traditionally equal to the spacing of
measurement sites (e.g. dense equipped line control systems or
tunnel stretches) (Cremer 1979).  Experience with numerical
solutions shows that significantly smaller sizes have to be
considered.  The calculations concerning the Boulevard
Périphérique around Paris use 125 m and propose even smaller
discretization structures (Papageorgiou et al. 1990).  The smaller
structure is induced by the characteristic length of shear layers
(l  = 80 m) and is motivated by the minimum size of variationso

which coincide with one car length.  Since the numerical effort
is inconsiderable,

�x = 5 m (5.98)

will be chosen throughout numerical procedures.

The spatial step size is connected via the characteristic speed
with the temporal step size.  As appropriate, the backward

� t = 1 sec (5.99)

Since the time step is smaller than the usual actualization rate of
measurements for boundary conditions (which usually come in
a 30 sec scanning rate), the measurement data have to be
interpolated providing a smoothing effect welcome for
stabilizing the numerical calculations.

For numerical integration, the basic equations are transformed
by

(5.100)

into a system of three equations for the unknown variables k, v,
and w.  To identify the static and dynamic parameters at one
glance, the variables are normalized in the following way:

(5.101)

where the reference state k   can be the density bumper toref

bumper in case of a unique lane number.  The unknown
variables can be put together to a vector �,

(5.102)

and the basic equations have the form of a quasi-linear partial
differential equation:

(5.103)

with 

(5.104)
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The equations contain the static speed-density fit, We integrate Equation 5.103 along its characteristics.  To ensure

(5.105)

with the exponents n  and n  describing the density dependence,1 2

as well as with the density "bumper to bumper," , which
is space-dependent in the case of lane dropping and bottlenecks.

The basic equations contain two dynamic parameters:

 (5.106)

uniqueness, we need two initial conditions, e.g.  

k = k (x, t = 0)      u = u (x, t = 0) and

three boundary conditions, e.g.,
  
k = k (x = 0, t)   u = u (x = 0, t)   w = w (x = 0, t) (5.107)

For numerical stable solutions, the hyperbolic character of the
differential equation system has to be considered.  Therefore,
only few boundary conditions on the left and right boundary can
be used:
k = k (x = 0, t)     u = u (x= L, t)    u = u (x = 0, t) (5.108)

For detailed numerical solution, the equations are integrated
section wise according to the scheme shown in Figure 5.16
(Kerner and Konhäuser 1993a).

To this aim the continuous functions, 

(5.109)

Figure 5.16
Stepwise Integration of the Quasi Linear Differential Equation 

in Time and Space Grid  (Kerner and Konhäuser 1993a).
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are replaced by functions defined as a lattice:

(5.110)

All derivatives are replaced by centered difference quotients 

(5.111)

(5.112)

and the function values are replaced by the midpoint values 

(5.113)

The integration procedure is a stepwise process starting with the
variable at the known time layer  ,

known variables to start with 

(5.114)

and proceeding from this layer to the next unknown layer
 

unknown variables to be calculated

(5.115)

Since the basic equation are non-linear, an implicit procedure
must be used with respect to the unknown variables .  It
turns out that the Newtonian iteration procedure is extremely
stable.  The variables are replaced by an approximation 
and the deviations  are calculated by linearizing the
starting equations.  Denoting the deviation vector by:

(5.116)

the basic equations can be written in the form of

(5.117)

with     (5.118)

(5.119)

(5.120)

(5.121)

where the abbreviations

(5.122)

(5.123)

are used.

Starting with the initial condition as the lowest approximation,

(5.124)

and using the left boundary condition,

(5.125)
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the  are calculated recursively by

(5.126)

as a function of , which in turn is determined by the right

boundary condition

(5.127)

An alternative rearrangement of the deviations  is possible in
order to produce a tridiagonal form which facilitates the fit of the
boundary conditions (Kerner and Konhäuser 1993a).

The complete numerical solution procedure is shown in the flow
chart of Figure 5.17.

5.2.7 Parameter Validation with Examples
from Actual Measurements

For parameter validation, we compare measurements at an
intermediate cross-section with calculations of mean speed and
traffic volume or local density based on the model under
investigation.  The principle is shown in Figure 5.18.

Mean speed and traffic volume or local density are measured at
the boundaries x = 0 and x = L and at the intermediate distance
x = d.  The initial condition is mainly a uniform distribution
compatible with the boundary condition series.  After some
transient iterations, the course of mean speed and local density
is calculated from the model equations and compared with the
intermediate measurement.

Figure 5.17
 Flow Chart of the Numerical Solution Procedure (Kerner and Konhäuser 1993a).
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Figure 5.18
Principal Arrangement for Parameter Validation 

by Comparison of Measurements and Calculations.

The performance index, defined as conditions (weather, time of day), rather than on the specific

(5.128)

is a function of the static and is to be minimized,

(5.129)

by the optimal parameters.

Obviously, the results depend on the step sizes chosen in the
discretization procedure.  Step sizes together with static and
dynamic parameters form a set of at least eight parameters which
have to be chosen simultaneously to achieve minimum.
Systematic procedures like minimum determination by gradient
method or comparable methods appear to be too complicated.
Instead, Monte Carlo methods reduce the computational effort
and give reasonable results.  In some approaches (Babcock et al.
1982), the static speed-density relation is calibrated individually
for each subsection.  In the validation procedure described here,
the model is calibrated with a unique speed-density
characteristic. This is based on data from the follow-up versions
of the Highway Capacity Manual (HCM) (Wemple et al. 1991),
including data from Europe and the U.S.  One main reason to
redesign the high flexibility in matching the real observations for
each subsection individually is the lack of sufficient data.  The
unique speed-density characteristic depends on geometrical data
(number of lanes, slope, curvature) and environmental

location.  Speed limits are introduced by reducing the free flow
speed and the exponents n , n  in case of an analytical relation1 2

which uses powers (Cremer 1979) (an example is given in the
following).  Different truck ratios can be introduced by altering
the density bumper to bumper for which the transformation

(5.130)

f = relative truck portion,  k   = kpass

k = density "bumper to bumper" pass

for 100% passenger cars
k = density "bumper to bumper" truck

for 100% trucks

is appropriate.

For validation, data from the Autobahn A3 Fürth-Erlangen near
Nuremberg are used.  It is within a line control system with
corresponding dense measurement cross sections approximately
every 1,000 m.  Between the access Frauenaurach and Erlangen-
West in the direction of Frankfurt a.M., six cross sections with
980 m  average spacing are available every 60 sec.  The data are
near values, separately detected for passenger cars and the rest
of the vehicles (discriminated by vehicle length) for each lane of
the two-lane carriageway.  A stretch was selected with a total
length of 2,100 m with left-hand side and right-hand side
boundary conditions and an intermediate cross section which is
1,400 m apart from the left boundary.
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Data were taken during the weekend of November 7 and 8, 1992 Another European example, data from French freeways are
with a relatively low truck ratio.  With the Monte Carlo method, taken.  The Boulevard Périphérique as the ring freeway around
the following parameters were selected for a two-lane highway Paris is well-equipped with measurement stations.  Since there

(5.131)

Figure 5.20 shows the time series of the mean speed at the
intermediate cross section together with the simulated data.  The
course is reproduced by the simulation in detail, while the strong
elongations are slightly smoothed.  

The corresponding dimensionless numbers are: 

(5.132) at a Bottleneck

It turns out that the traffic flow model describes a fluid in the
intermediate state between low and high Reynolds numbers.
Since it is now a high Reynolds number fluid, a neglection of the
viscosity term is not possible.  An expansion with respect to
small Reynolds numbers is not possible.

The shear layer depth is 

(5.133)

and the critical density for the two-lane highwayis calculated
from

(5.134)

to

(5.135)

is a general speed limit on French freeways, the data differ from
German Autobahn data.  Figure 5.19 shows the arrangement of
the measurement cross sections.  Figure 5.20 reproduces the
time series of traffic volume and mean speed from the
measurement sites which serve as basic data.

For a further detailed investigation in parameter validation, the
reader is referred to three comprehensive examples:

(1) A3 Fürth-Erlangen near Nuremberg, Germany (see Kühne
and Langbein- Euchner 1993),

(2) Boulevard Périphérique, Paris, France (see Papageorgiou
et al. 1990), and

(3) Interstate 35 W in Minneapolis, MN (see Sailer 1996).

5.2.8 Calculation of Traffic Flow

The calculation of traffic behavior at a bottleneck turns out to be
the crucial test for the usefulness of a traffic flow model.  The
observations of traffic flow at a bottleneck are:

� Traffic volume can exceed capacity within the bottleneck
only for a short time maximum of some minutes;

� Traffic density can at no point exceed density bumper to
bumper;

� If travel demand exceeds capacity, congestion occurs in
front of the bottleneck location;

� Spilled-up traffic is marked by upstream running shock
fronts and the formation of stop-start waves in the
congested regime;

� Spatial changes occur on scales shorter than 100 m; and
� The boundary conditions have to be chosen in such a way

that traffic patterns and resulting traffic volume are effects
of and not causes for traffic dynamics.

A reduction of lanes (two-lane to one-lane) has been simulated
on the basis of the previously described high order macroscopic
traffic flow model.
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Figure 5.19
Autobahn Section for Validation of the Macroscopic Freeway Model. 

Figure 5.20
Measurement and Simulated Time Series at the Mean Speed 

of the Intermediate Cross Section on the Test Section.



5.  CONTINUUM  FLOW MODELS

5 - 38

The following results for a 10 km stretch of a two-lane Figure 5.21b shows the temporal traffic speed development up
highwayare shown with a bottleneck - reduction of maximum to 200 seconds after an initially homogenous density distribution.
density from 320 to 220 vehicles per km - between the space This formation is accelerated by using boundary conditions for
marks of 6.5 and 8.5 km as shown in Figure 5.21a.  Within the the left boundary, that put a higher value of traffic volume into
bottleneck a high density regime is formed.  The minimum of the the stretch.  The speed course in Figure 5.21b shows the
speed lies at the first third of the bottleneck.  At the outlet, due relaxation of this initially inhomogeneous flow to homogenous
to the metering effect of the bottleneck, speed increases and the flow in the first part of the stretch.  The bottleneck lasts from
calculations show clearly the corresponding rise. space mark 6500 m to 8500 m.  Calculations are from Sailer.

From the minimum speed within the low speed regime, an seconds.  The speed peak wanders upstream while the
overreaction of the drivers is deduced.  This overreaction in overreaction regime fades away.  Additional undulations are
braking forces an acceleration as revenge and thus leads - if the formed - the stop-start waves.  Figure 5.21d shows the traffic
overall speed is sufficiently low - to an upstream movement of speed course at the bottleneck after 1000 seconds.  In the
the speed minimum within the bottleneck.  The beginning of the congested area, in front of the bottleneck well established stop-
overreaction regime itself is spreading downstream and reaches start waves occur.
finally the end of the bottleneck.

Figures 5.21b-d show the development of the speed course for formation of a density peak within the bottleneck.  The second
a 1000 seconds time period; after an initially homogeneous group indicates the movement of the density peak on the one
constant distribution forms a spatial structure. 

Figure 5.21c shows the traffic speed course after 300 to 800

The first group from the series of snap shots reproduce the

Note: Immediately after an initially homogeneous density distribution.

Figure 5.21a
Temporal Traffic Density Development One to Four Minutes (derived from Sailer 1996). 
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Figure 5.21b
Traffic Density Course after Six to Ten Minutes  (derived from Sailer 1996). 

Figure 5.21c
Density Speed Course after 12 to 24 Minutes  (derived from Sailer 1996).  
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Figure 5.21d
Density Speed Course at the Bottleneck after 30 Minutes  (derived from Sailer 1996). 

 hand and the fading of the overreaction regime border.  It also
shows that within the bottleneck additional small undulations
occur - the annoying stop-start waves which characterize spilled-
up traffic flow.  The last snap shot gives an impression of the
density distribution developing out of the initially constant
distribution in the case of overcritical bottleneck density - keep
in mind that the bottleneck itself lasts from 6.5  to 8.5 km.  The
stop-start waves lie in the congestion regime upstream of the
lane reduction stretch.     

5.2.9 Density Dependent Relaxation
Time and Anticipation Coefficient

For simplicity up to now, a constant relaxation time - with
respect to density as well as a constant anticipation term has
been regarded.  Several attempts to describe both coefficients in
a more realistic way have been undertaken.  First, we look at the
relaxation time with the dependencies (Michalopoulos et al.
1992):

(5.136)

Depending on the choice of r the relaxation time grows when
traffic approaches density bumper to bumper and decreases
when density is very low.  The density dependence reflects the
fact that approaching the desired speed seems almost impossible
in dense traffic because of interactions with other drivers.  This
frustration effect gets smaller with decreasing density.  In low
dense traffic, a quiet relaxation to the original desired speed is
possible which can be modelled by a smaller relaxation time
(compare Figure 5.22).  In Section 5.2.3 it was shown that the
anticipation coefficient  has the meaning of the standard
deviation of the vehicular speed distribution.  For this standard
deviation, early measurements exist which show a broadening of
the speed distribution for low dense traffic as a consequence of
the possibility to realize individual desired speeds.

The narrowing of the speed distribution ends with beginning
congestion.  Stop-start waves and critical fluctuations which
accompany unstable traffic flow lead to a broadening of the
speed distribution.  The reason is not due to different desired
speeds but to the dynamics of traffic pattern formation which
results in a broad speed distribution at a local measurement site
(Heidemann 1986).
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Note: Density-dependent relaxation time which reflects frustration effects in approaching the desired speed in dense traffic
(Kühne and Langbein-Euchner 1993). 

Figure 5.22
Density-Dependent Relaxation Time.

Figure 5.23
Speed Distribution Idealized Gaussian Distribution 
for Free and Nearly Free Traffic Flow (Pampel 1955).
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Finally, in completely congested traffic, with creeping flow, is equal to the momentary speed standard deviation  and
mean speed and speed distribution coincide.  There is no measurements result in local standard deviation values.  The
possibility for realization of different speeds.  The standard
deviation tends to zero.  As a summary, Figure 5.24 shows the
complete dependence of the anticipation coefficient c  fromo

density k.  The estimation value stems from the validation
calculations of Section 5.2.7.

In order to compare the numerical values with measurements of
standard deviations from local speed distribution, consider that 

transformation succeeds with the relaxation (Leutzbach 1985),

(5.137)  
with  as a mean value for nearly free traffic flow,
the transformation supports the assumption of c = 70km/h as a0 

proper value in an overall constant approximation.

Figure 5.24
Anticipation Coefficient

5.3  Stochastic Continuum Models 

5.3.1  Fluctuations in Traffic Flow

All measurements of speed, volume, and density indicate that
traffic flow is a stochastic process which cannot be described
completely by temporal and spatial development of macroscopic
fluid variables.  The question is how to incorporate the stochastic
character into the macroscopic description and what

consequences for early incident detection can be derived from
the stochastic behavior with respect to time and space.

First, some measurements are reported which show speed
distributions during jam formation and acceleration noise
distributions.  Measurements of traffic data which show the
formation and dissolution of congestion are relatively scarce.  As
an example, measurements of traffic on Easter 1976 between
10:30 a.m. and 1:50 p.m. on the German Autobahn A5
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Bruchsal-Karlsruhe as a two-lane highwayin each direction are  Finally, ten minutes later the distribution represents barely
presented.  Figure 5.25 shows the mean speed time series as congested traffic with a relatively narrow distribution since
one-minute moving average with 30 sec offset for the passing critical fluctuations have dissolved.
lane in the direction of Karlsruhe at 617 km on April 15, 1976.

At time 4,600 sec, there is a speed breakdown which reoccurs
after 10 minutes.  In Figure 5.26 the corresponding speed
distributions are recorded.  Vehicle speeds are divided into
groups of 5 km/h width.  The frequency of vehicles in each speed
class are determined during a 5-minute period with a beginning
offset at the times 4,000 sec, 4,180 sec, 4,300 sec, 4,480 sec and
4,750 sec.  The speed distribution beginning with  4,000  sec
ends at 4,300 sec which is 5-minutes before the  traffic
breakdown.    It  shows  an approximate Gaussian distribution
with a standard deviation of 15 km/h and a near value of
120 km/h.  Three minutes later, but still two minutes before the
beginning of the congestion, there is a clear broadening of the
distribution, traffic flow becomes more erratic; there is an
increase in the number of both slower and faster cars.  Five
minutes later, the distribution lasts just until the beginning of the
traffic breakdown - the speed distribution is even broader.  Eight
minutes later, the distribution is extremely broad since it includes
non-stationary situations. 

5.3.2  Calculations of Speed Distributions

The broadening of the speed distribution when approaching the
critical density connected with formation of jams and stop-start
waves was theoretically found by Heidemann (1986).   He
calculated the speed distribution as a function of traffic density
from transition probabilities between different speed classes.  As
critical density, a value of 25 veh/km is typical for traffic
breakdowns due to overload.
To guarantee that the speed distribution is sufficiently updated
and the regarded ensemble is stationary enough, the Sturges
thumb rule (Sturges 1926) is applied for class width estimation.

In order to divide the speed distribution into a proper number of
classes, an empirical rule is chosen that gives the class width:

(5.138)

Figure 5.25
Time Series of Mean Speed on Autobahn A5 Bruchsal-Karlsruhe 
at 617 km , April 15, 1976, 10:30 a.m. - 1:50 p.m. (Leutzbach 1991).
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Figure 5.26
Speed Distribution During Congestion Formation of Figure 5.25. 

where,

ld = logarithmus dualis
q = average volumem

u  - u = speed range max min

t = observation time 

The meaning of this rule is that the proper speed class width is
given by the range of speed values divided by the average
information content of the corresponding measurement events.
For a two-minute interval and an average traffic volume of 2,000
veh/h, the class width is 

�u = 10 km/h (5.139)

A finer subdivision would not make sense due to the strong
fluctuations, and a coarser subdivision would unnecessarily blur
 details.  The speed detection must, therefore, be done with
errors less than 5 km/h which can be achieved by double
inductive loops as well as millimeter-wave Doppler radar.

Within a macroscopic description of traffic flow, the
incorporation of fluctuation is possible in two ways.  First, a
noise term can be added to the acceleration equation.  The model
equations are then rewritten to include a fluctuating force, 
,

(5.140)

This addition has the effect that speed and density no longer take
exact values but are randomly distributed around a mean value
instead.  The fluctuation term describes noise by an all-in-one
representation of random influences such as bumps,
irregularities in street guidance, and fluctuations in drivers´
attention.  The noise due to discrete character of the
measurement events is superposed and can be included in the
fluctuating force description.  In the simplest case, the stochastic
quantity 
 is  - correlated in space and time with a Gaussian
distributed while noise spectrum

(5.141)

where <.....> denotes the expectation value over an ensemble of
realizations.  The quantity  is the standard deviation of the
speed distribution for free traffic flow.  The  - correlation means
that correlations decay rapidly in space and time at least within
the space scale  (= 35 m) and within the time scale - (=1.8
sec). 
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Another approach in a macroscopic stochastic description is fulfilled and the linear part in the basic equations
considers the convection nonlinearities as feedback effects. approximately vanishes.  The marginally stable solution then
These effects lead to a competition between saturation of strong obeys the equation (' suppressed)
spatial variations and over-proportional amplification of slow
undulations.

The effect can be explained by the marginally stable solution
(compare the linear stability analysis of Section 5.2.5).
Introducing the state vector � which summarizes density and
speed with respect to an operating point  in a slightly
different way as in Section 5.2.6

(5.142)

the basic equations read in a comprehensive form 

 (5.143)

with 

(5.144)

as independent variables and the approximations

(5.145)

At the marginal stable point (~ suppressed)

k = -u
(5.146)

(5.147)

which has the solution

u = f (x - u t) (5.148)

for the initial condition u (x, t = 0) = f (x).  The solution u is
dependent on u itself.  This is a typical feedback with foundation
in the convection nonlinearity u u .  The feedback affectsx
saturation in the case of strong spatial variations (uniform
steeping) and over-proportional amplification of slow spatial
variations (amplification of small disturbances).  The
competition between these effects produces irregularities near
the stability threshold.  These nonlinearity fluctuations describe
deterministic motion and do not need noise for explaining an
erratic behavior.  It superposes the omnipresent noisy
oscillations and can be used separately for representation of
fluctuations in traffic flow.

5.3.3  Acceleration Noise

A stochastic continuum theory must be able to quantify the noisy
character of traffic flow due to individually different
accelerations of the vehicles which build up a regarded
ensemble.  The drivers of such an ensemble are influenced by
many disturbances like bumps, curves, lapses of attention, and
different engine capabilities.  The acceleration of a regarded
vehicle can be split into a term which describes velocity control
within a car following model and a random term which is the
natural acceleration noise.  This noise is usually defined as the
root mean square deviation of the acceleration of the vehicle
driven independently of other vehicles (Herman et al. 1959).
Besides the dependence on the type of road, the number of
curves, and the occurrence of bottlenecks in traffic, the
acceleration noise is a function of the density and traffic volume.

First tests to determine the noise distributions experimentally are
reported in Herman et al. 1959.  An accelerometer of an
equipped test car was evaluated for trips under different density
conditions and with different driving tasks for the driver.  When
one merely tries to keep up with the stream, the distribution is
essentially Gaussian with a standard deviation of   ) = 0.03g, 
while the distribution ranges from  - 0.05g to 
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+ 0.05g.  When the driver is to attempt 8 to 16 km/h faster than  the standard deviation, of the acceleration noise distribution,
the stream average, high accelerations and decelerations occur occurs in the vicinity of the critical density which shows that the
more frequently giving rise to two wings and a significant broadening of the speed distribution coincides with the
broadening () = 0.07g) of the distribution. broadening of the acceleration noise distribution as an

The acceleration noise as a measure of the acceleration in the transition regime between stable and unstable traffic flow.
distribution shows similar behavior compared to the speed These observations fit with early investigations of Herman et al.
distribution.  A measurement series described by Winzer (1980) (1959) and Drew et al. (1965) who, for the first time, looked at
is reported, which has investigated the trip recorders of a vehicle acceleration noise distributions.
fleet floating in the traffic flow on the Autobahn A5 Durlach-
Bruchsal, Germany.  One hundred sixty measurement trips were After quantifying the experimental situation a continuum theory
evaluated.   All possible traffic flow situations were encountered approach is sketched.  As the boundary and initial conditions are
although free or nearly free traffic flow made up the majority. essential and, for reasons of clarity, periodic boundary conditions
Figure 5.27 shows the results of standard  deviation of the will be considered.  
acceleration noise for different traffic densities.  A singularity of

expression for traffic becoming erratic with critical fluctuations

Note: Data from an evaluation of 160 trips on the Autobahn A5 between exit Durlach and exit Bruchsal near Karlsruhe, Germany.

Figure 5.27
Standard Deviation of the Acceleration Noise 
for Different Traffic Densities (Winzer 1980).
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These conditions claim is introduced as the only independent variable.  The equation of

(5.149)
where L is the length of the regarded periodic interval.  The
periodic boundary conditions seem somewhat artificial, but they
are  easy  to  handle.    In  the  case  for  L � �  an  independence
of specific boundary conditions can be shown (Kerner and
Konhäuser 1993b).  As carried out in Kerner and Konhäuser
(1993b), the initially fixed number of vehicles remains constant:

(5.150)
with k  the vehicle density in homogeneous flow.  Thehom

corresponding value of the homogeneous speed is deduced from
the equilibrium speed density relation

(5.151)
if N and L are given, there is only one homogeneous state

(5.152)
this has a consequence that a Fourier series for an arbitrary
solution has to exclude the wave number l = 0 and reads

(5.153)

The lowest wave number  determines the stability range

which reads (Kühne and Beckschulte 1993) 

with

(5.154)

For simplification, further stationary solutions of the underlying
traffic flow model are regarded.  In order to obtain stationary
solutions, the collective variable

(5.155)

continuity can be integrated

(5.156)
where the external given flow Q  is linked to the solid vehicle0

number N by 

(5.157)
The stationary profile equation has the form of a non-linear
Newton equation of motion

(5.158)

5.3.4 Microscopic Time Gap Distribution
and Macroscopic Traffic Volume
Distribution

The basis of a stochastic description of traffic flow is that speed
and density do not adopt discrete values but instead are randomly
distributed around a mean value.  The microscopic behavior is
no longer given by a fixed distance law, but by a time gap
distribution as the macroscopic description is stated by a
probability distribution for the traffic volume.

The connection between microscopic time gap distribution and
macroscopic traffic volume distribution is explained by means
of elementary considerations:

If p(n,s)  =   probability of finding n vehicles during the
 times

and q ds    =  arrival probability of one vehicle during the 
infinitesimal time ds when q is the actual      
stationary traffic volume.

1-q ds = probability that the vehicle number remains
unchanged during the time ds,

then the probability of finding n vehicles during the time s+ds is
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p(n, s+ds) =  p (n-1, s)qds + p(n, s) (1-qds) (5.159) can be derived.  This probability is identical with the probability

Since the vehicle number n can be generated by an arrival during than s.  Time gap distribution (compare Figure 5.28) and traffic
the time extension between s and s+ds starting from  n-1
vehicles with one additional arriving or by a conservation of the
vehicle number n.  Expanding with respect to ds gives

(5.160)
for the actual traffic volume q.  If the traffic volume itself is
distributed with a distribution W(q) one has to integrate overall
possible values q

(5.161)
from which the time gap distribution,

(5.162)

that the time gap between the arrival of the next vehicle is larger

volume distribution are therefore related by Laplace
transformation.

For practical reasons, the empirical data are approximated with
a least square fit as Padé-expansion

(5.163)

It should be noted that for s � 0.2 sec, the probability P(s) has
constantly the value one.  This refers to a minimum time gap
during which certainly no vehicle is registered and which is
caused by the finite length of the vehicles.

Figure 5.29 reports the corresponding Laplace transformation as
the traffic volume distribution (Kühne 1989).  The maximum of
the traffic volume distribution changes from q = 0 to q g 0 at a

Figure 5.28
Time Gap Distribution for the Median Lane 

From the Autobahn A8 near Stuttgart, Germany. 
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Figure 5.29
Traffic Volume Distribution as Result of a Laplace Transformation. 

critical density value of about 25 veh/km/lane.  The change in the The maximum of the traffic volume distribution is not identical
shape of value of the traffic volume distribution occurs at the with the mean value which is given by 
same critical traffic density for which homogeneous traffic flow
becomes unstable.  This coincidence expresses the connection
between microscopic time gap distribution and macroscopic
instability phenomena.

(5.164)
It is just the most likely value in case of a measurement series
covering all possible traffic volume values!
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