U.S. Department of Transportation
Federal Highway Administration
1200 New Jersey Avenue, SE
Washington, DC 20590
2023664000
Federal Highway Administration Research and Technology
Coordinating, Developing, and Delivering Highway Transportation Innovations
This report is an archived publication and may contain dated technical, contact, and link information 

Publication Number: FHWAHRT04094
Date: November 2004 

Evaluation of LSDYNA Soil Material Model 147PDF Version (2.87 MB)
PDF files can be viewed with the Acrobat® Reader® CHAPTER 4. MATERIAL INPUT PARAMETER STUDYOne of the most difficult tasks associated with finite element modeling is the selection of appropriate material properties to accurately represent physical behavior. In many cases, this has led to the arbitrary tweaking of models by matching simulation results to a known physical test, sometimes without regard to the reasonableness of the material input variables. Of course, it is desirable to be able to determine material input variables directly through physical testing. In order to determine the appropriate material input variables, the physical implications must be completely understood. Thus, a complete discussion of the variables and, when applicable, their physical meaning follows. Many of the developer's initial soil parameters were based on triaxial testing performed by the U.S. Army Corps of Engineers (USACE) at the Waterways Experiment Station ( WES). These data are contained in the Material Property Query ( MPQ) database and are available only to documented government contractors.^{(9)} The objectives of this chapter are to: (1) provide an understanding of the soil parameters, (2) provide guidelines for appropriate parameter values, and (3) determine recommended parameter values for NCHRP 350 soil used at the user's facility. The following discussions attempt to provide an engineering interpretation of the material such that appropriate parameter values can be determined more readily. Soil Density, RHORHO is the density of the soil material. It has the units of mass/volume (for this case, kilograms per cubic millimeter (kg/mm^{3})). The developer's initial models included a density of 2.35E6 kg/mm^{3}, almost the maximum dry density of the soil (_{max} = 2.37E6 kg/mm^{3}) found using a Modified Procter test. The soil tested by USACE had a density of _{max} = 2.27E6 kg/mm^{3}, which is more appropriate for densely compacted aggregate. NCHRP 350 strong soil routinely has densities of about 2.114E6 kg/mm^{3}. However, densities between 2.082E6 kg/mm^{3} and 2.242E6 kg/mm^{3} are reasonable. Mass VerificationFrom the developer's hydraulic tension test file, hydten.k, a 1mm cube of soil material was modeled. Calculating the mass of the sample from the density and volume:
This was verified in the D3HSP output file from LSDYNA. The FHWA soil model produces the correct mass from an inputted density. It is critical to verify the behavior of the density function of the soil model because significant inertial effects involving the soilpost interaction have been documented.^{(5)} Plotting Options, NPLOTNplot allows the plotting of information concerning the soil model. This includes information on the effective strain, damage criterion threshold, isentropic damage, current damage criterion, and current friction angle. The Nplot options are as follows:
For postprocessing using LSPOST, the value specified in Nplot is stored as the Plastic Strain variable for plotting the fringe component stresses. When postprocessing, the information stored for plastic strain will not contain the plastic strain data, but rather the data specified under Plotting Options, Nplot. Specific Gravity, SPGRAVThe specific gravity of soil solids, usually designated by G_{s}, is the ratio of the soil solids to the density of water. While it is possible to have a range of values from 2.2 to 3.5, most soils have a specific gravity from 2.60 to 2.80. Any values outside of this latter range should be viewed skeptically, and the soil should be retested to verify the value. Where specific values are not available, the following can be assumed for local soils:^{(10)} Sand and gravels: G_{s}= 2.65 Silts and clay: G_{s} = 2.78 It should be noted that the specific gravity, G_{s} , is not the bulk specific gravity, G_{blk} , of the material, but rather the specific gravity of only the soil solids. This is to say that air voids internal to and between soil particles are not considered when calculating the specific gravity. Since NCHRP 350 strong soil is designated as a gravel, a specific gravity of G_{s} = 2.65 is appropriate. However, laboratory testing should be performed to accurately identify the exact specific gravity associated with the Nebraska crushed limestone used at the user's facility. In the FHWA soil model, the specific gravity of the soil is used to calculate the porosity. Soil porosity is the ratio of the total volume of voids, V_{v} , to the total volume, V_{t} , of a sediment. A discrepancy exists in the calculation of the Spgrav input variable as it is read by LS‑ DYNA. In the baseline model, a value of Spgrav = 2.79 was used. This value came from the USACE WES testing. In the D3HSP output file, produced by LSDYNA, SPGRAV was reported as 0.1854, a variation of a factor of 15. These values are shown in bold in Table 3. The other values of the input deck matched exactly, as shown in table 3. The D3HSP output from LSDYNA is shown in table 4. This discrepancy was observed through the normal verification of input decks with output parameters. The ramifications of this discrepancy are not fully understood. It is impossible to determine whether the material model is reading the correct values and merely outputting incorrect values only to the D3HSP file or whether the material model is, in fact, altering Spgrav incorrectly. This can only be verified through a careful examination of the source code. Table 3. Comparison between LSDYNA input deck and D3HSP output reveals the Spgrav discrepancy (shown in bold).
Table 4. D3HSP output file (truncated).
Density of Water, RHOWATRHOWAT is the density of water (1.0 x 10^{6} kg/mm^{3} (62.4 lb/ft^{3})). This is used to determine the air void strain when calculating porewater effects. Viscosity Parameters, V _{n} and GAMMARGAMMAR (_{r})and V_{n} are viscosity parameters used to develop the strainrateenhanced strength of the material model. The algorithm interpolates between the elastic trial stress (beyond the yield surface) and the inviscid stress (stresses where the material viscosity effects are so small that they can be neglected). The inviscid stresses are on the yield surface. In equation form, this is written: where: and
Setting GAMMAR to 0.0 eliminates any strainrateenhanced strength effects, regardless of any values that remain for V_{n} . Additional work must be performed to determine the appropriate values for these strainrate parameters. Bulk Modulus, KThe bulk modulus, K, is an elastic constant that reflects the resistance of the material to an overall gain or loss of volume under conditions of hydrostatic stress. If the hydrostatic stress increases, then the volume will decrease and the volume change will be negative. If the hydrostatic stress decreases, then the volume will increase. The relationship between the elastic modulus, E, and the bulk modulus, K, is:
The determination of the elastic modulus, E, is difficult because volume changes in the soil require the precise determination of pore pressures. Moreover, the value of Poisson's ratio may influence the results. Poisson's ratio, , has the following approximate values in soils:^{(11)} = 0.5 (saturated impervious soils) = 0.25 (pervious coarse materials) For NCHRP 350 strong soil, it is appropriate to use = 0.25. On this basis, the equation above simplifies to:
In 1975, Penman performed tests on gravel, finding an elastic modulus of E = 15.8 MPa.^{(12)} Penman also found a Poisson's ratio of = 0.27. This corresponds well with known data as shown above. This would imply a bulk modulus of K = 10.5 MPa. The initial developer's models used a value of K = 465 MPa. As mentioned previously, the developer's revised suggested value for the bulk modulus was K = 3.25 MPa. Shear Modulus, GJust as the modulus of elasticity, E, is a measure of the relationship of the stress to the strain below the proportional limit, the shear modulus of elasticity, G, relates shear stress to shear strain. The shear modulus is also referred to as one of the two Lamé constants, G and . Using conventional engineering mechanics, the shear modulus can be expressed as a function of the modulus of elasticity, E, and Poisson's ratio, :
Using the values found by Penman,^{(12)} a shear modulus of G = 6.22 MPa is found. The initial developer's models used a value of G = 186 MPa. As mentioned previously, the developer's revised suggested value for the shear modulus was 1.3 MPa. Poisson's RatioIn 1987, Trautmann and Kulhawy found general ranges of Poisson's ratio for granular soils.^{(13)} These values are shown in table 5. It is important to ensure that appropriate values of Poisson's ratio are used in the FHWA soil material model. Table 5. General range of Poisson's ratio for granular soils.
NCHRP 350 strong soil is most similar to the "sand and gravel" listed in table 5. It is believed that the most reasonable values would lie at approximately = 0.25, as noted previously. The bulk modulus, K; the shear modulus, G; Poisson's ratio, ; and the modulus of elasticity, E, are all interrelated. These relationships can be used to determine the value of Poisson's ratio, , that the developer used in both the initial models and the subsequent recommended values. This is accomplished by solving for the elastic modulus, E, and combining equations 5 and 8 as follows:
Substituting with = 0.25 yields:
Solving through, this yields:
Equation 9 can also be solved for Poisson's ratio as a function of the bulk and shear modulus. For the developer's initial values of K = 465 MPa and G = 186 MPa, a Poisson's ratio of 0.32 can be calculated. Similarly, with the developer's subsequent recommendations via email, with K = 3.25 MPa and G = 1.3 MPa, a Poisson's ratio of 0.32 can also be calculated. This is not an unreasonable value. It is important that the end user understand the relationship between the shear modulus and the bulk modulus. In order to maintain consistency with the laws of physics and conventional engineering mechanics, reasonable and appropriate values of Poisson's ratio must exist. Appropriate Values for Bulk and Shear ModuliIt is critical to associate material model parameters with physical test results that can be performed in the field. The modulus of elasticity has been correlated to the standard penetration number, N, and also the cone penetration resistance, q_{c}, by various investigators.^{(14)} These values and their corresponding bulk and shear moduli are shown in table 6. Table 6. General range of bulk and shear moduli for = 0.25.
Nuclear densometer readings from field testing of roadbed materials have given values for the modulus of elasticity between 26.2 MPa and 193 MPa.^{(15)} These values correspond well to values found by Das ^{(10)} and do not seem unreasonable compared to Penman.^{(12)} With these values, it would seem that selecting the median value for a "sand and gravel" soil would be appropriate. Median values would be K = 80.5 MPa and G = 48.3 MPa for the bulk and shear moduli, respectively. However, these values produced too stiff of a soil response in the direct shear test simulation, relative to physical testing. Using Penman's recommended values of 10.5 MPa and 6.22 MPa for the bulk and shear moduli, respectively, the direct shear test simulation still produced an unreasonably stiff soil response. When the bulk and shear moduli were adjusted to the developer's recommended values of 3.25 MPa and 1.3 MPa, respectively, the model appeared to provide a more reasonable prediction of soil stiffness. Angle of Internal Friction, PHIMAX, aND Cohesion, COHIn 1900, Mohr presented a theory for rupture in materials that contended that a material fails because of a critical combination of normal stress and shearing stress, not from either maximum normal or shear stress alone.^{(16)} For most soil mechanics problems, it is sufficient to approximate the shear stress on the failure plane as a linear function of the normal stress.^{(17)} Hence, the linear function can be written as:
where: c = Cohesion = Normal stress = Angle of internal friction The preceding relationship is called the MohrCoulomb failure criteria. Values for cohesion, c, and the angle of internal friction, , can be determined through direct shear testing or triaxial compression tests. A graphical representation of the MohrCoulomb failure criteria is shown in figure 8. Figure 8. Graphical representation of the MohrCoulomb failure criteria. CohesionWhen soil is removed from a bed of dry or completely immersed sand, the material at the sides of the excavation slides toward the bottom. This behavior indicates the complete absence of a bond between the individual sand particles. The sliding material does not come to rest until the angle of inclination of the slopes becomes equal to a certain angle known as the angle of repose (the angle of friction, which is the angle of repose in a cohesionless material such as sand).^{(18)} The angle of repose of dry sand is independent of the height of the slope. On the other hand, a trench 6.1 to 9.1 meters (m) (20 to 30 feet (ft)) deep with unsupported vertical sides can be excavated in stiff plastic clay. This fact indicates the existence of a firm bond between the clay particles. However, as soon as the depth of the trench exceeds a certain value, dependant on the intensity of the bond between the clay particles, the sides of the trench fail and the slope of the debris that covers the bottom of the cut after failure is far from vertical. The bond between the soil particles is called cohesion. No definite angle of repose can be assigned to a soil with cohesion, because the steepest slope at which such a soil can stand decreases with the increasing height of the slope. However, even sand, if it is moist, has apparent cohesion because of matrix suction between the grains of sand. Coulomb's paper (1773) quoted Musschenbroek's idea (1729) that for construction materials, tensile strength (adhesion) is about equal to shear strength with no overburden (cohesion).^{(19)} Coulomb found that, for physical tests on 1290square millimeter (mm^{2}) (2square inch (inch^{2})) cross section specimens of limestone, the tensile failure load was 1.91 kN (430 pounds force (lbf)) and the shear failure load was 1.96 kN (440 lbf). These and other tests on brick and wood confirmed Musschenbroek's idea. Hence, if adhesion is known to be small or negligible for some material, then the cohesion of that material must also be taken to be zero. For Coulomb, the fracture of intact bodies of undisturbed soil and rock involved both friction and cohesion; the flow of ground that has been broken up and is newly disturbed does not involve cohesion. Placement of fill behind a wall involves breaking up ground with picks, shoveling soil or broken rock into barrows, wheeling it to the site, and tipping it behind the wall. Coulomb states three times in his design calculations for such fill that there is no adhesion in newly disturbed soil. For soil consistent with crushed limestone, such as NCHRP 350 strong soil, cohesion is, by definition, zero, because it is a cohesionless soil. This can be verified by relating the adhesion of the soil to the cohesion―tensile tests on the strong soil would show that there is no adhesion since there is no bond between the individual pieces of aggregate. Rather than introduce an apparent cohesion of soil that is itself a function of strain, it is better to characterize peak strength as the sum of the critical state angle of repose plus a dilation angle. This interlocking strain rate depends on effective pressure and relative density.^{(20)} However, direct shear testing shows the presence of some cohesion―the failure envelope has a positive value as it passes through the pressure axis. It is noted, however, that the strong soil has no cohesion. This is caused by the dilation of the soil specimen during testing. The work caused by this effect, designated as interlocking by Taylor, is a distinctly different phenomenon than the work caused by friction.^{(21)} While interlocking can be treated, in a general sense, as particle cohesion, it is important to differentiate between the two physical phenomena. The concept of Taylor's aggregate interlock explains how soil can exhibit apparent cohesion as it flows, exhibit apparent cohesion at peak strength, and still satisfy Coulomb's law. From a mechanics standpoint, it would be best to represent the material with aggregate interlock; from a simplicity standpoint, it may be best to have artificial cohesion to represent the aggregate interlock. Cohesion in the soil model was varied in a parameter study to determine the appropriate values. The results are provided in table 7 and figure 9. As a reminder, the results throughout this chapter are limited to the point where the force required to shear the soil reached a minimum force (referred to as "Valley" in the tables). Simulations continued after that point; however, forces began to rise unrealistically (as discussed in chapter 3). It did not appear that significant differences existed between "small" (i.e., any value less than 6.2e7 gigapascals (GPa)) and smaller values, as shown in table 7. The model successfully ran even with cohesion set to zero; however, the plasticity routines were limited by the parameter Itermax, the maximum number of iterations that allow the plasticity algorithm to converge. Table 7. Cohesion parameter study.
* All CPU (central processing unit) times reported in this report are for simulation runs of approximately 30 ms on an SGI ^{®} Origin ^{®} 300, R14000 ^{TM} 500 megahertz (MHz). 1 degree = 0.1592 radians As shown in figure 9, decreasing the cohesion past 6.2E7 GPa did not appear to have any significant effects. However, at values above this, the curve was shifted to the right, indicating a delay in the initial yielding of the soil material. This agrees with conventional soil mechanics. The cohesion of the soil would delay the failure caused by chemical attraction at the molecular level. Figure 9. Cohesion parameter (Coh) variations It is recommeded that the values of cohesion for cohesionless soil be placed at approximately 6.2D6 GPa. This value appears to be close enough to zero, but still allows the plasticity routines to converge relatively rapidly. Larger values of cohesion rapidly digress from the zero value for cohesion. However, larger values do allow for more rapid convergence in the plasticity algorithms. It should also be examined whether the value of cohesion should be increased to compensate for the soil dilation caused by Taylor's aggregate interlock. Angle of Internal FrictionThe angle of internal friction,, is also the slope of the shear strength envelope and, therefore, represents the effect that increasing effective normal stress has on the shear strength of the soil. For a given soil, holding all other parameters constant, an increase in the angle of internal friction should increase the shear force required to fail the soil. For a cohesionless soil, the angle of internal friction is equal to the angle of reposethe angle at which the soil will settle into naturally. Visually, if one pours dry sand into a pile, there is a maximum angle that is achieved. This angle is the angle of repose. A parameter study was performed varying the angle of internal friction. These values are shown in table 8. Cohesion was maintained at a constant throughout the variations of the angle of internal friction. It is critical to note that this parameter is input into LS DYNA in radians, not degrees. As shown in figure 10, shear forces increase for decreasing angles of internal friction. This result is counter to conventional soil mechanics theories, where shear forces are known to decrease with decreasing angles of internal friction. The user was unable to determine why increasing the angle of internal friction decreased the force levels. The baseline value of 63 degrees (1.1 radians) for an angle of internal friction was determined through physical testing performed by the user.(6) This value is recommended for NCHRP 350 soil of crushed limestone. Other types of soil that meet NCHRP 350 specifications should be tested separately. Table 8. Internal angle of friction parameter study.
(b) Internal Energy. Figure 10. Angle of internal friction variations.
DruCkerPrager Coefficient, AHYPThe MohrCoulomb failure criterion can be represented as a straight line in space (_{m}, ^{}), as shown in figure 11. The point where the line cuts the _{m}axis corresponds to the tip of the hexagonal MohrCoulomb pyramid; it is here that the gradient of the yield surface is undefined.
Figure 11. Hyperbolic approximation of MohrCoulomb. To avoid such angularity, DruckerPrager introduced an inscribed cone that still possesses a vertex, but in which the "ridge" corners have been smoothed.^{(22)} Combinations of the MohrCoulomb and DruckerPrager yield surfaces can give better approximations of real failure conditions than the DruckerPrager alone (while still avoiding the singularity of the MohrCoulomb yield criterion). The developer implemented a hyperbolic approximation of the plasticity surface based on the work of Abbo and Sloan.^{(23)} The modified yield surface is given as:
where: _{y} = Yield surface P = Pressure = Angle of internal friction J_{2} = Second invariant of the stress deviator K() = Function of the angle in the deviatoric plane Ahyp = DruckerPrager coefficient c = Cohesion The elimination of the vertex singularity is also extremely useful in speeding the convergence of numerical computation, particularly where large angles of internal friction, , and small cohesion conditions exist. This is predominantly the case with respect to NCHRP 350 crash criteria, since American Association of State Highway and Transportation Officials (AASHTO) soil specifications stipulate exactly this variety of soil. Selecting an appropriate value for the hyperbolic coefficient, Ahyp, is important for stability in the simulation. The DruckerPrager coefficient can be chosen as a function of the angle of internal friction and cohesion.^{(24)} A reasonable approximation that has been found to yield good results is:
For values of Ahyp ≤ cot ( ), the hyperbolic surface closely represents the MohrCoulomb surface. At Ahyp = 0, the original MohrCoulomb surface is recovered. This also restores the vertex singularity. At larger values of Ahyp, the hyperbolic surface becomes increasingly disparate from the MohrCoulomb surface. For numerical considerations, Ahyp should be set to values of less than c cot ( ). A graphical representation of the influence that Ahyp has on the yield surface is shown in figure 12. Figure 12. Ahyp influence on yield surface. For the initial simulations, Ahyp was not changed in relation to the changing cohesion and angle of internal friction parameters. It was desirable to vary each parameter separately, thus Ahyp remained constant during the cohesion and angle of internal friction parameter studies. It was found that significant increases in forces were found when Ahyp was increased, as shown in table 9 and figure 13. The parameter Ahyp does not have significant variations from MohrCoulomb when it is set to very small values (1.0E7). Keep in mind, however, that increasing Ahyp to larger values significantly deviates from the MohrCoulomb failure envelope. In order to maintain similarity to the original MohrCoulomb failure envelope, values on the order of 1.0E7 are recommended. For an internal angle of friction, Phimax, equal to 63 degrees (1.1 radians) and a cohesion of 6.2E6 GPa, equation 15 yields a value of Ahyp = 1.58E7 GPa. Table 9. Effects of material parameter Ahyp.
(a) Force. (b) Internal Energy. Figure 13. Ahyp parameter variations. Plasticity Iterations, ITERMAXTo solve the global system of nonlinear plasticity equations, an iterative approach is frequently required. Although noniterative methods exist, such as radial return, these algorithms may lead to inaccurate results. The FHWA soil model implements an iterative plasticity scheme to solve the plasticity equations. Iterative approaches are required because the solution to the nonlinear system is not necessarily in an equilibrium state. Strain hardening or softening may have placed the current stress state beyond the yield surface and iterative schemes, such as the NewtonRalphson or other methods, must be used to ensure that the plasticity model converges to the true plasticity surface. Itermax controls the number of iterations for the plasticity routine. In cases where the cohesion, Coh, is extremely small, obtaining convergence can take several iterations. This is a quality inherent in most plasticity routines and can significantly affect the accuracy and precision of a simulation. A parameter study was performed manipulating the cohesion, Coh, and the maximum number of iterations for the plasticity routines, Itermax. The results are shown in table 10 and figure 14. Table 10. Examination of Itermax.
(a) Cohesion = 6.2E06. 

Figure 14. Itermax parameter variations. The user was unable to determine whether there was a convergence criteria within the soil material model (increasing Itermax always generated a longer run time, with no apparent check for some type of convergence criteria being satisfied). When cohesion is set to the recommended value of 6.2E6, low Itermax numbers (1 through 20) give roughly the same response. Although the developer has recommended using Itermax = 10, it appears that significant CPU time can be saved with lower values of Itermax without a loss of accuracy. However, with Itermax = 100, a significant difference is seen in the results. This parameter definitely needs revisiting when the soil model is able to handle larger deformation situations (such as being able to correctly handle the direct shear test up to 100 or 200 mm of deflection, rather than only 25 mm in the current implementation). Eccentricity Parameter, ECCENEccen is the eccentricity parameter for the third stress invariant effects. To generalize the shape of the yield surface in the deviatoric plane, the developer changed the standard MohrCoulomb K(t) function to one developed by Klisinski.^{(2526)} Klisinski's yield function takes the form:
where:
J_{3} = Third invariant of the stress deviator e = Ratio of extension strength to compression strength (Eccen) The ratio of the extension strength to the compression strength, Eccen, is the eccentricity parameter responsible for third invariant (J_{3}) effects. If Eccen is set to 1.0, then a circular cone surface is formed. If Eccen is set to 0.55, then a triangular surface is formed. The function K() is defined for values of Eccen ranging as follows: 0.5 < e1.0. Initial models included a value of Eccen = 0.7. This creates a relatively smooth yield surface without oversmoothing the corners of the yield surface. The authors are unaware of any physical testing or theoretical means for determining the recommended values for Eccen. Strain Hardening Parameters, A_{n} and E_{t}To simulate nonlinear strain hardening behavior, the angle of internal friction, , is increased as a function of effective plastic strain, _{eff plastic}. It is increased as a function of E_{t}, the amount of the nonlinear strain hardening effects desired, and A_{n}, the percentage of Phimax where nonlinear behavior begins. The increase in the angle of internal friction is given by the equation:
For input in LSDYNA, A_{n} is expressed as a decimal, with values between 0 and 1.0 (0 percent and 100 percent). E_{t} affects the rate at which nonlinear hardening occurs. The authors are unaware of any physical testing or theoretical means for determining the recommended values for A_{n} or E_{t}.. Moisture Content, MCONTIncreasing moisture content significantly reduces soil shear strength.^{(27)} Additionally, it has been reported that marked reductions in Poisson's ratios occur because of increases in moisture content.^{(28)} The developer addresses this by reducing the second stress invariant, J_{2}, to produce the resulting loss in shear strength. It is critical to note that for Mcont to have any effect, the parameters Pwd1, Pwd2, and PwKsk must also be active. Although NCHRP 350 does not give a specific moisture content criterion, for the performance of crash tests, material specification requires compaction at or near optimum moisture content. In general, optimum moisture content is around 4 percent to 5 percent, based on dry weight. Generally, the moisture content after compaction and prior to crash testing does not vary significantly. For the direct shear testing discussed in this report, moisture content was 0 percent. As of this writing, the moisture effects are not operable within the FHWA soil model. PoreWater Effects on the Bulk Modulus, PWD1To simulate the effects of moisture and air voids, the FHWA soil material model modifies the nonporous bulk modulus by using a constant relating the stiffness of the soil material before the air voids are collapsed. In equation form, this is:
where: K_{i} = Nonporous bulk modulus n_{cur} = Current porosity (the maximum of either 0 or (w  _{v})) w = Volumetric strain corresponding to the volume of the air voids = n(1  S) _{v} = Total volumetric strain D_{1} = Parameter controlling the stiffness before the air voids are collapsed (Pwd1) n = Porosity of the soil = (e, 1 + e) e = Void ratio = S = Degree of saturation = _{sp}, m_{c} , _{w} = soil density, specific gravity, moisture content, and soil density. Appropriate values for Pwd1 must be larger than zero, but no appropriate upper limit is known. At Pwd1 = 0, the standard linear bulk modulus, K_{i}, is used. If Pwd1 is not set to 0.0, the bulk modulus, K, should be the fully collapsed bulk modulus. Increasing this value reduces the stiffness of the response of the soil. Information provided by the developer included the values of Pwd1, ranging from 0.0 to 10.0. The development of excess pore pressure in a soil matrix is dependent on the portion of the pore space occupied by fluid, the rate at which the fluid can move through the soil matrix, and the driving force moving the fluid. The dissipation of excess pore pressure is a key parameter in understanding the dynamic performance of soils. In partially saturated situations, consideration of both the movement of air and fluid is necessary to define the effects of excess pore pressure on soil strength properties. In order to determine the rate of porepressure dissipation, the permeability of the soil matrix (both in terms of fluid and air) is a key parameter. Excess pore pressure is created by consolidation of the soil pore space, leading to localized increases in fluid/air pressure. This pressure dissipates at a time rate dependent on pressure magnitude and resistance to fluid/air flow in the soil matrix. In NCHRP 350 strong soil, the relative permeability is high, meaning that excess porepressure effects tend to be localized and short lived. The criteria for the decay of pore pressure relative to the soil fabric are not clear from the summary of the developer's engineering report. Without consideration of permeability, there would be no way to rationally address excess pore pressure. PoreWater Effects on PoreWater Pressure, PWD2Excess porewater pressure reduces the total pressure and will lower the shear strength of the soil. Large porewater pressures can cause the effective stress to disappear, causing liquefaction of the soil. To simulate the effects of excess porewater pressure, the FHWA soil material model calculates the porewater pressure, u, in a similar manner to that of the moisture effects on the bulk modulus:
where: K_{sk} = Nonporous bulk modulus n_{cur} = Current porosity (the maximum of either 0 or (w  _{v})) w = Volumetric strain corresponding to the volume of the air voids = n(1  S) _{v} = Total volumetric strain D_{2} = Parameter for porewater pressure before the air voids are collapsed (Pwd2) n = Porosity of the soil e = Void ratio = S = Degree of saturation = ,sp, mc, w = soil density, specific gravity, moisture content, and water density. Porewater pressure is not allowed to become negative. If Pwd2 is set relatively high compared to Ksk, there is no porewater pressure developed until the volumetric strain is greater than the strains associated with the air voids. As Pwd2 is lowered, the pore pressure starts to increase before the air voids are fully collapsed. For an initial porosity and bulk moduli, the parameter Pwd2 can be calculated using the Skempton porewater pressure parameter, B, as defined below:
This allows for the calculation of the porewater parameter Pwd2 directly, as follows:
Again, the comments of the previous section apply to this input. Additionally, it is assumed that excess pore pressure is used to reduce effective stress, with the commensurate influence on shear strength. In terms of shear strength, negative pore pressures, generated from the capillary rise evidenced in many soil matrixes (NCHRP 350 strong soil would not be included on this list), are important to consider in developing reasonable failure criteria. Negative pore pressure, the source of apparent cohesion in sands, can influence the peak shear strength. In practice, however, the authors are unaware of any physical testing or theoretical means for determining specific recommended values for Pwd2. Skeleton Bulk Modulus, PWKSKThe skeleton bulk modulus is a parameter that also determines the amount of the effect that porewater pressure has on the bulk modulus. To eliminate porewater effects, this parameter is set to zero. For sands, Stephen found that the dry skeleton bulk modulus was two orders of magnitude lower than the grain bulk modulus. The units of measurement (stress) for the bulk modulus are gigapascals. In practice, however, the authors are unaware of any physical testing or theoretical means for determining specific recommended values for PwKsk. Residual Shear Strength, PHIRESThis is the angle, in radians, of the slope of the failure envelope, ult. This failure envelope defines the residual strength after the initiation of shear failure. The implementation of this value is materialdependent. In other words, there is no fixed strain at which this value is appropriate. As evidenced in the direct shear tests performed by the user, there is a gradual decrease in shear strength after the peak. The slope of this decrease is dependent on particle shape and, particularly, on density. The dilatancy and confinement of the material play important roles in this value. The residual shear strength is defined as:
where: s_{residual} = Residual shear strength ' = Effective stress ult = Residual angle of internal friction This strength is easily defined for most materials; however, the current limitation of the model to calculate beyond peak shear strength in the trials makes the evaluation of this parameter impossible. The rate of change from to ult is less available, but could be determined for soils of interest and appropriate confining conditions. Void Formation Energy, V DFM, and Volumetric Strain, DINTWhen material models include strain softening, special techniques must be used to prevent mesh sensitivity. Mesh sensitivity is the tendency of a finite element model to produce significantly different results as the element size is reduced. Mesh sensitivity occurs because the softening in the model becomes concentrated in one or in a few elements. To reduce the effects of strain softening on mesh sensitivity, the softening parameter, (the strain at full damage), must be modified as the element size changes. The FHWA soil model uses an input parameter, Vdfm (Gf), that is analogous to fracture energy in metals. The void formation parameter is the area under the softening region of the pressurevolumetric strain curve times the cube root of the element volume, V⅓:
where: xo = Initial damage threshold strain, Dint If Gf is made increasingly small relative to , the softening will become progressively more brittle. Conversely, larger ratios of Gf to will cause the softening to become more ductile. Dint is the volumetric strain at the peak pressure. Physically, this is the point where damage effects begin to occur, such that Dint can be conceived as the strain at the initial damage. The authors are unaware of any physical testing or theoretical means for determining the recommended values for Vdfm or Dint. Deletion Damage, D AMLEV, and PRINCIPAL Failure Strain, E PSMAXAs strain softening (damage) increases, the effective stiffness of the element can get very small, causing severe element distortion. One solution to this problem is deleting these distorted elements. Damlev is the percentage of damage, expressed as a decimal, that causes the deletion of an element. Epsmax is the maximum principal failure strain at which the element is deleted. It is important to note that both Damlev and Epsmax must be exceeded in order for element deletion to occur. If it is desired to turn off element deletion, Damlev should be set to zero. In the current application, erosion of the soil elements is an unstable process and is not recommended. This is discussed further in chapter 5. The authors are unaware of any physical testing or theoretical means for determining the recommended values for Damlev or Epsmax. 