HIGHWAY SAFETY ENGINEERING STUDIES PROCEDURAL GUIDE

PREPARED FOR:

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

JANUARY 1981

PREPARED BY:

GOODELL-GRIVAS, INC. 17320 W. EIGHT MILE RD. SOUTHFIELD, MI 48075

n - . .

This Procedural Guide was developed for use at the Pilot Training Course held in Washington, D.C. on January 26-30, 1981.

TABLE OF CONTENTS

<u>Description</u> <u>Page</u>
Introduction1
I. History Of The Highway Safety Improvement Program1
II. Framework Of The Highway Safety Improvement Program2
III. Highway Safety Terminology5
IV. Details of Subprocesses, Procedures, and Techniques
PLANNING COMPONENT, PROCESS 3 - CONDUCT ENGINEERING STUDIES
SUBPROCESS 1 - Collect and Analyze Data
ACTIVITY 1 - Perform Accident Study Procedures12
Accident-Based Procedures
 ACTIVITY 2 - Field Review Location
Traffic-Based Procedures
 ACTIVITY 4 - Select Techniques
SUBPROCESS 2 - Develop Candidate Countermeasures
ACTIVITY 7 - Develop Feasible Countermeasures307
SUBPROCESS 3 - Develop Projects
 ACTIVITY 8 - Predict Accident-Reduction Capa- bilities of Countermeasures

TABLES OF CONTENTS (CONT'D)

Description

APPENDICES

APPENDIX A - I	ReferencesA-1
	Glossary of TermsB-1
APPENDIX C -	Procedure and Data ObtainedC-1
APPENDIX D -	Filmin ProcessesD-1
APPENDIX E -	Alternative Accident Pattern Tables
	for Countermeasure DevelopmentE-1
APPENDIX F -	Accident Reduction Factors
APPENDIX G -	Interest TablesG-1
APPENDIX H -	Funding IssuesH-1
DATA FURMS	I-1

CASE STUDIES

CASE STUDY 1 - Small Rural Agency CASE STUDY 2 - Large Metropolitan Agency

Page

LIST OF TABLES

	1dD1e	<u>Page</u>
1. 2.	Primary considerations for accident data collection Technique utility for accident data collection	
3.	methods Recommended accident data collection techniques	
4.	Description of sample list of available statis-	
5.	tical computer packages Typical accident characteristic categories	•••••20
6.	Accident trend or pattern evaluation	32
7.	Recommended field review survey periods	
8.	Primary considerations for safety performance review	
9.	Technique utility of safety performance studies	70
10.	ravorable safety performance techniques.	
11.	Determination of selected procedures	73
12.	Primary considerations for volume study techniques.	93
13.	reconfigue utility for volume study	
14.	ravorable volume study techniques	
15. 16.	Primary considerations for spot speed study	109
10.	reconfigue utility for spot speed study	
1/.	Primary considerations for travel time and delay	
18.	study techniques Technique utility for travel time and delay study	
19.	Favorable travel time and delay study techniques	
20.	Primary considerations of highway capacity study techniques	
21.	Critical volume and level of service relationships	
22.	Technique utility for roadway capacity study	152
23.	ravorable roadway capacity study techniques	152
24.	Primary considerations for traffic conflicts technique	
25.	Feasible improvements for conflict patterns - signalized, four-leg (four-lane) intersections	
26.	Primary considerations of gap study techniques	170
27.	recurrique utility for gap study.	19/
28.	Primary considerations for traffic lane occupancy	
29.	technique Technique utility for traffic lane occupancy study	·····185
30.	ravorable traific fane occupancy techniques	102
31.	Primary considerations for queue length study techniques	
32.	Technique utility for queue length study	202
33.	Favorable queue length study technique	202

iv

LIST OF TABLES (CONT'D)

	Table	Page
34.	Primary considerations for roadway inventory	0.07
35. 36.	study techniques Technique utility for roadway inventory study	211
37.	Favorable roadway inventory study techniques Primary considerations for sight distance study techniques	
38. 39.	Technique utility for sight distance study Favorable sight distance study techniques	221
40.	Primary considerations for skid resistance studies	
41. 42.	Technique utility for skid resistance studies Primary considerations for highway lighting	
43.	study technique Pedestrian crosswalk lighting warrants	234
44.	Technique utility for highway lighting study	247
45.	Favorable highway lighting study techniques	248
46.	Primary considerations for hazardous fog and ice study techniques253	
47.	Technique utility for hazardous fog and ice condition study	256
48.	Primary considerations for school crossing study techniques	
49.	Primary considerations for railroad crossing study techniques	
50.	Data for visibility triangles	275
51.	Technique utility for railroad crossing study	280
52.	Primary considerations of traffic control device study techniques	284
53.	Technique utility for traffic control device study techniques	286
54.	Primary considerations of bicycle and pedestrian study techniques	
55.	Technique utility for bicycle and pedestrian studies	
56.	Summary of available techniques for traffic, environment, and special study procedures	
57.	Data purpose by procedure	305
58.	Primary considerations for countermeasure	
59.	development procedures General accident pattern table	
60.	NSC and NHTSA accident costs	
61.	Sample service life estimates	
62.	Primary considerations for economic analysis procedures	
63.	Rating indices of countermeasures	

v

LIST OF FIGURES

and a state of the second second

Figure

1.	Highway Safety Improvement Program at the pro-
2. 3.	cess level
4. 5.	Accident reporting form - Michigan
6. 7.	Collision diagram form
8.	Sample statistical program outputs
9.	Relationship of confidence level in a normal
10. 11.	distribution
12.	Manual accident summaries (example)
13.	Collision diagram (example) - 1976
14. 15.	Collision diagram (example) - 1977
16.	Filming method
17.	Field placement of portable traffic counters for specific information types
18.	Spot speed study data - example
19. 20.	Graphical summary of spot speed data
21.	Sample travel time and delay study output
22. 23.	nighway capacity chart - example
24.	Mechanical recording equipment setups
25. 26.	Sampling techniques – delay data
20.	Critical movement technique – example diagram
28.	Conflict types
29. 30.	Sample conflict diagram
31.	Lonflict diagram example
32. 33.	Pictorial representation: gap and lag
34.	volume/occupancy output
35. 36.	Roadway condition diagram205 Computerized summary of roadway inventory data209
37.	Roadway sight distance cases
38. 39.	Intersection sight triangles
	street crossing major streets
40.	Non-passing zones measurement

LIST OF FIGURES (CONT'D)

Figure

41.	Skid resistance dynamics224
42.	Skid number versus brake slip224
43.	Skid resistance versus vehicle speed
44.	Schematic displaying yaw angle
45.	Lighting warrants - (AASHTO criteria)237
46.	Highway lighting warrant form - freeway238
47.	Highway lighting warrant form - interchange
48.	Highway lighting warrant form - intersection
49.	Highway lighting warrant form - highway section
50.	Lighting warrants (NCHRP 152 criteria) - example
51.	Crossing protection evaluation - ITE method
52.	Pedestrian conflict types
53.	School crossing data - example
54.	Sample railroad crossing review questionnaire form273
55.	Sight distance check points at rail-highway
	crossing
56.	Sample railroad crossing inventory form
57.	Sample safety review form for bicycle and
	pedestrian studies
58.	Cost-effectiveness method - example
59.	Benefit-to-cost ratio method - example
60.	Time of return method - example

HIGHWAY SAFETY ENGINEERING STUDIES

INTRODUCTION

The "Highway Safety Engineering Studies" Procedural Guide contains detailed guidelines for the planning, conduct, and use of safety engineering studies at identified hazardous locations. It is intended for use by those who are responsible for organizing and conducting engineering procedures and for analyzing the procedure findings.

The guide contains the necessary procedures to perform the engineering study processes and subprocesses within the Highway Safety Improvement Program described in the Federal-Aid Highway Program Manual (FHPM) 8-2-3.

I. HISTORY OF THE HIGHWAY SAFETY IMPROVEMENT PROGRAM

Highway safety professionals have long recognized the need for an organized approach to the correction of highway safety problems. In the late 1960's and early 1970's, the importance of a highway safety program was emphasized through legislation and research. More recently, the private sector has expressed a desire for a systematic approach to improving highway safety, and similar concerns have been expressed by State and local highway agencies.

As a result of the demonstrated need for improved highway safety methods and the continual increase in annual traffic accident losses in the 1960's and early 1970's, several important Federal programs were ini tiated. In the mid-1960's, the Federal Highway Administration (FHWA) initiated the Spot Improvement Program. The program attempted to identify "hazardous" locations and provided funds for their correction. Two years later, Congress passed the 1966 Highway Safety Act (23 U.S.C. 402), which set requirements for States to develop and maintain a safety program through the Highway Safety Program Standards. To assist in maintaining a safety program, the American Association of State Highway and Transportation Officials published the AASHTO "Yellow Bock" in 1967 (first edition) and 1974 (second edition). These sources defined safety design practices and policies. In 1973, categorical funding was made available for specific program areas, such as: pavement marking demonstration programs, rail/ highway crossings, high hazard locations, and elimination of roadside obstacles. These actions, in conjunction with other concurrent vehicle safety improvements and highway safety efforts of public and private agencies, resulted in a decline in the rate of highway fatalities in the late 1960's and 1970's.

The recent emphasis on highway safety has led to the availability of additional funding for application of new procedures to enhance highway safety efforts at the State and local level. Among the objectives of

1

these procedures were the efficient use and allocation of available resources and the improvement of techniques for data collection, analysis, and evaluation.

With these objectives in mind, the Federal-Aid Highway Program Manual (FHPM) 6-8-2-1, "Highway Safety Improvement Program," was developed and issued. Under this FHPM, a systematic process for organizing a highway safety improvement program was prescribed. FHPM 6-8-2-1 was superceded by FHPM 8-2-3, "Highway Safety Improvement Program," in 1979.

FHPM 8-2-3 recommends that processes for planning, implementing, and evaluating highway safety projects be instituted on a statewide basis. Its stated objective is that each State "develop and implement, on a continuing basis, a highway safety improvement program which has the overall objective of reducing the number and severity of accidents and decreasing the potential for accidents on all highways."

II. FRAMEWORK OF THE HIGHWAY SAFETY IMPROVEMENT PROGRAM

The structure of the Highway Safety Improvement Program (HSIP) is described in FHPM 8-2-3. It consists of three components: planning, implementation, and evaluation. Each is comprised of one or a series of processes and subprocesses which are designed to produce specified outputs which, in turn, serve as input to subsequent HSIP activities.

The HSIP at the process level is illustrated in Figure 1, which exemplifies the inter-relationship among the six processes. Four processes are defined in the Planning Component, and the Implementation Component and Evaluation Component each contain one process. The arrows indicate flow of data and information in the HSIP.

The subprocess level of the HSIP is shown in Figure 2, where 14 specific subprocesses are defined. The necessary sequence of subprocesses is also illustrated within each process. For example, in Process 3 ("Conduct Engineering Studies"), the collection and analysis of data (Subprocess 1) should be performed before accident countermeasures are developed (Subprocess 2). Projects can be finalized or developed for each highway location (in Subprocess 3) only after the first two subprocesses are completed. The final listing of safety improvement projects is then used as the input into Process 4 ("Establish Project Priorities).

This guide contains detailed descriptions of Process 3 of the Planning Component - "Conduct Engineering Studies".

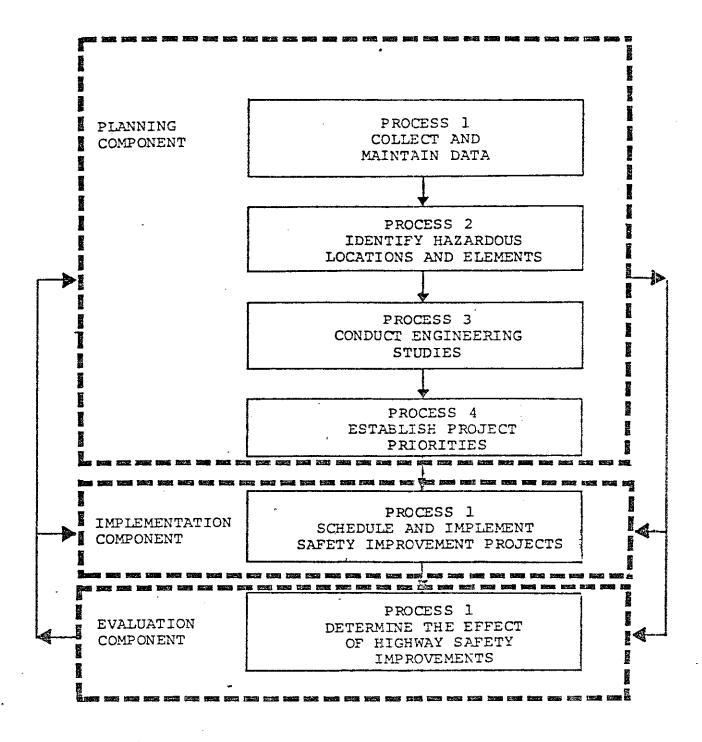


Figure 1. Highway Safety Improvement Program at the process level.

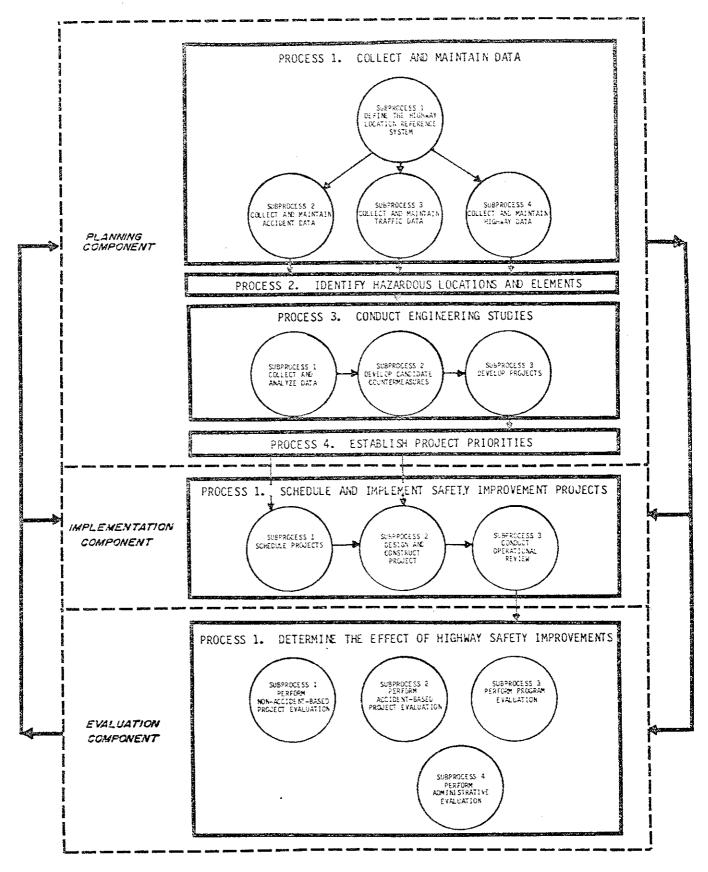


Figure 2. Highway Safety Improvement Program subprocesses.

III. HIGHWAY SAFETY TERMINGLOGY

The structure of the Highway Safety Improvement Program (HSIP) was established in FHPM 8-2-3 in terms of components, processes, subprocesses, and procedures. They can be defined as follows:

<u>Components</u> - refer to the three general phases of the HSIP: (1) Planning, (2) Implementation, and (3) Evaluation.

<u>Processes</u> - refer to the sequential elements within each component. For instance, the four processes within the planning component include: (1) Collect and Maintain Data, (2) Identify Hazardous Locations, (3) Conduct Engineering Studies, and (4) Establish Priorities for Safety Improvements.

<u>Subprocesses</u> - refer to specific activities which are contained within processes. For example, under Process 3 of the Planning Component ("Conduct Engineering Studies"), the three subprocesses are: (1) Collect and Analyze Data, (2) Develop Candidate Countermeasures, and (3) Develop Projects.

Activities - refer to the steps used to relate the procedures to the subprocesses. For example, the accident procedures are contained in Activity 1 - "Perform Accident Procedure" of Subprocess 1 - "Collect and Analyze Data".

<u>Procedures</u> - refer to the possible ways in which each of the processes or subprocesses may be attained. For instance, the procedures for Subprocess 1 (Collect and Analyze Data) of Process 3 ("Conduct Engineering Studies") are: (1) Accident-Based Procedures, (2) Traffic-Based Procedures, (3) Environment-Based Procedures, and (4) Special Study Procedures.

<u>Techniques</u> - refer to the feasible means to perform the selected study procedures. For example, to perform a traffic-based procedure such as a "Volume Study," alternate techniques could include: (1) mechanical methods (permanent or portable), (2) manual methods, (3) photographic techniques, and (4) the moving-vehicle estimation method.

A listing of procedures and techniques under each subprocess was developed based on:

- Widely accepted practices currently in use by various highway agencies.
- Techniques developed and/or used by one or more highway agencies which may offer a useful method under certain conditions.

New or untested concepts reported in the literature which may offer worthwhile alternatives to existing procedures and deserve further testing for possible future use.

Within the text of the procedural guide, the procedures are categorized by safety, traffic, environmental and other related variables. A brief description of these categories is given below.

Accident-Based Procedures

Traffic accidents provide the major indication of a safety problem at a location. By definition, a distinct relationship exists between traffic accidents and the specific hazardousness of a location. Accident-based engineering studies are used to define this relationship and identify the safety deficiencies of the location. The five accident-based procedures are:

Procedure 1 - Accident Summary by Type. Procedure 2 - Accident Summary by Severity. Procedure 3 - Accident Summary by Contributing Circumstances. Procedure 4 - Accident Summary by Environmental Conditions. Procedure 5 - Accident Summary by Time of Day.

Field Review Procedures

This procedure provides for the review of site conditions in the field environment. It assists in defining safety deficiencies and possible causes of accident patterns. The field review procedure is:

Procedure 6 - Safety Performance Study.

Traffic-Based Procedures

Traffic operations-based studies at identified hazardous locations can provide essential information to assist in the selection of the most appropriate safety improvements at each location. The nine traffic operations-based procedures are:

Procedure 7 - Volume Study. Procedure 8 - Spot Speed Study. Procedure 9 - Travel Time and Delay Study. Procedure 10 - Roadway and Intersection Capacity Study. Procedure 11 - Traffic Conflict Study. Procedure 12 - Gap Study. Procedure 13 - Traffic Lane Occupancy Study. Procedure 14 - Queue Length Study.

Environmental-Based Studies

Environmental-based engineering studies include the collection and analysis of all information related to the physical features of the roadway for specific spots, sections, and elements. The five environmental-based procedures are:

Procedure 15 - Roadway Inventory Study. Procedure 16 - Sight Distance Study. Procedure 17 - Skid Resistance Study. Procedure 18 - Highway Lighting Study. Procedure 19 - Weather-Related Study.

Special Study Procedures

There are several engineering studies which may be required in special situations and are not classified as either accident-based, traffic-based, or environmental-based. These studies are:

Procedure 20 - School Crossing Study. Procedure 21 - Rail- Highway Crossing Study. Procedure 22 - Traffic Control Device Study. Procedure 23 - Bicycle and Pedestrian Study.

The following terms are used throughout the Procedural Guide and an understanding of their meaning is essential.

<u>Safety Problem</u> - the result of a failure in the roadway-drivervehicle system as evidenced by abnormal accident experiences, trends or patterns.

<u>Possible Accident Cause</u> - specific elements of the roadway-drivervehicle system related to a specific safety problem which can be identified on the basis of past experience, predominant accident trends and patterns, etc.

<u>Probable Accident Cause</u> - factors which have been shown through field study procedures to be deficient and therefore may be a contributing cause of the safety problem. Countermeasures should attempt to alleviate or minimize these causes.

Specific categories of highway safety improvements will be discussed throughout the guide. Highway safety improvements may be arranged in the following hierarchy.

<u>Countermeasure</u> - A single highway safety treatment or corrective activity designed to alleviate a safety problem or a potentially nazardous situation. Examples include: (1) an advance warning sign installation, (2) an impact attenuator installation, (3) left-turn prohibition during peak traffic periods at a signalized intersection, and (4) edgeline striping.

<u>Project</u> - The implementation of one or more countermeasures to reduce identified or potential safety deficiencies at a location (spot or section) on the highway or its environs. A project may also consist of the implementation of an identical countermeasure or set of countermeasures implemented at similar locations. Examples include: (1) the installation of an open-graded friction course on a section of highway which is experiencing a disproportionately high number of wet-weather accidents; (2) the same project applied to a number of similar highway sections which are experiencing high numbers of wetweather accidents; and (3) shoulder stabilization, edgelining, and fixed-object removal along a section of rural highway which is experiencing abnormally high run-off-road accidents and severity.

<u>Program</u> - a group of projects (not necessarily similar in type or location) implemented to achieve a common highway safety goal. Examples include: (1) a skid treatment program to reduce wet-weatherrelated accidents at different locations, using improved signing, longitudinal grooving, or overlay, and (2) all projects resulting from the HSIP planning component.

IV. DETAILS OF SUBPROCESSES, PROCEDURES, AND TECHNIQUES

INTRODUCTION

Within the planning component of the Highway Safety Improvement Program (HSIP), a major effort is extended within Process 3, "Conduct Engineering Studies." This process involves the selection of safety measures at identified hazardous locations. Based on the project selected, safety improvements can then be implemented and evaluated.

The effectiveness of a safety project depends on the proper selection of the project for a particular location. The major objective in the selection process is to recommend improvements which are most appropriate to reduce accidents and accident potential. To meet this objective, the specific safety problems should be correctly defined. This will permit the most feasible safety-related countermeasures to be recommended. From this list of candidate countermeasures, economic analysis procedures should be used to select the most desirable project.

SAFETY ENGINEERING INVESTIGATION MODEL

After a location is identified as hazardous, the selection of a safety project requires an organized plan (model) to allow for the most effective assessment of the hazardous conditions. Such a plan (model) is displayed in Figure 3. It outlines the basic activities within Process 3

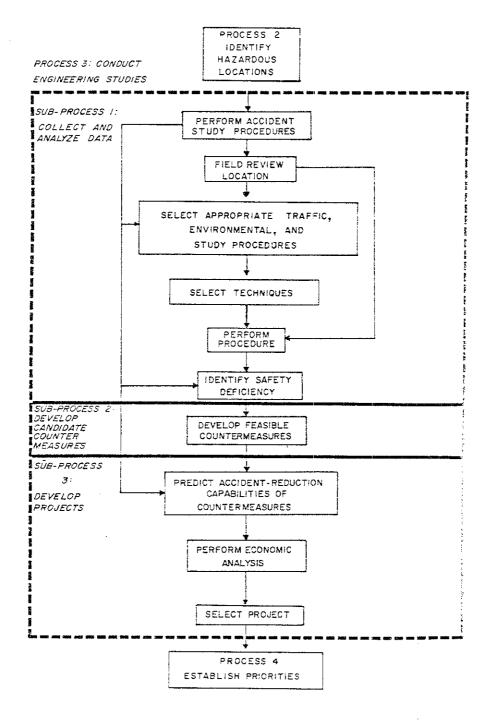


Figure 3. Engineering investigation model.

of the Planning Component of the HSIP. The following three subprocesses are contained within Process 3 ("Conduct Engineering Studies"):

Subprocess 1 - Collect and Analyze Data

This subprocess consists of the activities for identifying the safety problem and specific safety deficiencies. These activities are:

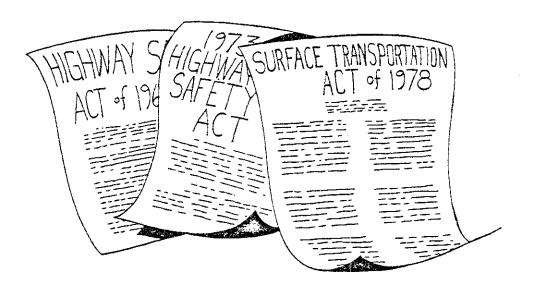
- Activity 1 Perform Accident Study Procedures.
- Activity 2 ~ Field Review Location.
- Activity 3 Select Appropriate Traffic, Environment, and Special Study Procedures.
- Activity 4 Select Techniques.
- Activity 5 Perform Procedures.
- Activity 6 Identify Safety Deficiencies.

Involved in this subprocess is the performance of the accident, traffic, environment, and special-based studies used to identify the safety problem. This subprocess will allow for (1) selecting and performing the appropriate study procedures used in identifying the safety deficiencies, (2) analyzing the procedure findings individually and collectively, and (3) identifying the safety deficiencies. Based on these identified safety deficiencies, appropriate safety-related countermeasures can be developed (in Subprocess 2).

Subprocess 2 - Develop Candidate Countermeasures

This subprocess serves to develop a list of feasible safety-related countermeasures for a location based on the findings of Subprocess 1. It contains:

Activity 7 - Develop Feasible Countermeasures.


Input into this subprocess is received from documented research, past experiences and other sources. This subprocess includes: (1) the review of safety deficiencies at a site and (2) the development of a list of feasible countermeasures. This list will be used to develop a safety project (in Subprocess 3).

Subprocess 3 - Develop Projects

This subprocess is comprised of the activities necessary for analyzing the alternative countermeasures and selecting a single project for a location. They are:

- Activity 8 Predict Accident-Reduction Capabilities of Countermeasures.
- Activity 9 Perform Economic Analysis.
- Activity 10 Select Project.

Within this subprocess, estimates are made of the accident-reduction capabilities of a countermeasure for use in the economic analysis. Alternate procedures for economic analysis are also provided. This subprocess will allow for (1) predicting accident reduction capabilities of the feasible countermeasures, (2) performing economic analysis of the countermeasures, and (3) selecting a single project for a site. This output will be used in Process 4 of the Planning Component to select and plan for the implementation of projects.

SUBPROCESS 1 - COLLECT AND ANALYZE DATA

<u>Activity 1 - Perform Accident-Study Procedures</u>

Purpose

The purpose of this activity is to collect and analyze accident information at hazardous locations and to use these data to identify safety problems and possible safety deficiencies.

Overview

The primary measure of safety problems at a highway location is traffic accidents. Once a highway location has been selected for a safety study, data should be collected and analyzed to identify and describe accident characteristics of the location. From these characteristics, countermeasures to alleviate the safety-related deficiencies can be more readily identified. Analyses of accident data will aid in the identification of safety problems and possible safety deficiencies.

To identify safety problems at a location, the following five accident analysis procedures are described. They are:

- Procedure 1 Accident Summary by Type.
- Procedure 2 Accident Summary by Severity.
- Procedure 3 Accident Summary by Contributing Circumstances.
- Procedure 4 Accident Summary by Environmental Conditions.
- Procedure 5 Accident Summary by Time of Lay.

Prior to conducting the accident analysis procedures, preparation of the data is necessary. The following criteria are suggested for preparing the data for accident analysis purposes.

<u>Periods</u> of Data Collection

The <u>time period</u> to be used for the collection of accident data should consist of a minimum of one full year. Collection of data for a 12-month period reduces the effect of weather conditions as well as the various holiday or vacation times which tend to influence traffic conditions. Based on several studies, however, collection of data for a 3 year period is recommended to increase the reliability of the information and to provide a long enough sample to clearly define accident patterns. With the use of a 3-year study period, it is expected that the "chance" occurrence of accidents in a pattern will be minimized. Use of a time period longer than 3 years may not be cost effective, and it increases the probability that time-related changes in traffic patterns will be reflected in the accidents. Thus, in general, a 3 year time period is suggested. In selecting the study period, the following criteria should be considered:

- 1. Care should be taken to insure that changes in the roadway characteristics (i.e., number of lanes, paving, etc.) are accounted for when evaluating the accident activity.
- 2. The accident data should represent current information since such factors as traffic volumes, pavement conditions, and other site-related data may vary with time.

In defining the study period length, it is necessary that the safety engineer be familiar with the history of the location. This will allow the engineer to better identify any uncharacteristic accident tendencies resulting from physical changes of the site.

Methods of Data Collection

The data required for performing the accident study procedures are primarily obtained from the accident report form. It is prepared at the scene of the accident by the investigating officer. From this report, information is obtained concerning the day, date, location, environmental conditions, driver's intent and actions at the site, and other data which may provide useful clues for reconstructing the accident. In addition, a pictorial representation or diagram of the accident is usually provided on the accident form. A sample accident report form is displayed in Figure 4.

In using accident data for study purposes, several possible deficiencies should be noted. First, not all accidents are reported. Most states have minimum dollar values for accident reporting. In addition, many accidents do not even receive a police investigation. Second, the accident data on the report may be biased by the investigating officer. However, these deficiencies do not override the overall usefulness of the accident data in safety studies.

The retrieval of accident data can be conducted with one of two methods -- computer techniques or a manual search of data files.

Computer Techniques

With this method, specific accident information is obtained from a computer file. The accident data typically consist of information coded directly from the standard traffic accident report. This information may include:

- Locational data (main roadway, reference roadway, distance and direction, etc.).
- Time-related occurrence data (day, date and hour).
- Accident severity data.

	Place an "X" on angrou	LACE SERVICE			ORIGIN	
UD-101Hev 1 381 State of Michigan	Department Name		Number	Organisment Complaint No.		Arm
OFFICIAL TRAFFIC ACCIDENT REPORT		-				Paus
County Number City Number Two Number	David Water Accident Date SHITWIFS	Via/On/Yr Time	O A.M	DO NOT USE		Turner
Name Poure	Na f	·	10 2.M		Aoute No	M. No. U
: [94		A. 45EW				NIG. 17
T THER LIGHT UGHT 25: '코 Clay 2015	ROAO SURFAC Street Lights DD Dry D Shimey,	1.	Um-red	28 50 Contracte		9.
Σ Ξ Fog		()		Main Main Street Sale	a at Summe	
Stars Uriver & Coleman	COB	Act on Number	Circlion Charg	- ABO	HN Test Heimet	2 Here
2 Orver v Name Film Ne	Gent Cant	Address	City	State	Aug See Int.	र्षे ह रिका
Year Adaba No Type Craner Peg.	Yr:State VIN Num		Remover	ta/by	i i i i i i i i i i i i i i i i i i i	
j <u> </u>		Impart Sam	Tity Tites	Caroo.	Ciera	Intent
	- 31 Venicle Gefect - 32 - 31 Foel L - 31 Venicle Griveble - 30 - 39 Venici		العث لكثن	Cargo Spirlage		0.00
America by Same	Aggreg				244 101. Heritret 31 52 1	-
3000xe/10 000k						
1 z 3					22 20	Server
s 51 6		Agency Address		Invest taxen to/by	27 7.0	Com.
Yotai Locai UserOwner, Phone Decudents	Insurance Co.	Agency Address		Injured taken to/by		l
, State Oriver's License	1 008	Action Number	cation Charge	- Cen	N Test Mermer 321-50	Q Henard
2 Dever i Ziame: First M.	Last	Agdres	City	State	Age Sex Inj.	1 3 Tex
Year Waxe No Type Trailer Reg.	Yr/State VIN Num	~	Aemoved	to/ov		~
		Impact Save	rity Truce C	larges:	Ci=,	litent
	153 Vehicle Defect 153 153 Files U 153 Vehicle Drivenie 153 153 Vehicle	an kaope	Ser C	argo Spillege Restriction		Owner
Petrie-ris Gy	Address	t			Sax int. (Permer)	
addrughts pub					<u>82</u> 31	
2					<u></u>	Secure
4 5 5					39 82	Cont
Tores Local UniOmner Phone Secularité	Insurance Co.	Agency Address		Injured taken to be	ŀ	
	Morth	ACCIDENT	ESCRIPTION	AND REMARKS (*Exument		Ni Roma A
				· · · · · · · · · · · · · · · · · · ·		Ar Road /
	/(】) ――					P Rosa L
						Acc. T
						_
						The Where
						How
······································						T 447
	·	``````````		······································		Pose 0
	· · · · · · · · · · · · · · · · · · ·					
	· · .					1
	·,				ł	22500
	•					2 2 4 3 191
						š
	1/15.00.00					1
	All Traffic	scribe of unusual constit	and and circle	() () () () () () () () () () () () () (ΨĂĻI
Care Repaired Time A M Investigerare	i			er Then Venicies		- «دمت
Mining by Campion Diago	ituni Neceser			Aut 1.015		1.
C Over C Cove	ni	-				
CRIMANG COPY TO INternation Designment of State Police Set 2150 Pears Directorem, Michigan 403	ns & Traffic Orenium — Pri 13 — 27	ريوم المراأ يتوري والمريام و 1941 - ما ويقوع ومحاوم م	مركز م⊢ رمومان 1-مورافة والالا	د بيري هذا ^{رو} «موري عن عادم ««ديمير»	 i i ne Section 257 82. 	1

Figure 4. Accident reporting form - Michigan.

-

- Roadway and environmental condition information present at the time of the accident. (roadway surface, geometrics, traffic control, weather, light conditions, and other cescriptive information).
- Vehicle and driver action data (vehicle type, intent, direction of specific vehicle, hazardous action, contributing circumstances, etc.).
- Accident type (related by description of vehicle movements).

Advantages:

- 1. Permits a large accumulation of data in a limited space.
- 2. Permits flexibility in data analysis techniques.
- 3. Promotes efficiency in the data analysis process.
- 4. Allows a large number of locations to be studied in a relatively short amount of time.

Disadvantages:

- 1. Requires trained computer personnel to operate the system.
- 2. Equipment costs can be high.
- 3. May require extensive training to operate computer system for specific accident analyses.

Limitations to the use of computer systems are the availability of hardware (equipment), software (programs), and funds necessary to operate the system. Initial costs of a computer system are high. Many small agencies are unable to purchase such systems (even with available Federal monies to assist in the funding of computer systems for highway safety uses). In addition, the limited amount of information input on a system for some agencies may not make a computer a cost-effective alternative. An alternative to purchasing a system consists of sharing an existing computer system. This could be achieved within an agency (inter-departmentally), by a group of agencies, or by an individual agency sharing the use of its facilities with other agencies. Shared facilities are commonly used on statewide accident data systems. Other background information on the use of computerized accident record systems is provided in Table 1.

Manual Search of Accident Record Files

This method is usually applicable to agencies with small accident files (500 accident reports per year). The accident record files are usually located in the offices of the police agency having jurisdiction of the area in which the accident location exists. The accident records are usually filed by one of the following methods:

Consi- deration Technique	Function	Equipment Requirements	Manpower Requirements	Time Requirements	Associated Costs	Data Input	Data Obtained	Data Output
1.Computer Techniques	Obtains summary of accidents by accident type and analysis from computer file search and using com- puter programs	.Computer .Summary sheets	Engineer or trained com- puter tech- nician to operate com- puter system	.Searching, printing, and analysis time per site - approx. 1-2 hours	.Computer \$1000-*	.Defined location Accident reports or data on a systemwide basis .Data analysis programs .Roadway inventory	.Locational accident summary .Threshold value by accident type (based on locations with similar character- istics)	0
2.Manual Search Methods	Obtains summary of accidents by accident type from physical search of available acci- dent files and manual record- ing of data	•Summary sheets	.Technician to search accident files .Technician to compile data .Trained technician or engineer to analyze data	.Searching time dependent on period of study .Search time, typically 1/2- 2 days per site .Data analysis time (limited to pattern assessment) approx. 1 hour per site	None	.Defined location .Accident reports or data on a systemwide basis .Roadway inventory	Locational accident summaries	Accident summaries Accident pattern assessment

. ,

÷ ,

Table 1. Primary considerations for accident data collection.

*Computer system costs can be extremely high dependent on computer system obtained and sharing of costs.

бЦ

- by date of accident occurrence.
- Alphabetically by roadway name or numerically by route number on which accident occurred.
- By intersection (proceeding sequentially along the major roadway and alphabetically between roadways).
- By intersection and by roadway link alphabetically.

A manual accident search requires that a technician examine the files and separate the required accident reports from the total file. After the reports are collected, they are individually reviewed by a technician or engineer and summarized. For large accident files, this method results in a considerable expenditure of manpower and time.

Advantages:

- 1. Allows a personal review of each accident report.
- 2. Provides detailed information which may not be easily coded for computer analysis, such as the data contained in the narrative and descriptive (diagram) part of the report.

Disadvantages:

- 1. Requires considerable manpower and time requirements.
- 2. Provides limited data analysis capabilities.
- 3. Accuracy is limited by the availability of the reports.

The manual retrieval of accident data is limited by the time requirements for data searching and the availability and capabilities of the filing system. Further information on this technique is displayed in Table 1.

<u>Selection of Data Collection Technique</u>

In selecting the appropriate data collection method for accident records, it is necessary to review the management concerns involved in the use of each technique. The management concerns for accident data collection include: time requirements, manpower requirements, and equipment requirements. Table 2 displays the utility of the data collection methods in relation to the management concerns. Based on these concerns, Table 3 provides recommendations on the use of these techniques based on the expected number of accident reports compiled per year.

The conduct of this activity is based on the availability of accident data. However, in some situations, accident data is unavailable (or very little data exists) for an identified hazardous location. For these cases, the utilization of traffic conflicts (described in Activity 3) can be used to supplement accident data and obtain a diagnosis of possible

Tecnnique Management Concerns	Computer Methods	Manual Search
. Time Requirements	.Minimal	.For large data sys- tem (> 1000 accident reports per year), data collection will be time consuming; .Smaller systems (< 1000 accident reports per year) will require less data collection effort;
. Manpower Reguirements	 If self-owned system, computer programmers are required; If shared system costs are paid to operating agency for their person- nel use 	Available technicians to search files
. Equipment Requirements	. Available compu- ter facilities	.Minimal

Table 2. Technique utility for accident data collection methods.

Table 3. Recommended accident data collection techniques.

Technique No. of Accident Reports yr	Computer Methods	Manual Search
300		٢
500-1000	•	٢
1000	3	

18

safety problems. The data obtained from the conflicts procedure may be assumed to represent the accident potential at a site.

Another means which can be used to supplement available accident data is to conduct a site investigation. From a review of certain roadway and roadside characeristics, significant input to the safety analysis can be obtained. These characteristics may include:

- Skid marks on pavement.
- Tire tracks or excessive wearing of roadway shoulder material.
- Damaged guardrail, bushes, etc.
- Broken glass, chrome strips and other vehicle debris.
- Collision marks on trees.
- Bent or damaged sign posts, delineation markers, etc.

Accident Summary Methods

Once the accident data is retrieved, summaries should be prepared. The summary data can be presented in the following forms:

- 1. Manual summary sheets.
- 2. Collision diagrams.
 - 🔹 Manual.
 - Automated.
- 3. Statistically-related programs.

Manual Summary Sheet

One method of summarizing accident data is the use of the <u>manual</u> <u>summary</u> sheet shown in Figure 5. This summary is prepared by a trained technician or engineer reviewing the individual accident reports and registering a mark by the specific characteristic defined in the accident report. These marks are summarized and percentages (of total accidents) are calculated for each location per year. This type of summary is easy to perform but can be time consuming. A deficiency is that the characteristics are usually defined on a total location basis. For instance, leftturn accidents at a signalized intersection may only present a problem on one of the approach legs; however, the information obtained from the summary sheet will fail to identify the approach upon which the left-turn accident problem exists. In reviewing data from the summary sheet, further locational data is required to obtain a proper assessment of accident patterns; i.e., a breakdown of the data by approach leg or direction of travel.

Collision Diagrams

The collision diagram provides a graphical representation of individual accidents [1,2]. They are extremely useful in providing a pictorial summary of the accident events. Basic information found in each collision diagram includes:

LOCATION:

	1977		1978		1979	
TYPE OF ACCIDENT	No.	8	No.	8	No.	8
Left Turn Head-On Collision						
Rear Ends						<u> </u>
Angle Collisions						
Pedestrian-Vehicle Collision				L		<u> </u>
Sideswipes				ļ		ļ
Run-Off-Road				ļ	<u> </u>	ļ
Fixed Object Accidents						
Head-On Collision			<u>_</u>	ļ		<u> </u>
		ļ	ļ	ļ		
						<u> </u>
Wet Conditions		ļ	<u> </u>	ļ		_
Dry Conditions				ļ		<u> </u>
		ļ	<u> </u>	<u> </u>		
Day Conditions		ļ			+	<u> </u>
Dusk or Night Conditions		ļ	<u> </u>	<u> </u>		
		<u> </u>	+			
Fatal Accident (No. Persons)		ļ	<u></u>	<u> </u>		
Injury Accidents (No. Persons)		<u> </u>		ļ		Ļ
Property Damage Accident		ļ	+	<u> </u>		
			<u> </u>			
		ļ	<u> </u>			
	<u> </u>	 		 	+	
	ļ			<u> </u>		┼───
·	 	<u> </u>		<u> </u>		<u> </u>

Figure 5. Manual summary of accident characteristics.

- Specific location.
- Type of accident.
- Hour and date.
- Weather and road characteristics.
- Driver action and impact data.
- Severity.

Collision diagrams are usually prepared for a 1-year period (January through December). However, for low-accident locations (locations with five or less accidents per year) diagrams can be prepared for multi-year periods.

Collision diagrams are schematic and are not intended to show exact vehicle paths. The steps for manually preparing collision diagrams are:

- 1. Obtain report forms for accidents that have occurred at the location during the study period. If significant changes have recently occurred at the location (i.e., geometric changes, signals, etc.), make separate before and after diagrams. Any pattern changes that appear will, thus, reflect changing geometric or traffic conditions.
- 2. Draw the path of all vehicles involved in each accident. This drawing need not be to scale but should be large enough to show the path of each vehicle involved.
- 3. Note the basic characteristics of each accident by symbol. Suggested characteristics are:
 - a. Severity.
 - b. Date, day of week and time of accident.
 - c. Environmental conditions.
 - d. Vehicle paths.

Collision diagrams are used extensively as a graphic representation of the accident summaries and may include all of the information covered by the five accident-based procedures. In addition, these schematic drawings provide locational information that is not provided by statistical summaries. Therefore, collision diagrams often yield more effective information to the engineer than do statistical summaries. A typical collision diagram is shown in Figure 6.

Computerized collision diagrams

In recent years, computerized collision diagrams [3] have given the engineer and technician a method for the quick and easy production of accident information, as shown in Figure 7. Accident types are plotted on the proper intersection legs and may be color coded by severity. Collision diagrams may quickly be produced in any size, depending on the need. Any available sample size of accident data may be used, and traditional symbols for accident types may be employed. Computer costs of producing this type of diagram is in the range of \$2 - \$10 depending on the amount of information to be printed. This approach requires a system with computer plotting capabilities.

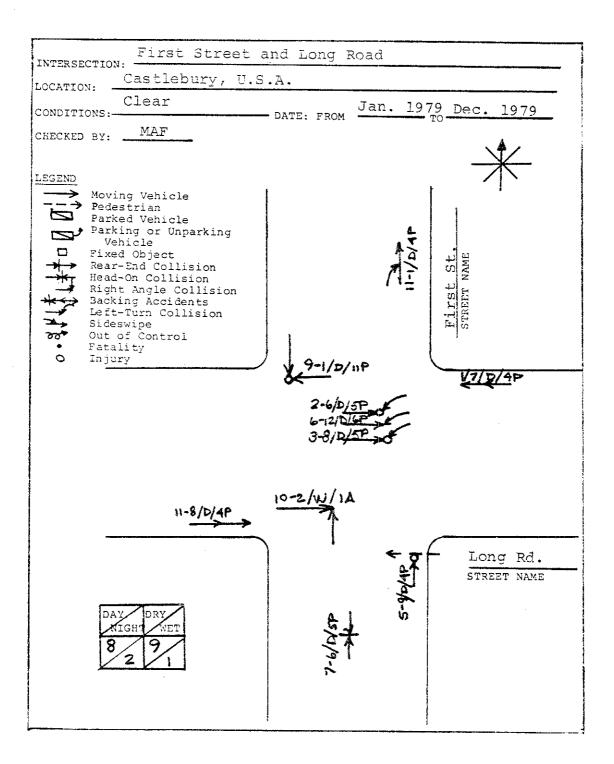


Figure 6. Collision diagram form.

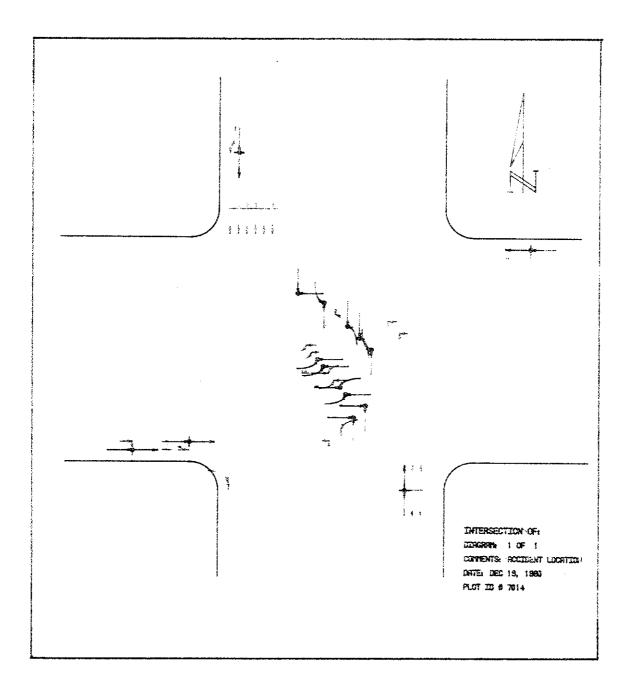


Figure 7. Computerized collision diagram.

Standard Statistical Programs

These programs [4,5,6,7] provide cross tabulations, histograms, and other statistical applications to assist in the summary and analysis of the data. Sample outputs from several of these programs are shown in Figure 8. A sample list of available computerized statistical programs include: DART (Data Analysis and Reporting Techniques), SPSS (Statistical Package for the Social Sciences), MIDAS, (Michigan Interactive Data Analysis System), and OSIRIS IV (Organized Set of Integrated Routines for the Investigation of Social Science Data). A description of their capabilities is given in Table 4.

The selection of a statistical package for analysis of accident data is beyond the scope of this manual. However, it should be noted that all computer programs require the input of the accident data into a computer file for analysis.

Accident Analysis Alternatives

The accident study procedures involve the development of summaries of the accident data at a site by various characteristics (detailed in Table 5). These summaries are used to detect abnormal accident trends or patterns and to distinguish between "correctable" and "non-correctable" accident situations. These characteristics will be used to identify the safety problem at a hazardous location. These problems will be further studied for the development of appropriate safety improvements.

In the study of accidents at a site, there may be a substantial number of accidents occurring which do not fall into a specific accident category or pattern and which cannot be corrected by cost-effective means (e.g., excessive costs in relation to benefits derived, accidents resulting from reckless driving). Much of this information can be derived from data on the "contributing circumstances" section of the police report. In addition, random or "chance" accidents may occur and be identified by the lack of a pattern of specific accident types. These accidents comprise the "non-correctable" type accidents. After careful investigation to assure that the accidents are indeed non-correctable, they may be excluded from further analysis.

The other types of accidents may be correctable through various implementable countermeasures. Based on the accident patterns and available traffic and environmental data, probable causes of accidents can be determined.

When summarizing accident data for analysis purposes, several criteria should be adhered to:

			RELATIVE	ADJUSTED	СЭМ
CATEGORY LABEL	CODE	ABSOLUTE FREQ	FREQ (PCT)	FREQ (PCT)	FREQ (PCT)
SUNDAY	1.	1	2.4	2.4	2.4
MONDAY	2.	4	9.5	9.5	11.9
TUESDAY	З.	5	11.9	11.9	23.8
WEDNESDAY	4.	9	21.4	21.4	45.2
THURSDAY	5.	7	16.7	16.7	61.9
FRIDAY	6.	7	16.7	16,7	78.6
SATURDAY	7.	9	21.4	21.4	100.0
	TOTAL	42	100.0	100.0	

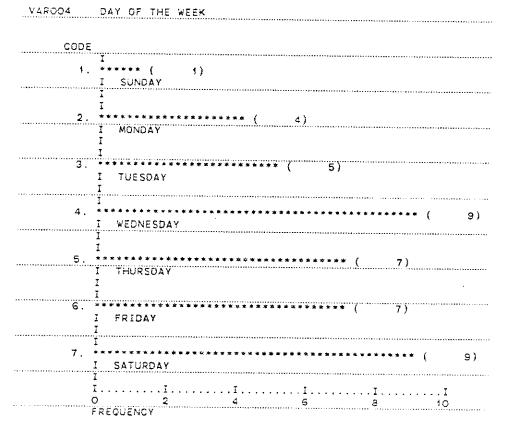


Figure 8. Sample statistical program outputs.

PROGRAM PACKAGE	DESCRIPTION	CAPABILITIES	AVAILABILITY
DART (Data Analysis and Reporting Tech- niques)	Statistical package designed to assist in the selection an- alysis, and evalua- tion of accident data	Sort, rank, dupli- cate and search options; transform data values; perform statistical analyses	Available through National Highway Traffic Safety Administration (NHTSA) at a mini- mal cost to a State
SPSS (Statistical Package for the Social Sciences)	Package of computer programs designed for analysis of so- cial science data	Sort, rank, dupli- cate and search op- tions; numerous transformations; perform statistical analyses	Available as a pack- age throughout the U.S.
MIDAS (Michigan Interactive Data Analysis System)	Package of computer programs designed for statistical analysis of data	Sort, rank, dupli- cate and search options; perform statistical anal- yses	Available in sections of Michigan
OSIRIS IV (Organ- ized Set of Inte- grated Routines for Investigation of Social Science Data)	Patkage designed for the data management and statistical an- alyses for situations in the social sciences	Sort, search, dupli- cate, display, edit, copv, and rank data; transform data values; perform statistical analyses	Available through Uni- versity of Michigan Institute of Social Research

, 1

4 y 4

Table 4. Description of sample list of available statistical computer packages.

Description	Categories
Summary by Type	 Left-turn, head-on Right-angle Rear-end Sideswipe Pedestrian-related Run-off-road Fixed object Head-on Parked vehicle Other
Summary by Severity	 Fatal Personal Injury incapacitating nonincapacitating possible injury Property Damage
Summary by Contributing Circumstances	 Driving under the influence of alcohol or drugs Reckless or careless driving Ill, fatigued or inattention Failure to comply with li- cense restrictions Obscurred vision Defective equipment tributing) Lost control due to shifting load, wind, or vacuum
Summary by Environmental Conditions	 Weather (clear, cloudy, rain, fog, snow) Ambient light (light, dark, dawn, dusk, street lights) Roadway surface (dry wet, snowy, icy)
Summary by Time of Day	1. 12:00 midnight - 1:00 A.M. 2. 1:00 A.M 2:00 A.M. 3. 2:00 A.M 3:00 A.M. 4. 3:00 A.M 4:00 A.M. 24. 11:00 P.M 12:00 Midnight

Table 5. Typical accident characteristic categories.

.

- 1. Accident data should be reviewed with respect to the direction the vehicles were traveling. For analysis purposes, accident characteristics should be segregated by direction of travel. Review of accidents on an overall study area basis may result in misconceptions of the safety problem, particularly where a single approach may have a high or low percentage of the recorded intersection accidents.
- 2. Accident data should be reviewed with respect to location. Accidents occurring within the intersection area should be separated from those occurring outside the area of influence of the intersection. For this purpose, a definition of the study area should be made prior to analysis. In addition, similar accident types occurring in differing situations should be separated. For example, left-turn accidents into a driveway should not be included with left-turn accidents at the intersection.

For accident analysis purposes, two approaches to identify an accident pattern are available. They include: (1) expected value analysis and (2) cluster analysis.

Expected Value Analysis

The most accurate means of identifying an accident pattern would be through the determination of an expected value for a specific accident characteristic. This method is a systematic mathematical procedure for identifying all abnormal accident characteristics. To utilize this approach, accident data for similar sites (geometrics, volumes, traffic control, etc.) are obtained and the average number of a specific accident type determined. This average can be used as an "expected" value for the specific accident characteristic. Locations having accident numbers higher than the expected values relate an "overrepresentation" of the specific accident characteristic and require further investigation.

To account for variability or fluctuations in the data between sites, the use of the variance of the accident frequency is made to establish a range for an expected value. Assuming that accidents are normally distributed, the expected range can be defined as follows:

$$AV = \overline{X} + Ks$$

Where:

AV = expected range of accident frequency

 \overline{X} = average accident frequency (accidents/number of sites)

K = selected level of confidence that a site will have a specific accident frequency

s = standard deviation of accident frequencies

The average and standard deviation values may be obtained directly from the accident statistics using the following formulas:

$$\overline{X} = \underline{\mathcal{L}} f X$$

and

s =
$$\sqrt{\frac{\sum f(X-\overline{X})^2}{n-1}}$$

Where:

- \overline{X} = average accident frequency
- X = accident frequency
- n = total number of sites
- s = standard deviation of accident frequencies

The "K" value will be based on the desired level of confidence that a site will have accident characteristics within a certain range. Values of "K" and their respective confidence levels are shown in the following table.

<u>_K</u>	<u>Confidence Level (%)</u>
1.00	68.3
1.96	95.0
3.00	99.7

The expected range values for any given section with similar characteristics will increase as the confidence level increases. Figure 9 displays this relationship.

The above values define a range of expected values between $(\overline{X} + K_S)$. This type of analysis is used in identifying an accident pattern by selecting the level of confidence that a site will have certain accident characteristics. If the accidents characteristics of the site are greater than the defined level, a significant pattern is denoted.

<u>Cluster</u> Analysis

In this approach, the identification of a particular accident characteristic is defined by an observed "cluster" or grouping of a specific accident characteristic at a site. It is normally identified by an abnor-

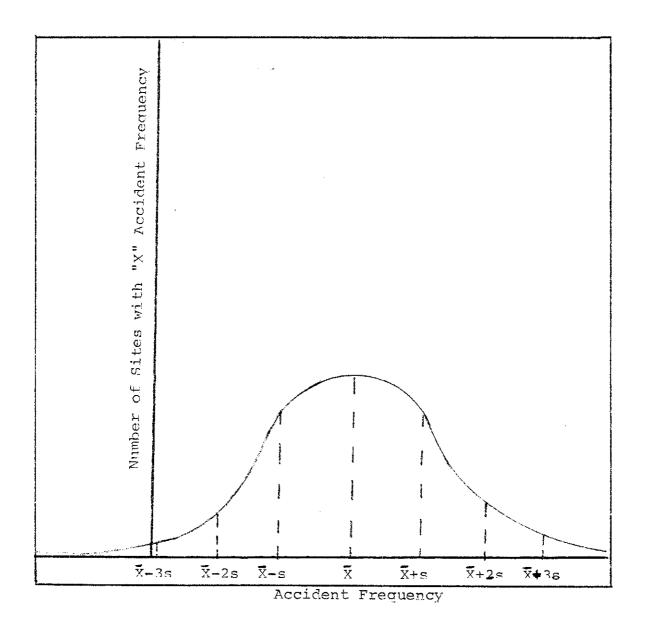


Figure 9. Relationship of confidence level in a normal distribution.

mal occurrence of a specific characteristic in relation to other accident types occurring at a site. For instance, at a signalized intersection with two left-turn accidents, three rear-end collisions, and five rightangle accidents, right-angle accidents could be defined as a pattern due to their abnormal occurrence in relation to the other accidents at the site. Similarly, on a roadway link where two head-on collisions and six "run-off-the-road" accidents occurred, the "run-off-the-road" accidents would be identified as a pattern.

The frequency of accidents required to define a pattern will vary considerably depending on the volume of traffic at the site. Accident rates (utilizing an exposure factor) have been used with success to identify some accident characteristics. However, on an overall basis, rates may yield erroneous results when assessing certain specific accident characteristics. The use of the total intersection volume to calculate a left-turn accident rate will exhibit inconsistencies between sites due to the fluctuations in left-turn volumes. Because the collection of leftturn related volumes on a daily basis is not economically feasible, accident frequencies have been used as the primary factor in accident pattern assessment for such instances.

Accident frequencies used to define accident patterns also differ between locations within different agencies. For instance, on a State level, the occurrence of three right-angle accidents at a particular intersection may not be considered a safety problem. However, within a small city or village, a similar frequency would represent a safety problem. The primary difference in these cases would be the occurrence of other accident characteristics at a site.

The above factors relate the difficulty in attempting to assign a discrete accident number for determining accident patterns. Rather, pattern identification using eye inspection methods and engineering judgment are desirable in this approach.

Findings

Possible accident causes need to be defined once the accident patterns are identified. This will assure the selection of appropriate countermeasures to relieve the hazardous situation.

Table 6 is used to provide the preliminary list of possible accident causes. It is developed based on specific accident patterns [8,9,10] at a site. For instance, if a pattern of pedestrian-vehicle collisions occurred at an intersection, possible causes, from Table 6, could be:

- Inadequate pavement markings.
- Inadequate channelization.
- Improper signal phasing.
- Restricted sight distance.
- Inadequate pedestrian signals.

ACCIDENT PATTERN OR TREND	POSSIBLE CAUSES
I. INTERSECTION	
A. Left-Turn Head-On	1. Large volume of left-turns.
Collision	2. Restricted sight distance.
	3. Too short amber phase.
	 Absence of special left-turn- ing phase.
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5. Excessive speed on approaches.
3. Rear-End Collisions at Unsignalized Intersections	 Drivers not aware of intersection.
Intersections	2. Slippery surface.
	 Large volume of turning vehicles.
	4. Inadequate roadway lighting.
	5. Excessive speed on approaches.
	6. Lack of adequate gaps.
	7. Crossing pedestrians.
C. Rear-End Collisions	1. Slippery surface.
at Signalized Intersections	 Large number of turning vehi- cles.
	3. Poor visibility of signals.
	4. Inadequate signal timing.
	5. Unwarranted signal.
	6. Inadequate roadway lighting.
	7. Excessive speed on approaches.
	8. Crossing pedestrians.
D. Right-Angle Collisions at Signalized Inter-	1. Restricted sight distances.
sections	2. Excessive speed on approaches.
	3. Poor visibility of signals.
	4. Inadequate signal timing.
	5. Inadequate roadway lighting.

Table 6. Accident trend or pattern evaluation.

32

Table 6. Accident trend or pattern evaluation (continued).

ACCIDENT PATTERN CR TREND	-area and commend	POSSIBLE CAUSES
D. Right-Angle Collisions at Signalized Inter- sections	6.	Inadequate advance intersec- tion warning signs.
	7.	Large total intersection volume.
E. Right-Angle Collisions at Unsignalized Inter-	1.	Restricted sight distance.
sections	2.	Large total intersection volume.
	з.	Excessive speed on approaches.
	4.	Inadequate roadway lighting.
	5.	Inadequate intersection warning signs.
	6.	Inadequate traffic control devices.
F. Pedestrian/Vehicle Collision	1.	Restricted sight distance.
COTTISTO:	2.	Inadequate protection for pedestrians.
5 	3.	School crossing area.
	4.	Inadequate signals.
	5.	Improper signal phasing.
	6.	Driver had inadecuate warning of frequent midblock crossings.
	7.	Inadequate pavement markings.
	8.	Inadequate gaps at unsignal- ized intersection.
	9.	Inadequate roadway lighting.
	10.	Excessive vehicle speed.
II. LINK		
A. Run-Off-Roadway Collisions	1.	Slippery surface.
0011131013	2.	Roadway design inadequate for traffic conditions.
	3.	Poor delineation.
	4.	Inadequate roadway lighting.
	5.	Inadequate shoulder.

.

Table 6. Accident trend or pattern	evaluation	(continued).
------------------------------------	------------	--------------

ACCIDENT PATTERN OR TREND	POSSIBLE CAUSES
A. Run-Off-Roadway	6. Improper channelization.
Collisions	 Inadequate pavement mainte- nance.
	8. Poor visibility.
	9. Excessive speed on approaches.
B. Fixed-Object Accidents	 Obstructions in or too close to roadway.
	2. Inadequate roadway lighting.
	3. Inadequate pavement marking.
	 Inadequate signs, delineators, and guardrails.
	5. Inadequate roadway design.
	6. Slippery surface.
•	7. Excessive vehicle speed.
C. Parked Vehicle Accidents	l. Improper pavement markings.
ACCIDENCE	 Improper parking clearance at driveways.
	3. Angle parking.
	4. Excessive vehicle speed.
	5. Illegal parking.
	6. Improper parking.
	7. Large parking turnover.
D. Sideswipe or Head-On Collision	l. Inadequate roadway design.
	2. Improper road maintenance.
	3. Inadequate shoulders.
	4. Excessive vehicle speed.
	5. Inadequate pavement markings.
	6. Inadequate channelization.
	7. Inadequate signing.

ACCIDENT PATTERN OR TREND	POSSIBLE CAUSES
E. Driveway-Related Collisions	1. Left-turning vehicles.
00111310113	2. Improperly located driveways.
	3. Right-turning vehicles.
	 Large volume of through traffic.
	5. Restricted sight distance.
	6. Inadequate roadway lighting.
	7. Excessive speeds on approaches.
F. Train-Vehicle	1. Restricted sight distance.
Accidents	2. Poor visibility.
	 Excessive vehicle speeds on approaches.
	 Improper traffic signal pre- emption timing.
	5. Slippery surface.
	 Emproper pre-emption timing of RR signals or gates.
	7. Rough crossing surfaces.
	8. Sharp crossing angle.
III. ENVIRONMENT-RELATED	
A. Wet Pavement Accidents	1. Slippery surface.
	2. Inadequate drainage.
	3. Inadequate pavement markings.
B. Night Accidents	1. Poor visibility or lighting.
	2. Poor sign quality.
	3. Inadequate channelization or delineation.

Table 6. Accident trend or pattern evaluation (continued).

- Inadequate roadway lighting.
 Inadequate gaps at unsignalized intersection.
- Excessive vehicle speèc.

Field conditions, as noted on the police accident report or computerized accident form, may be used to refine the list of possible causes.

The list of possible causes developed within this activity is used as input into the further activities (Activities 2-6) within the model. It will serve as the basis for the selection of appropriate safety-related countermeasures to alleviate the hazardous condition(s).

It should be noted that this list may not be conclusive or exhaustive. Other situations may result in possible causes not found in this list. However, Table 6 does provide a general review of possible accident causes as a function of accident patterns.

Inputs and Outputs of Activity

Inputs

- Identified hazardous location.
- Accident files.

• Outputs

- Summary of accident characteristics.
- Identified accident patterns.
- List of possible accident causes.

ACCIDENT-BASED PROCEDURES

Accident-based procedures include the study and analysis of the accident characteristics of a site. Characteristics such as accident type, severity, contributing circumstances, environmental conditions, and timerelated data are examined in this section. These characteristics are reviewed for each site to identify safety problems and their possible causes. The study results provide the initial basis for the selection of safety improvements to alleviate or reduce the identified safety problems.

Within Activity 1, the following procedures are described:

- Procedure 1 Accident Summary by Type.
- Procedure 2 Accident Summary by Severity.
- Procedure 3 Accident Summary by Contributing Circumstances.
- Procedure 4 Accident Summary by Environmental Conditions.
 Procedure 5 Accident Summary by Time Period.

Following are the details of these procedures.

Procedure 1 - Accident Summary By Type

Purpose

An "accident summary by type" procedure serves to identify the safety problem and possible safety deficiencies based on the accident patterns occurring at the location. The occurrence of patterns is typically classified by specific accident type, such as:

- Left-turn, head-on.
- Right-angle.
- Rear-end.
- Sideswipes.
- Pedestrian-related.
- Run-off-road.
- Fixed object.
- Head-on.
- Parked vehicle.
- Bicycle-related.
- Others.

Application

The "accident summary by type" procedure identifies patterns of accident occurrences based on the specific accident type and location of the accidents at a site. Following the identification of accident patterns, the results are used to suggest possible causes of the accident patterns using information shown in Table 6.

The "accident summary by type" study serves as the major indicator of the possible causes of the safety problem(s) at a specific site. It also identifies such factors as: direction of travel of the involved vehicles, intended movements of the involved vehicles, and the number of involved vehicles. Review of these factors are commonly used to assist in defining the possible causes of accident patterns.

Input from the other accident procedures are used to verify, add, or delete possible accident causes from the list produced by this accident procedure. The output is used in the field review activities of the safety engineering investigation model.

The "accident summary by type" data is further used in identifying countermeasures capable of reducing or alleviating the specific safety problem(s) at a site. For example, a pattern of left-turn accidents at a signalized intersection may require one of the following countermeasures for reducing the left-turn accident problem:

- Construction of an exclusive left-turn lane.
- Inclusion of a left-turn phase in the signal phasing plan.
- Re-timing of the signal.

Finally, based on the "accident summary by type" data and the accident reduction capabilities of a countermeasure, an economic analysis can be performed to select the appropriate safety project.

Procedure 2 - Accident Summary By Severity

Purpose

An "accident summary by severity" procedure serves to assist in identifying safety deficiencies and in selecting countermeasures utilizing the severity characteristics of the individual accidents. Severity classifications generally used include the following (given with typical severity codes):

♥ Fatality (K).

Personal injury.

- Incapacitating injury (A).
- Non-incapacitating injury (B).
- Possible injury (C).

• Property damage (0).

Application

The severity characteristics at a location can, in some cases, identify possible causes of safety problems. However, the principal use of severity data is to provide a weighted scale (based on the severity of individual accidents) to increase the effect of the more "severe" accidents or accident types in the analysis. Since the reduction of the more severe accidents produce greater benefits, the findings of this procedure would assist the analyst in placing a greater priority on reducing specific accident types or patterns with a high severity factor.

This summary is used with the "Accident Summary By Type" findings to provide background information on the severity characteristics of the accident situation. Since the severity of an accident is commonly associated with the travel speed of the vehicles, this relationship (through the use of personal injury (PI) accidents/property damage (PD) accident ratios) may define possible speed-related causes of accidents. For instance, a pattern of personal injury (Type-A) rear-end accidents on an approach may be related to excessive travel speeds through the area. Similarly, the review of patterns of personal injury or fatality accidents at a site can produce input into further data needs (studies) for selection of an appropriate countermeasure(s).

In addition, an accident type summary utilizing accident severity characteristics can be used to define "expected" values for each accident type. The data can be used to determine whether a "weighted" specific accident type is "overrepresented" or "critical". In utilizing the severity information for such purposes, several methods of defining the severity characteristics are available.

The simplest method for defining the severity of a specific accident is by using the most severe characteristic. For instance, if a fatality occurred, the accident would be labelled a <u>"fatality"</u> regardless of the number of personal injuries or the amount of property damage. Similarly, a <u>"personal injury"</u> accident would be identified by the occurrence of at least one personal injury. A <u>"property damage"</u> accident is limited to those events in which no fatality or personal injury resulted, although, property damage to a vehicle(s) or other property occurred. This method is widely used since it can be applied directly to the accident type and other information for use in identifying patterns or possible accident causes. A weighting scale may be used to provide comparisons of the severity characteristics at or between sites. One typical weighting scale [1] is given as:

Fatality = 12.

Personal injury = 3.

Property damage only = 1.

A disadvantage of using this scale is the sharp difference between a "property damage only" accident and a "fatality" accident. This difference can have disproportionate effects in the priority value. For example, a single fatality accident will have equal weight to 12 "property damage only" accidents. In this sense, one fatal accident can bias the data significantly. To reduce this effect, a lower weighting for fatality accidents may be used, for example, an 8 or 9. The lower weighting may be particularly useful for locations in which fatality accidents are extremely rare compared with other accidents at the site.

An alternate weighting method utilizes <u>individual accident costs</u>. These costs include items associated with loss as a result of the accident, including losses incurred in productivity, insurance losses, etc. Accident costs based on average nationwide figures are available from the National Safety Council (NSC). These values are updated annually. The most recent accident cost (1979) values by the NSC are:

Fatality - \$160,000.

- Injury (non-disabling) \$6,200.
- Property damage only (including minor injury) \$870.

These values are applied to each accident on the basis of the number of fatalities and injuries. The "property damage only" factor is applied only to accidents in which no fatalities or personal injuries occurred. An example of the accident cost for an accident involving two fatalities and three personal injuries would be:

Accident = 2(\$160,000) + 3(\$6,200) Cost = \$320,000 + \$18,600 = \$338,600

The National Highway Traffic Safety Administration (NHTSA) has also developed accident costs. These costs are significantly greater than the NSC costs; however, their method of computing these costs include several items not included in the NSC figures. NHTSA has not updated their cost figures in recent years.

Other cost scales have been developed by individual states. In many cases, they may be more accurate than the nationwide statistics for use in a specific region. If available, the individual states figures should be used.

The accident cost method is advantageous in that it displays the accident information in a form readily adaptable for use in the economic analysis of countermeasures. In addition, it serves to provide a more meaningful value to users of the data. A major disadvantage of this method, however, is the difference in accident costs between a fatality and a property damage accident. This difference may result in an unwarranted emphasis being placed on a fatal accident which may have been a "chance" occurrence. The cost ratio of fatality to property damage accidents is nearly 200 to 1 for the NSC values.

The "Accident Summary By Severity" study procedure used with accident summary by type information, can provide valuable input in identifying possible causes of safety problems. As an independent procedure, it can serve to identify patterns of severe-type accident events. However, its major use in safety applications is in selecting countermeasures. By providing emphasis on the more "severe" accident events, a greater benefit can be realized by the alleviation or reduction of these accident events.

<u>Procedure 3 - Accident Summary By Contributing Circumstances</u>

Purpose

This accident study procedure is designed to identify possible accident causes based on the "contributing circumstances" noted by the investigating police officer at the scene of the accident. "Contributing circumstances" are categorized by (1) human (driver) factors, (2) environmental factors, and (3) vehicle-related factors.

Application

The "contributing circumstances" summary information can be used with other accident summaries to provide background data on possible causes of accidents. It is typically used with the "accident summary by type" data to develop a preliminary list of possible accident causes. This list would serve to verify, add, or delete possible causes developed by the "accident summary by type" procedure. In addition, the contributing circumstances information can be used to separate "correctable" and "noncorrectable" accidents for use in identifying accident patterns. In separating the accidents by these classifications, careful investigation should be made to assure that the accidents are indeed "non-correctable".

Information on contributing circumstances is based on an evaluation by the investigating officer at the scene of an accident. It is determined from comments of the involved drivers, a review of field conditions at the time of the accident, distinguishing characteristics made at the accident site (alcohol blood-level tests, skid marks, etc.), and the experience and knowledge of traffic safety principles of the reporting officer.

This information is included on the police accident report. The following list displays the contributing factors which are commonly used by police agencies to identify contributing circumstances. The relationship of these circumstances as "correctable" or "non-correctable" is also shown. <u>"Correctable"</u> type circumstances are those which could be alleviated by means of a feasible safety-related countermeasure specific to

41

the study site. <u>"Non-correctable</u>" circumstances are of a random nature and are not specifically amenable to correction by a cost-effective countermeasure.

Contributing Circumstances

Driver-Related

- Unsafe speed (C).
- Failed to yield right-of-way (C).
- Following too close (C).
- Improper passing (C).
- Disregard traffic controls (C).
- Turning improperly (C).
- Alcohol involvement (C)(N).
- Drug involvement (C)(N).

Vehicle-Related

- Brakes defective (N).
- Headlights defective (N).
- Other lighting defects (N).
- Steering failure (N).
- Tire failure/inadequate (N).

Environment-Related

- Animal's action (N).
- Glare (C)(N).
- View obstructed/limited (C).
- Debris in roadway (C).
- Improper/non-working traffic controls.
- Shoulders defective (C)

- Sick, (N).
- Fell asleep (C)(N).
- Lost consciousness (N).
- Driver inattention (C)(N).
- Distraction (C)(N).
- Physical disability (N).
- Other.
- None detected.
- Not stated.
- Tow hitch defective (N).
- Over or improper load(N).
- Oversized load on veh.(N)
- Other.
- None detected.
- Holes/deep ruts/ bumps(C).
- Road under construction/ maintenance (C).
- Improperly parked vehicle(s) (C). - Fixed object(s) (C).
- Slippery surface (C).
- Water ponding (C).
- None detected.
- Not stated.

LEGEND:

- (C) correctable
- (N) non-correctable

Where accident type patterns (as defined in Procedure 1) are defined, contributing circumstances data are used in identifying or verifying the possible causes of accidents.

It should be noted that the contributing circumstances information is prepared by the investigating officer at the scene of the accident and may contain several circumstances per accident. This information may identify specific conditions which may not be included in the collision diagrams or other summaries. In this respect, the contributing circumstances data is a very useful tool. However, the data should not be considered conclusive since it is based on the opinions and judgement of the investigating officer.

Procedure 4 - Accident Summary By Environmental Conditions

Purpose

This study procedure identifies possible causes of safety deficiencies related to the condition of the roadway environment existing at the time of the accident. Typical classifications used in the accident analysis include:

Lighting conditions (daylight, dusk, dawn, dark).

Roadway surface condition (dry, wet, snowy/icy, unknown).

Application

In highway safety studies, accidents are summarized by environmental conditions to identify possible causes of safety problems. Using accident data, a summary of the environmental characteristics for all accidents at a study location can be obtained. These are compared to average or expected values for similar sites or areas to determine whether the occurrence of a specific environmental characteristic is greater or less than the expected value at the site.

The average or expected values can be obtained from an average for several sites for all roadway accidents in an area. Many State agencies can supply this information. Since these values are used as a general guideline for defining an uncharacteristic condition, it is advantageous for the selected comparison sites to represent a variety of locational situations to obtain a more representative expected value.

Where sufficient accident data to obtain average or expected values are unavailable, the use of a general guideline or value might be considered. Generalized values can be obtained by reviewing the environmentrelated characteristics, such as:

Nighttime (dark condition) accidents ratio (rn).

 $r_n = (dusk + dawn + dark) accidents total accidents$

• Wet pavement condition accidents ratio (r_w) .

rw = "wet pavement" accidents total accidents

A comparison of traffic volumes during the dawn, dusk, and nighttime periods (typically 7:00 p.m. - 7:00 a.m.) to total daily traffic volumes can be used to obtain an expected ratio of "dark condition" accidents to total accidents.

For "wet condition" accidents, several weather agencies within a State can supply a "wet pavement exposure rate" (defined as the ratio of hours of exposure to wet-pavement conditions to the total number of hours in a study period). This ratio can be used as a generalized expected value. Alternative means to obtain "wet-pavement conditions" ratios may include:

- Use of general rainfall (or sunshine) index ratios (as supplied from local weather agencies or almanacs).
- Use of estimated ratios based on past experiences (values generally range from 10-30 percent depending on area's rainfall characteristics).

Comparing the environment-related accident data to expected values will define whether the specific environment characteristic was "critical" to the accident activity at a location. When these conditions represent critical conditions (such as a high percentage of nighttime, wet weather, or wet roadway accidents), they may identify an accident pattern of wet weather or nighttime accidents. Applied to individual accident patterns, the expected values can be used to identify possible accident causes. It should also be noted that information on environmental conditions present at the time of the accident can assist in the separation of "correctable" and "non-correctable" accidents. For instance, accidents occurring under snowy-icy weather conditions may sometimes relate a "non-correctable" situation, if their occurrences are determined to be random.

Procedure 5 - Accident Summary By Time Period

Purpose

This study procedure serves to assist in identifying safety deficiencies by defining the time period patterns of the accident events. To assist in this procedure, accidents can be classified by:

- Time of day.
- Day of week.
- Month of year.

Application

This procedure primarily identifies the time period of occurrence of the accident activity at a location. It relates not only the over-representative occurrence of accidents during a specific time period but also defines the study periods required for the performance of other study procedures (i.e., operations-based and environment-based) used to identify the safety deficiencies. Summaries of the accident data are developed and compared to expected values to identify the periods of overrepresented accident occurrences.

To develop expected values for accidents by time of day, a ratio of the volume data (hourly) to the total volume may be used. This can also be done similarly for day of week and month of year periods if the data are available. Where the volume information is unavailable for these time periods, generalized criteria can be used. These criteria can be developed based on local information or can be obtained from such sources as the <u>Transportation and Traffic Engineering Handbook (1976)</u>. A sample of accident occurrence by time of day is shown in Figure 10.

Comparison of the study data to "expected" values will serve to define the "overrepresented" time-related accident events. Information relating possible accident causes can also be defined. For example, an over-representative amount of accidents occurring during the peak hours may indicate congestion-related causes.

These overrepresented conditions will define the periods for study of the specific accident types occurring during that period.

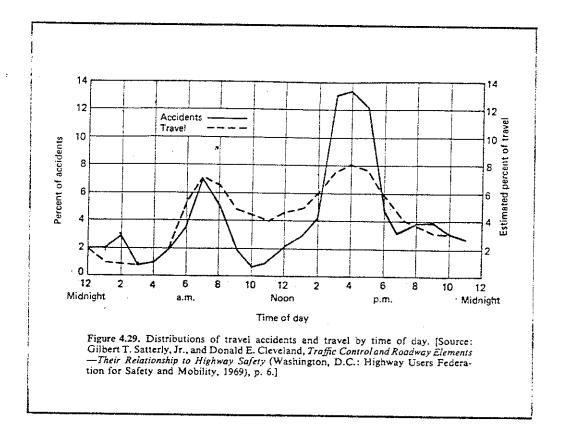


Figure 10. Accident by time of day characteristics.

45

Example

To illustrate the use of the accident-based procedures in an actual field situation, the following example is provided. For the intersection of Block Street and Dove Road, accident summary sheets and collision diagrams are displayed in Figures 11-14.

Procedure 1 - Accident Summary By Type

Reviewing these summaries and evaluating the data for accident patterns by the cluster analysis method, the following patterns are noted as being overrepresented.

- Northbound left-turn accidents at the intersection (1975-5, 1976-3, 1977-9).
- Right-angle collisions at driveway west of the intersection (1975-4, 1976-3, 1977-10).
- 3. Right-angle accidents in the intersection area (1975-3, 1976-5, 1977-10).

Based on these patterns, the following possible causes are obtained from Table 6:

Accident Pattern	Possible Causes
Left-turn head-on collision	 Large volume of left turns. Restricted sight distance. Too short amber phase. Absence of special left-turning phase. Excessive speed on approaches.
Right-angle collisions (driveway-related)	 Left-turning vehicles. Improperly located driveways. Right turning vehicles. Large volume of through traffic. Restricted sight distance. Inadequate roadway lighting. Excessive speed on approaches.
Right-angle collisions at signalized intersections	 Restricted sight distances. Inadequate roadway lighting. Inadequate advance intersection warning signs. Poor visibility of signal indication. Excessive speed on approaches. Inadequate signal timing. Large total intersection volume.

Block Street at Dove Road							
TYPE OF ACCIDENT	19	1975		1976		1977	
· · · · · · · · · · · · · · · · · · ·	No.	÷	No.	8	No.	÷	
Left Turn Head-On Collision	7	23.3	9	22.0	11	18.6	
Rear Ends	8	26.7	11	26.8	12	20.3	
Angle Collisions	8	26.7	14	34.2	24	40.7	
Pedestrian-Vehicle Collision	/_/	3.3	1	2.4	0		
Sideswipes	6	20.0	4	9.8	10	16.9	
Run-Off-Road			/	2.4	0		
Fixed Object Accidents				2.4	2	3.5	
Head-On Collision		ł			0		
						L	
	<u> </u>						
Net Conditions	9	30.0	16	39.0	20	33.9	
Dry Conditions	21	20.0	25	61.0	39	66.1	
Day Conditions	24	50.0	28	68.3	1 8	81.4	
Dusk or Night Conditions	6	20.0	13	31.7	11	18.6	
Fatal Accident (No. Persons)	0	_	0		0	_	
Injury Accidnets (No. Persons)	5	16.7	9	22.0	16	27.1	
Property Damage Accident	25	83.3	32	78.0	43	72.9	

Block Street at Dove Road

Figure 11. Manual accident summaries (example).

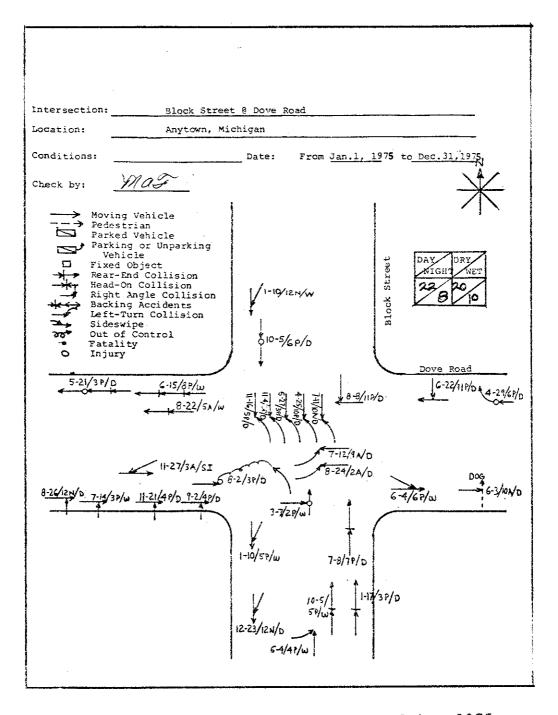
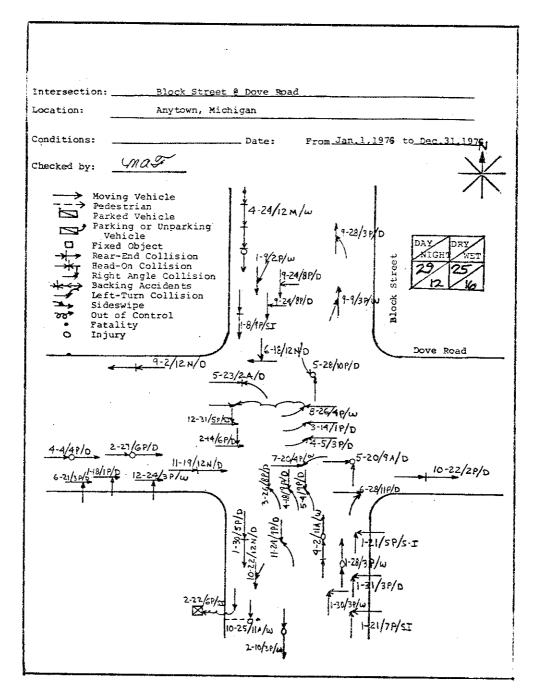
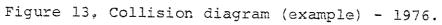




Figure 12. Collision diagram (example) - 1975.

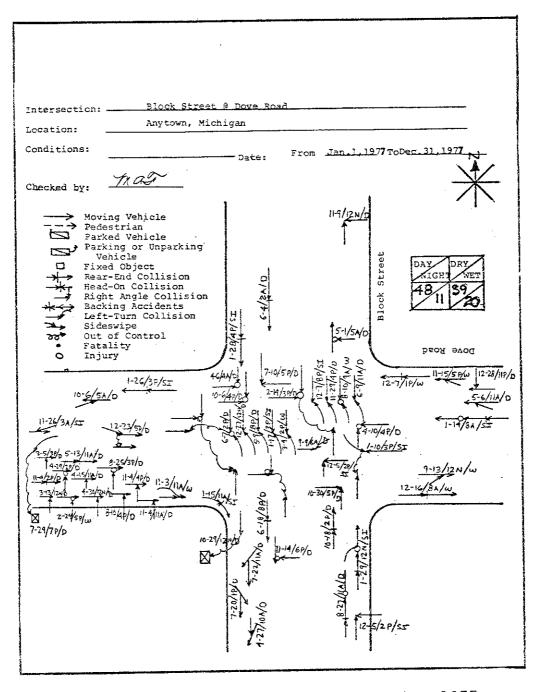


Figure 14. Collision diagram (example) - 1977.

Procedure 2 - Accident Summary By Severity

A review of accident severity data shows the following characteristics:

Accident Pattern	1975	1976	1977
N.B. Left-Turns	5 P.D.	3 P.D.	2 P.I. 7 P.D.
Right-angle (driveway-related)	4 P.D.	3 P.D.	3 P.I. 7 P.D.
Right-angle at intersection	1 P.I. 2 P.D.	1 P.I. 4 P.D.	7 P.I. 3 P.D.

P.D. = Property Damage

P.I. = Personal Injury

A review of the P.I./P.D. ratios for the accident patterns shows:

• NB left-turns - 2 P.I./15 P.D. = 0.133

• Right-angle (driveway-related) - 3 P.I./14 P.D. = 0.214

Right-angle at intersection - 9 P.I./9 P.D. = 0.500

Review of these ratios relates a possible severity pattern for the right-angle accidents at the intersection. This accident type should include a study of speed characteristics as a possible cause.

Using the severity weighting plan described in the <u>Traffic and</u> <u>Transportation Engineering Handbook</u> [1] (i.e., Fatality = 12, Personal Injury = 3, and Property Damage = 1), the weighted accident values are:

Accident Pattern	1975	1976	1977	Total
NB left-turn	5	3	13	21
Right-angle (drive- way-related)	4	3	16	23
Right-angle at intersection	5	7	24	36

Utilizing the alternate weighting plan developed using NSC (1979) accident costs and assuming that each personal injury accident resulted in a single nondisabling injury, the following accident costs were computed:

Accident Pattern	1975	1976	1977	Total
NB Left-Turn	\$4,350	\$2,610	\$18,490	\$25,450
Right-angle (drive- way related)	\$3,480	\$2,610	\$24,690	\$30,780
Right-angle at intersection	\$7,940	\$9,680	\$46,010	\$63,630

A comparison of the "TOTAL" value by either plan reveals that priority in the study of safety problems and the selection of countermeasures should be given to the "right-angle at intersection" accidents.

Procedure 3 - Accident Summary By Contributing Circumstances

A review of <u>contributing circumstances</u> data taken from the individual accident reports revealed the following characteristics:

Northbound Left-Turns

- Failed to yield right-of-way (12).
- Disregard traffic controls (8).
- Slippery surface (1).

<u>Right-Angle Accidents West of Intersection (Driveway-Related)</u>

- Failed to yield right-of-way (15).
- View obstructed/limited (6).

Right-Angle Accidents at Intersection

- Unsafe speed (4).
- Failed to yield right-of-way (9).
- Disregard traffic controls (13).
- Driver inattention (6).

The number following each "contributing circumstance" lists the frequency in which each specific circumstance was related to the individual accident patterns. Changes to the list developed by the "accident summary by type" procedure are:

Change	Possible Cause and Affected Accident Pattern	Reason
Addition	"Slippery surface" - LEFT-TURN HEAD-ON COLLISION	Noted as contributing circumstances.
Deletion	"Excessive speed on approaches" - LEFT-TURN HEAD-ON COLLISION	Contributing circum- stances data related accident problem to be caused by left-turn traffic "waiting" in queue.
Deletion	"Inadequate intersection warn- ing signs" - RIGHT-ANGLE COLLI- SIONS (DRIVEWAY-RELATED)	Contributing circum- stances data related accident problem to drivers exiting drive- way.
Deletion	"Excessive speed on approaches" RIGHT-ANGLE COLLISIONS (DRIVEWAY-RELATED)	Contributing circum- stances data related accident problem to drivers exiting drive- way.

Procedure 4 - Accident Summary By Environmental Conditions

A table of the environmental characteristics is shown below:

Accident Type	1975	1976	1977
Wet/Total Acci.	9/30 (30.0%)	16/41 (39.0%)	20/59 (33.9%)
Dusk and Night/ Total Acci.	6/30 (20.0%)	13/41 (31.7%)	11/59 (18.6%)

For comparison purposes, the three study years are combined and summarized as follows:

Accident Type	Total Accidents (1975-1977)
Wet/Total Accidents	45/130 (34.6%)
Dark and Night/Total Accidents	30/130 (23.1%)

Assuming the area characteristics recorded expected or average values of 25.4 percent and 29.5 percent for the "wet/total accidents" and "dusk, dawn, and night/total accidents" ratios, respectively, the following evaluation is performed:

"Wet/Total Accidents" = 34.6% > 25.4% "Dusk, Dawn and Night/Total Accidents = 23.1% < 29.6%

The result of this comparison suggests a pattern of "wet pavement accidents." The "dusk and nighttime accidents" are not considered critical. This pattern suggests the following accident causes for the wet pavement conditions, obtained from Table 6.

Accident Pattern

Possible Cause

- Wet-weather related accidents
- Slippery surface.
- Inadequate drainage.
- Inadequate pavement markings.

Accident Description	1975	1976	1977	Total (%)
NB Left-turn head- on collisions	1(10-11a) 1(3-4p) 1(4-5p) 1(5-6p) 1(10-11p)	1(8-9p) 2(9-10p)	1(8-10a) 1(11-12n) 1(12n-1p) 2(2-3p) 1(3-4p) 1(4-5p) 2(8-9p)	3(6p- 9p)-17.6%
Right-angle colli- sions (Driveway- Related)	1(12n- 1p) 1(3- 4p) 2(4- 5p)	1(1-2p) 2(3-4p)	2(12n-1p)	2(9a-12n)-11.8% 5(12n- 3p)-29.4% 10(3 - 6p)-58.8%

Procedure 5 - Accident Summary By Time Period

Summaries of time-related data by time of day for the defined accident patterns reveal:

Accident Description	1975	1976	1977	Total (%)
Right-angle acci- dents at the inter- section	1(2-3p) 1(3-4p) 1(11p-12m)	1(9-10a) 1(12n- 1p) 1(5- 6p) 1(6- 7p) 1(10-11p)	1(3 - 4a) 1(2 - 3p) 2(3 - 4p) 3(4 - 5p) 3(5 - 6p)	3(12n- 3p)-16.6% 10(3 - 6p)-55.8%

m = midnighta = a.m. p = p.m. n = noon

Comparing the last column values to the values in Figure 10 will relate the following critical time periods for the specific accident occurrences.

Northbound Left-Turn

- (9:00 a.m. 12:00 noon)
- (6:00 p.m. 9:00 p.m.) (9:00 p.m. 12:00 mid.)

Right-Angle Collisions (Driveway-Related)

- -(12:00 noon 3:00 p.m.)
- -(3:00 p.m. 6:00 p.m.)

Right-Angle Accidents at Intersection

- -(3:00 p.m. 6:00 p.m.)
- (9:00 p.m. 12:00 mid.)

Similar comparisons can be made with the day of week and time of year data.

The accident characteristics occurring during these periods may relate the possible accident causes to be studied in later activities. They also relate the periods for study of the site. For example, it is noted that an overrepresented number of right-angle accidents occurred during the 9:00 p.m. - 12:00 midnight period. A review of field conditions during this time period may be necessary. In addition, the occurrence of these accident types under a nighttime condition may relate "inadequate lighting or delineation" as a possible accident cause.

55

Activity 2 - Field Review Location

Purpose

Following the performance of the accident procedures, it is necessary that a field review of the study location be performed. This review will serve several purposes. They are:

- 1. To verify site data used in performing the accident procedures.
- 2. To verify the presence of locational deficiencies suspected, based on the accident patterns.
- 3. To identify, verify, or delete possible accident causes from the list obtained by the accident procedures.
- 4. To observe the physical features of the site.
- 5. To observe traffic operations.

<u>Overview</u>

The field review activity is an important step in analyzing safety problems at a site. Within this activity, preliminary review of the site is made and the physical environment and traffic operations are observed. From these observations the list of possible accident causes as derived from the accident procedures can be revised. This list of possible accident causes will be used to determine further data needs to identify the safety deficiencies.

Prior to performing the field review, available site data (such as the accident summaries, notes made in previous reviews of the location, and condition diagrams) are reviewed. Information on accident patterns and their possible causes are used as guidelines in the field review.

The structured evaluation of the field conditions consists primarily of a checklist of questions (Figure 15) covering potential areas of deficiencies. These areas are divided into two categories: operational and physical. Items which are typically covered include (but may not be limited to):

• OPERATIONAL

- Sight restrictions for drivers.
- Driver response to signs, signals, or other traffic control devices.
- Vehicle speeds.
- Violation of parking or other traffic regulations.
- Driver confusion.

FIELD OBSERVATION REPORT

LOC.	LOCATION:		CONTROL:			
DAT	B :	TIME:				
OPE	RATIONAL CHECKLIST:	NO	YES			
1.	Do obstructions block the drivers view of opposing vehicles?	<u> </u>				
2.	Do drivers respond incorrectly to signals, signs or other traffic control devices?					
3.	Do drivers have trouble finding the correct path through the location?					
4.	Are vehicle speeds too high?					
5.	Are vehicle speeds too low?		. <u></u>			
6.	Are there violations of parking or other traffic regulations?					
7.	Are drivers confused about routes, street names, or other guidance information?					
8.	Can vehicle delay be reduced?					
9.	Are there traffic flow deficiencies or traffic conflict patterns associated with turning movements?					
10.	Is the volume of thru traffic causing problems?					
11.	Is the volume of turning traffic causing problems?					
12.	Do pedestrian movements through the . location cause conflicts?					
13.	Do bicyclist movements through the location cause conflicts?					
14.	Are there other traffic flow deficiencies or traffic conflict patterns?					
15.	Is existing lighting operating correctly?		·			
16.	Do the presence of existing driveways con- tribute to accidents or erratic movements?					
17.	Are pavement conditions causing drivers to react in an erratic fashion?	······································				

Figure 15. Checklist of field review questions.

PHY	SICAL CHECKLIST:	NO	YES
1.	Can sight obstructions be removed or decreased?		
2.	Are the street alignment or widths inadequate?		
3.	Are curb radii too small?		
4. 5.	Should pedestrian crosswalks be relocated? Repainted?	·····	
6.	Are signs inadequate as to usefulness, message, size conformity and placement? (see MUTCD)		
7.	Are signals inadequate as to placement, conformity, number of signal heads, or timing? (see MUTC D)		
8.	Are pavement markings inadequate as to their clearness or location?		
9.	Is channelization (islands or paint markings) inadequate for reducing con- flict areas?		
10. 11.	Separating traffic flows? Defining movements?	·····	
12.	Does the legal parking layout affect		
13. 14.	sight distance? Through or turning vehicle paths? Traffic flow?		
15. 16.	Do speed limits appear to be unsafe? Unreasonable?		
17.	Is the number of lanes insufficient?		
18.	Is street lighting inadequate?	<u> </u>	
19. 20.	Are driveways inadequately designed? Located?		
21.	Does the pavement condition (potholes, washboard, or slippery surface) con- tribute to accidents?		
22.	Are approach grades too steep?	<u> </u>	<u></u>
	COMMENTS:		
	Operational"0" and item number Physical"P" and item number		
_			

Figure 15. Checklist of field review duestions. (dontinued).

- Vehicle delay.
- Traffic conflicts.
- Pedestrian conflicts.
- Traffic flow deficiencies.

PHYSICAL

- Sight obstruction.
- Roadway geometrics (alignment).
- Roadway characteristics (curve radii, street width, number of lanes).
- Pedestrian crosswalks.
- Traffic signs, signals, and other traffic control devices.
- Parking conditions.
- Speed limits.
- Street lighting.
- Pavement condition.

An alternate checklist is presented in the Institute of Traffic Engineer's <u>Manual of Traffic Engineering Studies</u> [9]. It includes a series of questions that should be considered during a field observation. This list is not as comprehensive as the previous list but it does list many deficiencies which typically occur at a hazardous location.

The use of a trained traffic engineer or technician is recommended for the field review activity. This person should, as a minimum, be familiar with standard design practices [1,2], traffic control device manuals [3], roadway lighting manuals [4], and other standard traffic and transportation engineering references [5,6,7,8]. Where available personnel exists, a team review is recommended.

Findings

The typical output for this activity is an evaluation of the operational and physical elements of the hazardous location. Using the checklist of questions (as displayed in Figure 15), the direct outputs consist of "responses" ("YES", "NO", and comments) to the series of questions. These responses are then used to verify the findings obtained by the accident procedures and to identify further accident causes or potential safety hazards at the study location.

The accident procedure results were used to highlight specific operational and roadway characteristics for evaluation within this procedure. The accident summary results served to develop a list of possible accident causes or safety deficiencies. From the findings produced by this activity, the list is made more specific; i.e., possible causes are applied to the particular location and deleted, adjusted, or added depending on the actual field finding. In addition, other safety deficiencies are noted. The final list of possible causes developed by the accident and field review findings are further analyzed in the traffic, environment, and special study procedures identified in Activity 3.

Inputs and Outputs of Activity

Inputs

- Hazardous location.
- Accident procedure findings.
- Preliminary list of possible accident causes.

Outputs

- Review of physical characteristics of study location.
- Review of operational characteristics of study location.
- Film record of location (if photographic techniques are used).
- List of possible accident causes.

Procedure Description

In providing a structured review of the location, an organized procedure is developed to perform the field review activity. Procedure 6 -"Safety Performance Study" [10] has been devised to achieve this objective.

FIELD REVIEW PROCEDURE

Procedure 6 - Safety Performance Study

Purpose

A safety performance study is an organized program of field observation and inspection of highway facilities and traffic. It is used to detect deficiencies in the operational or environmental conditions at a location. This study provides a review of a hazardous location or situation "in the field" and serves to verify or supplement the findings of the accident procedures.

Application

This procedure should be performed at all identified hazardous locations as a supplement to the accident procedures. It will assure that the summaries produced by these procedures are consistent with an accurate record of field conditions. In this procedure, a review of the site conditions and the traffic operations is made. The review of field conditions (site survey), as the driver experiences it, involves physically driving through the location. It also involves the structured review of the location to identify hazards and problems. The findings obtained from the accident procedures will assist in performing this step.

• Performance Guidelines

It is more favorable to use two people (at least one experienced engineer, if available) to conduct the drive through. One person will observe and drive and the other person will observe and record. A tape recorder may be the easiest means of recording the general observations and comments obtained during this step. Completion of the data form shown in Figure 15 is necessary for specific observations, although it may be more convenient to complete the form at a later time, based on the taped information. During the site survey, it is also desirable to check the accuracy and completeness of any condition diagrams prepared or obtained for the study area.

When driving through the location, all approaches should be reviewed. This survey should be conducted to include sufficient distances in advance of the study area to observe the total area of influence.

For effective results, the study area should initially be driven at normal travel speeds to experience the location as motorists would. The follow-up trips should then be driven slowly to permit recording of the data and observation of the physical characteristics of the site. For these observations, the field review checklist should be utilized. It may also be advantageous for the observer to walk the study area to review the physical characteristics. At this time, it would also be extremely valuable to obtain a film record of the site for future reference purposes. A final task during the site survey would be to look for good station locations from which to observe the traffic operations within the study area.

This portion of the study procedure can be performed under any traffic conditions, whereas, the traffic operations review requires observation under specific traffic conditions. However, for certain situations, such as assessing the effectiveness of reflectorized materials or highway lighting, review under nighttime conditions may be necessary. Although it is more efficient to perform the safety performance study during a single survey period, it may be necessary, particularly for high volume or high information load locations, to perform the site survey separate from the traffic operational review.

The review of traffic operations at the study location is typically performed following the site survey. A single observer is normally used. The observer should be experienced in safety and traffic operations. The use of an engineer is recommended. However, a highly trained technician may serve a similar purpose. Where the complexity of the situation warrants, a multi-disciplinary team may be used. The observer(s) should be stationed at selected vantage points within the study area to view the field operations. These vantage points should be situated such that the presence of an observer would not significantly influence the motorist behavior in the area.

Using the checklist of operational items, the observer reviews the site. Particular attention should be given to operational characteristics noted as being "possible accident causes" from the accident procedures. The checklist is completed and appropriate comments recorded.

The traffic operations review should normally be carried out during the most adverse operational conditions or as defined from the accident summary by time of day procedure. For instance, in urban areas, traffic problems are typically most acute during the morning or evening peak periods.

The length of the review periods are based upon the amount of data necessary to adequately identify the deficiency. Table 7 displays recommended minimum survey periods for a location as a function of its highway type and the element(s) to be specifically observed. Where several elements are to be observed at one time, the study period should, at a minimum, correspond to the longest specified period for an individual element. Dependent upon the information load and the location's characteristics, a longer overall study period may be needed to permit observation of all pertinent factors at the location.

Alternate Techniques

Several techniques are available for performing a safety performance study. They include:

- 1. Manual (field) method.
- 2. Photographic techniques.
 - Ground method.
 - Aerial surveillance.

Primary considerations for these techniques are defined in Table 8.

Manual (Field) Method

This method is the most widely used technique. Although most States use this study procedure on a demand or spot review basis, several States use the field method to provide continuous monitoring of a location or situation. This method consists of the on-site visual observation or inspection of the traffic operations and roadway facilities by trained personnel. These conditions are observed and, if possible, the cause of any unusual or erratic behavior is determined. In addition, any Table 7. Recommended field review survey periods.

••

	Highway Type				Time and Condition				Time Min/Mile			
	Freeway	Multilane Divided	Multilane Nudividad	Two Lane	Any	Rain	Night	Any Peak	Night-Rain	20 or Less	25-55	60 or More
A. ROADWAY ELEMENTS				ł							1	
ELEMENT 1-PAVEMENT SURFACE A-RIDING QUALITIES B-SURFACE DRAINAGE C-FRICTION QUALITY D-SHOULDERS E-ROADSIDE INTERFERENCE	x x x x	x x x x x x	x x x x x	x x x x x x	x x x	x				x x x x	and a sub-	×
ELEMENT 2-MEDIANS A-BARRIERS B-GLARE SCREEN C-CONDITION OF A&B D-STRIPED MEDIAN E-CROSSOVERS	x x x	x x x x	x		x x		x x		x		x x x x x	
ELEMENT 3-INTERCHANGES A-SPEED CHANGE LANES B-ADEQUACY OF RAMPS	x x	x x			×			x				x x
ELEMENT 4-INTERSECTIONS A-CHANNELIZATION B-TURNING LANES C-SIGNT DISTANCE D-TURNING RADII		x x x x	x x x x	x x x x	x x			x		x	x	×
B. TRAFFIC CONTROL DEVICES ELEMENT 1-SIGNALIZATION ELEMENT 2-SIGNING A-SUFFICIENT SIGNS B-TOO MANY SIGNS C-LOCATION OF SIGNS D-CONDITION OF SIGNS E-ILLUMINATED SIGNS F-LEGEND G-ADVANCED GUIDE SIGNS H-LANE ASSIGNMENTS I-GORE SIGNING J-EXIT NUMBERS X-LANE DROPS L-EXIT SPEEDS M-REGULATORY SIGNS N-STREET NAME SIGNS	* * * * * * * * * * * * * *	× × × × × × × × × × × × × × × × × × ×	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x	× × × × × × × × × × × × × × × × × × ×		×	x	×××	x		x x x x x x x x x x x x x x x x x x x
ELEMENT 3-STRIPING AND MARKING A-CENTER AND EDGE STRIPE B-GORE AREAS C-RAISED PAVEMENT MARKER	x x x	x x	x x	x x					x x x			x x x
ELEMENT 4-DELINEATORS	×	x							х			×
ELEMENT 5-MILEPOST MARKERS	x	х	x	x	×							×
ELEMENT 6-LIGHTING A-ADDITIONAL LIGHTING	x x	x x	x x									x
C-TRAFFIC REGULATIONS ELEMENT	x	x	x	x	×							

Consideration Technique	Function	Equipment Requirements	Manpower Requirements	Time Requirements	Associated Costs	Data Input	Data Obtained	Data Output
Field Method -	•Observe Highway facilities and traffic flow in the field en- vironment	•Data Forms	Traffic Engin- eer or highly trained Tech- nician to ob- serve location	•Observation time (as provided in Table 7)	•None	 Identified hazardous location Accident tudies Past field reports Fast records of location Citizen input 	Observation or inspection of all operation- al and physi- cal site data	<pre>Identification of possible operation- al and physical (environment) site deficiencies</pre>
Photographic Techniquo •Ground Method	•Observe High- way facilities and traffic operations under field conditions in an office environment	•Camera equipment •Film Screen •Data Forms	.Camera techni- cian to set up and remove camera(s) .Technician to spot check camera (for longer obser- vation periods) .Traffic Engi- neer or highly trained tech- nicians to observe loca- tion	<pre>'Camera set up and removal time ranges from one-three hours per cam- era dependent on travel time involved. 'Observation time (see Table 7)</pre>	•Camera equipment \$500 to \$2000	 Identified hazardous location Accident tudies Past field reports Past records of location 	Observation from film or operational and physical site data item (excludes those physical items outside adequate camera range) .Other traffic data (gap, volume, etc.)	• Identification of possible operation- al and some physi- cal (environment site deificiencies)
•Aerial survaillance	 Observe High- way facilities and traffic flow under field opera- tions in an office envir- onment 	 Airplane or helicopter availability Camera equip- ment Pencila Data forms Film Screen 	<pre>'Pilot 'Camera Techni- cian to set up and check camera 'Traffic Engineer or highly trained technician to re- view film data (operations)</pre>	Air time Observation time as provided in Table 7	'Subcontract filming rates-\$150 per site	• Identified hazardous loc- ation • Accident studies • Past field reports • Past records of location	 Identification of operational and physical (environment) site data 	'Identification of possible operation- al and physical (environment) site deficiencies

Table 8. Primary considerations for safety performance review.

unique features at the location are noted. If possible, discussions with people living or working near the location (to obtain input from daily users) are initiated. After these steps have been completed, the observations based on the checklist of field-related questions are recorded and comments provided where necessary. This list of observations is further used to identify and verify possible accident causes.

Advantages:

- 1. Permits the review of the total scope of the study location.
- 2. Permits the close-up review of certain physical deficiencies.
- 3. Requires minimal equipment needs.

Disadvantages:

- 1. No permanent record of the field review.
- 2. Study results may contain human biases.

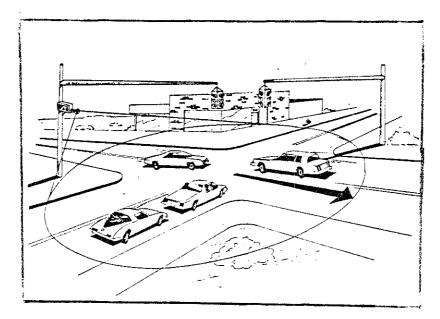
This method is favored in most safety review situations due to the flexibility in observing the study location from all approaches, thereby permitting a review of a greater number of situations. However, as the location becomes more complex (higher volumes, greater number of movement types and conflicts), the advantages of this method lessen considerably as the reviewer has too much data to "interpret" or review. For high volume and complex situations, use of extra personnel or the use of the photographic techniques may be more appropriate.

Photographic Methods

These <u>methods</u> have also been used in safety performance studies. These methods provide a permanent record of the site conditions. Two typical filming methods are available - the ground method and aerial surveillance. Both approaches have the capacity of using either a timelapse or a continuous-filming process.

The ground level method allows observation of the highway facilities and traffic operations using camera equipment situated near the study area. The equipment is typically situated at a height greater than 10 ft. to permit the coverage of a wide area. It also reduces the chance of vandalism of the equipment. To permit the review of the field conditions from a number of approaches, the use of additional cameras may be necessary. Typically, however, a single camera is used. For link or corridor analysis, a series of cameras located at key locations within the study area will be required.

Prior to setup of the camera, the study area is driven from different approaches to view the roadway environment as the driver sees it and to review the physical roadway environs using the checklist of questions. In addition, any unique features of the location are noted. If possible, discussions with people living or working near the location are made. This will help to familiarize the observer with the location.


In setting up the camera, a vantage point is selected to obtain a wide area of coverage. This area of coverage will be related to the expected area of traffic activity at the location. For intersections, it should include, at a minimum, a view of all approaches to the intersection. If possible, it should encompass a distance of approximately 200 ft. along each approach leg. Along links, a view of the entire study link should be made. This may require several cameras. These areas are illustrated in Figure 16.

Filming of the location is performed using either time-lapse or continuous-film (videolog) photography. With time-lapse equipment, photographs are shot at specific time intervals (e.g., every 0.5 sec.) while continous photography permits continous filming of the location. Both methods produce favorable outputs. However, the time- lapse equipment allows a greater filming period per film roll. Detailed descriptions of the time-lapse and continous film methods are provided in Appendix D.

The film is reviewed in a manner similar to the field method. The checklists of questions are used to evaluate the field operations and conditions while the film is shown on the screen. The review process requires a trained enginer familiar not only with traffic engineering and safety principles but also with photography principles such as distortion, camera angle of view, etc. In this way, a more accurate interpretation of the field data can be obtained. Where more than a single camera is used at one site, conditions are evaluated with the simultaneous viewing of both film records. From the information obtained from the field survey and film record, the further identification and verification of possible accident causes (as determined in Activity 1) can be made.

Advantages:

- 1. Provides a pictorial record of the location under operating conditions.
- 2. Permits the review of the film by a team of engineers, when necessary, without site visits.
- 3. Allows data to be obtained for other traffic variables such as volume, gap, and speed data.
- 4. Allows field information to be obtained over an extended period of time.

A. Intersection

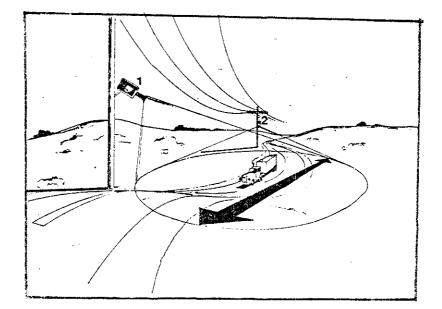


Figure 16. Filming method.

Disadvantages:

- 1. Equipment costs are considerable.
- 2. Physical characteristics may not be shown clearly due to distortions, lack of lighting, poor weather conditions, etc..
- 3. Requires additional lighting to perform nighttime studies.
- 4. Camera field of view may tend to distort traffic activities.

<u>Aerial surveillance</u> is an alternate photographic technique which requires filming the study area from an overhead location using an airplane or helicopter. The study area is filmed during the entire study period to obtain the traffic operations review of the location. In conjunction with the filming activities (but not necessarily the same day), a field review of the roadway environment is made. For both portions of the study, the check- list of questions should be used. In the field portion of this technique, review of traffic operations can also be performed as a check of the aerial data.

In viewing the film record, the overhead filming will typically allow for a greater perspective and coverage of the study area than by the ground level method. This review, however, will require that the observer be familiar with the proper use and analysis of film records. The information obtained by aerial photography may provide a more accurate review of the traffic movement at the location than ground methods since the overall study area can usually be more clearly seen. However, a lack of clarity in relating traffic movements to specific physical characteristics for which identification is difficult or impossible from overhead (signing, signal phase operation) can result.

Advantages:

- 1. Provides a pictorial record of the location.
- 2. Provides a wide area of coverage and perspective of the location.
- 3. Can provide a continuous review along a segment or corridor.
- 4. Can obtain data on other traffic variables.
- 5. Permits the review of the film by a team of engineers, when necessary.

Disadvantages:

- 1. Equipment needs and costs are high.
- Requires additional field review to obtain evaluation of physical elements.
- 3. Difficult to use for nighttime studies.
- Can be difficult to interpret causes of operational deficiencies.
- 5. Effectiveness and clarity of film is highly dependent on weather and light conditions.

This technique is advantageous for long segment lengths or corridor analysis. Filming of the location is costly and a field review for evaluation of the physical elements is still required. For field situations in which additional traffic stream data (e.g., volume, speed, gap, etc.) can be obtained in conjunction with the operational review, this technique could be advantageous.

Selection Of Technique

In selecting the appropriate technique for performing safety performance studies, the primary management concerns are the time, manpower, and equipment resources required for each technique and the comprehensiveness of the review phase of each information type; i.e., physical and operational items. Table 9 displays the utility of each technique as they relate to the specific management concern.

In selecting an appropriate technique, Table 10 is used to suggest a preferred technique for a given situation. Where more than one technique is feasible the information in Table 9 would be used to select the best technique. To assist in the selection process, several guidelines are provided. They are:

- 1. The manual method should be used in safety performance studies at spot locations or short segment lengths. This is primarily due to the technique's low personnel and equipment needs.
- 2. Where situations are complex (with a greater number of conflicting movements) and a team review of the field situation is used, the ground level photographic technique may be favored.
- 3. Aerial surveillance is favored for corridor-type analysis. Due to the length of the study area for this type of analysis, review by other means is difficult. The aerial method allows one to film a greater perspective of the field area. For this reason, this technique is also favored at complex freeway interchanges.

Technique		Photographic Technique		
Management Concern	Field Method	Ground Level Methoa	Aerial Surveillance	
Manpower requirements	'Iraffic engineer or trained technician for field review	 Traffic engineer to view film and field review physical char- acteristics Trained technician for camera set-up 	 Traffic engineer to view film Trained technician or traffic engineer for field review of physical characteristics 	
Equipment requirements	Minimal	● Camera equipment	 Airplane or helicopter availability Camera equipment 	
Time requirements	Usually limited to two hours or less (due to human limi- tations)	 Able to use over ex- tended period of time 	 Limited by flying time of airplane or helicopter 	
Comprehensiveness of information - OPERATION-RELATED	Provides detailed review	 Provides detailed re- view (limited by camera perspective) 	Provides general review	
- PHYSICAL ROADWAY ELEMENTS	Provides detailed review	 Requires separate field review 	 Requires separate field review 	

Table 9. Technique utility of safety performance studies.

Table 10. Favorable safety performance techniques.

Technique		Photographic Technique		
Situation	Field Method	Ground Method	Aerial Surveillance	
Intersection or spot location	X	X		
Roadway segment or link	X	X		
Corridor			X	
Interchange	X	X	X	

Activity 3 - Select Appropriate Traffic, Environmental, and Special Study Procedures

Purpose

The purpose of this activity is to select the traffic, environmental, and special study procedures needed to verify and define the safety deficiencies at a hazardous location.

Overview

To properly select appropriate safety improvements for a location, an accurate definition of the safety deficiencies is necessary. In this way, unsatisfactory conditions can be described better and more appropriate countermeasures developed to resolve or alleviate the safety problems.

To accurately define the safety deficiencies at a site so that appropriate safety improvements can be developed, the following considerations should be included:

- Probable accident cause.
- Field conditions relating the probable cause.
- A measure (extent) of the problems where feasible.

These considerations can be defined using the procedures described within this Guide. For example, information on the probable cause of accidents is obtained primarily from the accident-based procedures (Procedures 1-5) and verified by field review (Procedure 6), traffic-based (Procedure 7-14), environmental-based, (Procedure 15-20), and special study procedures (Procedure 21-24). The field conditions which relate the probable accident cause and the measure of the safety problem are provided by the traffic, environmental, and special study procedures.

To appropriately define these considerations, it is necessary that the proper information be obtained to describe them. This requires that procedures be selected which will result in the collection of the necessary data and production of the desired findings. These procedures include:

Traffic-Based Procedures

- Procedure 7 Volume Study
- Procedure 8 Spot Speed Study
 Procedure 9 Travel Time and Delay Study
- Procedure 10 Roadway and Intersection Capacity Study
- Procedure 11 Traffic Conflict Study
- Procedure 12 Gap Study
 Procedure 13 Traffic Lane Occupancy Study
 Procedure 14 Queue Length Study

- Environment-Based Procedures
- Procedure 15 Roadway Inventory Study
- Procedure 16 Sight Distance Study
- Procedure 17 Skid Resistance Study
- Procedure 18 Highway Lighting Study
- Procedure 19 Weather-Related Study

Special Study Procedures

- Procedure 20 School Crossing Study
- Procedure 21 Railroad Crossing Study
- Procedure 22 Traffic Control Device Study
- Procedure 23 Bicycle or Pedestrian Study

Before selecting the appropriate procedures, additional data needed to define the safety deficiencies must be identified. Based on the observed accident patterns and possible causes, the data needs can be identified by Table 11. This table displays the relationship between accident pattern, possible accident causes, data needs, and study procedures. Following the sequence of the table, the accident pattern and possible cause information are used to identify the data needs.

Once all data needs are defined, a search of available records or files is made to collect currently available data. This information may be used as representative of the site conditions and, thus, eliminate further need for collecting this particular data through an independent study. Care should be taken that this data be representative of current conditions. The use of inappropriate data can result in an improper definition of a safety problem.

To assist in assuring the accuracy of the data, several guidelines can be used. They are:

- 1. Where recent physical or operational changes in the study area have been made of a type that might have an impact in the traffic characteristics under review, data taken prior and during implementation of these changes should not be used.
- Data obtained prior to the accident review periods should not be used.

Once the data has been determined to be representative of current conditions, it should be checked against the list of required data needs identified from Table 11. This step will avoid duplication of effort in obtaining the data needs through an independent study.

When the finalized list of data needs has been determined, the procedures to obtain the data can be selected. Table 11 is again used to assist in the selection process. It lists the traffic-based, environmentbased, and special study procedures for the collection of data needs.

Table	11.	Determination	of	selected	procedures.
-------	-----	---------------	----	----------	-------------

f	Ţ	*	1
Accident Pattern	Possible Causes	Data Needs	Procedures to be Performed
Left-turn head-on collisions	Large volume of left- turns	Volume data Vehicle conflicts Roadway inventory Signal timing and phasing Travel time and delay data	Volume Study Traffic Conflict Study Roadway Inventory Study Capacity Study Travel Time and Delay Study
	Restricted sight distance	Roadway inventory Sight distance characteristics Speed character- istics	Roadway Inventory Study Sight Distance Study Spot Speed Study
	Too short amber phase	Speed character- istics Volume data Roadway inventory Signal timing and phasing	Spot Speed Study Volume Study Roadway Inventory Study Capacity Study
	Absence of special left-turning phase	Volume data Roadway inventory Signal timing and phasing Delay data	Volume Study Roadway Inventory Study Capacity Study Travel Time and Delay Study
	Excessive speed on approaches	Speed character- istics	Spot Speed Study
Rear-end collisions at unsignalized intersections	Drivers not aware of intersection	Roadway inventory Sight distance characteristics Speed character- istics	Roadway Inventory Study Sight Distance Study Spot Speed Study
	Slippery surface	Pavement skid re- sistance charac- teristics Conflicts resul- ting from slip- pery surface	Skid Resistance Study Weather-Related Study Traffic Conflict Study

Possible Causes Large number of turn- ing vehicles Inadequate roadway lighting Excessive speed on approaches	Data Needs Volume data Roadway inventory Conflict data Roadway inventory Volume data Data on existing lighting	to be Performed Volume Study Roadway Inventory Study Traffic Conflict Study Roadway Inventory Study Volume Study Highway Lighting Study
lighting Excessive speed on	Volume data Data on existing lighting	Study Volume Study Highway Lighting
Excessive speed on approaches	Consider the second second	
1	Speed character- istics	Spot Speed Study
Lack of adequate gaps	Roadway inventory Volume data Gap data	Roadway Inventory Study Volume Study Gap Study
Crossing pedestrians	Pedestrian volumes Pedestrian/vehicle conflicts Signal inventory	Volume Study Pedestrian Study Roadway Inventory Study
Slippery surface	Pavement skid re- sistance charac- teristics Conflicts resulting from slippery surface	Skid Resistance Study Weather-Related Study Traffic Conflict Study
Large number of turning vehicles	Volume data Roadway inventory Conflict data Travel time and delay data	Volume Study Roadway Inventory Study Traffic Conflict Study Delay Study
Poor visibility of signals	Roadway inventory Signal review Traffic conflicts	Roadway Inventory Study Traffic Control Device Study Traffic Conflict Study
	Crossing pedestrians Slippery surface Large number of turning vehicles Poor visibility of	Volume data Gap dataCrossing pedestriansPedestrian volumes Pedestrian/vehicle conflicts Signal inventorySlippery surfacePavement skid re- sistance charac- teristics Conflicts resulting from slippery surfaceLarge number of turning vehiclesVolume data Roadway inventory Conflict data Travel time and delay dataPoor visibility of signalsRoadway inventory Signal review

(Continued).
$(\langle \langle \rangle \rangle)$

		·	
Accident Pattern	Possible Causes	Data Needs	Procedures to be Performed
Rear-end collisions at signalized intersections	Inadequate signal timing	Roadway inventory Signal timing plans Volume data Travel time and delay data	Roadway Inventory Study Intersection Capacity Study Travel Time and Delay Study
	Unwarranted signal	Roadway inventory Volume data	Roadway Inventory Study Volume Study
	Inadequate roadway lighting	Roadway inventory Volume data Data on existing lighting	Roadway Inventory Study Volume Study Highway Lighting Study
	Excessive speed on approaches	Speed character- istics	Spot Speed Study
	Crossing pedestrians	Pedestrian volumes Pedestrian/vehi- cle conflicts Signal inventory	Volume Study Pedestrian Study Roadway Inventory Study
Right-angle colli- sions at signal- ized intersections	Restricted sight distance	Roadway inventory Sight distance characteristics Travel speed in- formation	Roadway Inventory Study Sight Distance Study Spot Speed Study
	Excessive speed on approaches	Speed character- istics	Spot Speed Study
	Poor visibility of signals	Roadway inventory Signal review Traffic conflicts	Roadway Inventory Study Traffic Control Device Study Traffic Conflict Study

ſ	·		
Accident Pattern	Possible Causes	Data Needs	Procedures to be Performed
Rear-end collisions at signalized intersections	Inadequate signal timing	Roadway inventory Signal timing plans Volume data Delay data	Roadway Inventory Study Volume Study Intersection Capacity Study Travel Time and Delay Study
	Inadequate roadway lighting	Roadway inventory Volume data Data on existing lighting	Highway Lighting Study Roadway Inventory Study Volume Study
	Intersection advance warning signs	Roadway inventory Speed character- istics Traffic conflicts	Roadway Inventory Study Spot Speed Study Traffic Conflict Study
	Large total inter- section volume	Volume data Roadway inventory	Volume Study Intersection Capacity Study
Right-angle colli- sions at unsignal- ized intersections	Restricted sight distance	Roadway inventory Sight distance characteristics Speed character- istics	Roadway Inventory Study Sight Distance Study Spot Speed Study
	Large total intersec- tion volume	Volume data Roadway inventory Delay data	Volume Study Intersection Capacity Study Traffic Control Device Study Travel Time and Delay Study
	Excessive speed on approaches	Speed character- istics	Spot Speed Study
	Inadequate roadway lighting	Roadway inventory Volume data Data on existing lighting	Roadway Inventory Study Volume Study Highway Lighting Study
		1	·

Accident Pattern	Possible Causes	Data Needs	Procedures to be Performed
Right-angle colli- sions at unsignal- ized intersections	Intersection advance warning signs	Roadway inventory Speed character- istics Traffic conflicts	Roadway Inventory Study Spot Speed Study Traffic Conflict Study
	Inadequate traffic control devices	Roadway inventory Volume data Traffic control device adherence	Roadway Inventory Study Volume Study Traffic Control Device Study
Pedestrian-vehicle collisions	Restricted sight distance	Roadway inventory Speed character- istics Sight distance characteristics	Roadway Inventory Study Spot Speed Study Sight Distance Study
	Inadequate protec- tion for pedes- trians	Pedestrian volumes Safe crossing gaps Roadway inventory Speed character- istics	Volume Study Gap Study School Crossing Study Roadway Inventory Study Spot Speed Study
	School crossing area	Pedestrian volumes Safe crossing gaps Roadway inventory Speed character- istics	Volume Study Gap Study School Crossing Study Roadway Inventory Study Spot Speed Study
	Inadequate signals	Pedestrian volumes Pedestrian/vehicle conflicts Roadway inventory	Volume Study Pedestrian Study Roadway Inventory Study
	Inadequate signal phasing	Pedestrian volumes Vehicle volumes Roadway inventory Pedestrian/vehicle conflicts	Volume Study Roadway Inventory Study Pedestrian Study

Accident Pattern	Possible Causes	Data Needs	Procedures to be Performed
Pedestrian-vehicle collisions	Driver had inadequate warning of frequent mid-block crossings	Pedestrian/vehicle conflict Speed character- istics Pedestrian volumes Roadway inventory	Pedestrian Study Spot Speed Study Volume Study Roadway Inventory Study
	Inadequate pavement markings	Roadway inventory Traffic conflicts	Roadway Inventory Study Traffic Control Device Study Traffic Conflict Study
	Inadequate gaps at un- signalized intersec- tions	Roadway inventory Volume data Gap data Speed character- istics Pedestrian/vehicle conflicts	Roadway Inventory Study Volume Study Gap Study Spot Speed Study Pedestrian Study
	Inadequate roadway lighting	Roadway inventory Volume data Data on existing lighting	Roadway Inventory Study Volume Study Highway Lighting Study
,	Excessive vehicle speed	Speed character- istics	Spot Speed Study
Run-off-road collisions	Slippery pavement	Skid resistance characteristics Conflicts resul- ting from slip- pery surface	Skid Resistance Study Weather-Related Study Traffic Conflict Study
	Roadway design inade- quate for traffic conditions	Roadway inventory Speed character- istics Sight distance characteristics	Roadway Inventory Study Spot Speed Study Sight Distance Study
	Poor delineation	Roadway inventory Erratic maneuvers	Roadway Inventory Study Traffic Conflict Study

· · · · · · · · · · · · · · · · · · ·	1		1
Accident Pattern	Possible Causes	Data Needs	Procedures to be Performed
Run-off-road collisions	Inadequate roadway lighting	Roadway inventory Volume data Data on existing lighting	Roadway Inventory Study Volume Study Highway Lighting Study
	Inadequate shoulder	Roadway inventory Erratic maneuvers	Roadway Inventory Study Traffic Conflict Study
	Improper channelization	Roadway inventory Erratic maneuvers	Roadway Inventory Study Traffic Conflict Study
	Inadequate pavement maintenance	Pavement roughness characteristics	Roadway Service- ability Study
	Poor visibility	Fog data	Weather-Related Study
	Excessive speed along roadway	Speed character- istics	Spot Speed Study
Fixed-object collisions	Obstructions in or too close to roadway	Roadway inventory Erratic maneuvers	Roadway Inventory Study
	Inadequate roadway lighting	Roadway inventory Volume data Data on existing lighting	Roadway Inventory Study Volume Study Highway Lighting Study
	Inadequate pavement marking	Roadway inventory Erratic maneuvers	Roadway Inventory Study Traffic Control Device Study Traffic Conflict Study
	Inadequate signs, de- lineators and guard- rails	Roadway inventory Erratic maneuvers	Roadway Inventory Study Traffic Conflict Study

Accident Pattern	Possible Causes	Data Needs	Procedures to be Performed
Fixed-object collisions	Inadequate roadway design	Roadway inventory Speed character- istics Sight distance characteristics	Roadway Inventory Study Spot Speed Study Sight Distance Study
	Slippery surface	Skid resistance characteristics Conflicts resul- ting from slip- pery surface	Skid Resistance Study Weather-Related Study Traffic Conflict Study
	Excessive vehicle speed	Speed character- istics	Spot Speed Study
Collisions with parked or parking vehicles	Improper pavement marking	Roadway inventory	Roadway Inventory Study Traffic Control Device Study
	Improper parking clear- ance at driveways	Roadway inventory	Roadway Inventory Study
	Angle parking	Roadway inventory Traffic conflicts	Roadway Inventory Study Traffic Conflict Study
	Excessive vehicle speed	Speed character- istics	Spot Speed Study
	Illegal parking	Roadway inventory	Roadway Inventory Study
	Improper parking	Roadway inventory	Roadway Inventory Study
	Large parking turnover	Roadway inventory Traffic conflicts	Roadway Inventory Study Traffic Conflict Study
Sideswipe or head-on collisions	Inadequate roadway design	Roadway inventory Speed character- istics Sight distance characteristics	Roadway Inventory Study Spot Speed Study Sight Distance Study

	T		
Accident Pattern	Possible Causes	Data Needs	Procedures to be Performed
Sideswipe or head-on collisions	Improper road mainten- ance	Pavement roughness characteristics	Roadway Service- ability Study
	Inadequate shoulders	Roadway inventory Traffic conflicts	Roadway Inventory Study Traffic Conflict Study
	Excessive vehicle speed	Speed character- istics	Spot Speed Study
	Inadequate pavement marking	Roadway inventory Traffic conflicts	Roadway Inventory Study Traffic Conflict Study Traffic Control Device Study
	Inadequate channeliza- tion	Roadway inventory Traffic conflicts	Roadway Inventory Study Traffic Conflict Study
	Inadequate signing	Roadway inventory Traffic conflicts	Roadway Inventory Study Traffic Conflict Study
Driveway-related collisions	Left-turning vehicles	Volume data Traffic conflicts Roadway inventory	Volume Study Traffic Conflict Study Roadway Inventory Study
	Improperly located driveway	Roadway inventory Volume data Traffic conflicts	Roadway Inventory Study Volume Study Traffic Conflict Study
	Right-turning vehicles	Volume data Roadway inventory Traffic conflicts	Volume Study Roadway Inventory Study Traffic Conflict Study

Table 11. Determination of s	elected procedures (Continued).
------------------------------	---------------------------------

Accident Pattern	Possible Causes	Data Needs	Procedures to be Performed
Driveway-related collisions	Large volume of through traffic	Volume data Speed data Gap data Travel time and delay data Roadway inventory	Volume study Spot Speed Study Gap Study Travel Time and Delay Study Roadway Inventory Study
	Restricted sight dis- tance	Roadway inventory Speed character- istics Sight distance characteristics	Roadway Inventory Study Spot Speed Study Sight Distance Study
	Inadequate roadway lighting	Roadway inventory Volume data Data on existing lighting	Roadway Inventory Study Volume Study Highway Lighting Study
	Excessive speeds on approaches	Speed character- istics	Spot Speed Study
Train-vehicle accidents	Restricted sight distance	Roadway inventory Speed character- istics Sight distance characteristics Railroad data	Roadway Inventory Study Weather-Related Study Highway Lighting Study
	Poor visibility	Roadway inventory Fog data Lighting data	Roadway Inventory Study Weather-Related Study Highway Lighting Study
	Excessive speeds on approaches	Speed character- istics	Spot Speed Study
	Improper traffic signal pre-emption timing	Roadway inventory	Roadway Inventory Study Volume Study Railroad Crossing Study
[

k

Accident Pattern	Possible Causes	Data Needs	Procedures to be Performed
Train-vehicle accidents	Inadequate pavement markings	Roadway inventory	Roadway Inventory Study Railroad Crossing Study Traffic Control Device Study
	Slippery surface	Skid resistance characteristics Conflicts related to slippery sur- face	Skid Resistance Study Weather-Related Study
	Improper pre-emption timing of RR signals or gates	Speed data Sight distance characteristics Roadway inventory Railroad data	Spot Speed Study Sight Distance Study Roadway Inventory Study Railroad Crossing Study
	Rough crossing surface	Roadway inventory Traffic conflicts	Roadway Inventory Study Traffic Conflict Study
	Sharp crossing angle	Roadway inventory Speed data Sight distance characteristics Railroad data	Roadway Inventory Study Spot Speed Study Sight Distance Study Railroad Crossing Study
Wet pavement accidents	Slippery pavement	Skid resistance characteristics Conflicts resul- ting from slip- prey surface	Skid Resistance Study Weather-Related Study
·	Inadequate drainage; Inadequate pavement markings	Field review notes Roadway inventory data Traffic conflict data	Safety Perform- ance Study Roadway Inventory Study Traffic Conflict Study

83

ø

Accident Pattern	Possible Causes	Data Needs	Procedures to be Performed
Night accidents	Poor visibility or lighting	Roadway inventory Volume data Data on existing lighting Traffic conflicts	Roadway Inventory Study Volume Study Highway Lighting Study Traffic Conflict Study
	Poor sign quality; Inadequate channeliza- tion or delineation	Field review notes Roadway inventory data Traffic conflict data	Safety Perform- ance Study Roadway Inventory Study Traffic Conflict Study

This table, however, should not be deemed conclusive. Field situations may result in some changes in the list of procedures. However, the table does provide a usable tool.

A search of the table for the respective situation will reveal the procedures available to obtain the required data. For example, where volume data is required, the use of volume study procedures will be designated. Another example would be where information on the average queue length at a signalized intersection for waiting left-turn vehicles is desired. In this case, the queue length study procedure should be performed. Appendix C displays the list of procedures and the various data which can be obtained from them.

It should be noted that within a procedure, a significant amount of data from other procedures are used. For example, in performing the sight distance procedure, spot speed information typically obtained from a spot speed study procedure is used. Also, information from the roadway inventory study procedure may be used.

Findings

Based on the input of the previous activities, further data needs and the selection of the traffic, environmental and special study procedures will be made. These procedures will identify the necessary data and be used to define the safety deficiencies at a site. With this data, the selection of appropriate safety improvements can be accomplished.

Inputs and Outputs of Activity

Inputs

- Identified accident patterns and probable causes.
- Available traffic and roadway data.

Outputs

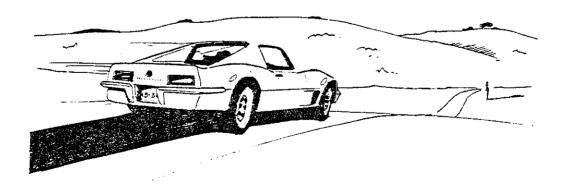
- List of data needs to define safety deficiencies.
- Recommended procedures to obtain data.

Description of Procedures

As an output of this activity, recommendations on traffic-based, environment-based, and special study procedures to assist in selecting safety-related countermeasures are provided. Following are the descriptions of these procedures.

85

ŝ,


TRAFFIC-BASED PROCEDURES

Traffic-based procedures entail the study of the traffic characteristics of a facility. This includes such basic traffic data as speed and volume, and the more inter-related data, such as occupancy and capacity characteristics. Not all traffic-based procedures are included in a study of a hazardous site or condition. They are performed based on the possible accident causes obtained from the accident and field review procedures. The findings from these studies identify the traffic characteristics of the study area. By identifying these characteristics, a more specific definition of the safety deficiency can be determined and hence greater reliability in the selection of safety-related countermeasures may be obtained.

Since clearly defined relationships between many traffic characteristics and safety do not exist, the results of these procedures are used in conjunction with the accident findings to provide a more accurate identification of the safety deficiencies. The findings are also used in the economic analysis of countermeasures to assist in developing the specific benefits or disbenefits of each countermeasure. In addition, the findings may be used in the Evaluation Component of the Highway Safety Improvement Program (HSIP) to identify the "before" characteristics for an implemented countermeasure.

Within Activity 3, the following procedures are described:

- Procedure 7 Volume Study.
- Procedure 8 Spot Speed Study.
- Procedure 9 Travel Time and Delay Study.
- Procedure 10 Roadway and Intersection Capacity Study.
- Procedure 11 Traffic Conflict Study.
- Procedure 12 Gap Study.
- Procedure 13 Traffic Lane Occupancy Study.
- Procedure 14 Queue Length Study.

Purpose

Traffic volume studies are conducted to determine the number and movement of vehicles and/or pedestrians within, through, or at selected points in an area. The resultant traffic volumes are used to identify an exposure factor to for estimating safety rates.

Application

Within highway safety applications, various forms of volume information are used as input in highway safety studies. These forms consist of the following information types. By time period:

<u>Annual</u> total traffic volumes relate the estimated or actual volume at the location for a full (365-day) year. This information is used for:

- Computing accident rates on an annual basis.
- Measuring and establishing trends in traffic volume.
- Relating annual travel in vehicle miles as economic justification for countermeasures (economic analyses) or as comparison data for evaluating "measures of effectiveness" (project evaluation).

<u>AADT</u> (average annual daily traffic) or <u>ADT</u> (average daily traffic) represents a daily or 24-hour traffic volume at a location. Specifically it is used in:

- Measuring the present traffic demand for service.
- Evaluating traffic variables in other procedures.
- Relating daily travel in vehicle miles as economic justification for countermeasures (economic analyses) or as comparison data for evaluating "measures of effectiveness" (project evaluation).

<u>Hourly volumes</u> represent volumes during a specific 1-hour time period. They are used to:

Review time-specific data required in other traffic-based procedures; such as, delay and travel-time studies, traffic conflict studies, gap studies, etc. <u>Peak hour volumes</u> represent hourly traffic volumes during the highest, or peak, travel periods at a location. This data can be used for:

- Determining safety-related deficiencies in highway capacity (highway capacity analysis).
- Reviewing time-specific data required in other traffic-based procedures used to select countermeasures.
- Planning and designing safety improvements; such as, geometric changes, traffic operation and regulatory programs, and enforcement measures.

<u>Short-term</u> volumes are obtained for intervals of less than 1 hr. The short-term count data (1-,5-,6-,10-min., etc. intervals) are typically used for:

- Estimating volumes for longer time periods.
- Analyzing maximum rates of flow and variations within peak hours for use in other traffic-based procedures.
- Determining traffic characteristics by peak hour volumes.

By <u>location</u>, volume count information is normally obtained at an intersection or at a midblock location.

<u>Intersectional</u> volume counts determine: (1) total traffic entering the intersection from all legs, (2) total traffic executing each of the possible turning movements, (3) total traffic by time periods, and (4) classification of vehicles by type. This information is used for:

- Analyzing accident data (to help establish remedial measures).
- Evaluating traffic variables related to intersection operation such as delay data, capacity information, etc.
- Designing intersection improvements.
- Justification of intersection improvements.

<u>Midblock</u> volume counts are used to determine: (1) total traffic from each direction, (2) total traffic by time periods, and (3) classification of vehicle by type. This information has similar uses as do intersectional volume data.

à

Other types of volume data or information can also prove useful for various applications.

<u>Classification</u> volumes give the types of vehicle, number of axles, weight, and dimensions and are used for:

- Adjusting machine volume counts.
- Analyzing accident data involving commercial vehicles.
- Analyzing roadway capacity by determining the effect of commercial vehicles.
- Designing roadway facilities with respect to minimum turning paths, clearances, grades, etc.
- Justifying and planning roadway improvements.

Pedestrian volume counts are used for:

- Analyzing pedestrian accidents.
- Determining the volume of pedestrians along a walkway or at a crossing.
- Evaluating the adequacy of pedestrian control and protection facilities; i.e., pedestrian barriers, pedestrian signal timings, etc.
- Assessing further pedestrian travel trends.
- Justifying and planning pedestrian improvements.

In specifying the need for volume data, all count information is identified by: (1) a time period and (2) a location. These factors are determined by the planned use of the data. Other volume data (such as classification or pedestrian volumes) are obtained, when necessary. In many cases, the use of short term volumes and expansion factors can significantly reduce the effort involved in a volume study by allowing use of a short count period to project an estimate of the required volume data.

• Use of Volume Data

In highway safety analysis, volume data is principally used as a means to describe the exposure, either vehicular or pedestrian or both, at a hazardous location. For this application, the volume information is related to another traffic variable to aid in defining the study area's characteristics. For example, in describing vehicle delay at an inter-

٠,

section, the collection of intersection approach volume data will allow a description of the delay characteristics on a "per-vehicle," "perapproach," or "total-intersection" basis. In identifying the level of service of a facility, the volume data is applied to a computed value for the capacity of the facility in order to relate the facility's ability to service the traffic demand.

Volume information is also used in the economic analysis and evaluation of safety-related countermeasures by providing a common measure to compare similar data items. For instance, in an economic analysis of alternatives, the use of volume data to compare the total benefits or disbenefits of an alternative is beneficial. Similarly, in selecting projects for implementation agencywide, volume considerations can result in a different implementation order (as related by the effects of the benefit/ disbenefit data). The use of volume information in the Evaluation Component of the HSIP is in relating various "measures of effectiveness" in rate-related terms.

In general, the uses of the volume information will dictate the specific form of volume data to be collected. For example, in assessing the hazardousness of a location (Process 2 of the Planning Component of the HSIP), annual total traffic volumes are used to develop an accident rate factor. The following table relates the specific time-related volume information required within Process 3, "Conduct Engineering Studies", of the HSIP.

PURPOSE	VOLUME INFORMATION	
 Collecting and analyzing data (Subprocess 1 - Process 3 - Planning Component). 	 Hourly volumes. Peak hour volumes. Short-term counts. 	
 Developing projects (Subprocess 3 Process 3 - Planning Component). 	 Annual total traffic volumes. AADT or ADT. 	

The planned use of the volume information, as specified by the procedures within Process 3 of the HSIP, will further define the exact volume information to be collected. For example, where it is required to obtain the level of service of a facility during the peak hours, peak-hour volumes would be collected. Similarly, for use in conflict studies, it would be necessary to obtain volume information simultaneously with the recording of the conflict data.

• Performance Guidelines

Typically, the timeframe for collecting the volume information will be based on the timeframe of the accident summaries. Where the accident procedures indicate patterns of accident activity during a specific period of the day, this period will generally be used as the basis for the performance of other procedures used to study the possible accident causes. Similarly, the volume information would also be collected during this timeframe.

General guidelines for the collection of volume data are:

- 1. The location of the count should be well defined for the study purpose. If an intersection area is defined as the study location, then the count data should comprise only that traffic which passes through or utilizes the intersection. Care should be taken that counts do not include traffic which may use driveways located near the intersection and fail to pass through the intersection. For midblock (or link) situation, similar criteria should be used to avoid influencing the volume data with additional traffic.
- 2. In central business districts or suburban areas, counts should generally be taken between noon Monday and noon Friday since this period has been shown to be most representative of typical traffic conditions.
- 3. Except for special cases in which the accident activity warrants it, counting periods should not coincide with atypicial activities or conditions which may result in the collection of nonrepresentative count data. These activities or conditions could include holidays, sporting events, unusual weather, transit or mass transportation strikes, or temporary street closures.
- 4. For counts at special traffic generator facilities, the count periods may differ from the usual period and should coincide with the peak operation periods of the traffic generator.

Use of Expansion Factors

When volume information is required for a time period greater than that originally collected, volume expansion factors can be used. Expansion factors [30-32] are typically developed using a systematic volume monitoring system consisting of a number of control stations.

For short-count periods (5,6,10 or 12 min.), expansion to an hourly count is a function of the numerical relationship of the count period length to an hour. For example, to expand a 5-min. count to an hourly volume a multiplier of 60 min. divided by 5-min. = 12 would be applied to the sampled count. Control stations could also be used for such shortcount expansions provided that such disaggregate data is collected.

ł

Study Techniques

Several techniques are available for collecting volume data. They include the use of:

- Mechanical counters.
- Manual counts.
- Photographic Methods.
- Moving Vehicle Methods.

Information on primary considerations for these techniques ar given in Table 12.

Mechanical Counters

Mechanical counters are most often used to record traffic volumes where counts of a long duration (24 hours or longer) are required. Two methods of mechanical counting are typically used: permanent (fixed) counters and portable counters. <u>Permanent counters</u> are used for continuous count data and differ mainly in the vehicle detection technique used. Types of permanent counters include:

- Pressure devices.
- Pushbutton devices.
- Photoelectric devices.
- Radar devices.
- Magnetic devices.
- Induction loop devices.
- Ultrasonic devices.
- Infrared devices.
- Radio frequency devices.

Permanent counters [1-9] are generally used for a continuous systemwide program of counting or vehicle detection and are not readily adaptable for use in highway safety analysis except at those locations where permanent counters exist. The installed equipment consists of the detection device (installed inground, above-roadway, etc.) and a recorder connected to the detection device and located at a safe distance from the road (to prevent any disruptions to traffic or to alleviate any effect as a fixed object). The volume data can be output in various formats, including printed tape, graphical charts or computer tape, and is either stored on-site or is relayed to a central processing station.

Consideration Procedure	Function	Equipment Requirements	Manpowar Requirements	Tima Ruquiroments
A. Mechanical Counters				
1. Permanent	Records continuous count data at fixed locations	.Counting device (normally installed at individual locations as part of a systemwide program) .Recording device .Miscellaneous maintenance equipment	After installation of counters, an experienced technician is necessary for maintenance purposes	.installation time per counter ranges from 4-8 h rs .Data recording or analysis time is minimal
2. Portable	Records short-term, periodic counts at a flexible list of locations	.Traffic counter (junior, period, or senior) .Pneumatic road tubing, cable sensors or tape- awitch .Installation equipment (hammer, nails, end pie- ces, etc.) .Miscellaneous maintenance equipment	. Two technicians to install counters (one person to install counter, other person to alert traffic to their presence) . A technician or engineer to record or adjust counts . An experienced technician for equipment maintenance purposes	Installation time ranges from 15 minutes - one hour per counter dependent on travel time, number of coun- ters installed, and main- tenance of counter .Data recording time is mi- nor (approx, 15 minutes per 24 hr. count)
B. Manual Counts	Records short-term vol- ume data with the use of field observers	.Counting board or hand counter .Pencila .Data sheets .Calculator	Dependent on volume of traffic and tally equip- ment used Manpower requirements range from one to four technicians Tachnician or angineer to sum or adjust counts	"Time spent in obtaining da- ta varies with period of count .Minimal recording time (typically performed in-field)
C, Hoving Vehicle Method	Records directional volume data (and speed and travel-time data) along roadway segments while traversing the roadway section	.Vehicle .Counting board or hand counter .Time recording device or analyzer .Fencits .Data sheets .Calculator	A driver (technician) A minimum of one recorder (dependent on traffic vol- umes and availability of time recording devices) Engineer to compute volume and other data	A minimum of eix test runs per direction is recom- mended .Duration of test runs is dependent on length of test suction and time of day (peak or off-peak period) .Data analysis requires ap- proximately one half hour per section
D. Photo- graphic Techniques	Records volume data (and other stream flow data characteristics) from photographic re- cords	.Camera .Time-lapse mechanicm .Airplane availability (dependent on technique used) .Counting board or hand tally .Calculator	A person experienced in photographic set-up pro- cedures A technician to check equipment during opera- tion A trained technician or engineer to view and re- cord data With aerial photography pilot and experienced engineer to calculate data is required	 Camera set-up time is approximately one-half hour Technician check of equipment varies with distance of location from office (ranges approximately from 15 minutes to an hour) Data review and analysis time is related to period of actual count

Table 12. Primary considerations for volume study techniques.

Consideration				۵۰۰ میلادی بر ۲۰۰۰ میلادی به ۲۰۰۰ میلادی و ۲۰۰۵ میلادی و ۲۰۰۵ میلادی میلادی میلاد و ۲۰۰۰ میلادی و ۲۰۰۰ میلاد م
Procedure	Associated Costs	Data Input	Data Obtained	Data Ostput
A. Mechanical Counters				
1. Permanent	Counter and installation (dependent on type se- lected) - \$1000-18,000	Specific location	Continuous volume count speed, and other traffic duta.	Volume, speed, and other related traffic data.
2. Portable	Initial cost of counter, tubing, hammer, nails, etc \$850-\$2,000	Specific location	Specific volume count data (in some cases, speed and other related traffic da te	Volume data
ð. Manual Counts	Initial cost of count- ing boards ranges from \$125 (single counter) to \$450 (four counter board)	Specific location	Specific volume count data	Volume data
C. Moving Vehicle Method	Initial cost of record- ing device or traffic anlayzer (dependent on capabilities) and mis- cellaneous maintenance equipment - \$1,000- \$3,000	Specific location	Travel time; opposing traffic, overtaking traffic, and passed traffic data	Travel time, travel speed, and volume data
D. Photo- graphic Techniques	Initial cost of camera equipment (dependent on quality) - \$500- \$2,000	Specific location	Speed, volume, vehicle classification, spacing between vehicles, and vehicle movement (turn) patterns	Speed, volume, and other traffic data

1

.

.

4

۰.

. .

Table 12. Primary considerations for volume study techniques (continued).

i.

Advantages:

- 1. Has a relatively low cost per hour of counting.
- 2. Provides extensive time coverage.
- 3. May be able to obtain other traffic variables, if necessary (i.e., speed, gap, occupancy, etc.).
- 4. Can combine volume data with other information to provide immediate input to traffic controls.
- 5. Provides a high service life, if maintained.

Disadvantages include:

- 1. Unable to obtain axle or classification counts.
- 2. Has high initial installation costs.
- 3. Can require high maintenance costs.
- Can result in excessive disruption to traffic during maintenance activities.
- 5. Can be highly susceptible to vandalism.
- 6. Can be difficult to detect malfunctions where unit continues to operate.

Chief limitations to the use of permanent-type counters for safety studies are the high initial installation costs (approx. \$2,000 - \$18,000) and their permanent nature. However, the permanence of these counters makes them effective for use as control stations at either midblock or intersection locations or as part of a data collection system for other data needs, such as timing actuated signal controls; evaluating speed, gap, and other traffic variables; setting vehicular merging patterns; and serving various other research purposes. At a control station, these counters can be used for developing volume expansion factors on a daily, weekly, monthly, or annual basis and for obtaining AADT, ADT, or annual total traffic volumes. The selection of this method for most volume data collection is limited to locations where permanent count equipment or stations currently exist.

Portable counters [2,3,4,10-17] are typically used for shortterm, periodic counts. Several types of portable counters are used and include a recording counter (normally called a senior counter) and a nonrecording (junior) counter. The counters are typically battery operated and use rubber hoses (road tubes) placed across the specified portion of the roadway as detectors. These detectors transmit traffic count information to the counter through air impulses. Other type counters are solid-state and utilize either tapeswitch [15,16,18] or electrical cable [15,16] to transmit electric impulses relating the traffic information to the recorders. The count information is recorded either on a visual register (non-recording), a graphic chart, or a printed or punched tape (recording). To obtain pedestrian volume data, a similar technique is used; however, the detection device is typically a pad (across the sidewalk) providing an electrical feedback to the recording device. Due to the portable nature of these counters, they are readily adaptable to the study of most study locations whether at an intersection or along a roadway segment and can be installed with relatively short notice. In positioning the device at a location, it is necessary that a nearby object be utilized as an anchor for the counter so as to prevent theft and minimize vandalism. It is also necessary that the detection device be situated within the roadway properly in order to gather the required information types. Examples displaying the positioning of these devices for certain information types is shown in Figure 17.

Advantages:

- 1. Has relatively low cost per hour of counting.
- 2. Can provide extensive time coverage.
- 3. Able to obtain specific lane use information.
- 4. Permits flexibility in use of the counters.
- 5. Provides a high service life.
- 6. Easy to maintain.

Disadvantages are:

- 1. Unable to obtain vehicle classification data.
- 2. Is highly susceptible to vandalism.
- 3. Requires periodic checks to assure its continuous operation.
- 4. Unable to detect turning movements unless a separate turn lane exists.
- 5. Limits use primarily to paved roadways.
- 6. Provides a limited count period if battery is not maintained.

The use of portable counters is limited by the roadway (or sidewalk) surface and weather conditions. The need to provide a stable surface to attach the detection device restricts the use of portable counting devices on most unpaved roadway surfaces. Also, cold or winter weather conditions affect the use of portable counters by increasing the possibilities of breaking or cracking of the detection device (tubing, cable, or tape-switch). In addition, wet surface conditions can reduce the adhesive qualities of the cable or tapeswitch connections, thereby causing the detection devices to loosen and result in inaccurate or no data.

The use of portable counters is effective at most intersection or midblock locations for time periods ranging from 10 to 15 min, to a 24hour or longer period. Longer periods are limited by battery life and the need for a regular check of its operation. Portable counters are also effective as control stations to be used for developing volume expansion factors on a 10- to 15-min. hourly, or 24-hour basis.

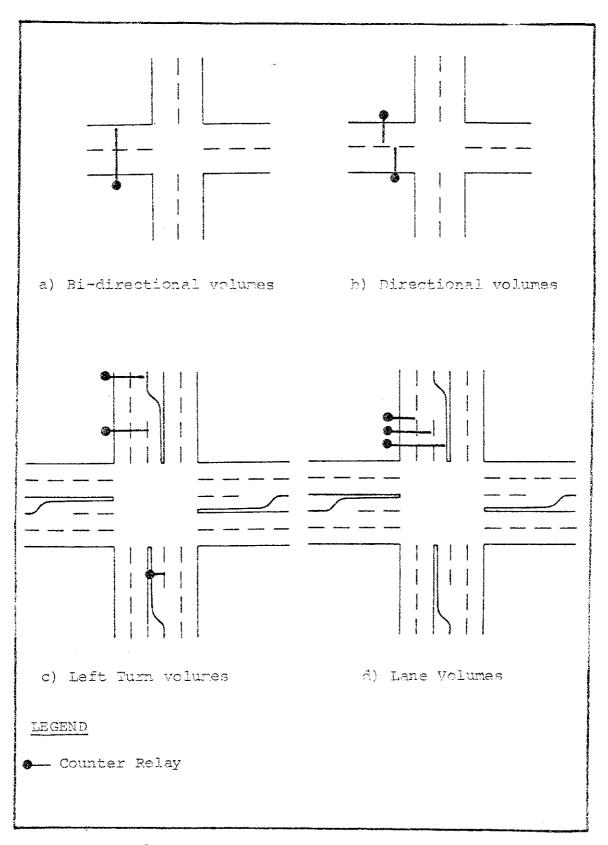


Figure 17. Field placement of portable traffic counters for specific information types.

Manual Volume Counts

Manual volume counts [2,3,4,10] are most often used to obtain traffic volume counts which cannot be easily collected by mechanical counters, such as, turning movements, vehicle classification data, occupancy studies, and pedestrian counts. This method involves the use of observers to manually record the volume data. Volume data is recorded using a tally board, hand counter, or tally marks made on the data sheet. This data is then summarized and transcribed onto data sheets.

Traffic count data taken manually is usually limited to a 2-hour period due to the human limitations involved in long counting periods and high personnel costs; additionally, long counting periods may lead to inaccuracies in the data. Also, nighttime counts are discouraged. For certain uses (vehicle classification counts and longer pedestrian counts), longer time periods may be necessary. When periods greater than 2 hours are used, shifts are recommended.

Personnel requirements for manual counts differ depending on the volume of traffic to be counted. General recommendations for personnel requirements include:

- Low to medium volume midblock location (one observer).
- High volume midblock location (one observer per direction).
- Low volume intersection (one observer).
- Medium volume intersection (one observer per two approaches).
- High volume intersection (one observer per approach).

Manual counts permit the accumulation of data for a variety of situations and conditions. Counts typically range from a 1-min. count to a two-hour total. The comprehensive data collection capabilities of the manual counting method make it desirable for volume studies typically used for highway safety analysis purposes.

Advantages:

- 1. Generally maintains a high level of accuracy.
- 2. Able to obtain turning movements and classification data.
- 3. Can obtain a general field review of area while counting.
- 4. Able to accurately record pedestrian data.
- 5. Has minimal equipment needs.
- 6. Provides flexibility in its usage.

Disadvantages:

1. Can result in relatively high costs for long periods due to personnel needs.

2. Limits the length of the counting periods due to human limitations and manpower availability.

Photographic Techniques

Photographic techniques can be used to obtain volume data at a specific location or along a section of roadway. This technique normally is used in the study of traffic variables such as speed, gaps, conflicts, etc. This method films (photographs) the study site and uses an observer to extract the filmed data from the pictorial record of the study site in a controlled (office) environment.

Two photographic methods are typically used: time-lapse and continuous-film photography. Time-lapse photography methods [19,20] use a motion-picture-type camera equipped with a time-lapse mechanism and a frame-numbering device. The camera is set up to provide a clear view of the study area to be counted, typically requiring a high vantage point. The camera is actuated to take pictures at distinct intervals of time (typically 0.5 - 3.0 sec.), thereby permitting a substantially longer filming time than by continuous filming. The camera will operate throughout the film length (e.g., 3,600 frames or 30 minutes of filming at a 0.5 second filming interval). For longer time periods, periodic checks of the film by a technician will be required.

Review of the film data requires personnel experienced in data extraction by photographic methods.

Continuous-strip photography [20,21] is similar to the time-lapse method. The Data-extraction methods are also similar.

With both filming modes, filming can be performed from a vantage point near the study area or by an aerial method. In the first method, data extraction is performed as described above. The aerial method [22-25] is more complicated. It requires the assembling of the film prints on a board in their filming sequence. Vehicle accumulations along the highway section during each flight run are summarized. Assuming that no change in vehicle accumulations occurred during the flight, the vehicle accumulation can be assumed to represent the volume of traffic along the roadway during each flight run. Converting this count to a specific time period involves either the use of additional flight run data or volume/time-of-day relationships for a similar type highway facility. This method allows an accurate estimate of volume data.

In both cases, volume data can be obtained for short-term (hourly) or longer period counts. The aerial method, however, is limited by the flying time and the availability of data for comparable sites. Volume expansion factors can increase the usage of the count data obtained by photographic techniques.

Advantages:

- 1. May to obtain data on other traffic variables.
- 2. Proved a permanent record of the study area.
- 3. Can obtain highly accurate data.
- 4. Able to obtain classification and pedestrian data.

Disadvantages:

- 1. May require a time-consuming analysis of data.
- 2. Can result in relatively high costs due to personnel and equipment needs.
- 3. Requires regular maintenance of equipment to minimize malfunctioning of equipment.
- 4. Requires favorable lighting and weather conditions.

The effective application of photographic techniques to obtain volume data is from supplemental input during the collection of other traffic variables at either intersection or midblock locations. In many ways, the film data is similar to the manual count method in its capabilities; however, the technique requires substantial equipment needs.

Moving Vehicle Method

The moving vehicle method [26-29] can also be used to obtain traffic volume data along a section of roadway. This method is normally used in studying the travel time characteristics of a roadway section but can provide an estimate of the traffic volume. It is usually conducted along uniform two-way sections of roadway. The data collected should include: travel time (obtained by a stop watch or other time measuring devices), the opposing traffic (obtained from a manual count of vehicles moving in the opposite direction of the test car), the overtaking traffic volume (obtained from a manual count of vehicles moving in the same direction and overtaking the test car) and passed traffic (obtained from a manual count of vehicles moving in the same direction and passed by the test car). These data are recorded during each test run along the roadway.

For reliable results, a minimum of six test runs in each direction are made. The estimated volume (V_i) is then:

$$V_{i} = \frac{60}{T_{i} + T_{i}}$$
 (M_j+0_i-P_i)

where:

- Vi = volume per hour, direction i (for volume in other direction(s), subscripts will be changed). Mj = opposing traffic count of vehicles while test car was traveling in the opposite (j) direction.
- O_i = number of vehicles overtaking the test car while traveling in direction i.

- Pi = number of vehicles passed by the test car while traveling in direction i.
- T_i = travel time when traveling in direction i (in minutes).
- $T_j = travel time when traveling in direction j (in minutes.$

The run results are averaged to produce an estimate of the volumes on an hourly basis.

Advantages:

- 1. Able to concurrently obtain travel time and operating speed data.
- 2. Requires minimal equipment.

Disadvantages are:

- 1. Provides an estimate of volume data.
- 2. Results in high personnel costs.
- 3. Limits results to roadway segments.

Volume data obtained by this method is limited to an hourly traffic volume estimate along a roadway segment (midblock).

Selection of Volume Techniques

In selecting a technique for performing a volume study, it is necessary to define the management concerns related to each technique. These concerns include the time, manpower, and equipment requirements as well as the information capabilities and the accuracy of the collected data. Based on these management concerns, Table 13 displays the utility of each technique. These characteristics are of course, dependent on and vary with each particular agency based on its individual resources. In addition, the availability (or non-availability) of volume expansion factors may also make one technique more appropriate for an agency.

Table 14 lists the volume techniques to be used by an agency based on the volume information to be collected. Where several techniques are acceptable, a review of the management concerns as well as a consideration of the particular characteristics of the area to be counted should be made to aid in the selection of the most appropriate technique. For example, in obtaining pedestrian and vehicular volume information at an intersection during the evening peak hour, several techniques are feasible. In this case, manual volume counting techniques would probably be used since it is the only technique common to collect both types of data. However, if

5			1	1		·····
Technique	Mecha	rical		Moving Vehicle	Dhotoorphic	Drivometer
Management Concern	Permanent	Portable	Manual	Method	Photographic Techniques	Drivometer Device
.Time Require- ments	.Continuous long-term counting	.Flexible counting periods (limited by battery life)	.Usually limited to a period of two hours or less	.Short-term (1 hour or less)	.Short-term in nature (several days max.)	.Short-term (1 hour or less)
.Manpower Re- quirements	.Technician level	.Technic- ian level	.Techni- cian level	.Technician level	.Technician level	.Technician level
.Equipment Require- ments	.Permanent detector install- ation	.Portable counter	.Minimal	.Vehicle availa- bility	.Camera equipment .Airplane availa- bility (aerial)	.Vehicle availability
.Information needs -Intersec- tion Volumes	.Typically by appro- ach	.Typica- lly by approach	.5y lane use or speci- fic move- mont	.Not prac- tical	.By lane use or speci- fic move- ment	.Not practical
-Mid-Block Volumes	.By direc- tion (where installed)	.By direc- tion	.By direc- tion	.By direc- tion	.By direction	.By direction
-Pedestrian Volumes	Not prac- tical for high- way safety applica- tions	Not prac- tical for high- way safe- ty appli- cations	.Provides an acc- urate record	.Not app- licable	.Reasonable for use when study- ing pedes- trian behav- ior charac- teristics	.Not applicati
~Classifica- tion studies	.Not app- licable	.Not app- licable	.Provides an accu- rate re- cord	.Provides an esti- mate	.Can provide an accurate record	.Provides an estimate
⁻ Level of Accuracy	.Accurate	.Accurate	.Highly accurate	.Estimate	.Accurate	.Estimate

Table 13. Technique utility for volume study.

Technique	Mechai	nical		Moving	Photo-
Information Type	Permanent	Portable	Manual	Vehicle Method	graphic Technique
Annual Total Traffic	х				
.AADT or ADT	Х	Х			
.Peak Hour			······································		
-Mid-Block	х	Х	х	х	х
-Intersection	Х	Х	х		х
.Short Term					
-Mid-Block	Х	Х	х		Х
-Intersection	х	х	х		Х
.Classification Counts			x		X
.Pedestrian Volumes			X		X

Table 14. Favorable volume study techniques.

portable counters were available and vehicle volumes were significant, portable counters could be used for the vehicle volumes and manual methods for the pedestrian volumes. To further assist in selecting the appropriate technique for such situations, some general guidelines are provided.

- 1. The use of mechanical counting equipment is preferred where only volume levels are required. This is due primarily to the low cost per hour of counting and high reliability (when maintained on a regular basis).
- 2. Permanent counters, because of their high initial cost and relative immobility, are not readily adaptable for most situations. They are usually used as part of a systemwide data collection network or for collection of additional traffic variables at a specific location as part of a traffic flow program.
- 3. For count information where special volume information is necessary, manual counts are advantageous due to the accuracy of the method. Such counts include classification counts, pedes-trian volumes, etc.
- 4. The conduct of short-term counts by manual or other methods should be encouraged when expansion factors are available to generate count information for a longer time period.
- 5. The moving vehicle method should only be used when the measurement of delay and travel-time characteristics are made. Similarly, photographic techniques should only be used where other traffic variables, such as speed, gap, occupancy, etc., are being measured at the same time.

<u>Fi</u>ndings

The tabulation and output of the traffic volume data uses data sheets displaying the specific information type obtained. Examples of these sheets are shown in the Appendix for intersection counts, midblock counts, classification counts, and pedestrian counts (pages I-1 to I-4).

Analysis of traffic volumes, vehicle classification, and the directional distribution of vehicles is sometimes useful in explaining sudden variations in accident frequencies or conditions. However, the major use of volume data will be in defining the magnitude of a condition as defined in other safety-related studies.

Procedure 8 - Spot Speed Study

Purpose

Spot speed studies are used to determine the speed distribution of a traffic stream at a or spot location.

Application

A number of characteristics are commonly determined in spot speed studies. They include:

- <u>Median Speed (50th percentile)</u> The middle value in a speed distribution pattern, i.e., one-half of the observed values are higher than the median and one-half are lower.
- <u>Modal Speed</u> The speed (or range of speeds) at which the greatest frequency of observations occurs.
- 85th Percentile Speed The speed within a distribution at or below which 85 percent of the vehicles travel and above which 15 percent travel.
- <u>Skewness</u> The tendency of a speed distribution to favor a particular speed range. It is used to identify the overall speed tendencies of a speed study sample.
- <u>Pace</u> The 10 mile per hour range in speeds containing the highest number of recorded observations. It is used in identifying the range of speeds for the sample.

Need for Spot Speed Study

The spot speed study may be performed because of information from (1) the accident procedures, (2) the field review, (3) complaints made by citizens or (4) other conditions which warrant a review of the "safe approach or travel speed" of the traffic. Typical accident patterns and possible causes indicating the need for spot speed studies are:

Situation	Pattern	Possible Cause	
Signalized Intersection	● Right-angle accidents	 Short amber phase or high travel speed. 	
		 Short amber phase or high travel speed. 	
	 Rear-end accidents 	• Long amber phase.	
Unsignalized Intersection	 Right-angle accidents Left-turn accidents 	 Insufficient sight distance or high travel speed. 	
Curve section of roadway	 Head-on, run-off-road, or fixed object acci- dent. 	• High travel speed.	
Any location	 High severity charac- teristics. 	• High travel speed.	

Use of Spot Speed Characteristics

Spot speed studies are useful for:

- Determining and justifying the need for countermeasures, such as the posting of advisory speed indications at curves.
- Relating to other traffic variables such as capacity analysis.
- Evaluating locations or studying sites to determine the effect of changes in controls or conditions.

Period of Data Collection

The study period for performing a spot speed study is dictated by the time of day accident patterns at the site. For example, if a pattern of accidents is indicated during a specific time period, this period should be used for performance of the spot speed study.

It is important that studies be performed in good weather and typical traffic conditions, except where special studies may dictate the performance of a study under special conditions.

Sample Size Determination

Prior to performing the study, it is necessary to determine the sample size required to depict the existing conditions accurately.

The minimum sample size [1] is determined by the following formula:

 $N = (SK/E)^2$

Where:

N = minimum sample size

S = sample standard deviation (mph or kph)

K = constant relating to the desired confidence level

E = permitted error in the speed estimate (mph or kph)

If the standard deviation, S, has not been determined prior to the study, an estimated value should be used. The following table contains sample standard deviations, classified by highway area and type, which are based on past research and experience [1].

Highway Area	Highway Type	MPH	КРН
Rural Rural Intermediate Intermediate Urban Urban	Two-lane Four-lane Two-lane Four-lane Two-lane Four-lane	5.3 4.2 5.3 5.3 4.8 4.9	8.5 6.8 8.5 8.5 7.7 7.9
Rounded Value		5.0	8.0

STANDARD DEVIATIONS OF SPOT SPEEDS FOR SAMPLE SIZE DETERMINATION

If the specific field conditions of the study area are not included in the above table, the "Rounded Value" may be used.

Generally, a confidence level of 95.0% (K = 1.96) is used for most traffic engineering purposes. For special cases, a greater confidence level may be required. Commonly used confidence levels and their respective "K" values are:

<u>Confidence Level (%)</u>	<u>K</u>
68,3	1.00
90.0	1.64
95.0	1.96
99.0	2.58
99.7	3.00

The permitted error, E, generally ranges from \pm 1.0 mph (1.5 kph) to \pm 5.0 mph (8.0 kph). The selected "permitted error" is based on the importance of the accuracy of the results. Safety studies typically require a low permitted error.

A general rule-of-thumb for sample size determination is to use a sample of at least 100 vehicles.

Example

A spot speed study is to be performed at an isolated curve to determine conformance to the posted speed limit. The study is warranted because of a pattern of run-off-road accidents. The minimum sample size was computed using the previously defined criteria:

S = 5.3 mph (8.5 kph)
K = 1.96 (confidence level of 95.0 percent)
E = + 1.0 mph (1.6 kph)

English

Metric

 $N = \left(\frac{5.3 \times 1.96}{1.0}\right)^2 = 108; \qquad N = \left(\frac{8.5 \times 1.96}{1.6}\right)^2 = 108$

Performance Guidelines

To depict an unbiased and accurate estimate of spot speed data at a location, several general rules need to be followed:

- 1. Equipment should be concealed from the approaching driver;
- 2. The observer or the data recorder should be as inconspicuous as possible;
- 3. Onlookers should be avoided;
- 4. An adequate sample should be observed:
- 5. The lead vehicle in a queue should be used to represent the other vehicles in a queue;
- 6. Select trucks for speed observation in proportion to their presence in the traffic stream; and
- 7. Avoid sampling a large proportion of high and low speed vehicles.

Speed Study Techniques

Four principal methods of data collection are available to obtain spot speed data. They include:

- Doppler Meter.
- Stop watch method.
- Electric or electronic methods.
- Photographic techniques.

Primary considerations for these techniques are found in Table 15.

• Doppler Meter

Meters based on the Doppler principle [2,3,4] utilize reflected electro-magnetic or sound waves to detect vehicle speeds. Two meter types are typically used: radar and sonic. The radar meter [2,3] is usually operated by trained personnel according to the manufacturer's specifications and procedures. It can be operated from a mobile battery pack or plugged into a vehicle power source (cigarette lighter, etc.). Prior to recording data, a tuning fork is used to calibrate the meter.

In operating the meter, the operator is situated in an inconspicuous manner on the road side. The operator points the meter at the desired vehicle, attempting to keep the angle between the vehicle's direction of travel and the line of sight of the meter as small as possible. This

	Table	15.	Primary	considerations	for	spot	speed	study.
--	-------	-----	---------	----------------	-----	------	-------	--------

Technique	Function	Equipment Requirements	Manpower Regulrements	Time Requirements	Associated Costs	Data Input	Data Obtained	Data Output
1.Stop Watch Mathods	Menually records time for vehicle to traverse a specified dis- tance	.Stop Watch ,Bependent on method used: -flashing lights, or -encacope, or -speed watch .Pnoumatic tubing or electrical cable	.One observer (technisian) per ditection	Dependent on required sam- ple size and traffic vol- ume at study location	Stop watch \$30-\$200 Speed watch \$150-\$300 Enoscope \$100	Defined location Accident Nummary data . Iravel course length	:Time(seconds) to traverse course length	.Travel (spot) speed at study location
2.Electric or Elec- tronic Nethods	"Mechanically re- cords time for vehicle to tra- vel a short spe- cified di stance	Relay device (road tubing, tapeswitch, etc.) Recording device (meter)	.(he observer {technician} per direction lechnician to set up equip- ment	.15-30 minutes per site to sat up equip- ment. Recording time depen- dent on sample size required and traffic at specific lo- cation	Maters and miscella- neous equipment range from \$200-\$2000	Defined location .Travel course length .Accident summary data	.lime (seconda) to traverse course length	. Iravel (spot) speed st study location
3. Photo- graphic Techniques	'Manually records or computes time for a vehicle to traverse a spo- cified section of roadway using photographic techniques	.Camera .Airplane (if aerial means used)	. Jechnician to set up camera . ['ilot (if aerial means used) . Jechnician to check camera during opera- tion . Jechnician or engineer to review, re- cord, or com- pute data	Camera set up time - 30-60 minutes per camera Jschnician equipment checks varies with distance of location from office Data review and analysis time depen- dent on study period	.Camera equipment \$500-\$2000	Defined location [ravel course length Accident summary data	.⊺ime (seconds) to traveree course length	Travel (spot) speed at study location
4.Matere Uaing Dopper Principle	Provides spot speeds using rader techniques	.Rædær gun	• Technician to operate radar meter	Dependent on sample size and traffic volume in study area (time is usually less than with other tech- niques)	.Radar gun \$500-\$1500	Defined location Accident summary data	.Spot speed at location	Spot speed location

.

· .

minimizes the error in the meter reading. The meter displays the speed of the vehicle, which is then recorded on a data sheet (shown in the Appendix, page 1-5). This process continues until the minimum sample size is obtained.

The ultrasonic meter method [3,4] utilizes an overhead, transmitterreceiver. The meter is directed towards approaching traffic and records in the sound wave reflections. In many cases the data are relayed (via telephone lines or other transmission equipment) to a central location, where they are recorded on data sheets.

Advantages:

- 1. Set-up and operation is simple for radar method.
- 2. Can produce reliable results.
- 3. Equipment has high service life.
- 4. Typically permits sampling of high percentage of vehicles in a relatively short amount of time.

Disadvantages:

- 1. Experienced or FCC certified data collectors are required.
- 2. Difficult to distinguish a single vehicle being observed in heavy and/or multi-lane traffic.
- 3. For sonic meter, equipment is permanent and costly; and
- 4. For sonic meter, renting or buying of a data transmission means is required.

The radar meter is the most widely used method of obtaining speed data. It is appropriate for most situations because of its low cost, ease of use, and the capability to obtain a large sample in a relatively short amount of time. Sonic meters are infrequently used due to the lack of available equipment.

Stop Watch Method

The stop watch method [2-7] estimates vehicle speeds from the times required for a vehicle to travel over a defined distance. In this method, a measured course is laid out at the study location. Recommended course lengths are dependent on the estimated travel speeds along the roadway. Typical course lengths are given in the following table:

	verage Speed of Ic Stream	Course	Length
mph	kph	ft.	m
<25 25-40 >40	<40 40-65 >65	88 176 264	25 50 75

Source: Transportation and Traffic Engineering Handbook

In some cases, the course length is laid out in lengths such as 100 feet, 100 meters, etc. For time measurement and accuracy purposes, these distances should be set, so that the minimum time to traverse the course will not be less than 1.5 seconds. A 2.0-2.5 second target value is preferred.

Pavement markings or identifiable reference points are used to define the course limits. These markings or points should be readily visible by the observer from an inconspicuous vantage point to insure unbiased speed data.

Techniques available to assist in timing vehicles include:

- An observer.
- An enoscope.
- Flashing lights.

In the observer technique, an observer is positioned midway between the reference markings. As the front wheels of a vehicle cross the reference marks, the observer actuates a stop watch. The watch is stopped the instant the vehicle passes the second reference point. The stop watch reading is then recorded on a data sheet.

Using an <u>enoscope</u>*, the observer is situated at one end of the course. The enoscope, placed at the other end, provides a flash of light as the vehicle passes the reference. A stop watch is used to record the elapsed time. The stop watch reading is then recorded on a data sheet.

In the <u>flashing lights</u> technique, a detection and switch device (pneumatic road tube, tapeswitch, or electrical conduit) is positioned at one end of the course. The device is connected to a set of flashing lights. As a vehicle passes the reference point, the lights are actuated.

^{*} An enoscope is an L-shaped box, opened at both ends, with a mirror set at a 45° angle to the arms of the device, permitting a flash of light to be emitted as a vehicle passes the device.

The observer stationed at the other reference point measures the starting and ending times. The stop-watch reading is then recorded onto a data sheet. The readings obtained by these techniques are recorded onto a data sheet similar to the one shown in the Appendix (page I-6).

Advantages:

- 1. Requires minimal set-up time.
- 2. Has low or no maintenance costs.
- 3. Equipment costs can be low.
- 4. Operation is simple.

Disadvantages:

- 1. May result in timing inaccuracies due to inappropriate vantage points.
- 2. Human bias may affect timing of vehicles.
- Location of relay or recording devices along the roadside may result in atypical driving patterns.

The stop watch methods are appropriate for most situations. Prior to the use of radar meters, such methods were commonly employed for spot speed studies. Where equipment resources are minimal, these methods provide a reasonably accurate measurement of spot speeds.

• Electric and Electronic Methods

The electric and electronic methods [3,4,7-11] utilize detection and relay devices such as: pneumatic road tubes, tapeswitch, magnetic tapes, etc., positioned within the roadway and interfaced to electric or electronic recording devices. In most of these methods, vehicles travel times over a measured course are used to define the spot speed. The course length may be as short as 6 to 15 feet, depending on the expected travel speeds. The course is bounded by switch devices installed on the roadway, which transmit the vehicle travel times to a recording device or recording meter located along the side of the road.

Techniques for measuring the travel time include:

- Pen graphic recorder.
- Speed watch.
- Electrically operated meter.
- Electronic meter.
- Mobile traffic data collection system.
- Electronic decade meter.
- Magnetic loop detectors.

The pen graphic recorder utilizes either pneumatic road tubes or tapeswitches positioned at the beginning and end points of the travel As a vehicle passes the starting point, indicator marks are course. automatically recorded on a chart (moving at a constant speed) for each axle on the vehicle. When the vehicle passes the end point, another set of indicator marks is generated by the same pen. The speed of the vehicle is determined by the distance between the two sets of marks.

In the speed watch method, the timing of a vehicle is obtained automatically.* The speed watch is connected to roadway detection and switch devices located at the beginning and end of the course. As a vehicle passes the starting point, the speed watch is actuated. The watch is automatically stopped as the vehicle passes the end point. The reading on the speed watch is recorded onto a data sheet by an observer who also resets the device. This technique uses short course lengths.

The electric and electronic decade meters are similar to the speed watch. Pneumatic road tubes actuate the electric meters while tapeswitch is used in relaying information to the electronic decade meter. Calibrated speed readings are recorded from these devices.

Mobile traffic data collection systems and magnetic loop detectors are similar in that both are able to obtain speed data by measuring the time it takes a vehicle to pass a predefined loop length. Such information is relayed to a roadside recording device where it is recorded on magnetic tape or on printed or punched tape. These methods can also be used to obtain other traffic variables, such as, volume, space headway, and time headway.

Advantages:

- 1. Reduces human error and bias.
- Can be simple to operate.
 Produces reliable measurements.
- 4. Collects a large number of measurements in a relatively short amount of time.

Disadvantages:

- Detection devices located on roadway may influence driver 1. behavior.
- 2. Requires frequent calibration of devices due to weather changes.
- 3. Equipment costs may be considerable.

A speed watch is a calibrated timing unit operated by road tube or electrical impulses.

These techniques can produce more accurate results than the stop watch method. However, the lack of available equipment usually limits the use of these methods. However, where the required equipment is available, these techniques are appropriate for most highway locations.

Photographic Techniques

Photographic techniques [12] utilize distance and time relationships to obtain speed information from the field data. Means of performing photographic surveys include time-lapse and continuous film photography. Steps for these techniques are similar to those described in Procedure 7 -"Volume Studies". Advantages, disadvantages, and limitations are also similar. This technique is generally limited to use where other traffic variables are being studied.

Selection of Techniques

In selecting techniques for performing a spot speed study, it is necessary to consider the management concerns. These concerns include equipment, time, and manpower requirements, the data collection capabilities and the accuracy of each technique. Table 16 displays the utility of each spot speed study technique as a function of these management concerns.

General guidelines to use in selecting a technique are:

- 1. For most highway safety applications, the use of a radar meter is preferred. Although costs of a radar meter (\$600- \$1500) can be moderately higher than some of the other techniques, the flexibility, ease of use, and overall efficiency of the radar meter make it a desirable technique.
- 2. Where radar equipment is unavailable, stop watch methods are acceptable.
- 3. If greater accuracy is desired, the electric or electronic methods are required. Where available, magnetic loop detectors produce highly reliable results.
- 4. Photographic techniques are discouraged except where other traffic variables are to be measured.

114

Table 16. Technique utility for spot speed study.

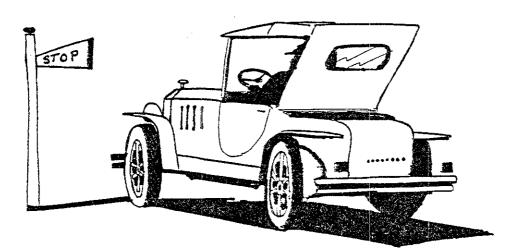
Technique Management Concern	Stop Watch Methods	Electric or Electronic Methods	Photographic Techniques	Doppler Priaciule Methods
.Time Require- ments	Requires short equipment set up and data collection effort Requires sub- stantial data manipulation effort	.Requires substantial equipment set up effort .Uses short data collection effort .Uses short data manipulation effort	Peculines substantial equipment set up offort .Uses short data collection effort .Peculines substantial data extraction effort .Peculines substantial data manipulation effort	.Vses short data collection and manioulation effort
.Equipment Requirements	.Stop watch .Other needs minimal	.Detection devices .Electric or elec- tronic meters	.Photographic equip- ment	.Padar meter
.Manpower Requirements	.Technician level	.Technician level	.Technician level	.Technician level
.Data Collec- tion Capa- bilities	.Indirectly obtains speed data	.Most methods direct- ly obtain speed data	.Indirectly obtain speed and obher traffic variables	.Directly obtains speed data
.Level of Accuracy	.Accurate	.Righly accurate (de- pendent on maintenance of equipment)	Accuracy limited by vantage point of camera	.Accurate for most purposes

ι.,

Findings

The tabulation and output of the spot speed data are prepared on data sheets as shown in the Appendix (pages I-5 to I-6).

In stop watch methods, several of the electric and electronic methods, and photographic techniques, the data obtained is typically in the form of travel time data required to pass over a defined course length. As such, the data must be transformed into speed information. This is achieved by dividing the recorded travel time into the course length distance.


Use Of Findings

In cases where high travel speeds are noted as a "possible accident cause", the speed characteristics are directly compared to the speed limits and conditions at the study site. Where travel speeds are determined to be higher than is reasonably safe for field conditions, a reduction in travel speeds or a change in geometrics or field conditions, e.g., advance warning of vulnerable conditions are feasible alternatives. Where insufficient sight distance exists, the sight obstruction may be removed, approach speeds reduced, or improvements to an intersection made.

Finally, spot speed data can also be used to compare the effectiveness of an improvement using speed as a measure of effectiveness in a before - after study. This study is covered in detail in the Evaluation Component of the HSIP.

• Example

The following example is for a spot speed study conducted by a stop watch method over a course length of 176 feet (52.8 m). From the data shown in Figure 18, the following characteristics were calculated.

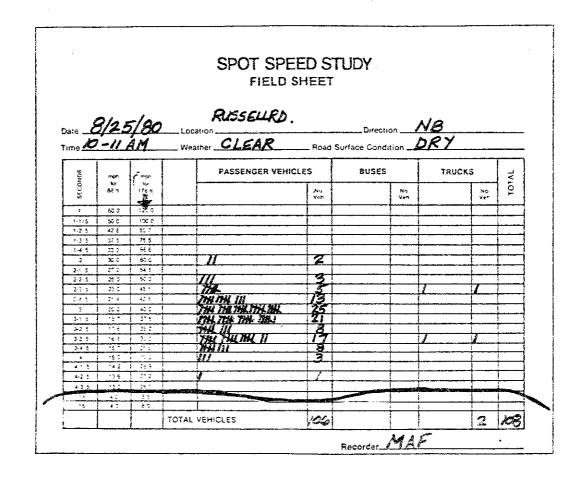


Figure 18. Spot speed study data-example.

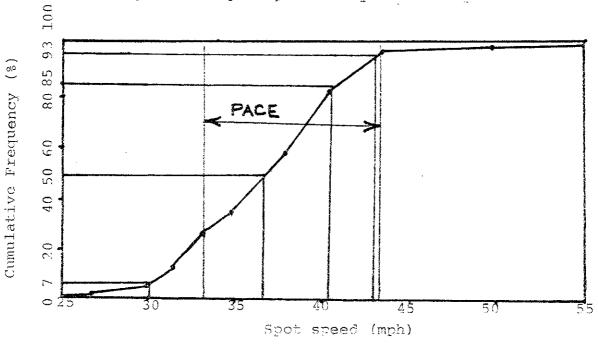


Figure 19. Graphical summary of spot speed data.

Median speed - (50th percentile) - Obtained by manually counting the vehicle groups to depict the speed at which fifty percent (or 54 vehicles) travel at a higher rate. In this case, the median speed is 37.5 mph.

<u>Modal Speed</u> - Obtained by manually counting and selecting the vehicle speed group with the greatest number of observations. In this case, the modal speed would be 40.0 mph (25 observations).

85th percentile speed - Obtained by manually counting the vehicle groups to depict the speed at which 15 percent (or 16 vehicles) of the vehicles travel at or higher. In this case, the 85th percentile speed is 42.8 mph.

 $\underline{Skewness}$ - Obtained by dividing (S_{93} - S_{50}) by (S_{50} - S_7).

 $\frac{42.8 - 37.5}{37.5 - 31.6} = \frac{5.3}{5.9} = 0.898$

A skewness of 1.0 indicates symmetry of the speeds about the mean. A value below 1.0 shows skewness towards the lower speeds, indicating a greater tendency of lower travel speeds along the study section. A higher value will relate higher travel speeds. In this case, the distribution shows very little skewness. It, typically, relates an uncongested condition.

<u>Pace</u> - Obtained by manually counting the vehicles in each speed group to represent the greatest number of observations within a 10 mph range. In this case, the pace occurs in approximately the 33-43 mph range with 84 of 108 observations in this range. It indicates a narrow range of travel speeds by the sample traffic which is favorable. A wide range usually relates more hazardous conditions, caused by differences in travel speeds between vehicles.

Similar findings can be obtained using a graphical approach as shown in Figure 19. This plot visually displays the speed distribution pattern of the traffic. On one axis, the range of spot speeds is displayed. The other axis records the cumulative frequency of observations within the defined speed ranges. The key spot speed characteristics can be obtained from, and are shown on the graph. It shows a narrow distribution of speeds along the study area.

Procedure 9 - Travel Time and Delay Studies

Travel time and delay studies are normally grouped into two areas:

- Link studies.
- Intersection studies.

Each study serves a different purpose and has differing criteria in its performance. In this section, they will be discussed separately.

Link Studies

Purpose

Link travel time and delay studies are used to obtain data on the amount of time it takes to traverse a specified section of roadway and the amount, cause, location, duration, and frequency of delays occurring during that traversing. Travel time and delay characteristics are indicators of the level of service of a facility. They can be used as a relative measure of efficiency of a traffic flow.

Application

Need For Link Study

This study may be used where accident patterns relating traffic congestion, i.e., rear-end, right-angle, or left-turn accidents along a roadway occur. Other means of identification may be from field reviews or complaints. These patterns occur typically during high traffic volume periods. The accidents often result in minor severity.

Use Of Travel Time and Delay Study Data

These studies are useful for:

- Identifying and defining congestion for use in developing appropriate countermeasures to remedy the congestion.
- Calculating delay costs used in economic analysis or for improvement justification purposes.
- Evaluating the effectiveness of various traffic improvements, such as determining the effectiveness of a change in parking conditions.

Period of Data Collection

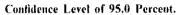
Link studies are typically performed during peak volume hours (weekday) to obtain delay characteristics while traffic is operating under the heaviest conditions. The actual time period is established from the accident summary by time data. In some cases, a comparison of delay characteristics for peak and off-peak conditions may be desirable.

These studies must be performed under favorable weather conditions to obtain a sample of typical operating conditions. In addition, for "before-and-after" evaluation studies, it is necessary that similar traffic conditions exist during both periods of data collection.

• Sample Size Determination

The sample size [3] or number of test runs for link studies is based on the study purpose, the permitted error, and the desired confidence level in the accuracy of the data. Ranges of permitted error in the estimate of the mean travel speed are related to the study purpose. They are:

Study Purpose	Permitted Error			
Transportation planning and highway needs studies	3.0 to 5.0 mph (5.0 to 8.0 kph)			
Traffic operation, trend analysis, and economic evaluations	2.0 to 4.0 mph (3.5 to 6.5 kph)			
Before-and-after studies	1.0 to 3.0 mph (2.0 to 5.0 kph)			


Source: Manual of Traffic Engineering Studies, Institute of Traffic Engineers, (1976).

The required minimum sample size is given on the charts in Figure20 for a 95.0 and 99.7 percent confidence level. Typically, a 95.0 percent confidence level is desirable for most traffic engineering studies. A sample size should be determined for each direction of travel and for each set of traffic and environmental conditions.

In using these tables, the following steps are to be performed:

- 1. Determine the permitted error based on the specific survey purpose. Although this chart provides a range of values, the selection of the specific permitted error (within this range) is based on the significance of the study. The more critical the study results, the lower the permitted error. This decision is made by the engineer-in-charge.
- 2. Estimate the average travel speed (mph or kph) for the test route.
- 3. Select a confidence level.
- 4. Using Figure 20 for the selected confidence level and the other criteria, determine the minimum sample size.

Average Range in	Minimum Sample Size for Specified Permitted Error						
Travel Speed							
(արհ)	± F.O mph	±2.0 mph	dqıa 9.6 £	± 4,0 mph	± 5.0 mpl		
1.0	2	2	. 2	2	2		
2.0	3	2	2	2	2		
3.0	5	3	2	2	2		
4.0	6	3	2	2	2		
5.0	8	4	3	2	2		
6.0	10	5	3	3	2		
7.0	12	6	3	3	3		
8.0	15	6	4	3	3		
9.0	18	7	5	3	3		
10.0	21	8	5	4	3		
11.0	23	9	6	4	3		
12.0	27	10	6	5	4		
13.0	32	ii ii	2	5	4		
14.0	34	12	8	6	4		
15.0	37	14	8	6	5		
kph	±2.0 kph	:13.5 kpli	± 5.0 kph	±6.5 kph	+8.0 kph		
2.0	2	2	2	2	2		
4.0	3	ż	ž	2	2		
6.0	5	3	2	2	2		
8.0	6	3	3	2	2		
10.0	8	4	3	3	2		
12.0	10	5	4	3	3		
34,0	12	6	4	3	3		
16.0	15	7	5	4	3		
18.0	18	9	6	4	3		
20.0	21	9	6	5	4		
22.0	23	11	7	5	4		
24.0	27	13	8	6	5		

۰.

Average Range in Travel Speed	Minimum Sample Size for Specified Permitted Error						
(niph)	i 1.0 mpli	± 2.0 mph	±3.0 mph	± 4.0 mph	± 5.0 mph		
1.0	4	2	2	2	2		
2.0	6	4	3	ž	2		
3.0	10	5	4	3	3		
4.0	13	6	4	4	3		
5.0	18	8	5	4	4		
6.0	23	10	6	5	4		
7.0	28	12	7	6	5		
8.0	34	13	8	6	5		
9.0	40	15	10	7	6		
10.0	47	18	n	8	6		
11.0	52	20	12	9	7		
12.0	61	23	13	10	8		
13.0	74	25	15	ü	8		
14.0	79	28	12	12	9		
15.0	85	31	18	12	10		
երհ	±2.0 kpt	±3.5 kph	±5.0 kph	±6.5 kpli	B.O.kpt		
2.0	4	3	2	2	2		
4.0	6	4	3	. 3	2		
6.0	10	5	4	3	3		
8.0	13	7	5	4	4		
10.0	18	9	6	5	4		
12.0	23	11	8	6	5		
14.0	28	13	9	7	6		
16.0	34	16	10	8	6		
18.0	40	19	12	9	7		
20.0	47	21	13	10	8		
22 0	52	24	15	11	9		
24.0	61	30	17	12	10		

÷

.

,

Confidence Level of 99.7 Percent.

Figure 20. Sample size determination - link study.

Example

It is desired to study the travel time characteristics along a six-mile section of arterial roadway. The study is to be used to review the traffic operations related to a pattern of congestion-related accidents. Following is the sample size determination.

- 1. Based on the study purpose (evaluation of traffic operations), the permitted error is 2.0 to 4.0 mph (3.5 to 6.5 kph). As a consequence of the critical nature of this study a permitted error of 2.0 mph (3.5 kph) to be selected.
- An average range of travel speeds for the study is assumed to be 5.0 mph (8.0 kph), and was obtained from an estimate of an earlier study.
- 4. Utilizing Figure 20 or the above criteria, the required minimum sample size is determined to be four test runs or observations per direction.

Definition of Study Area

For roadway segments, study sections usually start and end at intersections. The test section should both begin and end at a centerline. At roadway segments not outlined by intersections, the starting and ending points should be well marked or delineated.

Delay and Travel Time Study Techniques

Several techniques are available to perform a link study. They include:

- Test car techniques
- Moving vehicle method
- License plate method
- Observer methods
- Photographic methods.
- Interview method.

Primary considerations of these techniques are shown in Table 17.

• Test Car Techniques

Test-car techniques [4-9] involve a test vehicle driven over the test section for a series of runs or trips. Several driving patterns are used. They include:

- Floating car.
- Average car.
- Maximum car.

Techniques	Function	Equipment Requirements	Manpower Requirements	Time Requirements	Associated Costs	Data Input	Data Obtained	Data Output
 Test Car Techniques 	•Obtains travel time and delay data by physi- cally driving test section and recording information	.Vehicle Traffic analyzer or stop watches (2) .Data sheets	Driver (technician) Technician to record data Traimed technician or engineer to com- pute delay charac- teristics	.Time for single test run dependent on route length and delay Minimun of 12 test runs per direction .l hour to reduce data	Stop watches - \$25-\$200 .Traffic analvzer \$300-\$1500	Defined location (accident summary data) Required sample size .Study period	.Travel time .Location, amount, and cause of delay	Travel time and delay character istics (stopped time, fixed de- lay, etc.)
2. License Plate Method	•Obtains trave) time data by recording license plate numbers at test route ends	.Stop watches (one per direc- tion per sta- tion .Computer (if available)	.Two technicians per direction per loca- tion (one to observe, the other to record) .Technician to reduce travel speed or aver- age travel data	Dependent on test route length Minimum of 50 license plate matchings per direction .Several hours to reduce data	.Stop watches - \$25-\$200	Defined location Test section length Required sample size	Recorded time passage of vehi- cle at a speci- fic station(s)	.Overall travel time .Overall travel speed
J. Photo- graphic Methods	Obtains travel time data (and possibly delay information) using filmed records of the test section	.Camera equipment .Data shoets	Trained technician to set up camera Technician to peri- odically check cam- era or change film Trained technician or engineer to view and record film re- cords	Camera filming time de- pendent on sample size and roadway volume Viewing time-dependent on study period Minimum of 50 license plate matchings or 12 test runs of data per direction .Several hours to reduce data	.Camera equip- ment - \$500-\$2000 .Airplane ren- tal dependent on test time	.Defined location .Test section length .Required sample size .Study period	.Recorded time passage of vehi- cle at a speci- fic station(s) .Possibly speci- fic delay in- formation	.Overall trave; time .Overall travel speed .Possibly delay information
4. Graphic Pen Re- corder Method	•Obtains travel time data by registering time-related input on graph- ical chart	.Graphic pen re- corder .Road tubes .Data sheets	.Technician to set up recorder Technician(a) to op- erate keys and aid in identifying vehicles Trained technicians to record data from charts .Trained technician to reduce data	.Data collection period dependent on sample size required and approach volumes .Several hours to reduce data	.Graphic pen recorder - \$300-\$1500	Defined location .Test section length .Required sample size .Study period	Travel over test section	Approach travel time
5. Interview Nethod	:Obtains travel time and genar- a) delay infor- mation from daily users of test mection	; bata summary sheets	Technician to inter- view users of the route Technician to reduce. data	Approx. 2 hours to arrange data collection .1 hour to reduce data .Minimum of 50 vehicles per direction	•None	.Defined location .Sample group .Required sample size .Study period	.Travel time .General list of delay points	.Overall travel time .General delay information

Table 17. Primary considerations for travel time and delay study techniques.

1 1

In the "floating car method", the driver "floats" with traffic, i.e., the driver attempts to pass as many vehicles as pass the test vehicle. The "average car" method uses a driving speed which is estimated as the average vehicle speed within the test section. In the "maximum car" technique, the driver operates the test vehicle at the posted speed limit, unless impeded by traffic conditions. Each driving method produces fairly similar findings.

Several means of recording data are available. The most common method uses stop watches. Two watches are used. The first watch is started at the beginning of the test run and used to record the elapsed time at various control points along the route. The second watch is used to measure the length of individual stopped time delays. The time, location, and causes of these delays are recorded on data sheets similar to that shown in the Appendix (page 1-7).

Another means of recording delay data is with the use of automatic recording devices[10]. These devices are able to graphically record on roll tape or magnetic cassette a log of the relationship of the vehicle speed and delay with regard to time. Most of these devices are able to record not only the duration of stopped time (time period that a vehicle is actually standing still, due to any factor) but also fluctuations in speed. However, an additional observer is used to record the causes of delay and to relate the delays to the tape information. The tape or cassette data can be transferred onto data sheets or analyzed using standard computer programs.

Advantages:

- Obtain data based on the experiences of a vehicle in the traffic stream.
- 2. Relatively simple to perform.
- 3. Able to obtain information on both travel time and delay characteristics.
- 4. Equipment needs are minimal.
- 5. Data are usually reliable.

Disadvantages:

- 1. Can result in considerable time requirements.
- 2. Personnel costs may be high.

This technique permits the reliable collection of travel time, stopped time delay, and other delay information. It allows a review of field situations occurring during the test runs.

124

Moving Vehicle Method

The moving vehicle method [4-9] makes test runs of the study section similar to the test car techniques. Information recorded on these runs includes the travel time, volume of opposing traffic, volume of over-taking traffic (estimated) and travel speeds. A further description of this technique is given in Procedure 7 - "Volume Study."

An additional observer in the vehicle can be used to obtain specific delay information. This technique differs from the test car techniques in that additional information is obtained to estimate traffic volumes.

Advantages:

- 1. Otains data based on the experiences of a vehicle in the actual traffic stream.
- 2. Able to provide an estimate of traffic volumes in the study section during each test run.
- 3. Relatively simple to perform.
- 4. Able to obtain both travel time and delay characteristics.
- 5. Equipment needs are minimal.

Disadvantages:

- 1. Can result in considerable time to perform requirements.
- 2. Personnel costs may be high.

This technique provides a reliable indicator of the travel time and delay information. The technique requires added personnel where delay characteristics are obtained.

• License Plate Method

This license plate method [4,5,6,13] utilizes observers posted at the beginning, end, and other strategic points of the test section. Observers record the direction of travel, the last several (two, three, or four) digits of the license plate number of the sample vehicles, and the stop watch time at which the vehicle passes the observation point. The data are recorded onto speed data sheets as shown in the Appendix (page I-8). Attempts to record as great a sample as possible should be made.

In analyzing the field data, the zone of origin is assumed to be the station where the vehicle was first observed. The travel route (and time) is traced by the vehicle's successive appearances at a series of recording stations. The zone of destination is assumed to be the station where the vehicle was last observed. The data are combined and adjusted to provide information on the total travel time and, possibly, delay.

With this method, accuracy in the recording of the time data is a major concern. It is necessary that all timing devices used coincide during the study period. A reliable means to achieve this coordination is

to have all observers meet prior to the study and start their watches simultaneously. All watches are stopped when the observers meet following the completion of the study. At this time, adjustment for slower or faster watches can be made.

Advantages:

- 1. Can obtain a large sample in a short amount of time.
- 2. Equipment needs are minimal.
- 3. Data collection method is easy to perform.

Disadvantages:

- 1. Requires a large number of personnel to obtain data.
- 2. Data reduction can be time-consuming.
- 3. Obtains primarily travel time information.
- 4. Travel time information is approximate.
- 5. A large number of personal errors in recording license numbers can occur.

This technique is appropriate for link studies where the overall travel time information is the prime objective. Where detailed delay information is required, high personnel costs will result.

Observer Methods

These methods[4,5,6,14,15] trace sample vehicles within the defined test section and record the travel time and delay information using trained observers. Several stop watches are used to obtain the travel time and delay information. Information recorded and recording procedures are similar to the stop watch methods described in the test-car techniques. For each station (observation point), a minimum of two observers are required to time vehicles, note specific delay information, and record the data.

This method requires the availability of suitable observation posts to observe the vehicles along the entire test section. Observation posts can consist of windows in buildings or roof tops.

Advantages:

- 1. Permits viewing and recording of delay causes under actual field conditions;
- 2. Results are reliable;
- 3. Simple to perform; and
- 4. Equipment needs are minimal.

Disadvantages:

- 1. Requires observation posts to be available.
- 2. May require substantial time requirements.
- 3. Accuracy may be limited by test section length.
- 4. Personnel costs may be high.

This method is favorable for short test sections. It can provide reliable information within the visual range of the observer.

Photographic Methods

The photographic methods [5,6,16] utilize camera equipment located at the beginning and end points of the test route and at selected locations within the test route. The film is reviewed in an office environment in a manner similar to the license plate technique. Data is timed using either time-lapse photography or external timing sources and recorded onto field sheets similar to the license plate technique. Operational characteristics of the photographic technique are provided in Procedure 7 - "Volume Studies."

Advantages:

- 1. Provides a pictorial record of the study.
- 2. Permits a detailed review of conditions under a controlled environment.
- 3. Able to obtain data on other traffic variables.
- 4. Able to obtain a large data sample. and
- 5. Obtains an unbiased sample.

Disadvantages:

- 1. Requires considerable data collection and extraction time.
- 2. Equipment and time costs may be high.
- 3. Requires favorable lighting and weather conditions.

This technique requires substantial coordination in timing during the filming and viewing activities to achieve a high level of accuracy. Due to the data manipulation requirements, this technique has limited use for roadway studies.

This technique can provide highly accurate results for travel time data.

Interview Method

This method [5] involves interviewing selected individuals on their travel time and delays experienced for specific trips. Individuals selected for the interviews are usually located at residences or places of employment located nearby and who use the study section for their trips. The individuals are requested to record their travel time along the test section on a particular day. This gata is collected, reviewed, and averaged to obtain an estimate of the travel time data.

Advantages:

- 1. Has low overall cost.
- 2. Obtain large volume of data with relatively little effort.
- 3. Obtains input from daily users of the study area.

Disadvantages:

- 1. Results may not be reliable.
- 2. Requires cooperation from involved individuals.

Selection of Technique

Various methods are available to perform these techniques. To select the appropriate technique, the management concerns need to be determined. They include the data collection capabilities, the level of accuracy, and the manpower, equipment, and time requirements of each technique. Table 18 displays the utility of each technique in relation to these management concerns. Table 19 displays available techniques used to perform the procedures as a function of the information obtained. Based on these tables, a favorable technique can be suggested.

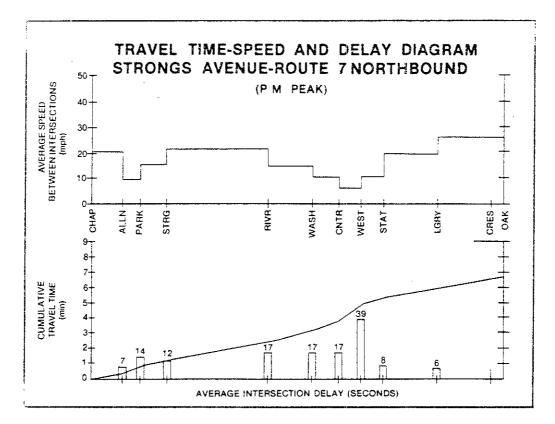
For roadway studies where travel time data is desired, the license plate method is favorable. It permits the collection of a large sample of information in a reasonable amount of time. This method also has minimal equipment requirements. However, where delay characteristics are required, the test car techniques are most favorable. They permit the collection of data at the delay points. For short test sections within visual range of an observer, the observer methods may be used with reliable results.

Findings

The tabulation and output of the travel time and delay characteristics can be displayed in various formats. A sample output is shown in Figure 21. The information obtained for this graph is derived by computing the average travel speed along a section of roadway. The travel speed for a single vehicle run can be obtained from:

$$S = \frac{60D}{T}$$

Where:


S = travel speed (mph or kph)
D = length of study route or section (mile or km).
T = travel time (min.)

5									
Technique Management Concern	Test Car Techniques	Plate	Photo- graphic Methods	Graphic Pen Recorders	Interview Method	Observer Method	"se of Delav Meters	Sampling Methods	Moving Vehicle Method
.Data Collected	Travel time and delay data for intersection and roadways	.Travel time data for in- tersections and road- ways	.Travel time & dalav data for intersec- tions and roadways	Travel time data for in- tersectiona	.Travel time and delay data for roadways	"ravel time and delay data for roadways & intersec- tions	.Delay data for inter- sections	delay data	Travel time data for roadways
Level of Accuracy	.äigh	Sufficient for most purposes	.Kigh	Sufficient for most purposes	.Approxi- mate	₽lgh	.Suffi- cient for most purposes	Suffi- cient for most our- poses	Sufficient for most purposes
.Equipm ent Require.~ ments	.Vehicle .Other needs, minimal	.Minimal	.Camera equipment .Other needs, minimal	Graphic pen recorder Other needs, minimal	.Minimal	Minimal	.Delav meter & set up .Other needs, minimal	. Winimal	.Vehicle .Other need minimal
"Manpower Require ⁴ ments	.Technician level	.Technician level	.Technician level	Technician level	.Technician Jevel .Sample group	Technician [.] level	.Tech- nician level	.Technican level	.Technician level
-Time Require- ments	.aigh	.Moderate	.Bigh	Moderate	. Low	Moderate	. Moderate	Low	.Righ

Table 18, Technique utility of Travel Time and Delay Study.

Table 19. Favorable Travel Time and Delay Study techniques.

Technique Information Needs	Test Car Technique	License Plate Method	Photo- graphic Methods	Graphic Pen Recorders	Inter- view Methods	Observer Methods	Use of Delay Meters	Samp- ling Methods	Moving Vehicle Method
. Roadway -Travel Time -Delay	x x	x	x x		x -	X			x
-Both . Intersection -Travel Time	x	x	x	x		x		x	
-Delay -Both			x		regulation of the second se	X	x	X	

Source: Manual of Traffic Engineering Studies, ITE, (1976) Figure 21. Sample Travel Time and Delay Study output.

	TRAFFIC FLOW CONDITIONS (TYPICAL APPROXIMATIONS, NOT RIGID CRITERIA)							
LEVEL OF SERVICE	Average Overall Travel Speed Likely Peak-Hour Description (mph) Load Factor Factor							
A	Free flow (relatively)	≥30	0.0	₹0.70	₹0.60 (0.80)			
B	(slight delay)	≥25	₹0.1	≥0.80	₹0.70 (0.85)			
C ~	(acceptable delay)	, ∑ 20	₹0.3	₹0.85	≥ 0.80 (0.90)			
D	Approaching unstable flow (tolerable delay)	≥15.	₹0.7	₹0.90	₹0.90 (0.95)			
٤	Unstable flow (congestion : intolerable delay)	Approx. 15	₹1.0 (0.35 typical)	₹0.095	₹1.00			
F	Forced flow (jammed)	<15	(Not meaningful)	(Not meaningful)	(Not meaningful			

(Source : Highway Capacity Manual, HRB SR 87, 1965, Table 10-13)

Figure 22. Highway capacity chart - example.

The mean travel speed is computed as follows:

$$S = \frac{60ND}{T}$$

Where:

- S = mean travel speed (mph or kph)
- D = length of study route or section (mile or km)
- T = sum of travel time for all test runs or observations (min.)
- N = number of test runs or observations

The travel time data is obtained directly from the study data.

Use Of Findings

The travel time and delay information is also used to determine the operating level of service along a facility. An average overall travel speed, obtained from the above formula, is compared to the traffic flow conditions for a facility to determine the operating level of service. For example, assuming the average travel time over a three-mile length of arterial roadway during the evening peak period (4:00-6:00 p.m.) was 7.42 minutes, the average travel speed would be:

 $\frac{3.00 \text{ miles}}{7.42 \text{ minutes}} \chi \frac{60 \text{ minutes}}{\text{hour}} = 24.3 \text{ mph}$

Using the table shown in Figure 22 (obtained from the <u>Highway Capacity</u> Manual), would denote that the roadway operates at a level of service "B" - "C" during this time period.

The travel time and delay findings are used in the selection and evaluation of safety-related countermeasures. In selecting feasible countermeasures, delay data are used in the economic analysis to derive delay costs. Delay costs will include: the time cost to an individual (resulting from "lost" time which could have been used in a productive manner) and the vehicle operating costs. These cost figures can be obtained from various references on roadway economics including:

- 1. Economic Analysis for Highways by R. Winfrey.
- 2. "Running Costs of Motor Vehicles as Affected by Road Design and Traffic", Paul J. Claffey, NCHRP 111.

The calculated delay costs are included in the economic analysis as a "disbenefit"; however, an anticipated inprovement (reduction) in delay will result in a "benefit" being derived from the proposed improvement. Delay costs may also be included in formulas used in the scheduling or planning of improvements.

Finally, the use of the travel time and delay data for evaluation of countermeasures involves the measurement of these characteristics "before" and "after" implementation of the countermeasures. Differences in "before" and "after" data are tested for significance of the results.

Intersection Studies

Purpose

Intersection delay studies are used to obtain data on the amount of delay at an intersection. The delay characteristics can be used as a relative measure of efficiency of traffic flow.

Application

Need For Intersection Study

The need for a delay study in highway safety applications is primarily determined by the occurrence of accident patterns relating traffic congestion, i.e., rear-end, right-angle, or left-turn accidents near major intersection points. Other means of identification may come from field review findings or local complaints relating congested conditions at a site. These patterns occur typically during high traffic volume periods. These accidents often result in minor severity characteristics, generally consisting of a majority of "property damage only" accidents.

Use of Intersection Delay Data

Information obtained from these studies are useful for:

- Identifying and defining congestion for use in developing appropriate countermeasures to remedy the congestion.
- Calculating delay costs used in economic analysis or for improvement justification purposes.
- Evaluating the effectiveness of various traffic improvements, such as determining the effectiveness of a change in signal timing.
- Providing a congestion index to be used in comparing different roadways for use in programming safety projects.

Period of Data Collection

Intersection delay studies are typically performed during peak traffic volume hours (weekday) to obtain delay characteristics while traffic is operating under the heaviest conditions. The actual time period is established from the accident summary by time data. In some cases, a comparison of delay characteristics for peak and off-peak conditions may be desirable.

These studies must be performed under favorable weather conditions in order to obtain a sample of typical operating conditions. In addition, for "before-and-after" evaluation studies, it is necessary that similar traffic conditions exist during both periods of data collection.

Sample Size Determination

For <u>intersection delay studies</u>, critical factors used to determine the required minimum sample size [4] are an estimate of stopped traffic, the permitted error, and the confidence level of the results. It is cetermined from the following formula:

$$N = \frac{(1-p)X^2}{pd^2}$$

Where:

- N = minimum sample size.
- p = proportion of vehicles that are required to stop on the intersection approach.
- χ^2 = chi-square value for the desired confidence level.
- d = permitted error in the proportion estimate of stopping traffic.

Information on the proportion of stopped vehicles at an approach can be obtained in a number of ways.

- 1. Past data for an approach may be used.
- 2. A sample field test of approximately 100 vehicles per approach may be run.
- 3. At signalized intersections, the ratio of the red time to the cycle length may be used.

The chi-square, χ^2 , value is obtained indirectly as a function of the confidence level in the accuracy of the data. Typically, a 95 percent confidence level is acceptable for most traffic engineering situations. The following table serves to relate the Chi-Square value and a confidence level.

<u>Chi-Square (X</u> 2)	<u>Confidence Level (%)</u>
2.71	90.0
3.84	95.0
5.02	97.5
6.63	99.0
7.88	99.5

The permitted error is based on the reliability of the "p" data. A smaller value is used to assure greater reliability in the results.

Example

The case in point is used to evaluate the effect of an existing traffic control on the south leg of an intersection. A sample field test was performed, and a "p" value of 0.70 for the approach was obtained. Selecting a confidence level of 95.0 percent and a permitted error of 0.10 (10 percent), the following values are obtained:

p = 0.70 $\chi^2 = 3.84$ d = 0.10

The minimum required sample size on this approach is:

 $N = \frac{(1.0 - 0.7)3.84}{0.7(0.10)^2} = 164 \text{ vehicles}$

Definition of Study Area

At intersections, the study area should extend far enough away from the center of the intersection so as to include all vehicles stopped or delayed as a result of the intersection operation or "bottleneck". A preliminary review of the site may assist in identifying this point. The end point of the study area should be set such that delayed traffic stopped in advance of the intersection is able to attain an operating speed. As a minimum, this point should be set after the stop lines. A more appropriate end point would be the far side of the intersection.

Delay Study Techniques

To perform an intersection delay study, four alternate procedures [1,2] are available. They are:

- Point sample method,
- Input-ouput method,
- Path trace method, and
- Modelling.

The point sample method [1,2,5] is based on the periodic sampling of the number of stopped or queued vehicles at an approach. In this method, an observer is stationed near or at the test approach to record the data. The number of vehicles stopped (or in the queue) on the intersection approach at successive intervals (such as every 15 seconds) are counted. At the same time a volume count of the approach traffic during the same time period is conducted. The length of sampling interval is selected such that repetitive sampling in the same interval of the signal cycle is avoided. For example, sampling at a 60-second cycle length location should use intervals of 25 second lengths rather than ten or fifteen seconds to avoid this effect. The sampled count data and the volume data will permit the estimation of the vehicle-seconds of stopped time delay.

This method is self-correcting since each count interval is independent of the other intervals . If intervals are designed properly, the results will not be influenced by the signal indication, thereby permiting randomness of the results. A major disadvantage is the possibility of inaccuracies in the sampling results where a high volume of sampled vehicles occurs. It may lead to biased results.

input and output method[1,2,5] is similar to the The point sample method in its performance except that vehicles are observed at the beginning (input) and end (output) of the intersection area. For the sampling procedure, the number of vehicles occupying an intersection approach at successive time intervals are recorded during the study period. Each successive count represents the instantaneous density (number of vehicles occupying the length of the intersection approach per time interval) of the approach. During the study period, the number of vehicles leaving the intersection approach is also counted. This count represents the approach volume. The combination of the instantaneous density information and the traffic volume permits the estimation of the average travel time.

This procedure, based on sampling techniques, permits the accumulation of large amount of data in a relatively short amount of time. However, inaccuracies with this procedure may result due to vehicles entering or leaving the study area between the input and output points.

The path trace method [1,2,5,6,7] is based on a sample of individual vehicles using the study approach. Data on each sample vehicle is record-

ed over the period of time the vehicle is within the study area. The information recorded can include total travel time, stopped time, time in queue, acceleration/deceleration characteristics, or other factors. The major drawback to this method is the amount of time required to obtain the required sample size.

Modeling techniques [1,2] utilize mathematical relationships. Sample data are obtained, tested, and calibrated to develop a model. The results are based on theoretical evaluations. It is time consuming and requires substantial effort in altering the variables for each set of different intersection conditions. This procedure is primarily limited to research purposes.

Techniques for performing these procedures include: sampling methods, photographic methods, observer methods, test-car techniques, license plate methods, mechanical recorder methods, and delay meter methods. Primary considerations of these techniques are included in Table 17.

Sampling Methods

Sampling methods[1,2,5,11,12] involve the sample counting of vehicles on an approach and leaving the intersection area. Dependent upon the information desired, i.e., overall travel time or stopped time, the operational procedure for this technique will differ. Basically, this method will count the number of vehicles occupying or stopped at the approach in successive time intervals for a defined period. To obtain delay characteristics, the approach volume during the study period is counted. For travel time information, the volume of traffic leaving the intersection area is counted during the study period.

These volumes or totals are related to obtain specific delay data, such as: average travel time, total delay, average delay per approach vehicle, average delay per stopped vehicle, and the percent of vehicles stopped, as shown in the data sheet in the Appendix (page I-9). This method has been shown to provide reliable estimates of the delay characteristics at an intersection.

Advantages:

- 1. Simple to perform.
- 2. Obtains a large amount of data in a limited amount of time.
- 3. Results are reliable.
- Equipment and manpower requirements are minimal.
- 5. Data manipulation is simple.

Disadvantages:

- 1. Delay and travel time represent averaged results.
- 2. Large volumes of stopped vehicles along an approach may limit the accuracy of the results.

This technique has been found to be highly effective in performing intersection delay studies. Its overall low cost, due to minimal time and equipment needs, makes this technique favorable.

Photographic Methods

The photographic methods (described in the link studies section) can be used to obtain intersection delay information. Once the data is filmed, it can be extracted by a sampling or a license plate method. Further information on this method is provided in Procedure 7 - Volume Study.

• Observer Method

The observe method (described in the link studies section) is favorable in that it can easily trace a selected vehicle's path at and through the intersection. By recording traffic volume data, the single vehicles' findings may be used to represent the approach volume at that time period.

• Test-Car Techniques

The test-car techniques (described in link studies section) may also be used. However, it will be cumbersome to perform and result in significantly greater time expenditures than other available methods.

• License Plate Method

The license plate method (described in link studies section) can be used to obtain intersection delay information. It usually requires a substantial amount of personnel to record the license plates for the intersection volumes. In addition, timing of the vehicle delay may be approximate since it is difficult to record the time data in much less than minute or half-minute intervals.

Mechanical Recording Method

Mechanical recording method [5,6] are useful for intersection delay studies. This method uses road tubes or tapeswitches to transmit vehicle passage data to a recorder. A typical setup is shown in Figure 23. As the vehicle passes the initial study point, a mark is made on the recording tape. After passing the end point of the study area, another mark is recorded. The recording paper automatically advances in a time- related fashion. The indicator marks on the recording tape are then compared to obtain the travel time data. This method may sometimes require an observer to be stationed at the recorder to manually place marks on the tape for

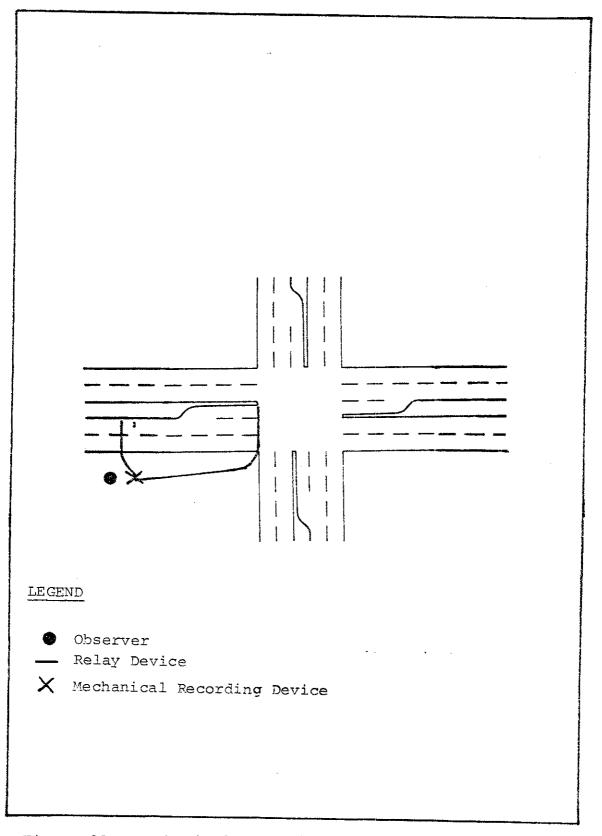


Figure 23. Mechanical recording equipment set-ups.

vehicles which do not pass completely through the test section, such as trun traffic.

Advantages:

- 1. Provides an accurate record of vehicle passage times.
- 2. Device is easy to operate.

Disadvantages:

- 1. Obtains only travel time information.
- 2. At intersection area, vehicle stopped on road tube or tapeswitch can produce inaccurate data.
- 3. Requires additional personnel to monitor data sheets (to obtain data on only those vehicles passing through the test section).
- 4. Data analysis can be time consuming.

This technique can provide highly accurate results for travel time data.

Delay Meter Method

The delay meter method [5,6] permits the accumulation of vehicleseconds of stopped time at intersections. Vehicles within a defined zone zre counted and the amount of stopped time is measured using a delay meter, as activated by an observer.

Advantages:

- 1. Simple to perform.
- 2. Time requirements are low.

Disadvantages:

- 1. Accuracy may be biased by observer actuating the delay meter.
- 2. Information is obtained only on the amount of stopped time delay.
- 3. Equipment and setup can be costly.

This technique is limited by the availability of the equipment. Since most agencies do not have access to this type of equipment, it is not often used.

Selection of Technique

Various techniques are available to perform these alternate procedures. To select the appropriate technique, the management concerns involved in the procedures need to be determined. The management concerns include the data collection capabilities, the level of accuracy, and the manpower, equipment, and time requirements of each technique. Table 18 displays the utility of each technique in relation to these management concerns. Table 19 displays available techniques used to perform the procedures as a function of the information obtained. Based on these tables, a favorable technique can be suggested.

For intersection studies, the use of the sampling method is most favorable. It requires a low time requirement to obtain the required sample and compute the findings. Other techniques require either substantial data collection or data analysis procedures. Where a record of the field situation is warranted, photographic techniques have proven effective utilizing the sampling method for data extraction.

Findings

For intersection delay and travel time studies, the output can be presented in a format similar to that shown in the bottom portion of Figure 21.

Results of an intersection delay study are usually given by calculating the following statistics for an intersection approach:

- Total stopped-time delay in vehicle-seconds;
- 2. Average stopped-time delay per stopped vehicle in seconds;
- 3. Average stopped-time delay per approach vehicle;
- Percentage of vehicles stopped;
- 5. Overall travel time.

Use Of Findings

The effective use of intersection delay findings for assessing level of service conditions at an intersection has not been totally assessed at this time. While attempts have been made to compare the average delay per vehicle to the operating level of service, its effectiveness has not been proved. As a general guideline, average delay (stopped delay) per approach vehicle of 10 seconds or less at signal controlled intersections signifies efficient operation. Average delay values between 10 and 25 seconds indicate that some improvements might relieve the less than satisfactory flow conditions. For four-way stop locations, the improvement might take the form of traffic signal control.

The travel time and delay findings are used in the selection and evaluation of safety-related countermeasures. In selecting feasible countermeasures, delay data are used in the economic analysis to derive delay costs. Delay costs will include: the time cost to an individual (resulting from "lost" time which could have been used in a productive manner) and the vehicle operating costs. These figures can be obtained from various references on roadway economics including:

- 1. Economic Analysis for Highways by R. Winfrey.
- 2. "Running Costs of Motor Vehicles as Affected by Road Design and Traffic", Paul J. Claffey, NCHRP 111.

The calculated delay costs are included in the economic analysis as a "disbenefit"; however, an anticipated improvement (reduction) in delay will result in a "benefit" being derived from the proposed improvement. Delay costs may also be included in formulas used in the scheduling or planning of improvements.

Finally, the use of the travel time and delay data for evaluation of countermeasures involves the measurement of characteristics "before" and "after" implementation of the countermeasures. Differences in "before" and "after" are tested for significance of the results.

Example

An example of the sampling techniques used in determining intersection delay characteristics is given Figures 24 and 25 for obtaining the delay characteristics and the travel time data, respectively. Sample calculations are shown at the bottom of the data sheets. The example indicates an average delay per stopped vehicle of 22.8 seconds and an average delay per approach vehicle of 11.2 seconds. The sample vehicles are equal the total approach volume (596 vehicles). Using the general guidelines, this value does not indicate unusual delays.

These delay findings are used in the selection of countermeasures and evaluation of projects as described in the link studies section.

Procedure 10 - Roadway and Intersection Capacity Studies

Purpose

Highway capacity studies measure the ability (supply) of a highway facility to accomodate or service traffic volumes (demand).

Application

"Capacity" is defined as the maximum number of vehicles which has a reasonable expectation of passing over a given section of a lane or a roadway in one direction (or in both directions for a two-lane or three-lane highway) during a given time period under prevailing roadway and traffic conditions [1]. A comparison of actual traffic volumes to the computed capacity value will define a level of service of the facility.

The relationship between the level of service and safety of highway facilities have not been fully established through research. Until research is undertaken to develop such precise relationships, it is not

INT	ERSE		N DE		STUDY STMovement <u>& B_</u>
Date 3/1/80 We	AVE. CL	MULITAR ERR	ZALGopro: Study N	ich <u>VE</u>	Diserver MAE
Time (minute starting at)		Total Numbe spect in the Ap	r of Vehicles oproach at Ti	me:	
	+0 560	+ 15 sec	+ 30 sec	+ 45 sec	Exit Volume(V)
7:30 AM	0	5	12	21	40
Z:3/1.	28	3	4	_8	75
7:32	<u> </u>	18	2	5	52
7:33	.7	3	//	28	+3
7:34	40_	16	4	_/	7/
7:35	0	5	16	19	63
7:36	26	7	2	11	63
7:37	31	.14	2	6	58
7:38	16	.38	14	+	
7:39		P	22	33	60
			·		-i

Subtotal	162	117	89	136	
Total Density=N		504			596

AVERAGE TRAVEL TIME (T)= N.B
V V
$(T) = \frac{504(15)}{596} = 12.68$ seconds

Figure 24. Sampling techniques travel time data.

t .

INTERSECTION DELAY STUDY

**	FIELD SHEET AVENUE CHILIZEBOND LIES	
Location MICHIGAN	AVENUE CHILIXOSTON UNES	T Mevement EB
Date 3/1/80 Weather	CLEAR SLUDY NO. 1	Observer MAE

Time (minute starting	Sto	Total Numbe	r of Vehicles		Approad	h Volume
at)	+0 880	+ 15 sec	+ 30 sec	+ 45 800	Number Stopped	Number No Stopping
7:30 AM	0	4	11	19	22	18
7:31	28	0	\overline{o}	6	30	95
7:32	9	18	0	2	20	32
7:33	0	0	8	24	24	19
7:34	39	14_	2	0	39	.32
7:35	0	4	16	19	22	41
7:36	26	6	0	9	23	10
_ <u></u>	31_	12	2	6	38	20
7:38	15	38	_14	0	39	32
7:39	0	6	22	_33_	35	25
Subtotal	149	102	75	118	292	304
Total	<u> </u>	443	?	[.59	6

1 13 2 Mar 1 201-36C
Average Dalay per Stopped Vehicle =Total Delay
Number of Stopped Vehicles
6645 22.76
292
Average Delay per Approach Vehicle := Total Delay
Approach Volume
6645 11.15
596
Percent of Vehicles Stopped = Number of Stopped Vehicles 292 049 percent
Approach Volume Fai
376

Figure 25. Sampling techniques - delay data.

.

. .

possible to directly use the results of a capacity analysis to infer that countermeasures that improve-capacity will have a beneficial effect on safety. Nevertheless, capacity studies provide valuable information for many traffic safety engineering investigations.

For most roadway conditions, six levels of service are defined. They are:

Level of Service	Description
A B C D E	free flow stable flow (upper speed range) stable flow approaching unstable flow unstable flow
F	forced flow

Generally, levels of service "A", "B", or "C" are the most desirable conditions. They represent a stable traffic flow.

Need For Capacity Study

The need for a highway capacity study is triggered by the occurrence of congestion related accidents (pattern of rear ends, right-angle, left-turn accidents during peak traffic periods), field observation of congestion or insufficient capacity conditions, and complaints by local citizens.

Use of Capacity Study

The information obtained from a highway capacity study is used for:

- Planning and justifying safety countermeasures.
- Selecting a safety project.
- Evaluating the successful implementation of a safety project.

For example, assume two countermeasures are being considered for reducing accident frequency at a location. Also assume countermeasure No. 1 will result in level of service "B" operation as opposed to level of service "E" which is the existing condition at the location. Furthermore, countermeasure No. 2 is expected to have little effect on capacity. Based on capacity objectives, countermeasure No. 1.would likely be selected since it improves the operation of the location.

Period Of Data Collection

Two types of data are typically collected for a capacity study. They are: roadway inventory information and volume data. The data differs by the techniques used to assess the roadway capacity. The collection of roadway inventory data can be performed under varying traffic conditions. Traffic volume measurements, however, are normally obtained during peak traffic flow periods. Typical peak periods occur on weekdays (from Monday P.M. through Friday A.M.).

Alternate Techniques

Several techniques to determine capacity are available. Analysis methods include:

- Highway Capacity Manual (1965) charts.
- Northwestern University Signalized Intersection Capacity charts and nomographs by Jack E. Leisch.
- Interim Materials on Highway Capacity.
- Critical movement analysis technique.
- Cycle sampling method.

Primary considerations of these techniques are identified in Table 20.

Highway Capacity Manual

The 1965 <u>Highway Capacity Manual</u> (HCM) [1] provides the most complete and authoritative reference on capacity. It utilizes the following factors to determine the capacity of a facility.

- Roadway Factors
 - Approach width (urban)
 - Lane width (rural)
 - Lateral clearance
 - Shoulders
 - Auxiliary lanes
 - Surface conditions
 - Alignment
 - Grades
- Traffic Factors
 - Trucks
 - Buses
 - Lane distribution
 - Variations of traffic flow (load factors, peak hour factors)
 - Traffic interruptions (traffic signal, railroad crossing, etc.)
 - Turning traffic influence

Consi- deration Technique	Function	Equipment Require- ments	Time Requirements	Manpower Requirements	Associated Costs	Data Input	Data Obtained	Data Output
l.Highway Capacity Manual	. Obtains capacity data for free- ways, weave and merge functions, arterial streets, downtown streets, rural highways, and major inter- sections using table, charts, and forumulas	.Highway Capscity Manual .Data sheets	Approx. 15-45 minutes per site	Trained technician or engineer to perform analysis	.HCM manual- \$10	Dafined location Roadway and road- side inventory Signal timing (for signalized locations) Volume measure- ments Study period	Available or design capacity	Service volumes and op- erating level of service of faci- lity
2. Capacity Nomographs	Obtains capacity of signalized intersections using charts derived from HCM data	Set of charts Data sheets	Approx. 10-30 minutes per site	 Trained technician or engineer to perform analysis 	None	.Defined location .Roadway inventory .Signal timing (for signalized locations) .Volume measure- ments .Study period	Available or design capacity	Service volumes and op- erating level of service of faci- lity
3.Interim Materials	Obtains capacity of freeways, ramps, weaving Sections, and unsignalized intersections using charts and formulas	.TRB Circular 212 .Data sheets	Approx. 30-60 minutes per site	Engineer to perform analysis	.TRB Circular 212 - \$6	Defined location Roadway and road- side inventory Signal timing (for signalized locations) Volume measure- ments .Study period	Available or design capacity	Operating service volumes and leve of ser- vice
4.Critical Lane Analysis	Obtains level of service of signal- ized intersections using additive pro- cedures based on sum of conflicting movement	.Data sheets	Approx. 10-20 minutes per site	.Trained technician or engineer to perform analysis	.None	Dafined location Roadway inventory Volume measure- ments obtained during peak hour Study period	.Critical lane summation	Estimate of opera- ting le- vel of service
5.Cycle Sampling	Obtains a measure of level of service of measuring per- centage of fully loaded cycles	•Data sheets	Approx. 20-80 minutes per site	 Tachnician to collect data Technician to adjust data 	.None	Defined location Cycle length Study period	Number of fully loaded cycles	.Estimate of level of ser- vice

4

Table 20. Primary considerations for highway capacity study techniques.

.

1 1

In general, capacity computations involve the determination of an "unadjusted" capacity for a given set of standard conditions. This value is then adjusted by a series of mulitiplier factors to reflect the prevailing roadway, environment, and traffic conditions.

The support data for these computations is given in the HCM for different situations including:

- Freeway sections.
- Weaving sections.
- Ramp junctions.
- Signalized intersections.
- Urban and suburban arterials.
- Downtown (CBD) streets.
- Rural highways.

Based on empirical relationships, service volume or level of service characteristics can be defined through the use of charts, tables or formulas. Additional details of these formulas and charts are provided in the <u>Highway Capacity Manual</u> (1965).

Advantages:

- 1. Is nationally accepted.
- 2. Provides capacity and level of service information for a wide range of highway situations.
- 3. Relationships are defined in simple terms and calculations are easy to perform.

Disadvantages:

- 1. Some of the analyses contain inconsistencies.
- 2. May require considerable analysis to obtain level of service information for intersections.

A basic limitation of this method is the time required to perform intersection analysis. Several steps, i.e., reading graphs and charts and using various formulae, are required to obtain a capacity value. However, this is only a minor limitation and does not reduce the overall effectiveness and applicability of this method to most highway situations.

Northwestern University Capacity Charts

The Northwestern signalized intersection capacity charts and nomographs [2,3] utilize the <u>Highway Capacity Manual</u> data for intersection capacity. The nomographs are designed to simplify and reduce the work that otherwise would be required by the long-hand computational approach of the <u>Manual</u>. Data input requirements are similar to the HCM method. The various adjustment factors, e.g., truck percentages, left-turn and right-turn percentages, etc., are incorporated into a nomograph so that for any known condition, intersection capacities can be obtained directly without reference to the <u>Manual</u>. The resultant output from these charts, for all practical purposes, are similar to those produced by the Manual.

Advantages:

- 1. Provide results similar to those obtained with the <u>Highway</u> Capacity Manual (1965).
- 2. Simple to perform.
- 3. Requires limited calculations.

Disadvantages:

- 1. Graphical readings may produce slight inaccuracies.
- 2. Limited to signalized intersection analysis.

These nomographs are currently used by many agencies throughout the U.S. and are most appropriate for intersection applications.

Interim Material Guide

A considerable number of studies related to highway capacity have been completed since the 1965 HCM was published. To supplement current Manual procedures, a set of <u>Interim Materials on Highway Capacity</u> [4] was recently published by the Transportation Research Board. It is currently under a two-year trial and evaluation period to be completed by January, 1982. The <u>Interim Materials</u> provide updated procedures in the following areas:

- Signalized intersections critical movement analysis.
- Unsignalized intersections two-way stop and yield sign locations.

. . . .

- Weaving analysis.
- Freeway capacity.
- Pedestrian analysis.
- Transit analysis.

The procedure developed for unsignalized intersection capacity is only applicable to intersections with two-way stop signs or to locations where yield signs are posted. The first step of the procedure involves calculating the maximum flow available for each minor approach. Comparison of these values to the existing demand yields an estimate of the level of service and the anticipated delay. The procedure includes adjustment factors for conditions such as: the effects of main roadway traffic waiting to make left-turns; lane configuration on the minor approach; and shared lane movements, i.e., right and through vehicles using the same lane.

The sections of the Interim Materials that address weaving analysis and freeway capacity procedures are major supplements to the 1965 <u>Manual</u> techniques. The <u>Interim Materials</u> specifically deal with the following freeway components.

- Basic Freeway Segments.
- Weaving Areas.
- Ramp Junctions.

The <u>Interim Materials</u> for freeway capacity analysis are organized into the following parts:

- 1. Basic Characteristics The basic factors and items which affect the basic factors are presented along with equations, graphs, and other supporting materials.
- Computational Procedures A step-by-step procedure is given for conducting the analysis.
- 3. Sample Problems Examples of the methodology are presented for a variety of applications.

The procedure for determining the capacity of freeway segments in the <u>Interim Materials</u> is similar to the technique outlined previously for the <u>HCM</u>; however, new charts, correction factors, and level of service ranges are given to reflect changes in roadway, vehicle, and driver characteristics. The section on weaving analysis was derived from the results of recent research investigations. Two procedures are available. They are more complicated than in the <u>HCM</u>. However, the procedures have tended to reduce inconsistencies in the weaving procedures, such as the definition of the quality of flow and level of service.

Critical Movement Analysis

The critical movement analysis technique (TRB 212) [4,5,6] provides a quick and efficient method of estimating the intersection level of service. The method utilizes input relating to intersection geometric layout, traffic volumes and traffic signal phasing for computing a total intersection critical volume. In this technique, critical movements are determined and summed for each signal phase. These volumes compared to level of service criteria as shown in Table 21 to determine the operating level of service.

Level of	Level of		Critical Volumes 2-Phase 3-Phase Multi-Phas			
Service	vice Description		3-Phase	Multi-Phase		
A B C D E	Free Stable (upper speed range) Stable Unstable Capacity	900 1,050 1,200 1,275 1,500	855 1,000 1,140 1,200 1,425	825 965 1,100 1,175 1,375		

Source: TRB Circular No. 212

Initially, observed traffic volumes are distributed to the available traffic lanes. This is achieved by placing traffic in its expected travel path using lane use factors. For instance, if 1,000 vehicles are observed on a two lane approach during the peak hour, the lane distribution would be:

 $1,000 \times 0.55 = 550$ vehicles in one lane 1,000 - 550 = 450 vehicles in the other lane

The lane carrying 550 vehicles is identified as the critical volume for that approach. Traffic would be assigned using similar factors for approaches with more than two lanes. If the volume had been recorded separately for each approach lane, then the actual volumes would be used instead of the estimated lane utilization factors.

From signal phasing patterns, critical movements are then determined. By summing conflicting movements using the highest volume lane for each specific movement, a volume associated with each critical movement or phase is computed. The critical movements are then summed to produce a critical volume. The level of service is determined by comparing the critical volume to the service volume ranges shown in Table 21.

This technique is currently being used by a number of agencies, and has been used primarily for planning purposes. It should be noted that more detailed methodologies, incorporating truck, lane width, and other equivalency factors have been introduced to improve the accuracy of the results.

Advantages:

- 1. Provides an estimate of the total intersection level of service.
- 2. Effects of design and operational changes can be evaluated.
- 3. Uses simple and quick computations.

Disadvantages:

- 1. Requires knowledge of lane utilization for accurate results.
- 2. Use of design factors can result in lengthy computations.
- 3. Requires knowledge of the operation of the adjacent intersection and roadways.
- 4. Levels of service criteria used are questionable dependent on the number and extent of the various adjustment factors.

Application of this technique is restricted to signalized intersections, where its use is highly recommended. However, where the computed level of service by this method approaches a critical point (level of service D, E, or F), the <u>HCM</u> or nomograph technique should be used to provide a more detailed review of the individual intersection approaches.

• Cycle Sampling Method

The cycle sampling method is based on a measurement of the number of fully loaded signal phases resulting from a continuous traffic demand on an approach. The number of fully loaded phases is compared with the available number of cycles during the observation period to determine a load factor. Levels of service related to the load factor are shown below. These values were obtained from the 1965 HCM.

Level of Service	Load Factor
А	0.0
В	0.1
С	0.3
D	0.7
E	1.0

This technique is performed in the field during the peak period. The results are used to assess a peak hour level of service based on the sample counting period. Since this technique is a sampling technique, it may be feasible to count as little as 15 continuous minutes of operation per approach. However, the sample period should include the peak period with-in the hour to limit the influence of lower volumes on the critical peak periods.

Advantages:

- Provides a quick estimate of the intersection level of service.
- 2. Requires a limited data collection period.
- 3. Requires minimal data analysis.

Disadvantages:

- 1. Results may be biased by obtained sample.
- 2. Provides an estimate for operating level of service.
- 3. Load factor may not relate to actual level of service.

This method is used at signalized intersections. The use of the load factor as a measure of the level of service may lead to inaccuracies in the data findings. The load factor represents the percent of fully utilized green phases within the peak hour. A load factor of 1.0 representing 100 percent of green phases being fully loaded may not, however, represent unstable flow conditions. Rather, full utilization of green phase may represent, a stable flow if the demand rate is equal to the service rate. This method is useful, however, as an approximate method for determining the level of service. It is not extremely useful for highway safety applications.

Selection Of Alternate Techniques

The selection of the appropriate highway capacity analysis technique is dependent on the management concerns of the procedure. For capacity procedures, these concerns include the specific application of the procedure, the level of accuracy of the results, and the time, equipment, and manpower requirements of each technique. Table 22 displays the utility of each technique in relation to these management concerns. Based on the specific needs of the procedure, Table 23 provides a list of available techniques to review the capacity of a situation.

In utilizing these tables, Table 23 is used to identify alternate techniques available to perform the capacity procedure. Where several techniques are appropriate for a situation, a review of the management concerns (Table 22) is made to select an appropriate technique.

General guidelines used in selecting a technique include the following:

- 1. The <u>Highway Capacity Manual (HCM)</u>, and <u>Interim Materials</u> due to their wide range of applications and overall reliability in their findings are favorable for use in most situations.
- 2. Where analysis of signalized intersections is required, the nomograph method may be favorable. It uses the <u>HCM</u> data but combines the several tables used in the <u>HCM</u> method onto a nomograph allowing for a more efficient technique.
- 3. The critical movement technique is a useful method for signalized intersections where the overall intersection operation is being reviewed. Critical movement analysis has not been used significantly throughout the U.S. Recent attempts to encourage its use

Technique Management Concerns	Highway Capacity Manual	Capacity Nomo- graphs	Critical Movement Analysis	Cycle Sampling	TRB 212
Level of Application	.Freeways, weav- ing and ramp junctions, ur- ban and suburban arterials CBD (downtown) streets, rural highways, signal- ized intersec- tions	.Signalized intersections	.Signalized intersections	.Signalized intereactions	Preeways, weaving and ramp junctions, unsignalized inter- sections, bedestrian walkways and signal- ized intersection (critical movement analysis)
Level of Accuracy	.Detailed analy- sis of situations	.Detailed analysis by approach	.Detailed ansly- sis by total intersection	.Approximate analy- sis by approach	Detailed analysis of situations
.Time Requirements	Require table look up and calculations	.Permits simple table look up	.Requires calcu- lations and some table look up	.Requires single simple calculation	Requires table look up and calculations
.Equipment Requirements	.Highway capacity manual	.Set of nome- graphs	.Minimal	.Minimal	.Interim Guide
. Manpowar Equipment	.Engineer level	.Engineer level	.Enginder level	.Technician level	.Fngineer level

Table 22. Technique utility for Roadway Capacity Study.

Table 23. Favorable Roadway Capacity Study techniques.

TECHNIQUE	HIGHWAY CAPACITY MANUAL	CAPACITY NOMOGRAPHS	CRIFICAL LANE ANALYSIS	CYCLE SAMPLING	INTERIM MATERIALS
. Freeways	x				х
. Weave and Ramp Junctions	×				×
. Urban and Sub- urban Arterials	x				
. CBD (Downtown) Streets	x	x	x		
. Rural Highways	×		-		-
. Major Intersections		×	x	×	
. Unsignalized Inter- sections					x

(through workshop sessions and classes) have tended to provide a more widespread use of this technique.

 The cycle sampling method is favorable as a guideline for capacity evaluation of existing signalized intersections. It is not intended for planning or design purposes.

Findings

Highway capacity results can be summarized in the form of tables comparing the existing use of the facility to the design capacity of the facility. A sample table is shown in the Appendix (page I-10). For special use lanes, i.e., left-turn lanes, right-turn lanes, capacity analysis is normally assessed as a separate item.

• Use Of Findings

Findings from a highway capacity study provide a measure of the level of service for a facility. Using the <u>Highway Capacity Manual</u>, the Northwestern nomographs, or the <u>Interim Materials Guide</u>, the findings will produce a "service volume" (available capacity for a defined level of service) of the facility for a given level of service. Level of service "E", denoting capacity conditions is commonly used. The observed volumes for the site are then compared to the service volume to develop a V/C ratio. Values of the V/C ratio for specific levels of service are:

<u>V/C Ratio</u>	Level of Service
0.0	A
0.1	В
0.3	С
0.7	D
1.0	E

These ratios are used to describe the level of service and to suggest the need for improvement, a level of service "D" and "E" will typcially warrant an improvement.

The findings from the critical lane analysis and cycle sampling methods will result in a direct measurement of the level of service. The critical lane technique will describe the overall intersection operation while the cycle sampling method assesses the level of service by intersection approach.

The results of the highway capacity procedure relates the traffic handling capabilities of a facility, and can be used to provide input on congestion-related safety deficiencies. Its primary use, however, is as input in the selection of countermeasures. Example 1

An example of this technique follows for a three-phase intersection during the evening peak hour, as shown in Figure 26. It is assumed that the volumes are based on observed data. Since observed volumes by lane are used, lane use factors are unnecessary.

By phase and lane use, the respective critical volumes are:

PHASE 1 - Southbound through - 280

- Southbound right 210
- Northbound through 340
- Northbound right 130
- PHASE 2 Southbound Teft-turn 130 - Northbound Teft-turn - 150
- PHASE 3 Eastbound through and left-turn 400
 - Eastbound through and right-turn 320
 - Westbound through and left-turn 300
 - Westbound through and right-turn 325

The critical volume of each phase represent the highest volume for conflicting movements. As such, the following critical volumes are defined:

- PHASE 1 (no conflicting movements) Northbound through volume = 340 vehicles
- PHASE 2 (no conflicting movements) Northbound left-turn volume = 150 vehicles
- PHASE 3 (conflicting movement between left-turn traffic and opposing through and right-turn traffic) - Eastbound left-turn and westbound through and right-turn = 75 + 325 = 400 vehicles
- or,
- Westbound left-turn and eastbound through and right-turn = 50 + 325 = 375 vehicles.

PHASE 3 (critical volume) = 400 vehicles

Summarizing these volumes, the total critical volume is:

PHASE 1 - 340 vehicles PHASE 2 - 150 vehicles PHASE 3 - 400 vehicles 890 vehicles

From the previous table for a three-phase signal, this intersection operates at level of service "A"-"B".

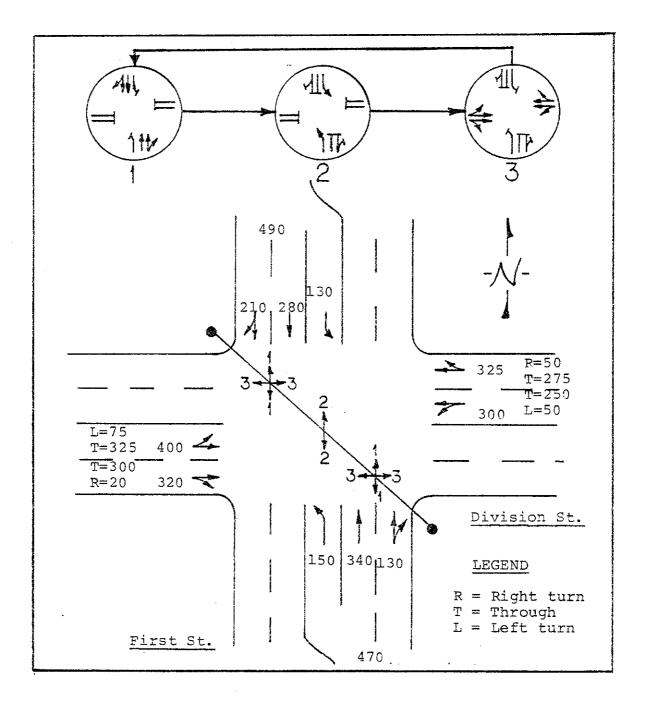
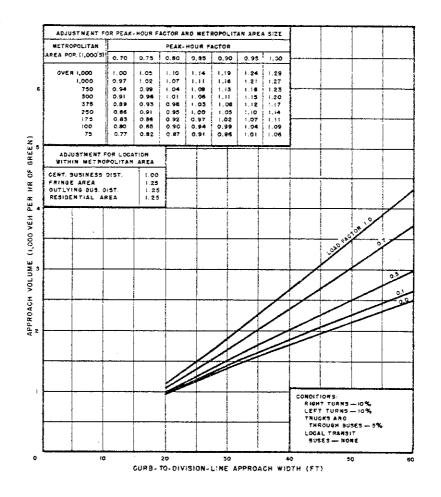


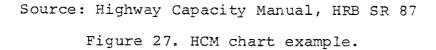
Figure 26. Critical movement technique - example diagram.

• Example 2

Assume conditions for a signalized intersection as given below. The cycle length during the evening peak hour is 80 seconds with a phase timing plan of:

Other factors are:


lane width = 12 feet
2 thru lanes and the one-left turn lane per appraoch.
area = central business district
metropolitan area = over 1,000,000 population
peak hour factor (assumed) = 0.85
separate left-turn lanes for 1st. Street
lst. Street right-turns = 10%
Division Street left-turns = 5%
Trucks and through buses = 4%
No parking in area.


Compute the service volumes and V/C ratio of the north approach.

In computing the capacity, the chart (taken from \underline{HCM}) shown in Figure 27 is used for an urban intersection approach on a two-way street with no parking.

NORTH APPROACH

Approach width (exclusive of left-turn lane) = 24' SERVICE VOLUME (through and right-turn) L.O.S. "E" = 2100 veh. hr. of green X (peak hour factor adjustment) X (location within metro area-CBD factor) X (adjustment for right-turns - 10%) X (adjustment for left-turns - 0%) X (adjustment for trucks and through buses) X (G/C ratio for approach)

.

157

$$= \frac{2,100 \text{ veh.}}{\text{hr. of green}} \times 1.14 \times 1.00 \times 1.00 \times 1.10 \times 1.01 \times 0.40$$

The observed through and right-turn volume during the peak hour is 490 vehicles.

This represents a better than L.O.S. "C" condition representing a stable flow.

For the separate left-turn with signal control, the capacity is defined by:

$$C = L \times G/C \times \frac{W}{10[1+0.8(N-1)](1-0.01(T-5)]}$$

Where:

C = capacity

L = turn lane volume per hour of green time per 10 foot width (from <u>HCM</u> table)

• .

G/C = "green time to cycle length" ratio of the separate lane

W = width of turn lane, ft.

N = number of turn lanes

T = truck percentage

12

 $CAPACITY = 1200 \times 0.10 \times \frac{1011+0.8(1-1)11-0.01(4-5)1}{1011+0.8(1-1)11-0.01(4-5)1}$

= 1200 x 0.10 x 1.19 = 143 vehicles

The observed left-turn lane volume is 130 vehicles. The V/C ratio is:

 $\frac{130}{143} = 0.91$

This represents a level of service "D" operation, nearing an unstable flow. It may require a countermeasure to upgrade the level of service to "C" conditions.

Procedure 11 - Traffic Conflict Study

Purpose

Traffic conflicts studies are used in the diagnosis of safety and operational problems at a highway location. Traffic conflict counts can be a supplement to routine field inspections of high-accident locations, or they can be conducted at suspected hazardous sites.

Application

A traffic conflict occurs when a driver takes evasive action such as braking or weaving to avoid a collision. The collection, summarization, and analysis of conflict data comprises a traffic conflict study. Many safety engineers believe Traffic Conflicts to be an indicator of the accident potential at a site. However, defined relationships between conflicts and accidents have not yet been clearly established.

The traffic conflict technique (TCT) was originally developed by the General Motors Research Laboratories in 1967 [1,2]. The technique was designed to be a systematic method of observing and measuring accident potential at intersections. Since then, it has been modified and used by various U.S. highway agencies, particularly in the States of Ohio, Virginia, Kentucky, and Washington [3,4,5,6]. Various other countries including England, Sweden, and Canada have developed and utilized their own versions of the traffic conflict technique [6,7,8,9]. Time lapse photography is commonly used in these countries for collecting conflict data.

A traffic conflict study may involve identifying conflict categories by type, as well as determining conflict frequencies, rates, and severities (nearness to an accident). The conflicts are recorded and analyzed to provide input to meet the study purposes. In addition a diagram (similar to a collision diagram) may be prepared to graphically display the data.

• Use of Traffic Conflict Study

A traffic conflict study is useful for several purposes. In some cases, detailed accident information is unavailable, and in these cases, conflict data can serve as a replacement for these records to diagnose safety deficiencies.

Conflict studies can also be conducted to assist in the selection of safety-related countermeasures. For this application, traffic conflicts can provide valuable information in the study of hazardous locations, particularly at urban, signalized intersections where a significant number of conflicting movements normally occur in or near the intersection area. Countermeasures may be developed or selected to alleviate certain noticeable conflict types.

For use in the Evaluation Component of the Highway Safety Improvement Process, traffic conflicts can be used as a "measure of effectiveness" of a project. Their use in this way is favorable for intersections containing significant traffic volumes and a variety of conflicting traffic movements.

Traffic Conflict Definitions

The TCT procedure discussed herein is based on NCHRP Report 219 [10], as completed by Midwest Research Institute (1980). Definitions of specific conflict types pertinent to most conflict studies are as follows:

• Left-Turn, Same-Direction Conflict

A left-turn, same-direction conflict occurs when the first vehicle slows to make a left-turn, thus placing a second, following vehicle in danger of rear-end collision. The second vehicle brakes or swerves, then continues through the intersection (see Fig. H-3 of Figure 28.)

• <u>Right-Turn</u>, Same-Direction Conflict

A right-turn, same-direction confict occurs when the first vehicle slows to make a right-turn, thus placing a second, following vehicle in danger of a rear-end collision. The second vehicle brakes or swerves, then continues through the intersection (see Fig. H-4 of Figure 28.)

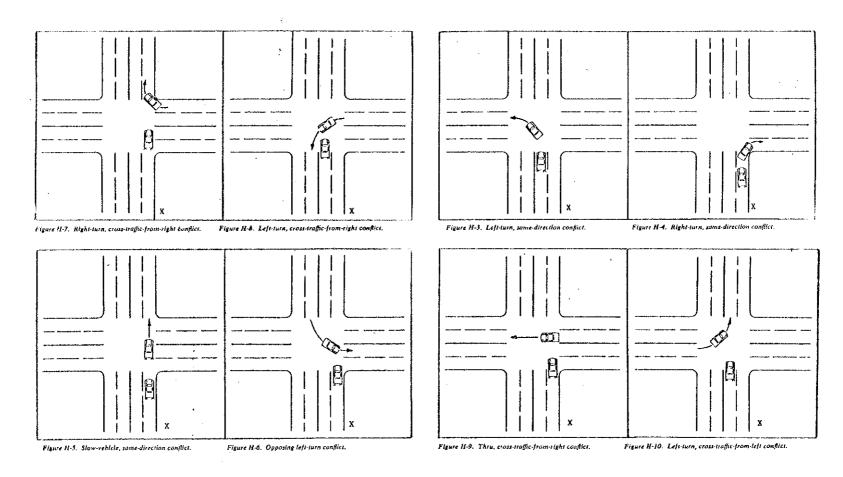


Figure 28. Conflict types.

1 1

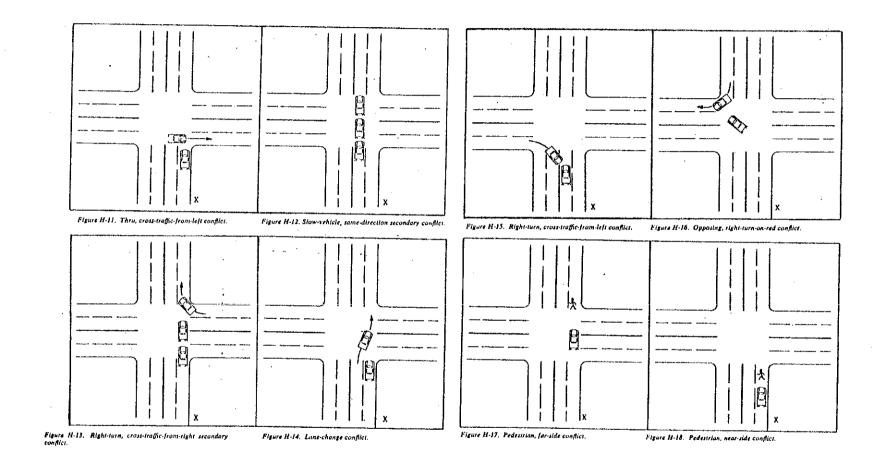


Figure 28. Conflict types (continued).

162

1 1

• Slow-Vehicle, Same-Direction Conflict

A slow-vehicle, same-direction conflict occurs when the first vehicle slows while approaching or passing through an intersection, thus placing a second, following vehicle in danger of a rear-end collision. The second vehicle brakes or swerves, then continues through the intersection (see Fig. H-5 of Figure 28).

The reason for the vehicle's slowness may not be evident, but it could simply be a precautionary action, or a result of congestion or some other cause beyond the intersection.

• Opposing Left-Turn Conflict

An opposing left-turn conflict occurs when an oncoming vehicle makes a left-turn, thus placing a second vehicle, going in the other direction, in danger of a head-on or broadside collision. The conflicted vehicle brakes or swerves, then continues through the intersection (see Fig. H-6 of Figure 28).

By convention, in this and the following conflict situations, the conflicting vehicle is presumed to have the right-of-way, and this right-of-way is threatened by some other road user. Situations such as a "conflicted" vehicle placed in danger of a collision because it is running a red light, for example, are not treated as traffic conflicts.

Right-Turn, Cross-Traffic-From-Right Conflict

A right-turn, cross-traffic-from-right conflict occurs when a vehicle approaching from the right makes a right-turn, thus placing a second vehicle in jeopardy of a broadside or rear-end collision. The second vehicle brakes or swerves, then continues through the inter--section (see Fig. H-7 of Figure 28 for the direction of the two vehicles).

• Left-Turn, Cross-Traffic-From-Right Conflict

A left-turn, cross-traffic-from-right conflict occurs when a vehicle approaching from the right makes a left-turn, thus placing a second vehicle in danger of a broadside collision. The second vehicle brakes or swerves, then continues through the intersection (see Fig. H-8 of Figure 28).

• Thru, Cross-Traffic-From-Right Conflict

A thru, cross-traffic-from-right conflict occurs when a vehicle approaching from the right crosses in front of a second vehicle, thus placing it in danger of a broadside collision. The second vehicle brakes or swerves, then continues through the intersection (see Fig. H-9 of Figure 28).

• Left-Turn, Cross-Traffic-From-Left Conflict

A left-turn, cross-traffic-from-left conflict occurs when a vehicle approaching from the left makes a left-turn, thus placing a second vehicle in danger of a broadside or rear-end collision. The second vehicle brakes or swerves, then continues through the intersection (see Fig. H-10 of Figure 28).

• Thru, Cross-Traffic-From-Left Conflict

A thru, cross-traffic-from-left conflict occurs when a vehicle approaching from the left crosses in front of a second vehicle, thus placing it in danger of a broadside collision. The second vehicle brakes or swerves, then continues through the intersection (see Fig. H-11 of Figure 28).

Secondary Conflicts

In the foregoing nine conflict situations, when the second vehicle makes an evasive maneuver, it may place yet another road user (a third vehicle) in danger of a collision. This type of event is called a "secondary conflict". Nearly always, the second conflict will look much like a slow-vehicle, same-direction conflict (or a lane-change conflict, which has not yet been described). The difference is that, in a secondary conflict, the conflicted vehicle is responding to a vehicle that, itself, is in a conflict situation (see examples in Figs. H-12 and H-13 of Figure 28).

By convention, more than one secondary conflict for any initial conflict is not counted. Even if a line of cars stops because the -first one turns left, it is counted as a single secondary conflict.

Other Types of Traffic Conflicts

Under certain special conditions, one may be asked to watch for and record other types of traffic conflicts. One such conflict is the "lane-change conflict", which occurs when a vehicle changes from one lane to another, thus placing a second, following vehicle in the new lane in danger of a rear-end or sideswipe collision. The conflicted vehicle brakes or swerves, then continues through the intersection (see Fig. H-14 of Figure 28). However, if the lane change is made by a vehicle because it is in danger, itself, of a rear-end collision with another vehicle, the following vehicle in the new lane is said to be faced not with a lane-change conflict situation, but with a secondary conflict situation. Another unusual conflict is the "right-turn, cross-traffic-left" conflict. It occurs when a vehicle approaching from the left makes a right-turn across the center of the roadway and into an opposing lane, thus, placing a vehicle in that lane in danger of a head-on collision. The conflicted vehicle brakes or swerves, then continues through the intersection (see Fig. H-15 of Figure 28). This conflict is sometimes observed when the cross street is narrow, or when large trucks or buses make right-turns. Note that the first vehicle must cross the center line for a conflict to exist!

An "opposing right-turn-on-red" conflict can only occur at a signalized intersection with a protected left-turn phase. Such a conflict occurs when an oncoming vehicle makes a right-turn-on-red during the protected left-turn phase, thus, placing a left-turning, conflicted vehicle (which has the right-of-way) in danger of a broad-side or rear-end collision. The conflicted vehicle brakes or swerves, then continues through the intersection (see Fig. H-16 of Figure 28).

There can also be "pedestrian" conflicts, which occur when a pedestrian (the road user causing the conflict) crosses in front of a vehicle that has the right-of-way, thus, creating a possible collision situation. Any such crossing on the near side or far side of the intersection (see Figs. H-17 and H-18 of Figure 28) is liable to be a conflict situation. However, the pedestrian movements on the right and left sides of the intersection are not considered to create conflict situations if the movements have the right-of-way, such as during a "walk" phase.

In addition, a special type of study exists for conflicts termed "erratic maneuvers". A study of erratic maneuvers [11] records any sudden, unexpected movement by a vehicle which could result in an accident. It differs from a true conflict in that it usually involves only one vehicle commiting an unsafe movement independent of other vehicles. An example would be a vehicle crossing the centerline of a two lane roadway in a curve section. Other vehicles are not present to produce a conflict, however, this situation can be extremely hazardous to potential oncoming traffic.

Data Collection Requirements

Prior to performing the conflicts procedure, it is necessary that the observers understand and be familiar with the specific conflict types, which will reduce misinterpretation of data and result in greater accuracy. To insure repeatability of the data between observers, they should discuss among themselves the conflict types and their use in field situations.

Observers should be trained in the traffic conflict technique prior to data collection at an actual study location. Training requires the supervision of a person experienced in the field performance of the traffic conflicts technique. A period of one to two weeks is normally required for most training purposes.

Other data will also be obtained to effectively use the traffic conflict data. These include traffic volume and roadway inventory data.

Period of Data Collection

For most safety applications, data collection is limited to a single day. For low volume sites, however, more than one day may be necessary. Conflict data is collected on typically weekdays. It is desirable to collect data during the peak or higher volume hours to limit data collection efforts and to diagnose safety problems under the anticipated peak conflict conditions. The conflict data should be collected under favorable weather conditions to eliminate any influence of the weather on the results of the study.

It is also preferable that data be collected during each of the various peak periods during a day to allow a review of conflict patterns throughout the day.

<u>Traffic Conflict Technique</u>

Survey Requirements

A general purpose form for collecting traffic conflict data at intersections is shown in the Appendix (pageI-11), as developed in NCHRP 219 [10]. Information on the day, date, and observer should be completed prior to the field work. The actual beginning and ending count times should be recorded in the left column of the form. Data should normally be collected in 20-minute intervals. A mechanical count board may also help-in recording all traffic conflict types.

Generally, a two-man survey team is used. The trained survey personnel observe the same intersection approach leg at the same time. One person observes and records the conflict information while the other person records volume data. Where specific traffic movement by lane is not required, portable counters can be used to reduce manpower requirements. In many situations, manual counting of traffic volumes is necessary.

The survey team is stationed approximately 100-300 feet (35-100 m) from the intersection in order to observe the specific approach. The specific distance is dependent on the anticipated queue backup during the sampling (survey) periods. It is necessary to be situated so as to be

able to accurately observe all the vehicles and recognize activation of brake lights and weave movements.

When the survey commences, the observers record the volume and conflict information on the data sheets. Severe conflicts and special or unusual types of events should also be recorded on the data form. It can include "erratic maneuvers" which are similar to traffic conflicts but are single vehicle events.

Time-lapse photography can be used to study conflict situations. Photographic means are particularly appropriate when studying erratic maneuvers, low volume locations, expected low conflict situations, and other situations which could require excessive time expenditures if manually observed. Further details of the TCT counting procedure and minimum data requirements can be found in NCHRP Report No. 219 [10]. Information on major considerations of the traffic conflicts technique is shown in Table 24.

Findings

After traffic conflict data are collected and summarized, they must be properly analyzed to help determine specific locational problems that may exist. One way to display conflict data for further analysis purposes is with a Conflict Diagram, an example of which is shown in Figure 29. The diagram is prepared in much the same way as a collision diagram. One arrow per conflict type is shown with the number of routine and/or moderate conflicts per hour.

Another means of summarizing conflict data is by tabular summaries of conflicts types or rates (sample shown in Figure 30). This method is useful in identifying conflict patterns but it fails to locate the conflicts as they occur along an approach.

• Use Of Findings

For analyzing traffic conflict data, similar techniques exist as for the accident procedures. Conflict types are reviewed for patterns of a specific conflict type. They may be visually assessed or compared to an expected value. If data are available, the use of expected values is preferred.

After traffic conflict patterns have been defined, the results may be used along with accident information or other safety measures to diagnose safety deficiencies. To assist in selecting countermeasures to alleviate the deficiencies identified by the conflict patterns, a set of tables was developed by Glauz in NCHRP 219 [10]. They include the type of intersection improvements that are appropriate for alleviation of specific conflict types. A sample table for a signalized, four-leg (four lane) intersections, Table 25, contains 19 possible improvements as a function of specific conflict types. These tables are useful in developing possible countermeasures at intersections. While the TCT may be applicable to locations other than intersections, its use has not been well documented, to date, on other types of locations.

Consid- eration Technique	Function	Equipment Requirements	Manpower Requirements	Time Requirements	Associated Costs	Data Input	Data Obtained	Data Output
.Traffic Con- flicts Tech- nique (TCT)	Provides assis- tance in the diagnosis of safety prob- lems and the evaluation of countermeasures through the use of field meas- urements of a non-accident measuretraf- fic conflicts	.Data sheets .Volume counter	.Technician to record conflicts at an approach .If avail- able, tech- nician to re- cord volume data	Single day for most purposes; longer for evaluation data	.Volume counter \$850 - \$2000	.Defined location .Roadway inventory	Number of specific conflict types Volume data	.Conflict patterns .Conflict rates .Possible safety deficien- cies

Table 24. Primary considerations for Traffic Conflict Study.

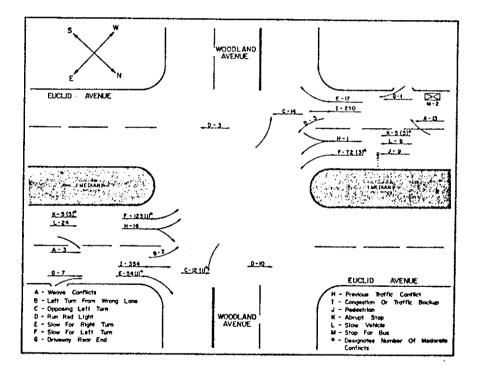


Figure 29. Sample conflict diagram.

,

INTERSECTION	APPROACH	TOTAL CONFLICTS (11-HOURS)	CONFLICTS PER HOUR	PEAK-HOUR CONFLICTS	CONFLICT RATE**	
New Circle Road at Woodhill Drive	Ś	894	. 81	127	89.5	
Euclid Avenue at	NW (IB)*	601	55	97	144.9	
Woodland Avenue	SE (OB)	361	33	81	111.6	
Limestone Street at	N (1B)	631	57	95	92.2	
Virginia Avenue	S (OB)	595	54	98	88.3	
Main Street at	SE (IB)	913	83	103	152.9	
Jefferson Street	NW (OB)	496	45	`65	79.3	
Harrodsburg Road at	NE (IB)	349	32	52	47.1	
Larkspur Drive	SW (OB)	470	43	119	71.8	

Source: Neference 5

Figure 30. Tabular summaries of traffic conflict data.

	Same Direction (Rear-End)		Left-Turn	"Right Turn Cross Traffic		Left Turn Cross Traffic		Thru Cross Traffic			nanch i comm. An gàirthg ag		
Improvement	Left-Turn	Right-Turn Slow Vehicle	Lane Change	Total Rear-End	Opposing Left	From Left	From Right	From Left	From Right	From Left	From Right	Pedestrian	Opposing RTOR
Left-Turn Bay	x		х		x						<u> </u>		
Left-Turn Phase	X		X		X								
Left-Turn Restriction	x		x		x								
Right-Turn Bay		x	x										
Right-Turn Radius or Roadway		X	X			X	x						
Signal Cycle or Phase Length	Х	х	X	х	х							x	
Actuated Signals							х	х	х	x	х		
Longer Amber or all Red Clearance				х			x	X	x	X	x		
RTOR Restrictions						х	X						·x
Pedestrian Barriers												x	
Pedestrian Phase												X	
Add Lanes	хэ			X		х		•					
Parking Restrictions	хэ	C											
Install Median						X							
Improve Corner Sight Distance						.	X					x	
Speed Zone	ХХ			х			х						
Advance Warning or	ХХ	x x	X	Х		•	х						
Sight Distance Control		_						o*					
Advance Street Name Sign	ХХ	X X	X	X									
Enforcement							X	Х	X	Х	X		

Table 25. Feasible improvements for conflict patterns - signalized, four-leg (four-lane) intersections.

e Example

Given the intersection conflict diagram shown in Figure 31, define the conflict patterns and possible safety-related improvements to alleviate these patterns. The intersection geometrics at the four-leg, fourlane, signalized intersection are displayed in the lower portion of Figure 31.

From a visual review of conflict patterns (using similar criteria as in the accident procedures), the following patterns are noted (conflict numbers are noted on the conflict diagram).

- - Lane Change
- 2. East and West legs "Opposing Left-Turn"
- 3. North leg "Same Direction (Rear-End)"
 - Right Turn
 - Lane Change
- 4. South leg "Same Direction (Rear-End)"
 - Left Turn
 - Lane Change
- 5. South leg "Opposing Left-Turn"

Using Table 25 for a signalized, four-leg, four-lane intersection, the following possible improvements can be suggested.

- Pattern 1 & 2 (East and West less)

- Left-Turn Bay
- Left-Turn Phase
- Left-Turn Restriction
- Signal Cycle or Phase Length

- Pattern 3 (North Leg)

- Right-Turn Bay
- Right-Turn Radius
- Advance Warning or Sight Distance Control
- Advance Street Name Sign

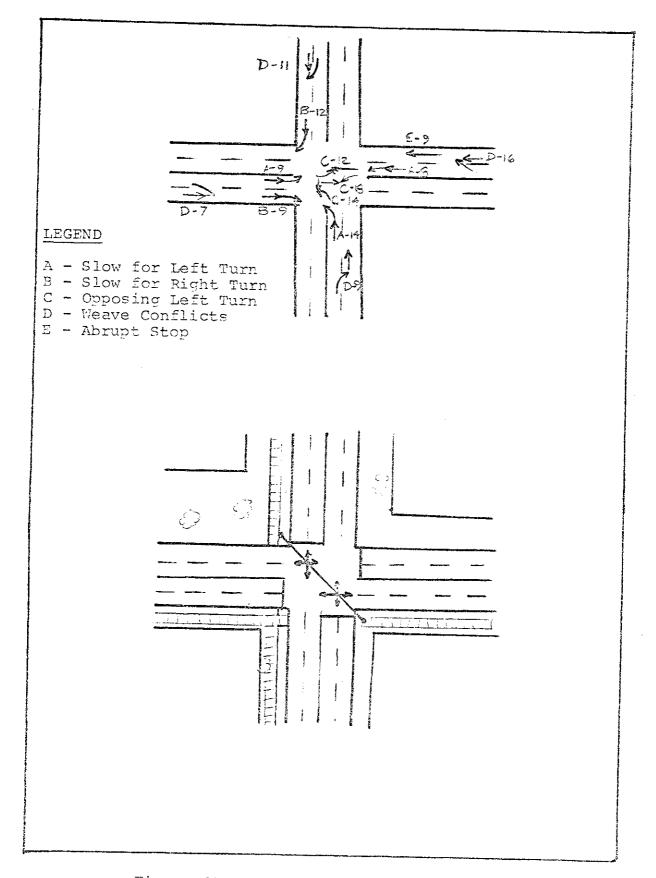


Figure 31. Conflict diagram example.

- Pattern 4 & 5 (South Leg)

- Left-Turn Bay
- Left-Turn Phase
- Left-Turn Restriction
- Signal Cycle or Phase Length

The findings from other procedures, such as volume studies, safety performance studies and traffic control device studies, can be combined with the conflict data to justify a specific countermeasure.

Procedure 12 - Gap Studies

Purpose

Gap studies are used to measure the time headway or gap between vehicles along a highway or at an intersection and to analyze the capability of a major traffic stream accommodating a minor or alternate traffic stream.

Application

• Definitions

Two terms are normally used to describe gap characteristics. They are gap and lag. A gap is a measure of the time or distance between successive vehicles passing a particular point on a highway. Lag is a measure of time between the arrival of a minor stream vehicle and the arrival of a conflicting major stream vehicle. A pictorial representation of these terms is shown in Figure 32.

Several measures are used to determine the gap characteristics for a traffic situation. They include: (1) the gap accepted by half of the drivers; (2) the gap for which the number of accepted gaps shorter is equal to the number of rejected lags longer, defined as critical gap; (3) the average gap, and (4) the critical lag, the lag between side street and main street traffic such that the number of rejected lags larger and accepted lags smaller with be equal defined as critical lag.

In most gap studies, the use of lag data is preferred, as it describes conditions relating to both a major and a minor stream traffic flow. Gap data relates solely to the major traffic stream. However, depending on the field situation, both terms have been used in the study of gap situations.

Need For Gap Study

The need for a gap study is normally indicated by the occurrence of accidents involving crossing or merging traffic. Although defined relationships between gap characteristics and safety at a site have not been developed, it is generally felt that inadequate gaps in a major traffic stream can result in unnecessary risk being taken by a minor stream

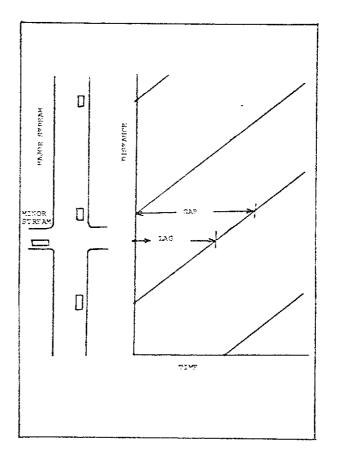


Figure 32. Pictorial representation: gap and lag.

traffic flow which can result in a potential for accidents. Typical accident patterns are:

LOCATION	SITUATION	FACTOR REVIEWED
Freeway Ramp or	Pattern of Sideswipe Accidents	 Vehicular Gap Length of
Weave Junction	and Rear-End Accidents	Weave or Merge
Signalized Inter-	Pattern of Pedestrian	 Pedestrian Crossing Gaps Speed Distri-
section	Accidents or Conflicts	bution
Unsignalized Intersection	Pattern of Ríght-Angle or Rear-End Accidents	 Vehicular Gap Traffic Signal Needs Speed Distri- bution Sight Obstruc- tion
Unsignalized	Pattern of Pedestrian Acci-	 Pedestrian Crossing Gap Speed Distri-
Intersection	dents of Conflicts	bution
Mid-Block	Pattern of Pedestrian Acci-	 Pedestrian Crossing Gap Speed Distri-
Locations	dents or Conflicts	bution
	- Pattern of Right-Angle Accidents	 Vehicular Gap Traffic Sig- nal Needs Speec Distri- bution Sight Obstruc- tion

In addition to these situations, the need for a gap study can be determined from field reviews of the location and from complaints by local citizens.

Use of Gap Study

The information obtained from gap studies is useful for:

176

- Identifying operational deficiencies in a traffic situation.
- Determining the safety of crossing, merging and weaving situations.
- Assessing the need for additional traffic controls (countermeasure development.
- Evaluating the effectiveness of a safety improvement.

Period of Data Collection

The period of the data collection activities is normally defined by the accident data.

The studies should also be performed under favorable weather conditions. Poor weather conditions will tend to lower traffic speeds, thus influencing the gap distribution data.

Sample Size Determination

In collecting gap information, a variety of models are available to compute a minimum sample size [1,3]. The model used depends upon the field situation. For most highway safety applications, the sample size can be determined from the following formula.

$$N = \left(\frac{SK}{E}\right)^2$$

Where N = minimum sample size

- S = standard deviation (sec.)
- E = permitted error in the gap or lag estimate (sec.)

The standard deviation and the permitted error E depend on the situation under study. A sample study taken at the site will assist in defining them for use in the above formula. Values of the constant, C, for given confidence levels are:

<u>Constant C</u>	Confidence Level (%)
1.64	90.0
1.96	95.0
2.58	99.0

Gap Study Techniques

Available techniques for collecting gap information include:

- Manual method.
- Manual/machine method.
- Photographic techniques (time lapse and videotape).
- The Instrumented site method.

Primary considerations of these techniques are included in Table 26.

Manual Method

The manual method [2,4] uses an observer (technician) at the location to record gaps manually with a stopwatch. The observer is stationed at the study location, situated in a position to view and accurately time all vehicles. Care should be taken to insure that the observer's presence does not influence driver behavior in the area.

As the first vehicle's front end passes over a defined reference point, the observer activates a stopwatch. When the second vehicle crosses the reference point, the stopwatch is stopped and the time (measured as the time gap between vehicles) is recorded onto a summary data sheet. A second observer can be used to record the minor stream gap needs. This can be achieved by assuming an average demand rate for the study period (based on the volume of approach vehicles divided by the period of data collection) or by actual measurement of the accepted and rejected gaps or lags.

A sample data sheet is shown in the Appendix (page I-12).

Advantages:

- 1. Equipment needs are minimal.
- 2. Data are reliable.
- 3. Can be performed with very little preparation or setup.
- 4. Data manipulation is minimal.

Disadvantages:

- 1. Personnel costs could be high.
- 2. Timing subject to human blases.
- 3. Data can be influenced by presence of observer.

This method is suitable for pedestrian situations (signalized or unsignalized intersection, or midblock locations) and for many unsignalized intersections and midblock situations. However, where volumes or the complexity of the situation make the manual technique difficult to apply, other more efficient means may be utilized.

Manual/Machine Method

The manual/machine method [2,4] uses an observer to record the gap distribution data using a recorder-type machine. Typically, the recorder device utilizes a recording pen and a timer. The recording pen is

Consideration Technique	Associated Cost	Data Input	Data Obtained	Data Output
.Manual Method	.Stop watch \$25 to \$150	Defined location Study period	.Venicle gap durations	.Gap distribu- tion character- istics (mean gap, standard duration, etc.)
.Manual/Machine Method	.Recording de- vice \$50-\$300	Defined location Study period	.Vehicle gap durations .Tape record of gap data	.Gap distribu- tion character- istics
Photographic Techniques	.Camera equip- ment \$500 ~ \$2000	.Defined location .Study beriod	.Film record of location .Traffic stream characteristics	.Various traffic stream character- istics, including gap distribution characteristics
Instrumented Site Method	Detection & recording equipment \$500-\$3000	.Defined location .Study period	.Tape record of gap data .Traffic stream characteristics	.Various traffic stream character- istics, including gap distribution characteristics

Table 26. Primary considerations of Gap Study techniques.

•

Consideration Technique	Function	Equipment Requirements	Manpower Requirements	Time Requirements
.Manual Method	.Obtains gap data by ob- server timing individual vehicles	.Stop watch .Data sheets	.Technician to observe and re- cord data .Engineer to ad- just data	.One half-one hour per study .Approx. one-half hour to adjust data
.Manual/Machine Method	.Obtains gap data using observer to activate the gap re- cording de- vice	.Recorder .Data summary sheats	.Technician to ob- serve data .Technician to re- cord tape data on summary sheets .Engineer to ad- just data	One half-one hour per study Approx, one hour to record tape data onto summary sheets Approx, one-half hr to adjust data
.Photographic Techniques	Obtains gap data manually from film records of location	.Camera equip- ment .Stop watch or timing mechan- ism .Data sheets	.Trained technician to set up camera .Trained technician or engineer to re- cord data from film .Engineer to adjust data	Approx. one hour to . set up or remove camera equipment .One-half to one hour filming time .One-two hours to view and record data .Approx. one-half hour to adjust data
.Instrumented Site Method	.Obtains gap data through field detec- tion and sam- pling methods	.Detection de- vice .Recording de- vice .Program instru- ment .Data summary, sheets	.Two technicians to set up and remove equipment .Trained technician to record data .Engineer to adjust data	Approx. one-half hr to set up or remove equipment Approx. one-half hour to record data Approx. one-half hour to adjust data

Table 26. Primary considerations of Gap Study techniques (continued).

actuated as the first vehicle passes the reference line. As the second vehicle passes the reference line, the pen is de-activated. The length of the pen line (based on the time relationship of the gap timer to the pen movement) records the gap size relationship. From these recordings, the gap data are computed using simple mathematical relationships.

This technique requires a minimum of one recording device be used per gap study. For a section of roadway requiring both directions of travel to be studied, separate recorders are required for each direction. Observers may also be used to minimize the possibilities of error in the recording of data.

The gap acceptance characteristics are obtained by manual methods, as described in the previous technique.

Advantages:

- 1. Provides a record of the gap data.
- 2. Requires minimal setup or preparation.
- 3. Simple to perform.
- 4. Reduces bias by observer.

Disadvantages:

- Maintenance of portable power source for gap recorder is required.
- 2. Personnel costs could be high.
- 3 Jata can be influenced by presence of observer.

This method is favorable for use in similar situations as the manual methods. However, is more appropriate under higher volume or more complex situations due to the automatic recording capabilities of this method.

Photographic Technique

The photographic technique is described in Procedure 7 - "VOLUME STUDIES."

Advantages:

- 1. Able to obtain other variables.
- 2. Provides a permanent record.
- 3. Obtains reliable data.

Disadvantages:

- 1. Requires time-consuming review and analysis of data.
- 2. Relatively high cost due to personnel and equipment needs.

This method is most favorable for complex traffic situations (freeway cross-weave situations, merge situations) where the high number of movements can limit the accurate study of conditions by manual methods. The the level of accuracy. Table 27 displays the technique utility of each technique based on the management concerns.

Table 28 identifies the techniques favorable for a situation. Either of the four listed techniques are applicable in most situations. To select a favorable technique, a review of the management concerns is necessary. A major requirement in this selection process is equipment availability. In the absence of special recording equipment, the manual method must be used. The availability of other equipment will dictate the gap measurements technique to be used.

Several guidelines are provided for selecting a technique.

- The use of the instrumented site method is recommended for complex traffic situations where additional traffic data should be collected.
- 2. The photographic techniques are preferable where a film record of the field situation is needed.
- 3. For most gap studies needs, the manual methods are nost feasible. To reduce the data collection load for an observer, the manual/ machine method is favorable. The manual method should be used where gap recording equipment is not available.

Findings

The data obtained from a gap study can be presented in a variety of formats. The simplest method of presenting <u>gap distribution</u> information for a traffic stream is a tabular list of the gap information by frequency, similar to a spot speed summary sheet. For data analysis, the average gap value within an increment is used to represent each observed gap within the increment.

Alternate means of presenting gap distribution data is by a graphical summary. Graphs of the frequency of gaps versus the gap duration may be prepared.

<u>Gap acceptance</u> data are typically presented in graphical form, as shown in Figure 33. One axis indicating the length of the gap (or lag) and the other axis represents the frequency of gaps (or lags) of a particular gap (or lag) duration. Two criteria are plotted, the number of accepted gaps (or lags) shorter than "X" seconds; and (2) the number of rejected gaps (or lags) longer than "X" seconds. "X" represents the gap (lag) duration along the axis. The crossing of these data lines represents the critical gap. film record permits the review of the field situation under a controlled environment.

Instrumented Site Method

The instrumented site method [5] uses sensors placed on the pavement to detect the vehicle cata. This information is recorded onto a tape or cassette. Gap characteristics can be obtained directly or indirectly from available computer programs.

The detection device is connected to a recorder located along the side of the road. Various recording devices are available. One such device is the FHWA Traffic Analyzer which is a multi- channel recorder used for complex traffic studies. Another device is the Traffic Counter Device (also developed for FHWA). This unit uses a reconverted traffic counting device to record gap and volume data. A third device is the RATEM (Recording and Analysis of Traffic Engineering Measures) system. This device utilizes microprocessor control to scan 16 input channels and perform seven different types of traffic studies, including: speed, volume, and occupancy. Other devices providing similar capabilities have been developed. These devices can record the gap data and other output in a variety of forms, dependent on the recorder capabilities. Available programs within device can directly provide gap distribution curves and other gap characteristics.

Advantages:

- 1. Able to obtain other traffic data.
- 2. Output is reliable.
- 3. Eliminates human biases in recording data.
- Available computer program can easily output data in a usable form.

Disadvantages:

- 1. Equipment setup and costs can be considerable.
- 2. Requires trained personnel to operate equipment.
- 3. Difficult to detect malfunctioning equipment.

This technique is favorable for most highway situations due to its ability to obtain a number of traffic variables; i.e., speed, volume, occupancy, etc. in a limited amount of time. However, the availability and high costs associated with the use of this technique have tended to limit its use in most cases.

Selection Of Alternate Techniques

The use of a particular data collection technique is related to the management concerns involved in the study. The primary management concerns include: the time, equipment, and manpower requirements, the data needs and

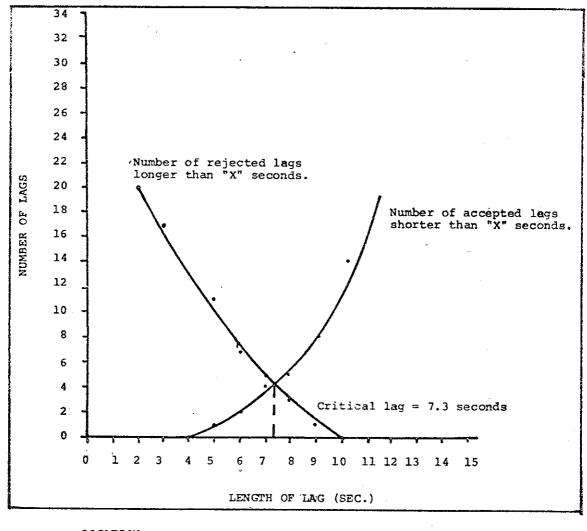
Technique Management Con	Manual . Method	Manual/ Machine Method	Photographic Techniques	Instrumented Site Method
.Equipment Requirements	.Stop watch .Other needs, minimal	.Gap recording machine .Other needs, minimal	.Camera equipment .Ston watch or gap recording machine .Other needs, minimal	,Detection, recording and analyzing device
.Manpower Reguirements	.Technician level to collect data .Engineer level to manipulate data	.Technician level to collect data .Engineer level to manipulate data	.Technician level to collect data .Engineer level to manipulate data	.Technician level to met- up and collect data .Nata manipulation can be nerformed by recording device
.Timo Requirements	.Data collection	.Equipment set up .Data collection	.Fauipment set un .Fauipment checks .Pata collection	.Equipment set up
.Data Capability	.Obtains gap distribution and acceptance data	.Obtains gap dis- tribution and acceptance data	.Obtains gap distribu- tion and acceptance data and others (limited traffic data volume, speed)	Obtains gap distribution and acceptance data and wide number of traffic variables (volume, speed, occupancy, density, etc.)
.Level of Accuracy	.Reliable	.Peliable	.Very reliable	.Relfablo

Table 27. Technique utility for gap study.

Table 2	28.	Primary	considerations	for	traffic	lane	occupancy
			technique				2 44

_

Consideration Technique	Function	Equipment Requirements	Manpower Recuirements	Time Requirements
.Detector Method	.Obtains occu- pancy data through use of detection equipment within road- way	Detection and recording equipment	.Technician to re∞rd and ad- just field data	Limited to data recording and adjusting time .Time requirements, minimal
.Manual Method	.Obtains occu- pancy data by manual speed and volume field studies	.Volume counting device (volume measurement) .Stop watch .Data sheets	Technician to record volume data Technician to summarize data Technician to adjust data	.Requires techni- cian for collec- tion of volume data during study period .Data recording and adjustment 1-2 hrs. per site
.Photographic Technique	Obtains occu- pancy data by reviewing film records of study area taken during a defined study period	device (volume measurement)	.Technician to set up and remove damera equipment .Trained technician or engineer to re- view film .Technician to ad- just data	.Camera set up and removal time (approx. 1/2 hr. each) .Reviewing film dependent on study period .Data adjusting time is minimal


Table 28.	Primary	considerations	for	traffic	lane	occupancy
		technique. ((Conti	inued)		

i

Consideration	Associated	Data	Data	Data
Technique	Cost	Input	Obtained	Output
.Detector Method	Detection	.Defined	.Occupancy or	Occupancy
	equipment	location	volume and	characteris-
	\$1000 to	.Study	time measure-	tics by time
	\$18,000	period	ments	of day
.Manual Method	Stop watch \$25 to \$150	.Defined location .Study period	.Volume measure- ments	.Occupancy characteris- tics for study period
.Photographic Technique	.Camera eouip- ment \$500 to \$2000 .Stop watch \$25 to \$150	.Defined location .Study period	.Volume me a sure- ments	.Occupancy characteris- tics for study period

186

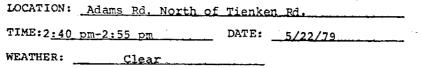


Figure 33. Graphical presentation of gap acceptance data.

Use of Findings

The findings obtained from such methods as the graphical summary (Figure 33) are used to evaluate the field situations by comparing the gap acceptance characteristics of the minor stream to the gap distribution characteristics of the major stream. Where conditions are found deficient, countermesaures to alleviate the deficiency will be warranted.

Analysis methods for specific situations are provided in the following references.

- Freeway or highway merging [6,7].
- Weaving [4,6,7].
- Crossing stop sign controlled intersections [2,8].
- Signalized intersections [2].
- Pedestrian crossing [Procedure 22].

Procedure 13 - Traffic Lane Occupancy Studies

Purpose

A traffic lane occupancy study provides a measure of the traffic performance of a highway facility. Related to density, the occupancy factor measures, as a function of vehicle length, volumes, and speeds, the percent of time a point on a roadway is occupied by a vehicle.

Application

Lane occupancy is defined as the ratio of time that vehicles are present at a station for a specific traffic lane. Related to traffic volumes over a period of time, the occupancy data is used to identify the traffic performance at a site.

Need For Study

The need for a lane occupancy study is identified by the presence of congestion at a location (obtained from field reviews or complaints) or from accident information, as defined by a pattern of rear-ends and other congestion-related accident types.

With the increased use of vehicle detection equipment, the use of occupancy characteristics as a measure of traffic performance has increased significantly. With permanent-type detectors, regular monitoring

of the occupancy (and other traffic variables) can be conducted.

Use of Occupancy Study

The information obtained from occupancy studies is useful for:

- Defining the level of operation of freeway, arterial, and other major facilities.
- Identifying the location of bottlenecks.
- Selecting countermeasures related to traffic control.
- Determining the effects of traffic control changes, such as: signal timing.
- Evaluating safety improvements.

Period of Data Collection

The data collection period is normally identified from the accident data. It is typically performed on a representative weekday during the peak hours. It is also preferable that data collection activities be performed under favorable weather conditions.

Lane Occupancy Techniques

The collection of lane occupancy data can be obtained by:

- Roadway detector methods.
- Manual methods.
- Photographic techniques.

Primary considerations for these techniques are defined in Table 28.

Roadway Detector Methods

The principal means of data collection is the use of detectors [1,2,3]. Detection and recording equipment used consist of two types: permanent or portable. The operational procedures of the detectors are identical to those discussed in PROCEDURE 7 - "VOLUME STUDIES". In most cases, detectors are used for traffic control purposes.

The detector for each lane transmit a continuous electronic pulse for each vehicle during the time period required to travel through the detection zone. Each detected vehicle produces a unique pulse having a defined length. The detected information is fed to a small computer or central computer programmed to calculate lane occupancy for each station by combining individual pulse lengths over some regular time base, such as one minute, five minutes, etc. Other data such as lane volume and vehicle speeds are also obtained.

The occupancy, Occ. is referred to as [1]:

$$0cc. = \frac{100}{T} \qquad \bigotimes_{i=1}^{N} t_i$$

...

Where:

- N = number of vehicles detected during the time perid, T
- T = specified time period

t_i = measured presence time of "i"th vehicle

Advantages:

- 1. Can provide instantaneous or continuous data.
- 2. Time and manpower requirements are minimal.
- 3. Able to obtain other traffic data.
- 4. Data is reliable.

Disadvantages:

- 1. Initial cost of equipment is high.
- 2. Technique is limited to locations where equipment exists.
- 3. Malfunctioning equipment is difficult to detect.

The use of this technique requires the availability of detection equipment. It is favorable for use in highway safety situations due to its accuracy and reliability.

Manual Methods or Photographic Techniques

Lane occupancy data can also be collected by <u>manual methods</u> [2,3] using speed and volume measurement techniques listed in PROCEDURE 7 - "VOLUME STUDIES" and PROCEDURE 8 - "SPOT SPEED STUDIES." These methods produce average or estimated results. Precise speed or "passage time" measurements are extremely difficult to obtain for each vehicle in the traffic flow during the period studied, particularly under high speed situations.

In these techniques, lane occupancy data is obtained by manually recording the number of vehicles occupying a traffic lane zone during specific time intervals. A zone length is defined prior to the study performance. Minimum zone length should be the length of a vehicle. It is preferable that they be an even increment of 50 or 100 feet. The zones should be clearly marked for increased accuracy. The occupancy is determined as [1]:

0cc. = 100KL

Where: Occ. = occupancy (percent) K = density (vehicles per lane per unit of roadway) L = mean vehicle length = 20 feet

Density is obtained by recording the number of vehicles occupying a defined space (unit of roadway).

The lane is sampled throughout the defined study period to obtain an average density.

<u>Photographic techniques</u> [2,3] are similar except the data are obtained from a film record of the study location. Further operational characteristics are provided in PROCEDURE 7 - "VOLUME STUDIES".

Advantages:

- 1. Able to be performed for a variety of situations.
- 2. Equipment needs can be minimal.
- 3. Results can be reliable.

Disadvantages:

- 1. Substantial personnel may be required.
- Photographic techniques will result in a significant number of equipment needs.
- 3. Analysis of results can be tedious.

The manual technique should be used for situations where detection equipment is not available. Where a record of the situation is required or sufficient personnel are unavailable to perform the study, photographic techniques are encouraged.

Selection Of Alternate Techniques

To select the appropriate technique for performing a traffic lane occupancy study, information on the management concerns associated with the procedure is required. The management concerns for this procedure include: the time, manpower, and equipment requirements and the level of comprehensiveness and accuracy of each technique. Table 29 provides the technique utility of each technique based on these management concerns. Table 30 relates the preferred techniques as a function of the field situation.

Technique Management Concern	Detector Method	Manual Method	Photographic Techniques
.Time Requirements	.Requires review of results	Data collection Data manipula- tion time	.Equipment set up time .Data extraction time .Data manipulation time
.Manpower Requirements	.Technician level	.Technician level	.Technician level
.Equipment Requirements	.Roadway detec- tion equipment .Other needs, minimal	Stop watch Other needs, minimal	.Camera equipment .Stop watch .Other needs, minimal
.Level of Comprehensive- ness	.Obtain occupancy data and other traffic variables (volume,speed, gap, etc.)	characteristics	.Obtains occupancy and other limited traffic data (volume, speed, gap)
.Level of Accuracy	.Precise	Approximate	.Approximate

Table 29. Technique utility for Traffic Lane Occupancy Study.

and a second way

Table 30. Favorable Traffic Lane Occupancy techniques.

Technique	Detector Method	Manual Method	Photographic Techniques
.Freeway Surveillance	X		Х
.Freeway Merge	х		х
.Urban Arterial	x	Х	х
.Urban Collector		х	X
.Rural Route		X	Х

Based on the utility of each technique, a favorable tehhnique can be oselected. Equipment requirements are a principal factor in the selection.

Several general guidelines are provided.

- 1. The use of the detector method should be made where permanent detectors exist.
- 2. Where detection equipment is unavailable, the use of the manual method is favorable. It requires minimal equipment needs and can be performed at most locations due to its flexibility.
- 3. Similar characteristics as in the manual method also exist in the photographic technique. However, equipment setup, data extraction, and familiarity with photographic procedures discourage its use except for complex situations or where a film record of the situation is required.

Findings

"Occupancy" may be obtained directly using detector systems or can be computed from field information obtained manually.

• Example

A sample problem is given based on a roadway approach zone length of 200 feet. At consecutive intervals of the study period, the volumes within the study zone were recorded as 2,3,2,4,6,1. These values represent the density, i.e., "x" vehicles per lane per 200 foot section of roadway. The average density K is the average of these values, i.e., 3 vehicles. As such, the occupancy, "0", equals:

0cc. = 100 x $\frac{3}{200}$ x 20 feet = 30.0%

🔮 Use Of Findings 🐳

The ouput or presentation of the occupancy data can be in the form of a tabular listing of the occupancy or in the form of a volume/occupancy curve (Figure 34). Based on a history of volume vs. occupancy data, the

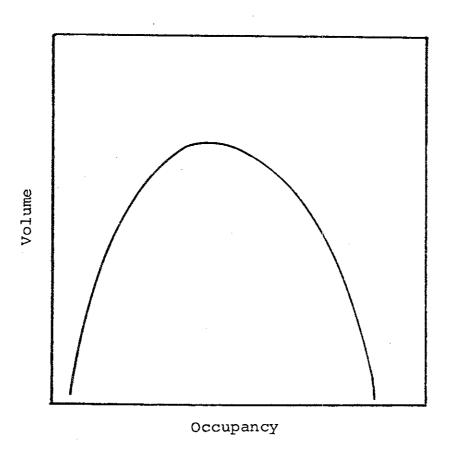


Figure 34. Volume/occupancy output.

accumulation of groups of data for a specific location or situation will define a curve. From the curve, the peak volume point can be assumed as the volume and occupancy under stable flow conditions. An occupancy rate at less than "x" percent would represent stable flow conditions. At "x" or greater rates, an unstable flow of traffic would result. This relationship is used to assess the highway operating conditions for the study location and to plan and evaluate traffic control improvements.

From freeway merge studies [1], the difference between a predetermined estimate of capacity and the field volume conditions would represent the metering rates for safe merging application. In some cases, it will relate a low metering rate. If the demand is greater than the metering rate, additional metering-related improvements will be necessary.

Occupancy data can also be used to evaluate the effectiveness of safety-related countermeasures. Measurement of the occupancy characteristics during a specific time period "before" and "after" implementation of a safety improvement and statistical testing of the compares results can check the significance of the results. In this case, the occupancy factor is used as a "measure of the effectiveness" of the improvement.

Procedure 14 - Queue Length Studies

Purpose

Queue length studies identify the number of vehicles that are stopped in a traffic lane behind the stop line at an intersection. They are primarily used as a measure of traffic performance at an intersection, but can also measure the vehicular backup at locations such as: lane drop sections, railroad crossings, freeway incident locations, and other bottleneck situations.

Application

Need for Study

The need for a queue length study is triggered by accident information relating congestion along an intersection approach or individual traffic lane. These accidents will typically include rear-ends within the queue, although some right-angle, left-turn and side-swipe accidents may result from drivers making unsafe movements resulting from lengthy delays. Other sources of input may include complaints by local citizens or the field review of the site.

Use of Queue Length Study

The information obtained from queue length studies is useful for:

• Describing the level of operation at a location.

- Identifying the location of bottlenecks, such as freeway incident detection.
- Selecting appropriate countermeasures.
- Evaluating safety improvements.

Period of Data Collection

As in the case of the traffic lane occupancy and other similar traffic operation procedures, the collection of queue length data is primarily related to the accident by time of day patterns for congestion-related accidents. It is typically performed on a weekday during the peak hours. It is also preferable that data collection activities be performed under favorable weather conditions.

Queue Length Techniques

Queue length studies can be performed in a number of ways. They include:

- Manual measurement.
- Roadway detector methods.
- Photographic techniques.
- Mathematical models.

Primary considerations of these techniques are given in Table 31.

• Manual Measurement

Manual measurements [1] are obtained by an observer manually recording queue lengths (number of stopped vehicles) by lane along an approach. The observer records the queue length at specified intervals of time. A sample data sheet is shown in the Appendix (page I-13).

The time interval used in recording data varies with the study purpose. At signalized intersections, the effectiveness of traffic controls on moving traffic is determined by recording the queue lengths at the beginning of the green phase and at the end of the amber phase. For defining average or maximum queue lengths, data are recorded at regular intervals. A 15-second interval is typically used; however, where high traffic volumes or more than a single lane is studied, a longer time interval may be used to allow data to be recorded on all approach lanes with minimal personnel requirements.

Where traffic signals are used, the time interval selected should not result in the regular recording of data during similar times of the cycle length. For example, in a 60-second cycle length, the recording interval should be 25-seconds rather than 15-seconds. A 15-second interval would result in the recording of similar data from consecutive cycle lengths and would result in biased findings.

Table 31.	Primary	considerations	for	queue	length	study
techniques.						

Consi- derations Technique	Function	Equipment Requirements	. Manpower Reguirements	Time Requirements	Associated Costs	Data Input	Data Obtained	Data Output
1.Manual Method	Obtains queue length data over time from field observa- tion of study location	.Stop watch .Data sheets	.Technician to record queue length data .Technician or engineer to reduce data	Limited to study period length (1-2 hours)	.Stop watch - \$25 - \$150	Defined location Study period	.Queue length data	Queue length character- istics
2.Detector Method	.Obtains an estimate of gueuc length over time using field detectors	.Detection Equipment .Sunmary sheets	.Technician to record data from vehicle detection re- corders	.Data record- ing and ad- justing time is minimal	None (detec- tion equip- ment in- place)	.Defined location .Study period	.Traffic stream characteristics .Oucue length data	Queue length and other traf- fic stream character- istics
3.Photogra- phic Techniques	-Obtains queue length data over time from film record of field conditions	.Camera equipment .Summary sheets	Technician to set and re- move camera equipment Engineer to review and reduce data	.Camora setup and removal 1/2 hour per event .Study period .Film viewing limited to study period length	.Camera equip- ment - \$500- .\$2000	.Defined location .Study period	Queue length data .Traffic stream characteristics	Queue length and other traf- fic stream character- istics
4.Mathema- tical Models	.Obtains average queue length data for a spe- cific period based on field observations and defined mathematical relationships	.Based on unavailable data needs	.Based on man- power needs for individual studies .Engineer for reducing data	.Related to individual study needs .Data adjust- ing 1/2 hour per ap- proach	.Dependent on unavailable data needs	Defined location Study period Gap data Volume data	.Average queue length data	.Average gueue length data

Advantages:

1. Provides direct field observance of conditions.

and the second second

- 2. Equipment needs are minimal.
- 3. Data is reliable.

Disadvantage:

 Extensive manpower requirements could result at high-volume, multi-lane appraoches.

This technique is favorable for collecting queue length data for most highway safety applications. For complex situations or high volume locations, increased personnel are required.

Photograhic Techniques

Photographic techniques [1] use film records of the study location taken during the study period to extract queue length data. It is similar to the manual method of measurement in that an observer records the data from field observations. However, review of the film is done under a controlled (office) environment.

To obtain time-related data, a time clock or timer is used in conjunc tion with the camera to reference time data. This ability permits identification of the queue length data to a specific time period or by a specific time interval.

Advantages:

- 1. Provides a film record of the field conditions.
- 2. Permits review of other traffic data.
- 3. Results are reliable.

Disadvantages:

- 1. Equipment requirements are substantial.
- 2. Data extraction can be time-consuming.
- 3. Requires favorable weather and lighting conditions.

The use of photographic techniques for obtaining queue length data is limited to those agencies having available camera equipment. This method is favorable where a film record of the data is necessary, at complex intersections, and where other traffic data may be desired.

Detector Methods

The detector methods [2] utilize in-place, permanent type detectors to record queue length data. This method uses a series of detectors along a traffic lane to provide an account of the queue length. The detectors are spaced at specified lengths apart (e.g. 50 ft. (m), 150 ft. (m), etc.). The detector processing capabilities permit the estimation of the queue

length from the determination of occupancy, speed, volume, and an assumed vehicle length. This information is output onto a tape or cassette.

Advantages:

- 1. Provides continuous recording of queue length and related data.
- 2. Able to record other traffic data.
- 3. Can easily provide comparison data during non-peak periods.
- 4. Can provide queue length output as a function of other traffic data for use in other analyses.
- 5. Time and manpower costs are minimal.

Disadvantages:

- 1. Equipment costs can be high.
- 2. Difficult to detect equipment malfunctions.
- 3. Results are approximate.

This technique is limited to situations where the appropriate detection equipment is available.

Mathematical Models

Mathematical models [1,3] can be used to derive an average queue length as a function of the arrival rate and the service rate. The measured arrival rate can be obtained from a volume count taken over a specified period. For example, if 200 vehicle were recorded over a 20 minute period, the arrival rate (vps) would be:

 $\frac{200 \text{ vehicles}}{20 \text{ minutes}} \times \frac{\text{minute}}{60 \text{ seconds}} = 0.17 \text{ vps}$

The service rate is defined as a function of the flow of the conflicting traffic stream and the arrival rate. It is based on the expected delay and the critical gap in the conflicting traffic stream. Information on the development of the service rate is given in PROCEDURE 12 - "GAP STUDIES".

For <u>uncontrolled or stop-yield sign intersections</u> [1], the expected queue length may be defined by:

$$N = X$$

U-X

Where N = average queue length X = arrival rate (vps) U = average service rate $(1/\overline{d})$ (vps) If the service rate is less than the arrival rate, "N" would be a negative number. In this case the queue length would increase until the arrival rate fell below the service rate.

For <u>signalized intersections</u>, [1] the average queue length can be defined by:

or

$$N = \frac{(R + \overline{d})}{2}$$

N = aR

where N = average queue length
 q = approach flow (vps)
 R = red time (sec)
 d = average individual delay (sec)

whichever is the larger of the two values. The latter value is more precise and would tend to account for downstream traffic patterns. However, both equations are used to estimated an expected average queue length.

Information on the average individual delay at a signalized intersections is also found in PROCEDURE 9 - TRAVEL TIME AND DELAY STUDY.

The mathematical method, produces an estimate of the queue length. For most highway safety applications, the results can be adequate.

Advantages:

- 1. Data analysis is relatively simple.
- 2. Calculations are based on defined and proven mathematical models.

Disadvantages:

- 1. Results provide an average queue length for the study period.
- 2. Substantial field data collection may be required.

This technique is appropriate where data on the service rate, arrival rate and delay information are available. It is useful for deriving the averag queue length value as a "measure of effectiveness" of a safetyrelated countermeasure. For other safety applications where more specific data, for example, queue length over a time interval, is necessary, other techniques are more favorable.

Selection Of Alternate Techniques

To select the appropriate technique for performing a queue length study, information on the management concerns associated with the procedure is required. The management concerns in this study include: the time, manpower, and equipment requirements, the level of comprehensiveness and the level of accuracy associated with each technique. Table 32 provides the technique utility of each technique based on these management. concerns Table 33 relates the favorable techniques as a function of thefield situation.

Several general guidelines in selecting a technique are provided.

- The manual method is favorable for most field situations due to its flexibility and limited time, manpower, and equipment requirements.
- 2. Where appropriate vehicle detection equipment exists, this technique should be utilized.
- 3. Photographic techniques are recommended for use when situations are too complex for manual methods or where a film record is necessary.
- 4. The use of mathematical models is favorable where accurate delay information is available. It provides an estimate of the average queue length over a defined time period.

Findings

Queue length data can be output in tabular form by time of day or a graphical summary.

Use Of Findings

Queue length information is primarily used in "before-after" studies as a measure of effectiveness. For this purpose, the before and after findings can be used to test the significance of any reductions in the average queue length.

Queue length studies can also be used as a measure of traffic performance. By comparing average queue lengths during two distinct peak and off-peak times, a level of traffic flow can be determined. This measure can be used to describe traffic operations for a specified time period and to assist in selecting safety-related countermeasures.

Table 32. Technique utility for queue length study.

÷.

Technique Management Concern	Manual Method	Detector Method	Photographic Techniques	Mathematical Models
.Time Requirements	.Data collection .Data manipulation	.Data review		.Fouipment set up .Data collection .Data manipula- tion
.Manpower Requirements	.Technician level	.Technician level	.Technician & Engineer level	.Pngineer level
.Equipment Requirements	.Minimal	.Vehicle detection equipment	.Camera equip- ment	,™inimal
.Level of Comprehen- siveness	.Obtains queue length data by in- terval (l- minute, 2- minutes, etc.)	.Obtains queue length data and other traffic stream char- acteristics by interval (l-min.,2-min etc.)	length data and limited traffic stream char- acteristics by interval	.Obtains average gueue length by time pariod (hourly, etc.)
Level of Accuracy	.Precise	.Approximate	.Precise	.Approximate

Table 33. Favorable queue length study technique.

Technique Situation	Manual Method	Detector Method	Photocraphic Techniques	Mathematical Models
.Freeway	x		X	x
.Urban Signalized Intersection	x	x	Y.	x
.Urban Unsignalized Intersection	x		x	x
.Rural Intersection	X		x	X

202

ENVIRONMENT-BASED PROCEDURES

Introduction

Environment-based procedures are used to determine the effect of physical roadway and roadside environment characterisitcs at a high accident location. Environmental characteristics include roadway geometrics, roadside structures and appurtenances, pavement surface conditions, and lighting and weather conditions.

Selection of a procedure is based upon the possible accident causes at a site. By identifying the environment-related characteristics which contribute to accident experience, appropriate countermeasures may be selected.

The environmental-based procedures include:

Procedure 15 - Roadway Inventory Study Procedure 16 - Sight Distance Study Procedure 17 - Skid Resistance Study Procedure 18 - Highway Lighting Study Procedure 19 - Weather-Related Study

Procedure 15 - Roadway Inventory Study

Purpose

A roadway inventory study provides information on the physical and environmental characteristics at a location. In this study, the location and dimensions of roadway and roadside characteristics are obtained and recorded. These items are illustrated in a condition diagram.

Application

Need For Study

A roadway inventory study should be performed for all locations under study.

Use of Study

An inventory can be used as input in other procedures such as: highway capacity studies, sight distance studies and traffic control device studies. Inventory information can also be used in the accident procedures to identify possible causes of accidents. For example, an inventory may indicate that a sideswipe accident problem is due to inadequate lane widths and lateral placement of fixed objects near the edge of the pavement.

The inventory information is also used to assure that countermeasures are feasible for the site conditions.

Data Collection Needs

Roadway inventory information is typically displayed in the form of a condition diagram, as shown in Figure 35. Condition diagrams are scaled drawings of the location under study which illustrates measured distances and locations of the roadway and roadside characteristics. A condition diagram displays such characteristics as:

- Traffic lanes
- Lane widths
- Crosswalks
- Pavement Markings
- Traffic controls
- Curb lines
- Property lines
- Sidewalks
- Driveways
- Medians
- Shoulders
- Lane usage
- Sight obstructions
- Rysical obstructions in and near the roadway.

Steps in performing an inventory and preparing a condition diagram include:

- 1. Establish the boundaries of the site to be inventoried.
- 2. Identify data items to be recorded.
- 3. Obtain inventory data.
- 4. Check to see that all available information has been recorded and is reasonable.
- 5. Take photographs to supplement inventory data.
- 6. Prepare condition diagram, using symbols where appropriate.
- 7. Check for inclusion of all pertinent data items and accuracy.

The boundaries of the condition diagram are dictated by the safety problem. Boundaries should be established to include the portion of the roadway and roadside which may impact or influence accident experience. Distances should be defined, as dictated by traffic volumes and roadway

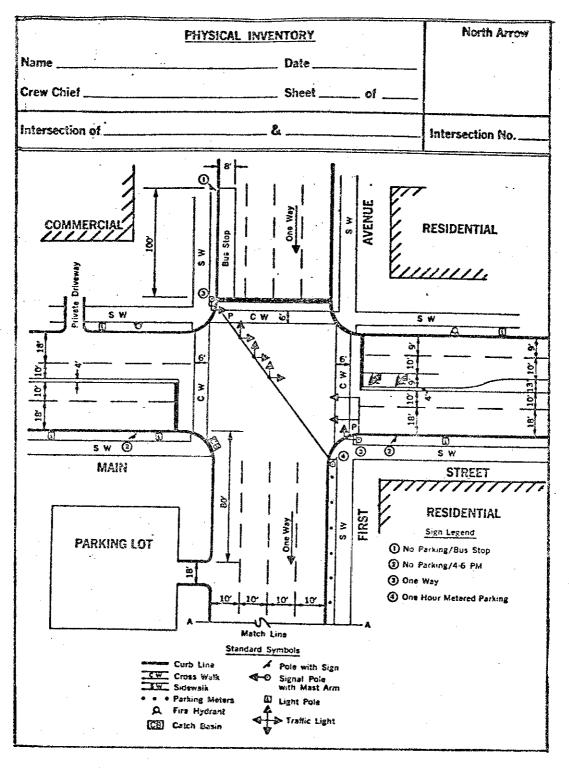


Figure 35. Roadway condition diagram.

characteristics which may affect the intersection operation. For roadway sections, the boundaries of the study area are defined from the link description used in the identification of the hazardous location.

Period of Data Collection

Unless weather related data are of concern, data collection activities should be conducted under favorable weather conditions. Poor weather conditions can result in the data collector "rushing" the study and omitting key data items. Also, snowy conditions or wind driven sand may cover or obliterate pavement markings, curb lines, etc. and result in an inaccurate inventory of roadway data.

Inventory data should represent the field conditions for the accident review period. Where roadway conditions were altered from or during the study period, all changes (and date of occurrence) should be noted. Such changes can adversely effect the analysis results.

Roadway Inventory Study Techniques

Several data collection methods are available to obtain inventory data:

- Manual method
- Data files search
- Photographic techniques

Table 34 summarizes the primary considerations for each technique.

Manual Method

The manual method [1,2] is the method most widely used. The method requires two field observers. One observer measures longitudinal and lateral distances to the data items with respect to a selected reference point while the second records the measurements on a hand drawn sketch of the study area. Reference points are typically a curb line or any permanent landmark that can be easily identified at the study site. A scale drawing (condition diagram) is then prepared from the field notes.

Advantages:

- 1. Provides a current record of field conditions.
- 2. Data are generally more accurate and reliable than other methods.
- 3. Equipment needs are minimal.

Disadvantages:

- 1. Time requirements may be substantial.
- Manpower requirements may be substantial for complex locations.

1.	CONSIDERATION TECHNIQUE Field Method	FUNCTION .Obtain inven- tory data through direct measurement of field condi-	EQUIPMENT REQUIREMENTS .Measuring wheel .Data sheets	MANPOWER REQUIREMENTS .Technician to measure data .Technician to record data .Draftsman to	TIME REQUIREMENTS .Approx. one hour per in- tersection .Segment dep. on length	ASSOCIATED COSTS .Measuring wheel \$25~\$50	DATA INPUT .Defined location .Specific data items required	DATA OBTAINED .Roadway and roadside environment characteris- tics	DATA OUTPUT Condition diagram of location
2.	File Search Method	. Obtain inven-	.Measuring wheel	.Technician to	(approx. one hour per 1/10 mile) .Dep. on availability	.Measuring	.Defined	.Roadway and roadside en-	.Condition diagram
		through office file records supplemented by minimal field measure- ment	.Data sheets .Computer capabilities	.Technician to field collect	of data (good system will produce mini- mal time effort)		Specific data items required .Data files	vironment characteris- tics	Segment charac- teristics
3.	Photolog Method	Obtain inven- tory data using photo- log process (continuous filming by frame)	Instrumented vehicle Photolog camera equipment Film viewer Computer capabilities	film .Film processor .Technician to view film .Technician to reduce data	.Filming speed based on ve- hicle speed (can attain speeds 40 mph); film viewing approx. one hour/1/2 mile .Data reduc- tion minimal	.Instru- mented vehicle \$20,000 to \$25,000 .Film viewer \$150 - \$1000	Defined location Specific data items required	.Roadway and roadside en- vironment characteris- tics	.Condition diagram .Segment charac- teristics .Computer summary
4.	Videolog Method	.Obtain inven- tory data using videolog process (con- tinuous film- ing - high speed)	.Instrumented vehicle .Videolog camera equipment .Film viewer .Computer capabilities	.Technician to film .Technician to drive vehicle .Technician to view film .Technician to reduce data	Filming speed based on ve- hicle speed (can attain speeds 40 moh); film viewing approx. one hour/1/2 mile .Data reduc- tion minimal	Instru- mented vehicle \$20,000 to \$25,000 Camera equipment \$2500 .Film viewer \$500 - \$1000	Defined location Specific data items required	.Roadway and roadside en- vironment characteris- tics	.Condition diagram .Segment character- istics .Computer summary

Table 34. Primary considerations for roadway inventory study techniques.

• Data Files Search

When an existing highway data file is available, a data file search may provide sufficient information for a roadway inventory study and condition diagram. An example of a highway inventory file is shown in Figure 36. However, a field review is recommended to check the resulting condition diagram for completeness and accuracy.

Advantages:

1. May require less time and manpower than the manual method if existing files are accurate and current.

Disadvantages:

1. File data may be incomplete, and thus require time and manpower for field review.

A basic limitation on the use of this method is the availability of a highway data file. Many agencies retain highway data but not to the extent required for an inventory study. Thus, significant field review may be required. However, data collection efforts are usually less than that for the manual method.

Photographic Techniques

Another inventory method uses photographic techniques [3] to obtain inventory data for a study location. Two common photographic techniques are in use today: photologs and videologs. The photographic process involves the continuous or time lapse filming of the roadway and its environment using a camera mounted in an instrumented vehicle. Pictures are shot as the vehicle traverses the study area. On each frame of the film, identification information such as: distance, date, and direction of travel can be superimposed. Data extraction is accomplished by projecting the film or video tape onto a calibrated screen to locate objects with respect to the calibrations. The data are then used to develop a condition diagram.

Advantages:

1. Provides a permanent pictorial record which can be used for other purposes.

Disadvantages:

- 1. Equipment costs are relatively high.
- 2. Requires trained personnel for data collection and extraction.
- Use of grids or calibration devices may reduce accuracy of measurements.

*****	******	*****														
MAIN STREET NAME - AIRPOR		*														
LINE INEGINNING CROSS NUMBER I NAPE	INT I	MILE POINT	THRIT	PNI	SURF 1	C058 I	SHLDI	ISHED	TAP	P∦₹	MEDIAN TYPE WID	1	eett.	DITE T	LED-1 UKE 1	
0412301P DWIGHT	*	1.30	2		ASPH	NONE	GRAV	۲		21	MM AF	16• E	,	10/13/76	P	
0412400X AINSLOW	7	1.35	- 2		ASPH	NUNE	GPAV	3		21	NOME	heat	U	10/13/76	P.	
0412500X JEROSE	1	1.39	5		ASPH	NONE	GRAV	1		21	NONE	NOME	4	10/15/7	F	
0412501P JEROSE		1.40	2		ASPH	NONE	64 . V	3		21	KONE	NONE	1	10/13/76	P.	
0412502P JERUSF		1.50	s		≜ SPH	NONE	GRAV	,		23	NUNE	NUTE	14	10/13/76	μ	
0412600X TUBES PD	т	1.57	2		ASPH	NONE	GRAV	3		21	NONE	NOVE	٨	19/13/74	F	
0412601P TUBPS RD		1.60	5		ASPH	NONE	CRVA	3		21	NONE	ት በቶ፡F	4	10/13/76	Ą	
04126028 TUB85 90		1.70	2		ASPH	NONE	GRAV	3		51	NONE	-10ik	80	10/13/76	2	
10412603P TUBBS PD		1.80	а		ASPH	NO*IE	RRAV	r		21	NOVE	10148	N	10/13/70	ę	
0412700X JON2UIL	۲	1.89	2		ASPH	NOh€	GRAV	3		71	NONE	NONF	Ν	10/13/74	R	
0412701P JONOUIL		1.90	2		ASPH	NONE	GRAV	3	;	21	ND&E	NUNF	2	10/13/76	, F	
10012702P JONUUTL		5.00	2		ASPH	NONE	GRAV	3		21	NONE	NONE	N	10/13/76	, P	
04178008 PAVEMNT WIDENS		2.01	2	1	ASPH	NOVE	GRAV	3	;	32	NONE	ND>E	N	10/13/76	P	
04129015 B CURP		2.04	5	1	ASPH	CONC	NONE			32	NONE	NONE	R:	10/13/76	ir ir	
10013000X HATCHEPT RD	PA	5°08	2	1	ASPH	CONC	NONE			32	NONE	NUFE	R	10/13/76	P	
0413001P HATCHERY RD		2.10	S	1	ASPH	CONC	NONE			35	NONE	NÖNF	*1	10/13/76	P	
100131005 E CURB		5.10	s	i	ASPH	NONE	68.4.V	3		32	NOFE	110116	ч	10/13/76	. P	
04132005 PAVEMNT NARROWS		2.14	5		ASPH	NONE	GRAV	3		21	NONE	NONE	N	10/13/76	₽	
0413201P PAVEMNT NAPPOWS		2.20	2		ASPH	MONE	GRAV	3		23	NONE	N0NE	N.	10/13/7/	, P	
104133005 8 BY PASS LANE		2.*0	3		ASPH	NONE	682V	3	;	32	N(H)F	ላበካE	۷	10/13/76	, ů	
0413301P 8 BY PASS LANE		2.30	3		ASPH	NONE	(GR N V	3	r	35	NONE	NONE		10/13/76	Р	
10413400X CAMPBELL GATE	т	2.35	3		4 SPH	NOTIE	GRAV	;		32	NONE	NOVE	N	10/13/7/	R R	
104135005 E BY PASS LANE		2.38	z		ASPH	NONE	GRAV	7	;	21	NONE	50×16	ι,	10/13/7/	R	
0413501P E BY PASS LAVE		2,40	2		ASPH	NONE	GRAV			51	NONE	NDDF	N	10/13/76	R	

Figure 36. Computerized summary of roadway inventory data.

Typically, the photographic method is performed on an agencywide, corridor, or road segment basis where its use as an inventory procedure makes it more cost-effective. For spots or short sections, this method may not be cost-effective unless the photographic equipment is owned by the agency.

Selection of Alternate Techniques

The selection process should be based on time, manpower, and equipment requirements of the highway agency. Table 35 summarizes these resource issues for each technique. In addition, techniques are suggested in Table 36 according to the location under study.

General guidelines to assist in the selection process are summarized as follows:

- 1. Existing data file search is appropriate where data are known to be complete and accurate.
- 2. For segment lengths greater than 500 feet, it is desirable to utilize a photographic technique. Manual inventories of relatively long segments may contain substantial errors, inaccuracies, and omissions.
- 3. For short segments (500 feet or less), spots, or intersections, the manual method is more favorable due to the lower time and cost requirements of the technique.

Findings

The data obtained by this study procedure is used as supplementary information in the accident, traffic, other environment and the special study procedures. The output from such a study is the identification of the roadway and roadside environment at a study location.

Procedure 16 - Sight Distance Study

Purpose

This procedure is used to measure the available sight distance at intersections or along a roadway section.

Application

Three situations are commonly considered in sight distance studies. They are "passing sight" distance, "stopping sight" distance and "intersection sight" distance. These situations are shown in Figures 37 and 38.

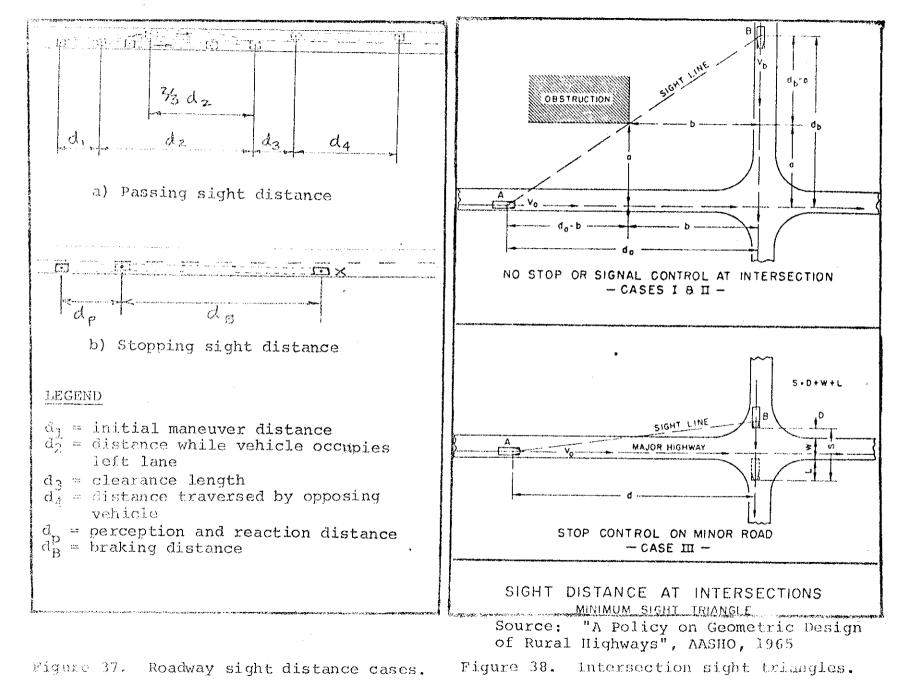

Technique Management Concern	Field Method	File Search Method	Photolog Method	Videolog Method
.Time Requirements	.Data collection .Diagram preparation	.File review .Data collection .Diagram prepara- tion	.FiJming .Data extraction .Data collection .Diagram prepara- tion	.Filming .Data extraction .Data collection .Diagram preparation
.Equipment Requirements	.Hand measuring equipment .Other needs, minimal	.Minimal	.Photolog equip- ment or capabil- ities	.Videolog equipment or capabilities
.Manpower Requirements	.Technicians to measure and record field data	.Clerk or tech- nician to record data from files	-Technicians trained in photo- log procedures	.Technicians trained in videolog pro- cedures

Table 35. Technique utility for roadway inventory study.

Table 36. Favorable roadway inventory study techniques.

- ..

Technique Situation	Field Method	File Search Method	Photolog Method	Videolog Method
. Agency- wide			x	x
. Corridor Basis		х	X	X
. Segment Basis	x	x	x	x
. Intersection or Spot Basis	х	x		

"Passing sight distance" is the minimum distance required to safely pass another vehicle along a two-lane roadway. "Stopping sight distance" is the minimum distance required to safely react and stop in response to an unsafe condition. "Intersectio sight distance" is the minimum distance required to respond appropriately to approaching cross traffic.

Need For Study

The need for a sight distance study can be based on either one of three conditions, (1) accident patterns which indicate a possible sight distance problem, (2) a field review which indicates that sight distance may be inadequate, and (3) complaints made by local users of the roadway. Various accident patterns and appropriate sight distance studies are shown in the following table.

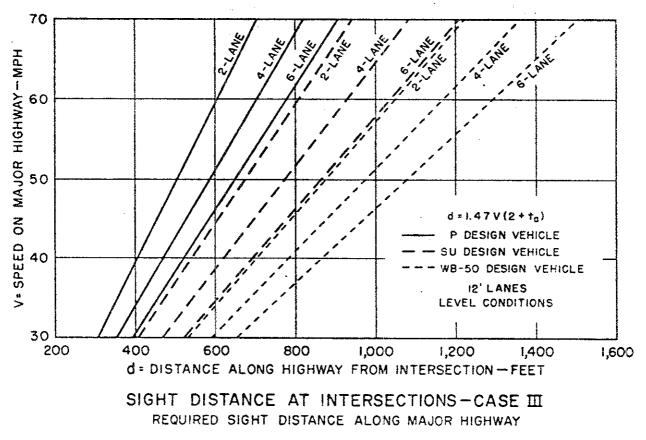
STUDY SITUATION	ACCIDENT PATTERN	SIGHT DISTANCE STUDY
Section of highway	Head-on Collisions	Passing sight distance
Intersection (uncontrolled, "STOP or "YIELD" controlled)	Right-angle accidents	Intersection sight distance
	Rear-end accidents on major roadway be- tween left-turn and through vehicles (in same direction	Stopping sight distance
Intersection ("STOP" . or "YIELD" con- tolled)	Rear-end accidents	Stopping sight distance
Intersection (sig- nal controlled)	Rear-end accidents	Stopping sight distance
	Right-angle accidents	Stopping sight distance or intersection sight distance

Use of Study

The design standards [1] for <u>minimum stopping sight distance</u> criteria is a function of the design speed of the roadway.

DESIGN SPEED (MPH)

MINIMUM STOPPING SIGHT DISTANCE (FT)


For <u>passing sight distances</u>, minimum standards based on MUTCD pavement marking requirements are [2]:

<u>DESIGN SPEED (MPH)</u>	MINIMUM PASSING SIGHT DISTANCE (FT)
30	500
40	600
50	800

Where the measured sight distance is greater than the standard (passing or stopping), safe sight distance conditions are assumed to exist. However, where measured sight distance conditions are insufficient, a safety deficiency can be identified. From this study, appropriate safety improvements can be determined.

At intersections, sight triangles are used to define the stopping sight distance. The legs of the triangle are formed along the intersecting paths of the conflicting vehicles. The length of each leg is a function of the speed of approaching vehicles. Three different cases are illustrated in Figure 38.

For cases I and II, the minimum stopping distance criteria is used to determine the length of the traingle legs. In case III, the graph shown in Figure 39 is used to determine the sight traingle legs as a function

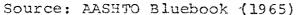


Figure 39. Intersection sight distance criteria for minor street crossing major streets.

of the travel speed and the number of traffic lanes for the major roadway. A safety deciency is assumed to exist where sight distance is inadequate. Appropriate safety improvements can then be identified.

Period Of Data Collection

Data collection should be performed during the time of predominant accident occurrence. For instance, if accident patterns reflect a specifitime of day or season of the year, the study should be performed during periods which reflect similar conditions. In many cases, changing foliage of sun angles will affect sight distance but may not be observed unless time of accident occurrence is considered. Where the accident activity is not related to a specific season or time period, the study should be performed under favorable weather conditions during summer.

Sight Distance Study Techniques

In performing a sight distance study, two techniques are commonly used. They include:

- Manual method.
- Vehicle method.

Table 37 summarizes the major considerations for each technique.

Manual Method

The <u>manual method</u> [3] utilizes two technicians. For <u>intersection</u> sight distance studies, one technician is stationed at a point on the minor intersection approach typical to a stopped vehicle. The second technician moves along away from the intersection on the major approach with a vertical marker and stops at intervals of 50 feet and places the vertical marker on the pavement surface. This marker may consist of a survey range pole or other device, with a <u>highly visible indicator</u> at a height level of six inches. The technician stationed at the reference point then attempts to see the range pole from a position equivalent to the standard driver's eye height of 3.75 feet. (Studies have shown, however, that smaller vehicles may have eye heights of 3.00 to 3.50 feet). If the 6-inch mark on the range pole remains visible, the second technician continues to move down the roadway. The study continues until the observed sight distance becomes greater than the design sight distance (based on vehicle speed and roadway geometrics). It may also be performed graphically, where an accurate road way inventory is provided.

For passing and stopping sight distance studies along a link, the technicians move along the roadway separated by a distance equal to the passing sight distance. Locations haveing inadequate sight distance are recorded on a scale map of the study area. Minimum lengths of a no passing zone are defined in Figure 40.

Table 37.	Primary	considerations	for	sight	distance	study
		techniques	3.	-		24

.

• -

Consideration Technique	Function	Equipment Requirements	Manpower Requirements	Timo Requirements	Associated Costs	Data Input	Data Obtained	Data Output
.Manual Method	.Obtains field sight distance conditions using observers	,Field poles ,Band measuring device ,Diagram sheets	. Two technicians to review field conditions and sketch data . Trainal techni- cian or engineer to review data	Approx. 1/2-1 hr. por site (intersection) .Several hrs, por mile (road- way segment)	.Measuring wheel \$25- \$75	.Dofined loca- tion .Speed limit .Design standard	.Safo sight distance (ft. or m.) based on field condi- tions	Assessment of safe sight dis- tance conditions .Probable cause for insufficient sight distance
.Vehicle Method	,Obtains field sight distance conditions using instrumented vehicle	 Instrumented vehiclo Hand measuring device (possibly) Diagram shocts 	.Two technicians to operate vehicle .Trained techni- cians to adjust and review data	Approx. 1/2-1 hr. por site (intersection) Approx. 1/2 hr. por mile (road- way segment)	.lnstrumen- ted vohicle \$20,000	.Dofined loca- tion .Speed limit .Design standards	.Sight dia- tance condi- tions based on field review	Assessment of safe sight dis- tance conditions (Probable cause for insufficiant sight distance

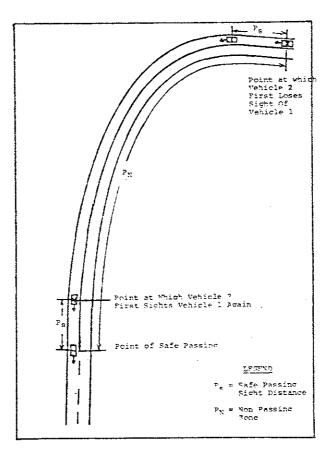


Figure 40. Non-passing zone measurement.

Advantages:

- 1. Equipment needs are minimal.
- Able to study field conditions under a variety of eye height and object height situations.

Disadvantages:

- 1. Not appropriate for long segment lengths.
- 2. Time requirements can be substantial.

Vehicle Method

The vehicle method requires two vehicles. The rear of one vehicle is marked at standard heights related to the sight distance criteria (passing or stopping) under review. The other vehicle is designated as a reference vehicle to observe field sight distance conditions. For <u>link</u> studies, the vehicles are separated by the minimum passing sight distance based on the 85th percentile speed or the posted speed limit. A distance meter may assist in maintaining a constant vehicle separation. Throughout the survey, two-way radio communications are used to enhance a constant vehicle separation. When the designated mark on the lead vehicle is not visible to the driver of the trailing vehicle, the location along the roadway is noted on a distance meter. When the trailing driver is again able to see the designated mark on the lead vehicle is recorded. This procedure is continued along the length of the roadway segment.

Special mechanical device may also be used to note these locations and distances. They require manual actuation, though.

For <u>intersection</u> sight distance, one vehicle is used to simulate an approach vehicle on the minor roadway and the second vehicle simulates the approach vehicle on the major roadway. Through the use of walkie-talkies or observations by the waiting vehicle and subsequent manual measurement of distances, the field sight distance conditions are recorded.

Advantages:

- 1. Able to obtain a significant amount of information in a relatively short amount of time.
- 2. Measurements are generally reliable.
- 3. Field conditions are viewed as drivers would actually observe conditions.

Disadvantages:

- 1. Equipment needs and costs are relatively high.
- 2. Studies are limited by specific test vehicle characteristics.

Selection of Alternate Techniques

Tables 38 and 39 may be used to select a technique. General guidelines for the selection process are summarized below:

- 1. It is favorable to use the vehicle method for studying most roadway links due to its ability to collect a large amount of data in a relatively short amount of time.
- 2. For spot locations (500 feet in length or less) or intersections, the manual method may be more appropriate. It permits greater maneuverability of personnel to allow the study of a greater variety of situations.
- 3. A graphical approach may be used at intersections where an accurate record of the roadway and roadside characteristics exist.

Findings

Sight distance data for intersections can be presented on a condition diagram as shown in Figure 38 to show existing and minimum sight distances and sight obstructions.

For <u>link studies</u>, sight distance data can also be presented on condition diagrams which contain horizontal or vertical curve (crest and sags) data, and obstructions within the required sight distance area. These figures include the observed field conditions and sight distance.

Major Consideration

Minimum design values for passing sight distance along links are base on AASHTO (American Association of State Highways and Transportation Officials) criteria. These standards are in the AASHTO "Bluebook" [1] and "Redbook" volumes. The criteria for warking (operational) "no passing" zone differs considerably from the design standards. Design standards develope by AASHTO and the marking standards contained in the Manual of Uniform Traffic Control Devices (MUTCD) are shown below.

SPEED (MPH)	AASHTO DESIGN VALUES (FT)	MUTCD MARKING VALUES (FT)
30	1100	500
40	1500	600
50	1800	800
60	2100	1000

the state of the s

Table 38. Technique utility for sight distance study.

. .

Techniques Management Concern	Manual Method	Vehicle Method
.Time Requirements	 For spot location or intersection studies, time effort is not substantial For link studies, time effort will be sub- stantial 	.For spot location or intersection studies, time effort will be sim- ilar to Manual Method .For link studies, time effort will be signifi- cantly less than manual method
.Manpower Requirements	.Two Technicians	.Two trained technicians
.Equipment ' Requirements	.Hand measuring device .Other needs, minimal	.Vehicles, special measuring equipment
.Level of Accuracy	.Very reliable for in- tersection and short segments of roadway .For links, accuracy can be reliable, how- ever, where segments lengths are consider- able, human limitations may reduce accuracy	.Reliable for intersection, and link studies
.Comprehensive- ness of Results	.Can study sight distance under varying height conditions	Study limited by test vehicle's characteristics

Table 39. Favorable sight distance study techniques,

Situation/Technique	Manual Method	Vehicle Method
Section of Highway		x
Intersection of Major roadway with minor roadway (Uncontrollad, "stop," or "yield"		
controlled)	x	x
Signalized intersection	x	x

Significant differences between these values occur. They are due primarily to the assumptions made in determining each standard [4]. For instance:

- 1. The MUTCD values are based on an off-peak 85th percentile speed, while the AASHTO values are based on the roadway design speed. The MUTCD speed is typically lower than the AASHTO design speed.
- 2. In computing minimum required sight distance, the MUTCD assumes that a driver is able to abandon the passing manuever while in the passing lane if a safe passing maneuver cannot be completed. Thus, the safe passing sight distance is equivalent to the distance travelled by an opposing vehicle during the passing maneuver plus a safety factor. AASHTO, on the other hand, considers safe passing sight distance to be the distance travelled during the time a driver first perceives that he is able to pass and the time when the passing maneuver is completed (see Figure 37a).

When using these criteria, the differing assumptions should be kept in mind. AASHTO design standards are for roadway design purposes where MUTCD marking standards are for traffic control. For safety studies of the passing sight distance, the MUTCD criteria are used.

Use Of Findings

Where field conditions are found to be deficient or sufficient sight distance is not available, upgrading of these conditions is warranted. Available countermeasures may include:

- Removal of sight obstruction
- Pavement marking improvements or alterations
- Roadway alignment changes (grade reductions or curve realignment)
- Speed limit reductions
- Advance warning signing.

This study assesses whether sufficient sight distance occurs at or along a highway facility. Such a determination assists in the selection of appropriate safety-related countermeasures.

Procedure 17 - Skid Resistance Studies

Purpose

A skid resistance study commonly measures the frictional properties of a pavement surface.

Application

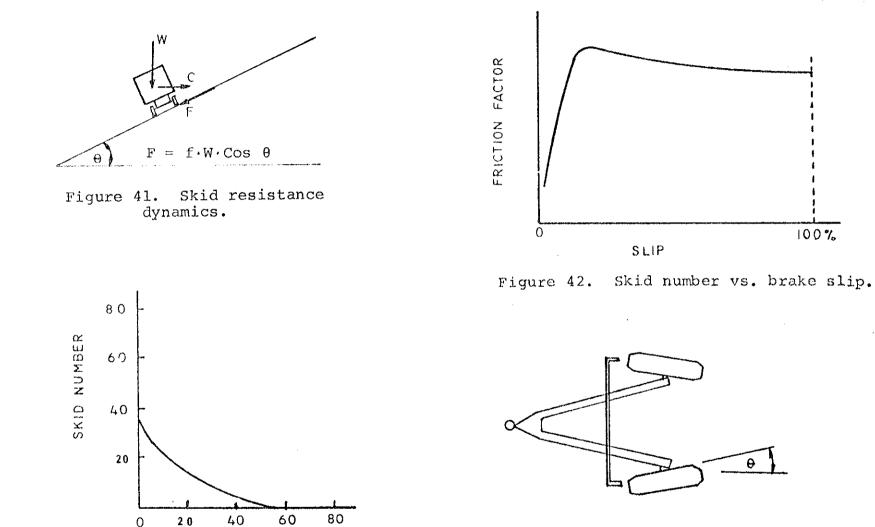
Skid resistance, expressed as a skid number (SN) [1], describes the level of friction between a roadway surface and vehicle tire when the tire is prevented from rotating.

The SN is defined as 100 times the coefficient of friction. The standard procedure for obtaining the skid number is described in the ASTM Standard E-274.

Need For Study

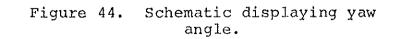
The need for a skid resistance study is generally based on a pattern of "wet weather", "wet-skidding", or "skidding" accidents. Such a pattern may emerge as a predominant accident type or the number or rate of accidents may exceed an area-wide average value (threshold value) for the accident type.

Two threshold measures may be used. The first is the comparison of "wet pavement" accident rates for similar sites. The second technique is the ratio of "wet pavement" to "total" accidents. The "wet pavement" accident rate technique may produce a more usable threshold level since the use of an exposure factor may tend to discount the differences in traffic volumes between sites. It will permit a greater number of sites to be use for comparison purposes.


Other sources which may identify the need for a skid resistance study includes field reviews and input from local sources. Observance of "skidding" and "sliding" vehicles during wet or dry pavement conditions may justify a skid resistance study.

Measurement Modes

There are several methods of measuring skid resistance. The most common is the locked wheel braking method. The locked wheel braking method measures the force required to pull a specified tire, while it is prevente from rotating (see Figure 41).


Other less common measurement modes include: the brake slip, the drive slip, and the cornering (YAW mode). These modes have an advantage over the locked wheel mode in that continuous measurements are obtained since the tire rotates during the test procedure.

In the <u>slip mode method</u> [1] (brake or drive), the friction factor is a function of the "slip" of the test wheel as it rides over the pavement. For example, as the brake of a wheel is applied with an increasing force, the wheel develops increased "slip" (as illustrated in Figure 42). The slip gradually increases until at its maximum, the wheels lock up, resulting in a lower friction factor.

SLIDING SPEED

Figure 43. Skid resistance vs. vehicle speed.

This mode has not been used to mesure skid resistance characteristics of highways throughout the U.S. It has, however, been used successfully throughout Europe.

The <u>YAW mode</u> [1] uses a test wheel in the cornering mode at an angle to the direction of motion. The use of this test procedure assumes that the critical situation for skid resistance occur on curves. This test allows continuous measurements of a friction force since the tires rotate during the test and can provide skid characteristics as a function of time. One measuring device which has been used successfully in some parts of the United States is the Mu-meter, which consists of a trailer unit connected to a test vehicle.

Other testing methods have been used which include <u>portable</u> and <u>laboratory testers</u>. To date, these testers have not been widely used in highway safety studies.

Use Of Study

The measures of skid resistance which result from each test mode are usually compared to a pre-established standard based on travel speed. Since the friction factor may vary significantly with speed, as shown in Figure 43, a determination of skid characteristics under varying speed conditions is performed. This review indicates the rate at which the skid number decreases with increasing speed referred to as (skid number - speed gradient). A pavement with a rate of decrease near zero (skid number vs. speed) typically retains a higher skid resistance at higher speeds than a pavement with a high rate of decrease. In addition, it will define the skid resistance of a pavement at the roadway travel speeds and be used to determine the pavement skid characteristics at these speeds.

Where unfavorable skid numbers or skid number - speed gradients exist, this information can be used to verify a safety deficiency, as previously identified by the accident procedures, and to select a countermeasure to alleviate the condition.

Factors to Consider

Several factors should be considered when reviewing skid test results. First, a skid number can change over time due to traffic. Although some pavement aggregate particles may wear and become polished, others may, through the breaking of fragments, expose fresh surfaces. Also wear may open new water escape passages in the surface.

Second, research on skid resistance measurements have shown that skid numbers vary with the seasons of the year and air and pavement moisture content, temperature, precipitation, and other factors. Therefore, skid measurements should be performed under the conditions described in the ASTM Standards. Finally, skidding accidents may occur where a favorble skid unber exists. In these cases, accidents may be caused by the presence of water on the roadway. Therefore, consideration of pavement drainage characterstics is necessary.

Period Of Data Collection

For safety reasons, data collection may require that a portion of the roadway be blocked off or that the study be performed under low volume conditions to attain the necessary range of travel speeds. It is recommended that skid resistance studies be performed during off-peak periods to minimize disruption to traffic. At high volume, urbanized locations, perform the study on the weekend. Studies can also be performed at night when lighting conditions are favorable.

As previously stated, the results of skid tests are affected by the season of the year. Time of day conditions can also affect the results. Periods of moisture (precipitation) and temperature affect study results and should be avoided.

Skid Resistance Study Techniques

Several methods of obtaining skid resistance data are available. They include:

- Locked wheel trailer methods.
- Mu-meter tester.
- Automobile methods.
- Portable/laboratory testers.

Table 40 summarizes the primary considerations for each technique.

Locked-Wheel Trailer Method

The locked-wheel trailer method [1,2,3,4,5] is the most widely used method within the U.S. for skid resistance measurement. IT is based on the ASTM Method of Test E-274. The method utilizes a test tire (ASTM Standard E-501) installed on the wheels of a test trailer. The trailer is towed by a truck at a speed of 40 mph while water is applied uniformly in front of the test wheels. The rate of application of the water, according to the ASTM specifications, is 4.0 gal./min./in. (0.60 liters/min./mm) of wetted width, resulting in a standard thickness of water of 0.5mm (0.02 inch). A deviation of + 5 SN may occur at 40 mph.

The test wheel(s) is locked by a brake and a recording of the wheel torque during braking is made using either manual or electronic means. Analysis of this torque results in a skid number (SN). Further details in this method is given in ASTM Method E-274.

Consideration Technique	Function	Equipment Requirements	Manbower Requirements	Time Requirements
.Locked-Wheel Method	Measures fric- tion force using trailer device in lock- ed wheel mode (ASTM Method E 274)	.Trailer device .Data sheets	.Technician to drive vehicle/ trailer unit .Engineer to evaluate data	.1/2 hr. per site or mile
.Automobile Method	Measures fric- tion force using test vehicle in locked wheel mode (ASTM Method E 445- 71T)	.Test vehicle .Hand measuring device, stop watch or decel- erometer .Data sheets	.Technician to drive vehicle .Technicians to measure and record data .Engineer to adjust data	.1/2 hr, per site .1-2 hrs. per mile
.Mu-Meter Tester	.Measure fric- tion force using skid trailer in yaw mode	.Mu-meter trailer .Data sheets	.Technician to drive vehicle/ trailer unit .Engineer to evaluate data	.1/2 hr. per site or mile
.British Pendulum Tester	.Measures energy unit using pavement samples test- ed in a labor- atory environ- ment or on- site	.British pendulum tester .Data sheets	.Technicians to drive vehicle .Technician to operate tester .Engineer to adjust data	.Testing approx. 1-2 hr. per sample

Advantages:

- 1. Recognized as standard practice.
- 2. Economical and convenient to perform for a large number of tests.
- 3. Skid trailers available commercially.

Disadvantages:

- 1. Requires relatively expensive equipment (trailer).
- Difficult to perform except under low traffic volume conditions.

Mu-Meter Tester

The Mu-meter tester [1,4,5] typically employs methods as stated in ASTM-E-670. It uses a trailer type device with both wheels (treadless) yawed inwardly during field testing. In this mode, it simulates the cornering effect. However, since the wheels are yawed in opposite (but equal) angles, the trailer continues to move straight ahead.

In using this device, it is necessary that the yaw angle, as shown in Figure 44, be set such that the test results are minimally affected by surface characteristics or operating conditions. For highway safety applications, a yaw angle in the range of 10-15 degrees is suggested.

The results of this method consist of a set of measurements of the skid number as the braking force increases. Measurements of the skid number are made for both wheels and averaged. The results can correlate extremely well with the locked wheel method using similar test conditions, such as treadless tires (standard practice for Mu-meter) and an external water source (sprinkler truck). However, a maximum deviation of ± 5 SN at 40 mph can occur.

Advantages:

- 1. Can be performed under ASTM standards.
- 2. Trailers are simple to operate and commercially available.
- 3. Economical and convenient to perform for a large number of tests.

Disadvantages:

- 1. Results can differ from locked wheel methods (which is a standard practice).
- 2. Equipment is relatively expensive.
- 3. Requires testing, for safety reasons, in a low traffic volume condition.

Automobile Method

The automoile method [1,4,6] uses a standard automobile driven along the roadway at the speed of 40 mph. An external water source is used to simulate the "wet pavement" conditions. The automobile's brakes are locked and measurement is made of how far the vehicle travels until it comes to a full stop. The braking distance, D, is then used in the following relationship to obtain the friction factor.

$$f = \frac{V_1^2 - V_f^2}{300} + G$$

Where:

D = braking distance (ft. or m.)
V_i = initial velocity (mph or kph)
V_f = final velocity (mph or kph)
f = friction factor
G = percent of grade (+ or -)

The friction factor may be transformed to the skid number (SN) using the following formula:

SN = 100f

If performed properly, this technique can produce more consistent results than the road friction testers since it simulates actual driving conditions.

Advantages:

- 1. Equipment needs are minimal.
- 2. Requires a low capital investment.
- 3. If performed and measured according to standards usable results may be obtained.

Disadvantages:

- Technique can be dangerous to perform under high speed conditions.
- Requires testing under low volume or blocked off road conditions.

Laboratory and Portable Field Testers

Many <u>laboratory</u> and <u>portable field testers</u> [1,7] have been developed. However, in highway safety studies, they are not as applicable as the previous methods. This is primarily due to the fact that measurements obtained by many of these methods fail to correlate well with the standard tests suggested in the ASTM standards. One such device which has shown to be suitable for some safety uses and is gaining acceptance is the <u>British</u> <u>Pendulum Tester</u>. The tester consists of a pendulum to which a springloaded rubber shoe is attached. A vehicle (tester connected to vehicle) drives slowly (7 mph) over the roadway section, and the pendulum is dropped after which the shoe slides over the surface to be tested. The height of the rebound serves to measure the frictional resistance. Details of the testing procedure is based on ASTM Method E-303.

The results of this tester can be developed into a British Pendulum Number (BPN). This number is unique to this device and cannot be directly correlated to the results of other testing methods. However, it is used widely throughout other parts of the world for pavement evaluations.

Advantages:

- 1. Can test field samples in situations where field testing is not practical.
- 2. Adaptable to use as field or as laboratory tester.

Disadvantages:

- 1. Results do not correlate directly with locked-wheel results.
- 2. Cost per test can be quite high.
- 3. For field use, setup and preparation is usually extensive.
- 4. Laboratory testing may not fully reflect the field conditions.

Selection of Alternate Technique

Table 41 summarizes the utility of the techniques based on agency resource limitations and the accuracy of the technique. General guidelines for selecting a technique are:

- 1. The locked-wheel methods generally are considered as standard practice for performing skid resistance studies. Where lockedwheel testers are available, they are preferred due to their recognition as accurate, safe and reliable methods. However, where this equipment is unavailable, the automobile method is favorable. It can simulate the locked-wheel condition.
- 2. Mu-meter tests may be appropriate because they simulate the locked wheel condition in a cornering mode. The results differ slightly from those obtained by the locked wheel testers.
- 3. The automobile method can provide reliable results given the appropriate measuring instrumentation. However, due to the

Technique Management Concern	Locked Wheel Method	Mu-Meter Method	British Pendulum Method	Automobile Method
.Time Requirements	.Requires data collection typic~ ally at 40 mph speed .Meter readings	.Requires data collection typic- ally at 40 mph speed .Meter readings	.Requires data collection typic- ally at 40 mph speed .Meter readings	.Requires data collection typic- ally at 40 mph speed .Require measure- ments and compu- tations
.Equipment Requirements	 Locked wheel trailer and measuring de- vice Other needs, minimal 	 Locked wheel trailer and measuring de- vice Other needs, minimal 	 Locked wheel trailer and measuring de- vice Other needs, minimal 	.Automobile .Standard test tires (ASTM E 50.1) .Measuring instru- ments
.Manpower Requirements	.Technician level	.Technician level	.Technician level	.Technician level
.Level of Accuracy	Highly reliable if well calibrated and maintained	Highly reliable if well calibrated and maintained	Highly reliable if well calibrated and maintained	Accurate where measurements are obtained mechanic- ally Manual measurements may produce slight inaccuracies

Table 41. Technique utility of skid resistance studies.

potential hazard involved in performing this study, its use is not encouraged.

4. The portable/laboratory testers do not produce results correlative with the locked wheel results and, as such, their use in highway safety studies is not encouraged. However, as a tool for pavement comparison and other similar purposes, they can produce effective results. One device which is gaining more widespread attention in skid resistance studies is the British Pendulum Tester.

Findings

The output of a skid resistance study can be presented in a chart by test run (page I-14 of the Appendix). Since the skid number results are sensitive to many factors, (precipitation, air temperature, and vehicle speed [8,9], documentation of these conditions is important on these charts.

Use Of Findings

In evaluating the skid resistance qualities of a pavement, a review of the skid number at a 40 mph speed and the skid number - speed gradient of the pavement is performed. This review not only assists in evaluating the pavement skid characteristics based on standards for the ASTM test methods, but also assesses the pavement's skid resistance characteristics under varying speed conditions, in particular, actual field conditions. The speed gradient is used to assess the skid resistance qualities for the range of travel speeds expected along a roadway.

The skid numbers at various speeds are compared to minimum standards defined by the state highway agency in which they are used. Skid numbers lower than these values will usually dictate the need for upgrading (countermeasures) of the pavement skid characteristics. Countermeasures may include pavement grooving, surface overlay, roadway speed reductions, and warning signing.

Procedure 18 - Highway Lighting Study

Purpose

Highway lighting studies are used to determine the adequacy of existing lighting systems and the need for new, additional, or improved systems. These studies may be used to study sites with existing lighting facilities and sites which may need lighting based on accident experiences.

Application

Need for Study

Highway lighting studies may be warranted based on an observed

pattern of nighttime accidents. In addition, field reviews performed under nighttime conditions may show that insufficient or inadequate lighting or delineation of the study area may be warranted. Input from local users can also justify a highway lighting study.

Use Of Study

When the need for a highway lighting study exists, site data (roadway volumes, area type, accident rate, existing lighting in area, roadway geometrics, etc.) should be collected, reviewed, and compared to roadway lighting warrants to determine the effectiveness of the current highway lighting conditions. The warrants are directed at those locations where highway lighting currently does not exist.

When there is a need to assess the lighting adequacy for existing systems, a study can also be performed by comparing existing lighting system characteristics to design standards. These design standards are set forth by AASHTO [1], the Illuminating Engineering Society [2], or independent local standards.

The study can determine whether a safety deficiency exists and assists in identifying a countermeasure where lighting conditions are considered deficient.

Lighting Study Techniques

The following techniques are available:

- American Association of State Highways and Transportation Officials (AASHTO) criteria.
- NCHRP Report No. 152 method.
- Selected individual warrants based on individual research.
- Field review method.
- A light meter technique.

Table 42 summarizes the major considerations for each technique.

AASHTO Criteria

The AASHTO criteria [1,3] were prepared by the Joint Task Force for Highway Lighting of the AASHTO Operating Subcommittees on Design and Traffic Engineering. The criteria is based on a description of operational, geometric, and developmental conditions that must be matched cr exceeded to justify the installation of roadway lighting. AASHTO warrants are currently developed for the following area types:

- Freeways
- Interchanges

Consideration Technique	Function	Equipment Require- ments	Manpower Requirements	Time Requirements	Asso- ciated Costs	Data Input	Data Obtained	Data Output
1. AASHTO Criteria	Evaluates lighting needs for freeways, interchanges, tun- nels and underpass- es, etc. based on traffic volume, area description, and accident data applied to guide- lines for these conditions	.Volume counters .Cata sheets	. Technicians to perform volume surveys Engineer to calculate ac- cident data Engineer to xeview warrants	With available volume data, approx. 1 hour per site	None	.Defined location .Yolume data for specific location .Area des- cription .Accident data by time of day	Assessment of warrants	Review of need for lighting
2. NCHRP Report No.152 Method	.Evaluates lighting needs for freeways, interchanges, non- controlled access facilities and in- tersections based on geometric, operational, en- vironmental, and accident factors applied to tabu- lar form and com- pared to warrant- ing value	.Radar meter (speed) Measuring device .Data sheets	Jachnicians to obtain field data Engineer to evaluate weighting plan	Field data collection - approx. 1-2 days .Adjust data sheet - apporx. 1-2 hours per site	None	.Defined location .Field data (per tabu- lar form) .Area descrip- tion .Accident data	.Compilation of tabular form .Comparison value to warranting condition	Review of need for lighting
3. Informa- tional Needs Approach	Evaluates lighting needs for all Bi- tuations based on that time required to perform driving task under exist- ing information supply	.Stop watch .Data sheets	Engineer to re- cord or separate driving task factors Engineer to re- view informa- tion supply data Engineer to re- view and assess data		None	.Defined location Information supply Driving task (associated times)	Summary of information demand and aupply at study site	Review of need for lighting
 Individual Warrants Rural Inter- section Lighting Nethod 	Evaluates lighting needs for rural intersection based on accident data applied to guide- line for this con- dition	.Bata sheats	Engineer to re- view accident data and assess warrants	Approx. 1 hour per site	None	Defined location Accident data	Assessment of warrant	Review of need for lighting

Table 42. Primary considerations for highway lighting study technique.

Consideration Technique	Function	Equipment Require- ments	Manpowar Raguiremanta	Time Raguirements	Asso- ciated Costs	Data Input	Data Obtained	Dota Output
- Padas- trian Cross- walk	.Evaluates special lighting needs for crosswalks based on traffic volume, accident, area description, and pedestrian behav- ior data applied to guidalines for these conditions	:Volume counters .Data sheats	J.echnician to perform volume surveys Engineer to perform field review and evaluate acci- dent data Engineer to review warrants	With available volume data, approx. 1 hour per site		Defined location Volume data for specific loca- tion Area descrip- tion Accident data	Assessment of warrante	Review of need for special lighting
5. Field Condition Mathod	Evaluates adequacy of existing light- ing system based on a comparison of existing hardware in field to de- sign standards	-Bata shoets	 Engineer to field review location, obtain existing hard- ware character- istics, and com- pare to design standards 	. ^A pprox. 1-2 days per site	None	Defined location Existing light- ing hardware Aron descrip- tion Design stan- dards	.Evaluation of field system to design sys- tem	Review of adequacy or need for fur- ther lighting needs
6. Light Meter Method	Evaluates adequacy of existing lumi- naries to provide proper lighting based on field measurement of illumination level and comparison to design standards	.Light meter .Data sheets	Engineer to field review io- cation and sam- ple illumination levels Engineer to com- pare field re- sults to design standards	day per site	- \$1000 İ	.Defined location .Area descrip- tion .Design stan- dards	. 111umination level at sam- ple locations	Adequacy of adequacy or need for fur- ther lighting needs

Table 42. Primary considerations for highway lighting study technique (Continued).

- Tunnels and underpasses
- Roadway safety rest areas
- Roadway sign lighting

Basic data needs for these warrants include traffic volumes (by time of day for a 24-hour period), accident frequency (night vs. day), and a knowledge of the study area and its environs.

The warrants for freeways and interchanges are shown in Figure 45. Warrants for other field situations are provided in Reference 1. Additional general warrants which may be used to justify lighting improvements are:

- 1. Where there is continuous freeway lighting, there should be complete interchange lighting.
- 2. When continuous freeway lighting is warranted, but not initially installed, partial interchange lighting is justified.
- 3. Where complete interchange lighting is warranted, but not initially fully installed, a partial lighting system which exceeds the normal partial installation in number of lighting units is justified.
- 4. Lighting of crossroad ramp terminals is warranted where the design requires the use of raised channelizing or divisional islands, and/or where there is poor sight distance.

Advantages:

- 1. Provides a simple, usable method.
- 2. Requires a minimal of data needs.
- 3. Produces reliable results based on present experience.
- 4. Accepted as a national guideline.

Disadvantages:

1. Is not effective for most urban street and rural highway situations.

The <u>NCHRP Report No. 152 method</u> [1,4] is based on research related to the driver visual information needs. Information needs for this method include roadway geometric factors, operational factors, environmental factors, and accident data. They are compiled in separate tabular forms for situations such as: non-controlled access facilities, intersections, freeways, and interchanges. The forms are displayed in Figures 46-49.

Within these forms, the "CLASSIFICATION FACTOR" refers to the specific data item or information to be studied and for which data is to be

Criteria	Average Daily Tr	affic (ADT)	Interchange	Night/Day		
Situation	Freeway or Ramp Other		Spacing	Accident Rate	Other	
1. Continuous Freeway	.in or near cities, ADT's 30,000 or more	Not Applicable	Three or more successive in- terchanges with an aver- age spacing of 1.5 miles or less in an ur- ban-type area	 (a) 2.0 or higher; or (b) Higher than Statewide average for similar, un- lighted areas 	 For a two or more mile length of freeway (through an urban or sul urban area) (a) local traffic uses street having lighting which is visible to freeway traffic; (b) freeway runs through lighted area; (c) streets crossing freeway having an average spacing of 1.2 mile or less; or (d) narrow medians or borders are used. 	
2. Complete Interchange Lighting	.Total ramp traffic ADT exceeds: - urban (10,000) - suburban (8,000) - rural (5,000;	<pre>.Crossroad ADT traffic ex~ ceeds: - urban (10,000) - suburban (8,000) - rural (5,000)</pre>	Not Applicable	 (a) 1.5 or higher; or (b) higher than Statewide average for similar, un- lighted sec- tions 	.Immediate area is lighted; or .Crossroad approach legs are lighted for 1/2 mile or more.	
3. Partial Interchange Lighting	.Total ramp traffic ADT exceeds: _ urban (5,000) - suburban (3,000) - rural (1,000)	- suburban (20,000)	Not Applicable	 (a) 1.25 or higher; or (b) higher than Statewide average for similar, un- lighted areas areas 	Not Applicable	

Figure 45. Lighting warrants (AASHTO criteria).

			RATENG			UNLIT	LICHTED		SCORE
CLASSIFICATION FACTOR	l	2	3	4	5	WEIGHT (A)	WEIGHT (B)	DIFF. (A - B)	[RATING X (A - B)]
Geometric Factors									
Number of Lanes	4		6		<u>≥</u> 8	1.0	0.8	0.2	
Lane Width	> 12'	12.	ir.	10'	<u>≤</u> 9'	3.0	2.5	0.5	
Median Width	> 40 '	24-39'	12-23	4-11'	0-3'	1.0	0.5	0.5	
Shoulders	10.	8.	6'	4'	0.	1.0	0.5	0.S	
Stopes	> 8:1	6:1	4:1	3:1	2:1	1.0	0.5	0.5	
Carres	0-1/2°	1/2-1 •	1.2°	2.3°	34°	13.0	S.0	0.8	
Grades	< 3%	3-3.9%	4-4.9%	5-6.9%	> 7%	3.2	2.8	0.4	<u> </u>
Interchange Frequency	4 miles	3 miles	2 miles	l mile	< 1 mile	4.0	1.0	3.0	
Operational Factors							Geometric 1	lotal	
Level of Service (any dark hour)	A	В	с	D	E	6.0	1.0	5.0	
1							Operational	Total	
Environmental Factors									
% Development	0%	25%	50%	75%	100%	3.5	0.5	3.0	
Offset to Development	200*	150'	100'	50'	< 50'	3.5	0.5	3,0	
Accidents							Environmen	tal Total	
Ratio of Night-to-Day Accident Rates	1.0	1-1.2	1.2 - 1.5	1.5 - 2.0	2.0*	10.0	2.0	8.0	
*Continuous lighting warr	ranted.				-		Arsident To	tal	
		OPERAT ENVIRG ACCIDE	FRIC TOTAL CIONAL TOTAL DIMENTAL TOTAL NT TOTAL SU NTING CONDITIO	з м ÷	POIN	I VTS			

EVALUATION FORM FOR CONTROLLED ACCESS FACILITY (FREEWAY) LIGHTING

Figure 46. Highway lighting warrant form - freeway.

EVALUATION FORM FOR ENTERCHANGE LIGHTING

CLASSIFICATION			RATING	ÚNLIT	LIGHTED		SCORE		
FACTOR	1	2	3	4	5	WEIGHŤ (A)	WEIGHT (B)	DIFF. (A - B)	[RATING X (A + B)]
Geometric Factors									
Ramp Types	Direct	Diamond	Button Hooks Cloverleafa	Trumpet	Scimors and Left-side	2.0	1.0	1.0	
Cross-Road Channelization	BODE		continuous		at interchange intersections	2.0	1.0	1.0	
Frontage Roads	none		one-way		two-way	1.5	1.0	0.5	
Freeway Lane Widths	> 12"	12'	111	10.	< 10'	3.0	2.5	0.5	
Freeway Median Widths	> 40"	34 - 40'	12 - 24*	4 - 12*	< 4'	1.0	0.5	0.5	
No. Freeway Lanes	4 or less		6		8 or more	1.0	0.8	0.2	
Main Lane Curves	< 1/2°	1-2°	2-3°	3-4°	> 4°	13.0	5.0	8.0	[
Gradea	3%	3 - 3.9%	4 - 4.9%	5 - 6.9%	7% or more	3.2	2.8	0.4	
Sight Distance Cross Road Intersection	> 1000.	700 - 1000'	500 - 700	400 - 500'	< 400'	2.0	1.8	0.2	
1					· ·		Geometric	Factors	<u> </u>
Operational Factors									
Level of Service (any dark hour)	A	B	c	D	E	6.0	1.0	5.0	
		1					Operational	Factors	
Environmental Factors									
% Development	none	l quad	2 quad	3 qued	4 guad	2.0	0.5	1.5	
Set-Back Distance	> 200'	150 - 200'	100 - 150'	50 - 100	< 50'	0.5	0.3	0.2	
Cross-Road Approach Lighting	none		partial		complete	3.0	2.0	1.0	
Freeway Lighting	none		interchanges only		continuous*	5.0	3.0	2.0	
Accidents							Environme	i ntai Factors i	
Rate of Night-to-Day Accident Rates	< 1.0	1.0 - 1.2	1.2 - 1.5	1.5 - 2.0	> 2.0*	10.0	2.0	8.0	
*Complete lighting warra	nted.						Accident F	l actors	
		1	I I TRIC TOTAL TONAL TOTAL	= <u></u> =	.	1			
		Ł	NMENTAL TOTAL NT TOTAL	±					
			SUM TE LIGHTING NTING CONDITION	= =90 p	POINT	°S			
		PARTIA WARRA	L LIGHTING NTING CONDITION	*	soints				

Figure 47. Highway lighting warrant form - interchange.

EVALUATION FORM FOR INTERSECTION LIGHTING

			RATING			UNLIT	LICHTED		SCORE
CLASSIFICATION FACTOR	1	2	3	4	5	WEIGHT (A)	WEIGHT (B)	DIFT. (A - B)	{RATENG X (A - B)}
Geometric Factors									
Number of Legs		3	4	5	6 or more (including traffic circles)	3,0	2.5	0.5	
Approach Lane Width	> 12'	12'	11.	10.	<10'	3.0	2.5	0.5	
Channelization	no turn lanes	left turn lanes on major legs	left turn lanes on all legs, right turn lanes on major legs	left and right turn lanes on major legs	left and right turn lancs on all legs	2.0	1.0	1.0	
Approach Sight Distance	>700'	500-700'	300-500'	203-300*	< 200'	2.0	1.8	0.2	
Grades on Approach Streets	< 3%	3.0 - 3.9%	4.0 - 4.9%	5.0 - 6.9%	7% or more	3.2	2.8	0.4	
Curvature on Approach Legs	<3.0°	3.0 - 6.0°	6.1 · 8.0 °	8.1 - 10.0°	> 10°	13.0	5.0	8.0	
Parking in Vicinity	prohibited both sides	loading zones only	off-peak only	permitted one side only	permitted both sides	0.2	0.1	0.1	
Operational Factors							Geometric 7	Total	
Operating Speed on Approach Legs	25 mph or less	30 mph	35 աթհ	40 mph	45 mph or greater	1.0	0.2	8.0	
Type of Control	all phases signalized (incl. turn lane)	left turn læne signal control	through traffic signal control only	4-way stop control	stop control to minor legs or no control	3.0	2.7	0.3	
Channelization	left and right signal control	left and right turn lane signal control on major legs	left turn lane signal control on all legs	left turn lane signal control on major lega	no turn lane control	3.0	2.0	1.0	
Level of Service (Load Factor)	A 0.0	В 0-0.1	C 0.1 - 0.3	D 0.3 - 0.7	E 0.7 - 1.0	1.0	0.2	0.8	
Pedestrian Volume (peds/hr crossing)	very few or none	0,50	50-100	100-200	> 200	1.5	0.5	1.0	
F							Operational	Total	
Environmental Factors Percent Adjacent Development	0	0-30%	30-60%	60-90%	100%	0.5	0.3	0.2	
Predominant Develop- ment near Intersection	undeveloped	residential	50% residential 50% industrial or commercial	industrial or commercial	strip industrial or commercial (no circuity)	0.5	0.3	0.2	
Lighting in Immediate Vicinity	none	0-40%	40-60%	60-80%	essentially continuous	3.0	1.5	1.5	
Crime Rate	extremely low	lower than city average	city average	higher than city average	extremely high	1.0	0.5	0.5	
							Environmen	tal Total	
Accidents Ratio of night-to-day	1.0	1.0-1.2	1.2-1.5	1.5-2.0	2.0*	10.0	2.0	8.0	
Accident Rates Intersection lighting warr 	anted.	ł	i 1				Accident To		
		OPERATI ENVIRON ACCIDEN	RIC TOTAL ONAL TOTAL IMENTAL TOTAL IT TOTAL SUN ITING CONDITIO	<u>=</u> =	POINT	S			

Figure 48. Highway lighting warrant form - intersection.

EVALUATION FORM FOR NON-CONTROLLED ACCESS FACILITY LIGHTING

			RATING			UNLIT	LIGHTED		SCORE
CLASSIFICATION FACTOR	1	2	3	4	5	¥EIGHT (A)	WEIGHT (B)	DIFF. (A · 3)	[RATING X (A - B)]
Geometric Factors									
No. of lanes	4 or less	-	6	~	8 or more	1.0	0.8	0.2	
Lane Width	> 12'	12	11.	10'	< 10*	3.0	2.5	0.5	
Median Openings Per Mile	< 4.0 or one- way operation	4.0 - 8.0	8.1 - 12.0	12.0 - 15.0	> 15.0 or no access control	5.0	3.0	2.0	
Curb Cuts	< 10%	10-20%	20-30%	30-40%	> 40%	5.0	3.0	2.0	
Curves	< 3.0°	3.1 - 6.0°	6.1 - 8.0 [°]	8.1 - 10.0 [*]	> 10°	13.0	5.0	8.0	
Grades	< 3%	3.0 - 3.9%	4.0 - 4.9%	5.0 - 6.9%	7% or more	3.2	2.8	0.4	
Sight Distance	> 7')0'	500 - 700°	300 - 500*	200 - 300*	< 200'	2.0	1.8	0.2	
Parking	prohibited both sides	loading zones only	off-peak only	permitted one side	permitted both sides	0.2	0.1	0.1	
							Geometric	Total	
Operational Factors									
Signals	all major intersections signalized	substantial majority of intersections signalized	most major intersections signalized	about half the intersections signalized	frequent non-signalized intersections	3.0	2.8	0.2	
Left Turn Lane	all major intersections or one-way operation	substantial majority of intersections	most major intersections	about half the major intersections	infrequent turn bays or undivided streets	5.0	4.0	1.0	
Median Width	30*	20 - 30'	10 - 20'	4 - 10*	0-4	1.0	0.5	0.5	
Operating Speed	25 or less	30	35	40	45 or greater	1.0	0.2	0.8	
Pedestrian Traific at Night (peds/mi)	very few or none	0 - 50	50 - 100	100 - 200	> 200	1.5	0.5	1.0	
Environmental Factors							Operation	# Total	
% Development	0	0 - 30%	30 - 60%	60 - 90%	100%	0.5	0.3	0.2	
Predominant Type Development	undeveloped or back-up design	residential	half residential &/or commercial	industrial or	strip industrial or commercial	0.5	0.3	0.2	
Setback Distance	> 200'	150 - 200'	100 - 150*	50 - 100'	< 50	0.5	0.3	0.2	
Advertising or Area Lighting	пове	0 - 40%	40 - 60%	60 - 80%	essentially continuous	3.0	1.0	2.0	
Raised Curb Median	none	continuous	at all intersections	st signalized intersections	s few locations	1.0	0.5	0.5	
Crime Rate	extremely low	lower than city average	city average	higher than city average	extremely high	1.0	0.5	0.5	
Accidents							Environme	ntal Total	
Ratio of Night-to-Day Accident Rates	< 1.0	1.0 - 1.2	1.2 • 1.5	1.5 - 2.0	2.0*	10.0	2.0	8.0	
*Contínuous lighting war	i ranted.						Accident T	"otal	
		OPERAT ENVIRO ACCIDE:	RIC TOTAL IONAL TOTAL IONAL TOTAL INMENTAL TOTA INT TOTAL SUP INTING CONDITIO	N =	INIO9	'S			

Figure 49. Highway lighting warrant form - highway section.

obtained. The "RATING" is based on the data item's specific characteristics. Individual data items are weighted based on their expected significance as an evaluation factor. This is done by comparing weights for a "lit" and a "unlit" situation. The sum of the weighted ratings for the individual factors are computed. This value is compared to a warranting value (condition). However, the warranting condition may be adjusted according to the agency's experiences. General guidelines for warranting values are shown in the Figures.

This technique requires substantial data collection to provide an accurate inventory of existing conditions and lighting needs. Where data are unavailable, estimated values based on engineering judgment should be used.

Advantages:

- Technique is flexible (by assigned weightings and warranting condition) to meet individual agency's needs and experiences.
- 2. Produces evaluation criteria for wide range of situations.

Disadvantages:

- 1. Requires extensive data collection.
- Guidelines for "WARRANTING CONDITION" not based on extensive previous experience.
- 3. Time requirements may be substantial.

This technique is appropriate for intersections and non-access controlled facilities. For these situations, it provides a defined, reliable technique for evaluation of highway lighting conditions. The technique is also favorable for freeway and interchange evaluation; however, due to the large amount of data collection involved with this method, it is not encouraged.

• Other Selected Warrants

<u>Warrants for rural intersection lighting</u> [3] were developed by the University of Illinois in cooperation with the Illinois Department of Transportation. This warrant relates the need for lighting where the average frequency of nighttime accidents is one-third or greater than the day accidents. It is also recommended that lighting be installed at rural intersections using channelization.

In a research project for the Federal Highway Administration, warrants for special lighting of pedestrian crosswalk facilities [5] were, developed The warrants are based on volumes (pedestrians and vehicles), accidents, pedestrian behavior, or a combination of the above. The "volume criteria" are shown in Table 43. Table 43. Pedestrian crosswalk lighting warrants.

•

	WARRANT	TING CONDITIONS AC	CORDING TO VOLUME						
		ROADWAY CLASSIFICATION							
		MAJOR ARTERIAL	COLLECTOR DISTRIBUTOR	LOCAL					
	CBD (COMMERCIAL)	*	500 veh/night 100 ped/night	200 veh/night 50 ped/night					
Y	FRINGE (INTERMEDIATE)	1000 veh/night 100 ped/night	500 veh/night 100 ped/night	200 veh/night 50 ped/night					
AREA	OBD (INTERMED-COMM)	1000 veh/night 100 ped/night	500 veh/night 100 ped/night	200 veh/night 50 ped/night					
	RESIDENTIAL	1000 veh/night 50 ped/night	500 veh/night 50 ped/night	200 veh/night 50 ped/night					

243

.....

The "accident criteria" are met if for a period of four consecutive years, a minimum of three pedestrian accidents in the crosswalk per year occur at night. These accidents should be partially or wholly attributed to reduced visibility of the pedestrian which could be alleviated by illumination.

The "pedestrian behavior warrant" can be met when it is determined that a minimum of 5% of observed pedestrians demonstrate unsafe crossing patterns.

A "combination warrant" can be met if any two of the above warrants meet two-thirds of the prescribed levels or it is judged by responsible engineering judgment that special lighting is warranted.

Advantages:

- 1. Based on research.
- 3. Simple to perform.

Disadvantages:

- 1. Requires further testing on a nationwide basis.
- 2. Limited scope.

For the study of existing lighting systems, several other methods are available; (1) the field lighting conditions can be compared to design standards, or (2) light meters can be used to record lighting outputs and compared to design guides.

Field Review Method

In the field conditions [6,7] method, the collection of field data for the roadway environment and office data for the lighting hardware information is necessary. The field data to be collected include:

- Roadway classification (freeway, expressway, major arterial, collector, local or alleys).
- Land use (commercial, residential, or intermediate),
- Lighting (luminaire) spacing.
- Lighting (luminaire) mounting height.
- Lighting (luminaire) lateral location.

Office data, from existing inventory files, include:

Light source size (lumen output).

- Light source type (incandescent, flourescent, mercury vapor, metal halide, high pressure or low pressure sodium).
- Luminaire type.

The characteristics of the existing luminaire system are compared to the design based on design methods and guides given in the <u>Roadway</u> <u>Lighting Handbook [3] (FHWA)</u>.

Advantages:

- 1. Produces a direct comparison with design standards.
- 2. Results provide recommendations for upgrading conditions.
- 3. Results are based on actual field conditions.

Disadvantages:

1. Requires substantial time and manpower expenditures.

This technique is appropriate for all field situations. It can be used to evaluate other highway lighting characteristics such as: glare, reflectivity, etc. However, it requires a substantial computational work effort.

Light Meter Method

Light meters [6,7] can be used to measure the illumination output of the lighting sources. Measured at various points within the study area, field characteristics (light intensity, light distribution) are recorded. These measurements are compared to the design illumination guides stated in the <u>Roadway Lighting Handbook</u> [3]. Deficiencies are noted by differences in the illumination level at the test locations.

Advantages:

- Provides a comparison with design guides.
- 2. Results provide recommendations for upgrading conditions.
- 3. Results are based on field measurements.

Disadvantages:

- 1. Measured output does not account for glare, reflectance, etc.
- Requires measurement of light output under favorable weather conditions.
- 3. Requires considerable data collection effort.

Selection of Alternate Technique

Table 44 summarizes the utility of each technique. Table 45 identifies the favorable study technique as a function of the field situation. To assist in selecting a technique, the following general guide lines are provided.

- 1. The use of AASHTO criteria for evaluation of highway lighting needs is recommended for freeway and interchange locations.
- For non-controlled access locations and intersection situations, the NCHRP Report No. 152 Method is preferred. It is also favorable for freeway and interchanges; however, the data collection needs are considerable.
- 3. For evaluation of existing lighting systems, the AASHTO method is preferred. It is an easy and simple means. For a more detailed review, the light meter method may be more favorable than the field condition method since it directly measures the light output.

Findings

A checklist can be used to compare site data with the AASHTO criteria, the rural intersection method, and the pedestrian crosswalk method. Output forms for the NCHRP Report No. 152 method were displayed in Figures 46-49. Further information is provided in Chapter 6 of the Roadway Lighting Handbook [3].

In addition to the warrants, a nighttime field review of the area is performed to obtain the following information.

- 1. Driver's visual field (as related to characteristics of the traffic facility),
- 2. Roadway facility function,
- 3. Supplemental information for the lighting warrants,
- 4. Subjective comfort benefits of existing roadway lighting, and
- 5. Information for the design guidelines.

Use of Findings

Where existing lighting is found inadequate, the need for upgrading of conditions is warranted. Where further lighting needs are not warranted, yet the accident data or field review shown nighttime accident problems, the need for improved positive guidance may be required [8]. These can include: improved roadway delineation (thermoplastic, raised reflectors, delineators, etc.), improved signing (advance warning, target arrows, chev rons, etc.), or internal illumination of signing. These improvements will be related based on a field review of the study Table 44. Technique utility for highway lighting study technique.

Technique Management Concern	Pedestrian Crosswalk Facilities Method	Field Condition Method	Light Meter Method	AASHTO Criteria	NCHRP Report No. 152	Rural Intersection Lighting Method
.Time Requirements	Reguires minimal data collection and review effort	Requires substantial data collec- tion and re- view effort	Requires substantial data collec- tion and review effort	Requires minimal data collection and review effort	Requires extensive data collection and review effort	Requires minimal data collection and review effort
.Manpower Requirements	.Technicians, Engineer	.Engineers	.Engineers	.Technicians, Engineer	.Technicians, Engineer	.Engineer
.Equipment Requirements	.Volume counters .Other needs minimal	.Minimal	.Light meter .Other needs minimal	.Volume counters, .Other needs minimal	.Volume counters .Measuring wheel .Other needs minimal	.Minimal
Level of Com- prehensiveness	.Based on volume, general area description, accident, and pedestrian beha- vior data	.Based on existing hardware system as compared to design stan- dards	.Based on illumination output on- site as com- pared to de- sign stan- dards	.Based on volume, general area description, and accident data for site	.Based on detailed geometric, opera- tional, environ- mental, and acci- dent data for site	.Based on accident data
.Level of Accuracy	.Primarily unproven approach; relates to all standards	.Objective approach; relates to all stan- dards	.Objective approach; relates illumination level	.Subjective • approach; com- monly used as standard	.Subjective approach; accepted as upcoming stan- dard	.Primarily unproven

Table 45. Favorable highway lighting study techniques.

Technique	AASHTO	NCHRP Report	Informational Needs	Rural Inter- section	Pedestrian Crosswalk	Field Condition	Light Meter
Situation	Criteria	No. 152	Approach	Lighting Method	Method	Method	Method
.Freeways	x	x	X			x	X
.Inter- changes	x	x	x			x	x
.Urban Intersec tion		x	x			x	x
.Rural Inter- section		x	x	x		x	x
.Pedestrian Crosswalks			x		x	x	x
.Tunnels and Underpasses			x			x	x
Non-Con- trolled Access Facility		x	x			x	x

-

situation and the past experience of the agency. Information on this concept is included in the FHWA Manual "A User's Guide to Positive Guidance" (June, 1977).

• Example

A sample problem for an urban intersection using the NCHRP Report No. 152 method is shown below.

Intersection: 3 Mile Road and Blake Road, Anytown, USA

1. <u>Geometric Factors</u>

Number of Legs: 4 Approach Lane Width: 11 feet Channelization: Left-turn lanes on all legs, right-turn lane on major legs

Approach Sight Distance: > 700 feet Grades on Approach Street: < 3° Parking in Vicinity: Prohibited both sides

2. Operational Factors

Operating Speed on Approach Legs: 40 mph Type of Control: All movements signalized Channelization: Left and right signal control Level of Service: E(1.0) Pedestrian Volume: 0-50

3. Environmental Factors

Percent Adjacent Development: 100% Predominant Development Near Intersection: Strip commercial Lighting in Immediate Vicinity: 60-80% Crime Rate: Extremely low

4. Accidents

Ratio of night-to-day accident rates: 1.2 - 1.5

The application of these factors is shown in Figure 50. The total score for this review was 57.7 points. Warranting conditions require a 75.0 point total. From this comparison, further intersection lighting is not necessary. If the score was greater than the warranting condition, however, it would require further lighting needs.

EVALUATION FORM FOR INTERSECTION LIGHTING

			RATING			UNLIT	LICHTED		SCORE	
CLASSIFICATION FACTOR	1	2	3	4	5	VEIGHT (A)	WEIGHT (B)	DIFT. (A · B)	[RATING X (A - B)]	
Geometric Factors										
Number of Lega		3	•	5	6 or more (including traffic circles)	3.0	2.5	0.5	$\frac{1.5}{1.5}$	
Approach Lane Width	> 12'	12'		10,	<10"	3.0	2.5	0.5	3.0	
Channelization	oo turn lanes	left turn lanes on major legs	left turn lancs on all legs, right turn lancs on major legs	left and right turn lance on major legs	left and right turn lanes on all legs	2.0	1.0	1.0		
Approach Sight Distance	• 700°	500-708'	300-500'	200-300*	< 200'	2_0	1.8	0.2	$\frac{0.2}{0.4}$	
Grades on Approach Streets	33	3.0 - 3.9%	4.0 - 4.9%	5.0 - 6.9%	7% or more	3.2	2.8	0.4	0.4	
Curvature on Approach Legs	(3.0°)	3.0 - 6.0°	6.1 - 8.0 °	8.1 - 10.0 [®]	> 10°	13.0	5.0	8.0	$\frac{8.0}{0.1}$	
Parking in Vicinity	prohibited both sides	loading sones only	off-peak only	permitted one side only	permitted both sides	0.2	0.1	0.1		
							Geometric 1	[otal	1 <u>4.7</u>	
Operational Factors Operating Speed on Approach Legs	25 mph or ions	30 mph	35 mph	40 mph	45 mph or greater	1.0	0.2	0.8	3.2	
Type of Control	all phases signalized (incl. turn lane)	left tarn lane signal control	through traffic signal control only	4-way stop control	stop control to minor lege or no control	3.0	2.7	0.3	0.3	
Channelization	left and right signal control	left and right turo lane signal control on major legs	only left turn lane signal control on all legs	left turn lane aignal control on major lega	or no control no turn lane control	3.0	20	1.0	1.0	
Level of Service (Load Factor)	A 0.0	B 0-0.1	C 0.1 - 0.3	D 0.3 - 0.7	(E 0.7 - 1.0)	1.0	0.2	0.8	4.0	
Pedestrian Volume (peds/hr crossing)	very few or none	0.50	50-100	100-200	> 200	1.5	0.5	1.0	$\frac{2.0}{10.5}$	
							Operational	Total	10.5	
Environmental Factors									1.0	
Percent Adjøcent Development	0	0-30%	30-60%	60-90%	(100%)	0.5	0.3	0_2	1 0	
Predominant Develop- ment near Intersection	undeveloped	residential	50% residential 50% industrial or commercial	industrial or commercial	strip industrial or commercial (no circuity)	0.5	0.3	0.2	$\frac{1.0}{6}$	
Lighting in Immediate Vicinity	Bone	0-40%	40-60%	60-80%	cmentially continuous	3.0	1.5	1.5	6.0	
Crime Rate	catremely low	lower than city everage	city average	higher than city average	extremely high	1.0	0.5	0.5	0.5	
							Environment	al Total	8.5	
Accidents Ratio of night-to-day	1.0	1.0-1.2	1.2-1.5	15-2.0	2.0*	10.0	2.0	8.0	24.0	
Accident Rates *Intersection lighting warr	anted.	ł	ł		'		1 Accident Tol	al	<u>24.0</u>	
$\begin{array}{rcl} \text{GEOMETRIC TOTAL} &=& 14.7\\ \text{OPERATIONAL TOTAL} &=& 10.5\\ \text{ENVIRONMENTAL TOTAL} &=& 8.5\\ \text{ACCIDENT TOTAL} &=& 24.0\\ \text{SUM} &=& 57.7\\ \text{WARRANTING CONDITION} &=& \underline{75 \text{ points}} \end{array}$										

Figure 50. Lighting warrants (NCHRP 152 criteria) - example.

Procedure 19 - Weather-Related Studies

Purpose

These study procedures can be used to determine whether and to what extent fog or ice contributed to a safety problem. The impact these conditions have at a location, may dictate countermeasures to reduce the hazarcousness of the location.

Application

Need For Study

Patterns of accidents in which the contributing circumstances were "reduced visibility due to fog" or "slippery pavement due to icy conditions" may indicate that a weather related study is warranted. Field reviews and local input can also indicate the need for these studies.

Areas for which these studies may be required include:

A. <u>Hazardous Fog Conditions</u>

- Swampy areas
- Low lying areas
- Bridges over water
- Mountainous areas

B. <u>Hazardous Icy Conditions</u>

- Bridge decks
- Underpasses
- Curves in mountainous areas
- Roadway near a body of water

Use Of Study

The information obtained by these studies are used to:

- Verify accident findings.
- Select countermeasures to reduce or restrict the hazardousness of the situation.

Period of Data Collection

Data on foggy or icy conditions should be collected during actual occurrence of the condition. Weather reports, forecasts, or discussions with local weather forecasters can assist in determining when these conditions are likely to occur.

Weather-Related Study Techniques

Several methods of analysis are available to study weather-related safety hazards. The following alternate techniques may be used.

A. Fog-Related Conditions

- In-field direct measurement
- Use of field instrument

B. Ice-Related Conditions

• Field reviews

Table 46 summarizes the primary considerations for each technique.

Fog-Related Conditions

• In-Field Measurement Technique

The in-field measurement technique [1] involves determining sight distance during fog conditions using two vehicles or a vehicle and a portable target device. One vehicle or target is stationed in the study area and the second vehicle moves through the study area. When the second vehicle observes the stationary vehicle (or target), the location and distance to the target is recorded as the feasible sight distance. The measured sight distance is compared to the design stopping sight distance [2] based on the posted speed limit for the area. This study should be performed at several locations in the study area to determine representative sight distance under the prevailing environmental conditions.

Advantages:

- 1. Measurements are based on actual driving conditions.
- 2. Equipment needs are minimal.

Disadvantages:

- 1. Field tests may result in safety problems.
- Results may be biased by drivers knowledge of test objectives.

• Field Instrument Methods

The use of field instruments [1,3] to measure the fog density is an alternate technique. Fog index measuring devices include videographs, nephelometers, tramissometers, and others [1]. The predicted visual range or fog index is determined using the device input and the following relationship:

 $V = FI = BV_{D}n$

Tab	.e	46.	Primary	considerations	for	hazardous	fog	anđ	ice
				study techni	iques	3.			
						-			

Consideration Technique	Function	Equipment Requirements	Manpower Requirements	Tíme Requirements	Associated Costs	Data Input	Data Obtained	Data Output
 In-Field Measurement Method 	.Obtains sight distance un- der fog con- ditions uti- lizing test vehicles un- der field conditions	 2 test vehi- cles or test vehicle and portable target .Distance mea- suring device .Data sheets 	.Technicians to set up and measure sight dis- tance .Technicians to test conditions	.2-3 hours per day; 3-day mi- nimum	Distance measuring instrument \$25-\$125	Defined location Accident pattern	.Sight distance under field conditions	.Safe travel speed under fog conditions
2. Field Instruments Method	.Obtains sight distance un- der fog con- ditions uti- lizing field measurements of fog den- sity charac- teristics	.Fog measure- ment device .Data sheets	.Technician to record field data .Engineer to reduce data and compare to design walues	.l hour per day; 3-days minimum	Fog mea- surement device \$300- \$1500	.Defined location .Accident pattern	.Fog density characteristics throughout study area	.Sight distance under field conditions .Safe travel .Spedd under fog conditions
3. Field Review Method	•Obtains a re- view of icy pavement con- ditions by field obser- vance of study area under oper- ating con- ditions	.Data sheets	Engineer to perform field review and assess data	.2-3 hours per day; 2-day mi- nimum	.None	.Defined location .Accident pattern	.Conflict data at site .General comments related to study area	.Review of icy conditions

Where:

V = predicted visual range (ft.)
FI = fog index
V_p = photometric visibility distance (ft.)
B,n = parameters

Sample values of "B" and "n" for general conditions can be used as follows:

Accident Illumination Condition	B	<u>n</u>
Night	4.32	0.81
Early Dawn	4.28	0.80
Day	0.75	1.00

The visual range to the minimum stopping sight distance (based on posted speed limit for the area) should be compared. When the visual range is less than the minimum stopping distance, warning or speed control countermeasures may be appropriate. If the predicted range is greater than the minimum stopping sight distance, conditions may be considered acceptable.

Advantages:

- 1. Simple to perform.
- 2. Time and manpower requirements are minimal.

Disadvantages:

- 1. Equipment costs are relatively high.
- 2. Measuring devices may have limited accuracy.

Ice-Related Conditions

Field Review Method

Data on traffic operations, physical conditions, and griver behavior during ice conditions should be collected during field reviews [4,5,6]. The Traffic Conflicts Study (Procedure 10) or the Safety Performance Study (Procedure 6) are appropriate in this respect.

Advantages:

- 1. Provides field review of area.
- 2. Provides a structured, organized review of conditions.
- 3. May be used to record other usable data such as speeds and volumes.

Disadvantages:

- 1. On-site review may present a safety hazard to observers.
- 2. May require lengthy time period to obtain sufficient study findings.
- 3. Requires presence of icy conditions to perform study.

Selection of Alternate Techniques

Table 47 displays the utility of each technique and may be used in selecting a technique.

General guidelines to assist in selecting a technique are provided below:

- 1. The field instrument method should be used for fog-related studies when the equipment is available. It requires less time, provides reliable results, and is safer than the in-field measurement technique.
- 2. When equipment is unavailable, the in-field measurement method can provide reliable results for fog-related studies; however, this technique results in a safety hazard to the data collectors.
- 3. For review of ice-related conditions, the field review method provides a structured review of the icy conditions.

Findings

water and the second
The output of the fog-related studies should be recorded in a tabular format, as shown in the Appendix (page I-16).

Use Of Findings

The output of the fog-related studies is typically a predicted or estimated sight distance under the fog field conditions. The predicted visual range or sight distance value is compared to the design values based on the posted speed limit for the area. Minimum stopping sight distances (according to AASHTO) for various travel speeds [2] are:

Travel speed	<u>- mph (kph)</u>	Sight Distance	<u>e - ft. (m)</u>
30	(48)	200	(60)
40	(64)	275	(83)
50	(80)	350	(105)
55	(88)	420	(126)

Where field sight distance values are lower than the design values, conditions can be considered deficient and countermeasures to improve the situation appropriate.

For ice-related studies, conflict data (Procedure 10) and safety performance study (Procedure 6) summary sheets should be used. The output of ice-related studies is a review of the traffic operations under the icy conditions. From the data and analysis performed by the conflict and/or safety performance studies, a safety deficiency may be detected. Based on this review, feasible countermeasures can be developed [5,6,7].

Technique Management Concern	In-Field Measurement Method	Field Instruments Method	Field Review Method
.Time Requirements	Requires substan- tial data collec- tion and minimal data manipulation needs	Acquires minimal data collection and manipulation needs	.Requires sub- stantial data collection and evaluation need
.Manpower Requireme nts	.Technician level	.Technician and engineer level	.Engineet level
.Equipment Requirements	.Vehicle availa- bility .Distance measur- ing instrument .Other needs, minimal	.Fog measurement device .Other needs, minimal	.Minimal
.Study Objective	.Review hazardous fog condition	.Reviews hazardous fog condition	.Review hazardo

Table 47. Technique utility for hazardous fog and ice condition study.

,

SPECIAL ENGINEERING STUDIES

Introduction

This section contains special engineering study procedures. These studies are considered special in that they do not relate specifically as an accident, traffic, or environmental-based procedure. They are performed on a site basis and relate a special situation at a highway location. In this sense, these study procedures are identified in a special class of studies.

Within this section, the following procedures are included:

PROCEDURE 20 - School Crossing Study PROCEDURE 21 - Rail-Highway Crossing Study PROCEDURE 22 - Traffic Control Device Study PROCEDURE 23 - Bicycle or Pedestrian Study

Procedure 20 - School Crossing Study

Purpose

The purpose of these studies are to provide optimal safety conditions for school-age pedestrians within the roadway environment in and around school areas. This study identifies safety deficiencies at a site based on the roadway physical and operational characteristics, and student crossing characteristics.

Application

Need For Study.

School crossing accidents are considered random events. Their rate of occurrence is typically very low. As such, accident data usually may not exist or is insufficient for study of most school crossings. In lieu of this deficiency, the use of traffic conflict data can supplement accident data and verify a need for study of a school crossing.

Another source, perhaps the primary one, is from a field review of the school site provided by a local governing highway agency. The review can be based on either a regular planned schedule or complaints from school officials, students parents, and other concerned groups.

• Use Of Study

In studying school crossing areas, details on the crossing's physical and operational characteristics and site characteristics are defined. These characteristics are related to the roadway operation, i.e., the availability of safe crossing gaps, to identify whether a safety deficiency exists. From the results of this study, countermeasures can be suggested. The use of pedestrian conflict data can also be used as an integral part of the study. The findings obtained from the conflict study can be used to identify other safety deficiencies and to assist in the development of countermeasures. The conflict data can also be used as a measure of effectiveness when evaluating the effectiveness of countermeasures.

Period of Data Collection

Pedestrian characteristics at school crossings vary markedly during the several periods of pedestrian demand throughout the day. The school closing hour is typically the critical period used to collect pedestrian data. However, where pedestrian volumes exist during other times, these periods should also be reviewed. Different conditions during these time periods may result in other deficiencies becoming apparent.

The study of the crossing under favorable weather conditions during early fall or late spring conditions is preferred. During these times, pedestrian volumes will occur at their highest levels.

School Crossing Study Techniques

Two techniques are available to assess a school crossing's effectiveness.

- Institute of Traffic Engineers (ITE) "A Program for School Crossing Protection".
- Pedestrian conflict studies.

Information on the major considerations of these techniques are provided in Table 48.

Institute of Traffic Engineers Method

The ITE method [1,2,3] is described in the manual "A Program for School Crossing Protection." It is based on a program of six steps as follows.

- Step 1 Organize a School Traffic Safety Committee
- Step 2 Develop a School Route Plan
- Step 3 Study the School Crossings Where Apparent Hazards Exist
- Step 4 Analyze the Need for School Crossing Protection
- Step 5A Select Appropriate Measures for Locations Where Control is Needed

Table 48. Primary considerations for school crossing study techniques.

Consideration Technique	Function	Equipment Requirements	Manpower Requirements	Time Requirements	Associated Costs	Data Input	Data Obtained	Data Output
l. ITE Method	Evaluates need for special traffic control at school cross- walks based on pedestrian de- lay and demand	.Volume counter .Distance measuring device .Data sheets	.Technicians to count pedestrian volume .Technicians to observe and re- cord vehicular gap data .Technician to assess data	. Approx. 1 hr. per day; 2 day minimum	.Counting device - \$125 .Measuring wheel - \$50 - \$125	.Defined location	.Pedestrian volume data .Vehicular gap data .Roadway crossing width .Percent pedestrian delay time	.Percent Pedes- trian delay time .Assess- ment of need for special traffic control
2. Pedestrian Conflict Study	Obtains data on pedestrian/ vehicle con- flicts in cross- ing area	.Data sheets	.Technician to record conflict data .Engineer to evaluate con- flict data	Approx. 1 1/2 hours per day 2 days minimum	.None	.Defined location	.Pedestrian/ vehicle con- flicts	Review poten- tial of pedes- trian hazards at cross- ing

Step 5B - Select Appropriate "Assistance" Measures

Step 6 - Select the Standard Devices Needed to Carry Out the Protection Measures

Step 3 and 4 involve the direct study of the crossing and will be covered in considerable detail.

In Step 1, a School Traffic Safety Committee is organized to guide and coordinate all activities of the school safety program. Step 2 develops a safe school route plan for each school serving elementary and kindergarten students.

In Step 3, a program for study of identified hazardous crossing locations is developed [5,6]. It is based on three basic assumptions:

- Alternating gaps and blockades in the vehicular traffic stream are peculiar to each location. As such, individual study of each crossing is required.
- Pedestrians will wait a "reasonable" time for an adequate safe gap in the vehicular traffic stream before crossing a street.
- A traffic control signal does not exist at the crossing. Where a signal does exist, alternate study means are necessary.

In this method, several items are determined. They include: the pedestrian demand, and the pedestrian delay time. The pedestrian demand is determined from a manual count of the crossing using a sample data sheet, as shown in the Appendix (page I-17). In this sheet, the group size is determined from the accumulation of pedestrians as they wait for a break or gap in the traffic stream. It is assumed that five pedestrians will walk abreast when a group crosses a roadway. As such, the number of rows required in crossing the roadway is found by dividing the number of waiting pedestrians by five. The 85th percentile group size is used to represent most field situations.

To determine the pedestrian delay time, the adequate gap time must be derived. It is computed by:

ADEQUATE GAP TIME (SECS.) = $\frac{W}{3.5}$ + 3 + (N-1)2

Where:

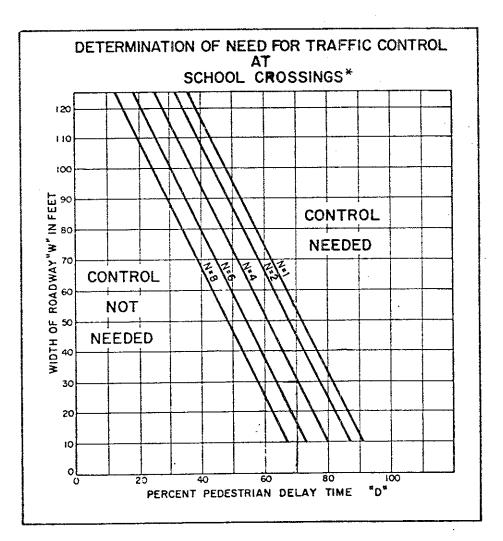
W = Roadway crossing width.
3.5 = Walking speed (fps) of pedestrians (1.05 m/sec.).
3 = Perception and reaction time.
N = Group size (85th percentile).
1 = First row.
2 = Time interval between rows.

The adequate gap time will represent the safe crossing gap for pedestrians.

The roadway crossing width is measured manually as the curb-to-curb (shoulder-to-shoulder) width. If a median exists and is wide enough to service the waiting pedestrian demand, the median-to-curb width may be used to represent the required roadway crossing width.

Once a safe crossing gap has been determined, a field study to determine the number of available safe crossing gaps is performed. It is performed along with the pedestrian demand activity. A sample data collection sheet for this purpose is shown in the Appendix (page I-18). For this sheet, gap times are measured using a stop watch and recorded at the crossing. The total number of gaps equal to or greater than the safe crossing gap is summarized.

From the above data, the pedestrian percent delay time is obtained. Using data from the available adequate gaps, the gap size is multiplied by the number of available gaps within this increment. The summary of this computation derives the total safe gap time (seconds). It is known as "t". The total survey time, T, equals the length of the survey period in seconds. The pedestrian delay, D, therefore, is equal to:


D(in %) = (T-t/T)100

This data is summarized for analysis purposes in the next step.

Step 4 analyzes the need for special school crossing protection. Two assumptions are used in this analysis. First, it is assumed that when the delay time between adequate gaps becomes excessive, children may become impatient and enganger themselves by crossing the street under an inadequate gap. Second, the delay time may be considered excessive when the number of adequate gaps in the traffic stream, during the school crossing period, is less than the number of minutes in that period. As such, one safe gap per minute represents a satisfactory situation.

Based on these assumptions and other research, the chart in Figure 51 was developed. It evaluates the need for special crossing protection as a function of the roadway width, the pedestrian group size, and the percent pedestrian delay time. These values are on the axis of the graph. When they meet to the left of the group size (N) line, further control will not be needed. Values to the right of the group size (N) line will require that further control be used at the crossing.

For signalized crossings, a similar technique is used. The allowable pedestrian delay time (%), however, is equal to:

Source: "A Program For School Crossing Protection ITE, (1962)

Figure 51. Crossing protection evaluation - ITE method.

263

 $D_{a} = (C - G/C) 100$

where:

 D_a = Allowable pedestrian delay time (%).

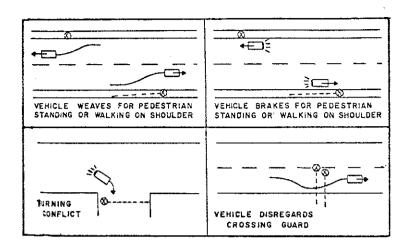
C = Cycle length (seconds).

G = Adequate gap time (seconds) where G = W/3.5 + 3 + (N-1)2.

The adequate gap time is used as the green and yellow signal interval of the pedestrian phase or of the allowable pedestrian movement at a signal. To determine whether a special form of protection is needed, the calculated "D_a" is compared to the field measured "D" (as described earlier). Where "D" is less than "D_a", special control is not needed; however, where "D" is greater than "D_a", further special controls are necessary.

Steps 5A and 5B select the appropriate countermeaures [1,7] for the study locations based on the findings obtained in Step 4. Countermeasures are divided by (1) those which can control traffic streams and (2) those which provide assistance in the pedestrian crossing maneuver.

Finally, Step 6 entails the selection of the specific traffic control devices needed to carry out the recommendations previously developed. Use of the MUTCD standards is required.


Pedestrian Conflict Study

Pedestrian conflict studies are a useful tool in the study of school crossing data. From patterns of specific conflict types, a review of potential safety hazards can be obtained, as in the Traffic Conflicts Study of Procedure 11. Conflict data will provide valuable information on pedestrian and driver behavior characteristics and their adherence to existing safety regulations or standards. It provides additional information on safety-related characteristics unable to be defined by the ITE guidelines.

In collecting the conflict data, operational procedures are similar to the steps in Procedure 11 - Traffic Conflict Study. A sample pedestrian conflict data form is shown in the Appendix (page I-19). Definition of feasible conflict types are shown in Figure 52. The use of conflict data, as a supplementary study, for school crossings is encouraged.

Selection of Alternate Technique

Within this procedure, the use of both techniques is recommended. The ITE method will evaluate the effectiveness of the school crossing in providing safe crossing conditions. To supplement this assessment, conflict data is obtained to identify further safety deficiencies on driver behavior and pedestrian behavior characteristics within the study area.

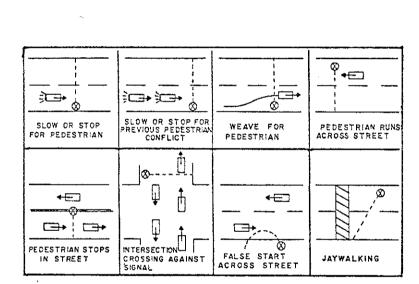


Figure 52. Pedestrian conflict types.

Findings

The output of this study determines the need for additional control at a crossing. A conflict diagram can be obtained from the conflict data.

• Use Of Findings

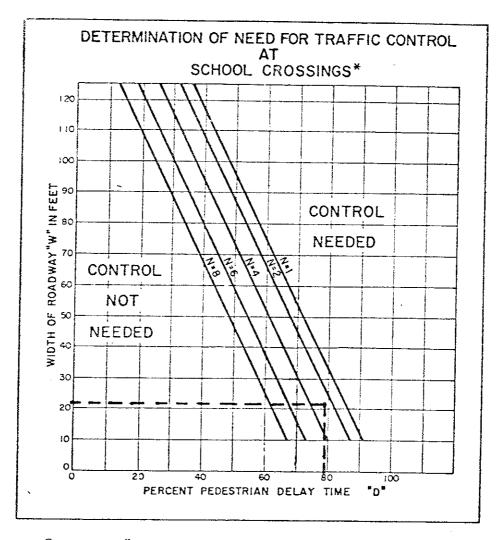
Where it is determined that special protection is needed, varying levels can be used [1,2,3,4,5]. They can vary from the use of student patrols to the installation of a grade-separated pedestrian walkway. In many cases, the level of control is dictated by the experiences of the individual agency. The criteria for implementation will vary among States. General criteria for warranting specific controls, based on ITE guidelines, have been developed and are included in Reference 1.

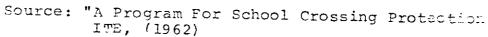
All traffic control devices shall be in conformance with the <u>Manual of</u> <u>Uniform Traffic Control Devices</u> [8]. For information on providing increased safety within or around the school area, se of the manual "Traffic Safety Planning on School Sites" (ITE) is recommended [9]. It provides general design guidelines on safety at:

- School bus zones,
- Parent pickup/dropoff zones,
- Parking areas,
- Pedestrian and bicycle facilities.
- Playground areas.
- Service roads.
- Driveways.
- Off-site locations.

Example

The sample crossing (unsignalized) is located near a junior high school in a suburban community. From data collection activities the observed data is shown in Figure 53. The adequate gap time is computed by:


adequate gap time = $\frac{W}{3.5}$ + 3 (N-1)2 = $\frac{22}{3.5}$ + 3 + (3-1)2 = 6.3 + 3 + 4 = 13.3 seconds 14.0 seconds


Based on these calculations and the gap data, the percent pedestrian delay time (lower portion of Figure 53) equals 79 percent. Using the ITE chart for:

, may have a set of the	E STUDY	AY TIN	PEDESTRIAN DE								
across Adams Rd	Crosswalk a	on Twp.	Location Av	5-1-79	Study date						
- "N" 13	Number of Rows	5pm	earest minute) 3:2	ey (to nea	End of Surve						
			nearest minute) <u>2</u>	rvey (to i	Start of Su						
ime -"G" 14 800	Adequate Cap Tin		(minutes) <u>30</u>	cy Time (r	Total Surve		STUDY	UP SIZE	PEDESTRIAN GRO		······································
	Multiply by		Number of Gaps		Gap Size	ocation Avon Twp.	53:25pm 1	55pm t	rimes From 2:5	5-1-79	Study date
Computations	Gap Size	Total	Tally	7	(Seconds) B				ms Rđ. Cu		
					2		sland <u>Non</u>				oivided roa
				:	10		- Criteria		. ()	lwayr ici	MANGE TOU
					12	l		TOUDE	Number of G	Number of	······
					13	Computations	Cumulative	Total	Tally		Froup size
	90	6		1 LUAN	15					10	46 - 50
	34	2		11	16 17						0 - 50
	18	1		i'	10					9	1 - 45
	40	2		11	19 20					8	16 - 40
	110	5		IM	21 22					7	31 - 33
4	24	1	<u></u>		23 24					6	26 - 30
		_			25 26					5	21 - 25
T = Total su vey time x GO					27 28					4	16 - 20
T = 30 X 60	30	1		1	29 30		2	2	11	3	11 - 15
т = 1800 веси		-			31 32		8	6	1111	2	6 - 10
	34	1	•	1	33 34		17	9	7111.1111	1	5 or Less
					35	N * 13	x 0.15 ± 2.6	17	Total Number of Groups		
$D = \left(\frac{T - t}{T}\right) L$					37 30	L			01 0100ps		
$D = \frac{1800 - 380}{1800}$,			39 40			A)	(A		
$D=\frac{1800-1420}{1800}$					41 42						
D = 79%	380 secs.	l or	of all gaps equa an "G"}	tal time	43 "t" (to						
1		(B)		caret tha	gr						

Figure 53. School crossing data - example.

267

(C)

Figure 53. School crossing data - example. (Continued).

roadway width = 22 feet
percent pedestrian delay time = 79%
group size, N (85th percentile) = 3

It is determined that a special form of traffic control may be needed. This represents a "gray area". In this case, a recommendation is not well defined. A review of pedestrian conflict data for the site could be used to determine the need for traffic control or other improvements. For these situations engineering judgment based on past experiences, should be exercised.

Procedure 21 - Rail-Highway Crossing Study

Purpose

Rail-highway crossing studies are performed to evaluate existing and potential conflicts between vehicular and train traffic at a high accident rail-highway crossing. These studies constitute a professional examination of the physical and operational characteristics of both highway and railroad elements of a rail-highway crossing.

Application

Need for Study

The need for a safety study at an at-grade rail-highway crossing can be identified from several sources. First, from the accident records, a pattern of "vehicle-train" accidents can indicate a hazardous condition. Typically, however, the frequency of "vehicle-train" accidents at a railroad crossing are low compared to other hazardous accident locations [1]. However, the severity index for grade crossing accidents is relatively high when compared to other types of traffic accidents.

A second source of "hazardous" location identification is through a hazard index [2,3,4,5] for each railroad crossing. Such an index is used to assess the potential hazardousness of a site based on its field characteristics. Application of a hazard index on an areawide basis will provide a priority ranking of the at-grade rail-highway crossings. Selection of the top "X" number of sites, can be included for study of hazardous conditions and countermeasures.

Other sources of identification include field review by local engineers or input received from users of the crossing.

Use of Study

After identifying a rail-highway crossing for study, a review of the existing conditions at the crossing is made. This review consists of the study of available accident data if any, the site characteristics, the existing rail-highway crossing warning system, and the roadway and crossing operational characteristics. Based on a review of these conditions, an assessment of the existing or potential safety hazards can be made. Once the safety deficiencies are identified, countermeasures can be determined.

• Data Collection Requirements

In conducting a rail-highway crossing study, a questionnaire is recommended to assess safety at the crossing. The questionnaire will provide a structured account of the crossing characteristics and its impact on highway safety. It can be divided into four areas of review. Two sections are to be completed for each roadway approach and one on the crossing in general. A fourth section includes a review of the driver requirements upon approaching the crossing. A general description of these sections follows.

 $\underline{SECTION\ I}$ - Items related to driver awareness of the presence of the crossing.

- Driver awareness (including "repeat drivers").
- Visibility.
- Effectiveness of advance warning signs and signals.
- Geometric features of the roadway.

<u>SECTION II</u> - Items related to whether or not the driver has sufficient information to make correct decisions while traversing the crossing area.

- Awareness of approaching trains.
- Driver dependence on crossing signals.
- Sight obstructions to train.
- Roadway geometrics diverting driver attention.
- Location of stationary railroad cars.
- Removal of sight obstructions.
- Availability of information for driver decisions.

 $\underline{\texttt{SECTION}\ \texttt{III}}$ – Items concerning the roadway area adjacent to the crossing.

- Pavement markings.
- Roadway conditions.
- Other nearby traffic control devices.
- Hazard presented by certain vehicles required to stop at all crossings.
- Signs and signals near crossing.
- Opportunity for evasive action by drivers.

SECTION IV - Items concerning the general features of crossing.

- Major features of crossing which contribute to safety.
- Features which reduce safety.
- Possible methods for improving safety at the crossing.
- Overall crossing evaluation.
- Comments and suggestions.

270

A sample questionnaire is shown in Figure 54. This questionnaire should be altered to reflect the individual agencies' needs. Further information on the formulation of the questionnaire is provided in the <u>Railroad-Highway</u> <u>Grade Crossing Handbook</u> [1] (Federal Highway Administration, FHWA-TS-78-214).

To adequately complete the questionnaire, study of the sight distance characteristics at the crossing is required. In this review, a visibility triangle is formed based on the vehicle and train speeds as shown in Figure 55 and Table 50. The criteria for study of a safe sight distance is that all areas within the traingle must be clear to afford the driver adequate visibility.

For locations without active warning devices (signals, gates, bells), the posted speed limit can be used to obtain the length of the driver's leg of the sight triangle. Where active warning devices are afforded, a "stopped" (0 mph) condition is used.

• Period of Data Collection

Review of the rail-highway crossing should typically be performed as the driver views the crossing. For sight distance determinations, field reviews should generally be performed during summer to assure maximum foliage conditions. It this is not feasible, full foliage conditions should be assumed.

It is preferable where night train movements are made at a crossing, to perform a night review of conditions to assess the adequacy of signing, pavement markings, and lighting under these conditions.

Railroad Crossing Study Techniques

Two methods of providing rail-highway crossing reviews are commonly used.

- Multidisciplinary diagnostic team approach.
- Evaluation by individuals.

Primary considerations of these techniques are defined in Table 49.

Multidisciplinary Diagnostic Team Approach

In the multidisciplinary diagnostic team approach [1], use is made of experienced individuals from various agencies and disciplines. These individuals review the site and, collectively, identify safety hazards and develop countermeasures.

To be effective, the team requires individuals with a variety of experience and must contain representatives of the agencies or groups responsible for the safe operation of grade crossings. To ensure appropri-

<u>Consideration</u> Technique	Function	Equipment Requirements	Manpower Reguirements	Time Requirements	Associated Costs	Data Input	Data Obtained	Data Output
•Diagnostic Team Approach	• Reviews Railroad Crossing situa- tion using a selected team of individuals with varying disciplines	•Data Sheets •Targets (Cones)	 Traffic Engineer (with safety experience) Railroad signal engineer Railroad official Highway official Human factors engineer Law enforcement officer Regulatory agency official 	tean member dependent on crossing	•Targets (cones) \$5-\$25	Defined location Accident data Traffic volume data Train data Readway operat- ional and physical data	 Assessment of visibility triangle Sufficiency of crossing and warning devices (subjective basis) Presence of hazards 	•Identification of safety deficiencies •Recommendations for upgrading of conditions
'Individual Approach	•Review railroad crossing sit- uation using an experienced observer	•Targets (Cones) •Data Sheats	Single indi- vidual with extensive knowledge in railroad crossing area (typically, local traffic engineer	Data collac- tion needs are minor review needs 4-8 hours, dependent on cross- ing	•Targets (Cones) \$5+\$25	Same as above	Same as aboye	Same ая above

.

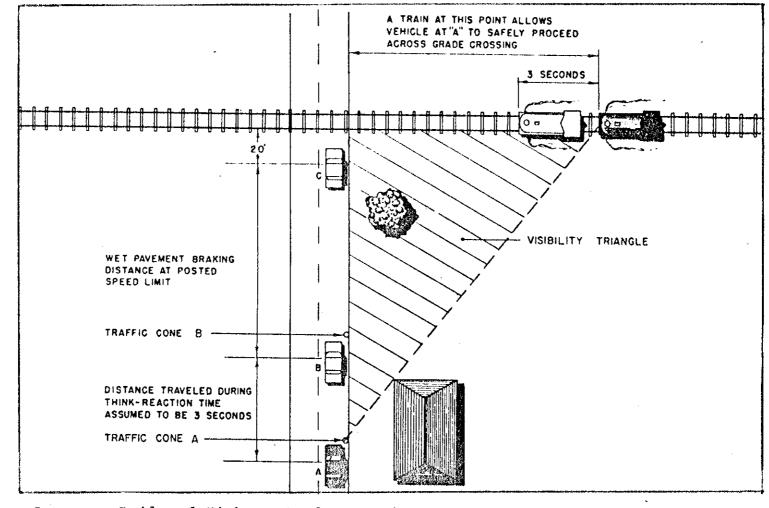

•

Table 49.	Primary	considerations	for	railroad	crossing	study
		techniqu	les.		-	

LOCATION:		SECTION III
CITY OR TWP:	R.R. Company:	 Is a nearby traffic signal or other control device affecting the crossing operation? If so, how?
VEHICLE DATA	TRAIN DATA	
No. of Approach Lanes:	No. of Tracks:	2. Is the stopping area at the crossing adequately marked?
Approach Speed Limit:	Train Speed Limit:	3. Do vehicles required by law to stop at all crossings present a hazard at the crossing?
Approach Gradient:	Track Gradients:	
Approach Curvature:	Train Use Per Day:	 Do conditions at the crossing contribute to or are they conducive to a vehicle stalling at or on the crossing?
ADT:		
SECTION I		5. Are nearby signs, railroad crossing signals, etc. adequately pro- tected to minimize hazards to oncoming traffic?
 Is advance warning of railroad o what? 	rossing available? If so,	6. Is the crossing surface satisfactory? If not, how and
 Is advance warning of railroad c allow them to react to crossings 	rossing visible to drivers to adequately?	why?
 Do approach grades, roadway curv view of advance warning devices? 	ature, or obstructions limit the	 List major attributes of the crossing which may contribute to safety?
 Is placement of any advance warn to observe? 	ing signing adequate for drivers	a
 Are advance warning devices visi night, rainy, snowy, or foggy co 	ble to a readable degree under nditions?	c
6. Do advance warning devices adegu		2. List features which reduce crossing safety? a b
SECTION II		
I. Is sight distance to approaching react safely?	train adequate for driver to	3. Possible methods for improving safety at the crossing? a
 If sight distance is inadequate, drivers of an approaching train 	are other means of altering	b
 Where the driver's sight is obst tion be removed to improve the s area? 	afety situation in the crossing	4. Overall evaluation of crossing?
 Do approach grades or roadway cu of crossing? 	rvature restrict driver's view	5. Other comments:
 Are railroad crossing signals or acting properly and visible to a coming trains? 	other active warning devices dequately warn drivers of on-	
	·	

Figure 54. Sample railroad crossing review questionnaire form.

273

Source: <u>Railroad-Highway Grade Crossing Handbook</u>, FHWA, August (1978) Figure 55. Sight distance check points at rail-highway crossings.

Table 50. Data for visibility triangles.

Train Spe	ed	Highway Speed in MPH						
	0	10	20	30	40	50	60	70
	Distance Along Railroad From Crossing							
10	162	126	94	94	99	107	118	129
20	323	252	188	188	197	214	235	258
30	484	378	281	281	295	321	352	387
40	645	504	376	376	394	428	470	516
50	807	630	470	470	492	534	586	644
60	967	756	562	562	590	642	704	774
70	1129	882	656	656	684	750	822	904
80	1290	1008	752	752	788	856	940	1032
90	1450	1134	844	844	884	964	1056	1160
	Distance Along Highway From Crossing							
	20	65	125	215	330	470	640	840

REQUIRED DESIGN SIGHT DISTANCES FOR COMBINATIONS OF HIGHWAY AND TRAIN VEHICLE SPEEDS*

.

NOTE: 1 mph = 1.61 kph 1 foot = .304 metres

SOURCE: Reference (2)

* Single Track

NOTE: For multiple track crossings, consideration must be given to the additional distance required to completely clear all tracks. ate representation, the Railroad-Highway Grade Crossing Handbook [1] suggests that a team be composed of members chosen from the following list:

- a. Traffic engineer* with highway safety experience.
- b. Railroad signal engineer**.
- c. Railroad administrative *officials.
- d. Highway administrative officials.
- e. Human factors engineer.
- f. Law enforcement officer.
- 9. Regulatory agency official (where applicable).

As the diagnostic team assembles at the study crossing, vehicle and train operational data for the site are verified. In addition, instructions and clarification of the questionnaire form is made. Finally, the accident data are reviewed among the team members.

A member of the project team should locate targets for both crossing approaches at (1) the point where a driver would begin to make a decision as to whether or not he may safely proceed over the crossing and (2) the point where a driver must begin applying the brakes if he is to stop short of the crossing. These targets are shown on Figure 55. The distances are based on the operating speed of the roadway and minimum stopping distances for "wet pavement" conditions. A list of these distances follows:

HIGHWAY	DECI 'POIN		STOPPING 'PDINT 2'	
<u>SPEED LIMIT - mph(kph)</u>	FT.	M.	FT.	Μ.
30 (48) 40 (64) 50 (80) 55 (88)	215 330 470 560	65 99 141 168	73 131 208 300	22 40 63 91

The targets are used in identifying the critical points to use in the safety analysis.

The team members drive each approach several times to become familiar with all crossing conditions. If the approach is signalized, the signals should be activated so that its operation can be observed and evaluated. While at the approaches, each team member individually completes the questionnaire.

* Desirable on all teams.

^{**} Desirable where active traffic control devices are present or under consideration.

The physical characteristics inventory of the crossing is also completed. A sample inventory form is shown in Figure 56. Photographs may also be taken to supplement the physical data. These data are used in a team discussion of findings to identify the site characteristics during the session.

After the questionnaires have been completed, the team members are reassembled for a short critique and discussion period. The critique usually begins with the local traffic engineer's summary of his observations. Input from other team members is included in the discussion phase. The findings are reviewed and feasible countermeasures discussed. Based on these discussions, the team members reach agreement on the appropriate improvements.

This technique, through involvement of persons with multidisciplinary backgrounds, will result in a critical review of the railroad crossing situation.

Advantages:

- 1. Provides means of focusing the attention of all concerned agencies on the problem.
- Combines the expertise and experience of a group of individuals.
- 3. Is recognized as one of the best techniques available for selecting countermeasures.

Disadvantages:

- Requires the presence of several specially trained individuals.
- Difficult to schedule a specific time for review among various team members.
- 3. Requires cooperation of all team members.

Although this technique requires the cooperation of various professional personnel, the success of using personnel with varying disciplines within the team carries extensive advantages. Where feasible, this technique should be used for the safety evaluation of all railroad crossing situations.

Evaluation By Individuals

The evaluation by an individual [1,2] conducts a safety review of the crossing using a single experienced individual. This individual is typically a local-traffic engineer with background experience in rail-highway crossing and highway safety. A background in signal control and safety program administration would also be advantageous.

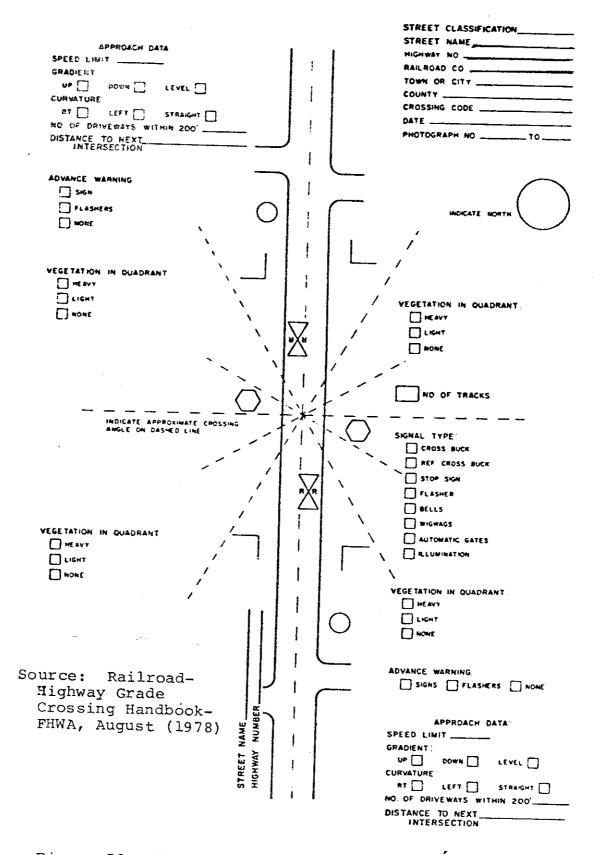


Figure 56. Sample railroad crossing inventory form.

The review is performed similar to the team approach. The steps include:

- 1. The roadway approaches are driven to familiarize the individual with the crossing.
- 2. The railroad crossing review questionnaire is completed.
- 3. A physical characteristics inventory is prepared.
- 4. An overall review of the findings is made.
- 5. Countermeasures are selected.

Countermeasure selection, however, may be performed using a team approach based on the field review and findings made by the individual observer.

Advantages:

- 1. Requires minimal manpower needs.
- 2. Difficulties associated with team approach minimized.

Disadvantages:

- 1. Findings may be biased.
- 2. Individual's expertise and experience may vary.

Where the availability of sufficient manpower and expertise is a factor, this technique is favorable. However, it should be noted that the review represents a single observer's viewpoints and can be biased by the individual's background.

Selection of Alternate Technique

In selecting study technique, use of the management concerns with each technique is required. Table 51 relates the utility of each technique based on the management concerns.

Technique Manägement Concerns	Diagnostic Team Approach	Individual Approach
•Time Requirements	•2-8 Hours per team member	•4-8 Hours for review person
•Equipment Requirements	•Minimal	•Minimal
•Manpower Requirements	 Traffic Fngineer Railroad signal engineer Railroad and highway officials Human factors engineer Law enforcement officer Regulatory agency official 	•Righly experienced traffic engineer
"Level of Comprehensive- ness	 Based on viewpoint of individuals with varying backgrounds on a collective basis 	•Based on single Individual's viewpoint

Table 51. Technique utility for railroad crossing study.

÷,

General guidelines to assist in the selection process are provided.

- 1. It is preferred that the team approach be used for the safety study of railroad crossings. This technique permits the review of the crossing and the selection of safety countrmeasures from several viewpoints.
- 2. Where sufficient levels of personnel are unavailable to perform a team study, the individual approach can be used successfully. By using an experienced individual, the study findings and results can be quite comparable to the team approach.

Findings

Use Of Findings

The findings of this study procedure are used collectively to identify safety deficiencies and to select countermeasures.

A primary safety factor at a crossing is the determination of the sight triangle. Based on the premise that all areas within the triangle must be clear to allow the vehicle driver adequate visibility, recommendations to upgrade the required sight distance are made.

In many cases, restricted sight distance will be the result of obstructions within the sight triangle. If these obstructions consist of vegetation or other natural features, they should be removed. Other obstructions (e.g., buildings, electrical towers) may be difficult to remove. For these cases, speed reduction measures may be used to reduce vehicle speeds to a level in which adequate sight distance is provided. Active control devices can also be implemented.

A second safety concern at rail-highway crossings is providing sufficient advance warning of an upcoming crossing. Where it is determined that insufficient advance warning exists, adherence to the <u>Manual of Uniform</u> Traffic Control Devices [6] (MUTCD) recommendations is required.

Other areas of concern are related to the crossing area. Typical deficiencies include: the quality of the crossing surface; the protection of vehicle occupants in the crossing area; drainage of the surface crossing; and illumination of the crossing. Where it is noted that these hazardous conditions exist, an appropriate countermeasure can be selected to alleviate the deficiency. A summary of these countermeasures can be found in the Railroad-Highway Grade Crossing Handbook (FHWA-TS-78-214).

281

Procedure 22 - Traffic Control Device Study

Purpose

A traffic control device study procedure reviews the effective application of a traffic control device. These studies include the review of "stop"/"yield" sign needs, traffic signal requirements, and the adherence (observance) and enforcement levels at these locations and their effective application in the field environment.

Need for Study

The need for a traffic control device safety study is dictated primarily by accident data for the study location. Certain accident types, in particular right angle accidents, serve well to relate a safety deficiency resulting from an inadequate use of a traffic control device. A listing of typical accident patterns are:

Situation	Accident Characteristics	Required Study
Uncontrolled inter- section	Right angle accidents	Need for "STOP" or "YIELD" control
"YIELD"-controlled intersection	Right angle accidents	Need for "STOP" or signal control
"STOP"-controlled intersection	Right angle accidents	Need for signal control or in- creased enforce- ment of control
Signal-controlled intersection	Right angle accidents	Increased enforce- ment of control

Other sources can include field review data and local input from users of the area.

Use of Study

Where this study is suspected or warranted at a location, a review of the site characteristics is performed. It involves a review of sight distance characteristics, observance of the control device in operation, and review of available accident data. A review of the effectiveness of the devices is then made. If conditions are found deficient, upgrading the type or application of the control or increased enforcement of the existing control may be warranted. The techniques of this procedure are also used as a tool in evaluating the effectiveness of a recently installed traffic control device using "before" and "after" evaluation analysis.

Period of Data Collection

The data collection period is typically defined by the accident characteristics for the site. Where a defined period does not exist, use of peak volume periods are made. It will facilitate and expecite the cata collection effort. A similar study can be conducted ouring off-peak periods to provide comparison data.

Traffic Control Device Study Techniques

Data needs for the traffic control devices study procedure will consist of accident data, intersection sight distance information (including a review of travel speeds in the intersection area), and traffic control device observance characteristics. Means to collect accident data and intersection sight distance information are provided in Procedure 1 -"Accident Summary By Type" procedure and Procedure 12 - "Sight Distance Study" procedure, respectively.

Two techniques are commonly used to perform a law observance study.

- Field observer method.
- Photographic techniques.

Major considerations for these techniques are given in Table 52.

• Field Observer Nethod

In the field observer method $\lfloor 1,2,3 \rfloor$, a technician is stationed in the field and observes an intersection for adherence of traffic to the traffic control device regulating right-of-way control. Sample data sheets for this study are displayed in the Appendix (pagesI-20 to I-22) The observer records the field information onto these sheets using tick marks.

The observer should be stationed within view of the intersection or approach under study but should remain inconspicuous so as not to unduly influence driver behavior in the area. The data should be sampled continuously during the study period to minimize bias in the results.

Advantages:

- 1. Permits review of intersection operation.
- 2. Allows flexibility by observer in performing study.
- 3. Equipment requirements are minimal.
- 4. Produces reliable results.

Disadvantages:

- 1. Lack of inconspicuity by observer can impact results.
- 2. Record of study results limited to data sheets.

Table 52.	Primary	considera	ations	for	traffic	control	device
		study	techni	iques	5.		

.

Considerations Technique	Function	Equipment Requirements	Manpower Requirements	Time Requirements	Associated Costs	Data Input	Data Obtained	Data Output
l. Field Observer Method	.Reviews driver (or pedestrian) observance of traffic control devices from field observa- tion of loca- tion	.Data sheets	Technician to collect data Engineer to review data	.Data collection approximately 1 hour .Data review approximately 1/2 hour	None	.Defined location .Law ob- servance problem	.Observance of traffic control devices	Adequacy or effectiveness of existing traffic control devices
2. Photographic Technique	Reviews driver (or pedestrian) observance of traffic control devices from review of film records of study location	•Photographic equipment •Film screen •Data sheets	.Technician to set up camera equipment .Trained tech- nician to ob- serve film data .Engineer to review data	.Data collection 2-4 hours .Data review 1-4 hours	.Photographic equipment \$500-\$2000	.Defined location .Law ob- servance problem	.Film record of location .Observance of traffic control devices	Adequacy or effectiveness of existing traffic control devices

This technique is favorable for a law or regulation observance study. It allows the observer to review the situation under actual field conditions and to interpret the data based on the field operations of all approach traffic.

Photographic Techniques

The photographic techniques [2,3] uses time-lapse or continuous photography to obtain a record of the field data. The film record is extracted by a trained observer. Data summary sheets are similar to those used in the field observer method. The film record can be also used to obtain and review other traffic data at the study location.

Advantages:

- Provides a film record of the study location and field operation.
- 2. Observers are able to review other traffic data.

Disadvantages:

- 1. Equipment needs are considerable.
- 2. Camera view may be limited.
- 3. Time requirements can be considerable.

This technique is appropriate where a permanent record of the study location is required or where conditions are complex, such that extensive manpower requirements would be needed by the field observer method.

Selection of Alternate Techniques

Criteria for selection of a study technique are based on the management concerns of the procedure. Table 53 relates the technique utility of the management concerns. General guidelines to assist in the selection of an alternate procedure are provided.

- 1. The field observer method is the preferred technique due to the expected lower time, manpower, and equipment requirements.
- 2. However, for situations where the need to maintain a film record of the situation occurs or where the location is complex, the photographic technique can be favorable.

Findings

In analyzing the study findings, the accident data is used as the primary source of input. Other information, such as sight distance characteristics and law or traffic regulation observance data provides additional input.

Use Of Findings

The occurrence of right angle accidents, sight distance problems, or the lack of adherence to a specific control (as identified by law observance study) can identify safety deficiencies where the need for upgrading Table 53. Technique utility for traffic control device study techniques.

Technique Management Concerns	Field Observer Method	Photographic Techniques
. Time Requirements	. Requires data collection and data manipulation	. Requires data col- lection, data ex- traction, and data manipulation
. Equipment Requirements	• Minimal	 Photographic equip- ment Other needs minimal
. Manpower Requirements	• Technician level	. Experienced Techni- cian level
. Level of Com- prehensiveness	• Reviews full scope of s tu dy area	• Scope of study area limited by camera field of view

the traffic control devices at an intersection becomes apparent.

The review of this data will also assist in selecting appropriate countermeasures. Countermeasures may consist of:

اردا داروی در دور میشوند. او د

- Installation of "YIELD" control.
- Installation of two or multiway "STOP" control.
- Installation of signal control.
- Reduction of intersection approach speeds.
- Increased enforcement of existing or planned control.

Countermeasures should be selected and designed in accordance with the MUTCD [4] criteria.

Procedure 23 - Bicycle And Pedestrian Study

Purpose

It is the purpose of this procedure to study situations involving the bicycle or walking modes, as they relate to conflicts with other traffic.

Application

Bicycle or pedestrian study procedures provide a structured safety review of a situation where an existing or potential hazard between these transportation modes and other vehicular traffic occurs. Due to the severity of bicycle/vehicle or pedestrian/vehicle accidents, the study of hazardous situations involving these modes represents a critical phase of highway safety.

Need for Study

The need for a bicycle or pedestrian safety study can be triggered from available accident data, as identified by a pattern of "bicycle/vehicle" or "pedestrian/vehicle" accidents. Other sources of identification can include field review data, or input by local users.

Use of Study

Where a bicycle or pedestrian safety study is performed, a review of the following field information will be made $\lfloor 1, 2, 3 \rfloor$. They are:

- 1. Review of available accident characteristics.
- 2. Review of field conditions.
- 3. Collection of vehicular and pedestrian or bicycle volume counts and conflict data during the period where a safety problem is evident.
- 4. Review of field notes made during field review of location.

5. Review of adequacy (effectiveness) of existing traffic control devices as related to both the vehicular and bicycle or pedestrian traffic.

Based on the information obtained in these steps, identification of safety deficiencies can be made. These deficiencies are used to develop safety-related countermeasures.

• Period of Data Collection

Periods of data collection for these studies will be determined by the time of day accident data related to the bicycling or walking modes.

For most favorable results, field data collection should be performed under favorable weather conditions. This is important since favorable weather conditions will tend to generate maximum pedestrian and bicycle traffic.

• Data Collection Requirements

ė,

A bicycle or pedestrian study will typically involve the performance of a conflict study and a field review of the situation. To assist in the field review, a questionnaire may be used to assure review of key data items. The questionnaire is completed during the field review. A sample questionnaire is shown in Figure 57.

A special conflict summary sheet is used, as shown in page I-19 of the Appendix. This sheet can be altered slightly to include conflicts resulting from bicycle activity.

Bicycle or Pedestrian Study Techniques

Two techniques are available to perform a bicycle or pedestrian study.

- Field observer method.
- Photographic techniques.

Information on primary considerations of these techniques are displayed in Table 54.

CIT	Y OR TWP:					
DATE:						
	DBSERVER:					
OPE	RATIONAL CHECK LIST:	NO	YES			
1.	Do obstructions block the drivers view of opposing or conflicting bicyclists or pedestrians?		. <u> </u>			
2.	Do pedestrians, bicyclists, or vehicles respond incorrectly to signals, signs, or other traffic control devices?					
з.	Are vehicle speeds too high?					
4.	Do pedestrian or bicyclist movements through the location cause conflicts?		<u> </u>			
5.	Is pedestrian or bicyclist movements in the area accounted for in the area's design of highway facilities?					
6.	Is existing lighting operating effect- ively for nighttime travel by bicyclists or pedestrians?		+			
PHY	SICAL CHECKLIST:					
1.	Can sight obstructions be removed or decreased?					
2.	Should pedestrian or bicycle crosswalks be relocated? Repainted?					
3.	Are signs adequate as to usefulness, message, size, conformity and placement? (see MUTCD - Sections II - A,B,C,D,E and F)	,				
4.	Are signals adequate as to placement, con- formity, number of signal heads, or timing? (see MUTCD - Section IV)					
5.	Are pavement markings adequate as to their visibility or location? (see MUTCD - Section III)					
6.	Do speed limits appear safe and reasonable?					
7.	Is street lighting adequate?					
	<u>MENTS</u> :					
		<u> </u>	*******			
		-				

Figure 57. Sample safety review form for bicycle or pedestrian studies.

Table 54.	Primary	considerations	for	bicycle	and	pedestrian	study
		techni	ques	5.		-	

-

.

Consideration Technique	Function	Equipment Requirements	Manpower Requirements	Time Requirements	Associated costs	Data Input	Data Obtained	Data Input
Operational Review - Field Observer Method	Reviews field operations using film record of field situation	.Data Sheets	Engineer to observe field operations	.Approximate- ly 1-2 hours	. None	.Defined location .Accident character- istics .Volume Data	Assessment of safety operations	.Evaluation of ob- served safety de- ficiencies
- Photo- graphic Techniques	Reviews field operations using film record of field situation	.Camera equipment	.Technician to set up, check and remove camera Engineer or trained tech- nician to re- view film data	.Camera set up, removal time approx- imately 1 hr .Data review time-several hours	.Camera equip- ment \$500- \$2500	.Defined location .Accident character- istics .Volume data	Assessment of safety operations	.Evaluation of ob- served safety de- ficiencies

• Field Observer Method

The field observer method [1,4] uses an observer to record volume count data, review the study area operation and record conflict data and notes on observed ceficiencies or special situations occurring during the review period. The observer should remain inconspicuous during this effort so as not to influence driver, pedestrian, or bicyclist behavior in the area. This technique requires an observer experienced in bicycle and pedestrian as well as highway safety.

Advantages:

- 1. Equipment needs are minimal.
- 2. Data are normally reliable.
- 3. Able to view total study area operations.
- 4. Permits flexibility in performing intersection studies.

Disadvantages:

- 1. Results can be influenced by presence of observer.
- 2. Data sheets serve as the only record source.

This technique is preferred for pedestrian and bicycle studies due to its overall low cost and minimal personnel needs.

Photographic Techniques

The photographic techniques [4] make use of time-lapse or continuous photography to obtain the field data. The cameras are situated to observe the desired field data. The data is extracted in an office environment and recorded on data sheets as used in the field observer technique.

Advantages:

- 1. Provides a film record.
- 2. Able to obtain other traffic data.

Disadvantages:

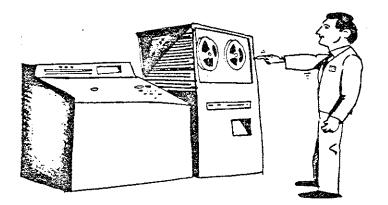
- 1. Equipment requirements are substantial.
- 2. Camera may limit field of view.

Selection of Alternate Techniques

The selection of the alternate technique is based on specific management concerns (i.e., time, equipment, and manpower requirements and the level of comprehensiveness of the technique). Table 55 can be used to relate the technique utility of the management concerns. Table 55. Technique utility for bicycle and pedestrian studies.

Technique	ŕ	× ·
Management Concerns	Field Observer Method	Photographic Techniques
. Time Requirements	• Requires data collection	. Requires camera setup, check and removal time and data extraction review
. Equipment Requirements	. Minimal	. Camera equipment . Other needs are minimal
. Manpower Requirem ent s	. Trained technician or engineer level	 Technician for camera setup, etc. Trained technician or engineer for data review
. Level of Compre- hensiveness	• Areawide scope	. Limited by camera field range

General guidelines to assist in the selection process are provided.


- 1. The field observer method is preferred for most bicycle or pedestrian-related studies due primarily to its lower cost and minimal personnel needs.
- 2. The photographic techniques are favorable where a lengthy data collection period is required.

Findings

In reviewing the study findings, safety problems are defined from the review of the various input sources. These findings will identify safety deficiencies and assist in developing appropriate countermeasures.

A review of feasible countermeasures for pedestrian and bicycle-related safety deficiencies can be defined in the DUT publications:

- Model Pedestrian Safety Program User's Manual Implementation Package 75-6 (June, 1978)
- A Study of Bicycle/Motor Vehicle Accidents: Identification of <u>Problem Types and Countermeasure Approaches</u>, Volumes I, II, and III, DOT-HS-803-315.

Activity 4 - Select Techniques

Purpose

The purpose of this activity is to select the techniques for performing the study procedures required for the site. It will identify the available techniques to perform each procedure and assist in selecting the most favorable techniques for an individual agency.

Overview

Within all highway agencies, the financial budget is a major factor in highway operations. Typically, available funds, manpower, and time resources all tend to limit the safety engineer's abilities to provide a completely fail-safe roadway environment. In efforts to obtain as safe a roadway environment as possible, the safety engineer is required to make optimum use of the resources (i.e., time, equipment and manpower) available to him.

The effective performance of a highway safety program requires that highway safety studies be performed as a key part in the study of hazardous locations. These studies permit an organized approach for the data collection, review, and analysis of conditions. In an effort to attain the above objectives, it is necessary that each study procedure be performed to produce effective results.

Very often, the two objectives of the safety program conflict. That is, the need to perform the procedures in a comprehensive manner and the optimization of available resources are difficult to achieve simultaneously. For instance, to obtain a 24-hour traffic volume at a location, the lack of mechanical volume counters and the infeasibility of performing a manual 24-hour count will restrict the collection of this data. Options may include: (1) obtain manual volume counts for a shorter period of time and expand them to a 24-hour total and (2) use a shorter period manual count in the analysis. Either technique may result in less direct and, possibly, less effective results of the analysis. The selected technique, however, must be within the resource limits provided the safety engineer.

Selection Criteria

To optimize the overall performance and results of the study procedures, the technique selection process requires that a review of the available resources and the study objectives be made as they pertain to the study procedures. This review requires an assessment of the basic management concerns related to each study technique. Typical management concerns will include:

- Time requirements.
- Manpower requirements.
- Equipment requirements.
- Information capabilities.
- Level of accuracy.

The demands each management concern requires for a particular technique are determined. They are then evaluated by the safety engineer based on the agency's available resources and study demands.

Using either qualitative or quantitative methods, an evaluation of the individual techniques based on an agency's resources is performed for each procedure. A review of the selected techniques for the procedures used in a study will then result in the selection of the most effective overall methods.

• Selection Plan

To aid in the selection of the appropriate techniques, the following steps are suggested:

- 1. Identify the field situation and information needs for each required procedure. Field situations may consist of either:
 - Freeway, ramps, arterials, collectors, etc.
 - Link and intersection.

Information needs will identify the specific information desired from the procedure, such as peak hour volume count, 24-hour volume count, peak hour level of service.

- Utilize the information to identify the most favorable techniques for each study procedure. In most cases, more than a single technique will be favorable. A list of techniques is shown in Table 56.
- 3. Review the management concerns of time, manpower, and equipment resources; level of comprehensiveness; and level of accuracy for the favorable techniques.
- Relate the management concerns to the particular agency's requirements.
- 5. Select the appropriate technique for each required procedure.

Procedure Type	Procedure	Available Techniques	Procedure Type	Procedure	Available Pechniques
Traffic	.Safety Performance Study	.Field method .Photographic technique	Traffic	Queue Longth Studies	.Detector method Manual method .Photographic techniques
	.Volume Study	.Mechanical counter -Permanent			.Mathematical models
		-Portable -Manual counting .Moving vehicle method .Photographic techniques	table Environment L counting g vehicle method		.Field method .File search method .Photolog method .Videolog method
	.Spot Speed Study	.Stop watch methods .Electric or electronic methods		.Roadway Service- ability Studies	.Subjective evaluation .Mechanical method
	.Travel Time and	Photographic techniques Radar meters		.Skid Resistance Studies	.Locked wheel method .Mu mater .Automobile method .Portable/Laboratory method
	Delay Studies	Moving vehicle method Sampling method License plate method Photographic techniques Graphic pen recorder Observér method		.Highway Lighting Studies	.AASHTO criteria .NCHRP Report No.152 method .Individual specific warrants .Field conditions method .Light meter method
	.Roadway and Inter-	.Delay meter .Interview method .Highway Capacity Manual		.Weather-Related Studies	.In-field measurement method .Field instruments method .Field review method
	section Capacity Studies	method Northwestern University capacity nomographs	Special Studies	.School Crossing Studies	.ITE method .Pedestrian conflicts method
		.TRB 212 method .Critical movement analysis .Cycle sampling		.Railroad Crossing Studies	.Multi-disciplinary diagnostic team approach .Subjective evaluation by
	.Traffic Conflict Studies	.Field method			individual
	.Gap Studtes	.Manual method		.Traffic Control Device Study,	.Field observer method .Photographic techniques
		.Manual/machine method .Photographic techniques .Instrumented site method		.Bicycle and Pe- destrian Studies	.Field observer method .Photographic techniques
	.Traffic Lane Occu- pancy Study	.Detector Method .Manual method .Photographic techniques			

Table 56. Summary of techniques for traffic, environment, and special study procedures.

No the second ready

ş

Selection Methods

Two means are available to select techniques. First, a qualitative comparison can be performed. This approach requires that a safety engineer or team of engineers evaluate the management concerns and develop an assessment of each favorable technique. It will be based on the overall effectiveness of the technique in performing the procedure given the agency's capabilities. From statements for each management concern, a single technique can be selected.

The second approach uses a numerical weighting scheme as its basis. Each management concern is provided a weighted value based on its importance to the agency in performing the technique. The sum of these weights should, preferably, equal 100 percent.

Each management concern is evaluated based on the technique's effectiveness in meeting the management concerns. Six levels may be described:

- 0 not feasible
 1 poor
 2 below average
 3 average
- 4 above average
- 5 desirable

The numerical approach is of the form:

$$UI = \sum_{i=1}^{J} W_{iL_{i}}$$

where: UI = utility index. W_i = weighted value for management concern "i". L_i = level rating for management concern "i". i,j = number of management concerns.

A sample computation form is shown in the Appenaix (page I-23).

The utility index will produce a numerical value for each technique. A higher rating will result in a more desirable technique. It should be noted, however, that the utility index provides a rating value for each technique specific to the agency using the rating method. It is not meant to be used as a rating method between agencies since each agency typically has differing resources and study needs.

• Other Considerations in Technique Selection

When making the final selection of techniques for several procedures, several considerations should be reviewed. First, resources available to an agency should be checked. For instance, a city traffic engineering department may not have a radar speed meter. A check with the local or nearby police agency may increase the availability of such a device. Or, for skid resistance studies, a phone call to the State Highway Department may allow the agency to obtain use of State equipment. A check of all feasible sources for available resources is suggested.

Second, combining study procedures by a single technique should be encouraged. For instance, where detection devices are available to collect needed traffic volume, speed, gap, lane occupancy, and queue length data or any combination of the above, they should be selected. Or where a manual field study is performed at a location, it could be planned to utilize manual data collection for other activities concurrently. It will usually result in the optimization of available resources.

Finally, once the techniques have been selected for each procedure, a review of the list of selected techniques should be made. Duplication of efforts and resources may then be avoided by assuring that the techniques selected are most favorable to the overall study of a specific location.

Findings

This activity will result in the selection of techniques which will optimize the use of resources available to an agency. It will also allow the collection of the necessary data required by a specific procedure. The results of this activity will be used in developing the data collection plan for the study location.

Inputs and Outputs of Activity

Inputs

- Required traffic, environment, and special study procedures for study location.
- List of available and preferred techniques to perform procedures.
- Characteristics of management concerns for each technique.
- Assessment of available resources to an agency.
- Assessment of study needs.

Outputs

- Evaluation of management concerns for each favorable technique
- of a procedure.
- Selected technique for each procedure.
- List of selected techniques for safety study of location.

Activity 5 - Perform Procedures

Purpose

The purpose of this activity is to develop a data collection plan for the selected study procedures and to perform the procedures using the techniques selected in the previous Activity.

Overview

Safety engineers are often faced with the challenge of performing safety studies with several time, manpower, and equipment limitations. The selection of the most favorable study techniques aids in optimizing available resources. Resources can be further optimized with proper planning and the timely performance of the data collection techniques.

Data Collection Plan Development

Development of a data collection plan prior to study performance is extremely desirable. Careful planning optimizes the use of available resources and minimizes the chance of collecting too much or too little data. These are important factors in conducting an efficient study procedure which will produce complete and reliable data.

The planning activities should consider:

- Selection and training of manpower resources.
- Acquisition of equipment resources.
- Preparation of data collection forms.
- Development of data collection schedules.

Planning is often considered simple and routine. However, when a number of study procedures are required for a specific location, data collection efforts become more time-consuming. In addition, planning with existing resource limitations becomes more involved and more crucial to the outcome of the study particularly with the limitations afforded the safety engineer.

To assist in the proper planning of the study procedures, the following guidelines are provided:

Selection and Training of Manpower Resources

1. List the required tasks and anticipated manpower needs for each procedure and technique to be performed. For instance, to perform the roadway inventory study procedure by the field method, two tasks are involved: (1) collect, measure, and record data and (2) prepare condition diagram. The first task typically involves two people, one to collect and measure the field information and a second individual to record the data. The second task requires

one person to transform field notes and measurements into a condition diagram.

- 2. Determine available manpower resources. Manpower may come from existing staff personnel, staff from other departments, or personnel from other agencies. For each available person, list their background and capabilities, such as data collection, data recording, diagram preparation, data analysis, etc.
- 3. Compare manpower needs and manpower resources. If manpower availability permits, select individuals with direct experience in conducting the study procedures to be performed. In many cases, however, this may not be possible. This makes the training of inexperienced personnel an extremely important issue.
- 4. Train selected personnel. Although highly experienced personnel may be available, it is recommended that training be performed to acquaint all personnel with specific details of the study procedure including:
 - Study purpose.
 - Preliminary information regarding the study site.
 - Tasks to be performed.
 - Information on the task and study output.
 - Period of data collection.
 - Operation of data collection equipment.
 - Proper use of data sheets.
 - Pitfalls and cautions of the task.
 - Need for accuracy and efficiency.

Following training, a question-and-answer period for the selected personnel should be held. If inexperienced personnel are being used, it is advisable to conduct supervised trial-runs of the study procedures.

Acquisition of Available Equipment Resources

- 1. List the equipment needs of each task in the technique. For the example given in the previous section, two tasks are required:
 - Collect, measure, and record field information.
 - Prepare condition diagram.

Equipment requirements for these tasks would include:

- Measuring instrument (i.e., hand measuring wheel, or tape measure, etc.).
- Blank data sheets.
- Clipboard.
- Pencils.

- Inventory the agency's existing equipment resources. The availability of these resources are usually known by the safety engineer. However, the whereabouts of the equipment should be checked to guarantee availability.
- 3. Compare equipment requirements and availability. Make a list of additional equipment needs. In some cases, this equipment may be borrowed from another department. Typically, access to major equipment and its availability were considered when the technique was selected.
- 4. Check all equipment for reliability prior to the study performance.

Preparation of Necessary Data Collection Forms

- 1. List the required data forms for each procedure.
- 2. Check existing files for data sheets. Very often, an agency maintains a file of data collection forms. Where data forms are unavailable, use of forms included in the Appendix or in the ITE Manual of Traffic Engineering Studies [1] is recommended.
- 3. Fill out as much of the data forms as feasible prior to the data collection effort. Make sure extra copies of the data sheets are available to the data collectors.

Development of Schedules for the Data Collection Effort

1. Define the data collection periods as determined from the accident summaries. This is of particular importance for operational data items. For many physical data items, data collection is not necessarily related to the time of day.

When performing the data collection, favorable weather conditions should exist. The data collection, however, should be planned for the early part of the week. In this way, if one day is unfavorable, the next regular day may be used for data collection. Significant time and effort may be wasted where surveys are postponed till the next week.

2. When feasible, combine data collection activities for different tasks on the same day. This will typically maximize use of available manpower.

A sample Task, Manpower, and Equipment Summary Sheet is included in the Appendix (page I-24). Once the plan has been developed and the personnel and equipment are readied, the data collection activities can be performed.

• Performing the Procedure

When <u>manual</u> data collection methods are used, the data collectors should assemble at or near the site at least 1/2 hour prior to the data collection activity. This serves several purposes. First, it allows a check that all data collectors are present. When a data collector(s) is absent, plans to perform that person's activities can be made. Second, it aids in assuring that the data collection activity starts on time. Late arrival of data collectors can result in a postponement of starting times. Finally, it allows the data collectors to observe the study site, test the equipment, and ask questions regarding the study procedure.

Once final instructions are completed, the observers should go to their respective stations. This allows a brief time for them to familiarize themselves with the location and the demands of the data collection effort.

When <u>machine</u> methods are used in data collection, the equipment should be installed at least one-half hour prior to the data collection perioc. This will allow sufficient time for the installation and operational check of the equipment. Operational checks involve the testing of the machine data versus observed data using manual measurements. For example, when installing volume counters, a manual count is used to check the accuracy of the volume counting machine.

The equipment should be installed on the same day as the data collection effort to minimize chances of vandalism or equipment failures. When it is necessary that the equipment be installed the day before the study, operational checks should be performed at the time of installation and again prior to the study period. Backup equipment should be available and carried to the site in all situations.

The study procedure should be performed in accordance with the directives provided by the safety engineer and the techniques described for each procedure.

Following completion of the data collection effort, the data collectors should again assemble near the site. At this time, the data sheets are reviewed and any questions by data collectors are answered. Also, all equipment is checked for accuracy and all data is briefly double-checked for completeness.

Findings

The output of this activity will be a data collection plan and the performance of the study procedures required for the site. The findings from this activity are used in the identification of safety deficiencies and the development of safety-related countermeasures.

Inputs and Outputs of Activity

Inputs

- Defined location.
- Period of data collection.
- Technique(s) to be performed.
- Available time, manpower, and equipment resources.
 Time, manpower, and equipment requirements.
 Data collection forms.

Outputs

- Selected manpower and task assignments.
- Schedule of data collection efforts.
- Data sheets by data collector.
- Summarized data findings by procedure.

Activity 6 - Identify Safety Deficiencies

Purpose

The purpose of this activity is to assemble and analyze the various data collected at a study site, review the findings, and verify or identify safety deficiencies.

Overview

Safety problems at a site are identified by the following factors:

- Field conditions relating a deficiency.
- Measure (extent) of a deficiency, where feasible.
- Probable accident cause or safety deficiency.

This activity will result in the accumulation and analysis of the site data collected from the procedures to be used to identify the safety deficiencies. This information is used in the development of feasible countermeasures.

Accumulation of Data

After the procedures have been performed, the collected data should be assembled and placed in a format amenable to the analysis of the data. This format should permit an effective determination of the safety deficiencies at the site. A favorable format would list the data in the order used to define a safety problem, i.e., conditions, measures, and the cause of the problem. In this way, once site conditions and measures of the problem are defined, the probable accident cause or safety deficiency can be more readily identified. To assist in ordering the data by its purpose, Table 57 is used. It lists the purpose of the data obtained by each of the study procedures. The data from each procedure is then assembled and prepared for analysis.

Analysis of Data

The data obtained from each procedure is reviewed using the analysis methods described within each procedure. The outputs are then used to identify and describe the conditions and measures of each safety problem at the study location.

Once the safety problem data is assembled and reviewed, it is used to make a final assessment of the safety deficiencies. Each of the possible accident causes noted from the accident summaries and the field review are reviewed with the findings of the other study procedures. From this review, a list of probable causes or safety deficiencies is identified. It may differ from the list of possible causes or have no difference. The results are used in the countermeasure development activity.

Table 57. Data purpose by procedure.

	PROCEDURE	DATA PURPOSE
2. 3. 4. 5. 6. 7. 8.	PROCEDURE Accident Summary By Type Accident Summary By Severity Accident Summary By Contributing Circumstances Accident Summary By Environmental Conditions Accident Summary By Time Period Safety Performance Study Volume Studies Spot Speed Studies Delay and Travel Time Studies	A A A A A,B,C B B,C
10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.	Roadway and Intersection Capacity Study Traffic Conflict Study Gap Study Traffic Lane Occupancy Study Queue Length Study Roadway Inventory Study Sight Distance Study Roadway Serviceability Study Skid Resistance Study Highway Lighting Study Weather-Related Study School Crossing Study Railroad Crossing Study Traffic Control Device Study	

LEGEND:

- A Defining "probable accident cause"
 B Identifying field (site) conditions relating probable cause
 C Identifying measure (extent) of safety deficiency(s)

Where all "possible accident causes" have been deleted based on the procedure findings, a re-check of the accident summaries, field review notes, and other study procedure findings should be performed. It may reveal inaccurate assumptions or findings. In <u>NO CASE</u> should a safety problem lack a probable accident cause. Without this information, effect-ive countermeasures may not be developed.

Findings

This activity assembles and reviews the study site data, placing it in a format favorable to the identification of safety deficiencies. This format will allow a more effective identification of the safety deficiencies. The output of this activity will be used in the development of feasible countermeasures.

Inputs and Outputs of Activity

Inputs

- Defined location.
- List of "possible accident causes."
- Study findings from traffic, environment, and/or special study procedures.

• Outputs

- Summary of study findings.
- Review of possible accident causes.
- Definition of safety deficiencies.

SUBPROCESS 2 - DEVELOP CANDIDATE COUNTERMEASURES

Activity 7 - Develop Feasible Countermeasures

Purpose

The purpose of this activity is to develop candidate countermeasures for a location based on the identified safety deficiencies at the location.

<u>Overview</u>

Prior to this activity, a detailed study of the identified hazardous location was made. The study activities identified the safety deficencies at the site. The definition included:

- Probable accident causes.
- Site characteristics relating the probable accident causes.
- Measures (extent) of the safety problems or deficiencies.

From this definition, feasible countermeasures can be developed by the safety engineer.

Factors To Consider

Several factors [1] need to be considered. First, countermeasures should be selected carefully based on a knowledge and understanding of the effectiveness of similar improvements in the past. Inputs from past project and program evaluations (Evaluation Component of HSIP) are very important to the results of this activity. If a past project resulted in favorable safety benefits at similar type locations, such improvements would likely be considered candidate countermeasures.

Second, countermeasures which may have produced major safety improvements in one area of the country may not necessarily produce similar improvements in another part of the country or at alternate locations in the same area. This is due to the complex interplay among the various traffic variables at the site. A careful review of traffic and site conditions should be performed when developing countermeasures. This will assure effective coordination of countermeasures with the existing conditions.

Third, several candidate countermeasures can be proposed for the same location if it is expected that a combination of countermeasures are practical and will produce an overall improvement in safety. In this activity, it is suggested that all practical combinations of countermeasures be identified. Fourth, the developed list of feasible countermeasures should also be comprehensive. It is more favorable to include a greater number of countermeasures than have an inadequate list. All practical improvements, from the "do nothing" alternative to ultimate improvements, should be identified and considered so that no feasible alternative is overlooked.

Finally, the potential safety-related effect of each alternative improvement or combination should be identified. It will assure that the countermeasures developed are based on safety objectives.

Findings

The output of this activity will be a comprehensive list of feasible countermeasures and the potential or anticipated effect the improvement will have on safety at the site. For instance, a feasible countermeasure consisting of the construction of a separate left turn lane may have the following potential effects on the study location:

- 1. A reduction of left turn accidents.
- 2. A reduction of rear-end collisions between through and left turn movements.
- 3. A reduction in sideswipe accidents.
- 4. An increase in the capacity of the facility.
- 5. A reduction in delay to through traffic.
- 6. An increase in safe sight distance for left turn traffic.

The list will serve as input to assist in selecting a single safety project.

Inputs and Outputs of Activity

❷ Inputs

- Defined hazardous locations.
- Definition of safety deficiencies at each location.
- Basic understanding of available safety improvements which are effective in reducing accidents and travel costs.
- Past experiences of agency and other in the effectiveness of specific countermeasures.

Outputs

- List of feasible countermeasures.
- List of potential effects of improvements.

Procedure Description

Two procedures are available to develop the feasible safety-related countermeasures for a location.

- Procedure 1 Accident Pattern Tables.
- Procedure 2 Multi-Disciplinary Investigation Team.

Primary considerations for these procedures are shown in Table 58.

Procedure 1 - Accident Pattern Tables

Purpose

The purpose of this procedure is to identify feasible countermeasures based on defined accident patterns at a study location. Using findings obtained from the accident summaries and field review and supplemented by the traffic, environment, and special study procedures, candidate countermeasures can be developed.

Application

The development of accident pattern tables is based on the following assumptions:

- Patterns of accident types are associated with probable accident causes.
- The need for specific improvements can be inferred from analysis of probable accident causes.

Using these assumptions, accident pattern tables can be developed. The background for the tables are based on traffic safety engineering experience, the past experiences and evaluations of agencies, and various research conducted throughout the United States.

Accident pattern tables have been developed by various groups (1,2,3, 4). These tables have been summarized, producing a general accident pattern table to assist in the development of countermeasures, as displayed in Table 59.

• Use Of Tables

In using these tables or locally developed tables, accident patterns and probable accident causes, as identified from previous activities are used to identify a list of general countermeasures. For example, at a Table 58. Primary considerations for countermeasure development procedures. .

÷

.

Consideration Procedure	Function	Equipment Requirements	Manpower Requirements	Time Requirements	Data Input	Data Obtained	Data Output
.Accident Pattern Tables	Determines countermeasures using tables based on acci- dent situation and probable cause	.Accident pattern tables	.Engineer ro re- view tables	.Very little where data is adequate	Accident pattern Probable causes Site data	List of possible counter- measures	List of possi- ble counter- measures
.Multi-Disciplin- ary Team Approach	.Determines countermeasures using a team of individuals to study and elect the counter- measure(s)	.None	.Individuals with varying disci- plines	.Each individual devotes one to two hours per site	.Accident summaries .Site data	.Possible causes .Possible counter- measures	List of possi- ble or feasible countermeasures

-

.

Table 59. General accident pattern table.

Accident Pattern	Probable Cause	General Countermeasure
Left-turn head-on collisions	Large volume of left-turns	 Create one way street Widen road Provide left-turn signal phases Prohibit left-turns Reroute left-turn traffic Channelize intersection Install stop signs (see MUTCD) Revise signal sequence Provide turning guidelines (if there is a dual left-turn lane) Provide traffic signal if warranted by MUTCD Retime signals
	Restricted sight distance	 Remove obstacles Provide adequate channelization Provide special phase for left- turning traffic Provide left-turn slots Install warning signs Reduce speed limit on approaches
	Too short amber phase	 Increase amber phase Provide all red phase
	Absence of special left-turning phase	 Provide special phase for left- turning traffic
	Excessive speed on approaches	. Reduce speed limit on approaches
Rear-end collisions at unsignalized intersections	Driver not aware of intersection	 Install/improve warning signs
	Slippery surface	 Overlay pavement Provide adequate drainage Groove pavement Reduce speed limit on approaches Provide "slippery when wet" signs
	Large numbers of turning vehicles	. Create left- or right-turn lanes . Prohibit turns . Increase curb radii
	Inadequate roadway lighting	. Improve roadway lighting

.

Accident Pattern	Probable Cause	General Countermeasure
Rear-end collisions at unsignalized	Excessive speed on approach	. Reduce speed limit on approaches
intersections	Lack of adequate gaps	 Provide traffic signal if war- ranted (see MUTCD) Provide stop signs
	Crossing pedestrians	 Install/improve signing or marking of pedestrian crosswalks
	Slippery surface	 Overlay pavement Provide adequate drainage Groove pavement Reduce speed limit on approaches Provide "slippery when wet" signs
	Large number of turning vehicles	 Create left- or right-turn lanes Prohibit turns Increase curb radii Provide special phase for left- turning traffic
	Poor visibility of signals	 Install/improve advance warning devices Install overhead signals Install 12-in. signal lenses (see MUTCD) Install visors Install back plates Relocate signals Add additional signal heads Remove obstacles Reduce speed limit on approaches
	Inadequate signal timing	 Adjust amber phase Provide progression through a set of signalized intersections Add all-red clearance
	Unwarranted signals	 Remove signals (see MUTCD)
	Inadequate roadway lighting	. Improve roadway lighting
	·	

	1	
Accident Pattern	Probable Cause	General Countermeasure
Rear-end collisions at unsignalized intersections	Crossing pedes- trians	 Install/improve signing or marking of pedestrian crosswalks Provide pedestrian "WALK" phase
Right-angle collisions at signalized intersections	Restricted sight distance	 Remove sight obstructions Restrict parking near corners Install warning signs (see MUTCD Reduce speed limit on approaches Channelize intersections Install advance markings to supplement signs
	Excessive speed on approaches	 Reduce speed limit on approaches Increase amber phase Install rumble strips
	Poor visibility of signal	 Install advanced warning devices Install 12-in. signal lenses Install overhead signal Install visors Install back plates Improve location of signal heads Add additional signal heads Add illuminated name signs
	Inadequate signal timing	 Adjust amber phase Provide all-red clearance phase Add multi-dial controller Install signal actuation Retime signals Provide progression through a set of signalized intersections
	Inadequate roadway lighting	. Improve roadway illumination
	Inadequate advance intersection warn- ing signs	 Install advance intersection warning signs
	Large total inter- section volume	• Retime signals • Add traffic lane
Right-angle collisions at unsignalized inter- sections	Restricted sight distance	 Remove sight obstructions Restrict parking near corners Install stop signs (see MUTCD) Install warning signs (see MUTCD) Reduce speed limit on approaches

Accident Pattern	Probable Cause	General Countermeasure
Right-angle collisions at unsignalized intersections	Restricted sight distance	 Install signal (see MUTCD) Install yield signs (see MUTCD) Channelize intersection Install advance markings to supplement signs Install limit lines
	Large total inter- section volume	 Install signal (see MUTCD) Reroute through traffic
	Excessive speed on approaches	 Reduce speed limit on approaches Increase amber phase Install rumble strips
	Inadequate roadway lighting	. Improve roadway illumination
	Inadequate advance intersection warning signs	 Install advance intersection warning signs
	Inadequate traffic control devices	 Upgrade traffic control devices Increase enforcement
Pedestrian-vehicle collisions	Restricted sight distance	 Remove sight obstructions Install pedestrian crossings Install/improve pedestrian crossing signs Reroute pedestrian paths Prohibit curb parking near crosswalks
	Inadequate protrection for pedestrians	. Add pedestrian refuge islands . Install pedestrian barriers
	School crossing area	 Use crossing guards at school crossing areas
	Inadequate signals	. Install pedestrian signals (see MUTCD)
	Inadequate phasing signal	. Change timing of pedestrian phase

Accident Pattern	Probable Cause	General Countermeasure
Pedestrian-vehicle collisions	Driver had inade- quate warning of frequent mid-block crossings	 Prohibit parking Install warning signs Lower speed limit Install pedestrian barriers
	Inadequate pave- ment markings	 Install thermoplastic markings Supplement markings with appropriate signing (see MUTCD) Upgrade pavement markings (see MUTCD)
	Inadequate gaps at unsignalized inter- sections	 Install traffic signal, if warranted by MUTCD Install pedestrian crosswalk and signs Install pedestrian "WALK-DON'T WALK" signals
	Inadequate roadway lighting	. Improve roadway lighting
	Excessive vehicle speed	 Reduce speed limit Install proper warning signs Install pedestrian barriers Enforcement
Run-off-roadway collisions	Slippery pavement	 Overlay existing pavement Provide adequate drainage Groove existing pavement Reduce speed limit Provide "slippery when wet" signs
	Roadway design in- adequate for traf- fic conditions	 Widen lanes Relocate islands Close curb lanes Install guardrails
	Poor delineation	 Improve/install pavement marking: Install roadside delineators Install advance warning signs
	Inadequate roadway lighting	• Improve roadway lighting
	Inadequate shoulder	• Upgrade roadway shoulders

315

Accident Pattern	Probable Cause	General Countermeasure
Run-off-roadway collisions	Improper channeli- zation	. Improve channelization
	Inadequate pavement maintenance	• Perform road surface repair
	Poor visibility	• Increase size of signs
	Excessive speed on approaches	• Reduce speed limit
Fixed object collisions	Obstructions in or too close to road- way	 Remove obstacles Install barrier curbing Install breakaway features to light poles, signposts, etc. Project objects with guardrails Install crash cushioning devices
	Inadequate roadway lighting	• Improve roadway lighting
	Inadequate pave- ment marking	 Install reflectionized pavement lines
	Inadequate signs, delineators and guardrails	. Install reflectionized paint and or reflectors on the obstruction
	Inadequate road design	 Provide proper superelevation Improve superelevation at curve Install appropriate warning sign and delineators
	Slippery surface	 Improve skid resistance Provide adequate drainage Provide "slippery when wet" sign Provide wider lanes
	Excessive vehicle speed	. Reduce speed limit
Collisions with parked or parking vehicles	Improper pavement markings	 Paint parking stall limits 7 fee from curb face
	Improper parking clearance at drive- ways	. Post parking restrictions near driveways

Accident Pattern	Probable Cause	General Countermeasure
Collisions with parked or parking vehicles	Angle parking	 Convert angle parking to parallel parking
	Excessive vehicle speed	 Reduce speed limit if justified by spot speed studies Widen lanes
	Illegal parking	. Enforcement
	Improper parking	 Prohibit parking Create off street parking
	Large parking turnover	 Create one-way streets Reroute through traffic
Sideswipe or head-on collisions	Inadequate roadway design	. Create one-way streets provide wider lanes
	Improper road maintenance	 Perform necessary road surface repairs
	Inadequate shoulders	. Improve shoulders
	Excessive vehicle speed	 Reduce speed limit Install median devices Remove constriction such as parked vehicles
	Inadequate pave- ment markings	 Install or refurnish center lines, lane lines and pavement edge lines Install reflectorized lines, edges
	Inadequate channelization	 Install acceleration and deceler- ation lanes Channelize intersection Provide turning bays
	Inadequate signing	 Place direction and lane change signs to give proper advance war- ning Add illuminated name signs
		[]

317

Accident Pattern	Probable Cause	General Countermeasure
Driveway-related collisions	Left-turning vehicles	 Install median devices Install two-way left-turn lane
	Improperly located driveway	 Regulate minimum spacing of driveways Regulate minimum corner of cle ance Move driveway to sidestreet Install curbing to define driv way location Consolidate adjacent driveways
	Right-turning vehicles	 Provide right-turn lanes Restrict parking near driveway Increase the width of driveway Widen through lanes Increase curb radii
	Large volume or through traffic	 Move driveway to sidestreet Construct a local service road Reroute through traffic
	Large volume of driveway traffic	 Signalize driveway Provide acceleration and decel ation lanes Channelize driveway
	Restricted sight distance	 Remove sight obstructions Restrict parking near driveway Install/improve street lighting Reduce speed limit
	Inadequate roadway lighting	. Improve street lighting
	Excessive speeds on approaches	. Reduce speed limit
Train-vehicle accidents	Restricted sight distance	 Remove sight obstructions Reduce grade Install train actuated signal (see MUTCD) Install stop signs (see MUTCD Install advance warning signs (see MUTCD) Install automatic flashers an gates

Table 59. General accident pattern table (continued).

Accident Pattern	Probable Cause	General Countermeasure
Train-vehicle accidents	Poor visibility	 Improve roadway lighting Increase size of signs
	Improper traffic signals pre-emption timing	• Retime traffic signals
	Excessive vehicle speeds on approaches	• Revise speed limit
. · · ·	Inadequate pavement markings	 Install advance markings to supplement signs Install limit lines Install/improve pavement marking
	Slippery surface	• Skidproof roadway
	Improper pre- emption of RR sig- nals or gates	 Retime RR signals and gates
	Rough crossing surfaces	 Improve crossing surface
	Sharp crossing angle	 Rebuild crossing with proper angle
Wet-pavement accidents	Slippery pavement	 Overlay existing pavement Groove existing pavement Reduce speed limit Provide "slippery when wet" sign Skidproof roadway
	Inadequate drainage	. Provide adequate drainage
	Inadequate pavement markings	• Upgrade pavement markings
Night accidents	Poor visibility or Lighting	 Install/improve street lighting Install/improve delineation markings Install/improve warning signs
	Poor sign quality	Upgrade signingProvide illuminated signs
	Inadequate channel- ization or delinea- tion	 Install pavement markings Improve delineation markings Provide raised markers Upgrade advance warning signing

.

signalized intersection, it was determined that a pattern of right angle collisions occurred. From previous activities, the probable accident cause was identified as "restricted sight distance."

The list of general countermeasures associated with these accident causes is obtained from Table 59. They are:

- Remove sight obstructions.
- Restrict parking near corners.
- Install stop signs and remove signals (see MUTCD).
- Install advance warning signs (see MUTCD).
- Reduce speed limit on approaches.
- Install yield signs (see MUTCD).
- Channelize intersections.
- Install advance markings to supplement signs.
- Install "STOP" lines.

The list of feasible countermeasures is the output of this procedure and is used in following activities to select a safety project.

Other Situations

Where several "probable causes" may have contributed to a particular accident pattern, feasible countermeasures are determined on a collective basis. For instance, in the above example, if "poor visibility of signals" was determined to be an additional or a secondary "probable" cause, the list of general countermeasures would consist of the previous list and the following list:

- Install advanced warning devices.
- Install 12-in. signal lenses.
- Install overhead signals.
- Install signal visors.
- Install back plates.
- Improve location of signal heads.
- Add additional signal heads.
- Reduce speed limit on approaches.
- Add illuminated street name signs.

The findings obtained from the various study procedures would produce a list of feasible countermeasures. This list of feasible countermeasures would then be used in the economic analysis to develop a single project.

A similar approach would be used to develop feasible countermeasures where two or more accident patterns are defined at a location. The countermeasures would be assessed collectively to develop the feasible countermeasures.

Limitations

Advantages:

- 1. Provides a method which is inexpensive.
- 2. Tables are simple to use.
- 3. Requires very little manpower needs.

Disadvantages:

- 1. May result in incomplete or inconclusive findings.
- 2. Requires individuals with substantial highway safety experience to develop countermeasures.
- 3. Is difficult to apply for complex situations.

This procedure requires that an individual experienced in highway safety be used for selection of feasible countermeasures. It has been found favorable for most locations due to its low cost and ease of application. Where situations are complex, an alternate method, such as the team approach, may be more favorable.

Findings

This procedure will develop a list of feasible countermeasures for a location based on the identified accident patterns and probable causes. The output will be used as input in the economic analysis and project selection activities.

Procedure 2 - Multi-Disciplinary Investigation Team

Purpose

The purpose of this procedure is to define feasible countermeasures based on the input received from a study of the location by a team of individuals from varying disciplines. From the input and discussion of the team members, a consensus of the causal factors and countermeasures to correct the hazardous location is developed.

Application

In this procedure, individuals from various agencies and disciplines are used to review the safety problems and develop feasible countermeasures for a site. These individuals collectively identify safety deficiencies and develop countermeasures.

Team Selection

To be effective the team needs individuals with a variety of experience. It should also contain representatives of the agencies or groups responsible for the safe operation of the hazardous location.

Three criteria must be met for an effective investigation team [9]:

- 1. The team should be small enough to be managable and easily organized, yet large enough to incorporate all desired disciplines.
- 2. The professional disciplines should cover the areas of roadway, driver, and vehicle aspects of highway safety to obtain a comprehensive analysis of the location.
- 3. There should be a variation in the degree of familiarity with the location by team personnel.

In addition to highway and traffic engineers, the study team may include:

- Human factors experts (psychologists, sociologists, etc.).
- Law enforcement officers.
- Automotive engineers (mechanical engineers).
- Physicians.
- Lay persons.

Study Performance

In performing a study of a hazardous location, the team should assemble at the site to conduct a brief review session. At that time, the team leader (typically a safety engineer) supplies each individual with copies of the available site data; e.g., collision diagrams, volume data, and condition diagrams. These data are discussed briefly and any questions answered.

In the next step, each team member conducts a site investigation during the period of significant accident experience. He drives along all approaches, observes operations at the location, and inspects any characteristics which he feels may be important to the study. All observations and findings are recorded.

While at the study location, each team member reviews the collision diagrams, possible causes, and other site data. They determine from personal judgement the predominant accident types, causal factors, and possible countermeasures.

Each team member then prepares a short report on his findings. The reports are submitted to the team leader.

The team members are then reassembled for a short critique and discussion period. The critique usually begins with the safety engineer's summary of his observations. Input from other team members is encouraged in the discussion phase. During this phase, the findings of each team member are reviewed and countermeasures discussed. From this discussion, the team members reach a general consensus on the safety deficiencies and the feasible countermeasures.

Limitations

Advantages:

- 1. Attempts to view hazardous locations from the standpoint of human factors, law enforcement, etc., as well as from the highway and traffic engineering standpoint.
- 2. Provides extensive, detailed, in-depth analyses.
- 3. Provides an excellent means of focusing the attention of all involved agencies to the hazardous situation.

Disadvantages:

- 1. Requires large amounts of time, effort, and funding.
- Difficult to schedule a specific time for review among various team members.
- 3. Requires the use of several specially trained individuals.
- 4. Requires the cooperation of all team members, both on a individual and on a team basis.

This procedure, by involving persons with varying backgrounds, can result in a more comprehensive and critical review of a location. It does require, though, that the team leader be capable of handling the team and able to lead the various discussions.

Although this technique requires the cooperation of the involved personnel, the success of using personnel with varying disciplines carries extensive advantages. Not only is the viewpoint of differing individuals important but the inclusion of personnel from the involved agencies will typically facilitate the implementation of the project. This procedure is favorable for most locations when sufficient personnel is available. It is recommended for use in complex highway safety situations.

Findings

This procedure will develop a list of feasible countermeasures for a location based on the input received from a team of individuals. The output will be used in the economic analysis and project selection activities.

SUBPROCESS 3-DEVELOP PROJECTS

Activity 8 - Predict Accident-Reduction Capabilities of Countermeasure(s)

Purpose

The purpose of this activity is to predict the number of accidents prevented (reduced) resulting from the implementation of a proposed countermeasure. The information obtained from this activity is used in the economic analysis of feasible countermeasures.

Overview

The major objective of a highway safety project is to reduce accidents (and severity) or the accident potential along the highway facility. In this regard, the effectiveness of a safety project is judged by its ability to reduce the number and severity of accidents. Similarly, in selecting safety improvements for a site, the anticipated effectiveness of a project to reduce accidents and/or severity serves as a major criteria. This effectiveness (or lack of) is expressed in the economic analysis as a benefit (or disbenefit).

Accident Reduction Factors

To obtain an indication of the effectiveness of a safety project, the development of factors suggesting the potential reduction of accidents associated with an improvement is necessary. These factors, commonly referred to as "accident reduction factors" (AR), have been developed by numerous states and agencies to date. They are based on past and current evaluation efforts of safety projects and research data developed by various groups. Because of the variability in accident frequencies among sites and sections of the country, differences in these accident reduction factors for specific improvements exist between agencies. In a completed FHWA booklet[1], Accident Reduction factors for nationwide use is available. Through these efforts, a detailed list of safety improvements and their respective accident reduction capabilities were developed. They are measured as a percent reduction of accidents (by severity type or accident type). A sample of these factors [1] are shown in Appendix F.

Use Of AR Factors

Accident reduction factors are used to determine the economic benefits of feasible countermeasures. They represent a critical factor in the economic analysis since: (1) accident reductions are the primary objective of any safety program and (2) accident reductions will serve as a primary benefit to offset safety improvement project costs. In determining the benefits of a feasible countermeasure, the following formula [2,3] is used:

Accidents Prevented = N x AR (ADT - after period) (ADT - before period) Where:

- N = Expected number of accidents without implementation of the improvement project
- AR = Accident reduction factor (percent).
- ADT = Average daily traffic volume

In computing the number of accidents prevented, values of "N" can be based on average results for the study period. For instance, if over a 3-year period, the left-turn accident occurrence was 8, 12 and 9 accidents, respectively, the value of "N" would be 29/3 or 9.67 accidents. The use of average values throughout a study period is encouraged to reduce variability in the results and to minimize the likelihood of uncharacteristic results influencing the data.

Similarly, the "ADT-before period" volumes will be based on averaged values throughout the 'before' study period. The "ADT-after period" volumes are based on the anticipated volumes during the period following inplementation of a safety project. This period will be determined by: the planned implementation period for the project. Estimates of future volumes can be computed based on the normal traffic growth, historical trends, or detailed transportation models.

Where individual states or areas have a reliable list of AR factors, these lists should be used. Where such a list does not exist or is inadequate, the list provided in Appendix F is recommended. The factors are stated in terms of "percent of accidents reduced" and are usually classified by improvement type as a function of accident type, severity, or total number of accidents.

The use of the accident reduction factor in the above formula will result in the expected number of accidents to be reduced with the implementation of a specific countermeasure. This value can be obtained for total accidents at a location, specific accident types or by severity class, whichever is available.

Multiple Improvements

Accident reduction factors are usually based on a single countermeasure at a location. However, where multiple countermeasures are being proposed, the accident reduction factor will be a combination of the individual accident reduction factors. Since it is not feasible to reduce accidents by more than 100 percent, the following formula [3] is used to develop an overall accident reduction factor for multiple improvements at a location. $AR_{M} = AR_{1} + (1-AR_{1}) AR_{2} + (1-AR_{1})(1-AR_{2}) AR_{3} + \dots$

+ $(1-AR_1)(1-AR_{i-1}) AR_i$

where: AR_M = overall accident reduction factor for multiple improvements (mutually exclusive) at a single location

 AR_i = accident reduction factor from Appendix F for specific

improvement or countermeasure

i = number of improvements at a single location.

The accident reduction factors for the individual improvements should be listed by degree of importance. For instance, AR₁ should be the factor with the highest accident reduction factor; AR₂, the second highest factor; and so on. A different order of sequence will result in a different and, possibly inaccurate overall accident reduction factor, AR_M .

Example

An example of the use of this formula is shown for three improvements at a single location with individual accident reduction factors of 0.45, 0.15, and 0.30, respectively. Placing these factors in their order of significance, the accident reduction factors are as follows:

 $AR_1 = 0.45$ $AR_2 = 0.30$ $AR_3 = 0.15$

The overall accident reduction is:

 $AR_{M} = AR_{1} + (1-AR_{1}) AR_{2} + (1-AR_{1})(1-AR_{2}) AR_{3}$ = 0.450 + (1-0.45)(0.30) + (1-0.45)(1-0.30)(0.15) = 0.450 + 0.165 + 0.058 = 0.673 = 0.67

Where individual accident reduction factors are available by severity, a separate AR_M factor can be developed for each severity class by applying an accident reduction factor for each severity class to the above formula

Other Situations

Current state-of-the-art does not adequately provide a means to use accident reduction factors for multiple improvements where different data bases are provided. For instance, one set of AR factors may be based on the severity of the accidents whereas another set may be based on the reduction of certain accident types.

For this case, the use of a general or total accident reduction factor for each improvement type may be used. It may, however, result in the over- or under-estimation of the accident reduction potential since this factor is applied to the sum total of the accidents while the improvement may actually impact only one group of accidents.

Also, the AR factor for the principal countermeasure may be used and adjusted upward or downward dependent upon the judgement of the safety engineer. Experience in engineering and safety evaluation is required to permit a reasonable estimate of the accident reduction potential.

Update of AR Factors

For reliable use of AR factors the individual States should regularly update the factors based on the evaluation efforts of the individual State. This will permit the factors to be current and more representative of the improvement being made.

Summary

This activity will provide an estimate of the number of accidents that would be prevented by a countermeasure. Relationships between the number of accidents prevented and accident costs will be used to derive the major portion of the benefits anticipated for a countermeasure. This output will be used in the economic analysis of the feasible countermeasures.

Inputs and Outputs of Activity

Inputs

- Accident data at location for study period prior to improvement or the expected accident frequency without the improvement.
- ADT volumes at study location during study period.
- Future traffic volumes at study location.
- Table of accident reduction factors for various improvements.
- List of feasible countermeasures.

Outputs

- Accident reduction factor for countermeasure(s).
- Number of "expected accidents saved" as a result of feasible countermeasures.

Activity 9 - Perform Economic Analysis

Purpose

The purpose of this activity is to perform an economic analysis of the feasible countermeasures with primary emphasis on the accident reduction benefits and the cost of the project. The output consists of a numerical value assessing the economic feasibility of each project.

Overview

The economic analysis of countermeasures is a primary tool in the selection of a safety project. It uses the expected economic benefits of an improvement to determine the cost-effectiveness of the countermeasure. A primary input to this analysis is the accident reduction benefits derived in the previous activity. These benefits are compared to the project costs to obtain a numerical relationship which is used as the measure of the cost-effectiveness.

• Factors in Economic Analysis

Key factors to consider in performing an economic analysis include:

- Accident savings.
- Initial implementation costs.
- Operation and maintenance costs.
- Service life of improvement.
- Salvage value of improvement.
- Current or expected interest rates.

Other factors which may be used in the economic analysis include vehicle delay-related costs, traffic growth rates, and the effects of inflation.

Accident Cost or Savings

The accident savings represent the primary benefit anticipated for a countermeasure. The results of Activity 8 (Predict Accident Reduction Capabilities of Countermeasures) are used to obtain the expected "number of accidents prevented" per year resulting from the countermeasure. This value is used as basic input in the economic analysis.

The accident savings can be expressed in several ways. It can be stated as the expected "number of accidents prevented", as obtained directly from Activity 8. Where feasible, this factor may also be separated by the severity of the accidents (e.g. number of fatal accidents prevented, number of personal injury accidents prevented) or by the number of "equivalent property damage only" accidents.*

A second method of expressing accident savings is the anticipated accident cost savings resulting from the improvement. The number of accidents prevented as obtained from Activity 8 is assigned a cost per accident to develop a total accident cost savings. This results in a dollar value assigned to the expected number of accidents prevented.

This method requires that the "number of accidents prevented" be separated by the severity type and number of persons (or vehicles in PDO accidents only) involved in each severity group. Since available accident costs are typically stated in terms of the fatalities or injuries, the accident savings data must be arranged in this format to be usable. This is performed by defining ratios of the accident data as follows:

Ratios are defined as:

No. of persons killed No. of fatality accidents

No. of persons injured No. of injury accidents

No. of vehicles involved No. of property damage only accidents

This information is identified from the accident summary data for the study period. Using these ratios and multiplying by the expected number of injury, fatality or PDO accidents prevented, the expected number of injured or killed persons or vehicles (for PDO accidents) saved can be defined. Accident costs are applied to these values to determine the accident costs savings.

Several sources of accident costs are currently used. They include:

- Individual States.
- National Safety Council (NSC).
- National Highway Traffic Safety Administration (NHTSA)

^{*}Obtained by use of equivalency factors for each accident severity group (i.e., fatal accident = 12, personal injury accident = 3, property damage accident = 1) and accumulating the groups to an EPDO (equivalent property damage only) accident. <u>Transportation and Traffic Engineering Handbook</u>, ITE, (1976)

Many individual states maintain records on accident costs. They assign a dollar value to accidents that are unique to that particular agency. If a set of cost figures has been adopted by the agency, they should be used in the economic analysis and documented in the economic analysis report.

Accident costs for the other sources are shown in Table 60 [1,2] and apply to nationwide statistics. Differences exist between the costs developed by these two sources. However, they can be attributed to the different factors used to determine the cost in each source. For example, NSC costs include wage losses, medical expenses, insurance, administrative costs, and property damage. NHTSA includes the calculable costs associated with each fatality and injury plus the cost to society (i.e., consumption losses of individuals and society at large caused by losses in production and the inability to produce). It should be noted that the NHTSA costs are given for 1975.

It is desirable in any case to use uniform cost figures in the economic analysis.

The evaluator may use cost figures developed specifically for the agency, NHTSA, NSC, or other cost data. Whichever is selected, the evaluator should use only the most recent cost figures in the economic analysis.

🛭 Example

An example of the use of accident cost savings is shown below. Based on the following average annual accident reductions:

- 1.33 fatal accidents (1.00 fatalities/fatal accidents)
- 4.00 injury accidents (1.50 injuries/injury accidents)
- 9.25 property damage only accidents (2.00 vehicles per accident)

the expected number of units saved are determined to be:

Expected "number of killed persons" saved

1.00 fatal accidents X 1.33 expected fatal accidents saved

= 1.33 "expected fatalities" saved.

Expected "number of injured persons" saved

- = 1.50 injured persons
 - 1.00 injury accidents X 4.00 expected injury accidents saved

= 6.00 "expected injured persons" saved.

Source/Accident Severity	Cost Per Involvement (1)		
NSC(1979)/ Fatal Nonfatal disabling injury Property damage (including minor injuries)	S 160,000 6,200 870		
	Cost Per Involvement(2)		
NHTSA(1975)/ Fatality Critical injury Severe injury - life	\$ 287,175 192,240		
threatening Severe injury - not life	86,955		
threatening Moderate injury Minor injury Average injury	8,085 4,350 2,190 3,185		
Property damage only	520		

Table 60. NSC and NHTSA accident costs.

(1) Cost per fatality, injurv, or per PDO accident(2) Cost per fatality, injury or per vehicle (for PDO accidents)

Expected "number of vehicles" (PDO accidents) saved

= 2.00 vehicles

1.00 PDO accidents X 9.25 expected PDO accidents saved

= 18.50 "expected vehicles" saved.

Using NSC figures (1979), the total accident cost savings would be:

FATALITY: 1.33 "expected fatalities saved" X \$160,00 fatalit		\$212,800.00
INJURY: 6.00 "expected injuries saved" X <u>\$6200</u> injury	₽.	37,200.00
PDO: 18.50 "expected vehicles saved" X \$870 PDO accident	=	16,095.00
TOTAL	=	\$266,095.00

Using NHTSA figures (1975), the total accident cost savings would be:

FATALITY: 1.33 "expected fatalities saved" X <u>\$287,175</u> fatality	5 = \$382,900.00 y
INJURY: 6.00 "expected injuries saved*" X <u>\$3,185</u> injury	= 19,110.00
PDO: 18.50 "expected vehicles saved" X	= 9,620.00
TOTAL	= \$411,630.00

These values are input into the economic analysis models as benefit factors. A noticeable difference exists between the accident cost savings of the two sources, NSC and NHTSA. Either method, however, can be used. An agency should however, be consistent with its use of a source, particularly when comparing countermeasures for the same location.

Initial Implementation Costs

These costs represent the estimated initial cost to implement a countermeasure. They include all costs associated with right-of-way acquisition, construction, site preparation, labor, equipment design, traffic maintenance, and other costs that may be associated with the implementation of the project. The overhead and administrative costs,

*Assuming "average injuries"

however, are usually included as a percentage of labor and material costs.

Individual agencies normally maintain a cost estimate file which lists the various materials or construction units and their associated cost per unit of measurement. These files should represent current data and be updated regularly based on recent costs or construction projects. Overhead and administrative costs may differ slightly each year. However, these costs should be monitored to provide more accurate results. A sample cost estimate form is displayed in the Appendix (page I-25).

Operation and Maintenance Costs

The operation and maintenance (0&M) costs represent the estimated costs to operate and maintain the facility both before and after the implementation of a proposed countermeasure. These costs typically differ due to changes in the highway conditions.

The "before implementation" 08M costs are derived from a review of historical records of costs associated with the location. Typical operation and maintenance cost items include traffic sign upgrading, periodic pavement marking, roadway repairs, power costs of signals, and other siterelated items. These costs are usually summarized on an annual basis and averaged over a period of time to represent the average 08M costs. Where a single large maintenance cost is involved, it may be more favorable to defer this cost over a period of years using interest formulas.

The "after implementation" costs are based on the anticipated 0& costs as expected by the safety engineer. They are based on the agency's experiences in 0&M costs due to changes in the site conditions. The costs are normally given on an annual period.

Service Life Of Improvement

The service life of an improvement represents the time period that the improvement can reasonably be expected to affect accident rates [3]. Both costs and benefits are usually calculated for this time period. The expected service life reflects this time period and not necessarily the physical life of the improvement.

Generally, major construction or geometric improvements have a maximum service life of 20 years. The prediction of service life for specific highway improvements can be made reasonably accurately if the agency maintains service life data and survivor curves for various types of improvements and projects.

It is desirable for each highway agency to maintain files to accumulate service life experiences and to develop service life estimation criteria. The procedure for the development of survivor curves for the service life estimations are available in most engineering economy texts. In the absence of service life data, past experience and engineering judgement should be applied for estimating service lives. The evaluator may also wish to use service life estimates generated by other agencies. Table 61 displays estimates of several commonly used service life estimates for safety improvements.

Several States, including California and Iowa, have developed survivor curves. Existing survivor curves may provide a starting point for an agency to determine expected service life of safety improvements. The service lives of safety improvements such as traffic signs and pavement markings can be estimated from the life expectancy data of the manufacturer and modified by actual field experience. The evaluator is recommended to start such service life data files.

Based on the interest formulas used in the economic analysis of countermeasures, it has been shown that the selected service life can have a profound effect on the economic evaluation of improvement alternatives. On this basis, an accurate account of the expected service life is needed.

Salvage Value Of Improvement

The salvage value of an improvement represents the cost value of an improvement at the end of its defined service life minus the costs involved in removing, repairing, transferring, or selling a device. For instance, part of a traffic signal will have some worth following its effective life. Similarly, the value of replaced (upgraded) traffic signs will contain some value in either the aluminum blank or the sign post.

Agency maintained histories of safety improvements, service life data, and subsequent usage should provide the basis for estimating the salvage value of a project or an improvement. In the absence of organized data files, past experience and literature should be used to estimate the salvage value. Although salvage value is generally considered as a positive cost item, some projects may require an expenditure to remove the residual elements themselves. In these instances, the difference between the cost of removal should be deducted from the value of the scrap or residual elements in estimating the final salvage value. At times, salvage value can be zero or negative.

For most highway safety projects, the salvage values are generally very small, particularly for those with a relatively long service life. They often represents a small difference in the economic analysis whether

Table 61. Sample service life estimates

Code	Description	ervice Life (Years
10	Intersection Projects	
10 11	Channelization, left-turn bay	10
12	Traffic signals	10
12	Combination of 10 and 11	10
19	Sight distance improved	10
	Other intersection, except structures	10
20	Cross Section Projects Pavement Widening, no lanes added	
21	Lanes added without new median	20
22	Kighway divided, new median added	20 20
23	Shoulder widening or improvement	20
24	Combination of 20-23	20
25	Skid treatment - grooving	10
26	Skid treatment - overlay	10
27	Flattening, clearing side slopes	20
29	Other cross section or combinations of 20-27	20
	Structures	
30	hidening bridge or major structure	20
31	Replace bridge or major structure	30
32	New bridge or major structure (except 34 and 51)	30
33	Minor structure	20
34	Pedestrian over- or under-crossing	30
39	Other structure	20
	Alignment Projects	
40	Horizontal alignment changes (except 52)	20
41	Vertical alignment changes	20
42	Combination of 40 and 41	20
49	Other alignment	20
	Railroad Grade Crossing Projects	
50	Flashing lights replacing signs	10
51	Elimination by new or reconstructed grade separation	30
52	Elimination by relocation of highway or railroad	30
\$3	Illumination	10
54	Flashing lights replacing active devices	10
55	Automatic gates replacing signs	10
56	Automatic gates replacing active devices	10
57	Signing, marking	30
58	Crossing surface improvement	10
59	Other RR grade crossing	20
5 A	Any combination of \$0, \$3, 54, 55, 56, 37, 58	10
·	Roadside Appurtenances	
60	Traffic signs	6
61	Breakaway sign or luminaire supports	10
62	Road edge guardrail	10
63	Median barrier	15
64	Narkings, delineators	2
65	Lighting	15
66	Improve drainage structures	20
67	Fencing	10
58	Impact attenuators	10
69	Other roadside	20
6A	Combination of 60-64	10
6C	Combination of 60 and 62	6
6D	Combination of 60 and 64	4.
	Other Safety Improvements	
90	Safety provisions for roadside features and appurtenan	ces 20
99	All projects not otherwise classifiable	20

SAFETY IMPROVEMENT PROJECT CODES, DESCRIPTIONS, AND SERVICE LIVES USED BH EFFECTIVENESS EVALUATION

335

they are used or not. For most highway safety improvements, a zero salvage value is assumed.

Current or Expected Interest Rate

This value represents the expected rate of return of funds over the service life of the countermeasure. Stated in other terms, it is the "opportunity cost of capital" [4] or the assumed rate that could be earned by funds if privately invested.

In selecting an interest rate, several viewpoints have been used, which account for the wide range of rates used throughout the United States. These viewpoints include:

- 1. The interest rates should be zero for safety improvements financed from current taxation rather than borrowing.
- 2. The interest rate should equal the rate for borrowing ponies. If the proposed safety improvement is to be financed by borrowing, the interest should correspond to the cost of borrowing money. If the proposed safety improvement is to be financed from existing funds (current taxation), the interest rate should be similar to that for long-term investment.
- 3. The interest rate should represent the rate of minimum attractive return on invested money. This rate will include the cost of borrowing money and, usually, a safety factor to account for uncertainty in the data used in the economic analysis models.

Current state-of-the-art does not provide a single criterion for the selection of an interest rate except that an agency be consistent in the use of the rate when comparing alternatives and that the rate be documented.

Many agencies adopt interest rates as a matter of policy. However, in some instances the evaluator may be required to assume an interest rate. The interest rate should consider:

- The market.
- Interest rates for government bonds and securities.
- Past practice of the agency.
- Current practice and policy of the agency.

The importance of the interest rate can be shown in the effect of the rate on an improvement. Based on past analyses, it has been shown that low interest rates will generally favor alternatives with large capital investments while high interest rates will tend to favor small capital investment programs. In addition, a low interest rate will give a more significant emphasis on improvement impacts in the more distant future. High interest rates will tend to discount the effect of long-term impacts.

It may be advisable to vary the interest rate to determine the economic effectiveness of the countermeasure. If a countermeasure is found to change from a fiscally effective countermeasure to a marginally effective countermeasure with small changes in interest rates, the evaluator may obtain additional insight as to the true effectiveness of the countermeasure and draw appropriate conclusions in the final analysis of the total countermeasure effectiveness.

These findings should be reviewed prior to selection of an interest rate since the selection of an inappropriate rate could easily result in inappropriate countermeasure costs and benefits.

• Other Factors

Other factors which may be important in the economic analysis include the vehicle delay-related costs, traffic growth rates, and effects of inflation. These factors traditionally produce little effect on the economic analysis findings.

<u>Vehicle delay-related costs</u> represent the expected costs resulting from delay-related impacts. Considerations involved in computing these costs include the number of stops, the length of stops, and the acceleration/deceleration costs associated with each stop. The cost of fuel, wear of tires and brakes, oil, repairs, etc. are higher for stopping and starting than for continuous operation. In addition, the time costs associated with delay represent a negative cost item. It is assumed that this time may be used for more productive purposes.

AASHTO [4] and others [5,6,7] have developed costs based on the additional costs per stop. These costs include the acceleration/decelerationrelated costs. Standing delay, obtained from delay studies, is also included. These costs are usually calculated for a l-year period. As such, daily totals are summed for a 365-day period based on average daily delayrelated factors obtained from the Travel Time and Delay Study Procedure.

<u>Traffic growth rates</u> represent the expected growth rate in traffic volumes. These rates are used in determining the number of accidents saved and the vehicle delay-related costs. Since road user costs are directly proportional [4] to the estimated ADT, any projected increase in ADT will affect the overall road user and accident costs.

Traffic growth rates may be obtained based on a historical trend of volume data where the safety improvement is not expected to attract a significant change in traffic volumes. Where a significant change may be expected, the use of traffic projection models may be necessary. Many of

these models are discussed in transportation planning textbooks and research papers [4,811].

The <u>effects of inflation</u> on a safety project may be included to reflect price changes over the life of the project. Although the effects of inflation are difficult to predict, an approximate figure of 2 percent per year [4], compounded, has been used throughout the United States for a long-term rate. Since many safety projects may not be considered "longterm", the use of an inflation rate may not be necessary. In addition, the effect of inflation may be accounted for in the selection of an appropriate interest rate.

Use of Factors

The above information items can be used as input to economic analysis models to assess the effectiveness of proposed safety countermeasures. Their inclusion will be dependent on the means selected to perform the economic analysis. Only those factors need to be identified which will be used in the specific economic analysis procedure.

The findings produced by these methods for several countermeasures will consist of a range of values identifying the economic desirability of the countermeasures. The values are used to assess the economic effectiveness of the countermeasures and to rank the countermeasures based on the economic analysis.

To provide a proper comparison for the countermeasures, a single procedure should be used to provide a common and consistent value. The findings obtained from this activity will be used as input to Activity 10 to select a safety project.

The economic analysis will prove to be a particularly valuable tool since it determines not only the effectiveness of a project based on safety objectives but also assesses the economic effectiveness of the countermeasures. This aspect is important since it is possible to have an extremely effective countermeasure in terms of reducing accidents but which is cost-prohibitive.

Inputs and Outputs of Activity

Inputs

- List of feasible countermeasures.
- Accident data.
- Accident reduction factors.

- Cost information for project implementation and operation and maintenance of project.
- Traffic volume data.
- Traffic growth rates.
- Service life of improvements (OPTIONAL).
- Salvage value of improvements (OPTIONAL).
- Current expected interest rate (OPTIONAL).
- Vehicle delay-related costs (OPTIONAL).
- Effects of inflation (OPTIONAL).

Outputs

- Economic feasibility of each countermeasure.
- Ranked list of feasible countermeasures based on economic analysis results.

Procedure Descriptions

Several procedures are available to determine the economic feasibility of countermeasures. They include:

- Cost-Effectiveness Method (Procedure 1).
- Benefit-to-Cost Ratio Method (Procedure 2).
- Rate-of-Return Method (Procedure 3).
- Time-of-Return Method (Procedure 4).
- Net Annual Benefit Method (Procedure 5).

Major considerations of these procedures are given in Table 62. Following is a description of these procedures.

Procedure 1 - Cost-Effectiveness Method

Purpose

The purpose of this procedure is to determine the cost to an agency to prevent a single accident (or "property damage", "injury", "fatal" accident). It is measured in terms of the dollar cost to prevent a single accident. Table 62. Primary considerations for economic analysis procedures.

.

Consideration Procedure	Function	Data Input	Data Obta(ped	Data Output	
.Cost-Effoctiveness Method	Determinen cont- effectivenen of alternatives an a function of rest (deltars) per accident reduced	Alternative pro- jecta Number of acci- dents reduced or saved . Project costs . Garvice life . Salvace value . Interest rate	.Equivalent uniform annual costs .Present worth of costs .Cost. per accident reduced	.Post. oer acci- dent.roducad (or savnd) for each alternativ	
,Benefit-To-Patio Kethod		Alternative pro- jecta Aumbor of acci- dents eaved Project Conts Service life Salvage value Anterest rate	.Pollar worth of accidents saved .Postvalent uniform angual cost and benefits .Present worth of costs and benefits .Ratio of benefit- to-cost	.Penefit-to-ceet ratio for each alternative	
.Rate-Of-Return Method	"Determines cont- effectiveness of alternatives as a function of "yteld" returned by each alternative (by trial-and-egrep approach)	Alternative pre- jecta -Number of acci- dents maved -Project conta -Service life -Selvage vAlue	,Dollar values of occidents saved Annual Scoefits Ratewof-return	"Effective rate- of-return for each alternativ	
.Time=Of=Roturn Method	Determines cont- offectiveness of alternatives as a function of time in which benefits derived will equal the costs incurred	Alternative pro- jecta Jumber of acci- deats reduced or aaved .Traffic volume data .Traffic growth rates .Project conta .Interest rate	.Dollar worth of accidents naved or reduced .Total benefits .Annual benefits .Annual couts .Time-of-return	.Time-of-return for each alter- native	
.Net Renefit Kethod	.Determines cest effectiveness of alternatives as a function of the net annual benefit derived by the improvement	Alternative pro- jecta Barbar of meet- denta savet Salvane value Sarten life Jaterest rate	.bollar value of occidents reduced or saved .fotal benefits .foutwatent miferm annual benefits and costs .Not annual benefit	Net annual henefit of alternatives	

Υ.

Application

This procedure computes the cost to the agency of preventing a single accident. All costs are valued on a dollar basis. However, expected benefits are not priced but are used to determine the expected cost of reducing the type or total number of accidents. This can only be performed for one type of accident at a time. For example, the outcome of a cost-effectiveness analysis may indicate that the cost for each expected accident to be reduced is \$750. In the same analysis, it can also be concluded that the cost for each expected injury accident to be reduced is \$2500.

If the agency conducting the study has neither adopted a set of accident cost figures nor is willing to select established figures, it is recommended that the cost-effectiveness technique be selected. Also, if the measure of effectiveness (MOE) of major interest is related to a specific accident type (as opposed to severity), this method may provide a good measure of economic effectiveness.

Procedure Steps

The following steps are performed [5] in the cost-effectiveness method:

- Determine the initial estimated cost of implementation of the safety improvement being studied. Typically, such cost data are available from right-of-way (ROW), design and construction files and reports.
- 2. Determine the net estimated annual operating and maintenance costs. The net annual operating and maintenance cost should reflect the annual difference between the costs incurred before countermeasure implementation and those expected to occur following the implementation of the countermeasure. Therefore, if the countermeasure is expected to result in a low combined annual operating and maintenance cost following the implementation, a negative cost could result. On the other hand, if the after operating and maintenance costs will be greater, the difference is positive.
- 3. Select the units of effectiveness to be used in the analysis. The desired units of effectiveness may be:
 - a. Expected number of total accidents prevented.
 - b. Expected number of accidents by type prevented.
 - c. Expected number of fatalities or fatal accidents prevented.
 - d. Expected number of personal injuries or personal injury accidents prevented.
 - e. Expected number of EPDO accidents prevented.

- 4. Determine the anticipated annual safety benefits derived from the countermeasure. Safety benefits in this analysis primarily refer to the reduction in the accident frequency associated with each severity MOE. This is the difference between the "before" frequency and the expected 'after' frequency for each severity MOE. These values were determined earlier in Activity 9.
- 5. Estimate the anticipated service life of the countermeasure.
- 6. Estimate the projected salvage value of the countermeasure.
- 7. Determine the interest rate.
- 8. Using the information described in items 1, 2, 5, 6, and 7 above, the equivalent uniform annual costs (EUAC) or present worth of costs (PWOC) should be determined. The <u>EUAC</u> is determined from the following equation:

$$EUAC = I (CR^{\dagger}) + K - T (SF^{\dagger})$$

Where:

EUAC = equivalent uniform annual cost (\$).

I = estimated initial cost of the project (\$).

i = assumed interest rate (%).

- n = estimated service life of the countermeasure
 (years).
- T = net estimated salvage value (\$).
- K = net estimated uniform annual cost of operating maintaining the improvement (\$/year).
- CR¹ = capital recovery factor for n years at interest n rate, i.
- SFi = sinking fund factor for n years at interest n rate, i.

The capital recovery factor may be found in the compound interest tables provided in Appendix G or may be calculated as follows:

CRi = (i(1+i)n)/(i+1)n - 1

The sinking fund factor may be found in the compound interest tables provided in Appendix G or it may be calculated as follows:

$$SFi = CRi - i$$

n n

Using the information described in items 1,2,5,6, and 7 above, the present worth of costs (PWOC) may be determined from the following equation:

```
PWOC = I + K (SPWi) - T (PWi)
n n
```

Where:

- PWOC = present worth of costs (\$).
 - I = estimated initial cost of the project (\$).
 - i = assumed interest rate (%).
 - n = estimated service life of the project or improvement
 (years).
 - T = estimated net salvage value (\$).
 - K = net estimated uniform annual cost of operating and maintaining the improvement or project (\$/year).
- SPWi = present worth factor of a uniform series payment n for n years at interest rate i.
- 9. Calculate the expected average annual benefit, B, in the desired units of effectiveness.
- 10. Calculate the C/E value using one of the following equations:

 $C/E = EUAC/\overline{B}$

or

$$C/E = PWOC (CRi)/B$$

Where:

CRi = capital recovery factor for n years at interestn rate, i.

(This changes the PWOC to an annualized cost for compatibility with B.)

This procedure is not applicable for multiple improvements with unequal service lives. A C/E worksheet is provided in the Appendix (page I-26).

Advantages:

- Does not require assigning a dollar value to human life or injury.
- Is able to consider the optimization of benefits on a systemwide basis.

Disadvantages:

- 1. May be difficult to relate when a project is justified.
- 2. Difficult to evaluate the effects of multiple improvements.

This procedure is generally applicable to agencies which do not wish to directly assign dollar values to human injuries and fatalities. It can be applied using either manual or computer techniques.

● Example

A highway safety countermeasure to provide increased lighting levels at an urban intersection with a high level of night accident occurrence is proposed. The following summary shows estimated initial implementation costs, net estimated operating and maintenance costs, and anticipated annual benefits. The expected annual benefits were obtained by subtracting the expected 3-yr accident frequency for the after period with the countermeasures from the expected 3-yr after accident frequency without the countermeasure and annualizing the difference. They are expressed as annual savings in injury accidents. The service life of the countermeasure is estimated at 15 yrs with a salvage value of 10 percent of the initial cost.

Initial	Net Operating and Maintenance Costs			Benefits (Injury Accidents Prevented)		
Construction Costs	1974	1975	1976	1974	1975	1976
\$40,000	\$1,000	\$1,000	\$1,000	8	7	6

An interest rate of 10 percent is used in the analysis. The costeffectiveness calculations are shown in Figure 58.

A cost-effectiveness (C/E) value of 875/injury accident saved was derived. The results of this analysis may be interpreted by comparing this C/E value with those from other competing highway safety countermeasures.

Procedure 2 - Benefit To-Cost Ratio Method

Purpose

The purpose of this procedure is to determine the ratio of expected benefits accrued to the costs incurred for a countermeasure. It is measured in terms of a numerical value (ratio) comparing the expected benefits to be achieved at an estimated cost.

Application

The benefit/cost ratio is the ratio of the expected benefits accrued from an accident and/or severity reduction resulting from a countermeasure to the costs needed to implement the countermeasure. It requires that a dollar value be placed on all estimated costs and expected benefits related to the countermeasure. Any countermeasure that has a benefit/cost ratio greater than 1.0 is considered economically successful.

The selection of a dollar value for the expected benefits must be made by the evaluator in order to use the technique. These values should be documented in the analysis. If the agency conducting the analysis has adopted a set of cost figures for highway fatalities, injuries, and property damage accidents, the benefit/cost analysis technique is recommended. Also, if the MOE of major interest is related to accident severity, the benefit/cost method may provide a good measure of economic effectiveness.

The benefit/cost method may be performed for either an individual countermeasure or one consisting of several improvements.

C/E ANALYSIS WORKSHEET

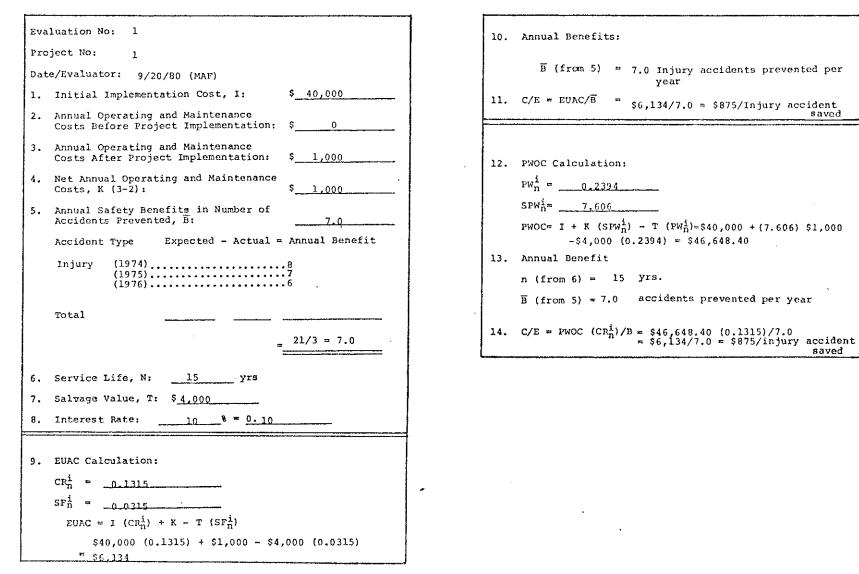


Figure 58. Cost-effectiveness method - example.

year

saved

saved

ω A, σ

Procedure Steps

The benefit/cost method requires the following steps to be performed. [5]

- 1. Determine the estimated initial cost of design, construction, right-of-way, and other costs associated with countermeasure implementation.
- 2. Determine the annual estimated operating and maintenance cost for the countermeasure.
- 3. Determine the annual safety benefits derived from the countermeasure. Safety benefits in this analysis refer to the anticipated reduction in the accident frequency, using AR factors, associated with each severity MOE. This is the difference between the expected adjusted frequency and the after frequency for each severity MOE.

Many economic analyses consider the difference in road user costs as a highway safety benefit. Since the basic purpose of this analysis is to evaluate proposed highway safety countermeasures, the road user cost may be used.

- 4. Assign a dollar value to each expected safety benefit unit.
- 5. Estimate the predicted service life.
- 6. Estimate the projected net salvage value.
- 7. Assume an interest rate.
- 8. Calculate the B/C ratio using equivalent uniform annual (estimated) costs and (expected) benefits. The use of these economic parameters provides the evaluator with the first of two alternatives for obtaining a B/C ratio for the analysis of highway safety countermeasures. This formulation of the B/C ratio can be used when the expected service lives of individual countermeasures within a single countermeasure are equal or unequal.

The EUAC is described in Step 8 of Procedure 1.

Equivalent uniform annual benefits (EUAB) may be determined using the information described in items 3,4,5, and 7 above and the following equation:

 $EUAB = \overline{B}$

Where:

EUAB = expected equivalent uniform annual benefit (\$).

 \overline{B} = anticipated uniform annual benefit derived from the countermeasure throughout its service life. This estimate is based on the expected annualized savings in various severity categories, derived since implementation, times the appropriate accident cost values (\$/year).

The B/C ratio for a countermeasure can be calculated using:

B/C = EUAB/EUAC

An alternate means to calculate the B/C ratio uses the present worth of costs and benefits. The use of these parameters provides an alternative for obtaining the B/C ratio for analysis of highway safety countermeasures. However, this approach of calculating B/C cannot be used for projects having multiple improvements with unequal service lives.

The PWOC is calculated as described in Step 8 of Procedure 1.

The present worth of benefits (PWOB) may be determined using the information described in items 2,3,5 and 7 above and the following equation:

$$PWOB = \overline{B} (SPWi)$$

Where:

PWOB = expected present worth of benefits (\$).

- B = anticipated uniform annual benefit derived from the counterméasure or improvement throughout its anticipated service life (\$/year).
- n = predicted service life of the countermeasure (years).
- SPWi = present worth factor for an uniform series payment for n years at interest rate i.

The B/C ratio for a countermeasure can be calculated in this approach using:

B/C = PWOB/PWOC.

The B/C worksheet is included in the Appendix (page I-27).

This method can also be applied on an incremental basis to determine the expected advantages resulting from adding improvements to a countermeasure. If the added improvement results in an increase of the B/C ratio, it can be concluded that the added improvement is favorable.

Advantages:

- 1. Provides a straight-forward, traditional method for performing economic evaluations.
- 2. Useful for situations where accident severity is the most important measure of effectiveness.
- 3. Can consider the optimization of expected benefits on a systemwide basis.

Disadvantages:

- 1. Results are often affected considerably by the accident cost values (NSC, NHTSA, or States' costs) selected, particularly when fatal accidents are being considered.
- 2. Relies on the placement of a dollar value on a human life.

This procedure is favorable for all highway systems, in particular agencies which have no objection to the placement of a dollar value on human injuries or fatalities. The benefit/cost method may be applied using either manual or computer techniques.

❷ Example

In an effort to reduce the number of rear-end collisions due to skidding of vehicles during wet-weather, a highway agency is planning to undertake a safety project of skid-proofing a 1/2-mile roadway section by constructing a texturized pavement section at an estimated cost of \$200,000. The estimated service life of the project is estimated at 10 yrs. with a zero salvage value. The average estimated annual maintenance cost of the grooved pavement is essentially zero. The highway department estimates the dollar benefits of the countermeasure in terms of injuries prevented as \$40,000, \$45,000 and \$50,000 for the 3 years following the implementation of the countermeasure.

An interest rate of 10 percent is assumed. The B/C calculations are shown in Figure 59.

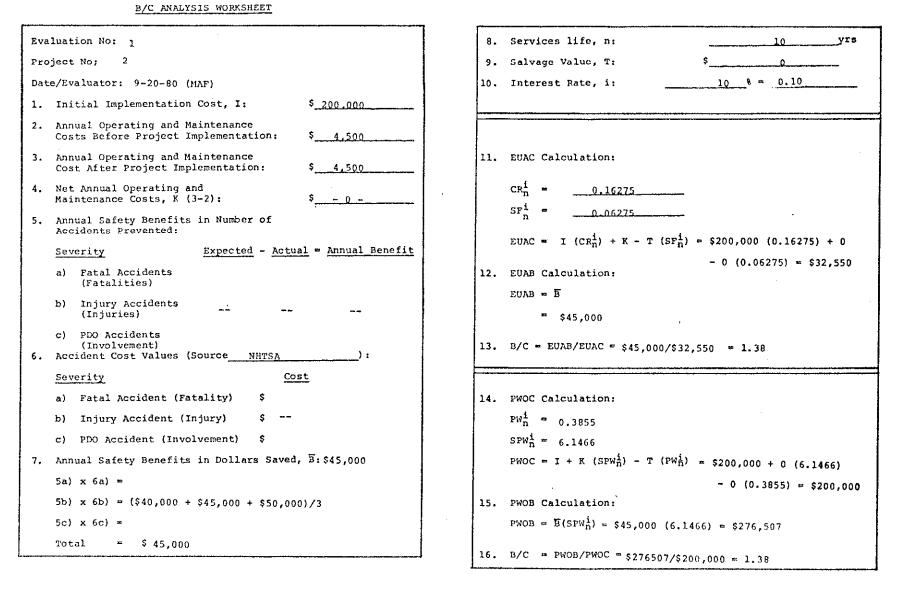


Figure 59. Benefit-to-cost ratio method - example.

ω 50 When the B/C ratio is greater than unity, the benefits derived from the project outweigh the incurred costs. In this particular case, the B/C ratio is 1.38. It presents a desirable alternative.

The B/C ratio should be compared with competing highway safety countermeasures to determine the most favorable alternative.

Procedure 3 - Rate Of Return Method

Purpose

The purpose of this procedure is to determine the rate of return of benefits expected to be obtained by an improvement. It is a measure of the expected "yield" or effective return of a safety countermeasure.

Application

This technique computes an estimated interest rate for a safety countermeasure at which the estimated net present annual worth of the countermeasure minus the estimated improvement cost is equal to zero. In this case the net present annual worth of the countermeasure is the expected dollar value of safety benefits in terms of accidents prevented. The estimated improvement costs include those expected costs required for implementation and maintenance of the countermeasure.

This method is based on two assumptions [4]:

- The relative merit of an improvement is measured by the interest rate that sets its expected benefits equal to zero.
- The estimated costs and expected benefits remain constant each year.

Based on these assumptions, an estimated interest rate is determined. It is considered as the "yield" of a possible investment. When a number of countermeasures are considered for implementation, the project with the highest "yield" is considered to be the most desirable, subject to its meeting a minimum attractive rate of return.

Procedure Steps

Steps for using the rate of return method are:

- 1. Determine the estimated initial implementation costs.
- 2. Determine the estimated annual operating and maintenance cost for the countermeasure.
- 3. Estimate the expected service life.

- 4. Estimate the expected net salvage value.
- 5. Estimate the expected benefits for each improvement as in Steps 3 and 4 of the Benefit-To-Cost Ratio Method
- 6. Calculate the estimated internal rate-of-return (ROR), on a trial-and-error basis that sets either of the following formulas equal to zero:

$$I = (B-K) SPW_{i}^{i} - (T) PW_{n}^{i} \dots (A) or$$

$$\frac{B-K}{I} = CR_{n}^{i} \dots (B)$$

Where:

i = estimated rate of return (ROR).

I = estimated initial countermeasure implementation costs.

B = expected annual benefits.

K = estimated annual 0&M costs.

T = estimated net salvage.

- $\frac{PWi}{n}$ = present worth factor for n year at interest rate i.
 - n = predicted service life of improvement.

Equation B is used for safety improvements with no terminal value or a perpetual service life. This formula can also be used in the iterative process to identify a starting rate of return in the trial-and-error process.

The use of this technique in analyzing highway safety countermeasures has been infrequent primarily because of the "trial-and-error" type of approach needed to calculate the estimated "yield" if manual techniques are used. The technique, however, lends itself to convenient solution when a computerized procedure is used by initiating an automatic search process as a part of the software. A mathematical algorithm may be formulated with the objective of "converging" to the required solution when specific "bounds" of the solution are defined in order to minimize the searching effort. The technique is based upon sound economic theory and derives its primary merit from the fact that a pre-specified interest rate is not to be assumed as part of the analysis. Instead of working with figures that are based upon an assumed interest rate, the interest rate itself is the "unknown" quantity.

Advantages:

- 1. Does not rely on an assumed interest rate.
- 2. Able to consider the optimization of benefits on a systemwide basis.

Disadvantages:

- Must be performed on an iterative, i.e.; "trial-and-error" basis. This can be very time consuming, particularly for manual methods.
- 2. Results may be difficult to interpret.

This procedure is generally applicable for agencies with no objection to assigning dollar values to human lives and whose primary objective is to insure selection of the nost appropriate countermeasure on a locationby-location basis.

Section Example

For the previous problem of skidding accidents, the following anticipated values are used:

I = \$200,000 (estimated initial cost). K = \$0 (estimated 0&M costs). T = \$0 (estimated salvage value). n = 10 years (estimated service life). B = (\$40,000 + \$45,000 + \$50,000)/3 = \$45,000 (expected net benefit).

The estimated rate of return, "i," is found from the following formula by a trial-and-error method.

$$I = (B-K) SPWi - (T) PWi n n$$

$$\$200,000 = (\$45,000-\$0) SPWi - (\$0) PWi 10 10$$

$$\$200,000 = (\$45,000) SPWi 10$$

353

 $SPW_{10}^{i} = \frac{\$200,000}{\$45,000} = 4.44$

A review of interest tables for the series present worth factor of 4.44 with a 10-yr estimated service life shows:

 $SPW_{10}^{15} = 5.019$ $SPW_{20}^{20} = 4.192$

Linear interpolation results in an estimated rate-of-return of 16.5 percent. This rate-of-return may represent a favorable return. The ROR value is compared with competing highway safety countermeasures to select a project.

Procedure 4 - Time-Of-Return Method

Purpose

The purpose of this procedure is to determine the estimated time period in which the expected benefits anticipated by a countermeasure begin to exceed the estimated overall costs. A low time of return may signify a favorable countermeasure.

Application

In the time-of-return (TOR) method, expected accident reductions and resulting benefits are forecast as in the other economic methods. An expected TOR value is computed by dividing the estimated cost of the countermeasure by the estimated annual benefit. Interest rates and salvage values are not considered in the analysis, and service lives of all projects are not taken into account. Countermeasures with the lowest TOR values are considered to be the best.

Procedure Steps

The following steps should be carried out in this procedure:

- Determine the accident types to be affected by the countermeasure.
- Estimate the reduction in each accident type, as in Activity 8. This estimate should be performed for a defined period of time; e.g., 2 years. This period should not be set such that

improvements will not begin to require replacement. As such, a 1- or 2-yr period is normally selected.

- 3. Estimate the expected traffic growth rates for the defined period.
- 4. Determine the estimated total costs (initial Operations and Maintenance costs) of the countermeasure for the defined period.
- 5. Determine the estimated total benefits (dollars) derived by the countermeasure based on the number of years of data analyzed.
- 6. Compute the expected annual benefit by dividing the expected benefits (dollars) by the defined period.
- 7. Compute the estimated time-of-return by dividing the expected annual benefits by the estimated annual costs.

A sample worksheet for the time-of-return method is included in the Appendix (page I-28).

Advantages:

- 1. Results directly in the estimated amount of time required for a given countermeasure to pay for itself.
- 2. Can consider the optimization of expected benefits on a systemwide basis.

Disadvantages:

- 1. A time measure is often misleading or difficult to interpret. For example, a time of return of 5 years may be considered very good for a highway reconstruction countermeasure which has a 20-year service life but not desirable for a pavement striping countermeasure with a service life of less than 2 years.
- 2. Does not normally account for estimated interest rates, estimated service lives of all projects, or estimated salvage values which may affect an economic analysis.
- 3. May not consider the optimization of expected benefits for each individual location.

This procedure is generally applicable for agencies with no objection to the placement of dollar values on human lives or agencies who wish to compare countermeasures based on the time in which they will pay for themselves in terms of expected accident savings.

Example

The accident occurrence at an urban signalized intersection is expected to have the following accident reduction characteristics as based on a states individual statistics.

	Accident Types							
Period	Driveway Related		Rear End			Opposing Left-Turn		
1977	14 acc.	7PD 7INJ	16	acc.	10PD 6INJ	12 acc.	5PD 7 I NJ	
1978	10 acc.	9PD 1 I NJ	18	acc.	13PD 51NJ	14 acc.	6PD 8INJ	
TOTAL	24 acc.	16PD 8INJ	34	acc.	23PD 11INJ	26 acc.	11PD 15INJ	

Estimated Accident Reduction By

Acciden Driveway-Related 50% Red.	Rear-End 10% Red.	Opposing Left-Turn 25% Red.			
12 acc. 8PD	3 acc. 2PD	7 acc. 3PD			
4INJ	1INJ	41NJ			
(6PI)	(2PI)	(6PI)			

The estimated initial implementation costs are:

Upgrade Signal Heads	\$ 3,860.00
Pavement Markings	\$ 255.00
Driveway Signing	\$ 1,600.00
Driveway Reconstruction	\$15,000.00

ADT volumes before and after (estimated) the improvements are 66,000 and 72,600, respectively.

The time-of-return (TOR) calculations are shown in Figure 60.

The time-of-return method yields an expected pay-off period of 0.38 years for the proposed countermeasure. This value is very good for any countermeasure. A comparison of this countermeasure to other competing countermeasures should be made to select a single project.

Figure 60. Time of return method - example.

357

Procedure 5 - Net-Benefit Method

Purpose

The purpose of this procedure is to determine the expected net benefits to be derived by a countermeasure. It is obtained by subtracting the estimated annual costs from the expected annual benefits.

Application

This procedure is based on the premise that the relative merit of a countermeasure is measured by its expected net annual benefit. The expected net annual benefit of a countermeasure is defined as [4].

Net Annual Benefit = (EUAB)-(EUAC)

where:

EUAB = Equivalent Uniform Annual Benefit EUAC = Equivalent Uniform Annual Cost

A positive value for the expected Net Annual Benefit indicates a feasible countermeasure. The countermeasure with the largest positive expected Net Annual Benefit is considered to be the best alternative.

Procedure Steps

The following steps should be used to compute the expected Net Annual Benefit of a countermeasure:

- Determine the estimated initial implementation costs, estimated annual Operation & Maintenance costs, predicted net salvage value, and estimated service life of the countermeasure.
- 2. Estimate the expected benefits (in dollars) for the countermeasure.
- 3. Select an estimated interest rate.
- Compute the expected Equivalent Uniform Annual Benefit, EUAB, as in Step 8 of the Benefit-to-Cost Ratio Method.
- 5. Compute the estimated Equivalent Uniform Annual Cost, EUAC, as in Step 8 of the Benefit-to-Cost Ratio Method.
- 6. Calculate the expected Net Annual Benefit of the countermeasure by subtracting the estimated EUAC from the expected EUAB.

This method is used to select countermeasures that will insure maximum total benefits at each location. As an example, suppose location A is being considered for improvement. The alternative improvements with the corresponding B/C ratio and expected net benefit values are given in the following table:

Comparison of Net Benefit to B/C Ratio

	<u>Alternative</u>	B/C	<u>Net Benefit</u>
2. 3.	Sign and Stripe Pavement Overlay Overlay, Sign and Stripe Reconstruction	12.0 7.0 5.0 2.0	10,000 20,000 25,000 200,000

Using the Benefit/Cost Ratio methods, Alternative 1, would be selected, while the Net Annual Benefit method would result in the selection of Alternative 4. The benefit-to-cost ratio will allow for the selection of several low-cost alternative improvements which may enhance project selection on a systemwide basis. However, these improvements may not offer the optimum benefits for each individual location. On the other hand, the net benefit method results in the selection of countermeasures that generally offer the greatest safety benefits at each location. However, these alternatives are often high-cost improvements which may not be optimal on a systemwide basis. An agency should, therefore, be aware of both the expected net benefits and also the benefit-to-cost ratio (or cost-effectiveness, rate-of-return, etc.) for each countermeasure under consideration.

Advantages:

- 1. Relative ease of calculation.
- 2. Applicable when the selection of one alternative precludes the selection of another alternative at the same time.
- 3. Considers the optimization of benefits for each individual location.

Disadvantages:

- 1. Requires the placement of a dollar value on a human life.
- Does not consider the optimization of benefits on a systemwide basis.

This procedure is generally applicable for agencies with no objection to assigning dollar values to human lives and agencies whose primary objective is to insure selection of the most appropriate countermeasures on a location by location basis.

• Example

Using the sample problem from the cost-effectiveness procedure, the following estimated values were obtained from Figure 58.

EUAC = \$32,550 EUAB = \$45,000

The expected Net Annual Benefit = (EUAB - (EUAC) = \$45,000 - \$32,550 = \$12,450

This value may represent a favorable benefit. It requires comparison to other competing countermeasures to determine its selection for this location.

Purpose

The purpose of this activity is to select a safety countermeasure for a hazardous location based on an economic analysis and other considerations.

Overview

The selection of a safety project for a site is the primary output of Process 3 ("Conduct Engineering Studies") of the Planning Component of the HSIP. Based on a comprehensive study of the hazardous location and the detailed review of the feasible countermeasures, a single safety project is selected.

In order to select and implement the most favorable project to enhance safety at a location, it is necessary that all important factors be considered. These factors will include both economic and non-economic considerations. A list of factors which may need to be considered include:

- Economic analysis results.
- Effect on safety.
- Effect on highway capacity.
- Effect on air and noise pollution.
- Effect on area surroundings.
- Energy conservation.
- Possible implementation period.
- Citizen opposition.
- Available funding sources.
- Budget limitations.

The factors used in the selection process are chosen based on their relevance to the study area. Not all factors may be important in the selection of alternatives.

Description of Factors

Economic Analysis

Primary to the selection of a safety project are the <u>economic</u> analysis findings determined as an output of Activity 9. This analysis will provide a measure of the economic attractiveness of an investment for a countermeasure. It basically determines whether a feasible countermeasure is expected to provide significant benefits to warrant its implementation. In some cases, the selection of a countermeasure is based solely on the economic analysis results. Other factors, such as those given below, however, should be included in the selection process.

Effect on Safety

In many cases, the effect a countermeasure may have on the overall safety at a location is taken into account in the economic analysis. However, other considerations are included in the economic analysis which may reduce the impact of the safety considerations (the Net Benefit Method may be an exception). Therefore, the overall impact of the countermeasures on the anticipated safety improvements may be considered.

Effect on Highway Capacity

In many cases, a safety improvement at a location will result in a change in the available capacity of a facility. For instance, the addition of an exclusive left-turn lane will increase the available capacity while implementing a left-turn phase at a signalized intersection may decrease the total intersection capacity. These impacts may be critical in future years. Any possible impacts should be noted and documented.

Effect on Air and Noise Pollution

Many agencies have developed or are currently developing general estimates for the anticipated impacts of air and/or noise pollution related to a roadway improvement. Where these sources are unavailable, NCHRP 133 [1] can be used to determine the anticipated effect of the improvements on air and/or noise pollution in the area. The possible impacts should be recorded and documented.

Effect on Area Surroundings

In some cases, the possible impact on an area following a safety improvement may result in increased land values and increased employment opportunities. An example may include the construction of a two-way exclusive left-turn lane along a strip commercial area. By making the area more accessible, it may become more attractive, thereby increasing its value to its owners. Where they occur, these impacts should be considered.

Energy Conservation

Where countermeasures are such that vehicle delay is reduced, an improvement to energy conservation efforts results. Energy considerations being a major concern as they are today, energy conservation efforts may be a factor in the selection of a countermeasure.

Possible Implementation Period

The implementation period is the time period from the initial approval for construction or implementation of a countermeasure to the completion of the project in the manner in which it was designed. It may represent a key factor in the selection of a countermeasure. For instance, a high number of recurring accidents at a location may require that immediate attention be given to the location. If a long implementation period is required, an alternative improvement with a shorter implementation period (with reasonably similar benefits and cost-effectiveness) may be selected, or interim measures (short-range projects) may need to be implemented. These effects may need to be documented and used as a factor in the selection process.

Citizen Involvement

Citizen opposition represents an important factor in the selection of countermeasures. Since the agency recommending an improvement is a representative of the public, input received from the public should be reviewed with interest. Although it is not always feasible or necessary to plan safety countermeasures based on public opinion or sentiment, the views received may provide valuable input in the selection process. They may also serve as criteria in the planning or implementation of similar, future safety projects.

Available Funding Sources

Based on the recent Highway Safety Act of 1966, funding is available for many safety projects. The Federal share of costs typically ranges from 75 to 100 percent. In addition, Federal Aid-Urban and other funds can be used to implement a safety project. Applicability and availability of these funds should be checked. A list and description of various funding sources is included in Appendix H.

The importance of these funds can be envisioned based on consideration of the cost of certain countermeasures. Limited local budget resources might restrict certain safety improvements. This assistance, primarily in the Highway Safety Act funds, has resulted in significant improvements in safety practices throughout the United States [2].

Budget Limitations

Limited local budgets will restrict the selection of certain countermeasures. The extent that a countermeasure will detract from the budget and the implementation of other programs in its place should be noted.

Selection Methods

Two methods are primarily used. The first method reviews each selected factor subjectively and determines the impact of each countermeasure to the selected factors. For instance, it may be determined that each countermeasure has little or no effect on roadway capacity. However, another alternative may be anticipated to create significant public opposition. A third alternative may have prohibitive costs. These impacts and the countermeasures are judged against one another with the individual evaluators selecting the most desirable countermeasure. In this approach, the economic analysis findings are usually a prime consideration in the countermeasure selection.

A second method provides a quantitative means of selecting alternatives. The form is:

$$RI = \sum_{i}^{j} W_{i} L_{i}$$

where RI = rating index.

W = weighted value for factors "i".

L = level of impact of factor "i".

 $i = 1, 2, 3, \dots j;$ factors.

The rating index (RI) of each countermeasure evaluates the countermeasures based on a weighted rating of the selected factors as they impact the countermeasure. A higher RI value will result in a more desirable countermeasure. This value should not, however, be used to select the implementation of projects on an areawide basis.

In assigning weights to the factors, the economic analysis factor typically receives the largest weight. Other weights are assigned accordingly based on an agency's objectives in the study of the site. The sum total of weights should equal 100 percent.

The impact level refers to the impact of a countermeasure on the selected factors. The impacts are reviewed against a scale to determine its level of impact. Various schemes have been used to rate the level of application.

A suggested scale may be:

- 0 undesirable or infeasible.
- 1 major negative impact (not desirable).
- 2 moderate negative impact (less desirable).
- 3 minor negative impact (desirable).
- 4 very little negative impact (very desirable).
- 5 no negative impact (highly desirable).

In selecting a scale, the key criteria is that an agency be consistent in its use of the scale, particularly when assessing countermeasures for the same location.

It should be noted that both countermeasure selection approaches can be performed by a single individual or a study team. The team approach may be favorable since it can obtain viewpoints from varying disciplines. However, in the team approach, all team members should be fully aware of the study objectives and should be oriented to the team solution of the situation.

• Other Considerations

When a countermeasure is being planned for input onto an implementation schedule, several factors need to be considered.

- 1. Although the economic analysis and other input data will select a favorable countermeasure for a location, systemwide planning by an agency may result in the countermeasure being implemented several years in the future. In this case, interim measures (short-range improvements) may need to be implemented to provide immediate relief for some of the safety problems. These interim measures should be included in the overall programming schedule since they typically require additional funds above the regular maintenance and operations funds.
- 2. Where federal funding of a project is anticipated or planned, interim measures may be planned for the period until funds are made available. A lapse of several years may occur between initial application for funding and final approval. During this period, interim improvements to relieve immediate safety concerns may be necessary.
- 3. For a project planned for implementation "x" years in the future, continued monitoring of the location should be made to assure that the planned improvements will be applicable at the time of implementation. Changing conditions may have altered the problem or an interim measure may have been implemented and resolved the safety problem. In both cases, the planned improvement will not be necessary as in its original form.

Consideration of these factors can result in improved safety during the interim period prior to project implementation. The result will be more favorable safety conditions at the location.

Example

An example of the index method is shown for a signalized intersection. Three countermeasures are being studied for consideration in selecting a single safety project. The selected and assumed weights are:

- Economic Analysis Findings 40%
- Effects on Capacity 10%
- Effects on Air and Noise Pollution 10%
- Available Funding Sources 20%
- Budget Limitations 20%

(RI's) are shown in Table 63.

Countermeasure	Α			В			c		
Input Item	(1)WT.	(2) LEVEL	(1)x(2)	(1)WT.	(2) LEVEL	$(1) \times (2)$	(1)WT.	(2) LEVEL	(1)x(2)
.Economic Analysis Findings	0.40	4	1.60	0.40	5	2.00	0.40	2	080
.Effects On Capacity	0.10	2	0.20	0.10	4	0.40	0.10	2 .	0,20
.Effects On Air And Noise Pollution	0.10	1	0.10	0.10	4	0.40	0.10	3	0.30
.Available Funding Sources	0.20	3	0.60	0.20	3	0.60	0.20	5	1,00
.Budget Limitations	0.20	3	0.60	0.20	4	0.80	0.20	1	0,20
TOTAL	1.00	—	3.10	1.00		4.20	1.00		2.50

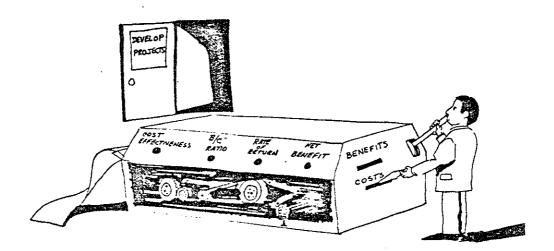
Table 63. Rating indices of countermeasures.

Based on these findings, Alternative "B", with an RI value of 4.20, would be selected for implementation.

Findings

The findings of this activity will result in the selection of a safety project for the hazardous location. It should meet the project objectives developed at the outset of the safety study and be economically

feasible. The selected project will serve as input to the programming of projects for implementation.


Inputs And Outputs Of Activity

Inputs

- Economic analysis of alternatives.
- Other input factors.

Outputs

- Selected project for a location.
 Interim measures.

APPENDIX A. REFERENCES

Highway Safety Standards and Guidelines

- 1. "Highway Safety Program Manual", U.S. Department of Transportation, Federal Highway Administration and National Highway Traffic Safety Administration, Washington, D.C.
- 2. "Program Management Guide FHWA Highway Safety Program Standards", Office of Highway Safety, FHWA, February, (1976).
- 3. "Guidelines for Local Participation in the National Highway Safety Act of 1976", Department of Public Safety, Frankfort, Kentucky, undated.
- 4. Stapleton, J.J., "Legal Considerations in Administering the Federal Highway Administration's Responsibilities Under the State and Community Highway Safety Programs", presented at AASH(T)0 Annual Meeting, Miami, Florida, (December 9, 1971).
- 5. Jones, R.O., "Federal-State Partnership in Highway Safety: A Report on the National Highway Act of 1966", speech delivered before the Institute on Motor Vehicle and Traffic Law, (August 19, 1969), Boulder, Colorado.
- Highway Safety Program Standards U.S. Department of Transportation National Highway Traffic Safety Administration and the Federal Highway Administration (February, 1974).
- Manual of Uniform Traffic Control Devices for Streets and Highways -U.S. Department of Transportation, Federal Highway Administration (1971).
- 8. <u>Report on Activities Under the Highway Safety Act</u>, U.S. Department of Transportation, Washington, D.C. (Reports issued annually since 1968).

Subprocess 1, Activity 1 - Perform Accident Procedures

- 1. <u>Traffic and Transportation Engineering Handbook</u>, Institute of Traffic Engineers (1976).
- Hagmann, L.M., "A Quick and Simple Way to Prepare Collision Diagrams", <u>Traffic Engineering</u>, December, (1974).
- 3. Litvin, D.M., "Automated Collision Diagrams:, Transportation Research Record 706, TRB, (1979).

The DART (Data Analysis and Reporting Techniques) Software System, National Highway Traffic Safety Administration, April, (1978).

- 5. Nie, Norman H., Hull C. Hadlai, Jenkins, Jean G., Steinbrenner, Karin, and Bent, Dale H., <u>SPSS (Statistical Package for the Social</u> <u>Sciences)</u>, 2nd Edition, McGraw-Hill, Inc., (1975).
- 6. OSIRIS IV User's Manual, Survey Research Center, Institute for social Research (University of Michigan), 5th Edition, October, (1979).
- 7. Fox, Daniel J., Guire, Kenneth E., <u>Documentation for MIDAS</u>, Statistical Research Laboratory, University of Michigan, 3rd Edition, September, (1976).
- 8. Box, Paul C., "Accident Pattern Evaluation and Countermeasure", <u>Traf</u><u>fic Engineering</u>, August, (1976).
- 9. Abramson, P., "An Accident Evaluation Analysis", Transportation Research Record 486, TRB, (1974).
- 10. Lowden, P.R., and Ray, J.C., "Highway Safety", Institute of Traffic and Transportation Engineering (University of California), (1968).
- 11. Manual on Identification, Analysis and Correction of High Accident Location, FHWA, (1976).
- 12. <u>Accident Research Manual</u>, University of North Carolina-Highway Safety Research Center, January, (1980).
- 13. Pignataro, Louis J., <u>Traffic Engineering: Theory and Practice</u>, Prentice-Hall, Inc. (1973).
- 14. <u>Manual of Traffic Engineering Studies</u>, Institute of Transportation Engineers, (1976).
- 15. <u>A Procedure for the Analysis of High Accident Locations</u>, Wayne State University, December, (1976).
- "Data Collection Guidelines and Analysis Techniques, Part I", Technical Council Committee 6U, <u>Traffic Engineering</u>, May, (1975).

Subprocess 1, Activity 2 - Field Review Location

- 1. American Association of State Highway Officials, <u>A Policy on Design</u> of Urban Highways and Arterial Streets, Washington, D.C. (1973).
- 2. American Association of State Highway Officials, <u>A Policy on Geometric Design of Rural Highways</u>, Washington, D.C. (1966).

- 3. U.S. Department of Transportation, Federal Highway Administration, <u>Manual on Uniform Traffic Control Devices</u>, Washington, D.C., U.S. <u>Government Printing Office</u>, (1971).
- 4. U.S. Department of Transportation, Federal Highway Administration, <u>Roadway Lighting Handbook</u>, Washington, D.C., U.S. Government Printing Office, (1979).
- 5. Highway Research Board, <u>Highway Capacity Manual</u>, Washington, D.C., U.S. Government Printing Office, (1965).
- 6. Institute of Traffic Engineers, <u>Transportation and Traffic Engineer-</u> ing Handbook, Prentice-Hall, Inc., (1976).
- 7. Pignataro, Louis J., <u>Traffic Engineering: Theory and Practice</u>, Prentice-Hall, Inc. (1973).
- 8. University of California, Institute of Transportation and Traffic Engineering, Fundamentals of Traffic Engineering, by Kennedy, Norman, Kell, and Homburger (1966).
- 9. Institute of Traffic Engineers, <u>Manual of Traffic Engineering</u> Studies, Washington, D.C. (1964).
- 10. U.S. Department of Transportation, Federal Highway Administration, Traffic Reviews for Operational Efficiency, Washington, D.C. (1973).
- 11. Wayne State University Civil Engineering Department, <u>A Procedure for</u> the Analysis of High Accident Locations, (1976).

Subprocess 1, Activity 3, Procedure 7 - Volume Study

- 1. <u>Traffic Control Systems Handbook</u> (June, 1976) U.S. Department of Transportation/Federal Highway Administration
- 2. <u>Transportation and Traffic Engineering Handbook</u> (1976), Institute of Transportation Engineers, Prentice-Hall, Inc.
- 3. Pignataro, Louis J. <u>Traffic Engineering: Theory and Practice</u>, (1973).
- 4. <u>Manual of Traffic Engineering Studies</u> (1976), Institute of Transportation Engineers.
- 5. "Detector Locations," An ITE Information Report, <u>Traffic Engineering</u>, February, (1969).

- 6. Kiolbassa, Frank R. "A Review of Permanent Detection Devices and Their Placement." Department of Civil Engineering, Texas A&M University College Station, Texas, (1965).
- 7. Hewton, J.T. "Vehicle Detectors," The Municipality of Metropolitan Toronto, Traffic Engineering Department.
- Shannon, G.F., and N.V. Chuong, "A Presence and Passage Vehicle Detector," <u>Traffic Engineering and Control</u>, Vol. 14, No. 10, (February, 1973), pp. 479-481.
- Shannon, G.F., N.R. Howard, and G.R. Phillips, "A New Technique for Vehicle Speed Determination," <u>Traffic Engineering and Control</u>, Vol. 15, No. 3, (July, 1973), pp. 128-131.
- 10. "Volume Survey Devices," Report of Technical Committee 7-G of ITE, Traffic Engineering, March, (1961).
- 11. "Data Collection Guidelines and Analysis Techniques, Part I," An ITE Informational Report, Traffic Engineering, May, (1975).
- Auer, John H. Jr., "A System for the Collection and Processing of Traffic Flow Data by Machine Methods," <u>Highway Research Bulletin 324</u>, (1962), pp. 85-95.
- 13. Andrews, Basil, "Use of Non-Recording Traffic Counters," <u>Traffic</u> Engineering, June, (1960).
- Priestas, E.L. and Mulinazzi, T.E., "Traffic Volume Counting Recorders," <u>Transportation Engineering Journal of ASCE</u>, May, (1975), pg. 211
- 15. Wyman, John H. and Lyles, Richard W., <u>A Portable Data Recording</u> <u>System</u>, July 13, (1979).
- 16. Wyman, John H. and Lyles, Richard W., <u>Mobile Traffic Data Collection</u> System, October 16, (1979).
- 17. <u>An Introduction to Highway Transportation Engineering</u> (1968), Institute of Transportation Engineers.
- Byrne, Bernard F., Roberts, Robert R., King, L. Ellis, and Arbogast, Ronald G., "Testing of the Tapeswitch System for Determining Vehicle Speed and Lateral Placement," Highway Research Record 615, (1976), Pages 1-3.
- 19. Covault, "Time-Lapse Movie Photography Used to Study Traffic Flow Characteristics," Traffic Engineering, March, (1960).

- 20. Trieterer and Taylor, "Traffic Flow Investigations by Photogrammetric Techniques," <u>Highway Research Record 142</u>, (1965).
- 21. Wohl, "Vehicle Speeds and Volumes Using Sonne Stereo Continuous Strip Photography," <u>Traffic Engineering</u>, January, (1959).
- 22. Herd, "An Aerial Photographic Technique for Presenting Displacement Data," <u>Highway Research Record 232</u>, (1968).
- 23. Cyra, David J., "Traffic Data Collection Through Aerial Photography," Highway Research Record 375, (1971).
- 24. Wagner F.A. Jr., and May, A.D., Jr., "Use of Aerial Photography in Freeway Traffic Operations Studies," Highway Research Record 19, (1963), pp. 24-34.
- 25. Dickins, "Sky Count New System Developed For Traffic Data Acquisition," Traffic Engineering, December, (1964).
- 26. Mortimer, "Moving Vehicle Method of Estimating Traffic Volumes and Speeds," Highway Research Board Bulletin 156, (1957).
- 27. Blensly, "Moving Vehicle Method of Estimating Traffic Volumes," <u>Traf</u><u>fic Engineering</u>, December, (1956).
- 28. Taragin and Hopkins, "A Traffic Analyzer: It's Development and Application," <u>Public Roads</u>, December, (1960).
- 29. "Special Purpose Traffic Survey Devices," <u>Traffic Engineering</u>, February, (1966).
- 30. Pelzand White, "Short Count Results," <u>Traffic Engineering</u>, August, (1948).
- 31. Kunzman, "A Simplified Procedure to Determine Factors for Converting Volume Counts to ADT's," Traffic Engineering, October, (1976).
- 32. Wilson, "Maximum Info At Minimum Cost Provided by Unique Traffic Count," <u>Traffic Engineering</u>, July, (1965).

Subprocess 1, Activity 3, Procedure 8 - Spot Speed Study

- 1. Oppenlander, J.C., "Sample Size Determination for Spot Speed Studies at Rural, Intermediate and Urban Locations", Highway Research Record Number 35, (1963) pp. 78-80.
- 2. Institute of Transportation Engineers, <u>Manual of Traffic Engineerging</u> <u>Studies</u>, (1976).

- 3. Institute of Traffic Engineers, <u>Transportation and Traffic Engineer-</u> ing Handbook, (1976), Prentice-Hall, Inc.
- 4. Pignataro, Louis B., "Traffic Engineering Theory and Practice", (1973), Prentice-Hall, Inc.
- "Data Collection Guidelines and Analysis Techniques, Part I", Informational Report, Technical Council Committee 6U, <u>Traffic Engineering</u>, May, (1975).
- 6. Institute of Traffic Engineer, <u>An Introduction to Highway Transporta-</u> tion Engineering, (1968).
- 7. Russell, Eugene, R., Butcher, Thomas, and Michael, Harold L., "A Quick, Inexpensive Data Collection Technique for Approach Speed Analysis", <u>Traffic Engineering</u>, May, (1976).
- 8. Byrne, Bernard F., Roberts, Robert R., King, Ellis L. and Arbogast, Ron, "Testing of the Tapeswitch System for Determining Vehicle Speed and Lateral Placement", Transportation Research Record 615, (1976).
- 9. Wyman, John H. and Lyles, Richard W., "Mobile Traffic Data Collection System", October, (1979).
- 10. Wyman, John H. and Lyles, Richard W., "A Portable Data Recording System", July, (1979).
- 11. Bleyl, Robert, L., "Speed Profiles Approaching a Traffic Signal", Transportation Research Record 384, (1972).
- 12. Cyra, David J., "Traffic Data Collection Through Aerial Photography", <u>Transportation Research Record 375</u>, (1971).

Subprocess 1, Activity 3, Procedure 9 - Travel Time and Delay Studies

- 1. Reilly, William R. Gardner, Craig C., "Technique for Measuring Delay at Intersections", Transportation Research Record 644, (1977).
- Reilly, W.R., Gardiner, C.C., and Kell, J.H., "A Technique for Measurement of Delay at Intersections", Vols. 1,2,3, FHWA-RD-76-135, 136, 137, (1976).
- 3. Oppenlander, Joseph C., "Sample Size Determination For Travel Time and Delay Studies," Traffic Engineering, September, (1976).
- 4. <u>Manual of Traffic Engineering Studies</u>, Institute of Transportation Engineers, (1976).

- 5. Pignataro, Louis J., <u>Traffic Engineering</u>: <u>Theory and Practice</u>, Prentice-Hall, Inc. (1973).
- 6. <u>Transportation and Traffic Engineering Handbook</u>, Institute of Traffic Engineers, (1976).
- 7. "Data Collection Guidelines and Analysis Techniques, Part I", <u>Traffic</u> <u>Engineering</u>, May, (1975), Technical Council Committee 6U.
- 8. "Areawide Traffic Performance Evaluation Measures", <u>Traffic Engineering</u>, September, (1975), Technical Council Committee 4H-M.
- 9. Foote, "Special Purpose Traffic Survey Devices," Proceedings ITE, 1963.
- 10. "Traffic Analyzer, TA-1-Operations Manual", Microtrans Associates, Inc.
- Buehler, M.G., Hicks, T.J., and Berry, D.S., "Measuring Delay By Sampling Queue Backup", TRB, <u>Transportation Research Record 615</u>, (1976).
- Robert'son, H.D., and Berger, W.G., "Berger-Robertson Method for Measuring Intersection Delay," TRB, Transportation Research Record, 1976.
- Sosslau, Arthur R., Honts, Gary E., "Traffic Characteristics Measurements Using License Matching Techniques," <u>Traffic Engineering</u>, October, (1975).
- 14. Berry, D.S., "Field Measurement of Delay at Signalized Intersections," <u>HRB Proceedings</u>, (1956).
- 15. Sagi, G.S., and Campbell, L.R., "Vehicle Delay at Signalized Intersections," <u>Traffic Engineering</u>, February, (1969).
- 16. Cyra, David J., "Traffic Data Collection Through Aerial Photography," Transportation Research Record 375, (1971).

Subprocess 1, Activity 3, Procedure 10 - Roadway and Intersection Capacity Studies

- 1. <u>Highway Capacity Manual</u>, Highway Research Board Special Report 87 (1965).
- Leisch, "Capacity Analysis Techniques for Design of Signalized Intersections", Installment No. 1, <u>Public Roads</u>, August, (1967).

- Leisch, "Capacity Analysis Techniques for Design of Signalized Intersections", Installment No. 2, Public Roads, October, (1967).
- 4. "Interim Materials on Highway Capacity", TRB, Transportation Research Board Circular 212, (1980).
- 5. McInerney, H.B. and Petersen, S.G., "Intersection Capacity Measurement Through Critical Movement Summations: A Planning Tool", <u>Traffic</u> Engineering, January, (1971).
- Messer, Carroll B. and Fambro, Daniel B., "Critical Lane Analysis for Intersection Design," Transportation Research Record 44, TRB, (1977).
- 7. <u>Traffic and Transportation Engineering Handbook</u>, Institute of Traffic Engineers, (1976).
- 8. Pignataro, Louis J., <u>Traffic Engineering: Theory and Practice</u>, Prentice-Hall, Inc. (1973).
- 9. Trout, Raymond S. and Loutzenheiser, Roy C., "Comparison of Methods to Determine Intersection Service Level", Transportation Research Record 515, TRB, (1976).

Subprocess 1, Activity 3, Procedure 11 - Traffic Conflict Studies

- 1. Perkins, S.R., and J.I. Harris, "Traffic Conflict Characteristics; Accident Potential at Intersections," General Motors Research Publication GMR-718, December 7, (1967).
- Perkins, S.R., "GMR Traffic Conflicts Technique Procedures Manual," General Motors Research Publication GMR-895, August 11, (1969).
- 3. Paddock, R.D., and D.E. Spence, "The Conflicts Technique: An Accident Prediction Method," Ohio Department of Transportation, Division of Highways, July 1, (1973).
- Pugh, David E., and Thomas J. Halpin, "Traffic Conflicts in Washington State," Washington State Department of Highways, March 20, (1974).
- 5. Zegeer, Charles V., "Development of a Traffic Conflicts Procedure for Kentucky, "Kentucky DOT, January, (1978).
- 6. Baker, William T., "Evaluating the Traffic Conflicts Technique," Federal Highway Administration (1971).

- 7. Spicer, B.R., "A Study of Traffic Conflicts at Six Intersections," Transport and Road Research Laboratory, Department of the Environment, Crowthorne, Berkshire (1973).
- 8. Cooper, P.J., "Predicting Intersection Accidents," Ministry of Transport, Canada, September, (1973).
- 9. Hauer, Ezra, "The Traffic Conflicts Technique -- Fundamental Issues," University of Toronto, Department of Civil Engineering, January, (1975).
- 10. Glauz, W.D., and Migletz, D.J., "Application of Traffic Conflict Analysis at Intersections," NCHRP, 219, February, (1980).
- 11. Zegeer, C.V., and Deen, R.C., "Traffic Conflicts as a Diagnostic Tool in Highway Safety," TRB Record No. 667, (1978).
- 12. Hyden, C., "A Traffic Conflicts Technique for Determining Risk," University of Lund, (1977).

Subprocess 1, Activity 3, Procedure 12 - Gap Studies

- 1. Drew, Donald R., <u>Traffic Flow</u>, Theory and Control, McGraw-Hill, Inc. (1968).
- 2. <u>Traffic and Transportation Engineering Handbook</u>, Institute of Traffic Engineers (1976).
- 3. <u>Accident Research Manual</u>, University of North Carolina Highway Safety Research Center, January, (1980).
- 4. Pignataro, Louis J., <u>Traffic Engineering: Theory and Practice</u>, Prentice-Hall, Inc., (1973).
- 5. Traffic Control Systems Handbook, U.S. Department of Transportation, FHWA, June, (1976).
- 6. <u>Highway Capacity Manual</u>, Highway Research Board Special Report 87, (1965).
- 7. "Interim Materials on Highway Capacity," TRB, Transportation Research Board Circular 212, (1980).
- 8. <u>A Volume Warrant For Urban Stop Signs</u>, ENO Foundation, (1950).

Subprocess 1, Activity 3, Procedure 13 - Traffic Lane Occupancy Studies

- 1. <u>Traffic Control System Handbook</u>, U.S. Department of Transportation, Federal Highway Administration, June (1976).
- 2. <u>Transportation and Traffic Engineering Handbook</u>, Institute of Traffic Engineers (1976).
- 3. Pignataro, Louis J., <u>Traffic Engineering: Theory and Practice</u>, Prentice-Hall, Inc. (1973).

Subprocess 1, Activity 3, Procedure 14 - Queue Length Studies

- 1. <u>Transportation and Traffic Engineering Handbook</u>, Institute of Traffic Engineers, Prentice-Hall, Inc. (1976).
- 2. Traffic Control Systems Handbook, U.S. Department of Transportation, Federal Highway Administration (1976).
- 3. Drew, Donald R., <u>Traffic Flow Theory and Control</u>, McGraw-Hill, Inc. (1968).

Subprocess 1, Activity 3, Procedure 15 - Roadway Inventory Study

- 1. <u>Transportation and Traffic Engineering Handbook</u>, Institute of Traffic Engineers, Prentice-Hall, Inc. (1973).
- 2. <u>"A Procedure for the Analysis of High Accident Locations"</u>, Wayne State University, Michigan (1976).
- 3. Pignataro, Louis B., <u>Traffic Engineering: Theory and Practice</u>, Prentice-Hall, Inc. (1973).
- 4. "A Policy on Geometric Design of Rural Highways", AASHO (1965).
- 5. <u>"An Introduction to Highway Transportation Engineering"</u>, Institute of Traffic Engineers (1968).

Subprocess 1, Activity 3, Procedure 16 - Sight Distance Studies

- 1. A Policy of Geometric Design of Rural Highways, AASHO, (1965).
- 2. <u>Manual of Uniform Traffic Control Devices</u>, U.S. Department of Transportation, FHWA, U.S. Government Printing Office, (1971).
- 3. Transportation and Traffic Engineering Handbook, Institute of Traffic Engineers, Prentice-Hall, Inc. (1976).

4. Weber, W.G., "Passing Sight Distance and No-Passing Zones: Present Practice in the Light of Needs for Revision," <u>ITE Journal</u>, September, (1978).

Subprocess 1, Activity 3, Procedure 17 - Roadway Serviceability Study

- 1. Phang, W.A., "Pavement Condition Ratings and Rehabilition Needs," <u>Transportation Research Record 700</u>, TRB, (1979).
- Carey, W.N., and Irick, P.E., "The Pavement Serviceability Performance Concept," HRB, <u>Bulletin 250</u>, (1960), pp. 40-57.
- 3. Roberts, F.L., and Hudson, W.R., "Pavement Serviceability Equations Using the Surface Dynamics Profilometer", HRB Special Report 116, (1971).
- Williamson, Hugh J., Hudson, W.R., and Zinn, Dale C., "Relationships Between Various Classes of Road Surface Roughness and Ratings of Riding Quality," <u>Transportation Research Record 602</u>, TRB, (1976).
- 5. Oteng-Seifah, S. and Manke, Philip G., "Study of Rutting in Flexible Highway Pavements in Oklahoma," <u>Transportation Research Record 602</u>, TRB, (1976).
- Karan, M.A., Kobi, D.H., Bauman, C.B., and Haas, R.C.G., "Subjective and Mechanical Estimation of Pavement Serviceability for Rural - Urban Road Networks," <u>Transportation Research Record</u> 715, TRB, (1979).
- Brokaw, M.P., "A 5-Year Report on Evaluation of Pavement Serviceability with Several Road Meters," HRB Special Report 116, HRB, (1971).
- Williamson, Hugh J., HU, Yi Chin, and McCullough, B. Frank, "Performance of the Mays Road Meter," <u>Transportation Research Record 633</u>, TRB (1977).
- 9. Zegeer, C.V., Agent, K.R., and Rizenbergs, R.L., "Use of Economic Analyses and Dynamic Programming In The Selection of Projects for Resurfacing," Kentucky Department of Transportation, February, (1979).
- 10. Yoder, E.J., Principles of Pavement Design, Wiley and Sons, (1975).

11. AASHO, <u>A Policy on Geometric Design of Rural Highways</u>, (1965).

Subprocess 1, Activity 3, Procedure 18 - Skid Resistance Studies

1. "Skid Resistance," NCHRP 14, Highway Research Board, 1972.

- 2. Effectiveness of Alternative Skid Reduction Measures, FHWA, Volumes 1-4, November (1978).
- 3. "Highway Design, Construction, and Maintenance," <u>Highway Safety Pro-</u> gram Manual No. 12, FHWA, February, (1974).
- 4. "Pavement Design, Evaluation, and Performance," <u>Transportation Re-</u> search Record 602, TRB, (1976).
- 5. ASTM manuals.
- 6. "A Policy on Geometric Design of Rural Highways," American Association of State Highway Officials (1965).
- 7. Yoder, E.J., <u>Principles of Pavement Design</u>, John Wiley & Sons, Inc. (1975).
- 8. "Skidding Accidents-Tires, Vehicles, and Vehicle Components," <u>Transportation Research Record 621</u>, TRB, (1977).
- 9. "Pavement Surface Properties and Performance," <u>Transportation Research</u> <u>Record 633</u>, TRB (1979).
- 10. "Skidding Accidents-Pavement Characteristics," <u>Transportation Research</u> <u>Record 622</u>, TRB, (1977).
- 11. "Pavement Distress, Evaluation, and Performance," <u>Transportation</u> <u>Research Record 715</u>, TRB, (1979).
- 12. "Skidding Accidents-Wet-Weather Accident Experience, Human Factors, and Legal Aspects," <u>Transportation Research Record 623</u>, TRB, (1977).
- 13. Kummer, H.W. and Meyer, W.E., "Tentative Skid-Resistance Requirements for Main Rural Highways," NCHRP Report 37 (1967).

Subprocess 1, Activity 3, Procedure 19 - Highway Lighting Studies

- 1. "An Informational Guide for Roadway Lighting", AASHTO, Washington, D.C., (1976).
- 2. "American National Standard Practice for Roadway Lighting", RP-8-1977, Illuminating Engineering Society - American National Standards Institute, New York, N.Y., (1977).
- 3. <u>Roadway Lighting Handbook</u>, Federal Highway Administration, Implementation Package 78-15, December (1978).

A-12

- 4. Walton, Ned E. and Rowan, N.J., "Warrants for Highway Lighting", <u>NCHRP</u> <u>Report</u> 152, National Cooperative Highway Research Program, Washington, D.C. (1974).
- 5. "Fixed Illumination for Pedestrian Protection", Franklin Institute, FHWA RD-76-8. December, (1975).
- 6. <u>Transportation and Traffic Engineering Handbook</u>, Institute of Traffic Engineers, Prentice-Hall, Inc. (1976).
- 7. Pignataro, Louis J., "Traffic Engineering: Theory and Practice", Prentice-Hall, (1973).
- 8. <u>A User's Guide to Positive Guidance</u>, Federal Highway Administration, DOT-FH-11-8864, June (1977).

Subprocess 1, Activity 3, Procedure 20 - Weather-Related Studies

- 1. "Highway Fog, Visibility and Measures", NCHRP Report No. 171, National Research Council, (1976).
- 2. "A Policy Geometric Design of Rural Highways 1965", AASHTO.
- 3. <u>Transportation and Traffic Engineering Handbook</u>, Institute of Traffic Engineers, Prentice-Hall, Inc., 1976.
- Blackburn, R.R., Glauz, W.D., Kobett, D.R., and Sharp, M.C., "An Ice and Snow Detection and Warning System Feasibility Study", Federal Highway Administration, Contract No. DOT-FH-11-7428, November, (1971).
- 5. Hanscom, F.R., "An Evaluation of Icy Bridge Warning Signs", <u>Traffic</u> Engineering, September (1975).
- Brinkman, C.P., "Highway Ice Detection", <u>Transportation Engineering</u>, November, (1977).
- 7. Mawhinney, R.C., Lovell, C.C., and Ruden, R.J., "Snow and Ice Detection and Warning Systems", Final Report No. FHWA-RD-76-25, Federal Highway Administration, Washington, D.C., (1975).

Subprocess 1, Activity 3, Procedure 21 - School Crossing Study

- 1. "A Program For School Crossing Protection", Institute of Traffic Engineers (1962).
- 2. <u>Transportation and Traffic Engineering Handbook</u>, ITE, Prentice-Hall, Inc. (1976).

A-13

- 3. Pignataro, Louis J., <u>Traffic Engineering: Theory and Practice</u>, Prentice-Hall, Inc. (1973).
- 4. "School Trip Safety and Urban Play Areas", Volumes I-VII, FHWA A-RD-75-110 (1975).
- 5. "Model Pedestrian Program User's Manual", Federal Highway Administration, June (1978).
- 6. Canfield, Robert R. "School Zone Hazard Rating", <u>ITE Technical Notes</u>, December (1978).
- 7. "A Guide To Selection, Training and Warrants For Operation", Michigan Department of Education, (1978).
- 8. <u>Manual of Uniform Traffic Control Devices</u>, U.S. Government Printing Office (1978).
- 9. "Traffic Safety Planning on School Sites", Institute of Transportation Engineers (1978).

Subprocess 1, Activity 3, Procedure 22 - Railroad Crossing Studies

- <u>Railroad Highway Grade Crossing Handbook</u>, U.S. Department of Transportation, Federal Highway Administration, FHWA-TS-78-214, August, (1978).
- Richards, H.A., and Bridges, G.S., <u>Traffic Control and Roadway Elements - Their Relationship to Highway Safety: Chapter 1 - Railroad</u> <u>Grade Crossings</u>, Automotive Safety Foundation, Washington, D.C., (1968).
- Bezkovovainay, G., "Optimum Hazard Index Formula for Railroad Crossing Protection for Lincoln, Nebraska", <u>Traffic Engineering</u>, Vol. 38, No. 3, December (1967).
- 4. Peabody, L.E., and Dimmick, T.B. "Accident Hazard at Grade Crossings", <u>Public Roads</u>, Volume 22, No. 6, August, (1941).
- 5. "Rail Highway Crossing Hazard Prediction Research Results", FHWA, FRA-RRS-80-02 (1980).
- 6. <u>Manual of Uniform Traffic Control Devices</u>, U.S. Department of Transportation, Federal Highway Admistration, (1978).
- Roadway Lighting Handbook, U.S. Department of Transportation, Federal Highway Administration, Implementation Package of 78-15, December, (1978).

- American National Standard Practices for Roadway Lighting", ANSI/IES, RP-8, 1977, IES Roadway Lighting Committee, Journal of IES, October, (1977).
- 9. <u>Transportation and Traffic Engineering Handbook</u>, Institute of Traffic Engineers, Prentice-Hall, Inc., (1976).

Subprocess 1, Activity 3, Procedure 23 - Traffic Control Device Studies

- 1. <u>Manual of Traffic Engineering Studies</u>, Institute of Transportation Engineers, (1976).
- 2. Transportation and Traffic Engineering Handbook, Institute of Transportation Engineers, Prentice-Hall, Inc., (1976).
- 3. Pignataro, Louis B., Traffic Engineering; Theory and Practice, Prentice-Hall, Inc., (1973).
- 4. <u>Manual of Uniform Traffic Control Devices</u>, U.S. Department of Transportation, Federal Highway Administration, (1978).
- 5. <u>Speed Enforcement Policies and Practices</u>, David K. Witheford, Eno Foundation for Transportation, (1970).

Subprocess 1, Activity 3, Procedure 24 - Bicycle and Pedestrian Studies

- 1. <u>Model Pedestrian Safety Program User's Manual</u>, U.S. Department of Transportation, Federal Highway Administration, Implmentation Package 78-6, June, (1978).
- Safety and Locational Criteria for Bicycle Facilities User's Manual Volume I: Bicycle Facility Location Criteria, U.S. Department of Transportation, Federal Highway Administration, FHWA-RD-75-113, February, (1976).
- 3. <u>Safety and Locational Criteria for Bicycle Facilities User's Manula</u> <u>Volume II: Design and Safety Criteria</u>, U.S. Department of Transportation, Federal Highway Administration, FHWA-RD-75-114, February, (1976).
- 4. <u>Transportation and Traffic Engineering Handbook</u>, Institute of Transportation Engineers, Prentice-Hall, Inc., (1976).
- 5. Manual of Uniform Traffic Control Devices, FHWA, (1978).

Subprocess 1, Activity 4 - Select Techniques

- 1. Institute of Transportation Engineers, <u>Manual of Traffic Engineering</u> <u>Studies</u>, (1976).
- 2. Institute of Traffic Engineers, <u>Transportation and Traffic Engineering</u> <u>Handbook</u>, Prentice-Hall, Inc., (1976).
- 3. Pignataro, Louis B., "Traffic Engineering Theory and Practice", Prentice-Hall, Inc., (1973).
- "Data Collection Guidelines and Analysis Techniques, Part I", Informational Report, Technical Council Committee 6U, <u>Traffic Engineering</u>, May, (1975).
- 5. Institute of Traffic Engineers, <u>An Introduction to Highway Transpor-</u> tation Engineering, (1968).

Subprocess 1, Activity 5 - Perform Procedures

- 1. Manual of Traffic Engineering Studies, Institute of Traffic Engineers, (1976).
- 2. <u>Manual on Indentification, Analysis and Correction of High Accident</u> <u>Locations, FHWA, April, (1976).</u>
- 3. <u>Traffic and Transportation Engineering Handbook</u>, Institute of Traffic Engineers, (1976).
- 4. <u>A Procedure for the Analysis of High Accident Locations</u>, Wayne State University, December, (1975).

Subprocess 1, Activity 6 - Identify Safety Deficiency(s)

- 1. <u>Manual on Identification, Analysis and Correction of High Accident</u> Locations, FHWA, April (1976).
- 2. <u>Traffic and Transportation Engineering Handbook</u>, Institute of Traffic Engineers (1976).
- 3. Box, Paul, C., "Accident Pattern Evaluation and Countermeasure", <u>Traf</u>fic Engineering, August, (1976).
- 4. Abramson, P., "An Accident Evaluation Analysis", Transporatation Research Record 486, TRB, (1974).
- 5. <u>Accident Research Manual</u>, University of North Carolina Highway Safety Research Center, January, (1980).

- 6. Lowden, P.R., and Ray, J.C., "Highway Safety", Institute of Traffic and Transportation Engineering (University of California), (1968).
- 7. <u>A Procedure for the Analysis of High Accident Locations</u>, Wayne State University, December, 1976.
- 8. Pignataro, Louis J., <u>Traffic Engineering</u>: <u>Theory and Practice</u>, Prentice-Hall, Inc. (1973).
- 9. <u>Manual of Traffic Engineering Studies</u>, Institute of Transportation Engineers (1976).

Subprocess 2, Activity 7 - Develop Feasible Countermeasures

- 1. Manual on Identification, Analysis and Correction of High Accident Locations, FHWA, April (1976).
- 2. "Continuing Accident Surveillance Programs", <u>ITE Technical Notes</u>, April, (1979).
- 3. Box, Paul C., "Accident Pattern Evaluation and Countermeasures", <u>Traf</u>fic Engineering, August, (1976).
- 4. <u>A Procedure for Analysis of High Accident Locations</u>, Wayne State University, December, (1976).
- 5. Bierman, H., Bonini, C.P., Hausman, W.H., <u>Quantitative Analysis for</u> <u>Business Decisions</u>, Richard D. Irwin, Inc., Fifth Edition, (1977).
- 6. Wagner, H.M., Principles of Operations Research With Applications to Mangerial Decisions, Prentice-Hall, Inc. (1969).
- 7. Hiller, F.S., Lieberman, G.J., Operations Research, Holden-Day, Inc., (1974).
- 8. Laughland, J.C., Haefner, L.E., Hall, J.W., Clough, D.R., "Methods for Evaluating Highway Safety Improvements" National Cooperative Highway Research Program, Report No. 162, (1975).
- 9. Ogren, J.R., "A Multidisciplinary Team Study of High Accident Locations", Report No. JHRP-78-18, Indiana State Highway Commision, FHWA, October, (1978).
- 10. <u>Railroad-Highway Grade Crossing Handbook</u>, TS-78-214, FHWA, August, (1978).
- 11. Traffic and Transportation Engineering Handbook, Institute of Traffic Engineers (1976).

- 12. Pignataro, Louis J., <u>Traffic Engineering: Theory and Practice</u>, Prentice-Hall, Inc. (1973).
- 13. <u>Accident Research Manual</u>, University of North Carolina-Highway Safety Research Center, January, (1980).
- 14. Lowden, P.R., and Ray, J.C., "Highway Safety", Institute of Traffic and Transportation Engineering (University of California), (1968).
- 15. Abramson, P., "An Accident Evaluation Analysis", Transportation Research Record 486, TRB, (1974).

<u>Subprocess 3, Activity 8 - Predict Accident Reduction Capabilities of</u> <u>Countermeasures</u>

- 1. Laughland, J.C., "Accident Reduction Factors Developed At The National Level", FHWA, DRAFT, June, (1980).
- 2. <u>Methods for Evaluating Highway Safety Improvements</u>, NCHRP 162, Transportation Research Board, (1975).
- 3. Roy Jorgensen and Associates, <u>"Evaluation Of Criteria For Safety</u> <u>Improvement On The Highways</u>, Bureau of Public Roads, October, (1966).
- 4. <u>Traffic and Transportation Engineering Handbook</u>, Institute of Transportation Engineers, (1976).
- 5. Solomon, D., Starr, S., and Weingarten, H., <u>Quantitative Analysis of</u> <u>Safety Efforts of The Federal Highway Administration</u>, FHWA, Office of Research and Development, February, (1970).
- 6. Council, F.M., and Hunter, W.W., <u>Implementation of Proven Technology</u> <u>in Making the Highway Environment Safe</u>, Chapel Hill, NC: University of North Carolina, Highway Safety Research Center, August, (1975).
- 7. Texas Department of Highways and Public Transportation, <u>Guide to the</u> Highway Economic Evaluation Model, Austin, Texas, February, (1976).
- 8. Winfrey, Robley, <u>Economic Analysis for Highways</u>, Scranton, PA: International Textbook Co., (1968).

Subprocess 3, Activity 9, Perform Economic Analysis

1. "Estimating the Cost of Accidents", Bulletin No. T-113-79, National Safety Council, (1979).

- 2. Faigin, B.M., "1975 Societal Costs of Motor Vehicles Accidents", National Highway Traffic Safety Administration, U.S. Department of Transportation, December, (1976).
- 3. Laughland, J.C., Haefner, L.E., Hall, J.W., Clough, D.R., "Methods for Evaluating Highway Safety Improvements", Report No. 162, National Cooperative Highway Research Program, (1975).
- 4. Pignataro, L.J., <u>Traffic Engineering Theory and Practice</u>, Prentice-Hall, Inc., (1973).
- 5. "Evaluation of Highway Safety Projects Users Manual", Federal Highway Administration, U.S. Department of Transportation, (1978).
- 6. Winfrey, R., "Traffic Accident Costs in Economic Analysis", Highway Users Federation for Safety and Mobility, November, (1971).
- 7. "Highway Safety Program Costs Compare to Benefits Received", Highway Safety Research Center, University of North Carolina, June, (1967).
- 8. Martin, et al., Principles and Techniques of Predicting Future Traffic Demand for Urban Area Transportation, MIT Report No. 3, MIT Press, (1961).
- 9. R.L. Creighton, Urban Transportation Planning, University of Illinois Press, Urbana, III., (1970).
- 10. Silver and Stowers, "Population, Economic, and Land Use Studies in Urban Transportation Planning," BPR, July, (1964).
- 11. Fratar, "Forecasting Distribution of Interzonal Vehicular Trips by Successive Approximations" in HRB, Vol. 33, (1954).
- Hall, J.W., Carter, E.C., "Cost-Effectiveness of Traffic Accident Countermeasures", Institute of Traffic Engineers, Compendium of Technical Paper, August, (1973).
- 13. Hall, J.W., "Safety Benefits from the Categorical Safety Programs", Transportation Engineering, February, (1978).
- 14. Binder, R.H., "Cost-Effectiveness in Highway Safety", <u>Traffic</u> Engineering, December, (1976).
- Roy Jorgensen Associates, Inc. and Westat Research Analysts, Inc., "Evaluation of Criteria for Safety Improvements on the Highway", (1966).
- 16. <u>Manual on Identification, Analysis and Correction of High Accident</u> Locations, Midwest Research Institute, Missouri State Highway

Commission, Federal Highway Administration, U.S. Department of Transportation, (1975).

17. Informational Guide for Highway Safety Improvements, Washington Traffic Safety Commission, Federal Highway Administration, U.S. Department of Transportation, (1978 Edition).

Subprocess 3, Activity 10 - Select Projects

- 1. Procedures For Estimating Highway User Costs, Air Pollution, and Noise Effects, NCHRP 133, Highway Research Board, (1972)
- 2. Hall, T.A., "National Highway Safety Program Effectiveness," <u>Transportation Engineering Journal</u>, ASCE, July, (1978)
- 3. Laughland, J.C., Haefner, L.E., Hall, J.W., Clough, D.R., "Methods for Evaluating Highway Safety Improvements," Report No. 162, National Cooperative Highway Research Program, (1975).
- 4. Pignataro, L.J., <u>Traffic Engineering Theory and Practice</u>, Prentice-Hall, Inc., (1973).
- 5. "Evaluation of Highway Safety Projects Users Manual," Federal Highway Administration, U.S. Department of Transportation, (1978).
- 6. Roy Jorgensen Associates, Inc. and Westat Research Analysts, Inc., "Evaluation of Criteria for Safety Improvements on the Highway", (1966).
- 7. <u>Manual on Identification, Analysis and Correction of High Accident</u> <u>Locations</u>, <u>Midwest Research Institute</u>, <u>Missouri State Highway Commis-</u> sion, Federal Highway Administration, U.S. Department of Transportation, (1975).
- 8. Informational Guide for Highway Safety Improvements, Washington Traffic Safety Commission, Federal Highway Administration, U.S. Department of Transportation, (1978 Edition).

APPENDIX B. GLOSSARY OF TERMS

- <u>AASHTO</u> American Association of State Highway and Transportation Officials
- <u>ACCIDENT</u> Any unplanned event that results in injury, property damage, or loss.
- <u>ACCIDENT-BASED EVALUATION</u> The assessment of a Highway Safety Project or program in terms of the extent to which the number and severity of accidents are reduced.
- <u>ACCIDENT-BASED PROCEDURES</u> The study procedures used to analyze the accident activity or pattern at a location.
- <u>ACCIDENT CAUSALITY CHAIN</u> The chain of events (major causal factor major contributor factor safety problem) which lead to accident experience or accident potential.
- ACCIDENT COSTS The dollar value of an accident relating the costs of the number of fatalities, injuries, and property damage involved in an accident. These costs may be defined by a State agency, the National Safety Council (NSC), or the National Highway Traffic Safety Administration (NHTSA).
- <u>ACCIDENT FREQUENCY</u> The number of accidents which occur during a specified period of time (i.e., accidents per year, accidents per three years).
- <u>ACCIDENT PATTERN TABLES</u> Tables used in identifying feasible safety countermeasures as a function of the accident type and "probable cause".
- <u>ACCIDENT POTENTIAL</u> An impending accident situation characterized by an unsafe roadway condition.
- <u>ACCIDENT RATE</u> The number of accidents which occur during a specified period of time, divided by a measure of the degree of vehicular exposure over the same period.
- <u>ACCIDENT REDUCTION FACTORS</u> Values of percent accident reduction derived from the observed accident reduction on one or several highway safety projects or programs.
- <u>ACCIDENT REPORT</u> A written report containing data concerning an individual accident including time, place, location description, property damage, injuries, violations, and possible cause. Such reports are submitted either by the investigating officer or the involved motorists.
- <u>ACCIDENT SEVERITY</u> A measure of the seriousness or violence of an accident or all accidents at a highway location. Accident severity may be expressed in terms of the number of fatalities, injuries, or property damage accidents or involvements which occur during a specified period of time.

- <u>ACCIDENT SURROGATE OR PROXY</u> Measurable traffic operational or driver behavioral characteristics which have quantitative relationship with accident measures and can be used as a substitute for accident experience.
- ACCIDENT TYPE The specific accident occurrence as related by the speci-Tic movements of the involved vehicle(s).
- $\frac{ACCURACY}{taken}$ The degree of freedom from error by which a measurement is taken or an operation performed. For example, if a measurement is stated as 1.02 + 0.05, accuracy is plus or minus five hundredths.
- <u>ADEQUATE GAP TIME</u> Safe crossing time for a group of pedestrians as a function of the crossing distance, the number in the queue, and time between queues.
- <u>AERIAL SURVEILLANCE METHOD</u> Photographic technique from an overhead position, usually using an airplane or helicopter.
- ANNUAL VOLUMES Estimated or actual volume of traffic using a facility for a yearly (365 days) period.
- <u>APPEARANCE</u> In roadway serviceability studies, the general appearance of the pavement.
- <u>APPROACH TIME</u> Time used by any vehicle to traverse approach delay section.
- APPROACH DELAY Approach time minus the approach free flow time.
- <u>APPROACH WIDTH</u> Distance accross a roadway from curb-to-curb or curb-tomedian for divided facilities.
- ASTM American Society of Testing Materials
- AUTOMATED COLLISION DIAGRAMS Accident collision diagrams using computer plotting techniques to plot collisions.
- AVERAGE ANNUAL DAILY TRAFFIC (AADT) The total yearly volume divided by the number of days in the year.
- BASE FAILURE Pavement cracking or breaking loose due to failure in base or sub-base material of roadway.
- BENEFIT-COST RATIO The economic value of the reduction in fatalities, injuries, and property damage divided by the cost of the accident reducing measure.
- BOTTLENECK Physical or geometric features of a street of freeway which reduce the facility's capacity (or ability to accomodate flow) as compared to other locations on the same facility.

<u>CANDIDATE COUNTERMEASURE</u> - Feasible improvement to reduce safety hazards at a site.

- <u>CAPACITY</u> The maximum number of vehicles which has a reasonable expectation of passing over a given section of a lane or a roadway in one direction (or in both directions for a two lane or three lane highway) during a given time period under prevailing roadway and traffic conditions.
- CATEGORIAL PROGRAMS Highway safety improvement classification provided in FHPM 6-8-2-1.
- CHI-SQUARE DISTRIBUTION Distribution of test statistic used to test the null hypothesis of "independence" for two or more variables.
- CLASSIFICATION VOLUME Volume count of vehicles by specific type of vehicle, i.e., truck, passenger vehicle, or other similar breakdowns.
- <u>CLUSTER ANALYSIS</u> Method of accident pattern identification by eye inspection method, i.e., a visual search of accident data.
- <u>COLLECTOR STREET</u> Provides for traffic movement between major arterials and local streets, with direct access to abutting property.
- <u>COLLISION DIAGRAM</u> A schematic drawing that shows the direction of travel, prior to contact, of the vehicles and/or pedestrians whose presence contributed to the collision.
- <u>COMPARISON SITE(S)</u> A site or group of sites with similar characteristics which are not exposed to the same countermeasure as the project site, used to aid in determining if the results achieved by the treatment group are a consequence of the countermeasure rather than the result of some outside influence.
- <u>COMPONENTS</u> Refers to the three general phases of the HSIP; (1) Planning, (2) Implementation, and (3) Evaluation.
- <u>COMPUTER TECHNIQUES</u> Use of computer facilities in recording, collecting, analyzing, and outputting data.
- <u>CONDITION DIAGRAM</u> A scaled drawing of the important physical conditions of a highway spot or section. It is used to relate the accident patterns on a collision diagram to the roadway and operational event at the hazardous location.
- CONFIDENCE INTERVAL A range of numbers computed from sample data, that form an interval which has a probability of including the population parameter.
- CONFIDENCE LIMITS The upper and lower limits of the confidence interval.

- <u>CONTRIBUTING CIRCUMSTANCES</u> Information identified in an accident report form which may be used to suggest possible accident causes. The information is supplied by the reporting officer.
- <u>CONTROL OF ACCESS</u> The condition where the right of owners or occupants of abutting land or other persons to access, light, air, or view in connection with a highway is fully or partially controlled by public authority. <u>Full</u> control of access means that authority to control access is exercised to give preference to through traffic by providing access connections with selected public roads only and by prohibiting crossings at grade or direct private driveway connection. <u>Partial</u> control of access means that the authority to control access is expected to give preference to through traffic to a degree that, in addition to access connections with selected public roads, there may be some crossings at grade and some private driveway connections.
- <u>CORRECTABLE ACCIDENTS</u> Accidents which could be alleviated by means of a feasible safety-related countermeasure specific to the study site.
- <u>COST/BENEFIT ANALYSIS</u> A form of economic evaluation in which input is measured in terms of dollar costs and output is measured in terms of economic benefit of a project as compared to the incurred cost of the project.
- <u>COST-EFFECTIVE ANALYSIS</u> A comparison study between the cost of an improvement (initial plus upkeep) and the benefits it provides. The latter may be derived from accidents reduced, travel time reduced, or increased volume of usage, and translated into equivalent dollars saved.
- COUNTERMEASURE A specific activity intended to improve one or more aspects of the traffic safety or contribute to the solution of a specific accident problem.
- <u>CRITICAL MOVEMENT ANALYSIS</u> Method to compute the level of service of an intersection by summing the observed volumes of critical movements (as a function of signal phasing) and comparing to design values.
- <u>CYCLE SAMPLING METHOD</u> Method to compute the level of service of an intersection by sampling the load utility of each cycle per approach and comparing to the number of cycles during the sampling period.
- DATA BASE The document collection or file of collected data which serves as the basis of an information retrieval system.
- DATA COLLECTION The process of accumulating statistical information relating to the empirical effects of a highway safety project.
- <u>DATA SET</u> A set of data pertaining to a single site or a single data collection period.
- <u>DATA TABULATION</u> The process of displaying experimental results in a table so that the information can more readily be interpreted.

- DIVIDED HIGHWAY A highway with separated roadways for two directional traffic.
- "DO NOTHING" ALTERNATIVE An alternative which refers to the existing state of the system.
- <u>ECONOMIC ANALYSIS</u> Determination of the cost-effectiveness of a project by comparing the benefits derived and the costs incurred by a project.
- <u>EFFECTIVENESS EVALUATION</u> A statistical and economic assessment of the extent to which a highway safety project of program achieves reduction in the number and severity of accidents (accident-based evaluation), or the intermediate impact of a project on observed traffic operations and road user behavior (non-accident based evaluation).
- EFFECTIVENESS MEASURES Indications of the extent to which program objectives are being attained.
- EIS Environmental Impact Statements.
- 85TH PERCENTILE SPEED Vehicle speed at which 85 percent of vehicles drive at or below. It is commonly used in assigning speed limits for a section of roadway.
- ENGINEERING Pertaining to highway and traffic engineering, includes design, construction, maintenance, and traffic engineering and other branches having to do with the physical highway plan.
- ENVIRONMENTAL BASED STUDIES A study that involves collection and analysis of all information related to the physical features of the roadway for specific spots, sections, and elements.
- <u>EPDO</u> Equivalent Property Damage Only Accidents. A measure of accident experience based on attaching weights to accident severity categories as multiples of property damage only accidents.
- <u>ERRATIC MANEUVER</u> An unusual action by a road user which could lead to a traffic accident.
- EVALUATION A comparison process that measures an item of activity against certain predetermined standards or criteria. A judgement of value or worth.
- EVALUATION COMPONENT (HSIP) The third of three HSIP components. This component consists of one process and four subprocesses which involves the determination of the effect of Highway Safety Improvements through the appropriate use of 1) non-accident based project evaluation, 2) accident based project evaluation, 3) program evaluation, and 4) administrative evaluation.
- EVALUATION OBJECTIVE A brief statement describing the desired outcome of an evaluation study.

EXPECTED RANGES (ER'S) - Estimates of the variance associated with accident reduction factors (See ACCIDENT REDUCTION FACTORS).

- "EXPECTED VALUE" ANALYSIS Method to define a pattern of accidents by developing an expected value or range of values of an accident characteristics from comparison sites and comparing these values to the study location.
- EXPOSURE The quantity of vehicles, vehicle-miles of travel or other volume and/or time related factor which measures the degree of vehicular exposure to a particular situation.
- FATALITY ACCIDENT An accident event involving at least one fatality.

FHPM - Federal-Aid Highway Program Manual.

- FIELD REVIEW The observance of field conditions at a site by reviewing the site conditions using either manual or photographic techniques.
- FOG INDEX An index used in the measurement of fog density by identifying the visual range of a study area under fog conditions.
- FREQUENCY Number of observations falling in a cell or classification category.
- FUNCTIONAL CLASSIFICATION Division of a transportation network into classes, or systems, according to the nature of the service they are to provide.
- FUNDAMENTAL OBJECTIVES Four evaluation objectives which should always be included in Accident-based evaluation. These objectives are to determine the effect of the project/program on; 1) total accidents, 2) fatal accidents, 3) injury accidents, and 4) property damage accidents.
- GAP Time or distance between successive vehicles in a traffic stream.
- <u>GAP ACCEPTANCE</u> The acceptance or use of a gap in a major stream of traffic by a minor stream traffic flow.
- <u>GAP DISTRIBUTION</u> The frequency and range of measured gaps in a traffic stream.
- <u>GAP STUDIES</u> A study conducted to measure the time headway or GAP between vehicles along a highway section (or at a point), and to analyze the GAP acceptance characteristics where a minor or alternate traffic stream intersects a major traffic stream.

GRADIENT - Ratio of vertical to horizontal lengths.

<u>GROUND LEVEL METHOD</u> - Filming method to obtain traffic data. Camera is usually situated on a pole above the area to be viewed so as to provide a clear visual picture of the location's activities.

- HAZARD Conditions which exist on the highway system which are conducive to future accident occurrences.
- HAZARDOUS LOCATION Highway spots, intersections or sections experiencing abnormally high accident occurrences or potential.
- HAZARDOUS ROADWAY FEATURES INVENTORY METHOD A technique of selecting sites with a potential for high accident severity or numbers on the basis of identification of hazardous roadway features; Narrow Bridges, Steep Roadside Slopes, etc.
- HEADWAY Distance between successive vehicles in a traffic stream.
- HIGH COST PROJECT Major highway safety projects which require a significant initial cost outlay. Examples include lane additions, bridge replacements, roadway alignment changes, constructing highway grade separations, etc.
- HIGHWAY CAPACITY MANUAL (Highway Research Board Special Report No. 87). It displays associated tables, charts, and formulas required to assess the level of service for freeway, ramp, weave sections, roadway links, and signalized intersection areas.
- HIGHWAY SAFETY GOAL Expected safety improvements resulting from a highway safety program.
- HIGHWAY SAFETY PROJECT One or more remedial countermeasures instituted to improve specific safety deficiencies on the highway or its environs.
- HIGHWAY SAFETY TREATMENT A single remedial countermeasure instituted to improve the overall safety environment of the highway system.
- HISTOGRAM Graphical method for describing a set of data.
- HIGHWAY, STREET, OR ROAD A general term denoting a public way for purposes of vehicular travel, including the entire area within the rightof-way.
- HOURLY VOLUME Volume of vehicular or pedestrian traffic for a 60-minute or one-hour period.
- HSIP Highway Safety Improvement Program, defined in FHPM 8-2-3.
- HYDROPLANING A condition where one or more tires of a moving vehicle are separated from the pavement by a film of water; usually due to a combination of depth of water, pavement surface texture, vehicle speed, tread pattern, tire pressure, and other factors.
- IMPLEMENTATION COMPONENT (HSIP) The second of three components. This component consists of one process and three subprocesses which involve; 1) the scheduling, 2) the design and construction, and 3) the operational review of project(s).

<u>IMPLEMENTATION SCHEDULE</u> - A listing of the events needed to complete a particular project activity. The listing is arranged in a chronological sequence according to the time for initiating each event and with an estimated time of completion.

INJURY ACCIDENT - An accident event involving an injury (Type A,B,or C) as the most severe characteristic.

INPUT-OUTPUT METHOD - Method of measuring the intersection travel time by sampling the vehicles as they enter into and exit from the study area.

INTERCHANGE - A system of interconnecting roadways in conjunction with one or more grade separations, providing for the movement of traffic between two or more roadways on different levels.

<u>INTERSECTION</u> - The general area where two or more highways join or cross within, which are included in the roadway and roadside facilities for traffic movements in that area.

INTERSECTION SIGHT DISTANCE - The measured clear sight distance in and around the intersection to provide safe movement.

INTERSECTION VOLUMES - The traffic volume, vehicular or pedestrian, recorded through the intersection area.

<u>INVENTORIES</u> - List of items or occurrences such as roadway and roadside features, accidents, high accident locations, etc.

ITE - Institute of Transportation Engineers.

- LAG The interval of time between the arrival of a minor stream vehicle and the arrival of a major-stream vehicle at a reference point in the area where the streams either cross or merge.
- LANE DISTRIBUTION The distribution of traffic by specific lane along a roadway or at an approach.

LANE OCCUPANCY - A measurement of vehicle presence within a zone of detection, usually expressed as the percent of time a given point or area is occupied by a vehicle.

<u>LEVEL OF CONFIDENCE</u> - Probability of accepting the null hypothesis when it is true $(1-\infty)$.

LEVEL OF SERVICE - Denotes any one of an infinite number of differing combinations of operating conditions that may occur on a given lane or roadway when it is accomodating various traffic volumes. It is a qualitative measure of the effect of a number of factors including speed, travel time, traffic interruptions, freedom to manuever, safety, driving comfort and convenience, and operating costs. In practice, selected levels are defined in tems of particular limiting values of certain of these factors.

- LEVEL OF SIGNIFICANCE Refers to the outcome of specific statistical test of hypothesis.
- LIGHT METER Meter devised to measure the output of light intensity of a light source.
- LOCAL STREET OR LOCAL ROAD A street or road primarily for access to residential, business, or other abutting property.
- LOCATION The name given to a specific point on a highway for which an identification of its linear position with respect to a known point is desired. A location may be where an accident occurred, where a roadway characteristics (such as surface width) changes, where an operational characteristics (such as traffic volume) changes significantly or where some maintenance activity started or ended.
- LONG-RANGE TRANSPORTATION PLAN A 10- to 20-year plan that has specific goals, is system- and major-project oriented, and includes the highest priority projects and a funding projection indicating that funds will probably be available for the plan's completion.
- LOW COST PROJECT Highway safety projects which require low or moderate initial cost outlays. Examples include pavement edgelining, traffic signal timing modifications, traffic sign installation, roadway delineator installations, etc.
- MAJOR CAUSAL FACTORS Specific hazardous elements associated with the highway, environment or vehicle, or actions associated with the road user which describe why an actual or potential accident problem exists.
- <u>MAJOR CONTRIBUTORY FACTOR</u> Elements or activities which lead to or increase the probability of a failure in the road user, the vehicle or the highway environment.
- MAJOR STREET OR MAJOR HIGHWAY An arterial highway with intersections at grade and direct access to abutting property and on which geometric design and traffic control measures are used to expedite the safe movement of through traffic.
- MANUAL COLLISION DIAGRAM Diagram displaying accident events at a site as manually prepared by an individual.
- MANUAL METHODS Method to obtain traffic data by physically obtaining data on-site.
- MEAN Average of a set of measurements. The symbols X and U denote the means of a sample and a population, respectively.
- <u>MEASURE OF EFFECTIVENESS (MOE)</u> A measurable unit or set of units assigned to each evaluation objective. The data collected in the units of the MOE will allow for a determination of the degree of achievement for that objective.

MECHANICAL VOLUME COUNTER - A mechanical device used for volume data collection when data are to be collected over long periods of time.

<u>MEDIAN</u> - The portion of a divided highway separating the travelled ways for traffic in opposite directions.

MEDIAN SPEED - 50th percentile or middle value in a speed distribution pattern, i.e., one-half of the observed values are higher than the median and one-half are lower.

MIDBLOCK VOLUME - Volume of traffic recorded on a roadway link between two major intersections.

MODAL SPEED - Speed at which greatest frequency of observations occurs. The speed most frequently observed.

MODELLING - Means of identifying a relationship in an event using mathematical tools.

MONITORING - The process of checking the actual progress and comparing it with the scheduled progress.

- MOVING VEHICLE METHOD Means to determine travel times and approximate volumes along a roadway facility by driving in a traffic stream and computing the necessary information using recorded values of opposing volumes, passed traffic volumes, passing traffic volumes, and time.
- <u>MULTI-DISCIPLINARY INVESTIGATION TEAM</u> A group of two or more analytical personnel with at least one representative from the engineering and enforcement agencies and, if desired, representatives from other agencies assigned to advise and assist in the analyses of crash occurrences and in recommendations and evaluations of corrective measures.

MUTCD - Manual of Uniform Traffic Control Devices

NCHRP - National Cooperative Highway Research Program: an objective national highway research program supported by participating member states and the Federal Highway Administration.

<u>NEED</u> - A deficiency which should be corrected in the interests of public safety.

<u>NET BENEFIT</u> - A measure of cost-effectiveness, gross benefit minus improvement cost.

NHTSA - National Highway Traffic Safety Administration.

NODE - An intersection of two major streets.

NON-ACCIDENT MEASURE - A measurable unit of safety which is logically related to accident measures such as traffic performance and operation (travel time, delay and speeds) and road user behavior (traffic control violations and erratic maneuvers). <u>NON-CORRECTABLE ACCIDENTS</u> - Accidents of a random nature which are not specifically amenable to correction by a countermeasure.

NORMAL DISTRIBUTION - A symetrical bell-shaped probability distribution. Many events in nature have frequency distributions which closely approximate the normal distribution.

NSC - National Safety Council.

- <u>NULL HYPOTHESIS</u> The hypothesis, tested in statistical analysis, assumes that there is no difference between the before and after accident experience.
- <u>OBJECTIVE</u> The specific accident or severity measures which are to be evaluated by the evaluation study. There are two types of objectives: 1) Fundamental objectives refer to those measures which must be evaluated in all studies. They are total accidents, fatal accidents, personal injury accidents and property damage only accidents; 2) Objectives relating to project purposes. These objectives may include one or more of the purposes of the project (See PURPOSE).

OPERATIONAL NON-ACCIDENT MEASURE - (See NON-ACCIDENT MEASURE)

- OPERATIONAL REVIEW (IN THE IMPLEMENTATION COMPONENT) The observation and adjustment of constructed countermeasures for the purpose of ensuring smooth and safe traffic flow at the location(s) and that the improvement was constructed as designed.
- <u>PACE</u> The 10 mile-per-hour range in speeds containing the highest number of recorded observations.
- <u>PASSING SIGHT DISTANCE</u> Design standard for a given speed to permit safe passing conditions along a section of roadway.
- PATH TRACE METHOD Method of obtaining travel time and delay information by following a single vehicle's path and recording the appropriate travel time and delay characteristics.
- PCR (PAVEMENT CONDITION RATING) Method of deriving the serviceability of a pavement as a function of cracking, ravelling, rutting, base failures, and other characteristics and comparing to standard values.
- <u>PEAK-HOUR VOLUMES</u> Hourly traffic volumes during the highest or peak travel periods at a location.
- PEDESTRIAN CONFLICT Traffic conflict resulting from a pedestrian movement in an area (See TRAFFIC CONFLICT).
- PEDESTRIAN VOLUMES Volume count of pedestrian movement at a location.
- PERMANENT COUNTERS Traffic counters permanently installed at a location to record volume (and other data) over a long period of time. They may be used to obtain control counts for volume expansion purposes.

PERMITTED ERROR - Allowable difference (measured in percent) in results obtained by sampling methods.

<u>PHOTOGRAPHIC TECHNIQUES</u> - Method of data collection involving the use of film processes, ground level or aerial. It provides a film record of a highway situation.

<u>PHOTOLOGGING</u> - A technique that involves taking photographs of the highways and its environment from a moving vehicle at equal increments of distance.

- PLANNING COMPONENT (HSIP) The first of the three HSIP components. This component consists of four processes (and associated subprocesses) which involve; 1) identifying hazardous locations and elements, 2) conducting engineering studies, 3) developing candidate countermeasures, 4) developing projects based on the candidate countermeasures, and 5) prioritizing the developed safety improvement project.
- <u>POISSON DISTRIBUTION</u> A distribution which often appears in observed events which are very improbable compared to all possible events, but which occur occasionally since so many trials occur, e.g., traffic deaths, industrial accidents, and radioactive emissions. The mean and variance of the poisson distribution are equal.
- <u>POINT-SAMPLE METHOD</u> Means to obtain delay data by sampling vehicles at an approach in successive time intervals.

<u>PORTABLE COUNTERS</u> - Mechanical counters able to be installed from site-tosite. They are usually lightweight and able to be handled by a single person.

<u>POPULATION</u> - The total set of items defined by a characteristics of the items.

<u>PRIORITY RANKING</u> - The overall process of producing a rank order of priority projects and project sections, using technical and non-technical, quantifiable and non-quantifiable factors as the criteria for ranking.

PRIORITY RATING - A complex rating for evaluating or comparing projects.

<u>PROBABILITY DISTRIBUTION</u> - Representation of the theoretical frequency distribution for a random variable.

<u>PROCEDURE</u> - Possible ways in which each of the processes or subprocesses may be attained. For example, the procedure for conducting engineering studies (Process 3-Planning Component of HSIP) are: accident-based, traffic-based, environment-based, and special study procedures.

PROCESS - The sequential elements within each component of the HSIP.

<u>PROGRAM</u> - A group of projects (not necessarily similar in type or location) implemented to achieve a common highway safety goal of reducing the number and severity of accidents and decreasing the potential for accidents on all roads.

- PROGRAMMING The matching of available projects with available funds to accomplish the goals of a given period.
- <u>PROGRAMMED PROJECTS</u> A highway safety project, formally planned for implementation at some point in time. Projects contained in the Annual Work Program (AWP) are programmed projects.
- <u>PROGRAM/PROJECT BENEFITS</u> A measure of the positive effect of a highway safety program or project given in terms of accident measure reduction.
- <u>PROJECT</u> One or more countermeasures implemented to reduce identified or potential safety deficiencies at a location on the highway or its environs. Also, a project may consist of identical countermeasures implemented at several similar locations, which have been grouped to increase the evaluation sample size.
- <u>PROJECT IMPACT</u> Project effectiveness in achieving the evaluation objectives; also any unexpected consequences of the project such as public reaction.
- PROJECT JUSTIFICATION STATEMENT A formal statement of the perceived need for implementing a particular highway safety project. This statement is generally submitted to State funding agencies as a request for project funding. The statement generally provides a quantitative justification in terms of the existing adverse conditions (accidents) as well as the expected benefits to be derived from the project.
- <u>PROPERTY DAMAGE ACCIDENT</u> Accident event involving only property damage between the involved vehicles.
- <u>PSI (PAVEMENT SERVICEABILITY INDEX)</u> Measured index to determine the serviceability of a roadway as a function of cracking, rutting, ravelling, and other pavement characteristics.
- PSR (PAVEMENT SERVICEABILITY RATING) Subjective evaluation of pavement rating based on a O to 5 scale with 5 having the most desirable characteristics.
- PURPOSE The reason for which the highway safety project was implemented. The purpose refers to the reduction or elimination of a specific highway safety deficiency such as a type of accident, a severity class, a hazard potential indicator and/or a traffic performance variable.
- QUEUE LENGTH STUDIES A study that identifies the number of vehicles that are stopped in a traffic lane behind the stop line at an intersection.
- RADAR METER Meter device used to collect spot speed information. Based on the Doppler principle, it provides a direct reading of the vehicle speed.
- RANDOM SELECTION A process by which every element in a population has an equal probability of being chosen.

- RANGE OF A SET OF MEASUREMENTS Difference between the largest and smallest members of the set.
- <u>RATE-OF-RETURN METHOD</u> A form of economic evaluation based upon the computation of the interest rate at which the net present annual worth of the project minus the improvement cost is equal to zero.
- <u>RAVELLING</u> Loss of material in the surface of the pavement resulting in a coarse or pitted pavement texture or loss of material at the edges or joints of the pavement
- <u>REFERENCE POINT</u> A fixed, identifiable feature, such as an intersection, railroad crossing, or bridge, from which a location can be measured or referenced.
- <u>RESOURCE EXPENDITURES</u> Elements used in the implementation of a project of program such as: 1) the level of manpower involvement, 2) the amount of time used to complete specific activities or meet implementation milestones, 3) the quantities of materials used, and 4) the cost of manpower materials.
- <u>RIGHT-OF-WAY</u> A general term denoting land, property, or interest therein, usually in a strip, acquired for or devoted to transportation purposes.
- ROADSIDE A general term denoting the area adjoining the outer edge of the roadway. Extensive areas between the roadway of a divided highway may also be considered roadside.
- <u>ROADSIDE CONTROL</u> The public regulation of the roadside to improve highway safety, expedite the free flow of traffic, safeguard present and future highway investment, conserve abutting property values, or preserve the attractiveness of the landscape.
- ROADWAY (GENERAL) The portion of a highway, including shoulders, for vehicular use. A divided highway has two or more roadways. (In construction specifications, the portion of a highway within limits of construction).
- <u>ROUGHNESS INDEX</u> A number which provides a measure of roughness developed from the study of highly irregular pavement surface.
- RUTTING Depression or wear of the pavement in the wheel tracks.
- SAFETY PROBLEM Specific types of accidents or potential accidents which result from the existence of a causal and/or contributory factor.
- <u>SALVAGE VALUE</u> Estimated residual worth of program or project components at the end of their expected service lives.
- <u>SAMPLE</u> A subgroup of the population. A finite portion of a population or universe.

- <u>SCHEDULING (IN THE IMPLEMENTATION COMPONENT)</u> The determination of when highway safety projects (individually or as part of a program) should be started and completed under real-world constraints.
- <u>SCHOOL ROUTE MAP</u> Map displaying safe school routes for pedestrians in traversing to and from school. It is devised to minimize conflicts between pedestrians and potential safety hazards.
- <u>SERVICE LIFE</u> The period of time, in years, in which the components of a program or project can be expected to actively affect accident experience.
- SERVICE VOLUME Volume of traffic serviced by a highway facility.
- <u>SEVERITY INDEX</u> A number computed from applying weighting factors to injury and fatality accidents based on their severity.
- <u>SEVERITY WEIGHTING METHOD</u> Means to rate the hazardousness of a specific accident pattern by assigning weight values for the severity occurrences of the accidents.
- <u>SHOULDER</u> The portion of the roadway continuous with the travelled way for accomodation of stopped vehicles for emergency use, and for lateral support of base and surface courses.
- SHORT-TERM VOLUMES Volume count, vehicular or pedestrian for a period shorter than one-hour. It, typically, is in the range of 5 to 15 minutes.
- SKEWNESS The distribution pattern of a speed/frequency curve. A larger group of similar speed values will represent more favorable conditions.
- <u>SKID NUMBER</u> The coefficient of friction times 100 (100X) of a tire sliding on wet pavement when tested at 40 mph with a two wheel skid trailer or equivalent device following the procedures outlined in ASTM E274-65T.
- <u>SPECIAL STUDY PROCEDURES</u> Procedures required in special engineering situations but are not classified as one of the other procedures.
- <u>SPOT MAPS</u> Maps often used by police and other public agencies to provide a quick visual picture of accident concentrations identified through "spot" marks or pins on a street map.
- STANDARD One of the 18 Highway Safety Programs Standards promulgated by the Department of Transportation to implement the Highway Safety Act of 1973, 23 USC 402.

- <u>STANDARD DEVIATION</u> Measure of data variation. Square root of the variance. It represents the population standard deviation. S represents the sample standard deviation.
- STATISTICAL SIGNIFICANCE The determination of whether an observed change in a MOE (by use of a selected statistical technique) constitutes a significant change within a selected level of confidence.
- STOPPED DELAY Time vehicle is stopped, with locked wheels. It is equal to the stopped time.
- STOPPING SIGHT DISTANCE Safe sight distance required for a vehicle to stop along a section of roadway upon sighting an object which will require the vehicle to stop.
- <u>SUBPROCESS</u> Specific activities which are contained within certain Processes. For example, under Process 3 of the Planning Component, the three subprocesses are: (1) Collect and Analyze Data; (2) Develop Candidate Countermeasures; and (3) Develop Projects.
- <u>SURFACE CRACKING</u> Breaks in the pavement resulting from structural failure or general weathering of the pavement.
- TECHNIQUE Feasible means to perform a selected procedure. For example, the volume study procedure may be performed by: mechanical methods, manual counts, photographic techniques, or the moving vehicle method.
- TEST-CAR TECHNIQUE Methods to obtain travel time and delay information by physically driving a vehicle within a traffic stream and measuring the appropriate travel time and delay characteristics.
- THROUGH STREET OR THROUGH HIGHWAY Every highway or portion thereof on which vehicular traffic is given preferential right-of-way, and at the entrances to which vehicular traffic from intersecting highways is required by law to yield right-of-way to vehicles on such through highway in obedience to either a stop sign or yield sign.
- TIME-IN-QUEUE DELAY Time from first stop to vehicle's exit across "STOP" line. It is equal to the time spent in the queue.
- TIME-OF-RETURN (TOR) METHOD A form of economic evaluation in which expected accident reductions are forecast using data from previous beforeand-after accident studies and a TOR value is computed by dividing the estimated cost of the project by the computed annual benefit. Projects with the lowest TOR values are considered to be the best.
- TRAFFIC CONFLICT A traffic event involving two or more road users, in which one user performs some atypical or unusual action, such as a change in direction or speed, that places another user in jeopardy of a collision unless an evasive maneuver is undertaken.

- TRAFFIC CONTROL DEVICE A sign, signal, marking, or other device places on or adjacent to a street or highway by authority of a public body or official having jurisdiction to regulate, warn, or guide traffic.
- TRAFFIC ENGINEERING MEASURES Engineering procedures for controlling or regulating the movement, direction, speed, right-of-way, and parking of vehicular traffic and, where applicable, pedestrian traffic on streets and highways. This includes such elements as one-way streets, turn controls, reversible lanes, crosswalks, etc.
- TRAFFIC LANE OCCUPANCY STUDIES Studies that provide a measure of the traffic performance of a highway facility as a function of vehicles lengths, volumes, and speed.
- TRAFFIC OPERATIONS-BASED STUDIES Studies which provide essential information to assist in the selection of the most appropriate safety improvements at identified hazardous locations.
- ULTIMATE SAFETY OBJECTIVES A significant reduction in the number and severity of accidents.
- UTILITY INDEX A means to provide a quantitative assessment of alternatives including non-quantifiable variables by assigning weights to each variable, setting a level value to each variable, multiplying the level value by the weight assignment, summing the values, and comparing them to each other.
- <u>VARIANCE</u> Measure of data variation. T^2 represents population variance S^2 represents sample variance.
- <u>VEHICLE DELAY-RELATED COSTS</u> Costs associated with the occurrence of delay at a location. It includes the extra vehicle costs (fuel, tires, etc.) and "time lost" costs to an individual.
- VIDEOLOGGING A technique that involves taking video tape pictures of highways and its environment as a substitute for photologging.
- <u>VOLUME</u> The number of vehicles passing a given point during a specified period of time.
- <u>WARRANTS</u> The minimum conditions which would justify the establishment of a particular traffic control regulation or device, usually including such items as traffic volumes, geometrics, traffic characteristics, accident experience, etc.

B-17

APPENDIX C: PROCEDURE AND DATA OBTAINED

PROCEDURE

<u>A. Accident-Based Procedures</u>

.

Accident Summary By Type

. Accident Summary By Severity

- Summary of accident data by specific accident type at a location.
- . Identified accident patterns or trends by accident type.
- . Possible accident causes.
- Summary of accident data by severity characteristics.
- . Identified severity patterns or trends for a location.
- Weighted accident characteristics for a location.

circumstances by accidents at a

Identified patterns or trends of contributing circumstances.
Possible accident causes.

. Possible accident causes.

. Summary of contributing

 Accident Summary by Contributing Circumstances
 List of "correctable" and noncorrectable" accidents at a

 Accident Summary by Environmental Conditions

. Accident Summary By Time Period

characteristic patterns or trends for a location.

site.

location.

. Possible accident causes

. Identified environmental

• Summary of accident data by environmental characteristics.

- . Summary of accident by time of . day, day of week, or month of year.
- . Identified time period accident patterns.
- . Possible accident causes.

C-1

DATA OBTAINED

APPENDIX C: PROCEDURE AND DATA OBTAINED (CONT'D)

PROCE DURE

DATA OBTAINED

B. Field Review Procedure

- Safety Performance Study
- . Review and notes of physical and operational characteristics of a study location.
- Possible accident causes.

C. Traffic-Based Procedures

- . Volume Study
- Spot Speed Study

. Travel Time And Delay Study

- Roadway And Intersection Capacity Study
- . Traffic Conflict Study

- . Vehicular volume data by time period, location, or classification of vehicles.
- . Pedestrian volume data by time period and location.
- Spot speed characteristics (median speed, modal speed, 85th percentile speed, skewness, pace).
- Speed distribution pattern.
- . Assessment of safe speed conditions.
- . Probable accident causes.
- Travel time characteristics (travel time, approach time, approach free flow time, travel speeds.)
 . Delay characteristics (approach
- delay, stopped delay, time-inqueue delay, percentage of vehicles stopping).
- . Operating level of service of a roadway facility,
- . Major delay points.
- Probable accident causes.
- Capacity of facility.Available service volume at various levels of service.
- . Operating level of service of facility.
- . Probable accident causes.
- . Summary of conflicts, conflict rates, conflict types.
- Conflict diagram displaying conflict types.

ADDENDIY C. DROCEPURE (NO	
APPENDIX C: PROCEDURE AND	DATA UBLAINED (CUNI'D)
PROCEDURE	DATA OBTAINED
. Traffic Conflict Study	 Probable accident causes. Possible safety-related countermeasures.
. Gap Study	 Gap distribution of major and/or minor stream vehicles. Lag distribution of merging, crossing or weaving traffic streams. Gap acceptance characteristics of a minor stream of vehicles. Critical gap or lag. Evaluation of safety at gap situations. Probable accident causes.
. Traffic Lane Occupancy Study	 Lane occupancy characteristics (density, occupancy). Operating level of service of facility. Probable accident causes.
• Queue Length Study	 Queue length characteristics. Possible operating level of service of facility.
D. Environmental-Based Procedures	
. Roadway Inventory Study	 Inventory of roadway and roadside characteristics. Observed field sight distance conditions. Required safe sight distance. Assessment of safe sight distance conditions. Sight obstructions. Probable accident causes.
. Skid Resistance Study	 Friction force of pavement at 40 mph and varying speeds. Assessment of pavement skig characteristics. Probable accident causes.

Assessment of lighting warranting conditions.

.....

. Highway Lighting Study

APPENDIX C: PROCEDURE AND DATA OBTAINED (CONT'D)

PROCEDURE

. Highway Lighting Study

- . Weather-Related Study

E. Special Study Procedures

School Crossing Study

- . Railroad Crossing Study
- . Traffic Control Device Study
- Bicycle and Pedestrian Study

- DATA OBTAINED
- Assessment of adequacy of existing light.
- Assessment of need for new or additional lighting.
- . Probable accident causes.
- . Conflict data under specific conditions.
- Safe sight distance under specific conditions.
- Predicted visual range for for conditions.
- . Probable accident causes.
- . Pedestrian demand at crossing.
- Available safe crossing gaps at crossing.
- . Pedestrian conflict data.
- . Assessment of crossing protection needs.
- . Probable accident causes.
- . Railroad crossing site review.
- Review of sight visibility triangle.
- . Probable accident causes.
- Observance characteristics of traffic control by drivers or pedestrians.
- . Probable accident causes.
- Conflict data for specific situations.
- . Review of operations.
- . Probable accident causes.

F. Countermeasure Selection Procedures

- Accident Pattern Tables
 List of general countermeasures.
 List of feasible countermeasures.
 - C-4

APPENDIX C : PROCEDURE AN	D DATA OBTAINED (CONT'D)
PROCEDURE	DATA OBTAINED
• Multi-Disciplinary Investigation Team	 Determination of probable causes and countermeasures by individual team members. Determination of probable causes and countermeasures by team.
G. Economic Analysis Procedures	
. Cost-Effectiveness Method	 Annual safety benefits (accidents saved). Equivalent uniform annual cost of present worth of costs. Cost-effectiveness ratio.
. Benefit-To-Cost Ratio Method	 Annual safety benefits (accidents saved and dollar value). Equivalent uniform annual cost and equivalent uniform annual benefit. Present worth of cost and present worth of benefit. Benefit-to-cost ratio.
. Rate-Of-Return Method	 Annual safety benefits (accidents saved and dollar value). Capital recovery factor of improvement. Expected rate-of-return of improvement investment.
. Time-Of-Return Method	 Annual safety benefit (accidents saved and dollar value). Expected time-of-return of investment as based on expected benefits.
. Net Benefit Method	 Annual safety benefits (accidents saved and dollar value). Average annual benefits. Average annual costs. Net benefit derived from improvement.

C-5

I. PHOTOLOGGING

• Field Work

In photologging, an instrumented vehicle with a 35mm cine/pulse type camera is driven along the roadways and pictures are taken with a typical frequency of 100th or 200th of a mile (0.016 or 0.008 kilometers). These films become a permanent record of the roadway and its environment as seen during the day of the photologging. The photologs are then analyzed in the office under a controlled environment by technicians and analysts trained to perform the evaluation phases which are generally done in the field by a manual method.

There are two different types of photologging equipment available today. The first generation photologging method includes a 35mm cine/pulse camera connected to distance measuring equipment, and a control box which can directly input the mileage information dynamically in each frame of the photograph. Other information, such as: the roadway direction listing, roadway name, date of filming, route number, etc. also appears on each photograph.

Second generation systems include not only the data which can be obtained in the first generation, but also, other dynamic information, such as readway roughness, superelevation, curvature, grade etc., displayed on each photograph.

The field work in most photologging methods involves filming the roadway using a first generation type photolog system. Only one person is normally required in the photolgging field work. Based on past experience, the use of a 2 person crew increases the probability of error in filming due to an increase of conversation by the photologgers. To insure an easier and more accurate data extraction capability, photologging is usally performed using a 1/200th of a mile filming rate.

Data Extraction

The extraction of data in the photologging technique involves the viewing of the photolog film frame by frame to observe and/or evaluate the required data items. The mileage, distance from vehicle, lateral distance from roadway, and other pertinent features are recorded from the film onto inventory sheets provided for direct entry of the data onto computer files. The distance from vehicle and lateral placement measurements are obtained from a graduated grid, overlayed on the viewer. The use of an audio system, coordinated with the filming process, can be made to record other data, in particular, data unable to obtained accurately from a review of the film record.

Check Of Accuracy

Photologging, typically, results in a longitudinal error of several feet over the course of the study area and a lateral placement error of less than 1 foot if the object is within 5 feet of the eage of the roadway and ± 1 foot if the object was beyond the 5 foot range. Color quality of the film is excellent and, thus, permits an accurate assessment of various conditions. Detailed information is able to be accurately noted.

Summary

Photologging provides a cost effective technique for use in developing most computerized information systems. It provides pictorial records of the inventoried roadway system which are capable of use for other than for the inventory purpose. They can limit the use of field trips to check data. To-date, they have been used to extract over five different inventory types (sign, roadway, obstacle, pavement markings, etc.).

Photologging, due to the utilization of a single-man crew for the data collection activities, can be an inexpensive alternative. It is recommended for use when inventorying more than two information types, i.e., sign, roadway, etc.

II. VIDEOLOGGING

Field Work

Videologging is another pictorial technique for data collection. Video camera systems are mounted in either an automobile or van and the pictures recorded on video tapes. With this system the data collectors have an option of verbally recording any additional information that may be pertinent to the data base, on the video tape itself. Videologging systems are available in both black and white as well as color. The color, 3/4 inch video tape format seems to have the most potential for the type of data collection necessary to develop roadway information systems.

In this method, a two person crew is normally utilized in a vehicle equipped with a distance measuring device. The display of the elapsed distances from the DMI are made a part of the picture. The driver of the vehicle observes the roadway and roadside features and selects a driving speed which is sufficient for the second person to record any necessary audio data to supplement the picture.

Data Extraction

For the videologging technique, data extraction is very similar to the photolog procedure. The video tapes are played back on the TV monitors and viewed in a controlled, office environment. The data is recorded onto inventory sheets for entry onto the computer. Lateral placement of signs and obstacles are obtained using a grid overlay as is the distance from vehicle in high information areas. In areas where information density is low, the technician providing verbal comments could "mark" a feature on the audio track. However, in areas where information is more frequent, too many "marks" occur on the audio track under operation at the normal travel speeds. This can be alleviated by slowing or stopping the vehicle, which in turn, lowers productivity and increases the cost of this phase of work. The value of the input of the information on the audio track tends to offset the productivity costs.

Data extraction times are slightly higher for videologging than photologging. The video tape must be in continuous operation to take advantage of the audio information. This requires the technicin to listen to the audio backup, and then view the tape. Audio data may be required in describing information as the resolution of the viedolog system used may not be comparable to the degree of resolution found in the 35mm photolog systems.

Check Of Accuracy

Videologging tends to produce results similar to photologging. The accuracy of distance measurements is similar as in photologging. Data concerning general descriptive characteristics is also very good; however, the lack of visual detail, as compared to photologs, does lead to some inaccuracies in defining details. Reliance on audio comments is required for some of this data.

Summary

Videologging provides a cost effective technique for use in developing most computerized information systems. As in the photologging alternative, it provides a pictorial record of the inventoried roadway system which are capable of use for other than for the inventory purpose. Videologs provide the capability for an audio comment, but lack the visual resolution capable in the photolog technique. As such, a limited amount of information may be obtained from a single data collection pass using the videologging procedure.

Videologging systems suffer from a problem related to the size of the highway system. Extraction of data from the video pictures supplemented by the audio records is quite confusing at times unless the data collector (person recording) and data extractor are very proficient. However, future improvements in video equipment which may permit the development of portable equipment capable of a resolution comparable to the 35mm photologs may tend to modify these conclusions.

III. OTHER PHOTOGRAPHIC TECHNIQUES

In addition to photo and video-logging techniques, other photographic methods are used to collect traffic data. These methods employ continuous or time-lapse filming to record traffic data during the selected periods. Application of these methods can occur from either an elevated position or an aerial view.

Field Work

In these photographic methods, a camera is positioned at an elevated position or an aerial view within range (view) of the study area. In an elevated position, use of existing poles or structures are made to attach the camera. The aerial method uses a helicopter or airplane to fly or hover over the study area. A helicopter is able to remain more stationary while filming the data and is able to film the study area at a much closer visual range, thereby able to better depict traffic situations.

The filming process can be performed continuous or in a time-lapse interval. The continuous filming permits the data to be recorded continuously at a high speed film rate. Time-lapse methods allow for the intermittent filming of the traffic situations. This method is usually preferred. Time-lapse intervals for traffic safety purposes usually range from 0.5 - 3.0 seconds. Camera capabilities, however, permit the interval to be as high as 99.5 seconds. The time-lapse process will permit significantly more data to be accumulated in a single roll of film. To icentify time period characteristics in both processes, a timer, built into the camera, can be used to include the time-of-day information on each film frame or periodically.

Data Extraction

The extraction of data for these film processes are similar to the videolog and photolog methods. The film is able to be viewed frame by frame to observe and/or evaluate the required data items. However, it is primarily viewed in a continuous manner to obtain the required data. The data is projected onto a screen for extraction or review purposes. In some aerial methods, individual film frames of the study area are blown up and used to collect the pertinent data items. Distance information is obtained using a given reference point on the film record; however, unless the reference distance is situated at approximately ninety degrees to the camera, the distance information may result in a high degree of inaccuracy.

Check Of Accuracy

Where reference distances are used, the accuracy of the data is highly dependent on the dimensions of the study area and the camera angle to the reference distance. A greater area viewed within the camera range will typically result in greater inaccuracy. On a percentage basis, the error scale is typically less than ± 2 percent. This error is primarily due to camera parallax.

Summary

The elevated method of filming is used in widespread use in studying traffic situations. It allows filming of a large amount of data with little manpower required (except for set up/removal time and periodic checks of the camera's function). Time-lapse methods are more appropriate for these uses.

Aerial methods are not as favorable as the elevated position method. It is significantly affected by available flying time and can be used for only short survey periods (one hour or less). In many cases, the traffic data requires time consuming data extraction methods.

Appendix E

Table of various types of improvements and corresponding

accident types.

	INTERNECTION ACCIDENTS	`	INTERSECTION ACCIDENTS
Type of Accident -	Laft Ture Head Om Collision	(
Probable Causes -	 Bestricted eight distance due to presence of left turning treffic on the opposite 	Type of Accident -	Rear Rud Collisions At Unsignalized Intersections
	approach and improper channelization and geometrics.	Probable Causes -	i) Improper channelisation.
	2) Too shart saber shasa.		2) Righ volume of turning vehicles.
			3) Slippery surface. 4) Lack of adequate gaps due to high traffic volume.
	 Absence of special left turning phase when needed. 		from the apposite direction.
	4) Excessive speed on approaches.		5) Inadequate fateresction variants signa.
	-,		 Crossing pedestrians.
Study to be Parformed -	1) Anview emisting intersection channelization.		 Excessive spand on approaches.
and a second	2) Valums coust for thre traffic.		 Inadequate roadway lighting.
	3) Farform volume count for left terming traffic.	Study to be Performed -	1) Review existing chaunalization.
	4) Review signal physing.		 Review pedestrian signing and crosswalk marking. Perform turning count.
	5) Review intersection classance times.		 Fariors volume count for thru traffic.
	6) Study mand for epacial left turn phones.		5) Check skid resistance.
			6) Perform spot spoel study.
	 Study capacity of the intersection approaches in question for possible wilti-phase operation. 		7) Check for adequate drainage.
	8) Perform spot spest study.		8) Check roadway illumination.
Possible Counter Hessures -	2} Provide adoquete chesnelisation.	Possible counter measures +	1) Greate right or left turn lanas.
	2) Install traffic signal if warranted by MJTCB.		2) Increase curb radii.
			 Prohibit turns (study possible edvetes effects on other averby locations).
	3) Provide left turn ploze.		4) Provide "Slippery When Met" signs. (interim weasu
	4) Install stop signs if worranted by MUTCE.		5) Increase shid resistance. Only)
	5) Increase autor plase.		6) Improve drataage.
	6) Provide special phase for left turning traffic.		 Justail or improve eigning and marking of pedestric crosswelks.
	7) Widen road.		 Roduce speed limit on approaches then justified by spot apond studius.
	8) Prohibit left turns (study possible adverse effects on other nearby intersections).		 Provide sevence intersection warning signs.
	 Hodute speed limit on approaches if justified by open speed nudy. 		10) Improve condway lighting.
	10) Reroute left turn traffic.		(costimued)
	11) Provide all red phuse.		

Source: Datta, T.K., A PRocedure for the Analysis of High- Accident Locations for Traffic Improvements, 1976.

년 | |----

Pype of Accident - Barr End Collision at Signalised Intersections 9 Frouble production sub - foct' unit functions 9 Frouble concert 10 Increase about phone. 10 Increase approximation and progression. 10 Indication and progression. 10 Indicati appart andin. 10 Indicati appart at		INTRASECTION ACCIDENTS		INTERSECTION ACCOUNTS
13) Frontide traffic signal if warmaniad by PATCD. Function Control Instances 6) Taskell of there existing and marking of palare controls. Type of Accident - here fod Collision of Signalized Externections 10) Increase make phase. 10) Increase make phase. Trothal Control. 1) Septor signal times. 1) Septor signal times. 10) Increase make phase. 10) Increase make phase. Trothal Control. 1) Septor signal times. 1) Septor signal times. 11) Fordide proper signalized progression. 1) Septor signal times. 1) Septor signal times. 11) Increase and progression. 11) Increase and progression. 1) Septor signal times. 1) Septor signal times. 11) Increase and progression. 11) Increase and progression. 1) Septor signal times. 1) Septor signal times. 11) Increase and progression. 11) Increase and progression. 1) Septor signal times. 1) Septor signal times. 11) Increase and progression. 11) Increase and progression. 1) Septor signal times. 1) Increase and progression. 11) Increase and progression. 11) Increase and progression. 1) Sector signal times. 1) Increase and signal times. 11) Increase and signal times. 11) Increase and signal times. 1) Increase and time states. 10 Crease right or signal times.	Type of Accident -	Rear Mod Collisions At Unsignalized Intersections	Type of Accident -	Mean End Collision at Signalized Intersections
Type of Action: - Rear End Collision at Signalized Intersections Provide product rease maker phase. B Provide product rease maker phase. Provide product rease maker phase. B) Provide product rease maker phase. B) Provide product rease maker phase. B) B) B) B) <	Possible Counter Measures -	11) Provide stop signs if warranted by MUTCD.	1	
Type of Actident - Hear End Collision at Signalized Intersections 10) Increase maker phase. Projubile Guesse 1) Improper signal timing. 11) Fordia special phase for last turning traffice. 1) Top visibility of signal indication. 11) Fordia special phase for last turning traffice. 1) Suppoper signal timing. 11) Fordia special phase. 1) Top visibility of signal indication. 11) Fordia special phase. 1) Suppoper signal timing. 11 1) Excessive special special phase. 11 1) Top oper signal timing. 11 1) Top oper signal timing. 11 1) Top oper special special phase. 11 1) Top oper signal timing. 11 1) Top oper special specia		12) Provide profice signal if warranted by RUTCD.	Possible Counter Messures -	 Install or improve signing and marking of pedestri crosswalks.
Probable Gaussing 1) laproper signal taking. 1) Provide proper signal taking. 12) 1) Crossing podestrian. 13) 4) Lipsery surface. 13) 5) Crossing podestrian. 14) 6) Lipsery surface. 13) 6) Lipsery surface. 13) 6) Lipsery surface. 13) 1) Landsquise charaction. 14) 1) Landsquise charaction. 15) 1) Landsquise charaction. 15) 1) Landsquise charaction. 16) 1) Landsquise charaction. 17) 1) Landsquise charaction. 18) 1) Landsquise charaction. 18) 1) Landsquise charaction. 18) 1) Landsquise charaction. 18) 1) Landsquise charaction. 19) 1) Landsquise charaction. 19) 1) Landsquise charaction. 19) 1) Landsquise charaction. 10) 1) Landsquise charaction.	Type of Accident -	Bear End Collision at Signalized Intersections		• • •
 a) Foor visibility of sight indication. b) before special indication. c) Crossing pediatrians. c) High volues of turning volutions. c) High volues of turning volutions. c) Encentive special as approaches. c) Encentive special estimation. c) Encentive special estimation. c) Encentive special estimation. c) Encent estimation as approaches. c) Encent estimation. <li< td=""><td>Probable Causes -</td><td>1) Improper signal timing.</td><td></td><td></td></li<>	Probable Causes -	1) Improper signal timing.		
 b) Crossing podestrians. b) High volume of turning volucions. b) High volume of turning volucions. b) Silpery surface. b) Silpery surface. b) Silpery surface. c) Excessive speed on approaches. c) Excessive speed station. c) Excessive speed study. c) Excession speed study. c) Check speed study. c) Check for adopted stations. c) Excess statistics. c) Check readver statistics. c) Excess statistics. c) E		Poor visibility of signal indication.		
 b. Kressive spad on approaches. b. Kressive spad on approaches. c. Kressive spad on approaches. c. Kressive spad on approaches. c. Kressive spad spad standsiterion. c. Kressive spatial backs. kressive spatial back				14) Install backplates, larger lens, louvers, visors, etc. on traffic signal to improve contrast and
 7 Tasisquite rosiwy lighting. 8) Tasisquite cosmolisation. 8) Indequate channelisation. 8) Indequate channelisation. 9) Review axisting channelisation. 9) Review padentrian signing and crosswalk matkings. 9) Perform spot speed study. 9) Check additional stigning. 9) Check additional stigning. 9) Check additional stigning. 9) Check additional stigning. 9) Check visibility of traffic signals. 8) Review for adequate draimage. 9) Review intersection clearance times. 9) Review intersection clearance times. 9) Increase addit or laft two lanes. 9) Increase addit or laft sum lanes. 9) Increase addit science. 9) Toolist turns (study possible adverse affects on other matrix locations). 9) Increase addit staimage. 9) Trovide adequate draimage. 9) Trovide adequate staimage. 9) Increase addit staimage. 				
 b) Insequence channelization. b) Insequence channelization. c) Review axisting channelization. c) Review pedeutrian signing and crosswalk markings. c) Perform turning count. <l< td=""><td></td><td></td><td></td><td>-</td></l<>				-
 2) Raview pedewtrian signing and crosswalk matkings. 3) Perform turning count. 4) Perform spot speed study. 5) Check stat resistance. 6) Check for adquate draimage. 7) Check visibility of traffic signals. 8) Check resdway filumination. 9) Review intersection clearance times. 8) Increase curb redii. 3) Provide adequate draimage. 4) Increase hif reelstance. 6) Check for a stratement. 6) Increase curb redii. 7) Provide adequate draimage. 8) Provide adequate draimage. 9) Provide adequate draimage. 				÷
 3) Perform turning count. 4) Perform spot speed study. 5) Check skid resistance. 6) Check for adequate draimage. 7) Check visibility of traffic signale. 8) Check rosdway filumination. 9) Review intersection clearance times. 7) Create right or left turn lanes. 7) Increase curb reddi. 8) Provide reddination. 9) Trovide adequate draimage. 	Study to be performed -	1) Review existing channelization.		
 4) Perform spot speed study. 5) Check skid resistance. 6) Check for adequate draimage. 7) Check visibility of traffic signale. 8) Check residure times. 9) Review intersection clearance times. 1) Create right of left two lanes. 2) Increase cutb redii. 3) Prohibit turns (study possible adverse affects on a other methylocationa). 4) Increase shif resistance. 3) Provide adequate draimage. 4) Increase shif resistance. 5) Provide adequate draimage. 6) Provide "Silppery Wesh Wat" signs. (interim measure)) Install adverse intersection warning signs. (asly) 				
 3) Check skid resistance. 4) Check for adequate drainage. 5) Check visibility of traffic signale. 8) Check roadway illumination. 9) Review intersection clearance times. 9) Review intersection clearance times. 1) Create tight of left twen lanes. 3) Prohibit turns (study possible adverse affects on other neerby locations). 4) Increase shid resistance. 3) Provide adequate drainage. 4) Increase shid resistance. 5) Provide adequate drainage. 6) Provide "Slippery When Wet" signs. (interim measure 1) lastall adverse intersection warning signs. eely) 		•		
 6) Check for adequate drainage. 7) Check visibility of traffic signale. 8) Check visibility of traffic signale. 8) Check readway filumination. 9) Review intersection clearance times. 9) Review intersection clearance times. 1) Increase curb redii. 3) Prohibit curns (study possible adverse affects on other membry locations). 4) Increase shif resistance. 3) Provide adequate drainage. 4) Increase shif resistance. 6) Provide adequate drainage. 7) Provide adequate drainage. 8) Provide adequate drainage. 9) Provide adequate drainage. 9) Install adverse intersection warning signs. asily) 				
 Check visibility of traffic signals. Check visibility of traffic signals. Check roadway illumination. Review intersection clearance times. Review intersection clearance times. Increase curb rodii. Frohibit turns (study possible adverse affects on on other meanly locations). Increase shif resistance. Provide adequate drainage. Increase intersection warning signs. asily 			1	
 B) Check roadway filumination. Beview intersection clearance times. Beview intersection clearance times. Create right or left turn lames. Increase curb rodii. Frohibit turns (study possible adverse affects on other nearby locations). Increase shif resistance. Provide adequate drainage. Provide adequate drainage. Provide "Slippery Wean Wat" signs. (interim measure) Install advence intersection warning signs. eally) 				
Pozzible Counter Heasures - 1) Greate right of left turn lanes. 3) Increase cutb redii. 3) Prohibit turns (estudy possible adverse affects on other nearby locations). 4) Increase shif resistance. 5) Provide adequate drainage. 6) Provide "Silppery Vou Vet" signs. (interim measure 7) Install advence intersection warning signs. (esty)			1	
 2) Increase curb redii. 3) Prohibit turns (etudy possible adverse affects on other nearby locations). 4) Increase shif resistante. 5) Provide adequate drainage. 6) Provide "Slippery When Wet" signs. (interim measure 7) Install advance intersection mering signs. eely) 		9) Review intersection clearance times.		
 3) Prohibit turns (study possible adverse affects on other nearby locations). 4) Increase shif resistance. 5) Provide adequate drainage. 6) Provide "Slippery When Wet" signs. (interim measure 7) Install adverse intersection warning signs. eely) 	Possible Counter Heasures -			
 4) Incresse shid reelstame. 3) Provide adequate draimage. 4) Provide "Slippery When Wet" signs. (interim measure 7) Install advance intersection warning signs. 		3) Prohibit turns (study possible adverse affects		
5) Frovide adequate drainage. 6) Frovide "Slippery When Wet" eigns. (interim measure 7) Instell advance intersection warning signs. eely)		-	1	
 4) Provide "Slippery When Wet" signs. (interim measure 7) Install advance intersection warning signs. asly) 	i;	•	1	
1) (Estri Estrico Interestiva estate sugar				
		 Install advance intersection varning signs. only) 		
((.04:10:00)		(Continued)		

	INTERSPECTION ACCORNIN			INTERSECTION ACCIDENTS.
Tres. al Accident -	Padestrian - Vahicle Cullision	Ĩ	TPE of Accidenc -	Right Angle Collisions at Signalized Intersections
Probable Geuges -	1) Insiequate pavement markings.	1	Tobable Caugas -	1) Restricted sight distances.
	 Inelayunte channelination. 		·	2) Inadequare coedway lighting.
	 Improper signal phosing. 	· · · · · · · · · · · · · · · · · · ·		3) Insdequate advance intersection warning signs.
	4) Restrictes sight distance.			4) Poor visibility of signal industion.
	5) Insdequate pedestrian aignute.			 Excensive speed on approaches.
	6) Inedequate reedway lighting.			
	 Insdequate gaps at unsignalized is 	sterrection. <u>F</u>	tudy to be Performed -	1) Volume count on all approaches.
	 Bucessiva vabicle space. 	-		2) Field observesture for eight observations.
				3) Bavies signal timing.
finds to be berfarmed -	1) Field observation for sight observ	ucțieză.		4) Check rowivey flivelention.
	2) Pedestrian volusa count.			5) Perform apor apond atudy.
	3) Eaview channelization.			
	 Check roadway filumination. 	L L	esetble Counter Messures -	1) Resove obstructions to sight distance.
	5) Boview pavement mathings.			2) Increase under phase.
	6) Beview eignel phasing.	Į		3) Provide all 184 phase.
	7) Patform gap studios.			4) Reline algorie.
	6) Parloin spot speed study.	1		5) Prohibit curb parking.
				6) Install advance intersection varping signs.
Passikla Counter Hendurgs -	1) Install polestrian erosawelks and	elgas.		3) Install backplates, larger lens, touvers, visors,
	2) Install pedestrian berriers.			atc., on traffic signal to improve contrast and visibility.
	3) Prohibit curb parking man crosses			6) Inscall additional signal boads.
	4) Install traffic signs) if watesta	-		9) Beduce speed limit on approaches if justified by
	 S) Lastall pedvatriau valk ~ don't wa 	•		apot spaed studies.
	6) increase thing of padestrian phase			10) Provide proper elgoslised programmion.
	 Inprove readway lighting. 			11) Improve location of signal hands.
	8) Frihibit vahicle turning movements	••		
	9) Samove sight obstructions.			
	10) Narouta pedestrian perhe.			
	 Reduce speed limits on approaches . by spot speed studies. 	if justified		
	12) Des crossing guards at school cross	olog árása,		
		·		

.

- н Г

		INTERSECTION ACCIDENTS		INTERSECTION ACCIDENTS
				-
	Type of Accident -	Right Augle Collisions at Dusignalized Intersections	Type of Accident -	Sideswipe Collisions
	Probable Causes -	1) Restricted eight distance.	Probable Causes -	1) Insdequate payment markings.
		2) Insdaquate roadway lighting.		2) Inadequate channelization.
		3) Inadequate intersection warning signs.		3) Inadequate signing.
		4) landequate traffic control devices.		4) Marrow traffic lanes.
		 Excessive speed on approaches. 		5) Improper street alignment.
	Finds to be Performed -	1) Volume count on all approaches.	Study to be Performed -	 Review pavament markings.
		2) Field observation for eight obstructions.		2) Review channelization.
		3) Check readway illumination.		3) Review sign placement.
		4) Perform spot speed study.		4) Review lane width.
		5) Beview signing.		3) Chuck alignment.
	Possible Countermassures -	i) Remove obstructions to sight distance.	Passible Counter Hessures -	1) Provide wider inces.
		2) Frohibit parking mear corners.		 Install acceleration and deceleration lanes.
		3) Improve readway illumination.		3) Flace direction and lang change signs to give
		4) Install yield or stop signs if NUTCD warrants are met.		proper advance warning.
		5) Install traffic signal if HUTCD warrants are mat.		 Install or refurbish canterlines, land lines and pavement edge lines.
		6) Install advance internection warping signs.		5) Provide turning bays.
		7) Reduce spand limits on approaches if justified by		 Frovide proper alignment.
		spot epend studies.		al croate broker ertement.
				1
10-10-10	والمحرابة ببابيا بيانة مبسليل مؤالة فالباركما ببالهر منبعياته الكشطاط كالشريدة			and a second

.

년 - 수

Freehold, Courses - 23 33 34 35 36 37 38 49 49 50 40 51 41 53 43 43 43 43 43 43 43 43 43 44 45 45 46 47 48 49 49 40 41 42 43 44 45 46 47 48 49 41 42 43 44 45 45 45 45 45 45 45 45	LINA ACCIDENTA Load Accidente landequate signing and delinentors. Landequate pavament marking. Insidequate pavament marking. Insidequate pavament marking. Insidequate pavament maintenents. Insidequate pavament maintenents. Inadequate definition. Inadequate definition. Inate skid restatance. aview channelisation. Inate roodside shoulders and road maintenents. Inate roodside shoulders and road maintenents. Inate roodside shoulders and road maintenents. Inate adequate definition. Inate roodside shoulders and road maintenents. Inate roodside shoulders and road maintenents. Inate roodside shoulders and road maintenents. Inate interents. Inate pavate atualise.	Live of Accidence - Probable Course - Sindy to be Performed -	CCIDENTS Nesd-on Collisions 1) Restricted sight distance. 2) Insdequate payament markings. 3) Inadequate signing. 4) Merrow lense. 5) Insdequate shoulders mod/or maintenance. 6) Insdequate rood maintenance. 7) Encossive whiche spead. 8) Savers grade. 1) Baview lens width. 2) Savers grade. 1) Baview signing. 3) Review signing. 3) Review signing. 4) Check rood shoulders where present. 5) Check rood for proper maintenance. 6) Perform spot apand studieg.
Probable Couvern 3) 23 3) 3) 4) 3) 4) 4) 5) 4) 5) 4) 6) 7) 6) 6) 7) 6) 7) 6) 7) 6) 7) 6) 7) 7) 7 6) 7) 6) 7) 7) 7 6) 7) 7) 7 6) 7) 7) 7 7) 7 7) 7 7) 7 7) 7 7) 7 7) 7 7) 7 7) 7 7) 7 7) 7 7) 7 7) 7 7) 7 7)	inadaquato signing and dolinantors, Inadaquato pavament marking. Ingalequate pavament marking. Ingalequate pavadent marking. Impoper channelizacion. Inadaquate shoulders. Inadaquate savemant maintenence. Inadaquate savemant maintenence. Inadaquate savemant maintenence. Inadaquate savemant maintenence. Inadaquate savemant maintenence. Inadaquate savemant marking. Inack roadvay illuwimation. Lack shif restocance. Inack foodside shoulders and road maintenence. Inack savelevetion. Inack savelevetion.	Probabla Gaupas - ,	 Restricted sight distance. Iusdequate pavement markings. Iasdequate signing. Barrow lanse. Insdequate rood maintenance. Insdequate rood maintenance. Excessive vehicle speed. Savera grade. Review lanse width. Review lanse width. Review signing. Check rood shoulders where present. Check rood shoulders where present.
23 = 3) 1 4) 1 5) 1 6) 1 7) 1 6) 1 7) 1 6) 1 10) 1 8 (udy is by Performed - 2) 1 3) 6 4) 6 5) 8 6) 6 7) 6 8 (udy is by Performed - 2) 1 3) 7 Popolitie Counternetwenger - 1) 1 7 10) 1 10) 10 10) 10 10] 10	Insdequate pavament marking. Insdequate roodway lighting. Silppory sutface. Improper channelisection. Inadaquate pavement maintenence. Inadaquate pavement maintenence. Invates expersiverstice. Inverse greas. Inverse greas. Inverse greas. Invite roodway filewimetion. Unch skid restocance. sview channelisection. Nack roodside shoulders and rood maintenence. Heck supersitention.	Probabla Gaupas - ,	 Restricted sight distance. Iusdequate pavement markings. Iasdequate signing. Barrow lanse. Insdequate rood maintenance. Insdequate rood maintenance. Excessive vehicle speed. Savera grade. Review lanse width. Review lanse width. Review signing. Check rood shoulders where present. Check rood shoulders where present.
3) 4 4) 5 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Insdequate roodway lighting. Slippery autiece. Improper chemmelisation. Inadaqueste shoulders. Imadaqueste shoulders. Imadaqueste supersierstiwe. Imadaqueste supersierstiwe. Imadayuste supersierstiwe. Imadayuste statesterstiwe. Imadayuste statestime. Imadayuste statestime. Imada fill selectore. Imada fill selectore. Imada fill selectore. Imada fill selectore. Imada stid resteration. Imack stodstde shoulders and road maintements. Imack sodstde shoulders. Imack for adequete drainage.		 Lundequate pavement markings. Lundequate signing. Berrow lense. Inadequate shoulders mod/or maintenance. Inadequate shoulders mod/or maintenance. Encessive vehicle spead. Savera grads. Roview lans width. Roview lans width. Roview pavement markings. Review signing. Check road shoulders where present. Check road for proper melutesence.
4) 1 5) 1 6) 1 7) 1 1	Silppery autiaca. Suproper chemalization. Sandaquete pavement maintemence. Sandaqueste pavement maintemence. Sandaqueste pavement maintemence. Savars curve. Savars curve. Savars greds. Saviev signs and placement. Saviev signs and placement. Saviev signs and placement. Saviev chemalization. Sack readside shoulders and road maintemence. Sack roadside shoulders and road maintemence. Sack for adequete drainage.		 Lundequate pavement markings. Lundequate signing. Berrow lense. Inadequate shoulders mod/or maintenance. Inadequate shoulders mod/or maintenance. Encessive vehicle spead. Savera grads. Roview lans width. Roview lans width. Roview pavement markings. Review signing. Check road shoulders where present. Check road for proper melutesence.
5) 1 6) 1 7) 4 6) 1 7) 4 6) 1 7) 5 6) 1 7) 5 10) 8 5 (wdy is by Farfuland - 1) 6 10) 4 10) 4 10) 4 10) 4 10) 4 10) 4 10) 5 10) 4 10) 4 10) 4 10) 5 10) 4 10) 5 10) 5 10 10 10 10 10 10 10 10 10 10	Improper channelization, landaquete shoulders. landaquete pavement mointemence, inadaquete pavement mointemence, landaquete pavement mointemence, lavier augus and placement, lavier stans acting, mack roadvey filluminetion, hack add restatance, svier channelization, hack roadied shoulders and road maintemence, heck augeselevation,	Aludy, so ba Posformed -	 3) laadequate signing. 4) Herrow lense. 5) Inadequate shoulders mod/or maintenance. 6) Euclequate rood maintenance. 7) Excessive vehicle spead. 8) Severa curve. 8) Severa curve. 8) Severa grade. 1) Roview lass width. 2) Review pavement markings. 3) Beview signing. 4) Check road shoulders where present. 5) Check road for proper melutesence.
 4) 1 7) 1 6) 1 7) 1 6) 1 7) 1 8) 1 10) 6 7) 1 8) 1 7) 1 8) 1 7) 1 8) 1 7) 1 8) 1 8) 1 8) 1 9) 1 9) 1 10) 1 10) 1 10) 1 11) 1 11 12) 1 13) 1 14) 1 14) 1 14) 1 	landaquete shoulders. Iondaquete pavement msintamence. Iondaquete pavement msintamence. Iondaquete aupersierstiuc. Iaviav surve. Iaviav signs and glacenont. Iaviav pavement macking. Theck roadvay filluwingetion. Lack skid restatence. aview channelization. Nack roadele shoulders and road maintamence. Heck aupersievation.	, Siudy to be Patformed -	 4) Berrow lense. 5) Inadequate shoulders und/or maintenance. 6) thedequate rood maintenance. 7) Excessive vehicle speed. 8) Savera grade. 8) Savera grade. 1) Baview lane width. 2) Review pavament markings. 3) Review signing. 4) Check rood shoulders where present. 5) Check rood of proper maintenance.
7) 1 6) 1 9) 2 10) 1 Findy is by Performed - 1) 1 2) 0 3) 6 3) 6 3) 6 3) 6 3) 6 3) 7 70 performer - 1) 1 7 7 7 7 7 7 7 7 7 7 7 7 7	tondaquata pavement meintemence. Inadaquata auparajevation. Iavare curve. Iavare grads. Iaviav aigms and placement. Iaviav pavement merking. Thek rondury illuviantion. Unch skid restatance. Sview channelisation. Nack rondelde shoulders and rond maintemence. Heck auparalevation.	<u>Sindy to be Performed</u> -	 5) Inadequate shoulders mod/or maintenance. 6) Inadequate rood maintenance. 7) Excessive vehicle apsad. 8) Savere curve. 8) Savere grade. 1) Baview lane width. 2) Baview pavasest markings. 3) Review signing. 4) Check rood shoulders where present. 5) Check rood for proper maintenance.
	Inadaquasa superstemettud. isvara curve. Isvara grads. Isviau atgus and placament. Isviau pavament merking. Theck roadway filturinetton. Unch skid restacance. suisu channellastion. Anck roadstde shoulders and road maintaments. Heck superstavation. Heck for adequate drainage.	Study to be Petformed -	 buddquate rood maintennore. buddquate rood maintennore. bavers grade. bavers grade. baview lane width. baview pavasest markings. Baview signing. Check rood shoulders where present. Check rood for proper mainteneore.
	ievers curve. Ievers greds. Ieviev aigus and placement. Ieviev proseent merking. Thack readway filumimetion. Lack akid restocance. aview channelization. Nack readside shoulders and road maintements. Teck supersitevation. Teck for adequate drainage.	Sindy to be Potlorned -	 Facessive vehicle apsad. Bovera curve. Bovera grads. Boview lane width. Boview pavement markings. Boview signing. Check road shoulders where present. Check road for proper melutesence.
10) 1 F(udy is by Parformed - 2) 1 3) 0 4) 0 5) 1 6) 0 7) 0 6) 0 7) 0 6) 0 7) 0 6) 0 7) 0 8) 0 7) 0 8) 0 7) 0 8) 0 7) 0 8) 0 8) 1 8) 1	levers greds, laviev signs and placement, laviev pavement maching, hack roedvay illuwination. Lack shif reststance, aview channelization. hack roedside shoulders and rond maintenance. hack substlevention. beck for adequate drainage.	<u>Siudy to be Potforned</u> -	 8) Savora curvo. 8) Savora grada. 1) Boview lane width. 2) Boview pavanent markings. 3) Baview signing. 4) Check road shoulders where pressure. 5) Check road for proper melutessacca.
Findy is be faifuierd 1) 2) 2) 3) 2) 4) 2) 5) 3) 6) 2) 7) 2) 8) 2) 9) 7) 9) 7) 9) 7) 9) 7) 10) 1) 11) 1) 12) 2) 3) 1 4) 1	laviau aigus and placament. Laviau pavament merking. Thack roadway illumination. Lack akid restatance. And thinnailantice. Nack roadside shoulders and road maintamence. Theck auperelevation. Theck duperelevation.	<u>Sindy to be Perforned</u> -	 Bavera grada. Roview late width. Roview pavament markings. Baview signing. Check road shouldars where pressure. Check road for proper melutosence.
2) = 3) C 4) C 5) # 6) C 7) C 7) C 8) T Forsitle Counternessources - 1) = 7) T 7) T	laview pavament marking. Theck roadway illuwiastion. Theck skid restecance. aview channelisation. hack roadside shouldets and road maintamance. heck superelevation. heck for adequate drainage.	<u> Eludy to ka Potform</u> ej -	 Roview land width. Roview parament matkings. Review signing. Check road shoulders where present. Check road for proper mellitesence.
3) 6 4) 6 5) 8 6) 6 7) 6 7) 6 8) 7 7) 6 8) 7 7) 7 7) 7 7) 7 7) 7 7) 7 7) 7 7) 7	Theck roadway Siluwimation. Theck skid rastacance. aview channelisation. hack roadside shouldets and road maintamence. heck supersisvation. heck for adequate drainage.	<u>Sludy to ba Potformed</u> -	 Raviau pavasent markings. Raview signing. Check road shoulders where present. Check road for proper melutesence.
4) C 5) A 6) C 7) C 7) C 8) C 9) T 70ssikla Counternessurges - 1) 1 9 2) 5 3) 1 4) 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lack skid restecance. sview chennelisation. hack roedside shouldets and rond meintamence. heck supersisvation. heck for adequete dreinege.		 Raviau pavasent markings. Raview signing. Check road shoulders where present. Check road for proper melutesence.
5) a 6) C 7) C 8) C 5) T <u>Popolkla Countermensurga</u> - 13 J 9 2) S 33 1 4) 1	aview channelisation. hack rondside shoulders and rond maintamence. heck superelevation. heck for adequate drainage.		 Baviev signing, Check road shoulders where present. Check road for proper melutesence.
6) c 7) c 8) c 5) T Fossikla Countatmensuran - 13 I 9 2) f 3) 1 4) 1	hack rondside shoulders and rond maintamence. Neck superelevation. Neck for adequate drainage.		 Check road shoulders where present. Check road for proper metutemence.
7) c 8) c 5) T Fossikle Countermensurger - 13 I 2) f 3) 1 4) 1	heck superelevettom. Seck for adequete drainege.		5) Check road for propar maintenance.
 a) C b) T b) T b) T b) T c) T <li< td=""><td>beck for adequate drainage.</td><td></td><td></td></li<>	beck for adequate drainage.		
5) T Possikle Counternesseures - 1) I 2) I 3) 1 4) 1		3	
Forsikla Counternessures - 1) 1 2) 2 3) 1 4) 1	afform apor about abultur		1) Field chuck for sight obstructions.
2) 5 33 1 43 1	errene abor olega stojigs		
2) 5 3) 1 4) 1	astell proper center lines, loss lines, and	tossible Counterpessures -	2) Provide wider loase.
3) 1 4) 1 4	avenant odga maxhings. Actores shid sesletance.		2) Frovids pennant signs.
~	atteres sala resistance. Aprove soedney lighting.		 Install no passing somes as points with restricted sight distances.
5) 1	untall warning signs to give proper advance erning and advisory speed limit.		 Install centerlines, lans lines and pavement adga markings.
	nstall rondatés delicentors, gunté ralia		 Improve roadside aboulders.
	në redikacting bervlarn.		6) Perform necessary road surface tepairs.
	afform mecasualy food surface fourte. Refore superelevation at curves.		 Heduce epsed limits if justified by spot speed atudias.
	educe speed limit if justified by spot speed studies.		 # subore obstructions to sight distances.
	estade vondver skoulderg.		\$) Flattan curva.
	rovida "biippory Whon Not" signs, (Exterin monsure enly)		10) Provide proper superalovation,
	suvide edsemate draimage.		11) Provide mediau barriers.
	lastas carva.		
	rutide proper superplayation.		

u.

	LINK ACCIDENTS	FINK VCCI	DENTS
Type of Accident -	Pedestrian - Vehicle Collisions		
Trobable Causes -	1) Restricted sight distance.	Type of Accident - Reliroed C	rossing Accidents
TIMPERI COURT	2) Indequate roedway lighting.	Probable Causes - 1) Inadeo	uata signing, signals or gates.
	3) Excessive vehicle speed.		uste rosdvay lighting.
	4) Padentrians welking on readway.		tted sight distance.
	5) Inadequate signing.		iste pavement warkings.
	6) Sidewalks too close to rosdway.		crossing suffeces.
	7) Improper pedestrian crossing.		ar traffic aignal pre-seption timing.
			r pre-suption timing of BR signals
Study to be Performed	3) Check sight distances.	-	•
	 Check roadway illumination. Review existance of sidewalks. 	Study to be Performed - 13 Review	signing, signals and gates.
	 keview excension of signa and placement. 	2) Check a	ondway illumination.
	5) Perform spot spass study.	3) Baview	pavement markings.
		4) Beview	sight distance.
Possible Counternessures -	1) Improve sight distance.	<u>Possible Countermanaures - 1) Install</u>	
	2) Prohibit curb side parking.		Advance warning signs.
	 Improve roadway lighting. 		proper pavement markings.
	4) Install sidewalks.	of trac	proper roadway lighting on both aides km.
	5) Install proper warming signs.	4) Install	automatic flashers and gates.
	 Reduce speed limit if justified by apot speed studies. 	5) Improve	sight distance.
	7) Install pedestrien barriers.	6) Install	stop eigns.
	 Nova sidewalks further from roadway. 	7) Rabuild	crossing.
	1) Enforcement.	 Betime 	traffic signsla
			ER signals and gates.
			dvance warning signals.
		prob cost: High	ensistance in examining relivoad crossing lens, it is recommended that agencies act the Hichigan Department of State rays and Transportation, Transportation latory Section.
•			

1

	LINE ACCIDENTS		LINE ACCIDENTS
Type of Accident -	Parkes Cat Accedence	Type of Accident -	Fixed Object Collisions
		flobable saure -	1) Obscruttions in or too close to readway.
Fighetle Causes -	1) laproper persent markings.		2) Insdeguste channelization.
	2) fugsopar parking clearance at driveways.		3) Enadequate vonduny lighting.
	3) Augis parking.		4) Inedequate pavement mathing.
	4) Excensive vehicle speed.		5) insdequeta algna, delinescore and guardrafts.
	5) Improper pathing.		6) Improper superstavation.
	6) Illegal parking.		7) Slippery surface.
			 Excessive vehicle speed.
firsty to be Perfutbed -)) Review pavement merkings.		9) Bavara curva.
	2) Review parking chearance from curb.		10) Sevete grade.
	3) Beview engle pucking if it exists.	Study to be Performed -	1) kevine pavemant markings, signs and delineators.
	4) Ferdorm eput apaed studies.		2) Review chaunalization.
	 Law observance study. 		3) Field observation to locate obstructions.
the second second second second			4) Chuck Elluminetion.
fossible Counterpressure -	 Convert angle parking to parallel parking. No. 10.101 (2010) 		5) Check superclavation.
	2) Paint perbing scoll limits 7 feer from curb face. 3) Post perbing restrictions near driveways.		4) Check for adequate distance.
	 Fost paraing restrictions near divension. 4) Prohibit parking. 		 Parform spot spand studies.
	5) Greats off-streat parking.	Possible Counterpressures -)) Asmove of relocate objects.
	 b) Reduce opped limit if justified by epot spand 		2) Improve roedusy lighting.
	atudies.		3) Justall suffectorized pavement lines.
	7) Midon lenes. 8) Rofoscement.		 Install reflectorized paint sud/or seflecture on the obstruction.
	.,		5) Install crash cushicating devices.
			6) Install guardratis or radirecting barriers.
			7) Install appropriate warning signs and delineators.
			 Improve supereinvation at curvas.
			 Improve shid testatence.
			10) Provida adequata áratusga.
			-11) - Provide "Slippery When Wet" eight. (interim measure on
			32) Reduce ageed limit if justified by spot speed studies.
			13) Provién ulder laues.
			34) Fintren curve.
			15) Provide proper superaiovation.

년

 2) Insdequate channelisation. 3) Insdequate signing. 4) Marrow traffic hanse. 5) Improper road maintemance. 6) Inadequate roadside shoulders. 7) Excessive vehicle speed. 8) Beview persons markings. 2) Review channelisation. 3) Review sign placement. 4) Beview lane width. 5) Check roadside shoulders. 6) Check road surface for proper maintemance. 7) Ferform spot speed studies. 2) Install acceleration and deceleration lanes 3) Flace direction and lane change signs to gip proper advence werning. 4) Install or refurble center lines, hans lim and pevement edge lines. 		LING ACCIDENTS
Probable Course - 1) Inadequate pavement markings. 2) Inadequate signing. 3) Insdequate signing. 4) Marrow traffic lanse. 5) Improper road maintemance. 6) Inadequate roadside shoulders. 7) Excessive vehicle speed. Heady to be Performed - 1) Review pavement markings. 2) Review channelization. 1) Review pavement markings. 2) Review channelization. 3) Review channelization. 4) Review land deviation. 5) Check road surface for groper maintenance. 7) Partform apot spaed studies. Phase direction and develoration lanse 3) Instell acceleration and develoration lanse 3) Place direction working. 4) Instell or refurbishe conter lin		
 2) Insdequate channelisation. 3) Insdequate signing. 4) Marrow traffic hanse. 5) Improper road maintemance. 6) Inadequate roadside shoulders. 7) Excessive vehicle speed. 8) Beview persons markings. 2) Review channelisation. 3) Review sign placement. 4) Beview lane width. 5) Check roadside shoulders. 6) Check road surface for proper maintemance. 7) Ferform spot speed studies. 2) Install acceleration and deceleration lanes 3) Flace direction and lane change signs to gip proper advence werning. 4) Install or refurble center lines, hans lim and pevement edge lines. 	Type of Accident ~	Siderwipe Colligion
 3) Insdequete signing. 4) Marrow traffic lanes. 4) Marrow traffic lanes. 5) Improper road maintenance. 6) Inadequate roadside shoulders. 7) Excessive vehicle speed. 8) Haviev persent markings. 2) Review persent markings. 3) Review sign placement. 4) Review lane width. 5) Check roadside shoulders. 6) Check roadside shoulders. 7) Ferform spot speed studies. 8) Install acceleration and deceleration lanes 3) Flace direction working. 4) Install or refurbish center lines, lane line and percent signs lines. 	robable Causes -	1) Inadaquate pavement markings.
 Marrow traffic lasss. Suproper road maintenance. Improper road maintenance. Inadequate roadside shoulders. Excessive wehicle speed. Excessive wehicle speed. Review powersent markings. Review sign placessat. Review sign placessat. Review lass width. Check roadside shoulders. Check roadside shoulders. Check roadside shoulders. Check roadside shoulders. Check road surface for gropsr maintenance. Parform spot speed studies. Install acceleration and deceleration lasses Place direction and lass change signs to gip proper advance warning. Install acceleration add states lass. Install acceleration add states lass. 		Inadequate channelisation.
 3) Improper road maintenance. 6) Inadequate roadside shoulders. 7) Excessive vehicle speed. 8) Beview persent markings. 2) Review channelisation. 3) Eaview sign placement. 4) Review lans width. 5) Check roadside shoulders. 6) Check roadside shoulders. 6) Check roadside shoulders. 7) Parform spot speed studies. 8) Install acceleration and deceleration lanse 3) Place direction and deceleration lanse 3) Place direction working. 4) Install or refurbish center lines, lans lin and pevreent sign lines. 		 Insdequate signing.
 6) Inadequate roadside shoulders. 7) Excessive vehicle speed. 8) Review personnt markings. 2) Review channelisation. 3) Review sign placement. 4) Review sign placement. 6) Check roadside shoulders. 6) Check roadside shoulders. 7) Perform spot speed studies. 1) Install acceleration and deceleration lanses 3) Place direction and deceleration lanses 3) Place direction and lane change signs to gip proper advence waning. 4) Install or refurbish center lines, lans lin and pevreent signs lines. 		4) Marrow traffic lanas.
 7) Excessive vehicle speed. 7) Excessive vehicle speed. 8) Beview pavement markings. 2) Review channelisation. 3) Review sign placement. 4) Beview lane width. 5) Check roadside shouldars. 6) Check road surface for groper maintenance. 7) Ferform spot speed studies. 10) Provide wider Issues. 2) Install acceleration and deceleration Issues. 3) Place direction working. 4) Install or refurbish center lines, lang line and pevenent edge lines. 		5) Improper road maintenance.
 itudy to be Performed - Review pavement markings. Review channelization. Review sign placement. Review sign placement. Review lans width. Check roadside shouldars. Check road surface for proper maintenance. Perform spot speed studies. Install acceleration and deceleration lanses. Install acceleration and deceleration lanses. Install acceleration and deceleration lanses. Install acceleration and deceleration lanse 		Enedequate roadside shoulders.
 Review Channelization. Review sign placement. Review lana width. Check roadside shouldars. Check road surface for groper maintenance. Perform spot speed studies. Provide wider lauss. Install acceleration and deceleration lanase Place direction woh lang. Install or refurbish center lines, lang lin and peyresent adge lines. 		7} Excessive vehicle speed.
 Baview sign placement. Baview lans width. Check roadside shoulders. Check road surface for proper maintenance. Parform spot speed studies. Provide wider lauss. Install acceleration and deceleration lanses Place direction and lane change signs to gip proper advance warning. Install or refurbish center lines, lans lin and pevreent adge lines. 	itudy to be Performed -	1) Review percent markings.
 4) Eaview lans width. 5) Check roadside shoulders. 6) Check road surface for groper meintenance. 7) Perform spot speed studies. 2) Provide wider lauss. 2) Instell acceleration and deceleration lanses 3) Place direction and lane change wights to gippoper solvence wenning. 4) Instell or refurbish center lines. 		2) Review Channelisation.
 5) Check roadside shoulders. 6) Check road surface for groper maintenance. 7) Perform spot speed studies. 7) Perform spot speed studies. 7) Install acceleration and deceleration lance 3) Place direction and lance change signs to giproper advance warning. 4) Instell or refurble former lines, lans line and pevenent adge lines. 		3) Review sign placement.
 6) Check road surface for proper maintenance. 7) Ferform spot speed studies. 7) Provide wider lause. 7) Install acceleration and deceleration lance 3) Flace direction and lance change signs to giproper advance warning. 4) Install or refurbles center lines, lans line and pevenent adge lines. 		4) Review lana width.
 Provide wider Isues. Provide wider Isues. Distall acceleration and deceleration Isnee Place direction and hang estimate to gipproper advance warning. Distall or refurble benter lines, lang line and pavement adge lines. 		5) Check roadside shouldars.
 Provide wider Isues. 2) Install acceleration and deceleration Isnee 3) Place direction and lane change signs to giproper advance warning. 4) Install or refurbled center lines. 		6) Check road surface for proper maintenance.
 Install acceleration and deceleration lanses Place direction and lans change wighs to giptoper solvance warning. Install or refurbish canter lines, lans line and pevenent edge lines. 		7) Farform spot speed studies.
 Place direction and lama change wights to gip proper advance warning. Install or refurbleb center lines, lang line and perement adge lines. 	ossible Countermeasures -	1) Provide wider Isues.
proper advance warning. 4) Instell or refurbish center lines, lang lin and pavement edge lines.		 Install acceleration and deceleration lanes.
and pavement sigs lines.		 Place direction and lane change wight to give proper sevence warning.
		 Install or refurbish center lines, lans lines and pevenent sigs lines.
 Perform necessary road murface repairs. 		5) Perform necessary road surface repairs.
6) Improve shouldars.		6) Improve shouldars.
7) Remove restrictions such as perked vehicle		7) Ramove restrictions such as perked vehicles.
 Install median divider. 		 Install madian divider.
 Reduce speed limit if justified by spot spe study. 		 Reduce speed limit if justified by spot speed study.

~

ACCIDENT PATTERN	PROBABLE CAUSE	GENERAL COUNTERMEASURE
Right-angle collisions at unsignatized intersec- tions	Restricted sight distance	Remove sight obstructions Restrict parking near corners Install stop signs (see MUTCD) Install/improve street lighting Reduce speed limit on approaches* Install signals (see MUTCD) Install yield signs (see MUTCD) Channelize intersection
	Large total intersection volume	Install signals (see MUTCD) Reroute through traffic
	High approach speed	Reduce speed limit on approaches* Install rumble strips
Right-angle collisions at signalized intersec- tions	Poor visibility of signals	Install advanced warning devices (see MUTCD) Install 12-in, signal lenses (see MUTCD) Install overhead signals Install visors Install back plates
(Continued)	(Continued)	
* Spot speed study should be	conducted to justify speed limit re-	duction.

н + 9

General Countermeasures for Accident Patterns and Their Probable Causes

Source: Manual on Identification, Analysis, and Correction of High- Accident Locations, 1976.

.

ACCIDENT PATTERN	PROBABLE CAUSE	GENERAL COUNTERMEASURE
		Improve location of signal heads
		Add additional signal heads
		Reduce speed limit on opproaches*
	Inadequate signal timing	Adjust amber phase
		Provide all-red clearance phases
		Add multi-dial controller
		Install signal actuation
		Retime signals
		Provide progression through a set of signalized intersections
Rear-end collisions at unsignalized intersec-	Pedestrian crossing	Install/improve signing or marking of pedestriar crosswalks
tions		Relocate crosswalk
	Driver not aware of Intersection	Install/improve warning signs
	Slippery surface	Overlay pavement
		Provide adequate drainage
		Groove pavement
		Reduce speed limit on approaches*
(Continued)		Provide "SLIPPERY WHEN WET" signs
* Spot speed study should be	conducted to justify speed limit red	uction.

.

General Countermeasures for Accident Patterns and Their Probable Causes

E-10

ACCIDENT PATTERN	PROBABLE CAUSE	GENERAL COUNTERMEASURE
	Large numbers of turning vehicles	Create left- or right-turn lanes Prohibit turns Increase curb rodii
Rear-end collisions at signalized intersections	Poor visibility of signals	Install/improve advance waming devices Install overhead signals Install 12 in. signal tenses (sea MUTCD) Install visors Install back plates Relocate signals Add additional signal heads Remove obstacles Reduce speed limits on approaches*
	Inadequate signal timing	Adjust amber phase Provide progression through a set of signalized intersections
	Pedestrian crossings	Install/improve signing or marking of pedestrian crosswalks Provide pedestrian "WALK" phase
(Continued)		
* Spot speed study should be	conducted to justify speed limit reduc	Hon.

General Countermeasures for Accident Patterns and Their Probable Causes

.

ACCIDENT PATTERN	PROBABLE CAUSE	GENERAL COUNTERMEASURE
	Slippery surface	Overlay pavement Provide adequate drainage Groove pavement Reduce speed limit on approaches* Provide "SLIPPERY WHEN WET" signs
	Unwarranted signals	Remove signals (see MUTCD)
	Large turning volumes	Create left- or right-turn lanes Prohibit turns Increase curb radii
Pedestrian accidents at inter- sections (Continued)	Restricted sight distance	Remove sight obstructions Install pedestrian crossings Improve/install pedestrian crossing signs Reroute pedestrian paths
	Inadequate protection for pedestrians	Add pedestrian refuge islands
	Inadequate signals	Install pedestrian signals (see MUTCD)
	Inadequate signal phasing	Add pedestrian "WALK" phase Change timing of pedestrian phase

.

General Countermeasures for Accident Patterns and Their Probable Causes

ł

ACCIDENT PATTERN	PROBABLE CAUSE	GENERAL COUNTERMEASURE				
	School crossing area	Use school crossing guards				
Pedestrian accidents between intersections	Driver has inadequate warn~ ing of frequent mid~block crossings	Prohibit parking Install warning signs Lower speed limit* Install pedestrian barriers				
	Pedestrians walking on roadway	Install sidewalks				
	Long distance to nearest crosswalk	Install pedestrian crosswalk Install pedestrian actuated signals (see MUTCD)				
Pedestrian accidents at drive- way crossings	Sidewalk too close to , traveled way	Move sidewalk laterally away from highway				
Left-turn collisions at intersections	Large volume of laft turns	Provide left-turn signal phases Prohibit left turns Remute left-turn traffic Channelize intersection Install STOP signs (see MUTCD) Create one-way streets Provide turning guidelines (if there is a dual left-turn lane)				
(Continued)						
* Spot speed study should be co	inducted to justify speed limit redu	ction.				

General Countermeasures for Accident Patterns and Their Probable Causes

PROBABLE CAUSE	GENERAL COUNTERMEASURE
Restricted sight distance	Remove obstacles Install warning signs Reduce speed limit on approaches*
Short turning radii	Increase curb radii
Objects near traveled way	Remove obstacles near roadway Install barrier curbing Install breakaway feature to light poles, signposts, etc. Protect objects with guardrail
Slippery pavement	Overlay existing pavement Provide adequate drainage Groove existing pavement Reduce speed limit* Provide "SLIPPERY WHEN WET" signs
Roadway design inadequate for traffic conditions	Widen lanes Relocate islands Close curb lane
	Short turning radii Objects near traveled way Slippery pavement Roadway design inadequate

General Countermeasures for Accident Patterns and Their Probable Causes

ACCIDENT PATTERN	PROBABLE CAUSE	GENERAL COUNTERMEASURE
	Poor delineation	Improve/install pavement markings Install roadside delineators Install advance warning signs (e.g., curves)
Sideswipe collisions between vehicles traveling in oppo- site directions or head-on collisions	Roadway design inadequate for traffic conditions	Install/improve pavement markings Channelize intersections Create one-way streets Remove constrictions such as parked vehicles Install median divider Widen lanes
Collisions between vehicles traveling in same direc- tion such as sideswipe, turning or lane changing	Roadway design inade~ quate for traffic con- ditions	Widen lanes Channelize intersections Provide turning bays Install advance raute or street signs Install/improve pavement lane lines Remove parking Reduce speed limit*
Collisions with parked cars or cars being parked	Large parking turnovers	Prohibit parking Change from angle to parallel parking Reroute through traffic Create one-way streets

.

.

.

General Countermeasures for Accident Patterns and Their Probable Causes

.

•

ACCIDENT PATTERN	PROBABLE CAUSE	GENERAL COUNTERMEASURE				
		Create off-street parking Reduce speed limit*				
	Roadway design inadequate for present conditions	Widen lanes Change from angle to parallel parking Prohibit parking Reroute through traffic				
Collisions at driveways	Left-turning vehicles	Install median divider Install two-way left-turn lanes				
	Improperly located drive~ way	Regulate minimum spacing of driveways Regulate minimum corner clearance Move driveway to side street Install curbing to define driveway location Consolidate adjacent driveways				
	Right-turning vehicles	Provide right-turn lanes Restrict parking near driveways Increase the width of the driveway Widen through lanes Increase curb radii				
(Continued)						
* Spot speed study should be	conducted to justify speed limit reduc	tion,				

General Countermeasures for Accident Patterns and Their Probable Causes

1

ACCIDENT PATTERN	PROBABLE CAUSE	GENERAL COUNTERMEASURE
	Large volume of through traffic	Move driveway to side street Construct a local service road Reroute through traffic
	Large volume of driveway traffic	Signalize driveway Provide acceleration and deceleration lanes Channelize driveway
	Restricted sight distanco	Remove sight obstructions Restrict parking near driveway Install/improve street lighting Reduce speed limit*
Night accidents	Poor visibility	Install/improve street lighting Install/improve delineation markings Install/improve warning signs
Wet pavement accidents	Slippery pavement	Overlay existing pavement Provide adequate drainage Groove existing pavement Reduce speed limit* Provide "SLIPPERY WHEN WET" signs
* Spot speed study should be	conducted to justify speed limit redu	Luction.

-

General Countermeasures for Accident Patterns and Their Probable Causes

,

ACCIDENT PATTERN	PROBABLE CAUSE	GENERAL COUNTERMEASURE
Collisions at railroad crossings	Restricted sight distance	Remove sight obstructions Reduce grades Install train actuated signals (see MUTCD) Install stop signs (see MUTCD) Install gates (see MUTCD) Install advance warning signs (see MUTCD)

,

General Countermeasures for Accident Patterns and Their Probable Causes

APPENDIX F

ACCIDENT REDUCTION FACTORS

The accident reduction factors and the material describing the use of the factors was taken from "The Accident Reduction Factors Booklet," pages 16-18 and pages 21-29. The material included in this appendix only addresses accident reduction factors related to intersection conditions. The user should consult the booklet for factors related to other geometric and safety conditions.

chapter 4 Using AR factors

You can use the AR factors in Chapters 5 and 6 to do the following things:

1. Design and plan your overall highway safety improvement program.

2. Select improvement types for a specific problem.

3. Compute the cost-effectiveness of a specific improvement.

This chapter outlines a variety of situations in which the AR factor tables can be used.

SITUATION ONE

You are the head of the traffic engineering section. The state highway administrator is preparing legislative and budgetary recommendations and requests for the highway safety improvement program. He also is trying to encourage counties to join the state in a highly visible and concerted highway improvement effort. He wants to target certain improvement types. He asks you which five improvement types should be encouraged.

You don't want to gamble. So first, you review the general AR factors and select all improvements with an Index of Variability of 1 (or 2, if "1" is too restrictive). Then you review the refined AR factors for

16

the selected improvements to see how AR factors differ relative to location characteristics. You decide to use improvements with wide spread effectiveness or you choose to zero in on a particular location type with an AR factor over 20% and a low Index of Variability. Any variety of rationale could be used to make your final selection. No matter what rationale you used, the AR factor tables contain enough information to allow a rational selection process. You can report your selections to the state highway administrator and have a basis for justifying them.

SITUATION TWO

You are a traffic engineer assigned the task of selecting potential improvements for a location identified as "hazardous" based on accident experience.

You analyze the types of accidents occurring at the location. If a clear pattern is apparent, you check the eight improvement objectives and select the appropriate corresponding AR factor subsets. Then, you go to the selected subsets and review the Affected Accident Matrix and the Refined AR factors to find improvements that affect the type of accident being experienced.

SITUATION THREE

You are the same engineer as in situation two. You are aware that AR factors are averages and that if the variation about that average is wide enough that there is some chance of failure. You want to minimize that chance. Therefore, you reject any improvement that does not meet the following criteria:

- 1. If the reduction factor is 0 to 15, the Index of Variability must be 1.
- 2. If the reduction factor is 15 to 35, the Index of Variability must be 2 or better.
- 3. If the factor is 35 to 55, the Index must be 3 or better.
- 4. If the factor is 55 to 85, the Index must be 4 or better.
- 5. If the factor is over 85, any Index will suffice.

F'-3

Essentially you are saying that you will not accept an improvement whose expected range extends into the zone of net accident increase.

SITUATION FOUR

You are the planning and programming engineer and are developing cost and benefit data for a list of improvements from which only a limited number of projects are going to be installed this program period. The Indexes of Variability of the AR factors for the improvements are not all the same. You decide you want to give some advantage to improvements with low variability in the estimated range. Therefore, you arbitrarily adjust the calculated benefits according to the following schedule:

- 1. For Index 1-no adjustment.
- 2. For Index 2 or 6--10% reduction.
- 3. For Index 3 or 7-20% reduction.
- 4. For Index 4 or 8--30% reduction.
- 5. For Index 5 or 9--40% reduction.

As stated above, such a step is arbitrary, but valid nonetheless. In the real world project selection is not a 100% automatic process. Judgement and policy preferences play an important role. This situation demonstrates how judgement may be reflected in a quantitative way.

SITUATION FIVE

Again, you are developing cost and benefit data. The AR factor is an essential input into the benefit side of the equation. NCHRP Report 162 contains several methods for computing accident reduction benefits. Refer to Appendixes E, F and Q. In these methods, you first compute annual benefits and then compute the monetary value of these benefits. The equations for computing annual benefits require an accident reduction expressed as a decimal, and which is the expected reduction in the accident rate. If necessary you may use an AR factor based on reduction in numbers of accidents. Factors based on numbers of accidents usually are less accurate but more conservative--lower--than these based on accident rates. This is due to the fact that traffic volumes usually

F-4

1 8

AR FACTORS SUBSET A

<u>OBJECTIVE</u>: To reduce numbers of accidents related to poor perception of the existance of and conditions at intersections and other points of conflict.

IMPROVEMENT TYPES:

Name	Page	Code
Advanced Warring Signs	24	A-6 0
Advanced Warning Signals	25	A- 2
Rumble Strips	26	A- 3
Sight Distance Improvements (FHWA Code 13)	28	A-13
Lighting (FHWA Code 65)	29	A65
GENERAL COMMENTARY:		

Studies of individual applications indicate good success where a clear link has been established between the accident problem and limited sight distance or other things that limit a driver's ability to perceive the presence of an intersection or its configuration or other information to make safe driving decisions.

Warning Devices

Warning signs appear to have a more consistent success record than advanced warning signals or rumble strips. Signs often are the first improvement made at locations where an accident problem has developed and where no warning device existed before. On the other hand, signals or rumble strips generally are installed to supplement existing signs. Hence, signs are more likely to reap success at untreated sites than supplemental improvements to previously treated sites. Low volume, rural unlighted intersections are most likely to need advance warning devices because of poorer geometrics and fewer visual cues. Visual cues are related to activity or development at a location.

Sight Distance Improvements

Accident reduction factors for sight distance improvements at intersections were developed from the Annual Report data. Most improvements have been applied to rural, undivided situations. Success rates have been higher and more statistically significant at low volume locations.

F-5

Lighting

By adding illumination to a location some nighttime accidents can be eliminated. When estimating the number that will be eliminated, it is difficult to determine to what extent the nightime accident problem is related to darkness. Lighting projects according to the Annual Report data have a mixed record of success which averages out as a modest success. Careful analysis of each location is necessary. For more detailed information related to highway arterial lighting see the report by Janoff, et al (31). AFFECTED ACCIDENT MATRIX FOR SUBSET A

	ACCIDENT TYPE AFFECTED																						
	Lt. Cond. Pvt. Cond.								_														
								ļ										na. I		t. Ca	ona.		
TYPE OF IMPROVEMENT	All Accidents	Overturned	Pedestrian	Train	Pedalcyclist	Fixed Object	Parked M.V.	Rear-End	Head-On	Sideswipe (S.D.)	Sideswipe (O.D.)	Angle	Turning (L.)	Turning (R.)	Ban Off Road	Daylight	Darkness	Dk. Rd. Ltd.	Dry	Wet	Ice/Snow		Hour (specify)
Warning Signs	X		Ī														Х	Х	X	Х	Х		-
								}															
Warning Signals	X															X	Х	Χ	χ	Х	Х		
	_	ļ																					_
Rumble Strips	X			Х												X	X	Χ	<u>X</u>	X	Х		_
Improve Sight Distrance	1							X				X				χ	Х			Х	Х		-
																				<u> </u>	17	+	-1
Lighting			Х		X																		Ť
															_								
· · · · · · · · · · · · · · · · · · ·																							
······										_						_							
	$\left \right $								•				_										4
	+																						_
					_												_		_				-
													-			-		-					\neg
																	$\neg \uparrow$						-
													Ì					Ť				-	1
]											Ī					
											 	·				1							
							_				_		\square				-				Ì		
										_	_				ļ								
· · · · · · · · · · · · · · · · · · ·	$\left - \right $								_		_	_		-			_			_			
		_		-		_				-		_		-							-		\dashv
	$\left - \right $			ا. 			 						-+						-+	_		<u> </u>	-
	$\left - \right $		-										-			1							-
	┨──┤					_			-+	-				-									-
					-+					\rightarrow			-			-+		-+	-+				-
	1	1				1	i		1	1	1		1				ł	1		1	1	ļ	ŧ

23

Type of Improvement <u>Warning Signs at Intersections</u> Refined Description <u>See Below</u> Code A-60 Page 1 of 1

General AR factors

	Type of Accident									
	All .	Fatal	Injury	Fatal/Injury	PDO					
Reduction %	20			25						
Index of Variability	6			6						
Source Reference	33			33						

Refined AR factors

ocation Ch	aracteristi		Description Refinements	Type of Accident	% ² AR	Index of Var.	Ref.
Stop Ał	nead @	Rural, 2	lane intersections	Fatal/Injury	96	2	33
				Total	_ 47	2	33
Varning	<u>g Signs</u>	s @ Rural.	2 lanes	Fatal/Injury	19	2	33
	·			Total	37	2	33
<u></u>	11	11	more than 2 larges	Eatal/Injury	7	2	33
		·····		Total	9	2	33
H	11		2 lanes,	Eatal/Injury	43	4	33
			tee intersection	Total	61	2	33
19	:1		more than 2 lenes.	Fatel/Injury	_67	2	33
			•	Total	65	2	33
11	18	@ Urban,	<u>2 lane intersec-</u>	Fatal/Injury	51	3	33
	<u></u>		tion	Total	29	2	33
	t t	<u> </u>	more than 2 lares	Fetal/Injury	_47	3	33
·				Total	_4]	2	33

¹ Group Lincludes HH, RO, RR and FA programs. Group H includes SL, SO and SR programs.

² Numbers in italics represent reductions in numbers. All other AR factors are reductions in accident rates.

F-8

Type of Improvement	Advanced Warning Signals & Int	ersections	· · · · · · · · · · · · · · · · · · ·
Refined Description	See Below		
		Code A-2	Page] of]

General AR factors

		Type of Accident									
	All	Fatal	Injury	Fatal/Injury	PDO						
Reduction %	20	40	30		15						
Index of Variability	9	9	9		9						
Source Reference	66	66	66		66						

۰.

Refined AR factors

Description Refinements				
Location Characteristics 1 /	Type of Accident	% ² AR	Index of Var.	Ref.
Rural, 2 lane	Fatal/Injury	29	2	33
	Total	46	5	33
" , more than 2 lanes, tee intersec-	Fatal/Injury			33
tion	Total	21	5	33
Urban, More than 2 lanes	Fatal/Injury	73	5	33
	Total	-27	5	33
·				
·				

I Group Lincludes HH, RO, RR and FA programs. Group II includes SL, SO and SR programs.

2 Numbers in italics represent reductions in numbers. All other AR factors are reductions in accident rates.

Type of Improvement	Rumble Strips		
.Refined Description	No Refinements		
General AR factors		Code A-3	Page] of 2
		Type of Accident	

	Type of Accident						
	All	Fatal	Injury	Fatal/Injury	PDO		
Reduction %	27			26			
Index of Variability	_ 5			5			
Source Reference	33			33			

Refined AR factors

. Description Refinements		1	<u>[</u>	· <u>·</u> ··································
Location Characteristics ¹	Type of Accident	% ² AR	Index of Var	Ref.
At horizontal curves	Fatal	60	9	66
	Injury	40	9	66
	PDO	25	9	66
Charles and the second s	Total	30	9	66
At railroad crossings	Fatal	50	9	66
	Injury	30	<u>9</u> .	66
	PDO	15	9	66
	Total	20	9	66
At constrictions	Fatal	60	9	66
·	Injury	40	9	66
	PDO	25	9	66
	Total	20	<u>a</u>	66
At intersections	Fatal	50	9	66
	<u> </u>	30	Q	_66

Group Lincludes HH, RO, RR and FA programs. Group II includes SL, SO and SR programs.

² Numbers in italics represent reductions in numbers. All other AR factors are reductions in accident rates.

Type of improvement _____

Refined Description <u>NO Refinements</u>

Code <u>A-3</u>

Page <u>2</u> of <u>2</u>

.

Refined AR factors

Description Refinements					
Location Characteristics	Type of Accident	% AR	Index of Var.	Ref.	
At intersections	PDO	15	9	66	
	Total	20	9	66	
·					
				ļ	
· · · · · · · · · · · · · · · · · · ·					
			·····		
······································					

······································					
				<u></u>	
		•			
99 - Maria Manana Ma 199 - Manana M					
an a	· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·				
	-				

27

Type of Improvement <u>Sight Distance</u> I	mprovements	
Refined Description@ Intersections	(See Below)	
		-
	Code A-13	Page <u>]</u> of]

General AR factors

	Type of Accident						
	All .	Fatal	Injury	Fatal/Injury	PDO		
Reduction %	27	59	20	22	. 29		
Index of Variability	2	4	З	3	2		
Source Reference	74	4 74 74 74		74			

Refined AR factors

Description Refinements	5			
Location Characteristics ¹	Type of Accident	% ² AR	Index of Var.	Ref.
Rural, Group I	Fatal	50	5	74
·	Injury	1	4	74
	PDO	30	3	74
	Total	23	2	74
Rural, Group II	Fatal	64	4	74
	Injury	22	3	74
	PDO	43	2	74
······································	Total	37	· 2	74
All Locations	Angle	50	9	54
· · · · · · · · · · · · · · · · · · ·				
·			ĺ	

I Group Lincludes HH, RO, RR and FA programs. Group II includes SL, SO and SR programs.

² Numbers in italics represent reductions in numbers. All other AR factors are reductions in accident rates.

Type of Improvement	Lighting		
Refined Description	In General		
		()	
		Code A-65	Page 1 of 1

General AR factors

	Type of Accident						
	All	Fatal	Injury	Fatal/Injury	PDO		
Reduction %	12	38	-12	-11	-1		
Index of Variability	1	4			2		
Source Reference	74	74		74	74		

Refined AR factors

- Description Refinements				
Location Characteristics ¹	Type of Accident	% ² AR	Index of Var.	Ref.
Group II, Urban	Fatal	100	5	74
	Injury	-15	2	74
	PDO	_4	2	74
·	Total	-8	2	74
Group II. Urban, divided, 4 lanes	Fatal	100	5	74
· · · · · · · · · · · · · · · · · · ·	Injury	-18	2	74
	PDO	-5	2	74
	Total	_10	2	74
Not Specified	Total-Night	50	8	8
•	······			
			<u></u>	
		ļļ		

1 Group Lincludes HH, RO, RR and FA programs. Group II includes \$L, \$O and \$R programs.

2 Numbers in italics represent reductions in numbers. All other AR factors are reductions in accident rates.

F-13

Appendix G .7% INTEREST FACTORS FOR ANNUAL COMPOUNDING INTEREST

]		1 SINGLE	РАЧИЕНТ]	EQUAL P;	YMENT SE	RIES]
]]]	YEAR	1 COMPOUND 1 AMOUNT 1 FACTOR	PRESENT WORTH FACTOR]]]	COMPOUND AMOUNT FACTOR	SINKING FUND Factor	PRESENT WORTH FACTOR	CAPITALI RECOVERYI FACTOR I
]	1	1 1.070]	1.000	1.0000	0.9346	1.0700]
1	2 3	1.145 1.225	0.8734 0.8163]	2.070	0.4831 0.3111	1.8080 2.6243	0.5531] 0.3811]
]	4	1.311	0.7629]	4_440	0.2252	3,3872	0,2952]
j	5	1.403]	5,751	0.1739	4.1002	0.2439 1
3	6	1.501]	7.153	0.1398	4,7665	1 6602.0
]	7	1.606 1.713]	8.654	0.1156	5.3893	0.1256 1
ן ר	8 9	1 1.713 1 1.838]	10.260	0.0975 0.0835	5.9713	0.1675 } 0.1535 1
ì	10	1.967		j	13,816	0.0724	7.0236	0.1424]
3	11	1 2.105		1	15.784	0.0634	7,4987	0.1334]
]	12	1 2.252]	17.888	0.0559	7.9427	0.1259 1
]	13 14	J 2.410)	20.141	0.0497	8.3577	0.1197]
1	15	2.579 2.759		1	22.550 25.129	0.0443 0.0398	8.7455 9.1079	0.1143] 0.1098]
1	16	2.952		1	27,888	0.0359	9,4466	0.1059]
1	17	3.159	0.3166]	30.840	0.0324	9.7632	0.1024]
]	18	3.380]	33.999	0.0294	10.0591	0.0994]
1	19	3.617		1	37,379 40,995	0.0268	10.3356	0.0958]
1	20 21	3.870 34.141]	44.865	0.0244 0.0223	10.5940	0.0944] 0.0923]
1	22	1 4.430		3	49,006	0.0204	11.0612	0.0904 1
3	53] 4.741	0.2109]	53,436	0.0187	11.2722	0.0887]
j	24	3 5.072		j	58.177	0.0172	11.4693	0.0872]
))	25 26	5. 427 5. 807]	63.249 68.676	0.0158 0.0146	11.6536	0.0858] 0.0846]
1	27	1 6.214]	74,484	0.0134	11.9867	0.0834 1
1	28	3 6.649		3	80,698	0.0124	12,1371	0.0824]
]	29	3 7.114		}	87.347	0.0114	12.2777	0.0814]
]	30] 7.612	-]	94.461	0.0106	12.4090	0.0806]
)].	31 32		0.1228 0.1147	1	102.073	0.0098 0.0051	12.5318	0.0798] 0.0791]
1	33	9.325		j	118,933	0.0084	12.7538	0.0784]
3	34	3 9.978		3	128,259	0.0078	12.8540	0.0778 1
]	35	1 10.677)	138.237	0.0072	12.9477	0.0772]
]	36 37] 11.424]	148.913	0.0067	13.0352	0.0767]
)]	38 38	1 12.224 1 13.079		1	160.337 172.561	0.0058	13.1170	0.0762] 0.0758]
]	30	1 13.995)	185.640	0.0054	13.2649	0.0754]
3	40] 14.974	0.0658)	199.635	0.0050	13.3317	0.0750 J
]	41	16.023]	214.610	0.0047	13.3941	0.0747]
ļ	42	1 17.144]	230,632	0.0043	13.4524	0.0743]
]]	43 44	1 18.344 1 19.628]	247.776 266.121	0.0038	13.5070 13.5579	0.0740] 0.0738]
3	45	1 21.002		j	285,749	0.0035	13.6055	0.0735)
3	46	1 22.473]	306.752	0.0033	13.6500	0.0733]
]	47] 24.046)	329.224	0.0030	13.6916	0.0730 }
]	48 49) 25.729) 27.530]	353,270	8500.0	13.7305	0.0728]
3	49 50	27.530 29.457]	378,999	0.0025	13.7668	0.0726] 0.0725]
	 		*********			****		******

G-l

-

]	3 SINGLE PAYMENT 1	EQUAL PAYMENT SERIES]
+]] YEAR]		COMPOUND SINKING PRESENT AMOUNT FUND WORTH FACTOR FACTOR FACTOR	CAPITALI Recoveryi Factor i
] 1] 1] 2] 3] 4] 5] 6] 7] 8] 9] 10] 12] 13] 14] 15] 16] 16] 19] 20] 23] 23] 24] 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0001.0000 0.9174 2.090 0.4785 1.7591 3.278 0.3051 2.5313 4.573 0.2187 3.2397 5.985 0.1671 3.8897 7.523 0.1329 4.4859 9.200 0.1087 5.0330 11.028 0.907 5.5348 13.021 0.0768 5.9952 15.193 0.0658 6.4177 17.560 0.0569 6.8052 20.141 0.0497 7.1607 22.953 0.0436 7.4869 26.019 0.0384 7.7862 29.361 0.0341 8.0607 33.003 0.0303 8.3126 46.018 0.0217 8.9501 51.160 0.0195 9.1285 56.765 0.0176 9.2922 62.873 0.0159 9.4424 69.532 0.0144 9.5802 76.790 0.0130 9.7066	FACTOR] 1.0900 I 0.5685 I 0.3951 I 0.2271 I 0.2229 I 0.1987 I 0.1807 I 0.1668 I 0.1558 I 0.1558 I 0.1558 I 0.1669 I 0.1397 I 0.1336 I 0.1284 I 0.1241 I 0.1203 I 0.1241 I 0.1203 I 0.1142 I 0.1142 I 0.1076 I 0.1044 I 0.1030 I 0.1018 I
26 27 28 29 30 31 32 331 331 331 331 331 331 331 331 333 34 35 37 38 39 40 42 43 44 45 44 45 46 47 48 50	$\begin{array}{c} 9.399 \ 0.1064 \\ 1 \ 10.245 \ 0.0976 \\ 1 \ 11.167 \ 0.0895 \\ 1 \ 12.172 \ 0.0822 \\ 1 \ 13.268 \ 0.0754 \\ 1 \ 14.462 \ 0.0691 \\ 1 \ 15.763 \ 0.0634 \\ 1 \ 15.763 \ 0.0634 \\ 1 \ 15.763 \ 0.0634 \\ 1 \ 17.182 \ 0.0582 \\ 1 \ 18.728 \ 0.0534 \\ 1 \ 20.414 \ 0.0490 \\ 1 \ 22.251 \ 0.0449 \\ 1 \ 24.254 \ 0.0412 \\ 1 \ 26.437 \ 0.0378 \\ 1 \ 28.816 \ 0.0347 \\ 1 \ 31.409 \ 0.0318 \\ 1 \ 34.236 \ 0.0292 \\ 1 \ 37.318 \ 0.0268 \\ 1 \ 44.337 \ 0.0268 \\ 1 \ 44.337 \ 0.0268 \\ 1 \ 44.337 \ 0.0268 \\ 1 \ 44.337 \ 0.0268 \\ 1 \ 44.337 \ 0.0268 \\ 1 \ 44.337 \ 0.0268 \\ 1 \ 44.337 \ 0.0268 \\ 1 \ 46.327 \ 0.0207 \\ 1 \ 52.677 \ 0.0190 \\ 1 \ 57.418 \ 0.0174 \\ 1 \ 62.585 \ 0.0160 \\ 1 \ 68.218 \ 0.0147 \\ \end{array}$	93.324 0.0107 9.9290 102.723 0.0097 10.0266 112.968 0.0089 10.1161 124.135 0.0081 10.1983 136.308 0.0073 10.2737 149.575 0.0067 10.3428 164.037 0.0061 10.4662 179.800 0.0056 10.4644 196.982 0.0051 10.5178 215.711 0.0046 10.5663 236.125 0.0039 10.6530 282.630 0.0035 10.6908 309.066 0.0035 10.7255 337.882 0.0027 10.7866 403.528 0.0025 10.8134 440.846 0.0023 10.8380 481.522 0.0017 10.9002 626.863 0.0015 10.9336 74.186 0.0015 10.9482 815.084 0.0012 10.9617	$\begin{array}{c} 0.1007 \\ 0.0997 \\ 0.0989 \\ 1 \\ 0.0989 \\ 1 \\ 0.0981 \\ 1 \\ 0.0961 \\ 1 \\ 0.0967 \\ 1 \\ 0.0961 \\ 1 \\ 0.0961 \\ 1 \\ 0.0956 \\ 1 \\ 0.0956 \\ 1 \\ 0.0956 \\ 1 \\ 0.0946 \\ 1 \\ 0.0946 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0935 \\ 1 \\ 0.0917 \\ 1 \\ 0.0916 \\ 1 \\ 0.0912$

G**-**3

۰.

		• •• •							_
) +)	SINGLE	PAYMENT]	EQUAL	PAYMENT SE	RIES]
3			COMPOUND	PRESENT	. 1	COMPOUND	D SINKING	PRESENT	CAPITAL]
]	YEAR	-		WORTH]		FUND	WORTH	RECOVERY
) 1		ز + ــــــــــــــــــــــــــــــــــــ	FACTOR	FACTOR	[FACTOR	FACTOR	FACTOR	FACTOR]
j	1]	1.110	0.9009	י - י ו	1.000) 1.0000	0.9009	1 1 1 0 0 1
3	S	3	1.232		Ĵ	2.110		1.7125	1.1100] 0.5839]
3	3]	1.368		3	3.342		2.4437	0.4092 1
}	4 5]	1.518]	4 + 7 1 0		3.1024	0.3223 1
נ ו	ン 6	נ }	1.685	•]	6.228		3.6959	0.2706 1
j	7	j	2.076]	7.913 9.783		4.2305	0.2364]
]	8	3	2.305		3	11.859		4.7122 5.1461	0.2122] 0.1943]
1	9	1	2.558		j	14.164		5.5370	0.1806]
)	10]	2.839		J	16.722	2 0.0598	5.8892	0.1698]
ł	11 12]	3,152]	19.561		6.2065	0.1611]
ì	13]	3.498 3.883]	22.713		6.4924	0.1540]
j	14	j	4.310		1	26.212		6.7499	0.1482]
]	15	3		0.2000	j	34.405		6.9819 7.1909	0.1432] 0.1391]
}	16	3	5.311	0.1883	3	39.190		7.3792	0.1355]
)	17	j	5.895		3	44.501	0.0225	7.5488	0.1325]
3	18 19]]	6.544]	50.396		7.7016	0.1298]
1	50	1	7.263 8.062]	56.939 64.203		7.8393	0.1276 1
3	21	j	8,949		1	72.265		7.9633 8.0751	0.1256 1
)	55]	9.934		j	81.214		8.1757	0.1238] 0.1223]
]	23]	11.026		}	91.148		8.2664	0.1210]
1	24)	12.239)	102.174		8.3481	0.1198]
נו	25 26]	13.585]	114.413		8.4217	0.1187]
j	27	j	16.739)	127.999		8,4881 8,5478	0.1178]
]	28	1	18.580		ĵ	159.817		8.6016	0.1170] 0.1163]
1	59	3	20.624	0.0485]	178.397		8.6501	0.1156]
]	30]	22.892	0.0437]	199.021	0.0050	8,6938	0.1150]
3	31 32]	25.410	0.0394 0.0355]	221.913	0.0045	8.7331	0.1145]
ĵ	33	j		0.0319]	247.324	0.0040 0.0036	8.7686	0.1140]
]	34]		8850.0	j	306.837	0.0033	8.8005 8.8293	0.1136] 0.1133]
1	35	1	38.575	0.0259]	341.590	9500.0	8.8552	0.1129]
]	36	1		0.0234	}	380.164	0.0056	8.8786	0.1126]
]	37 38]]	47.528	0.0210]	422.982	0.0024	8.8996	0.1124]
]	39]	58,559	0.0190 0.0171]	470.511 523.267	0.0021	8.9186	0.1121]
]	40	j	65.001	0.0154]	581.826	0.0019 0.0017	8.9357 8.9511	0.1119]
]	41]	72,151	0.0139	j	646.827	0.0015	8,9649	0.1117] 0.1115]
]	42]		0.0125]	718.978	0.0014	8.9774	0.1114]
]	43 44) 1	88.897	0.0112]	799.065	0.0013	8.9886	0.1113]
]	45]	98.676 109.530	0.0101]	887.963	0.0011	8.9988	0.1111]
i	46	í		0.0091]	986.639	0.0010 0.0009	9.0079 9.0161	0.1110]
}	47	3	134.952	0.0074		1217.747	0.0008	9.0235	0.1109] 0.1108]
]	48]	149.797	0.0067]	1352.7.00	0.0007	9.0302	0.1107]
]	49 50]		0.0060		1502.497	0.0007	9.0362	0.1107]
, 	90 	سو چې د	184.565	0.0054) 	1668,771	0.0006	9.0417	0.1106 J

100

and the second
) SINGLE	PAYMENT]	EGUAL PA	YMENT SE	RIES	
YEAR	ICOMPOUND I AMOUNT I FACTOR	PRESENT WORTH FACTOR]]]	COMPOUND AMOUNT FACTOR	SINKING FUND FACTOR	PRESENT WORTH FACTOR	CAPITAL RECOVERY FACTOR
	• FACIOR	- ACION	, +-				
1		0.8850]	1.000	1.0000	0.8850	1.1300
2] 1.277]	2.130 3.407	0.4695 0.2935	1.6681 2.3612	0.5995 0.4235
3 4] 1.443] 1.630	0.6931)]	4.850	0.2062	2,9745	0.3362
5	1.842		}	5,480	0.1543	3,5172	0.2843
5	1 2.082)	8.323	0.1202	3.9975	0.2502
7	1 2.353		1	10.405	0.0961	4.4226	0.2261
8	1 2.658		3	12.757	0.0784	4.7988	0.2084
9	3.004]	15.416	0.0649	5.1317	0.1949
10	3.395		1	18.420	0.0543	5.4262 5.6869	0.1843 0.1758
11) 3.836 J 4.335]	21.814 25.650	0.0458 0.0390	5.9176	
12 13	4.898		;	29.985	0.0334	6.1218	0.1690 0.1634
14	1 5.535		ĵ	34.883	0.0287	6.3025	0.1587
15	3 6.254		1	40.417	0.0247	6.4624	0.1547
16	3 7.067		1	46.672	0.0214	6.6039	0.1514
17	1 7.986]	53.739	0.0186	6.7291	0.1486
18	1 9.024]	61.725	0.0162	6.8399 6.9380	0.1462
19	10.197)	70.749 80.947	0.0141 0.0124	7.0248	0.1441 0.1424
20 21	11.523 13.021	0.0868 0.0768	ĵ	92.470	0.0108	7.1016	0.1408
55	1 14.714		j	105,491	0.0095	7.1695	0.1395
23	1 16.627)	120,205	0.0083	7.2297	0.1383
24	18,788	0.0532	3	136.831	0.0073	7.2829	0.1373
25	1 21.231	0.0471]	155.620	0.0064	7.3300	0.1364
26] 23.991	0.0417]	176.850	0.0057	7.3717	0.1357 0.1350
27] 27.109]	200.841	0.0050 0.0044	7.4086	0.1350 0.1344
23 23] 30.633] 34.616		1	258.583	0.0039	7.4701	0.1339
30	39.116		ĵ	293.199	0.0034	7.4957	0.1334
31] 44.201		3	332,315	0.0030	7.5183	0.1330
32		0.0200	3	376.516	0.0027	7.5383	0.1327
33		0.0177]	426.463	0.0023	7.5560	0.1323
34		0.0157]	482.903	0.0021	7.5717	
35		0.0139	3	546.681 618.749	0.0016	7,5979	
36 37		0.0109	j	700.187	0.0014	7.6087	0.1314
38		0.0096)	792.211	0.0013	7.6183	
39		0.0085	3	896,198	0.0011	7.6268	
40	1 132.782	0.0075	1	1013.704	0.0010	7.6344	
41		0.0067]	1146.486	0.0009	7.6410	
42		0.0059]	1296.529	0.0008	7.6469	
43		0.0052]			7.6568	
44 45] 244.641		3			7.6609	
46		5 0.0036	j			7.6645	
47		5.00.0]		0.0004	7.6677	
48	1 352.998	8500.0]	2707.633		7.6705	
49		2500.0]		_	7.6730	
50	1 450.736	0.0055]	3459.507	0.0003	7.6752	0.1303

- G-7

-.

2)	SINGLE	PAYMENT	1	EQUAL P	AYMENT S	SERIES	
-]	COMPOUND	PRESENT]	COMPOUND	SINKING	PRESENT	CAPITA
	YEAR	3	AMOUNT	WORTH]	AMOUNT	FUND	WORTH	RECOVER
		3	FACTOR	FACTOR]	FACTOR	FACTOR		FACTOR
-		+]	1.150	0.8696	-+]	1.000	1.0000	0.8696	1.1500
]		0.7561]	2.150	0.4651		0.6151
]		0.6575]	3,473	0.2880		0.4380
		3		0.5718]	4.993	0.2003		0.3503
	5	1		0,4972]	6.742	0.1483		0.2983
		}		0.4323]	8.754	0.1142		0.2642
		3		0.3759]	11.067	0.0904		0.2404
	8	1		0.3269]	13 727	0.0729		0.2229
		1		0.2843]	16.786	0.0596		0.2096
	10	1		0.2472]	20.304	0.0493		0.1993
	11	3	4.652	0.2149	J	24 349	0.0411		0.1911
	12]		0.1869	1	29,002	0.0345		0.1845
		1		0.1625]	34.352	0.0291		0.1791
]		0.1413]	40.505	0.0247	-	0.1747
)		0.1229)	47.580	0.0210		0.1710
		3		0.1069	1	55.717	0.0179		0.1679
		3		0.0959	3	65.075	0.0154		0.1654
	18)		0.0808	1	75.836	0.0132		0.1632
	19]		0.0703]	88,212	0.0113		0.1613
]		0.0611]	102.444	0.0098		0.1598
		}		0.0531]	118,810	0.0084		0.1584
]		0.0462]	137.632	0.0073		0.1573
ļ		}	24.891		}	159.276	0.0063		0.1563
	24	3		0.0349	1	184.168	0.0054		0.1554
	25]		0.0304]	212.793	0.0047		0.1547
	56]	37.857	0.0264	1	245.712	0.0041		0.1541
	27]	43.535	0.0230]	283.569	0.0035		0.1535
1	28)	50.066	0.0200]	327.104	0.0031	6.5335	0.1531
	29	1	57.575	0.0174]	377.170	0.0027		0.1527
	30	}	66.212	0.0151	1	434.745	0.0023		0.1523
	31]	76.144	0.0131]	500.957	0.0020		0.1520
	32	1	87,565	0.0114	1	577.100	0.0017	6.5905	0.1517
l I	33	3	100.700	0.0099]	664,666	0.0015	6.6005	0.1515
ł	34	3	115.805]	765.365	0.0013		0.1513
		3	133.176]	881.170	0.0011		0.1511
		}	153,152]	1014.346	0.0010	6.6231	0.1510
)	176.125]	1167.498	0.0009		0.1509
]	202.543	0.0049]	1343.622	0.0007		0.1507
		1	232.925		3	1546.165	0.0006		0.1506
•]	267.864)	1779.090	0.0006		0.1506
i		3	308.043	-]	2046,954	0.0005		0.1505
ļ		1	354.250]	2354.997	0.0004		0.1504
		3]		0.0004		0.1504
		3]		0.0003		0.1503
]	538.769	0.0019]	3585.128	0.0003		0.1503
		1	619.585)	-	0.0002		0.1502
		1	712.522]	4743.482	0.0002		0.1502
		1	819,401		1	-	0.0002		0.1502
		3	942.311]	6275,405	0.0002		0.1502
	50]	1083.657	0.0009]	7217.716	0.0001	.6.6605	0.1501

G-9

Appendix H

FUNDING ISSUES

Section 105 (a) of Title 23 (United States Code) requires each State to submit a program of proposed projects for the utilization of apportioned funds. In accordance with the provisions of FHPM 6-3-2-2 ("Federal-Aid Programs Approval and Authorization"), an annual funding program is required to be submitted to FHWA. The submittal dates, and program content and format are to be determined jointly by the State and the FHWA Division Administrator.

Currently the following highway safety construction programs are:

Title 23 Section Number	Program Title
	Rail-Highway Crossings (Section 203 of 1973 Act)
151	Pavement Marking Demonstration Program
152	Hazard Elimination Program

Also, the Safer Off-System Roads Progrm (23 USC 219) provides for highway safety construction off the Federal-aid system. Details of the programs are given in Table 1, which includes summary information of (2):

- Type of system for funding
- Amount of funds allocated in 1974-1976.
- Percent of Federal funds
- Other information

Funds from 23 USC 402 can also be used to implement the Highway Safety Program Standards. Primarily, these funds are used for planning and evaluation activities in support of the safety construction program.

Certain guidelines must be satisfied in order for tasks to be eligible for FHWA funding. Fundable tasks should be directed toward "reducing the frequency and severity of motor vehicle accidents", and should be oriinted toward long-term benefits.

Tasks involving studies, surveys, inventories, data collection, and analysis, etc. should be directed toward (1):

- Identifying accident locations;
- Defining hazards,
- Determining needs and deficiencies (in the highway-related Standard areas),
- Developing programs for correction of identified hazards (and

Table	I	•	Safety	programs.	

•

	Program Requirements	Section 203 of 1973 Act Rail-Highway Crossings	23 USC 151 Pavement Marking Demonstration	23 USC 152 Hazard Eliminations	23 USC 402	23 USC 214
	Surveys	Conduct and maintain: for all highways	None	Conduct and system- atically maintain for all highways	None	None
	Priorities	All crossings signed & funds for protect- ive devices	Rural areas first	Assignment required	Assignment required	k of funds for safety projects
Н •	Improvement Schedule	Required	None	Required	HSP required	None
N	Funds: Available For	All highway except Interstate	All highways except Interstate	Federal-aid system except Interstate	All public highways	Public Rd. Federal- Aid off system
	Percent Federal Funds	90	100	90	75 or 100	75
	Reporting States to DOT DOT to Congress	Уев Уев	Yos Yes	Yes Yes	Yes Yes	-
	Miscellaneous	Federal funds may provide local share when State law requires local matching of State funds	Funds not- needed may be released for off Federal- Aid system. High Hazard Improvements.		Support Safety Construc- tion	

1

high-accident locations), and

Evaluating the effectiveness of improvements.

The benefits of tasks must be related to the reduction of traffic deaths, injuries, and property damage. Where practical, the benefits should also be measurable in quantitative terms (1).

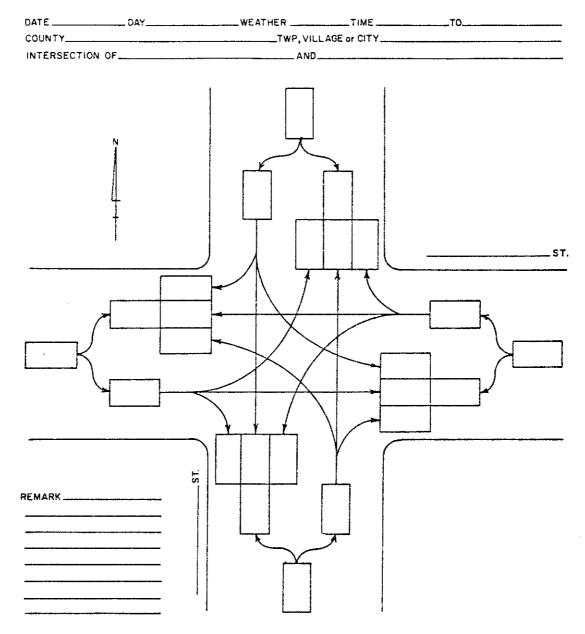
According to Section 402 (g) Title 23, United States Code, safety funds may NOT be used for:

- Highway construction, maintenance, or design (other than highway design or safety features to be used in the standards), or
- Any purpose for which funds are authorized by Section 403 of this title.

There are several reasons why Section 402 funds cannot be used for the same purposes for which Section 403 funds are authorized (1):

- To insure that 402 funds are used to help the States initiate new safety activities and improve or expand existing safety activities.
- To insure that research programs are carried out under Section 403.
- To avoid unnecessary duplication of effort and expenditures which would occur if each State undertakes its own safety research and development program with Federal assistance.

Section 403 (Title 23, United States Code) is based on the idea that traffic safety research must be conducted from a total systems viewpoint. It authorized the expansion of the highway safety research and development (R and D) activities under 23 U.S.C. 307 (a) to cover all aspects of highway safety (1).


Guidelines for the funding of specific tasks are described in FHWA order number M75603 Volume 3, Chapter III ("Funding Eligibility"), as given in the Appendix. The tasks described include:

- Field Reference Systems
- Training
- Highway Safety Needs Studies
- Warning and Regulatory Signs
- Skid Resistance Program
- Bridge Inspection
- Equipment Purchases
- Public Information

Specific Section 402 support tasks are also listed in the Appendix, as classified under the appropriate Component and Process of the Highway Safety Improvement Program (HSIP):

VEHICLE VOLUME COUNT

1

INTERSECTION LEG		INBOUND	OUTBOUND	TOTAL
LEG OF	ST.			
LEG OF	ST.			
LEG OF	ST.			
LEG OF	ST.			·····
TOTAL				

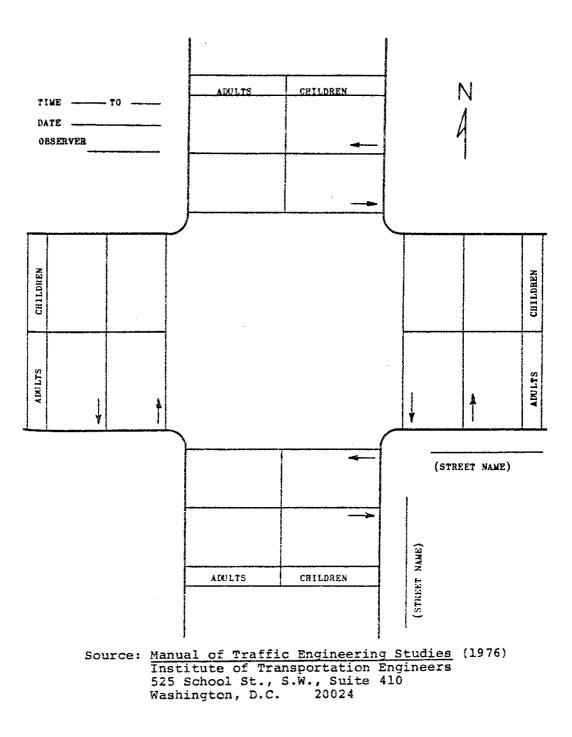
I-l

OLUME				DAY				·Ĩ	'IME					·····			
FWP, VILLAG	SE OR C	ITY					, _, _, _, _, _, _, _, _, _, _, _, _,	۱	OLUME	ON							
INTERSECT	ION OF.								AND						-		
WEATHER:C			YRAI	INSI	10W	FOG	ROA	D SURF	ACE: DR	YW	ETI	CY :	SNOWY_				(****************
TIME	FROM	QN		CREATING CONS.	FROM ON			FROM	ON			FROM ON				1905-08-76-26	
		<u> </u>						TOTAL								TOTAL	
		·····								·							
					+							······					
					<u> </u>												
							Y										
12 - INID.					ļ]			
2 3	 	<u> </u>		<u> </u>	+	 		 									
3 4							<u> </u>	 			 	<u> </u>	_		l		
4 - 5	¥	 	<u> </u>	 	+			}			 -			-			
5 - 6	l 1						h									+	
6 - 7	1	1	1	1		1	t					<u> </u>				•	
7-8							1	1			f					-	
8 9			L	ļ		I								and the second design of the s			
9 10	ļ										Į		Į				l
10 - 11	· · · · · · · · · · · · · · · · · · ·				+						 			_			
11 12PM	¥	+			+		 										
1- 2			<u> </u>	┨	<u> </u>		<u>+</u>	ł				<u></u>				+	
2 3	1		<u> </u>								<u> </u>	+++++++++++++++++++++++++++++++++++++++			·		
3-4	İ.	1					1	 		•				+			
4 5															al and a second state of the		
5 6	ļ	ļ													[]	
6 - 7	 	ļ		<u> </u>			ļ				ļ		<u> </u>	<u> </u>			
7 , 8 8 9	 	·	 	<u> </u>	·	<u> </u>		Į			 	ļ		_			
9-10	╊	 	ł	<u> </u>	+		<u> </u>	<u> </u>	<u> </u>			<u> </u>	_		· · ·		
<u> </u>	#	<u> </u>		 	+	· 		<u> </u>				 		·			1
11 - 12	Į	+			+			<u> </u>			<u> </u>	 			+		
and dia and film.				1	-								-			-	24 Hr.
		1]		1									1	Total
a ya ana ana ang ang ang ang ang ang ang an										200-0400-0400-040-04			A DECEMBER OF STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, S		1		BI-Dir.
			1	1			1				1						Total

$= \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} - \frac{1}$

 $\begin{array}{c} \frac{1}{2} \\ \frac{1}{2}$

SUMMARY CLASSIFICATION SHEET FOR VEHICULAR TRAFFIC


Hour____ to ____

Location_____

___Date _____

Bria	Passe Car	nger Fi	S1	ngle-u Trucks		E	115		tor-	truck iler		er nation			ounte
Hour Beginning	Local	Out-of- Btate	4 Tired	6 Thred	3 Axle	School.	Other	3 Axle	4 Axle	5 or more Axles	4 Axle Full	5 Axle Combination	Total	Extra Axles	Machine Counts
· · · · · · · · ·															
	{			<u> </u>	<u> </u>	<u> </u>			<u> </u>						
	[ļ		1									
								1	┣──	ŀ					
Total				<u> </u>											
	1				<u> </u>	U]		<u> </u>		I. I			
				{]							Leg o	of Inte	rsec	CION
					[
															· · ·
											ļ	_			
Total															
	il	ų							لمصد ت	. <u> </u>	1		l'Inter	sect	102
												(i			
												1		<u></u> +	
Total														_	
										<u>1</u>	i La	eg of	Inter	; sect	lon
	I	1								T		Ĭ	1		
													 		
							1				1				
		l													
				<u> </u>			-				1			_	
otal						-					+	- 		-+-	
,	Sourc	e: <u>M</u>	anua	l of tute	Traf	fic	En	gine	eri	ng S	tu	die	<u>s</u> (19	76)	
		5: Wa	25 S	chool	. St.	. ал: • S	.W.	. Su	uite.	- £119 - 4 10	111	eer	3		

CROSSWALK FIELD SHEET PEDESTRIAN COUNT

SPEED SURVEY SHEET

ROAD:	· · · ·		BETWEEN	AND:	
	ISEWO	F			<u> </u>
CITY OR TOW	NSHIP:		DATE:		
IME:		DIRECTION BEING SURV	(EYED:		
VEATHER:	CLEAR	CLOUDY	RAIN	SNOW	
PAVEMENT:	D8Y	WET		SNOW	
EMPERATURE	:=	WIND: LI	GHTSTRONG	GUST	
	70				
	69		43	30	
	68	55		29	
	67	54		28	
	66		40	27	
	65		39	26	
	64			25	
	63		37	24	
	62	49	36	23	
	61	48	35	22	
				21	
	59		33	20	
	58	45	32	19	

TOTAL COUNT

85% PERCENTILE

AVERAGE _____

				SPOT SPE			DY					
ate			Locatio	n			Direct	ion				
					Direction Poad Surface Condition							
PLCONDS	men for	mpn tor		PASSENGER VEHIC	LES		BUSES			TRUCK	s	FOTAL
	88 //	176.9	-		N/5 7/27			140 765			No Ver	9
	50 0	120.0							1			1
1-1/5	50 0 42.8	100 0 35 7			. į							
7-2/3 7-3-5	37.5	75.5			\		·	1				ļ
1.1.5	33 3	06.6	+			<u> </u>		 -			ļ	
2	30.0	50.0	- <u>†</u> †			+		<u> </u>	+		1	
2 5	27 2	54 5	1				······································	 	+			1
2-2-5	25.0	50.0		· · · · · · · · · · · · · · · · · · ·		+			+			<u> </u>
2-3/5	23.0	46 .		······································		1		<u>+</u> -		·····		<u> </u>
2-4-5	21.4	42 8		······································	1	1			1		<u> </u>	<u> </u>
3	20 0	10.0		·····		1	·	<u> </u>	Ť.		1	ţ
3-1-5	187	37.5	<u> </u>	······							1	<u> </u>
3-2-5	17.6	35.2	+			1						
3-3-5	16 G 15 7	333	+		_	ļ						
	150	30.0	+			+		<u> </u>	<u> </u>			
4- 5	14.2	28.9	<u> </u>			†			<u> </u>			
2.5	136	27.2	1			<u> </u>			 			
4-3/5	13.0	26 1				1			1			
14:5	:2 5	25 0			1	†						
5	12.0	24.0			1	1		······································	<u>*</u>			
5-1/5	11.5	23 0	<u> </u>			1						
5-2/5	11,1	22 2	<u>+</u>		-	ļ						
5-3/5	10.3	21.4	<u> </u>			-				·		
5	10.0	20.0	<u>† </u>			[ļ		L	
4.1 E	36	193	†			<u> </u>		·	<u> </u>		<u> </u>	
5-2-5	93	187			-	ŧ						
535	90	18.1			1	1						
6-4-5	÷7	17.6			1							
7	3.5	17 1	<u> </u>									
7:5	83	15 5 16 2	<u> </u>									
3.5	7.6	:5 7	<u>├</u>									
4.5	7.6	- 5 3			+				·			
-	-5	15.0	<u> </u>	··· ··· ··· ··· ··· ··· ··· ·· ·· ·· ··	+							
H.T. 2	10	:4:		· · · · · · · · · · · · · · · · · · ·								{
7	6 5	• 3 3			+			·				
3-11-2	63	12.6		• · · · · · · · · · · · · · · · · · · ·	1		1		_			
:0	50	:2.0			1							
::	5.4	:0)								j		
12	50	:0 0										
:3	46	9.2		·····	1							
14	12	55								1	ļ	
	40	6.0	L		i. i			. 1			i]

Scurce: <u>Manual of Traffic Engineering Studies</u> (1976) Institute of Transportation Engineers 525 School St., S.W., Suite 410 Washington, D.C. 20024

TRAVEL TIME AND DELAY STUDY TEST CAR TECHNIQUE FIELD SHEET

ROUTE		DIRECTION			
TRIP STARTED AT	AT		<u> </u>		
TRIP ENDED AT	AT	LOCATION)	(MILEAGE)	
		(LOCATION)	(MILEAGE	
CONTROL P	OINTS	STOP	STOPS OR S		
LOCATION	TIME	LOCATION	SEC DELAY	CAUSE	
· · · · · · · · · · · · · · · · · · ·			++		
		<u> </u>	╉╍╌┟		
			+		
				······	
			+		
TRIP LENGTH		TRAV			
RUNNING TIME					
SYMBOLS OF DELAY CA	USE: S-TRAFFIC SI	GNALS SS-STOP S RKING T-GENERAL	IGN LT-	LEFT TURNS	
PED-PEUESTRO	NS BP-BUS PASSE	ENGERS LOADING O		NG	
COMMENTS					
	BECORDE	R			
		, .			
Source: Manual	of Traffic	Engineering	Stud	ies (197	

Washington, D.C. 20024

TRAVEL TIME STUDY LICENSE PLATE TECHNIQUE						
FIELD SHEET						

ATE		ROUTE LENGTH				DIRECTION OF TRAFFIC				
MEOFST	ART									
0	1	2 3 4			5	6	7	8	9	
				1			·			
				1						
				<u> </u>					<u>.</u>	
			· · · · · · · · · · · · · · · · · · ·	 						
		í		1						
				1						
						i			•	
						• • • •				
					1					
	1									
I NOTE: ON	ILY RECOR				ENSE PLA EELS OR +			INE ANY I	BUS OR	
		OBSERVE								

Source: <u>Manual of Traffic Engineering Studies</u> (1976) Institute of Transportation Engineers 525 School St., S.W., Suite 410 Washington, D.C. 20024

INTERSECTION DELAY STUDY

Location			Approa	ch	Movement		
Date Wea							
Time (minute starting		lotal Numbe ped in the Ar	Approach Volume				
at)	+0 sec	+15 sec	+ 30 sec	+ 45 sec	Number Stopped	Number Not Stopping	
	 	<u> </u>				<u> </u>	
		1					
		<u> </u>					
· · · · · · · · · · · · · · · · · · ·		• •					
	 					<u> </u>	
	 					<u> </u>	
			<u> </u>			1	
Subtotal						<u> </u>	
Total							
Total Delay = Total N	Number Stop	ped x Samp	ling Interval			<u> </u>	
	x 15						
				ay.			
Average Delay per Sto	opped venici	e = Numbe	er of Stopped				
		=		. =	S	sec	
Average Delay per Ap	proach Vehic	$r = \frac{To}{Appro}$	tal Delay ach Volume				
		=			;	sec	
Percent of Vehicles S	topped = <u>N</u>		opped Vehic	ies	=	percent	
		Approach	i Volume				
	titute	of Tra	nsporta	ition Er	ngineers	(1976)	
525	School hingtor	St.,	s.W., s	uite 41			
NGD		17 D.C.	200				

Highway Capacity Analysis Sheet

LOCATION:

CITY OR TOWNSHIP:

DATE:

			<u> </u>	
Description (1)	Design Capacity (2)	Existing Volume (3)	(3)	Level of Service
······				
			[
		· · · · · · · · · · · · · · · · · · ·		
·····				
				·
·····				

Day Date Observer Conflict - C, Secondary Conflict - SC COUNT Start START TOTAL APPROACH		•	i T]	
COUNT START TOTAL TIME APPROACH Some Direction to the same Direc					
	sc c	SC	С	SC	
		+		+	
Severe Conflicts:		<u> </u>	······		
Possible Causes of Slow Vehicle Conflicts:					
Other Notes and Comments:					
		<u>.</u>			
	· · · · · · · · · · · · · · · · · · ·				
		·····			
		~			

I-11

1.1

2

GAP STUDIES

-			
i			
11 to 15 SEC.	16 to 20 SEC.		
26 to 30 SEC	31 to		
	U		

.

Queue Length Data Summary Sheet

LOCATION:

CITY:_____ DATE:____

DAY: _____WEATHER: ____

TIME:_____

Time	Queue Length	Time	Queue Length	

Skid Resistance Study Summary Sheet

LOCATION:_______DATE:______DATE:______DATE:______DATE:______DATE:______AIR_TEMPERATURE:_____

METHOD USED FOR MEASURING:

TEST NO.	DESCRIPTION*	SKID NUMBER (SN)
		······································
[
L		

'Includes identification of study section (route number, mile post, lane) and testing data (wheel locked, test speed, etc.)

Roadway	Lighting	Warrant	Form

LOCATION:

DESCRIPTION:

CITY OR TWP:_____ DATE:____

l. Volume Data			<u></u>
Description		Volume	Date
			, <u>, , , , , , , , , , , , , , , , , , </u>
2. Accident Data			· · · · · · · · · · · · · · · · · · ·
Time Period	N	ight/Day Accide	nt Rate
		· · · · · · · · · · · · · · · · · · ·	
3. Other Data			
	····		

Fog-Related Study Output Form

CITY OR TWP:_____ DATE:____

DAY:_____TIME:_____TEMP:_____

TRAVEL SPEEDS:

	Į		Y
Test No.	Description	Field Measurement (Sight Distance)	Design Value
P			
Fanna (1977) - <u>1977 - 1977</u> - 1977			
	· · · · · · · · · · · · · · · · · · ·		

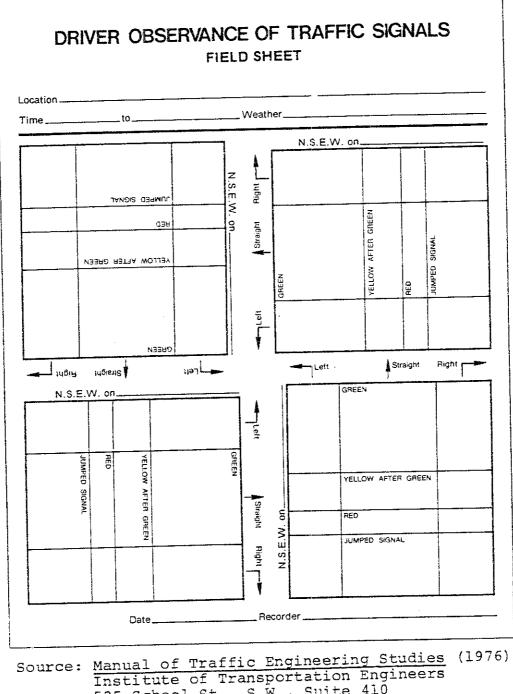
study date	Ti	me: From	t		cation
rosswalk a	cross	c	urb-to-cur	b distance _	
vided roa	dway? Yes	NO r	lidth of is	sland	
	Number of	Number of	Groups	Cumulative	Computations
Group size	Rows (N)	Tally	TOTAL	Cumbracive	<u>Compacture</u>
46 - 50	10				•
41 - 45	9				
36 - 40	8				
31 - 33	7				
26 - 30	6				
21 - 25	5				
16 - 20	4				
11 - 15	З				
6 - 10	2				
5 or Less					
		Total Number of Groups		x 0.15	N ⁻

Source: A Program for School Crossing Protection Institute of Transportation Engineers 525 School St., S.W., Suite 410 Washington, D.C. 20024

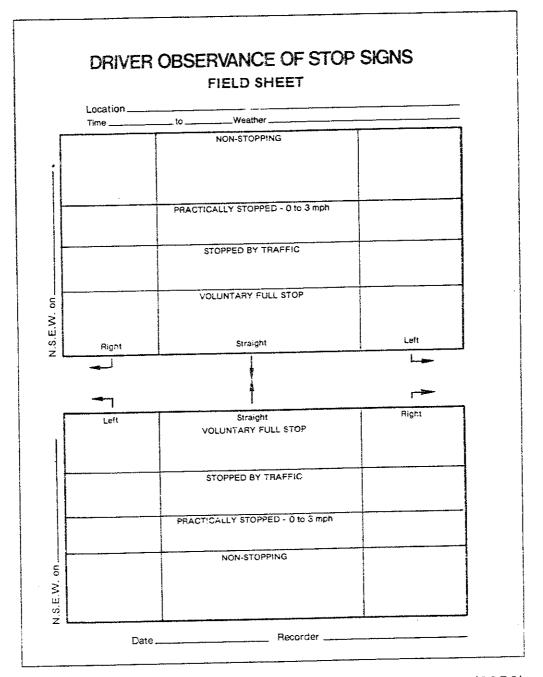
. .

ate	Location		6	
			Crosswaik	across
Survey (to	nearest minute)		Number of Rows	- "N"
f Survey (to nearest minute	e)	Roadway Width	- "W" ft
Survey Tim	e (minutes)		Adequate Gap T	ime -"G"sec
ze	Number of Ga	105	Multiply by	
ds)		Tota	1 Gap Size	Computations
		l		1
1		1		1
1		1	1	
		1		
1		ļ	1	
ļ		1	1	1
1		1	1	1
1		i.	i i	1
			Į	
				i
			i	1
1		ţ	1	1
1			1	
				_
				1
		1	1	
		l.		T = Total Su
1				vey time
1		i		x 60
ł				T=::(
ļ			1	1
				T = sec
1			1	
				1
1		1	1	1
		l		1
Í				- (T - t)
1		l		$D = \left(\frac{T - t}{T}\right) B$
Ì				
				1
ł		1		
		1		1
		1		
1				
" (total t greater	than "G")	aqual or	secs	. D =
A Prod	Tram for S	chool	Crossing	Protectio
Instit	ute of Tr	anspo:	rtation En	ngineers
بالمديد فيددد		-		
		C 1.7	Chiét A	1 ()
525 Sc	chool St., ngton, D.C	S.W.	, Suite 4.	LO
	f Survey (Survey Tim ze ds)	f Survey (to nearest minute Survey Time (minutes) ze <u>Number of G</u> ds) Tally (total time of all gaps greater than "G")	f Survey (to nearest minute)	f Survey (to nearest minute) Roadway Width Survey Time (minutes) Adequate Cap T ze Number of Gaps Multiply by ds) Tally Total Gap Size

.


			Location_				bserver			Date _		Weather		
Tir	uG	Slow or	Slow or Stop For	Weave For	Brake or Weave -	Brake or	Vehicle	Turn	Ped.	Ped,	Ped.	False	Jay	Total
Start	End		Ped. Previous	Ped.	Ped. Standing	Weave - Ped. Walking on Shoulder	Ignore Crossing Guard	Conflict	Run Across Street	Stop In Street	Traf, Signal Viola- tion	Start Across Street	Walk- inq	Peð. Volume
							v.							
								 					. 	
													<u>,</u>	
										a				
l						<u> </u>			[l

Data Collection Form For Pedestrian Conflicts and Events


PEDESTRIAN OBSERVANCE OF TRAFFIC SIGNALS FIELD SHEET

		Weather		
edestrians crossing		St. on the (N.S.E.W.)	side	
of	St. in	direction		
STEPPED FROM CURB ON	C	ROSSED STRAIGHT (crosswałk)	т	OTAL
RED WALK				
YELLOW FLASHING DON'T WALK				
GREEN STEADY DON'T WALK				
	CR	OSSED DIAGONALLY		
RED WALK				
VELLOW DON DONT WALK				
TOTAL				
	D. 1.	Recorder		

Source: <u>Manual of Traffic Engineering Studies</u> (1976) Institute of Transportation Engineers 525 School St., S.W., Suite 410 Washington, D.C. 20024

525 School St., S.W., Suite 410 Washington, D.C. 20024

Source: <u>Manual of Traffic Engineering Studies</u> (1976) Institute of Transportation Engineers 525 School St., S.W., Suite 410 Washington, D.C. 20024

Techniques	Technique Tec			Techn	lechnique			
Management Concerns	Wt. (1)	Level (2)	(1)x(2)	Wt. (1)	Level (2)	(1)x(2		
	_							
								
TOTAL								

Technique Utility Form

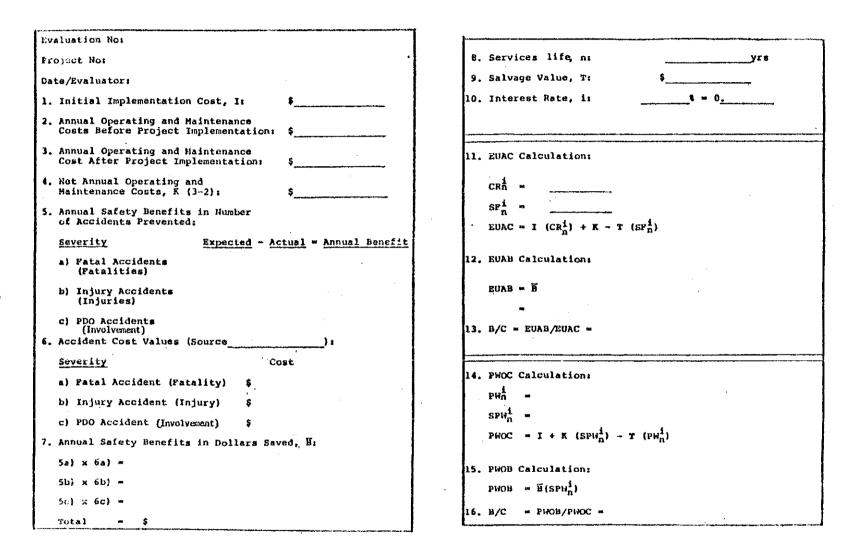
Task,	Manpower	and	Equipment	Sheet	

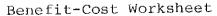
Procedure	Technique	Task, Manpower and Equipment Needs

Cost Estimate Form

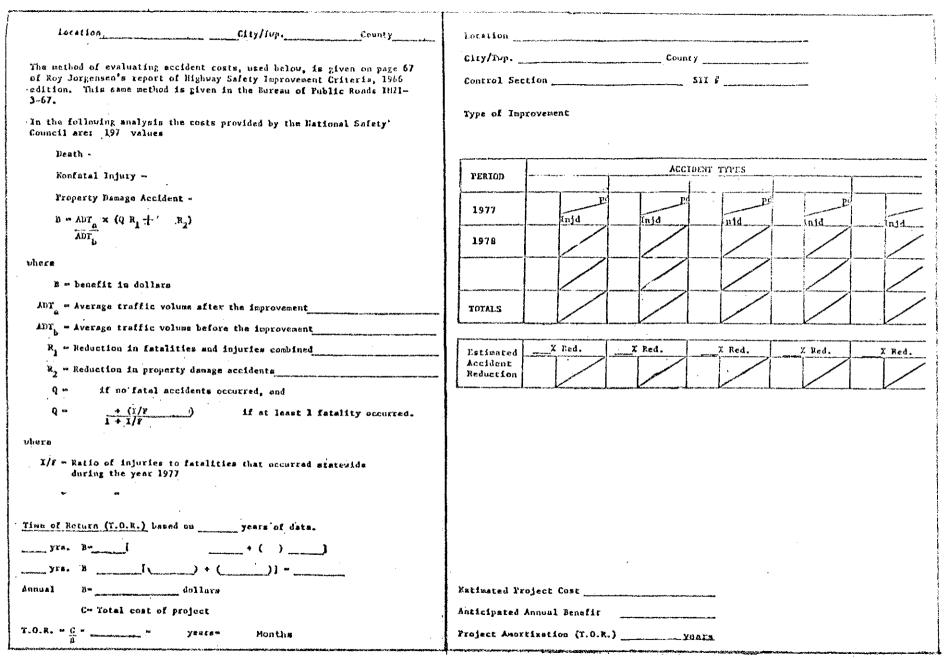
LOCATION:

CITY OR AREA:_____ DATE:____

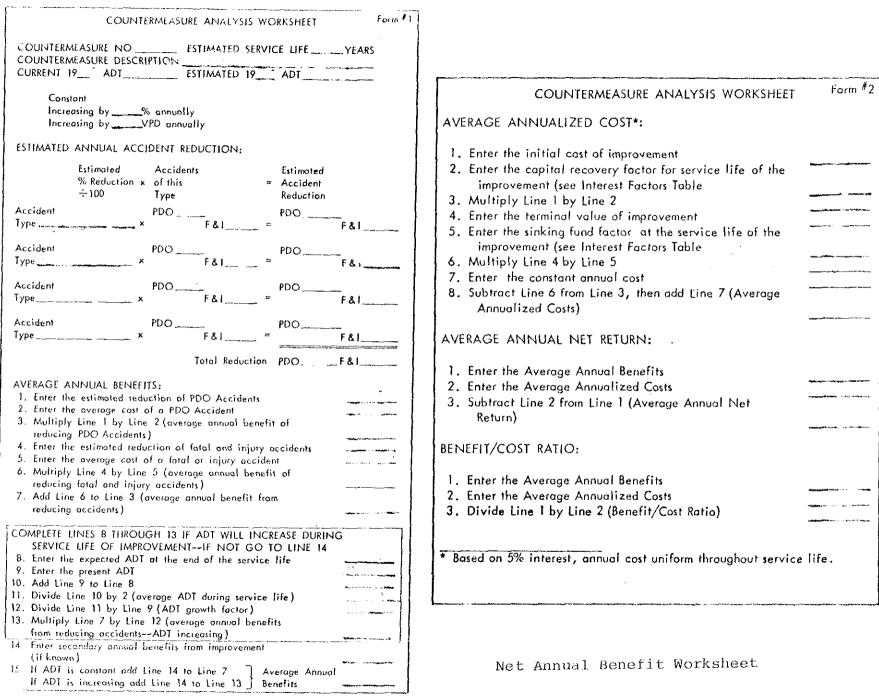

GENERAL DESCRIPTION:


Item	Unit	Unit Cost	Quantity	y Cost
Subtotal				
Engineering/Contingencies				
TOTAL				

Evaluation No:	10. Annual Benefit:	
project Nor	В (frcm 5) ч	
Date/Evaluator:		
1. Initial Implementation Cost, I:	\$\$	
 Annual Operating and Maintenance Costs Before Project Implementation: 	\$	
 Annual Operating and Maintenance Costs After Project Implementation: 	\$12. PNOC Calculation:	
 Net Annual Operating and Maintenance Costs,K (3-2): 	\$\$PW_0* \$PV_0*	
5. Annual Safety Benefits in Number of Accidents Prevented, 5:	$PWOC=I+K (SPW_n^i) - T (P$	w <mark>i</mark>)
Accident Type Expected - Actual * A	nnual Benefit 13. Annual Benefit	
		\$
		cid:
Total	14. $C/E = PWOC (CR_n^4)/\overline{B}$	
``***		
6. Service Life, n:yrs.		
7. Salvage Value, T: Ş		
8. Interest Rate: = 0.	management.	
9. EUAC Calculation:		
CRn *		
sr ⁱ =	Cost-Effective	۹n،
EUAC - I (CR_n^1) + K - T (SF_n^1)		
10		


dents prevented par year

ess Worksheet



I-27

Time-of-Return Worksheet

H-28

H-29

CASE STUDY 1

Purpose

The intersection of Maple Road and Monroe Road was selected by the City of Avon in 1978 for analysis under its Accident Location Study Program. The purpose of this study was to determine the safety problems at the intersection and recommend appropriate improvements which will alleviate the existing accident situation and reduce the potential for future accidents.

Background

The City of Avon is a rural community with a population of approximately 5,000. Its area is 9 mi². The City is governed by a Mayor, City Manager, and six (6) Councilpersons. Its engineering staff consists of the City Manager (public works engineer with limited traffic safety experience), a Police Chief (significant experience in traffic safety), and one technician. If needed, technician-level personnel from another department or local police officers are available to collect traffic data.

The City is equipped with the following traffic engineering equipment:

- . One counting board (four tally markers).
- . Stop watch.
- . Hand measuring wheel.
- . Radar gun.
- . Speed and volume data forms.

Other necessary equipment may be borrowed from the County Road Commission or the State Highway Department.

Due to a limited staff and its use for all City engineering services (plot review, sewer services, etc.), minimal time requirements are available for this study. In addition, a 1-week time frame is allotted for the study of this location and a final report to the Council.

The police department has files of all accident reports for the last five years. In addition, the City has been recently monitoring the accidents at this location and has available copies of these reports for use in the location's accident analysis.

Site Background

The intersection of Maple Road and Monroe Road is located 1 mile within the Avon City limits. It is an unsignalized intersection without overhead lighting "STOP" signs are placed on the approaches of Monroe Road. Maple Road runs east-west and intersects Pontiac Road, a major route, in the west end of the City. Monroe Road is a north-south route. The posted speed limits of the north and south approaches are 25 and 35 mph, respectively. Speed limits of the east and west approaches are 35 and 45 mph, respectively. All approach legs at the intersection are 2-lane.

Study

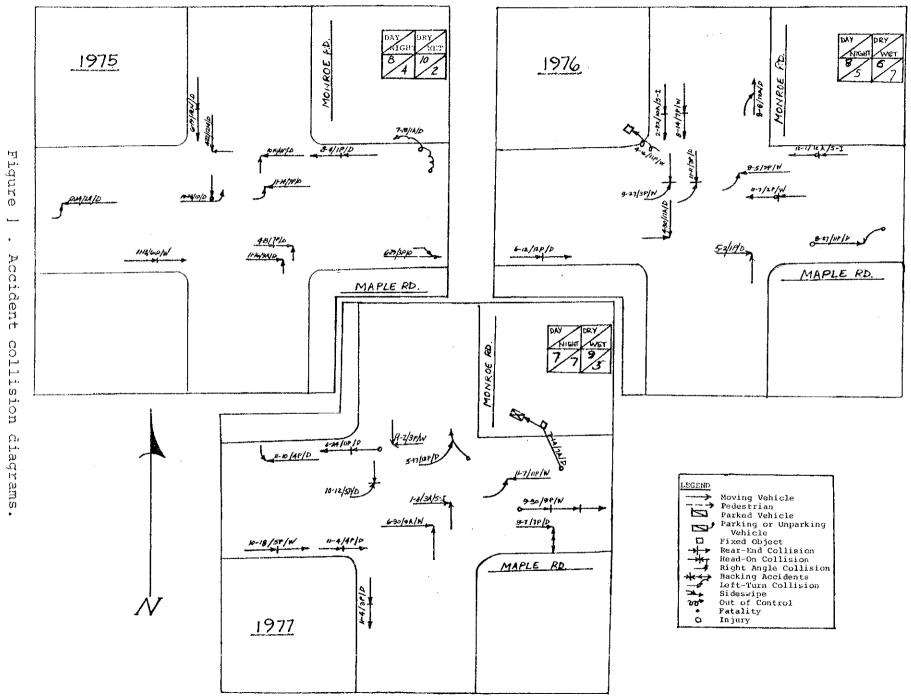
The study, according to the HSIP, involves three subprocesses which include: (1) collection and analysis of data, (2) development of candidate countermeasures, and (3) selection of projects. Following are the details of the study.

Subprocess 1: Collect And Analyze Data

<u>Activity 1 - Perform Accident Study Procedures</u>

Copies of locational accident reports were obtained for 1975, 1976, and 1977. Collision diagrams were drawn and are used to define accident patterns. The collision diagrams are shown in Figure 1.

A review of the accident reports produced preliminary site information to assist in the accident analysis. This information identified the intersection as consisting of four legs with a single approach lane per direction. Stop signs are posted on the Monroe Road approaches to control the right-of-way.


A preliminary review of the accident data reveals that 12 accidents occurred in 1975; 13 in 1976;, and 14, in 1977. About 23 percent (9 of 39 accidents) of all accidents over this 3-year period were of the personal injury type, resulting in nine injuries with no fatalities.

Procedure 1 - Accident Summary By Type

The detailed review of the accident data identified the following accident patterns by visual inspection-cluster analysis methods. They are:

- Rear-end accidents along Maple Road approaches
- . Right angle accidents at the intersection

From these accident patterns, possible accident causes were identified.

مىيىد a 00

ω

ACCIDENT PATTERN

. Rear-end accidents at Maple Road

• Right angle accidents at the

intersection (unsignalized)

POSSIBLE CAUSE

- Crossing pedestrians.
- High volume of turning vehicles.
- Slippery surface.
- Excessive speed on approaches.
- . Inadequate roadway lighting.
- . Inadequate channelization.
- . Restricted sight distance.
- . Inadequate roadway lighting.
- Inadequate intersection warning signs.
- Inadequate traffic control devices.
- Excessive speed on approaches.

Procedure 2 - Accident Summary By Severity

A review of the <u>severity</u> characteristics showed that of the 39 total accidents (1975-1977), a total of nine "personal injury" accidents (23.1 percent) occurred (1975, 2; 1976, 3; 1977, 4). To determine whether a pattern of a specific severity characteristic occurred, a comparison of these frequencies with control values was performed. The citywide area during the same time period had the following severity characteristics:

		CITYWIDE	(CONTROL)	
SEVERITY CHARACTERISTIC	<u>1975</u>	1976	<u>1977</u>	TOTAL
Fatality accidents	0	0	0	0
Personal injury accidents	77	81	88	246
Property damage accidents	163	209	190	562
TOTAL	240	290	278	808

The areawide percent of "personal injury" accidents to total accidents was 246/808 or 30.4 percent. A comparison of the site value to the control value showed:

STUDY SITE		CONTROL SITES	
23.1%	<	30.4%	

The severity characteristics at the study site are not determined to be overrepresentative and are not considered a significant factor in the intersection study. By specific accident type, a severity pattern does not exist.

Procedure 3 - Accident Summary By Contributing Circumstances

From a review of the "contributing circumstance" data on the accident reports, the following circumstances and their frequency were observed:

- . Failed to yield right-of-way (14).
- . Slippery surface (6).
- Unsafe speed (9).
- Alcohol involvement (5).
- . Debris in roadway (1).
- Fixed object (1).

This data revealed several findings:

- 1. Of the 14 "failed to yield right-of-way" observations, 12 were recorded for the right angle at intersection accidents. This pattern tends to show the lack of proper observance of the stop signs by the Monroe Road traffic. "Unsafe travel speeds" along the Maple Road approaches were also noted in seven of these cases.
- 2. In five of the rear-end accidents along Maple Road, "slippery surface" was noted as a contributing circumstance.

Procedure 4 - Accident Summary By Environmental Conditions

The <u>environmental characteristics</u> were also reviewed. A comparison of the "wet pavement" and "dark conditions" accidents for the study site reveals the following:

CTUDY CTTC

		SIUDY	SILE		
CHARACTERISTIC	1975	ACC 1976	IDE NT S <u>1977</u>	TOTAL	PERCENT OF TOTAL
Wet pavement Dark conditions	2 4	7 5	5 7	14 16	35.9 41.0
Total accidents	12	13	14	39	-

For the same period (1975-1977), the citywide accidents for these environmental situations were:

CITYWIDE (CONTROL)

CHARACTERISTIC	TOTAL (1975-1977)	PERCENT OF TOTAL
Wet pavement Dark conditions	352 321	43.6 39.7
Total accidents	808	-

The citywide average values are used as control values. A comparison of the study site vs. control site percentages show:

CONDITION	STUDY SITE		CONTROL SITE
Wet pavement/total acc.	35.9%	<	43.6%
Dark conditions/total acc.	41.0%	>	39.7%

From these comparisons, the "dark conditions" accidents were identified as an accident pattern. The wet pavement accidents, however, do not represent a pattern.

A similar review was made, by defined accident pattern, to determine if the environmental conditions contributed as a possible accident cause. The accidents under these conditions and their comparison to control site values showed:

	<u>REAR-EN</u>	D ACCI				AD	APPROACHES
	AT MONROE ROAD						
CONDITION	<u>1975</u>	1976	1977	TOTAL	%		CONTROL SITES(%)
Wet pavement/ total acc.	1/2	2/3	2/4	5/9	55.6	>	43.6
Dark conditions/ total acc.	1/2	1/3	2/4	4/9	44.4	>	39.7

RIGHT-ANGLE ACCIDENTS AT INTERSECTION

CONDITION	<u>1975</u>	<u>1976</u>	<u>1977</u>	TOTAL	_%		CONTROL SITES(%)
Wet Pavement/ Total Acc.	0/5	1/4	3/4	4/13	30.8	<	43.6
Dark Condition/ Total Acc.	1/5	0/4	1/4	2/13	15.4	<	39.7

An overrepresentation of "wet pavement" and "dark condition" characteristics are reflected in the list of possible causes for rear-end accidents along the Maple Road approaches at Monroe Road.

Procedure 5 - Accident Summary By Time Period

Time period characteristics were provided for time of day data only. A review of this data on an intersection-wide and an accident pattern basis revealed that the peak volume hours related a pattern in accident occurrence.

Summarizing the accident findings, the following list of possible accident causes by accident pattern was obtained.

ACCIDENT PATTERN

. Rear-end accidents along Maple Road

. Right angle accidents at the

intersection (unsignalized)

POSSIBLE CAUSE

- . Crossing pedestrians.
- High volume of turning vehicles.
- . Slippery surface.
- Excessive speed on approaches.
- . Inadequate roadway lighting.
- . Inadequate channelization.
- . Restricted sight distance.
- Inadequate intersection warning signs.
- Inadequate traffic control devices.
- Excessive speed on approaches.
- Nighttime/dark conditions related accidents.
 Inadequate roadway lighting.
 Poor sign quality.
 - . Inadequate channelization or delineation.

Activity 2 - Field Review Location

The field review of the site was performed by manual methods. Due to the importance of this activity, personnel with a safety engineering background were recommended for the field review effort. The police chief was selected to perform the field review.

Major conditions noted from the review were:

- All legs of the intersection are 2-lane (one inbound and one outbound).
- . The posted speed limits of the north and south approaches are 25 and 35 mph, respectively. Speed limits of east and west approaches are 35 and 45 mph, respectively.
- This location is an unsignalized intersection with limited roadway lighting.
- . "STOP" signs are situated on the approaches of Monroe Road.

Procedure 6 - Safety Performance Study

Following the general review of the site, the police chief performed a safety performance review. Using the accident findings, a survey length was defined. The location was observed for a 60-minute period. The evening peak period (5-6 p.m.) was selected for to observation of the intersection operations. An earlier period was used to review the physical features. The findings of the safety performance review are shown in Figure 2. Questions not considered pertinent did not contain responses.

This review produced the following observations.

- 1. Pedestrians are not a factor at the intersection.
- 2. Conflict and delay occurs between left turn and through traffic along Maple Road due to multiple use of the same traffic lane.
- 3. Travel speeds along Maple Road appear higher than posted.
- 4. A general lack of roadway lighting exists.
- 5. All approaches to the intersection are open and clear of sight obstructions.
- 6. Adequate intersection warning signs exist along Maple Road.
- 7. Delays occur to Monroe Road traffic in attempting to cross or enter the Maple Road traffic.

LOCATION: MAPLE	ROAD @ MONROE ROAD CONTROL: TWO-WAY	5тор
DATE: 9/29/80	TIME: 5-6PM	

OPE	RATIONAL CHECKLIST:	NO	YES
1.	Do obstructions block the drivers view of opposing vehicles?	V	
2.	Do drivers respond incorrectly to signals, signs or other traffic control devices?	~	
з.	Do drivers have trouble finding the correct path through the location?	~	
4.	Are vehicle speeds too high?		<u> </u>
5.	Are vehicle speeds too low?	<u></u>	
б.	Are there violations of parking or other traffic regulations?	\checkmark	····
7.	Are drivers confused about routes, street names, or other guidance information?	~	
8.	Can vehicle delay be reduced?		~
9.	Are there traffic flow deficiencies or traffic conflict patterns associated with turning movements?		\checkmark
10.	Is the volume of thru traffic causing problems?	~	
11.	Is the volume of turning traffic causing problems?		\checkmark
12.	Do pedestrian movements through the location cause conflicts?	/	
13.	Do bicyclist movements through the location cause conflicts?	\checkmark	
14.	Are there other traffic flow deficiencies or traffic conflict patterns?	~	
15.	Is existing lighting operating correctly?	. <u></u>	$\underline{\checkmark}$
16.	Do the presence of existing driveways con- tribute to accidents or erratic movements?	\checkmark	
17.	Are pavement conditions causing drivers to react in an erratic fashion?	\checkmark	

Figure 2 . Safety performance review.

РНҮ	SICAL EHECKLIST:	NO	YES
1.	Can sight obstructions be removed or decreased?		
2.	Are the street alignment or widths inadequate?	/	
3.	Are curb radii too small?	<u>/</u>	- <u></u>
4. 5.	Should pedestrian crosswalks be relocated? Repainted?		
6.	Are signs inadequate as to usefulness, message, size conformity and placement? (see MUTCD)		\checkmark
7.	Are signals inadequate as to placement, conformity, number of signal heads, or timing? (see MUTCB)		
8.	Are pavement markings inadequate as to their clearness or location?	\checkmark	
9.	Is channelization (islands or paint markings) inadequate for reducing con- flict areas?		
10.	Separating traffic flows? Defining movements?	V	
12. 13.	Does the legal parking layout affect sight distance? Through or turning vehicle paths?		
14. 15. 16.	Traffic flow? Do speed limits appear to be unsafe? Unreasonable?	~	- <u></u>
17.	Is the number of lanes insufficient?	~	
18.	Is street lighting inadequate?		1
19. 20.	Are driveways inadequately designed? Located?	1	
21.	Does the pavement condition (potholes, washboard, or slippery surface) con- tribute to accidents?	2	
22.	Are approach grades too steep?	\checkmark	
	COMMENTS:		
	Operational"0" and item number Physical"P" and item number		

Figure 2 . Safety performance review (continued).

_

- 8. The physical quality of signing in the area is considered excellent.
- 9. Pavement markings in the area are considered highly adequate.

These findings and the comments provided on the field review sheets resulted in the following revised list of possible accident causes.

ACCIDENT PATTERN	POSSIBLE CAUSE
. Rear-end accidents along Maple Road	 High volume of turning vehicles. Excessive speed on approaches. Inadequate roadway lighting. Inadequte channelization.
 Right angle accidents at the intersection (unsignalized) 	 Inadequate traffic control devices. Excessive speed on approaches.
 Nighttime/dark conditions- related accidents 	• Inadequaté roadway lighting.

Activity 3 - Select Appropriate Traffic, Environmental, And Special Study Procedures

Based on the accident patterns and possible causes, the data needs and other procedures necessary to identify the safety deficiencies were defined. By accident pattern and possible cause, the following data needs and procedures are apparent:

ACCIDENT PATTERN	POSSIBLE CAUSE	DATA NEEDS	PROCEDURE
.Rear-end collisions along Maple Road.	.High volume of turning vehicles.	.Volume data. .Roadway inven- tory. .Conflict data.	 Volume study Roadway inven- tory study Traffic con- flict study.
	 Excessive speed on approaches. 	.Speed charac- teristics.	.Spot speed study.
	.Inadequate channelization.	 Roadway inven- tory data. Volume data Conflict data 	.Roadway inven- tory study. .Volume Study .Conflict Study
.Right angle acci- dents at the inter- section (unsignal- ized)	.Inadequate traffic control devices.	tory Volume data Delay or Gap data Conflict data	Roadway Inven- tory Study Volume Study Delay or Gap Study Conflict Study TCD Study
	Excessive speed on approaches.	.Speed charac- teristics	.Spot Speed Study
Nighttime/dark conditions-related accidents	Inadequate road- way lighting, or delineation.	•Data on existing lighting	.Roadway Inven- tory Study .Volume Study .Highway light- ing Study .Traffic Con- flict Study

Summarizing the necessary study procedures required to define the safety problem(s) at the site results in the following list:

- Roadway Inventory StudyVolume Study
- . Traffic Conflicts Study
- Spot Speed Study
 Highway Lighting Study
 Delay Study
- . Traffic Control Device Study

Activity 4 - Select Techniques

Due to limited equipment resources, the techniques selected to perform these procedures are limited primarily to manual techniques. Exceptions are the spot speed and highway lighting studies. They will be performed using the radar meter method and the NCHRP 152 method, respectively.

Activity 5 - Perform Procedures

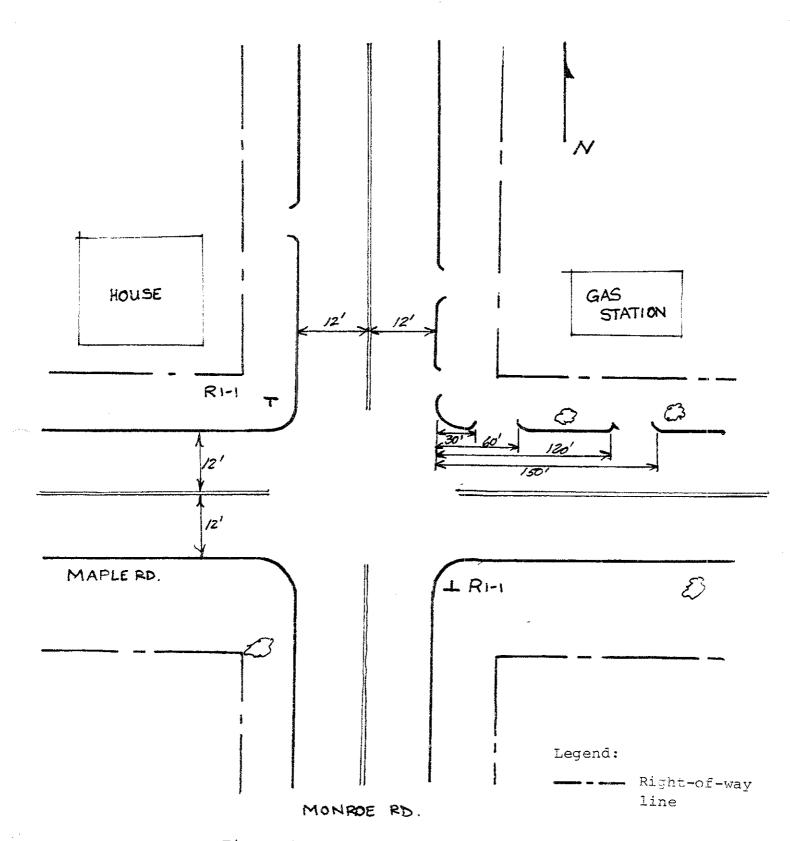
The data collection periods were defined by the time of day accident patterns. This data results in the peak volume periods being used for most of the data collection effort. Following are the planned data collection periods for the procedures.

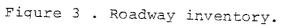
- . Roadway inventory study (daytime, not limited by time period)
- Volume study (7-9 a.m., 4-6 p.m.)
- Traffic conflict study (7-9 a.m., 4-6 p.m.)
- Spot speed study (7-9 a.m., 4-6 p.m.)
- . Delay study (7-9 a.m., 4-6 p.m.)
- Highway lighting study (nighttime field review)
- Traffic control device study (7-9 a.m., 4-6 p.m.)

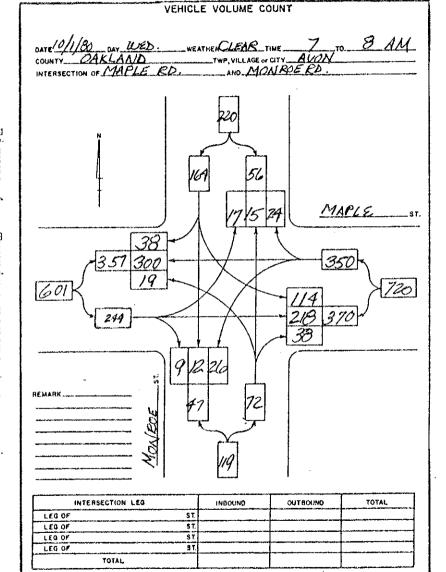
The data collection schedule was devised to optimize the time and manpower resources. The personnel available for the data collection effort consisted of the police chief and one technician. The schedule is arranged such that studies are performed during both a morning and evening peak period.

Following is the planned time schedule.

13


TUE SDAY		
TIME	TASK DESCRIPTION	MANPOWER
7-9 a.m.	Conflict Study (10 min. on 5 min. off. Change Maple Road approaches on each count).	Police Chief.
	Volume Study (turning move- ments by 15 min. periods).	Technician.
9 a.m 4 p.m.	Roadway Inventory Study. Highway Lighting Study.	Police Chief and Technician. Police Chief.
4-6 р.т.	Conflict Study (as above). Volume Study (as above).	Police Chief. Technician.
WEDNE SDAY		
7-9 a.m.	Delay Study (sampling method, N=1,600 vehicles).	Police Chief.
	Spot Speed Study (sample size of 100 per direction).	Technician.
4-6 p.m.	Delay Study (as above). Spot Speed Study (as above).	Police Chief. Technician.
THURSDAY		
7-9 а.т. 4-б р.т.	Traffic Control Device Study Traffic Control Device Study	Technician. Technician.


Additional time may be required to collect the minimum sample size for the delay data. This data may be planned for Thursday (a.m. and p.m.) or Friday morning.


Data collection forms were prepared for these procedures and they were performed. The collected data is shown on the forms in Figures 3 to 8. For several cases, only a sample of the data forms are included.

From this data, the findings are:

1. During the morning peak sample period, 21 conflicts were noted between EB Maple Road through and left turn traffic on the west

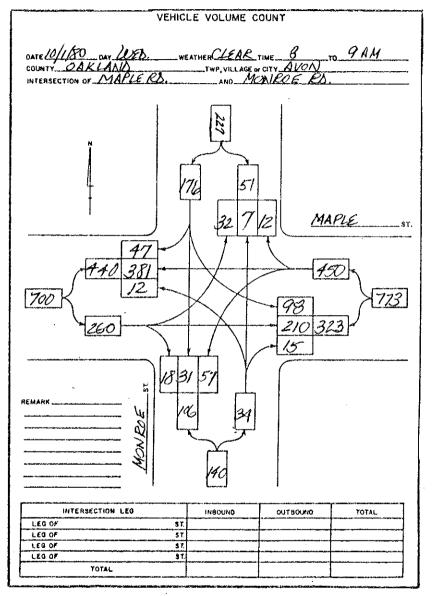


Figure 4 . Turning movement summaries

.

91

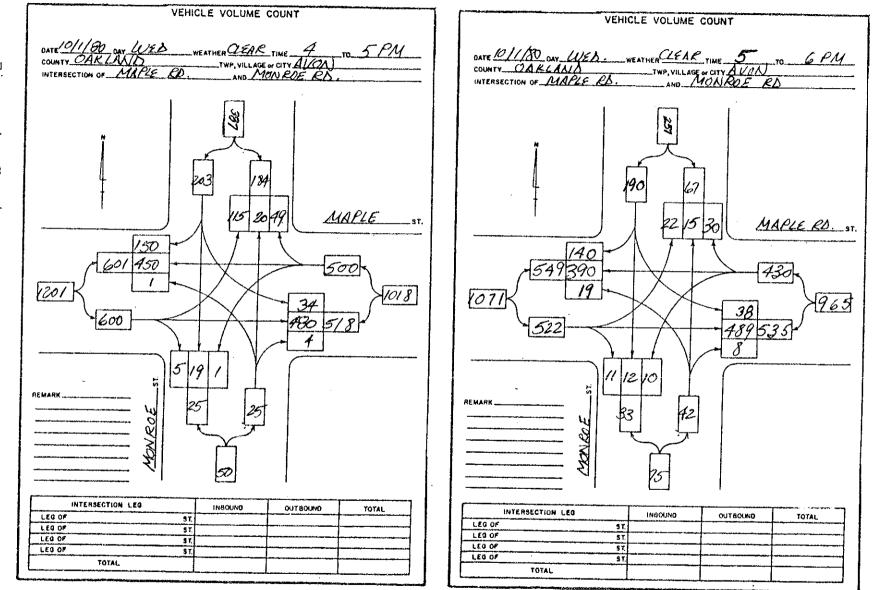


Figure ÷ Turning movement summaries (continued).

СЦ 7 :

ROAD: MAPLE RD.		ROAD: MAPLE RD. BETWEEN AND:
N S E O OF MONEOE	Rb	N S OW OF MONROE RD.
ETTYDA TOWNSHIP: AVON	DATE: 10/2 /80	CITYOR TOWNSHIP: AVON) DATE: 10/2/80
IME: 7-8 AM DIRECTION BEING	SURVEYED: EB	TIME: 4-6.PM DIRECTION BEING SURVEYED: WB
REATHER: CLEAR CI OU	09 RAIN SNOW	weather: Clear Cloudy Rain SNOW
	ICY	
MPERATURE: 49° WIND:	LIGHTSTRONGGUST	
DAD: WIDTH: TYPE:	BITCONCGRAVEL	ROAD: WIDTH: TYPE: BIT CONC GRAVEL
	rh	BUAD CUNDITION: SMOOTHROUGH
IOULDEN:BIT	GRAVELCURBS	
COLDER CONDITION: GOOD		SHOULDER CONDITION: GOOD FAIRPOOR
FMARKS:		REMARKS:
	44 <i>```</i> ## 31 <i>``</i> ##	70 57 44 31 31
	42 <i>U</i> / 29 <i>U</i>	68 65 _l 42 tht 1 29
54		67 54 <u>//</u> 41 <u>///</u> 28
	40 <i>11/1 ///1</i>	66 53 40 27
		65 52 .THK 39 .THK 26
51		6451_/36//25
		63 50 <u>/</u> 37 <u>/</u> 24
		62 49 XHX XII 36 23
	35 044-111 22	61 48 [TH TH TH 1 35] 22
47 [1]		
	33 <i>III</i>	
45 /		5845_ <u>}+45_}+45_}+45_}+45_}+45_}+45_}+45_}+45_</u>
	TOTAL COUNT	TOTAL COUNT
	85% PERCENTILE <u>43 mph</u>	
	AVTRAGE 37 ymph	AVERAGE 47 Milan

(minute starting 1) 7:00 7:01 7:02 2:03 2:03 2:03	Stopped in the 0 sec + 15 sec 7 2 3 2		+ 45 200	Number Slopped	Number Not Stopping	(minute allarding all) 8:45	\$100 +0 sec	+ 15 seo	+ 30 sec	140: + 45 840	Number Stopped
7:00 7:01 7:02	9 12	-30 sec X X	+ 45 200	Slopped	Stopping	0.05	+0	+15 440	+ 30 \$460	+ 45 84G	Stopped
7:02	$\frac{0}{3}$ $\frac{1}{2}$	2	-6-	. 7		10.05					
7:02	$\frac{1}{3}$ $\frac{2}{2}$	121				2:-12	<i>f</i>		- 2-	<u> </u>	
	3 2					8:46	<u> </u>	3	- 3	-3	<u>4</u>
2:03				-1	0	0:41	2			3	<u></u>
3.AL	<u>//</u>		3		0	8:40	2	<u> </u>		5	
	3 3	2		4	e	<u>8.4.4</u>	2		- ~ ~		<u> </u>
7:05	4		-6-	3	<u> </u>	8:50	2				
7:0/2	2	2	2	4	1_2	8.51		·····		4	
	3 3	3	4		<u> </u>	8:52	4		23		
7:08 -	4 3	12	2	_2_		8:53		3	3	2	
7:09	2 1		0		0	8:54	2				<u> </u>
7:10	10		3_			8:55	1		<u> </u>		2
	3 2	2	2	4	-Gran	8.56	1			3	
2:12	22		2	3		8:57	1		_ <u></u>		
7:13	2 1			3		8:58	2			2	<u> </u>
7:14	1 2	2	2			8:59	0				
latordu	28 26	21	29	45		Subiolal	28	26	24	28	46
	10	9		4		Total	<u></u>	106			4

,

Figure 6 . Sample intersection delay data.

Day UED Date 10/1/80 Observer GLF Conflict - C, Secondary Conflict - SC ميرة الما Allaho Jum Juma Diracal Oppending Safi Tura COUNT محدة العبا الجا معط Crains Jraffi Trans Left iait Sum Irom Algèr Creat fraille fean Sigin Nghe Lura Joan Eighe **START** TOTAL ╉ f { $\frac{1}{2}$ ī TIME APPROACH (MILITARY) VOLUME C SC c | sc C SC C SC C SC CISC CSC CSC C SC C SC C SC C SC EB 7-7:10 AM 5-Ô \circ \mathcal{D} WB 1:15-7:25 Ō O D EΒ 30-1:10 C .7 Ä ō WB 7:45-7:53 lcO D EB 8:00-8:10 z WB 8:15-2:25 Ø O \mathcal{O} ħ ?**: 30 - 8**:40 \mathcal{O} \mathcal{O} \mathcal{O} WB *1:45-2:5*5 Ō \mathcal{O} EB TOTAL UB TOTAL 2. 15 4 Severe Conflicts: Possible Causes of Slow Vehicle Conflicts: Other Notes and Comments:

Day <u>WEB</u> Date <u>10/1/80</u> Observer <u>GLF</u> Conflict - C. Secondary Conflict - SC

COUNT START TIME	TOTAL				v_hie 	2.44 I 5-44 I -	f	0.5 1 1				51	l mille aft	51		5	۲ الهام 	2						
(MILITARY)	VOLUME	С	SC	С	SC	С	sc	c	SC	С	SC	с	SC	C	\$C	с	SC	c	SC	С	sc	c	SC	c
4-4:10AM		10	5	0	0	2	1	1	0	11	5	5	3	1	2	1	1	1	1					-
4:15-4:25	85	5	0	0	0	3	1	0	1	2	1	1	0	8	2	6	2	3	3	<u> </u>				
9:30-4:41	132	10	2	0	0	1	1	1	1	9	2	6	3	2	1	1	0	2	0					
4:45-4:55		2	0	0	0	3	1	0	0	0	1	1	7	7	1	3	3	5	4					
5-5:10	136	11	1	1	0	1	0	0	0	5	2	4	2	1	1	7	0	1	0					-
5:15-5:25		2	0	0	0	3	2	1	0	1	0	2	1	6	1	4	3	6	0					
5:30-5:40	125	12	2	0	0	2	1	1	0	5	1	5	2	17	2	0	1	1	1					
5:45-5:53		/	/	0	/	3	1	/	0	2		1	9	5	2	6	3	3	3					
TOTAL		<u>43</u>	10	/	0	6	+		/	30			10	5			_	5	<u> </u>					
TOTAL Severe Conf		10	/	0	1/	1/2	15	2	<u>I/</u>	5	13	5	2.	Ę6	6	19	12	V7	10					
Possible Cau	ses of Slow Ve	hicle	: Cor	oflic	*s:																			

Figure 7 . Traffic conflict data.

			RATING			UNLIT	LICHTED		SCORE
CLASSIFICATION FACTOR	1	2	3	4	5	WEIGHT (A)	WEICHT (B)	DIFF. (A · B)	[RATING X (A · B)]
Geometric Factors									
Number of Legs		3	0	5	6 or more (including traffic circles)	3.0	2.5	0.5	1.5
Approach Lane Width	> 12'	12	11.	10,	<10.	3.0	2.5	0.5	1.0
Channelization	Ro turn lanes	left turn lanes on major legs	left turn lanes on all legs, right turn lanes on major legs	left and right turn lanes on major legs	left and right turn lance on all legs	2.0	1.0	1.0	1.0
Approach Sight Distance	700'	500-700*	300-500'	200-300*	< 200'	2.0	1.8	0.2	0.2
Grades on Approach Streets	33	3.0 - 3.9%	4.0 - 4.9%	5.0 - 6.9%	7% or more	3.2	2.8	0.4	0.4
Curvature on Approach Lega	(3.0°	3.0 - 6.0°	6.1 - 8.0 °	8.1 - 10.0°	> 10*	13.0	5.9	8.0	8.0
Parking in Vicinity	prohibited both side	loading zones only	off-peak only	permitted one side only	permitted both sides	0.2	0.1	0.1	0.1
Operational Factors							Geometric 1	Total	12.2
Operating Speed on Approach Lega	25 mph or iem	30 теры	35 mph	40 mph	(45 mph) or greater	1.0	0.2	0.8	4.0
Type of Control	all phases signalized (incl. turn lane)	left turn lane signal control	through traffic signal control only	4-way stop control	stop control to minor legs or no control	3.0	2.7	0.3	1.5
Channelization	left and right signal control	left and right turn lane signal control	left turn lane signal control on all legs	left turn lane signsf control on major legs	no turn iane	3.0	2.0	1.0	50
Level of Service (Loud Factor)	A 0.0	on major lega B 0-0.1	C 0.1 · 0.3	0.3-0.7	E 0.7 - 1.0	1.0	0.2	8.0	3.2
Pedestrian Volume (peds/hr crossing)	very few or none	0-50	50-100	100-200	> 200	1.5	0.5	1.0	1.0
_	\smile						Operational]	Total	14.7
Environmental Factors		\frown							
Percent Adjacent Development	0	0-30%	30-60%	60-90%	100%	0.5	0.3	0.2	0.4
Predominant Develop- ment near Intersection	undeveloped	residential	50% residential 50% industrial or commercial	industrial or commercial	strip industrial or commercial (no circuity)	0.5	0.3	0.2	0.2
Lighting in Immediate Vicinity	none	0-40%	40-60%	60-80%	ementially continuous	3.0	1.5	1.5	3-0
Crime Rate	extremely low	lower than city average	city sverage	higher than city average	extremely high	1.0	0.5	0.5	1.5
							Environmenta	l Total	5.1
Accidents Ratio of night-to-day Accident Rates	1.0	1.0-1.2	1.2-1.5	15-2.0	2.0*	10.0	2.0	8.0	32.0
Intersection lighting warra	inted.	1	ı		1		Accident Tota	,	32.0
		ENVIRONN ACCIDENT	NAL TOTAL MENTAL TOTAL	- 64.	2 2 points				

Figure 8 . Intersection lighting evaluation form.

approach. During the evening peak sample period, 53 conflicts between these movements were recorded.

- 2. Conflicts between crossing or entering traffic from the north and south leg of Monroe Road (i.e., left turn from left, cross traffic from left, left turn from right, and right turn from right) resulted in 88 conflicts and 38 conflicts, respectively. During the morning peak sample period, the conflict frequencies were 160 and 38, respectively.
- 3. The 85th percentile speeds along Maple Road were recorded as 49 mph and 43 mph for the westbound and eastbound directions, respectively.
- 4. For the minimum sample size, the average delay for vehicles on the north leg of Monroe Road during peak hours is approximately 35.4 seconds.
- 5. Using NCHRP 152 lighting criteria for the intersection, the evaluation sum was 64.0 points. 75.0 points warrant external lighting of an intersection.
- 6. The traffic control device study showed virtually no lack of observance of the "STOP" signs on the Monroe Road approaches.

A review of the accident patterns, possible causes, and findings follows:

	ACCIDENT PATTERN	PROBABLE CAUSE	STUDY FINDINGS
	.Rear-end collisions along Maple Road.	High volume of turning vehicles.	.Conflict data showed a high rate of conflicts between through and left turn traffic. Turning volumes, how- ever were considered low for most of the study period.
		 Excessive speed on approaches. 	.Spot speed studies showed excessive travel speeds along both Maple Road approaches.
		.Inadequate roadway lighting.	.Highway lighting studies showed that external lighting is not warran- ted at this location.
		.Inadequate channeli- zation.	.Conflict data showed significant conflict be- tween through and left- turn traffic.
	.Right-angle accidents at the intersection.	Inadequate traffic control devices.	Delay studies show a high amount of delay experienced by the traffic on Monroe Road. Significant conflict rates are occurring due to this excessive delay. A quick check of the available gaps (assuming a critical lag of 5.8 seconds), shows that the volume of Monroe Road traffic is not able to be serviced at an acceptable level of service.
, <u>, ,, ,, ,, ,, ,</u> , ,, ,, ,, ,, ,, ,, ,, ,		 Excessive speed on approaches. 	.Spot speed studies showed excessive travel speeds along both Maple Road approaches.
	.Nighttime/dark conditions- related accidents.	.Inadequate roadway lighting or delin- eation.	.Highway lighting studies showed that additional lighting is not warran- ted at this location.

From these findings, the following accident patterns and probable causes are defined for use in the selection of countermeasures.

ACCIDENT PATTERN	PROBABLE CAUSE
.Rear-end collisions along Maple Road.	Excessive speed on approaches.Inadequate channelization
.Right angle accidents at the intersection.	 Inadequate traffic control devices Excessive speed on approaches
.Nighttime/Dark Conditions- Related Accidents.	.Inadequate delineation

Subprocess 2: Develop Candidate Countermeasures

Activity 7 - Develop Feasible Countermeasures

From a careful analysis of all available information, several safety improvements were developed to reduce the accident problem and to improve the operational characteristics of the intersection. These improvements were developed based on accident pattern identification, probable causal relationships, and careful engineering judgement, as exercised through the use of Accident Pattern tables.

Using the accident pattern tables, the following feasible countermeasures are developed.

ACCIDENT PATTERN	PROBABLE CAUSE	FEASIBLE COUNTERMEASURE
.Rear-end collisions along Maple Road.	 Excessive speed on approaches. 	.Reduce speed limit on approaches and increase en- forcement.
	.Inadequate channel- ization.	.Create separate turn lane(s).
.Right-angle accidents at the intersection.	.Inadequate traffic control devices.	.Upgrade intersection control.
	 Excessive speed on approaches. 	.Reduce speed limit on approaches and increase en- forcement.
.Nighttime/dark conditions-related accidents.	.Inadequate delinea- tion.	.Install or improve delin- eation markings

For the study site, the following feasible countermeasures are selected for further analysis:

- 1. Reduce speed limit on approaches and increase enforcement; and install traffic signal.
- 2. Create a left-turn lane on both approaches of Maple Road; and install a traffic signal.
- 3. Create a left-turn lane on both approaches of Maple Road; install a traffic signal; and install edge markings in the intersection area.

Subprocess 3: Develop Projects

<u>Activity 8 - Predict Accident Reduction Capabilities of Countermeasures</u>

The following table gave the accident reduction capabilities of each alternative countermeasures using Accident Reduction (AR) factors, as provided in the source for Appendix F of the Procedural Guide:

	PERC	and the second second second second second second second second second second second second second second second		
COUNTERMEASURE	FATAL	INJURY	PDO	TOTAL
Reduce speed limit				
Reflectorized edge markings	-4	-10	-1	-4
Install traffic signal	+64	+27	+33	+31
Install left-turn lane	-13	+32	+40	+37

The final column of this table will be used to compute accident reduction factors for the countermeasures since it contains the most available data. Accident reduction factors for the multiple improvements need to be developed. The following formula is applied:

 $\begin{array}{rcl} AR_{M} &= & AR_{1} + (1 - AR_{1}) & AR_{2} + (1 - AR_{1})(1 - AR_{2}) & AR_{3} + \cdots \\ &+ & (1 - AR_{1})(1 - AR_{1} - 1) & AR_{1} \end{array}$

- where AR_M = overall accident reduction factor for multiple improvements at a single location.
 - AR_i = accident reduction factor for specific improvement. i = number of improvements at a single location.

The countermeasure with the highest AR factor is used as AR_1 in this formula. The next highest is AR_2 , and so on.

<u>COUNTERMEASURE 1</u> - Reduce speed limit on approaches and install traffic signal.

AR = 0.31

<u>COUNTERMEASURE 2</u> - Create a left-turn lane on both approaches of Maple Road and install a traffic signal.

 $AR_M = 0.37 + (1-0.37) \ 0.31 = 0.37 + 0.20 = 0.57$

<u>COUNTERMEASURE 3</u> - Create a left-turn lane on both approaches of Maple Road, install a traffic signal, and install edgemarking in the intersection area.

 $AR_{M} = 0.37 + (1-0.37) \ 0.31 + (1-0.37)(1-0.31)(-0.04) \\ = 0.37 + 0.20 - 0.02 = 0.55$

In determining the number of accidents saved, other data used were:

- . Intersection volume (1976) 14,000 vehicles per day
- . Intersection volume (1980-projected) 17,000 vehicles per day
- Expected number of accidents 13 accidents per year (sum of 1975-1977 accidents divided by 3 years).

The expected number of accidents presented are:

COUNTERMEASURE 1

Accidents prevented = 13 accidents x 0.31 x $\frac{17,000}{14,000}$ = 4.89

COUNTERMEASURE 2

Accidents prevented = 13 accidents x 0.57 x $\frac{17,000}{14,000}$ = 9.00

COUNTERMEASURE 3 -

Accidents prevented = 13 accidents x $0.55 \times \frac{17,000}{14,000} = 8.68$

Activity 9 - Perform Economic Analysis

The city has in the past used benefit-to-cost analysis to determine the economic effectiveness of its projects. Since City personnel is familiar with this procedure, it will be used in the economic analysis of safety projects also. Other data used in the economic analyses are:

- Accident Cost Savings (1979 NSC figures are used)
 - Fatality \$160,000
 - . Personal injury \$6,200
 - Property damage only \$870
- . Initial Implementation Costs
 - . Install traffic signal \$15,600
 - Install left turn-lane (Additional ROW not needed-150' storage with tapers) - \$35,000
 Install edgemarkings - \$200
- Operating and Maintenance Costs
 - . Countermeasure 1 \$50 per year
 - . Countermeasure 2 \$150 per year
 - . Countermeasure 3 \$350 per year

• Service Life

. 15 years

• Salvage Value

. \$0

- . Interest Rate
 - . 15%

It is assumed that in computing the accident benefits, the savings in personal injury accidents occur at a similar ratio as the occurrence of personal injury/property damage accidents. Also, vehicle delay related costs are not considered significant for this analysis. The economic analysis is included in Figure 9-11.

The benefit-to-cost ratio for each countermeasure were:

ALTERNATIVE		B/C RATIO
Countermeasure 3	1	3.24
Countermeasure 2	2	1.84
Countermeasure 3	3	1.74

Evaluation Not Project Nos COUNTERMEASURE / 8. Services life na Data/Evaluators GLF 9. Salvage Value, Tr 1. Initial Implementation Cost, Is : 15,600 10. Interest Rate, in 2. Annual Operating and Maintenance Costs Before Project Implementation: : 0 Annual Operating and Maintenance Cost After Project Implementation: 11. EUAC Calculation: \$ 57 Het Annual Operating and Heintenance Costs, K (3-2); 0,19925 CRA -\$ 50 5. Annual Safety Benefits in Number 0.01925 5P.1 of Accidents Prevented: EUAC = I (CR_n^i) + K - Y (SP_n^i) = 15,600(0.19925) + 50-0 = # 3108.30 + 50.00 = 31.59 20 Severity Expected - Actual = Annual Benefit a) Fatal Accidents D 12. EUAB Celculation: (Fatalities) 4.89(0.23) = 1.12 b) Injury Accidents EUAB - E (Injuries) 4.89-4.89(0.23) = 3.77 10.224 c) PDO Accidenta (Involvement) 4. Accident Cost Values (Source NSC - 1979); 13. B/C - EUAB/EUAC -= 3.24 Saverity Cost a) Fatal Accident (Fatality) 14. PHOC Calculations \$ 160,000 b) Injury Accident (Injury) PHA \$ 6200 c) PDO Accident (Involvement) SPW1 -\$ 870 7. Annual Safety Benefits in Dollars Saved, B: PHOC = I + K (SPU $_{0}^{1}$) - T (PW $_{0}^{1}$) 54) x 64) ~ 0 15. PHOB Calculation: 5b) x 6b) =\$ 6944 PHOB = $\overline{B}(SPH_n^{i})$ 50) x 60) =\$ 3280 Yotal \$ 10,224 B/C = PHOB/PHOC =

Figure 9 . Economic analysis evaluation form (B/C ratio).

≥ 8

Evaluation Nov / 8. Services life n: YES Project HOI COUNTERMEASURE 2 9. Salvage Value, Tr Data/Evaluators GLF \$50,600 10. Interest Rate, is 1. Initial Implementation Cost, Is 2. Annual Operating and Haintenance 5 O Costs Before Project Implementation: 3. Annual Operating and Haintenance \$ 150 11. EUAC Calculation: Cost After Project Implementation: 4, Nat Annual Operating and CRA - 0.19925 , 150 Haintenance Costs, K (3-2): SP1 - 0.04925 5. Annual Safety Benefits in Number . . EUAC = I (CR¹) + K - T (EF¹_b) = 50,600(0.19925) $\frac{1}{4}$,50 = $\frac{10,082.05}{4}$,50 = $\frac{10,232.05}{5}$ of Accidents Prevented: Severity Expected - Actual - Annual Banefit 0 12. EUAB Calculation: a) Fatal Accidents (Fatalities) 9(0.23) = 2.07 EUNB b) Injury Accidents чина – 4/8,863 13. В/С = ЕИАВ/ЕИАС – 18,863/ 410,232.05 51.84 (Injuries) 9-9(0.23) = 6.93 c) PDO Accidents (Involvement) 6. Accident Cost Values (Source NSC-1979): Severity Cost 14. PHOC Calculation: a) Patal Accident (Patality) \$160,000 PHA b) Injury Accident (Injury) \$ 6200 SPH1 : 870 c) PDO Accident (Involvement) PHOC = I + K (SPH $_{n}^{1}$) - T (PH $_{n}^{1}$) 7. Annual Safety Benefits in Dollars Saved, B; 5a) x 6a) - 0 15. PWOB Calculation: 561 x 661 - \$ 12,834 PHOB · B (SPH) Se) = 60) \$ 6029 16. B/C = PROB/PROC = # 18,863 Total

Figure 10 . Economic analysis evaluation form (B/C ratio).

Evaluation Not Project Nos COUNTERMENSURE 3 8. Services life na YES Bate/Evaluators GLF 9. Salvage Value, T: : 50,800 1. Initial Implementation Cost, Is 10. Interest Rate, i: 2. Annual Operating and Haintenance Costs Before Project Implementation: 3. Annual Operating and Haintenance : 350 11. EUAC Calculation: Cost After Project Implementations 4. Net Annual Operating and CRA - 0.19925 :350 Haintenance Costs, K (3-2); SPI -5. Annual Safety Benefits in Number of Accidents Prevented: EUAC = $I_{n}(CR_{n}^{i})$ - T (6P Severity Expected - Actual - Annual Danefit = 70.1219 0-350 12, EUAB Calculation: al Fatal Accidents D (Fatalities) 8.68(0.23) = 2.00 EUAB * b) Injury Accidents #18,212 #18,212, c) PDO Accidents 8.68 - 8.68(0.23) = 6.68(Involvement) \$ 1.74 13. B/C - EUAB/EUAC -5. Accident Cost Values (Source N/SC-1979 Severity Cost 14. PHOC Calculation: \$160,000 a) Fatal Accident (Patality) PHA b) Injury Accident (Injury) 6200 SPH. c) PDO Accident (Involvement) £70 $PHOC = I + K (SPU_n^1) - T (PW_n^1)$ 7. Annual Safety Benefits in Dollars Saved, B: 5a) x 6a) = Ő 15. PHOB Calculation: sbi x 6b1 -\$ 12,400 PHON = B(SPN . Sc) x 6c) -# 58/2 6. 1/0 РИОВ/РНОС = - : 18,212 Total

Figure 11 . Economic analysis evaluation form (B/C ratio).

ω

Activity 10 - Select Projects

Ranking the alternatives based on an a cost-effectiveness objective produced the following preliminary ranking:

RANK	ALTERNATIVE
1	Countermeasure 1
2	Countermeasure 2
3	Countermeasure 3

Other important considerations in the project selection are: (1) effect on capacity, (2) effect on air and noise pollution, and (3) budget limitations. These factors were reviewed and the following impacts used to select a single safety project.

• EFFECT ON CAPACITY

Due to anticipated significant increases in development over the next 5 years in the areas north and south of Maple Road, significant turning movements from Maple Road onto Monroe Road can be expected. It is anticipated that added approach lanes to the intersection will be needed.

• EFFECT ON AIR AND NOISE POLLUTION

Due to the expected delay experienced by through traffic waiting behind left-turn vehicles, air and noise pollution in the area may increase sharply. A separate turn lane at each approach would alleviate the situation.

. BUDGET LIMITATIONS

It is expected that Federal funds will be available for any one of the countermeasures. Therefore, it is expected that the City will pay approximately 25 percent of the project costs. Since this is the major project for the City for the study year, sufficient funds should be available in the City budget.

In a City review of the countermeasures, the selected project was <u>Countermeasure 2</u>. Although Countermeasure 1 had a greater B/C ratio, the anticipated need for a left-turn lane on the Maple Road approches limited the selection of this alternative.

Countermeasure 3 was similar to Countermeasure 2 except that it included edgemarking in the intersection area. Since the safety impact of edgemarking was not shown to be significant, Countermeasure 3 was not selected.

It is planned that Countermeasure 2 be implemented as soon as funds are available. The proposed improvements should improve the safety at the intersection. An "After" evaluation should be conducted to assess the effectiveness of the improvements.

CASE STUDY 2

Purpose

In 1979, the intersection of Howard Road and 10 Mile Road was selected by the City of Surrey for analysis under its Accident Location Study program. The purpose of this study was to conduct the engineering studies at the intersection and recommend a safety project.

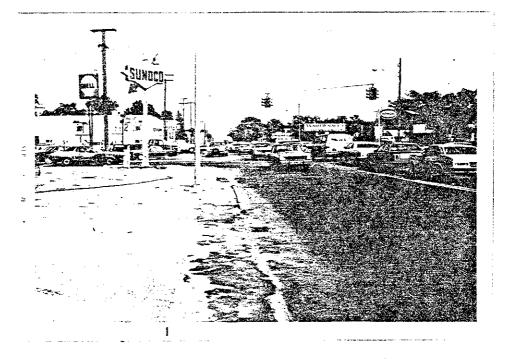
Background

The City of Surrey is a major urban area with a population of 500,000. It is governed by a Mayor and seven Councilpersons. Its roadway system comprises approximately 400 miles with nearly 150 miles consisting of major streets. The remainder of the street system is comprised of local streets and a few miles of County roads.

The City has its own Transportation Department consisting of a Transportation Director (head of Department and an experienced transportation engineer), an engineer in charge of traffic signal systems, an engineer in charge of signing, pavement markings, etc., and an engineer in charge of highway safety. Overall, six technicians (two technicians per engineer) are employed in the Department.

The Department has access to the City's computer system and currently maintains computerized accident files for its system. Computer plotting capabilities are also available. The Department also has the following traffic engineering equipment:

- . Ten portable mechanical traffic volume counters.
- . Various permanent traffic volume counters.
- . Four hand counters.
- . Two radar speed guns.
- . Two hand measuring wheels.
- . Time lapse photographic equipment (2 cameras).
- . Four stop watches.
- Other miscellaneous items.


Site Background

The intersection of Howard Road and 10 Mile Road is located about 1 mi. within the Surrey city limits. 10 Mile Road runs north-south, while Howard Road is a major east-west route through the area. The north and south approach legs of the intersection are four-lane with a center left turn lane and a posted speed limit of 35 mph. The bi-directional ADT on 10 Mile Road is about 20,000. The east and west approach legs contain four lanes with a posted speed limit of 30 mph and a bi-directional ADT of about 12,000. The intersection is currently signalized with a two-phase, fixed-time controller operating under a cycle length of 60 sec. during all hours. Photographs of this location are shown in Figure 1.

l

Howard Road-eastbound approach

Howard Road-eastbound approach

Figure 1 . Intersection of Howard Road and 10 Mile Road.

10 Mile Road-southbound approach.

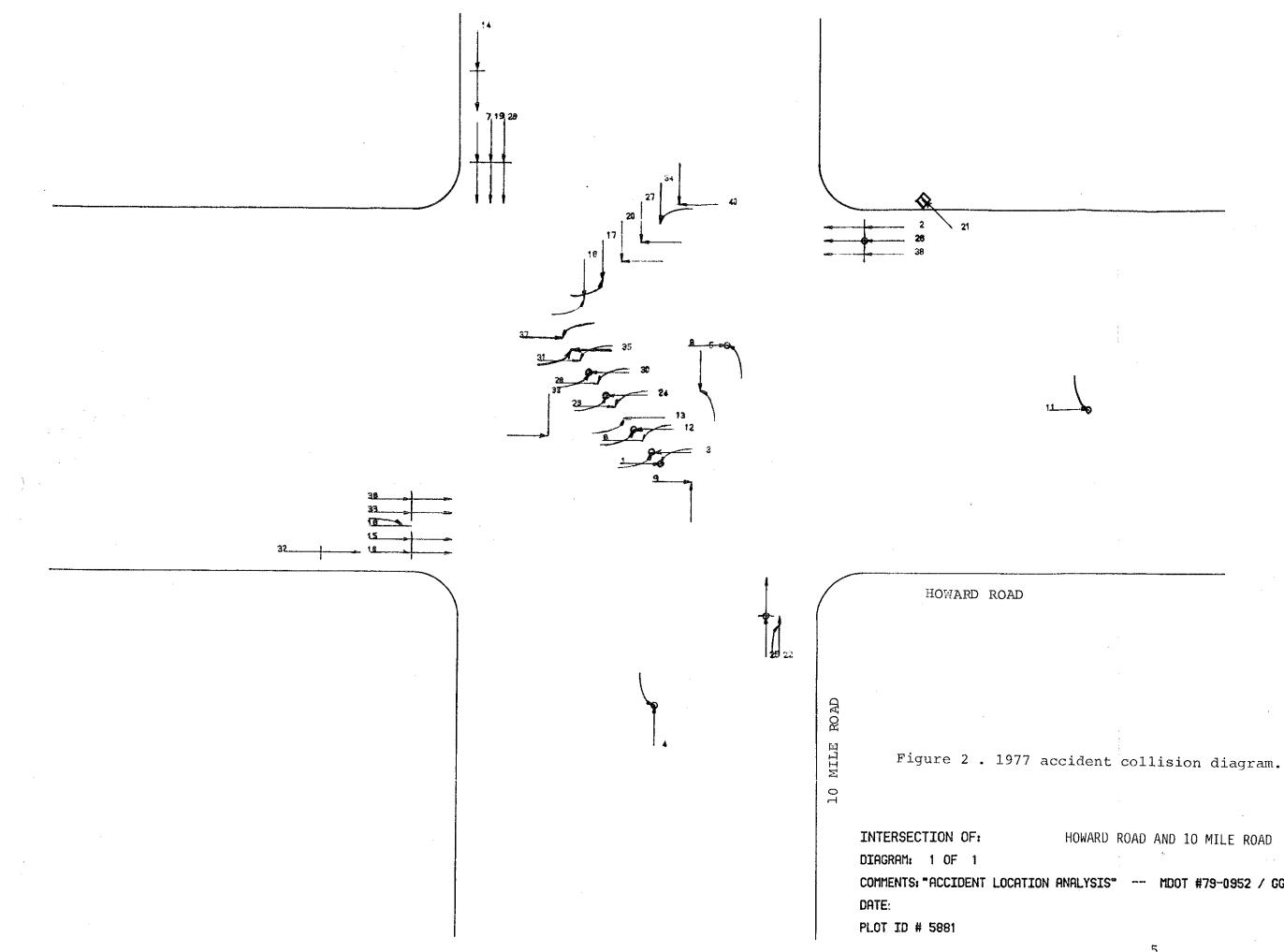
Figure 1 . Intersection of Howard Road and 10 Mile Road (continued).

A major factor which may affect traffic is the proximity of the Hazel Park Race Track, located 3/4 mi. north of the intersection. The traffic generated by the race track causes great fluctuations in traffic volumes on all major roads in the area. These fluctuations are dependent upon the racing season and the time of day.

Study

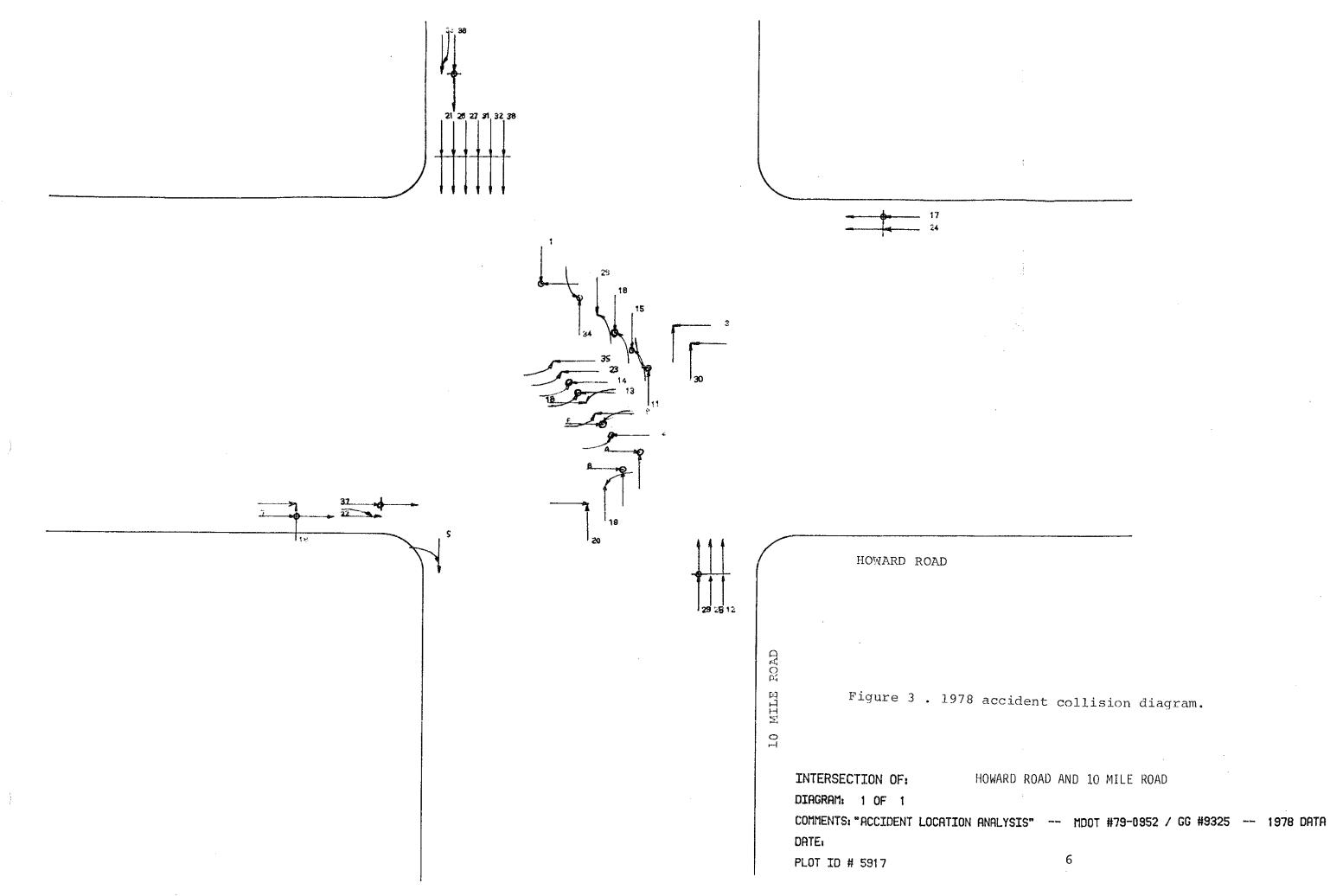
The study involves three subprocesses which include (1) collect and analyze data, (2) develop candidate countermeasures, and (3) develop projects based on an economic evaluation of proposed improvements. Following is the safety engineering study of this location.

Subprocess 1: Collect and Analyze Data


Activity 1 - Perform Accident Study Procedures

Accident report data for 1977 and 1978 were obtained from the computerized accident file. This computer analysis includes details of collision diagrams (Figures 2 and 3), individual accidents (Figure 4), and statistical summaries.

A manual summary of the accident data (Table 1) revealed that 40 accidents occurred in 1977, and 38 in 1978. About 33 percent of all accidents over this two-year period were of the personal injury type, resulting in 37 injuries and zero fatalities. There was a 17 percent increase in the number of personal injury accidents between 1977 and 1978 with the number of personal injuries increasing 24 percent. In addition, "wet pavement" was a factor in 40 percent of all accidents and "nighttime" conditions played a role in 39 percent of the accidents. The primary accident types included 27 rear-ends (35 percent) and 26 opposing left-turn accidents (33 percent). The secondary accident types were right-angle (21 percent) and sideswipes (6 percent). Accidents related to race course traffic were not considered significant.


Procedure 1 - Accident Summary by Accident Type

Collision diagrams of the intersection for 1977 (Figure 2) and 1978 (Figure 3) were reviewed. Rear-end and opposing left-turn accidents were predominant. Eleven rear-end accidents occurred on the north leg (41 percent of all rear-end accidents) and seven occurred on the west leg (26 percent). Vehicles travelling east and west on 10 Mile Road were involved in twenty of the opposing left-turn accidents (77 percent). Analysis of available summary data for 1972 through 1976 also showed the eastbound and westbound left-turn movements to be the most prevalent of the opposing left-turn accidents. There were also eleven angle accidents at the intersection in 1977-1978, with five of those involving vehicles attempting left-turns.

HOWARD ROAD AND 10 MILE ROAD

COMMENTS: "ACCIDENT LOCATION ANALYSIS" -- MDOT #79-0952 / GG #9325 -- 1977 DATA

HOWARD ROAD AND 10 MILE ROAD

	INTERSE	TION #	L ;	Howa	ird Road	AND 10	Mile Roa	ad / FROM	M JAN 01, 19	77 TO DEC 31,	1977	_ • · · · • • • • • • • • • •
	ACC IDENT		DAY Of	T I ME D F	DISTANCE		RONMENTAL C		HIGHEST	I NVOL VED	VEHICLE	
	NUMBER		WEEK	DAY	INTER SCT	WEATHER	PAVEMENT	VISIBILITY	SEVERITY	# SEVERITY	VIOLATION	
	1		3 MON			CLR/CLDY		DRK/LTS	P-INJRY	1 PSBL INJ 2 NU INJ		
	+	+	-+++	+ •	++	- •	+++	+	+++-	+-+++	++	н <u>т</u>
	2	JAN	<u>7 FR1</u>	10-11PM	40' E	CLR/CLDY	WET	DRK/LTS	PROP DMG	1 NU INJ 2 NU INJ	NONE TOO CLOS	qu -
	+1	+		++	+ +	++	• • ····· - ··· + ·	+	+ + + -	+-+++	*+	(D
	3	JAN	9 SUN	11-12PM	5' NE	SNOWING	SNOW/ICE	DRK/LTS	P-INJRY	I NO INJ 2 PSBL INJ	NONE Fld Row	•
4	+			10-11PM			\$NOW/ICE		P-INJRY	1 PSBL INJ 2 NO INJ		Compu
•	+	+ +	-++	+	* *	*	• • •••••		• • ··············	£ \$. \$	*	ů t
	, 5		2 WEDS		•		SNOW/ICE			1 NO INJ	TOO FAST	
										2 NO INJ	NONE	ч.
1	+									•- •+ ····		Ö
	U	JHH L	4 FRI	2-3841	2, 24	CLRYCLDY	SNUWFICE	DATLIGHT	PR OP DMG	L NU INJ 2 NO INJ	FLD ROW None	l ao
1	+						SNOW/ICE			+-+++	·	<u>й</u> .
	1	340 I	7 NEU'S	11-12PM	1.37 194	ULK/ULDI	SNUWFICE	URKILIS	PROP DMG	L NO INJ 2 NO INJ	FLD ROW NONE	Ω. Φ
		•		+	*******	4				F = + + +	A A	ц. д
	8		2 SAT				DRY			L PSBL INJ	· .	Ω.
			n k d m m — m d	*	4 . 6 . wa an an an an an an an an an					2 NNCP INJ		α ct
	9	JAN 23	B SUN	4-5PM	14" SE	CLR/CLDY	DRY	DAYL IGHT	PR OP DMG	1 NO INJ 2 NO INJ	NONE FLD ROW	•
+	10		+++ 7 Thur			CLR/CLDY		DRK/LTS	PROP DMG	1 NO [NJ 2 NO INJ	IMP BCKG NONE	
+		+		• • ··································	* *	*****		• • • • • • • • • • • • • • • • • • •		+++	· · · · · · ·	
	11				1000' E			DRK/LTS	P-INJRY	L NO INJ	NONE	
										2 PSBL INJ	FLD ROW	
	+	+	+++	+	++	+	+++	t	+++	+++	*	

	INTERSE		1;	-	-			Alsion PR					
		•	· ·	Howard	Road		ытте ко	aa / Ku	n uvnt Vilg	.711	10 000 31	1 1311	
	ACC IDENT		DAY OF	T I ME OF	DISTANCE			CONDITIONS	utourer		INVOL VEC	D VEHICLE	• • • • • • • • • • • • • • • • • • •
	NUMBER	DATE	WEEK	DAY	INTER SCT	WEATHER	PAVEMENT	VISIBILITY	SEVEDIT	4	SEVERITY	VIOLATION	
.	13	FEB 18	FR I	12-1PM	5* N	CLR/CLDY	DRY	DAYL IGHT	PROP DMG	1 2	NO INJ NO INJ	NONE FLD_ROW	
	14	FEB 24	THUR	12-1AM	100° N	CLR/CLDY	WET	DRK/LTS	PROP DMG	<u> </u>	NO INJ NO ENJ	TDO CLOS NONE	
	15	MAR 13	SUN	8-9PM	30' W	RAINING	WET	DRK / NLTS	PROP DMG	1 2	NO INJ NO INJ	TOO FAST NONE	
	++	MAR 15	TUES	++ 10-11AM	10' N	CLR/CLDY	URY	DAYL IGHT	PROP DMG	1	+ NƏ INJ NƏ INJ	FLD ROW NONE	
	17	MAR 20	SUN	12-1PM	10ª W	CLR/CLDY	WET	DAYL IGHT	PROP DMG	1	NO INJ NO INJ	NONE FLU ROW	
	18	MAR 29	TUES	11-12AM	101 1	CURICLDY	DRY	DAYL IGHT	PROP DMG	1 2	NO INJ NO INJ	NONE O THR / UNK	
	19	APL 22	FRI	9-10PM	40" N	RAINING	WET		PROP DMG	1 2	NO INJ NO INJ	IMP BCKG None	
	20 ``	APL 23	SAT	10-11AM	10" NW	RAINING	WET	DAYL IGHT	PROP DMG	<u>1</u> 2	NO INJ NO INJ	NONE FLD ROW	
	21	APL 26	TUES	8-9 A M	100' E	CLR/CLDY	URY	DAYL IGHT	PROP DMG	1	++ NO INJ	++ NONE	
1	22	MAY 10	fues	*++ 3-4AM	25' 5	CLR/CLDY	DRY	DRK/LTS	PROP DMG	L	NO INJ NO INJ	NONE NUNE	
•	23	MAY 26		. <u>.</u>		CLR/CLDY		DAYL IGHT	PR OP DMG	<u>1</u> 2	NO INJ NO INJ	NONE IMP TURN	
*	24	++ JUL 8	++1 FRI	4-5PM	5* NE	CLR/CLDY	++ DRY	DAYL IGHT	P-INJRY	l	PSBL INJ NO INJ		
+	·······	\$	***		+	++	\$~~~~	·+	+	++-+	++	f	

	INTERSE	CTION #	1.;	Howard	Road	AND 1	0 Mile R	oad / FRO	M JAN 01, 19	977	TO DEC 31	1971	·····
	ACC IDENT		DAV OF	TIME OF	DISTANCE FROM		RONMENTAL C		HIGHEST		INVOL VE	VEHICLE	
	NJ MBER	DATE	WEEK	DAY	INTER SCT	WEA THER	PAVEMENT	VISIBILITY	SEVERTTY		SEVENTY	MEDI ATTOM	
	25	JUL 11	MON	7-8PM	20* S	RAINING	WET	DAYLIGHT	P-INJRY	Ł	PSBL INJ NO INJ	NONE TUO CLOS	
	26	JUL 20	WEDS	<u>8-9 A M</u>	35' W	CLR/CLDY	DRY	DAYL ICHT	P-INJRY	1 2	PSBL INJ PSBL INJ	TOO CLOS NONE	
	27	JUL 23	SAT	12-1PM	15" NW	CLR/CLDY	DRY	DAYL IGHT	PROP DMG	1 2	NO INJ NO INJ	NONE FLD KOW	
		JUL 25	MUN	8-9 AM	10* Sw	CLR/CLDY	DRY	DAYL IGHT	PROP DMG	1 2	NO INJ NO INJ	NONE FLD ROW	
	29	AUG 11	THUR	2-3AM	20' N	CLR/CLDY	DRY		PROP DMG	2	NO INJ NO INJ	TUO CLOS NUNE	
••••••	30	AUG 21	SUN	9-1 OPM	251 N	CLR/CLDY	WET		P-INJRY	1 2	NNCP INJ NNCP INJ	IMP TURN NONE	
	31		FRI	9-10AM	15* S₩	CLR/CLDY	WET		PROP DMG	1 2	NO INJ NO INJ	NONE FLD ROW	-
	32	NOV 14	MON	<u>2-3 PM</u>	<u>100" h</u>	CLR/CLDY	DRY	DAYL IGHT	PROP DMG	<u>1</u> 2	NO INJ NU INJ	TOU FAST NONE	
ŧ	33	NOV 17	THUR	9-10AM	15+ NH	RAENING	WEÏ		PROP DMG	1 2	NU INJ NU INJ	FLD ROW LN USAGE	
•	34	NOV 25	FRI	7-8PM	60' N	CLR/CLDY	DRY	DRK/LTS	PROP DMG	1 2	NU INJ NU INJ	NONE FLD_KOW	
+		DEC 7	WEDS	11-12AM	10" N	<u>CLR/CLDY</u>	WET	DAYL IGHT	PROP DMG	1 2	NO INJ NU INJ	NONE IMP TURN	
<u>·</u>	36	DEC 10	SAT	12-1PM	25' W	CLR/CLDY	SNOW/ICE	DAYLIGHT	and the second se	1	NO INJ NO INJ	LN USAGE	

	INTERSEC	TION	4	1;	' Howard	Road		AND 10	Mile Ro	ad / FROM	JAN 01	+ 197	17 T	O DEC 31,	1977	
	ACC IDENT			DAY OF	TIME OF	DISTA	1				HIGHE			INVOL VED		
	NUMBER ++ 37	• • •	++	+++	DAY ++ 12-1PM	+ +	+	++		VISIBILITY DAYL IGHT	*		++			
	، در 			HUK					4C)					NO INJ	IMP TURN	
	++				++ 5-6PM				++ WET	DRK/LTS	-	DMG	1	NO ENJ	NONE	
	6	\$ \$	····· • • · ·	*** ******		k f	+	*	+ +	• • • • • • • • • • • • • • • • • • •	* -			NO INJ		
	39				67РМ					DRKINLTS	-		1	NO INJ NO INJ	NONE TOO CLOS	
	40				9-10PM	81	NW		WET	DRK/LTS	-	DMG	1	NO INJ	++ NONE FLD ROW	
0	\$	• • • • • • • • • • • • • • • • • • •	++	}						₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	+	++	· + +		+	
-		·	ondostas enconación		Adda Jahlan an an an an an air air air air air air air air air air				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
					,											
	<u></u>														,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Э

I	NTERSE	CTION	Ħ	1;	Howard	Road	AND 1.0	Mile Ro	ad / FROM	I JAN 01, 19	18	TU DEC 31,	1978	
	C TOPNY			DAY	TIME	DISTANCE			CONDITIONS			INVOL VED		
٨	IC IDENT			<u>WEEK</u>	OF DAY	FROM INTERSCT	WEATHER	PAVEMENT	VISIBILITY	HIGHEST SEVERITY	#	SEVERITY	VIULATION	
••	1								DAYLIGHT		1	PSBL INJ PSBL INJ	OTHR / UNK	
+-	2								DAYL IGHT		1	PSBL INJ NO INJ		
+	3	H H MAR	10	FR I	+ 2-3PM	11º NE	CLR/CLDY	DRY	DAYL IGHT	PROP DMG	1		OTHR/UNK OTHR/UNK	
+	4								DRK/LTS	++ P-INJRY	1	NNCP INJ NO INJ		
+	5					251 N			+++ DRK/LTS		1	NO INJ NO INJ	NONE LN USAGE	
<u>}</u>	6	MAR	++ 16	THUR	+ 8-9 РМ	51 S	CLR/CLDY	+ WET	DRK7LTS		i		OTHR/UNK	
+					+ 7-8AM	75* W	CLR/CLDY	+ DRY	DAYL IGHT	++ P-INJRY	1	NNCP INJ PSBL INJ	TOO CLOS	
	8	APL	6	THUR	9-10AM	20* S	RAINING	WET	DAYL IGHT	P-INJRY	1 2	ND INJ NNCP INJ	FLD ROW	
* ••• • •						15" NE			DAYL IGHT		L	++ LNJ ON LNJ ON	DTHR/UNK OTHR/UNK OTHR/UNK	
+ -~	10				10-11AM		RAINING		DAYLIGHT		L	NO INJ NO INJ NO INJ	NONE FLD ROW	
+ ~~	11	MAY	21	SUN	1-2PM		CLR/CLDY		DAYLIGHT		1	PSBL INJ NNCP INJ	NONE	
+- -	12				+		CLR/CLDY		DRK/LTS	PROP DMG		NO INJ NO INJ	++ NONE	,

-

ан Д

.	INTEPSE	CTION #	1 ;	lloward	Road	AND 10	Mile Ro	ad / FROM	1 JAN 01, 19	78 TU DEC 31,	25 PAGE # 2 1978	
~	ACC IDENT		DAY Of	TIME OF	DISTANCE FROM				HIGHEST	INVOL VED	VEHICLE	
	NUMBER		WEEK	DAY	INTERSCT	WEATHER	PAVEMENT	VISIBILITY	SEVERITY	# SEVERITY	VIOLATION	
	13	JUN 1	D SAT	5-6PM	5† N	CLR/CLDY	DRY	DAYL IGHT		1 PS8L INJ 2 NO INJ		
	+14	121Ni - 2	-++~+	+	++ 34 AI	+	++				*	
	·····		L WEDS	**************************************		CLR/CLDY		DAYL IGHT		1 NO INJ 2 PSBL INJ		
	+		-+++ L SAT	2-3PM	11 W	RAINING		DAYL IGHT		-+++		
										I NO INJ 2 INCP INJ		
	16	AUG	7 MON	2-3PM	51 N	RAINING	wet	DAYL IGHT	+++ P-INJRY	I NO INJ 2 NNCP INJ	IMP TURN	
	+	+ +	+++	++	**************************************	**	+	++			++	
		۲		12-1PM			DRY		······································	1 PSBL INJ 2 NO INJ	UTHR/UNK	
⊢.+ 2	10	AUG 14	HUN	10-11AM	140' W	CLR/CLDY	DRY	DAYL IGHT	PROP DMG	I NO INJ 2 NO INJ	FLD ROW NONE	
	19	AUG 1	THUR	1-2 A M	30+ S	CLR/CLDY	DRY	DRK/LTS	PROP DMG	-+++ 1 NO INJ 2 NO INJ	H+ NONE IMP_TURN	
)	**************************************	• • • • • • • •	*	*********	********	**********	*+	+++		∯, ₩10 100 100 100 100 100 100 100 100	
	`							DAYL IGHT		1 NO INJ 2 NO INJ	NUNE FLD ROW	
	21	SEP 1	D SUN	8-9PM	45' N	RAINING	WET	DRK/LTS	PROP DHG	1 NO INJ 2 NO ENJ	TUO CLOS Nune	
	22	SEP 14	THUR	7-8AM	20' SW	CLR/CLDY	DRY			1 NO INJ 2 NO INJ	LN USAGE NONE	
				+	++	++	++	•	+++	-+++	* - = = = = = = = = = = = = = = = = = =	
·	23		2 THUR		10" NE	CLR/CLDY	DRY	DAYL IGHT	PROP DMG	1 NO INJ 2 NO INJ	NONE FLD ROW	
	24	0CT 14	SAT	++ 1-2ΔM	++ 80' E	CIR/CLOY	++			**	++	
			JAI	4 6 4 1	00' E	CLR/CLDY	UKY	DRK/LTS	PR OP DMG	1 NO INJ 2 NO INJ	NONE	

INTEDSE	CTION #	1;					1510N PR					3
INTENSE	CTION #	ι,	поwа	га коаа	AND TO	HILE NO		1 JAN 01, 1	978	TO DEC 31	+ 1978	
ACC IDENT		DAY Of	TIME DF	DISTANCE FROM		RONMENTAL C		HIGHEST		INVOL VE	DVEHICLE	
NU MBER	DATE ++			INTER SCT +++	WEATHER	PAVEMENT	VISIBILITY	SEVERITY	#	SE VER I TY	VIOLATION	
25	001 25	WEDS	6-7PM	60' N			DWN7 DUS K	PROP DMG	1		NONE TOU CLOS	
+26			2-3PM		CLR/CLDY		DAYL IGHT	PROP DMG		+	1MP BCKG	
										NO INJ	NONE	
27	NOV 6	MON	2-3 P M	25• N	CLR/CLDY	WET		PROP DMG	1 2	NO INJ NO INJ	TOO CLOS None	
+ 28	++	+++ MON	5-6PM	25° NH	RAINING	WET	DRK/LTS	PROP DMG	ł	NO INJ NO INJ NO INJ	NONE FLD ROW	
ŧ	* +	* *	+	* + +	++	++	++	• • · · · · · · · · · · · · · · · · · ·	+++	\$~+	ه د سال می می می می می می	· · · · · · · · · · · · · · · · · · ·
29	NOV 14	TUES	2-3PM	<u>151 S</u>	CLR/CLDY		DAYLIGHT	P-INJRY	l	PSBL INJ	NONE	
4 .	· · · · · · · · · · · · · · · · · · ·								_	NO INJ	TOU CLOS	
30	NOV 29	WEDS	7-8PM	40' NE	CLRICLOY	WET	DRK/LTS	PROP DMG	1	NO INJ NO INJ NO INJ	OTHRZUNK OTHRZUNK OTHRZUNK	
+	++	+++	+	+++	++	++	++		+-+-	·•	· • · · · · · · · · · · · · · · · · · ·	
			11-'12PM		CLR/CLDY	····	DRK/LTS	PROP DMG	2	NO INJ NO INJ	TOO CLOS None	
32	++ DEC 3	++~-~+ SUN	+	201 N	++ SNOWENG	SNUW/ICE	++ DRK Z1 TS	+	-	++ NO INJ	TOO CLOS	
										NU INJ	NUNE	
33	DEC 16	+++ SA T		100+ N			DAYL IGHT	PROP DMG	+-+(1 2	NU INJ NO INJ	UTHR/UNK OTHR/UNK	
*34	DEC 20	WEDS	4-5PM	84 SE	RAINING	++ WET	· DWN/DUSK	P-INJRY	Ł	NO INJ PSBL INJ	NONE	
+	++	+++	+	+	++	++	++	+				
	DEC 21	THUR	2-3 PM	104 N	CLR/CLDY	DRY	DAYL IGHT	PROP DMG	1 2	NU INJ NU INJ	NONE FLD ROW	
<u>+</u> 36	· DEC 22	FRI	<u>++</u> 5~6PM	++ 75+ N	CLK/CLDY	URY	DAYL IGHT		i	NO INJ PSBL INJ	IMP BCKG	

INTERSEC	TION #	1;	Howard	l Road –	AND 10	Mile R	oad / FROM	4 JAN 01, 19	978 TO	DEC 31,	1978	
		DAY	TIME	DISTANCE			CONDITIONS			INVOL VED	VEHICLE	
	DATE		OF Day	FROM INTERSCT	WEA THER	PAVEMENT	VISIBILITY	SEVERITY	# S	EVERITY	VIOLATION	
****	f f	++	++	++	+	• • • • • • • • • • • • • • • • • • •	++	+++	++++	+	*	
37	DEC 26	TUES	1-2AM	30' W	CLR/CLDY	DRY	DRK/NLT S	P-INJRY	-	O INJ NCP INJ		
				5' N			DAYL IGHT				-	
									2 N	U INJ	NONE	

23

14.

Table 1 . Summary of accident characteristics.

LOCATION: HOWARD ROAD AND 10 MILE ROAD

	1	1977	1	.978	Avg.	/Yr.
	No.	%	No.	Å	No.	2
TYPE OF ACCIDENT						
Opposing Left-Turn	13	32.5	13	34.2	13	33.3
Rear-End	13	32.5	14	36.8	13.5	34.6
Angle	9	22.5	7	18.4	8	20.5
Sideswipe	2	5.0	3	8.0	2.5	6.4
Run-Off-Road	1	2.5	0		0.5	1.3
Head-On	0		0		0	ļ
Driveway-Related	2	5.0	1	2.6	1.5	3.9
Others	0		0		0	
PAVEMENT CONDITIONS						
Wet Conditions	16	40.0	15	39.5	15.5	39.7
Dry Conditions	17	42.5	22	57.9	19.5	50.0
Snowy-Icy Conditions	7	17.5	1	2.6	Δ <u>.</u>	10.3
LIGHT CONDITIONS						
Day Conditions	22	55.0	23	60.5	22.5	57.7
Dawn or Dusk Conditions	0		3	7.9	1.5	3.8
Night Conditions	18	45.0	12	31.6	15	38.5
ACCIDENT SEVERITY						
Fatal Accidents (No. Persons)	0 (0)		0 (0)		0 (0)	
Injury Accidents (No. Persons)	10 (16)	25.0	16 (21)	42.1	13 (18.5)	33.3
Property Damage Accidents	30	75.0	22	57.9	26	66.7
TOTAL ACCIDENTS (INJURIES)	40 (16)	100.0	38 (21)	100.0	39 (18.5)	100.0

	······································
ACCIDENT PATTERN OR TREND	POSSIBLE CAUSES
.Left-turn head-on collision between EB and WB traffic.	. Large volume of left-turns.
beckeen Eb and wb trattic.	• Restricted sight distance.
	. Too short amber phase
	 Absence of special left turning phase when needed.
	. Excessive speed on approaches.
 Rear-end collisions at signalized intersections. 	. Improper signal timing.
	. Crossing pedestrians
	. High volume of turning vehicles.
	• Slippery surface.
	. Excessive speed on approaches.
	 Poor visibility of signals.
	. Unwarranted signal.
	. Inadequate roadway lighting.
 Right-angle collisions at signalized intersections. 	. Restricted sight distance.
e ghai i zea i hier seachons.	. Inadequate roadway lighting.
	 Inadequate advance intersection warning signs.
	. Poor visibility of signals.
	. Excessive speed on approaches.
	. Inadequate signal timing.
	. Large total intersection volume.

From this data, the following accident patterns and possible accident causes are defined.

Procedure 2 - Accident Summary by Severity

One-third of the accidents resulted in a personal injury accident. Statistics are not available to compare this percentage with a control value. However, based on engineering judgment, the severity characteristics are considered to be uncharacteristic. A study of spot speed and other characteristics related to accident severity patterns should be performed.

Procedure 3 - Accident Summary by Contributing Circumstances

"Disregarding traffic signal" or "failure to yield right-of-way" (37 percent) and "following too close" (23 percent) were the most frequent "contributing circumstances". Nine drivers were also cited for improper turn or signal use, five for drug or alcohol use.

Most of these cases represent "correctable" accident situations and were included as factors in the possible causes defined as an output of Procedure 1.

Procedure 4 - Accident Summary by Environmental Conditions

Further in-depth analysis of accident characteristics were determined using SPSS computer summaries of frequency by each accident factor and also bi-variate tabulations. It revealed that rear-end accidents were found to be greatly affected by night conditions (56 percent of all rear-end accidents) and wet pavement conditions (44 percent).

In a comparison of site values (for all recorded accidents) to control values, patterns of "wet pavement" or "nighttime" condition accidents were not defined. For example, the ratios of "wet pavement" accidents and "nighttime" accidents to total accidents on an areawide basis were 43.2 percent and 43.6 percent, respectively.

CHARACTERISTIC	SITE VALUE		CONTROL VALUE
Wet pavement/total acc.	39.7%	<	43.2%
Nighttime/total acc.	38.5%	<	43.6%

Procedure 5 - Accident Summary by Time Period

Using the SPSS computer summaries, time period data for the accidents were analyzed. Accidents were most prevalent in the three month period from November to January and also in the month of March. These periods were during the race track closed season.

The distribution of accidents was quite uniform through the days of the week. It was noted, however, that 26 percent of the accidents occurred between the hours of noon and 3:00 p.m. The latter time period represents a pattern. Field review and other procedure results would include this time period in their study efforts.

The results of the accident summaries is a preliminary list of accident patterns and possible causes. Following is this list.

ACCIDENT PATTERN OR TREND	POSSIBLE CAUSES
.Left-turn head-on collision between EB and WB traffic.	 Large volume of left-turns. Restricted sight distance. Too short amber phase. Absence of special left turning phase when needed. Excessive speed on approaches.
.Rear-end collisions at signalized intersections.	 Improper signal timing. Crossing pedestrians. High volume of turning vehicles. Slippery surface. Excessive speed on approaches. Poor visibility of signals. Inadequate roadway lighting. Unwarranted signal.
.Right-angle collisions at signalized intersections.	 Restricted sight distances. Inadequate roadway lighting. Inadequate advance intersection warning signs. Poor visibility of signals. Excessive speed on approaches. Inadequate signal timing. Large total intersection volume.

Activity 2 - Field Review Location

A review of field conditions, past complaints, and past field notes was made, providing a review of the on-site characteristics of the study location. The review was performed by the Safety Engineer and a technician. To provide a review of the daily conditions, time-lapse photography was also used to record the intersection activities.

Daytime and nighttime field inspections were conducted at the site in October, 1980. With the use of the photographic techniques, the review team was able to limit their review of the intersection. The findings of this activity are shown in Figure 5. It should be noted, however, that Hazel Park Race Track was closed at the time of site inspection and, therefore, did not impact the observed traffic characteristics.

Additional notes on the field review activities are also provided. Following is a summary of the notes for each approach leg.

<u>EB</u> Howard Road (West Leg)

Traffic backed up on nearly every cycle on this approach during afternoon peak periods. The right lane cleared fairly well, but the left lane remained backed up and congested for several cycles. This back-up is attributed to the fact that there are a high percentage of vehicles attempting left-turns, but, frequently, only one or two vehicles per cycle are able to complete the maneuver.

The absence of lane delineation presents problems for both the eastbound and westbound traffic. Traffic movement is often hindered by vehicles occupying more than one lane, particularly the eastbound vehicles. The south side of Howard Road is lined with buildings, parking areas, and pedestrian walk areas which are within ten feet of the roadway. This, along with the absence of delineation, encourages drivers in the curb lane to encroach upon a portion of the left lane. This was particularly true during the evening investigation. Vehicles turning onto WB Howard Road from 10 Mile Road also seem to have problems restricting their travel to one lane.

Visibility is also a problem on this approach. Eastbound vehicles are unable to see northbound traffic approaching the intersection due to the location of Tom's Restaurant. This poor visibility increases the potential for right-angle accidents. Visibility is also poor for eastbound vehicles turning left onto 10 Mile Road. It is virtually impossible for these vehicles to see oncoming traffic in the westbound curb lane when there are left-turn vehicles from the opposite direction. This situation is especially prevalent during afternoon peak periods.

WB Howard Road (West Leg)

The wide curb lane on this approach presents a problem for westbound vehicles. Right-turn vehicles attempt to "create" a separate right-turn lane to avoid traffic back-up or slow-down caused by left-turning vehicles.

LOCATION: HOWARD	ROAD @ 10 MILE RD.	CONTROL: SIGNAL
DATE: 10/9/80		TIME: 230_ 530 PH

OPEI	RATIONAL CHECKLIST:	NO	YES
1.	Do obstructions block the drivers view of opposing vehicles?		~
2.	Do drivers respond incorrectly to signals, signs or other traffic control devices?	<u> </u>	
з.	Do drivers have trouble finding the correct path through the location?	<u></u>	<u></u>
4.	Are vehicle speeds too high?	<u> </u>	
5.	Are vehicle speeds too low?	~	
6.	Are there violations of parking or other traffic regulations?	<u> </u>	
7.	Are drivers confused about routes, street names, or other guidance information?	~	
8.	Can vehicle delay be reduced?	<u></u>	\checkmark
9.	Are there traffic flow deficiencies or traffic conflict patterns associated with turning movements?	<u>.</u>	~
10.	Is the volume of thru traffic causing problems?	\checkmark	
11.	Is the volume of turning traffic causing problems?		\checkmark
12.	Do pedestrian movements through the location cause conflicts?	1	
13.	Do bicyclist movements through the location cause conflicts?	\swarrow	
14.	Are there other traffic flow deficiencies or traffic conflict patterns?	/	·····
15.	Is existing lighting operating correctly?	\checkmark	
16.	Do the presence of existing driveways con- tribute to accidents or erratic movements?	\checkmark	
17.	Are pavement conditions causing drivers to react in an erratic fashion?	\checkmark	

Figure 5 . Safety performance review.

PHY	SICAL CHECKLIST:	NO	YES
1.	Can sight obstructions be removed or decreased?	$\underline{\checkmark}$	
2.	Are the street alignment or widths inadequate?		
3.	Are curb radii too small?	<u> </u>	- <u></u>
4. 5.	Should pedestrian crosswalks be relocated? Repainted?		
б.	Are signs inadequate as to usefulness, message, size conformity and placement? (see MUTCD)	<u> </u>	•••
7.	Are signals inadequate as to placement, conformity, number of signal heads, or timing? (see MUTC D)		\checkmark
s.	Are pavement markings inadequate is to their clearness or location?		\checkmark
9. 10. 11.	Is channelization (islands or paint markings) inadequate for reducing con- flict areas? Separating traffic flows? Defining movements?		
12. 13. 14.	Does the legal parking layout affect sight distance? Through or turning vehicle paths? Traffic flow?		
15. 16.	Do speed limits appear to be unsafe? Unreasonable?	Ź	······
17.	Is the number of lanes insufficient?		
18.	Is street lighting inadequate?		<u> </u>
19. 20.	Are driveways inadequately designed? Located?		
21.	Does the pavement condition (potholes, washboard, or slippery surface) con- tribute to accidents?		
22.	Are approach grades too steep?	<u> </u>	<u></u>
	COMMENTS:		
	Operational"0" and item number Physical"P" and item number		

Figure 5 . Safety performance review (continued).

A high potential for rear-end and sideswipe accidents is created by such a situation. There were also a high number of weaves by drivers to avoid the back up in the left lane.

Visibility is poor for vehicles attempting left-turns onto 10 Mile Road when eastbound vehicles are making the same attempt. Several vehicles were observed inching into the opposing lane of traffic because they were unable to see the traffic in the eastbound curb lane from their original position. Some vehicular back-up was experienced on this approach but traffic generally cleared well. There were also a number of high speed vehicles observed.

Several weaves were observed involving eastbound vehicles after they had passed the intersection.

NB 10 Mile Road (South Leg)

Traffic on the northbound approach backed up on every cycle but cleared extremely well. Several vehicles were observed travelling at high speeds and others made abrupt stops or increased speeds to clear the intersection on the yellow (amber) phase. A few vehicles ignored the "NO TURN ON RED" signing on this approach. All northbound traffic was delayed at the beginning of nearly every cycle while waiting for eastbound and westbound left-turn vehicles to clear the intersection. The location of Tom's Restaurant made it difficult for drivers to see eastbound traffic approaching the intersection. Nighttime investigation revealed that burned-out lamps were located on northbound 10 Mile Road on the southeast and northeast corners.

SB 10 Mile Road (North Leg)

Traffic generally flowed smoothly and back-up and congestion was minimal during the afternoon peak period. However, several vehicles were observed travelling at high speeds. Abrupt stops and through movement on the yellow (amber) phase were also frequent. Many motorists appeared to have trouble negotiating right-turns onto WB Howard Road. This caused some problem with the succeeding (following) vehicles, causing them to brake harder than normal. Some resurfacing has taken place recently on the two northbound lanes from the intersection to about 200 feet north.

The accident summaries and the on-site review resulted in the following list of accident patterns and possible causes.

ACCIDENT PATTERN OR TREND	POSSIBLE CAUSES
.Left-turn head-on collision between EB and WB traffic.	 Large volume of left-turns. Restricted sight distance. Absence of special left-turning phase when needed.
.Rear-end collisions at signalized intersections.	 High volume of turning vehicles. Slippery surface. Excessive speed on approaches. Inadequate roadway lighting.
.Right-angle collisions at signalized intersections.	 Restricted sight distances. Inadequate roadway lighting. Excessive speed on approaches.

Activity 3 - Select Appropriate Traffic, Environmental and Special Study Procedures

The following list of study procedures are recommended.

. <u>Traffic-Based Procedures</u>

- Volume Study (Procedure 7)
- Spot Speed Study (Procedure 8)Travel Time and Delay Study (Procedure 9)
- Highway Capacity Study (Procedure 10)
 Traffic Conflict Study (Procedure 11)

Environmental-Based Procedures

- . Roadway Inventory Study (Procedure 15)
- Sight Distance Study (Procedure 16)
- Skid Resistance Study (Procedure 18)
 Highway Lighting Study (Procedure 19)

Activity 4 - Select Techniques

A review of the management concerns involved in selecting study techniques were made. Based on these concerns, the following techniques were selected.

PROCEDURE	TECHNIQUE
• Volume Study (Procedure 7)	Turning movements-manualADT-mechanical, portable
 Spot Speed Study (Procedure 8) 	. Radar gun
 Travel Time and Delay Study (Procedure 9) 	. Sampling method - manual
. Highway Capacity Study (Procedure 10)	. Critical lane analysis
 Traffic Conflicts Study (Procedure 11) 	. Manual
 Roadway Inventory Study (Procedure 15) 	. Manual
• Sight Distance Study (Procedure 16)	. Manual
 Skid Resistance Study (Procedure 18) 	 Skid Trailer - borrowed from State Highway Department
 Highway Lighting Study (Procedure 19) 	. NCHRP 152 Method - intersection

Activity 5 - Perform Procedures

Significant resources were available to perform the procedures. No additional training was needed. In addition, a skid testing machine and appropriate State personnel to operate the machine will be available from the State Highway Department.

The data collection plan was as follows:

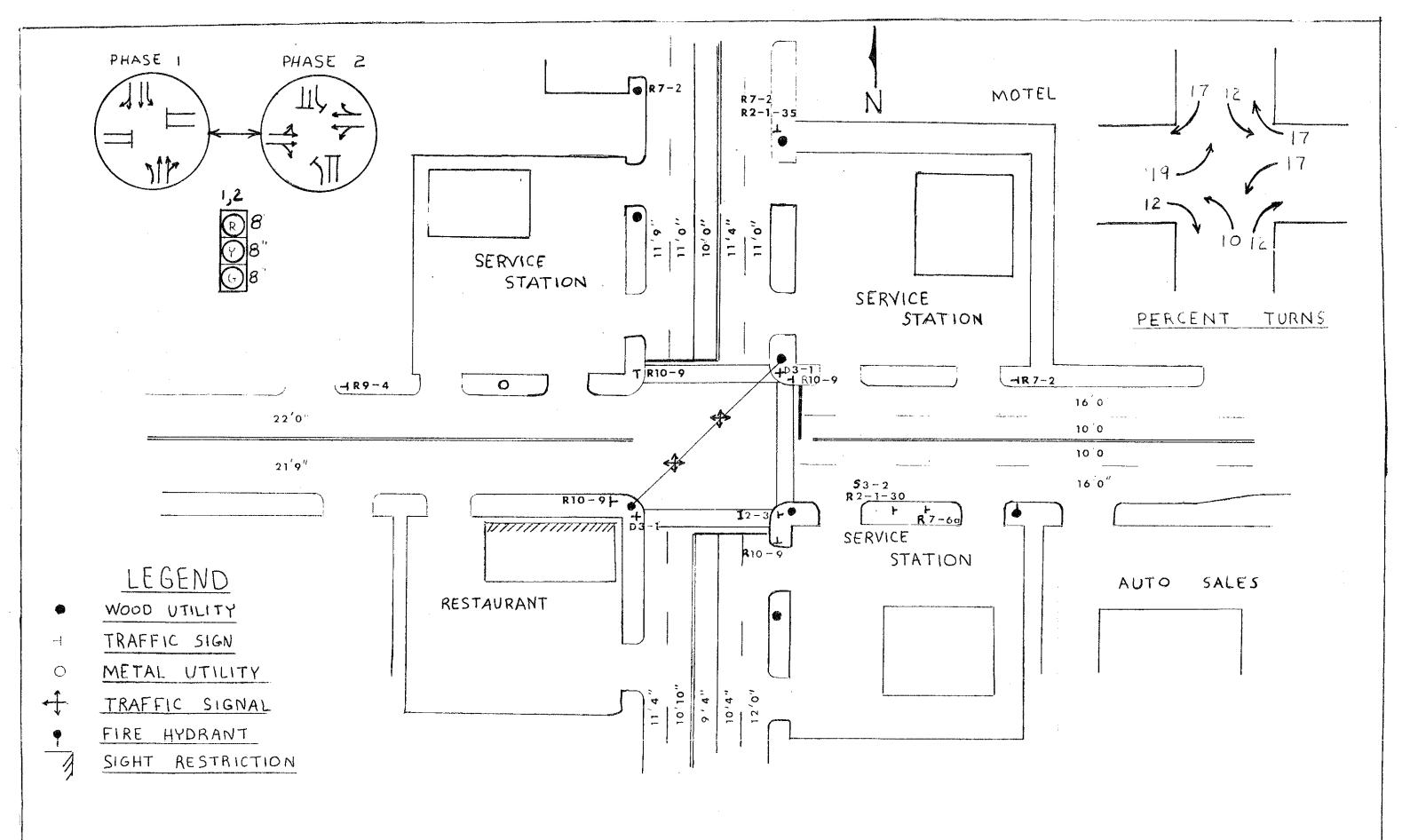
PROCEDURE	DATA COLLECTION PERIOD
. Volume Study (Procedure 7)	 Turning movement - (7-9 a.m., 4-6 p.m.) weekday ADT - 24 hour, weekday
 Spot Speed Study (Procedure 8) 	. (9 a.m. – 4 p.m.) weekday
 Travel Time and Delay Study (Procedure 9) 	. (7-9 a.m., 4-6 p.m.) weekday
. Highway Capacity Study (Procedure 10)	 Any time following collection of volume and roadway inventory data
 Traffic Conflicts Study (Procedure 11) 	. (7-9 a.m., 4-6 p.m.) weekday
. Roadway Inventory Study (Procedure 15)	. Daytime
 Sight Distance Study (Procedure 16) 	. Daytime
 Skid Resistance Study (Procedure 18) 	. Nighttime, any day
• Highway Lighting Study (Procedure 19)	. Day and night review

These activities were performed within a two-day period with the following findings.

Roadway Inventory Study

The existing physical conditions at the intersection are shown in the condition diagram (Figure 6). Lane widths range from 10 feet on the leftlanes of the east leg to 16 feet on the curb lanes of the same leg. There is no lane delineation on the west leg with the exception of center of roadway designation. There are no left- or right-turn pavement markings on any approach. "NO TURN ON RED" signs are located on all approaches and all sign types are given by code on the diagram. Utility poles are located along both roads adjacent to the back of the curb and numerous driveway entrances exist on all four approaches. Tom's Restaurant on the southwest corner offers visual obstruction to both eastbound and northbound traffic.

Two span wire mounted signals with faces fronting each direction currently exist, with each face having eight-inch lenses. Stop bars and ped-


PROCEDURE	DATA COLLECTION PERIOD
. Volume Study (Procedure 7)	 Turning movement - (7-9 a.m., 4-6 p.m.) weekday ADT - 24 hour, weekday
 Spot Speed Study (Procedure 8) 	. (9 a.m. – 4 p.m.) weekday
 Travel Time and Delay Study (Procedure 9) 	. (7-9 a.m., 4-6 p.m.) weekday
 Highway Capacity Study (Procedure 10) 	 Any time following collection of volume and roadway inventory data
 Traffic Conflicts Study (Procedure 11) 	. (7-9 a.m., 4-6 p.m.) weekday
 Roadway Inventory Study (Procedure 15) 	. Daytime
 Sight Distance Study (Procedure 16) 	. Daytime
 Skid Resistance Study (Procedure 18) 	. Nighttime, any day
. Highway Lighting Study (Procedure 19)	. Day and night review

These activities were performed within a two-day period with the following findings.

Roadway Inventory Study

The existing physical conditions at the intersection are shown in the condition diagram (Figure 6). Lane widths range from 10 feet on the leftlanes of the east leg to 16 feet on the curb lanes of the same leg. There is no lane delineation on the west leg with the exception of center of roadway designation. There are no left- or right-turn pavement markings on any approach. "NO TURN ON RED" signs are located on all approaches and all sign types are given by code on the diagram. Utility poles are located along both roads adjacent to the back of the curb and numerous driveway entrances exist on all four approaches. Tom's Restaurant on the southwest corner offers visual obstruction to both eastbound and northbound traffic.

Two span wire mounted signals with faces fronting each direction currently exist, with each face having eight-inch lenses. Stop bars and ped-

estrian crosswalks are marked on all approaches with the exception of the westbound approach. Left-turn lanes are provided on the northbound and southbound approaches.

Volume Study

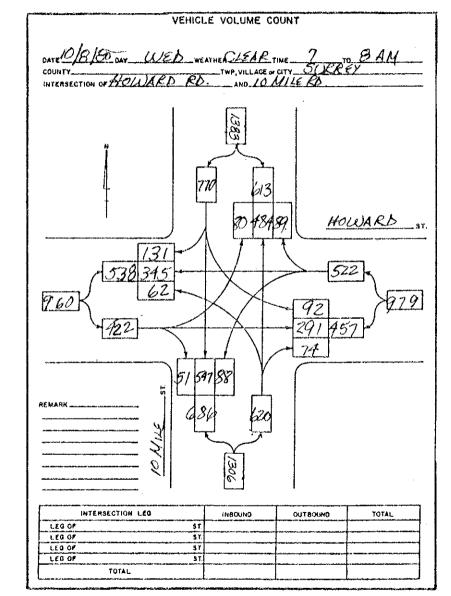
Turning movement summaries are shown in Figure 7. They were obtained for the morning and evening peak periods. The ADT at each approach is shown in Figure 8.

Spot Speed Study

Speed data were collected at the site on October 3, 1980 (see Table 2). A sample size of 100 vehicles was used for each approach (a total of 400 vehicles). The average speed was 32.7 mph on the eastbound Howard Road approach and 37.8 mph on the westbound approach. The corresponding 85th percentile speeds were 37 mph and 44 mph. On 10 Mile Road, the northbound approach had an average speed of 37.8 mph and the 85th percentile speed of 43 mph. The southbound approach had average and 85th percentile speeds of 37.9 and 42 mph, respectively.

Travel Time and Delay Study

The input-output sampling method was used to study the approach delay for the east and westbound traffic. The average delay per approach vehicle was 19.4 and 20.6 seconds, respectively. A significant portion of the delay can be attributed to the left turn traffic using a traffic lane and limiting the use of a single lane per approach by the through traffic.


Highway Capacity Study

The review of capacity for the peak hour of the day is shown in Figure 9. The critical movement analysis method is used. Volumes by lane were as obtained in the field.

The capacity analysis showed a level of service "D"-"E" operation during the peak period (5-6 p.m.). During other peak periods, the level of service indicated "C" or "D" operations.

Traffic Conflicts Study

A traffic conflict count was conducted at the intersection on October 9, 1980 between 7-9 a.m. and 4-6 p.m. using two data collectors. A summary of the count may be found in Table 3. The most severe problems were slowfor-left-turn conflicts, slow-for-right-turn conflicts, and weaves. The study revealed that the slow-for-left-turn conflicts are predominately on the Howard Road approaches. There were 52 conflicts per hour observed on the eastbound approach and 30 conflicts per hour on the westbound approach. The slow-for-right-turn conflicts totalled 122 per hour and ranged from 20 to 40 per hour with the southbound 10 Mile Road approach at the top end of

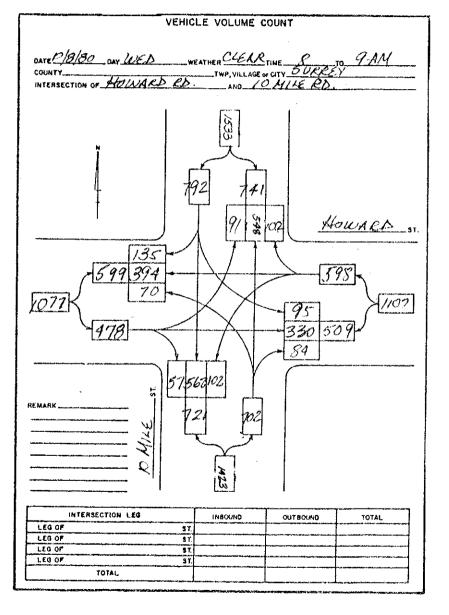
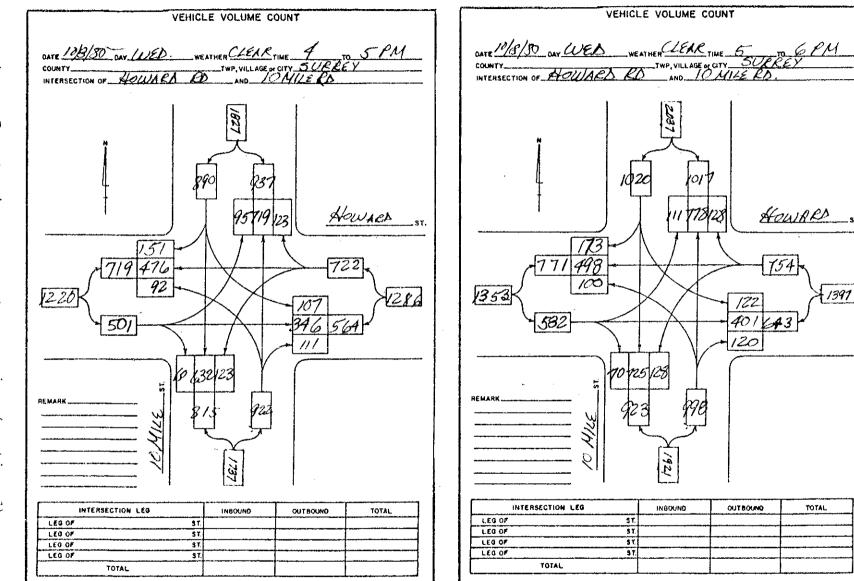



Figure 7 . Turning movement summaries

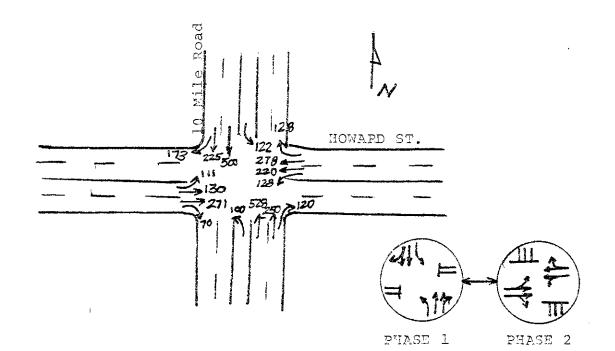
ST.

TRAFFIC DEPT.

,

VOLUME SUMMARY SHEET

****			D SURFACE: DRY WET IC		
TIME	NORTH LEG OF	SOUTH LEG OF	TOTAL EAST LEG OF	WEST LEG OF	TOTAL
	FROM ON NOETH LEG OF 10 MILE	IO MILE	HOWARD	HOWARS	
12 I NID.	22.	32	51	28	A R MIR WING
1 - 2 2 - 3 3 - 4	12	15	41	21	
34	29	23 91			
4 5 5 6	12 29 38 222	91	162	37	
6 - 7	601	502	310	101 410	
$\frac{6-7}{7-8}$	770	620	522	422	
8 9	792 3 65	<u> </u>	598 400	478 401 323 215 310 301	
10 - 11	340	311	322	323	
10 - 11 11 - 12PM 12 - 1	550	311 528 482 591	224 398	215	
12 - 1 1 - 2	600	482	318	3/0	
		572	3/5 362	300	
2 - 3 3 - 4 4 - 5	610 835 870	7.87	498	562	
$\frac{4-5}{5-6}$	890	<u>722</u>	722 754	57/ 582	
$\frac{5-6}{6-7}$ $\frac{7-8}{8-9}$	730	787 922 998 691	322	400	
7 , 8	321	.382 .391	121	102	
$\frac{0}{9} - \frac{9}{10}$	298	341	101	101	
<u> </u>	48	101	70	70	
and an and Barrey	34	7/	54	<u>60</u> 32	
	9930	9395	6411	5781	24 H Tota


Table 2 . Speed data summary.

Approach	Average	85th Percentile	Data Sample Size	Posted Speed Limit (MPH)
EB Howard Road	32.7	37	100	30
WB Howard Road	37.8	44	100	30
NB 10 Mile Road	37.8	43	100	35
SB 10 Mile Road	37.9	42	100	35

Vehicle Speeds (MPH)

Data Collected on October 3, 1980 (2:15 p.m. - 3:15 p.m.)

а стала с Ф

CRITICAL LANE ANALYSIS

PHASE 1S5 thruand N.B. Left turn = 500 + 100 = 600 Vehicles per HourNB thru and S.B. Left turn = 528 + 122 = 650 Vehicles per HourPHASE 2EB thru + right and WB left turn = 341 + 128 = 469 Vehicles Per HourEB thru + left and WB thru and right = 241 + 406 = 647 Vehicles per HourWB thru + right and EB left turn = 406 + 111 = 517 Vehicles Per HourWB thru + left and EB thru and right = 348 + 341 = 689 Vehicles per HourWB thru + left and EB thru and right = 348 + 341 = 689 Vehicles per HourCRITICAL MOVEMENTSPhase 1 - NB thru and SB left turnPhase 2 - WB thru + Left and EB thru + right = 650 Vehicles Per Hour

Total 1339 Vehicles Per Hour

Level of Service = $'D' - '\Xi'$

Figure 9 . Intersection capacity analysis.

	Howa	rd Road	<u>10 Mile</u>	Road	
	NB	SB	NB	SB	TOTAL
Weaves	10.0	14.7	31.0	26.0	81.7
Weave Conflicts	1.3	2.7	5.0	8.0	17.0
Opposing Left-Turn	2.0	5.3	8.0	9.0	24.3
Abrupt Stops	4.7	7.3	5.0	7.0	24.0
Slow For Right Turn	20.0	40.0	29.0	33.0	122.0
Slow for Left Turn	0.0	0.0	52.0	30.0	82.0
Previous Left Turn	0.0	0.0	40.0	22.0	62.0
Run Red Light	4.7	3.3	6.0	3.0	17.0
Driveway Related	4.7	4.0	12.0	8.0	28.7
Traffic Back- ^U p/ Congestion	120.0	69.0	116.0	80.0	385.0
Data coll	ected on Oct	ober 9, 19	80 (7:00-	-9:00 a.m.;	

Table 3 . Traffic conflict summary.

- - 1

4:00-6:00 p.m.). Values given in conflicts per hour.

•

۱.

•

the range. Weaves were a problem on the eastbound approach (26 conflicts per hour).

The eastbound and westbound approaches also dominated the opposing left-turn conflicts and driveway-related conflicts. Opposing left-turn conflicts totalled 24 per hour and 71 percent of these occurred on either the eastbound and westbound approach. Driveway-related conflicts on these two approaches combined for 69 percent of all driveway-related conflicts. Abrupt stops totalled 24 per hour with 7 per hour on each southbound approach and the westbound approach. A total of 385 conflicts per hour were of the traffic back-up and congestion type. This may be used as an indication of a high potential for rear-end accidents.

Sight Distance Study

The study results showed a sight obstruction on the southwest corner of the intersection. The presence of a restaurant and trees in the boulevard section restricts the clear sight distance in the area.

Skid Resistance Study

A preliminary field inspection of the intersection resulted in the identification of the pavement surface as very smooth and polished on all four approaches to the intersection. A review of accident records showed that about 40 percent of the accidents occurred under wet pavement conditions. Skid tests were conducted in 1976 and 1979 by the Department of Transportation. Low value skid numbers (Table 4) for Howard Road ranged from 28 to 32 in 1976 and from 34 to 41 in 1979. 10 Mile Road had low value skid numbers ranging from 27 to 36 in 1976 and from 30 to 33 in 1979. Such skid numbers may be low enough to influence the potential for wet weather accidents.

Highway Lighting Study

The results of the study are shown in Figure 10. It reveals near warranting conditions on a point system basis. However, due to the high ratio of night to day accident rate, additional lighting is warranted. The nighttime field review indicates that lighting systems at the site are not sufficient. Some lighting does exist in the intersection area.

<u>Activity 6</u> - Identify Safety Deficiency(s)

A comprehensive analysis was made of collision diagrams, condition diagrams, accident summaries, conflict data, and other available information (speed data, volume counts, etc.) in order to identify the specific safety problems at the intersection. Information obtained during the field investigation was also considered and the following safety problems were identified:

1. The absence of delineation on the west leg of the intersection presents channelization problems. This encourages improper lane

Table 4 . Skid data summary.

1

Location		Surface	Lane	Coefficient of Wsf			
			Туре	TARE	Low	High	Avg
loward Road Road	at 10	Mile		Howard	Rd.		<u></u>
			Bitum inous	EBOL	0.28	0.29	0.29
			Bituminous	EBIL	0.31	0.34	0.32
			Bituminous	WBOL	0.32	0.33	0.33
			Bituminous	WBIL	0.31	0.36	0.34
				<u>l0 Mile</u>	Road		
			Bituminous	NBOL	0.27	0_31	0.29
			Bituminous	NBIL	0.29	0.32	0.30
			Bituminous	NBLT	0.36	0.39	0.37
			Bituminous	SBOL	0.28	0.31	0.29
			Bituminous	SBIL	0.29	0.34	0.31
			Bituminous	SBLT	0.35	0.41	0.37

1976 data:

Tost Josephin-	Roadway	Surface Type	Lane	Coefficient of Wsf		
Test Location				Low	High	Avg.
-Howard Road at 10 Mile Road	10 Mile Road	Bit	NBOL	0.31	0.35	0.33
			NBIL	0.30	0.34	0.33
			SBOL	0.31	0.34	0.33
			SBIL	0.33	0.36	0.34
	Howard Road	BIt	EBOL	0.37	0.40	0.39
			EBIL	0.41	0.45	0.43
			WBOL	0.35	0.36	0.35
			WBIL	0.34	0.37	0.35

1979 data:

			RATING			UNLIT	LICHTED	Ī	SCORE
CLASSIFICATION FACTOR	1	2	3	4	5	WEIGHT (Å)	WEICHT (B)	DIFT. (A · B)	[RATING X (A - B)]
Geometric Factors	•						1		
Number of Legu		3	\odot	5	6 or more (including traffic circles)	5.0	2.5	0.5	1.5
Approach Lane Width	> 12'	12.	(11)	10.	<10'	3.0	2.5	0.S	1.5
Channelization	no turn lanes	left torn lanes on major legs	left turn lanes on all legs, right turn lanes on major legs	left and right turn lanes on major legs	left and right turn lanes on all legs	2.0	1.0	1.0	2.0
Approach Sight Distance	> 700*	500-700*	300-500'	200-3001	< 200'	2.0	1.8	0.2	0.6
Grades on Approach Streets	< 3%	3.0 - 3.9%	4.0 - 4.9%	5.0 - 6.9%	7% or more	3.2	2.8	0.4	0.4
Curvature on Approach Lega	(3.0°	3.0 - 6.0°	6.1 · 8.0 °	8.1 - 10.0°	> 10°	13.0	5.0	8.0	8.0
Parking in Vicinity	prohibited both sides	loading sones only	off-peak only	permitted one aide only	permitted both sides	0.2	6.1	0.1	0.1
							Geometric 1	otal	<u> 14. /</u>
Operational Factors Operating Speed on Approach Legs	25 mph or less	30 mph	35 mph	40 mph	45 mph or greater	1.0	. 0.2	0.8	2.4
Type of Control	all phases signalized (incl. turn lane)	left turn lene signal control	through traffic signal control	4-way stop control	stop control to minor legs or no control	3.0	2.7	0.5	0.9
Channelization	left and right aignal control	left and right turn lane tignal control on major legs	left turn lane signal control on all legs	left turn lane signal control on major legs	no turn lane controi	3.0	2.0	1.0	5.0
Level of Service (Load Factor)	A 0.0	B 0-0.1	C 0.1 - 0.3	D 0.3-0.7	E 0.7 - 1.0	1.0	0.2	8.0	3.2
Pedestrian Volume (peds/hr crossing)	very few or none	0-50	50-100	100-200	> 200	1.5	0.5	1.0	1.0
(prosent crossing)							 Operational 	Total	12.5
Environmental Factors									1.0
Percent Adjøcent Development	Û	0-30%	30-60%	60-90%	100%	0.5	0.3	0.2	
Predominant Develop- ment near Intersection	undeveloped	rendential	50% residential 50% industrial or compercial	industrial or commercial	or commercial (no circuity)	0.5	0.3	0.2	1.0
Lighting in Immediate Vicinity	none	0-40%	\$0-50%	60-80%	continuous	3.0	1.5	1.5	4.5
Crime Rate	extremely low	lower than city average	city average	higher than city average	extremely high	1.0	0.5	0.5	1.5
							Environment	al Total	8.0
Accidents Ratio of night-to-day	1.0	1.0-1.2	1.2-1.5	1.5-2.0	(2.0 [*])	10.0	2.0	8,0	40.0
Accident Rates				~~			1		40.0
*Intersection lighting warra	inted.						Accident Tota I	*	
	$\begin{array}{rcl} \text{GEOMETRIC TOTAL} &=& \frac{14 \cdot 1}{2 \cdot 5} \\ \text{OPERATIONAL TOTAL} &=& \frac{12 \cdot 5}{3 \cdot 0} \\ \text{ENVIRONMENTAL TOTAL} &=& \frac{3 \cdot 0}{2 \cdot 0} \\ \text{ACCIDENT TOTAL} &=& \frac{40 \cdot 0}{7 \cdot 6} \\ \text{SUM} &=& \frac{74 \cdot 6}{7 \cdot 6} \\ \text{WARRANTING CONDITION} &=& \frac{75 \text{ points}}{2 \cdot 5} \end{array}$								

Figure 10 . Intersection lighting evaluation form.

use and increases the potential for rear-end and sideswipe accdents. There is also an absence of other pavement markings on this leg. Pavement markings on the other approaches are also beginning to show signs of wear.

- 2. Poor visbility and insufficient gaps for left-turning traffic on eastbound and westbound Howard Road during peak periods create a hazardous situation. There are also high left-turning volumes on these approaches. Opposing left-turn accidents made up 33 percent of the total accidents in 1977-1978 and 77 percent of these involved eastbound-westbound movement.
- 3. Pavement surfaces on all four approaches appears smooth and polished. Wet pavement has been a factor in 40 percent of all accidents over the past two years. Skid data from 1976 and 1979 reveal low skid values. Resurfacing has only been done recently on the northbound lanes of the north leg.
- 4. The clear vision area for eastbound and northbound traffic is greatly reduced by the location of Tom's Restaurant. This inability to see traffic approaching at an angle increases the potential for right-angle accidents.
- 5. The wide curb lane (16 feet) on the westbound approach encourages drivers to make judgement errors regarding lane use. Frequent attempts are made to create an additional lane to avoid traffic back-up and congestion. The potential for rear-end and sideswipe accidents is increased by such driver actions.
- 6. Roadway illumination is inadequate. Lamps on the northeast and southeast corners of the intersection are burned out. The light intensity may possibly be less than desired, even after the lamps are repaired.

These results produced the following list of probable accident causes.

ACCIDENT PATTERN OR TREND	PROBABLE CAUSE
.Left-turn head-on collision between EB and WB traffic.	. Restricted sight distance.
 Rear-End collisions at signalized intersections. 	 High volume of turning vehicles. Slippery surface. Inadequate roadway lighting. Inadequate channelization.
 Right-angle collisions at signalized intersections. 	Restricted sight distances.Inadequate roadway lighting.

This list will be used to select countermeasures.

Subprocess 2: Develop Candidate Countermeasures

Activity 7 - Develop Feasible Countermeasures

After careful analysis of all available information, several countermeasures were selected to reduce the accident problem and to improve the operational characteristics of the intersection. These improvements were selected based on probable causal relationships, pattern identification, and careful engineering judgement using accident pattern tables. The list of available improvements are:

- . Provide left-turn slots,
- . Overlay pavement,
- . Improve roadway lighting, and
- . Improve pavement markings (delineation).

For this location, the following alternative countermeasures are developed:

- Countermeasure 1 Provide left-turn slots for EB and WB approaches and improve pavement markings along all approaches.
- . Countermeasure 2 Provide left-turn slots for EB and WB approaches, overlay pavement, and improve pavement markings along all approaches.

. Countermeasure 3 - Provide left-turn slots for EB and WB approaches, overlay pavement, improve roadway lighting, and improve markings along all approaches.

Activity 8 - Predict Accident Reduction Capabilities of Countermeasures

The AR factors used are given from the source for Appendix F. For each countermeasure, they are:

COUNTERMEASURE	FATAL	AR FACTOR	(%) PDO	TOTAL
 Provide left turn slots Overlay pavement Improve roadway lighting Improve pavement markings 	10	-2	7	5
	-9	-9	23	14
	38	-12	-11	12
	58	4	3	3

The data by specific severity characteristic is used.

The AR factors for these countermeasures are:

Countermeasure 1:	AR _M (FATAL)	= 0.58 + (1-0.58) 0.10 = 0.58 + 0.04 = 0.62
	AR _M (INJURY)	= 0.04 + (1-0.04)(-0.02) = 0.04 - 0.02 = 0.02
	AR _M (PDO)	= 0.07 + (1-0.07)(0.03) = 0.07 + 0.03 = 0.10
Countermeasure 2:	AR _M (FATAL)	= 0.58 + (1-0.58) 0.10 + (1-0.58) (1-0.10)(-0.09) = 0.58 + 0.04 - 0.03 = 0.59
	AR _M (INJURY)	= 0.04 + (1-0.04)(-0.02) + (1-0.04) (1-(-0.02))(-0.09) = 0.04 - 0.02 - 0.09 = -0.07
	AR _M (PDO)	= 0.23 + (1-0.23) 0.07 + (1-0.23) (1-0.07)(0.03) = 0.23 + 0.05 + 0.02 = 0.30
Countermeasure 3:	AR _M (FATAL)	= 0.58 + (1-0.58)(0.38) + (1-0.58) (1-0.38) 0.10 + (1-0.58)(1-0.38) (1-0.10)(-0.09) = 0.58 + 0.16 + 0.03 - 0.02 = 0.75
	AR _M (INJURY)	= 0.04 + (1-0.04)(-0.02) + (1-0.04)

$$AR_{M} (PD0) = 0.23 + (1-0.02)(-0.09) + (1-0.04) (1-(-0.02)(1-(-0.09))(-0.12)) = 0.04 - 0.02 - 0.09 - 0.13 = -0.20$$
$$= 0.23 + (1-0.23)(0.07) + (1-0.23) (1-0.07) (1-0.03)(-0.11) = 0.023 + 0.05 + 0.02 - 0.08 = 0.22$$

The "expected number of accidents prevented by each countermeasure can be computed. Using the following data, the expected values can be obtained.

. Average number of accidents, N = 39

• ADT (before period) = 32,000

. ADT (after period) = 38,000

<u>Countermeasure 1:</u>

Fatality accidents prevented = 0

Injury accidents prevented = $13(0.02) \frac{(38,000)}{(32,000)} = 0.31$ PDO accidents prevented = $26(0.10) \frac{(38,000)}{(32,000)} = 3.09$ (32,000)

Countermeasure 2:

Fatality accidents prevented = 0

Injury accidents prevented = 13(-0.07) $\frac{(38,000)}{(32,000)}$ = -1.08 PDO accidents prevented = 26(0.30) $\frac{(38,000)}{(32,000)}$ = 9.26 (32,000)

Countermeasure 3:

Fatality accidents prevented = 0

Injury accidents prevented = 13(-0.20) (38,000) = -3.09PDO accidents preventeed = 26(0.22) (38,000) = 6.79 (32,000)The ratio of injuries/injury accidents was 1.42 (18.5/13). Therefore, the number of injuries prevented were:

- Countermeasure 1: 0.31 accidents (1.42) = 0.44 injuries
- . Countermeasure 2: -1.08 accidents (1.42) = -1.53 injuries
- . Countermeasure 3: -3.09 accidents (1.42) = -4.39 injuries

Activity 9 - Perform Economic Analysis

The benefit-to-cost ratio is selected for use by the city since this method provides a direct comparison of benefits derived to costs incurred. Data necessary to use this procedure are:

- Initial Implementation Costs
 - . Countermeasure 1 = \$55,400.00 . Countermeasure 2 = \$70,700.00

 - Countermeasure 3 = \$75,700.00

. Operations and Maintenance Costs

- Countermeasure 1 = \$200.00
- . Countermeasure 2 = \$200.00
- Countermeasure 3 = \$300.00
- Service Life
 - . 15 years
- Salvage Value
 - . \$0
- . Interest Rate
 - . 6%

The benefit-to-cost ratio calculations are shown in Figures 11-13. Thev result in the following ranking of alternatives based on economic analysis objectives.

RANK	ALTERNATIVE	B/C RATIO
1	Countermeasure 1	0.92
2	Countermeasure 2	0.19
3	Countermeasure 3	-2.69

Activity 10 - Select Projects

In selecting a project, the utility index method is used by the city. The major factors used in the selection process were:

- . Economic analysis results,
- . Effect on air and noise pollution, and
- . Effect on area surroundings.

Assigned weights, obtained through meeting of engineering staff, were 0.60, 0.25, and 0.15, respectively. In defining levels for each factor, a

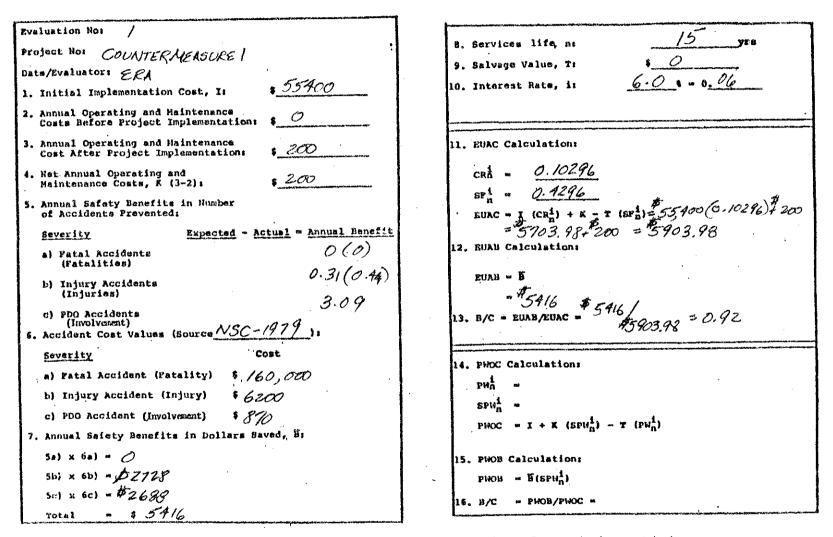


Figure 11 . Economic analysis evaluation form (B/C ratio).

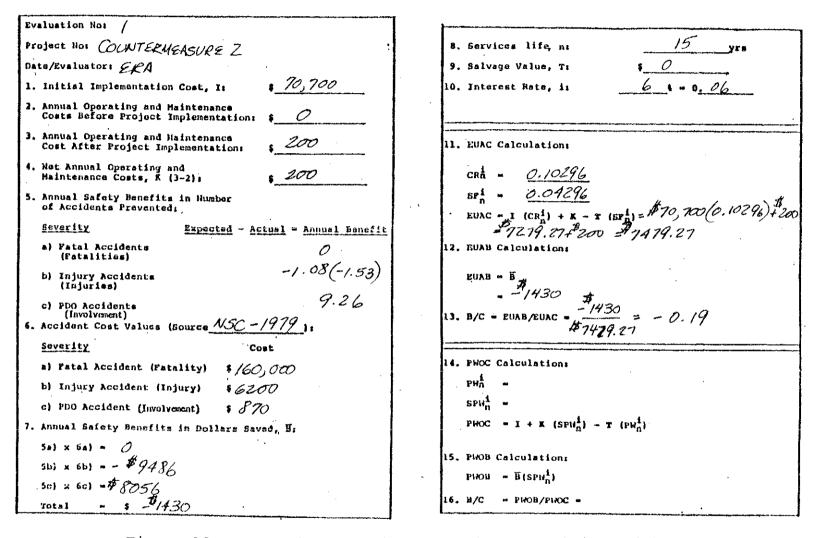
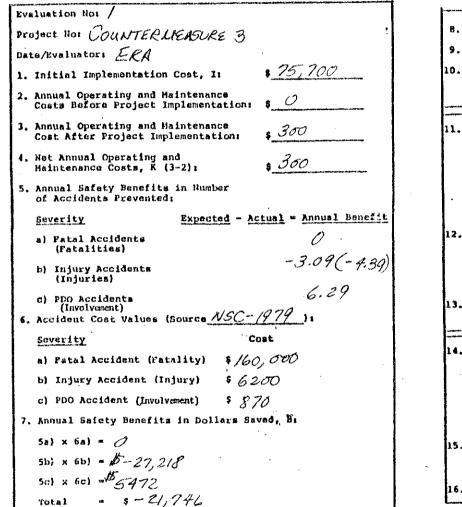



Figure 12 . Economic analysis evaluation form (B/C ratio).

B. Services life, n: YI B 9. Salvage Value, T: 10. Interest Rate, it 11. EUAC Calculation: 0.102.96 CRA W SP1 = 0.04296 EUAC • I $(CR_n^1) + K - T (EF_n^1) = \frac{$75,700(0.10296)_{+300}^{$10}}{$7794.07 + 300} = 8094.07 12. EUAB Calculation EUAB = -21,746 - 21,746 = - 2.69 13. B/C - EUAB/EUAC -14. PWOC Calculation: PHN SPW1 PHOC = I + K (SPHn) - T (PWn) 15. PROB Calculation: PHOB = B(SPH1) 16. B/C = PWOB/PWOC =

Figure 13 . Economic analysis evaluation form (B/C ratio).

O to 5 scale was used with a "O" having the most negative impact and a "5" showing the most positive or favorable effect. It should be noted that, for purposes of this analysis, the effect on area's surroundings will increase as the amount of improvement increases.

AL TER NAT I VE	COUNTE	RMEASURE 1	COUNTE	RMEASURE 2	COUNTERMEASURE 3					
FACTOR (WT)	(1) LEVEL	WT.x(1)	(1) LEVEL	WT.x(1)	(1) LEVEL	WT.x(1)				
.Economic Analysis (0.60)	4	2.40	2	1.20	1	0.60				
.Effect on Air and Noise Pollu- tion (0.25)	3	0.75	3	0.75	4	1.00				
.Effect on Areas Surroundings (0.15)	3	0.45	3	0.45	4	0.60				
TOTAL		3. 60		2.40		2.20				

Based on this assessment, Countermeasure 1 (Provide Left Turn slots for EB and WB Approaches, and Improve Markings) was selected.

This project should be planned for implementation as soon as possible.

HIGHWAY SAFETY ENGINEERING STUDIES

TRAINING COURSE SCHEDULE

- 1. Opening Remarks
- 2. Course Overview
- 3. Test Questions
- 4. Introduction to Highway Safety Engineering Studies
- 5. Activity 1: Perform Accident Study Procedures (Part I)
- 6. Perform Accident Study Procedures (Part II)
- 7. Case Study
- 8. Activity 2: Field Review Location
- 9. Accident Procedures and Field Review Workshop
- 10. Activity 3: Select Appropriate Traffic, Environmental and Special Study Procedure Selection Workshop
- 11. Traffic, Environmental, and Special Study Procedure Selection Workshop
- 12-15. Traffic Procedures's Description
- 16-18. Environmental Procedure's Description
- 19-20. Special Study

. . .

- 21. Summary of Available Traffic, Environmental, and Special Study Procedures
- 22. Activity 4: Select Techniques
- 23. Technique Selection Workshop
- 24. Activity 5: Perform Procedure
- 25. Activity 6: Identify Safety Deficiency
- 26. Activity 7: Develop Feasible Countermeasures
- 27. Countermeasure Development Workshop
- 28. Activity 8: Predict Accident Reduction Capabilities of Countermeasures
- 29. Activity 9: Perform Economic Analysis

- 30. Economic Analysis Workshop
- 31. Activity 10: Select Project
- 32. Case Study
- 33. Summary and Review of Subprocess 3 (Planning Component)

- 34. Test Questions
- 35. Training Course Evaluation
- 36. Closing Remarks
- 37. Open Discussion ADJOURN

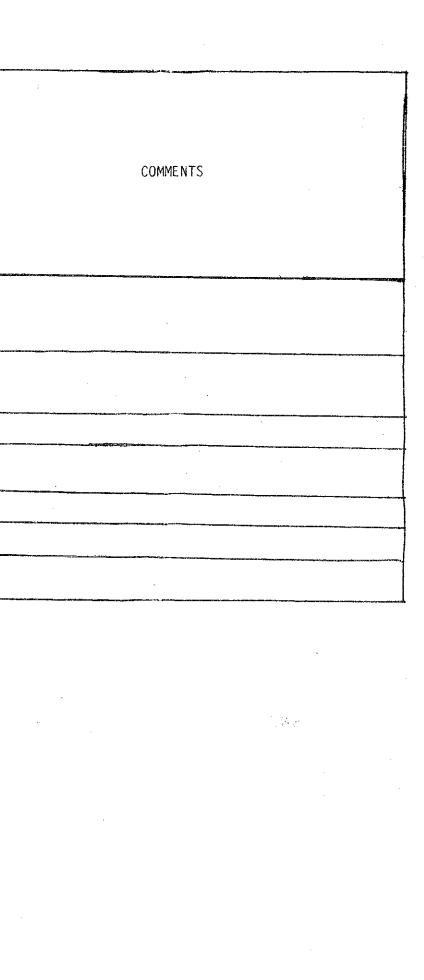
LOCATION:		tein to 2014 mark i 152	n aveldesse see		leran data anna an ta	mulation and the	-			-		***********				-			DAT	Έ:											
TOPIC	ter a sugar	- Solding of the	CON	FENT		2000 i #		PF	RESEN	ITATI	ON			OB	JECT	IVE N	1E T			۷I	SUAL	AID)S			ALI.	.OTTE	ED TI	[ME		
	N/A	VERY PCOR	POOR	AVERAGE	GOOD	VERY GOOD	N/A	VERY POOR	POOR	AVERAGE	GOOD	VERY GOOD	NOT AT ALL	INADEQUATELY	FAIRLY WELL	OK	MOSTLY	ENTIRELY	N/A	VERY POOR	POOR	AVERAGE	GOOD	VERY GOOD	0	MUCH TOO SHORT	TOO SHORT	ABOUT RIGHT	TOO LONG	MUCH TOO LONG	
OPENING REMARKS	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
PRE-TEST	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	1
INTRODUCTION	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
ACTIVITY 1: PERFORM ACCIDENT STUDY PROCEDURES (PART II)	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3		5	
PERFORM ACCIDENT STUDY PROCEDURES (PART II)	Ō	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
CASE STUDY	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3		5	
ACTIVITY 2: FIELD REVIEW	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
WORKSHOP	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	╂
ACTIVITY 3: SELECT APPROPRI- ATE PROCEDURES	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	Û	1	2	3	4	5	0	1.	2	3	4	5	
WORKSHOP	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
TRAFFIC PROCEDURE 'S DESCRIPTION-I	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
TRAFFIC PROCEDURE'S DESCRIPTION-II	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0		2	3	4	5	0	1	2	3	4	5	
TRAFFIC PROCEDURE'S DESCRIPTION-III	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	

EVALUATION FORM

DATE:

COMMENTS

EVALUATION FORM


LOCATION:			0047							<u></u>	Set and a subscription	11750756070.D	i canada comercia						DAT		C-Trainser					* ****	OTTE				
TOPIC	•		CONT	ENI				PF	ESEN	ΙΤΑΤΙ	ON			OBJ	IECTI	VE M	IET			ΥT	"''AL	AID	S								
	N/A	VERY POOR	POOR	AVERAGE	GOOD	VERY GOOD	N/A	VERY POOR	POOR	AVERAGE	GOOD	VERY GOOD	NOT AT ALL	INADEQUATELY	FAIRLY WELL	ЖО	MOSTLY	ENTIRELY	N/A	VERY POOR	POOR	AVERAGE	GOOD	VERY GOOD	0	MUCH TOO SHORT	TOO SHORT	ABOUT RIGET	TOO LONG	- S.	And the second second second second second second second second second second second second second second second
TRAFFIC PROCEDURE'S DESCRIPTION-IV	0	1	2	3	4	5	0]	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
ENVIRONMENTAL PROCEDURE'S DESCRIPTION-I	0	1	2	3	4	5	0		2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	+
ENVIRONMENTAL PROCEDURE'S DESCRIPTION-II	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4		0	1	2	3	4	5	0	1	2	3	4	5	
ENVIRONMENTAL PROCEDURE'S DESCRIPTION-III	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
SPECIAL STUDY PROCEDURES-I	0	1	2	3	4	5	0	r	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
SPECIAL STUDY PROCEDURES-II	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
SUMMARY	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3.	4	5	
ACTIVITY 4: SELECT TECHNIQUES	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
WORKSHOP	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
ACTIVITY 5: PERFORM PRODURE	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
ACTIVITY 6: IDENTIFY SAFETY DEFICIENTY(S)	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
ACTIVITY 7: DEVELOP FEASIBLE COUNTERMEASURES	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
WORKSHOP	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	

and the second second second second second second second second second second second second second second second		
	•	
	COMMENTS	
ann maartaan an		24 Yo (24
	·	
nam, maning aka di baban sala sara dagi yang ngapa di bibih sa gy		~
· · · · · · · · · · · · · · · · · · ·		·

	Ĺ	0C	AT	10	DN	:
--	---	----	----	----	----	---

EVALUATION FORM

LOCATION:							- 							_					DA	TE:											
TOPIC			CON	ITENT	•			Ρ	RESE	NTAT	ION			0B.	JECTI	IVE N	1ET			٧	ISUA	L AII	DS		T	ALI	LOTTE	ED T	I ME		T
	N/A	VFRY POOR	POOR	AVERAGE	GOOD	VFRY GOOD	N/A	VERY POOR	POOR	AVERAGE	GOOD	VERY GOOD	NOT AT ALL	INADEQUATELY	FALRLY WELL	OK	ALTSOM	BNTIRELY	N/A	VERY POOR	POOR	AVERAGE	GOOD	VERY GOOD	0	MUCH TOO SHORT	TOO SHORT	ABOUT RIGHT	TOO LONG	MUCH TOO LONG	
ACTIVITY 8: PERFORM ACCIDENT REDUCTION CAPABILITIES	0]	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0]	2	3	4	5	0	1	2	3	4	5	
ACTIVITY 9: PERFORM ECONOMIC ANALYSIS	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	 		
WORKSHOP	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
ACTIVITY 10: SELECT PROJECT	0	- 1	2	3	4	5	0	1	2	3	4.	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	We
CASE STUDY	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
SUMMARY	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	
POST-TEST	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	. 0	1	2	3	4 [´]	5	

