
Cooperative Adaptive Cruise Control
Human Factors Study: Experiment 2— 
Merging Behavior
PUBLICATION NO. FHWA-HRT-16-057 DECEMBER 2016

Research, Development, and Technology
Turner-Fairbank Highway Research Center
6300 Georgetown Pike
McLean, VA  22101-2296



 

FOREWORD 

This report presents human factors experimental results from an examination of the effects of 
cooperative adaptive cruise control (CACC) on driver performance in a variety of situations. The 
experiment was conducted in a driving simulator using a scenario in which the driver was 
required to enter into a stream of vehicles. CACC is envisioned as an automated vehicle 
application that complements the capabilities of the vehicle operator without degrading the 
vehicle operator’s alertness and attention. 
 
This task was completed with and without speed assistance during the merge. Merging 
maneuvers with the CACC system successfully reduced workload and eliminated collisions 
during merges. Drivers who were required to manually control speed and enter a continuous flow 
of traffic experienced a significant number of crashes, which indicated that drivers’ merging 
maneuvers are highly sensitive to the behavior of other drivers and to merging distances.  
 
This report informs the discussion among transportation professionals about how automated 
vehicle applications will be embraced by everyday drivers. The experiment results should be 
useful to researchers and transportation professionals interested in the effects of automation on 
driver behavior. 
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 SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol 
LENGTH 

in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in2 square inches 645.2 square millimeters mm2

ft2 square feet 0.093 square meters m2

yd2 square yard 0.836 square meters m2

ac acres 0.405 hectares ha 
mi2 square miles 2.59 square kilometers km2

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3

MASS 
oz ounces 28.35 grams g
lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 Celsius oC 

or (F-32)/1.8 
ILLUMINATION 

fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2

FORCE and PRESSURE or STRESS 
lbf poundforce   4.45    newtons N 
lbf/in2 poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 
Symbol When You Know Multiply By To Find Symbol 

LENGTH
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
km kilometers 0.621 miles mi 

AREA 
mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

TEMPERATURE (exact degrees) 
oC Celsius 1.8C+32 Fahrenheit oF 

ILLUMINATION 
lx  lux 0.0929 foot-candles fc 
cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS 
N newtons 0.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2

*SI is the symbol for th  International System of Units.  Appropriate rounding should be made to comply with Section 4 of ASTM E380.  e
(Revised March 2003) 
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CHAPTER 1. INTRODUCTION 

This report describes the second experiment in a series of four that explore cooperative adaptive 
cruise control (CACC). CACC combines three driver assist systems: (1) conventional cruise 
control, which automatically maintains the speed a driver has set, (2) adaptive cruise control 
(ACC), which uses radar or light detection and ranging sensors to automatically maintain a gap 
the driver has selected between the driver’s vehicle and a slower moving vehicle ahead, and  
(3) dedicated short-range communications to transmit and receive data with surrounding vehicles 
so that the cruise control system can more quickly respond to changes and speed and location of 
other CACC vehicles, including vehicles that the driver cannot see.(1) 

When using CACC, drivers share vehicle control with an automated system that includes 
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. Communications 
between nearby CACC-equipped vehicles will enable automated coordination and adjustment of 
longitudinal control through throttle and brake activations. Automated control should enable 
CACC-equipped vehicles to safely travel with smaller gaps between vehicles than drivers could 
safely manage on their own. Smaller gaps should subsequently increase the roadway capacity 
without increasing the physical amount of roadway. 

The viability of CACC as a successful and widely used technology is dependent on many factors. 
One of these factors is the ability of drivers to enter and exit streams of CACC platoons. The 
manner in which drivers enter the CACC platoons relies on the relationship between CACC 
traffic flow and other non-equipped CACC vehicles. It is believed that, at minimum, in the early 
stages of CACC market penetration, there will be a dedicated CACC lane. The lanes would 
function much like high-occupancy vehicle (HOV) or express lanes operate; drivers would only 
be allowed to travel in the dedicated lane if certain requirements were met. In that case, the 
drivers would have to be using CACC-equipped vehicles. These lanes would presumably have 
some sort of physical separation from the regular flow of traffic. This would prevent the 
disruption of the CACC flow due to non-CACC-equipped vehicles attempting to enter the  
traffic stream.  

This study is the second in this series of four CACC experiments and explores the ability of 
drivers to enter and exit dedicated CACC platoon lanes. The goal of this research is to address 
some of the critical human factors issues for CACC usage related to the abilities and limitations 
of the drivers using the system. Specifically, the goals of this experiment are to (1) investigate 
drivers’ abilities to successfully enter a dedicated CACC lane and join an already established 
vehicle platoon and (2) assess the workload associated with this maneuver.  

There are many ways in which CACC can be implemented in the real world, and this study 
makes several critical assumptions both in terms of vehicle technology and roadway 
infrastructure. The assumptions made here should not imply that the CACC system will 
ultimately be implemented in exactly this manner. Rather, they serve as points of reference for 
addressing potential human factors issues. 

The first assumption is based on whether CACC systems will primarily function as V2V or V2I 
systems. A V2I system implies that platoons will have some external control from a centralized 



2 

source (or sources). A V2V system, however, implies that CACC platooning vehicles will act in 
a selfish way. In a CACC system platoon, there are two primary ways in which a driver can enter 
the platoon in a location other than the front or rear (i.e., the first car or the last vehicle in a 
platoon). The first way involves requesting permission to move into the platoon (a system that is 
at least partially reliant on V2I communications). In this case, a driver notes a platoon of CACC 
vehicles that he or she would like to join. The driver requests permission, permission is granted, 
a larger gap is provided between two of the platooned vehicles, and the driver is able to enter the 
platoon. This method adds complexity to the CACC operating system and driver interface.  

The second manner in which a driver can enter a CACC platoon is one in which vehicles act 
selfishly (a primarily V2V reliant system). That is, vehicles will communicate locally with 
nearby vehicles, and vehicle actions will serve the driver, rather than the drivers nearby. Vehicles 
will act to maintain personal gaps and speed. This can present an issue when a driver attempts to 
enter a CACC platoon. Because CACC vehicles will act in a selfish manner, a vehicle will not 
request entry into a platoon, and an extra gap for that vehicle will not be created. Instead, the 
driver will merge into the platoon, and the other vehicles in the platoon will adjust speed to 
restore the desired gap between vehicles and to accommodate the new platoon member. This 
method results in a variety of human factors issues, especially when vehicles are traveling with 
short gap distances.  

However, a primarily V2V-based system can work from an algorithm that allows vehicles to 
work cooperatively and selfishly simultaneously. In the case of joining a platoon, the principle 
vehicle may be able to communicate with already platooning vehicles. The system can then 
identify the needed speed to enter the platoon, ultimately assuming lateral and longitudinal 
control of the principle merging vehicle. This is especially important if platoons are travelling 
with smaller gaps. Shorter gaps between vehicles can increase traffic throughput and ultimately 
reduce congestion related roadway delays. However, shorter following gaps lead to problematic 
human factors issues.  

At 104.6 km/h (65 mi/h), a 1-s gap leaves approximately 28.96 m (95 ft) between vehicles. 
Previous studies have shown that drivers feel both comfortable and safe travelling at gaps shorter 
than 1 s. For example, in an on-road study testing drivers’ choices in following distances, drivers 
regularly used gap settings shorter than 1 s. In fact, overall, when following another vehicle, 
drivers elected to set the gap at 0.7 or 0.6 s 8 percent of the time.(2) However, with a 0.6-s gap, 
there is approximately only 17.37 m (57 ft) between vehicles. If an average vehicle length is 
assumed to be around 6.10 m (20 ft), this leaves less than 5.64 m (18.5 ft) of buffer on either 
direction for a merging vehicle. As a result, at these shorter distances, drivers may not feel 
comfortable or have the skill to join the platoon without longitudinal assistance. Similarly, 
drivers may not feel comfortable allowing the system to assume longitudinal control during a 
merge. For this reason, driver acceptance of longitudinal acceleration by the CACC system to 
join a platoon will be explored.  

Another very important assumption made in this study is that the CACC system will require 
dedicated infrastructure in its early implementation. This infrastructure requires that the CACC 
lane (or lanes) are physically separated from “normal” travel. This is important for several 
reasons. CACC will be of the most use in congested regions. This congestion often leads to 
lower travelling speeds and a great deal of speed variation (i.e., stop-and-go or slow-and-go 
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traffic). Because CACC-equipped vehicles travelling in a separate lane will travel at fairly 
constant speeds with standard gap distances, the lane will be less susceptible to speed variability. 
As a result, vehicles in the CACC lane are likely to be travelling at speeds greater than the 
normal travel lanes. The speed differential between the two types of lanes will introduce 
problems reaching speeds great enough to transfer from one type of lane to the other. Instead, 
drivers will be required to enter the lane from a separate on ramp (much like drivers entering and 
exiting dedicated HOV lanes). The physical separation between the two types of lanes also 
prevents non-CACC-equipped vehicles from entering the CACC lane and disrupting travel  
flow stability.  

Given these assumptions, there are many human factors issues that arise with merging with 
CACC platoons. This experiment will explore the following three different types of merges: 

• Merging with non-CACC vehicle into a left dedicated lane without CACC platooning and 
varying vehicle gaps.  

• Merging with CACC vehicle into the middle of a CACC platoon or a continuous stream 
of vehicles without speed assistance. 

• Merging CACC vehicle into a CACC platoon with longitudinal speed assistance. 
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CHAPTER 2. METHOD 

In this chapter, an overview of the approach to assessing workload, arousal, and merging 
behavior is described before providing more extensive details on the experimental design and 
procedures. 

APPROACH 

Three groups drove the same stretch of simulated limited access roadway. This was the same 
simulated roadway used in experiments 1 and 3. All groups were asked to exit and enter the 
roadway four times. The first group completed this task with no cruise control. The second group 
used CACC while travelling in the main roadway stream but was required to adjust the vehicle 
speed when entering and exiting the CACC stream. The third group was provided with CACC 
that controlled speed both while in the travel lane and while using the entrance and exit ramps.  

Workload Assessment 

Driver workload was assessed by administration of the National Aeronautics and Space 
Administration Task Load Index (NASA-TLX) and was measured four times.(3) The first 
assessment was during a practice drive and was intended to accustom participants to providing 
verbal response to the NASA-TLX protocol. The second workload administration was 
approximately 9.33 km (5.8 mi) into the drive, immediately after the first complete exit and 
reentrance to the main travel lane. The second NASA-TLX administration was intended to assess 
the workload imposed by a merge into traffic. The third assessment was 32.19 km (20 mi) into 
the drive and was intended to assess the workload associated with driving in a stable, unchanging 
state (i.e., a baseline index). At this point, drivers were between merging events and were likely 
to feel comfortable with the driving task in general. The fourth and final NASA-TLX was 
administered immediately after the final merging event, approximately 37.02 km (23 mi) into the 
drive. The final workload assessment was intended to assess the workload change that may occur 
over time with practice merging.  

Physiological Arousal 

Physiological arousal was assessed by measuring eyelid closure, pupil diameter, and skin 
conductance. These measures were assessed at eight different 15-s periods during the drive. Four 
of these periods were immediately before exiting the roadway (cruise periods), and four were in 
the last portion of the merge events.  

Merging Behavior  

At exits 4, 8, 12, and 16, participants were asked to leave the CACC platoon by using a left exit 
ramp and then reenter traffic using a left on-ramp. Exits were approximately 2.33 km (1.45 mi) 
apart. Traffic was continuous and did not stop, which forced participants to enter mid-stream and 
not at the beginning or end of a platoon. The two groups with CACC were required to join a 
platoon of vehicles with a constant 1.1-s gap. The group with CACC merge assistance was not 
required to adjust speed in any way. The system longitudinally controlled the entire drive 
without failure. However, if the participant pressed the brake, the system did disengage. The 
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group without CACC merge assistance was required to manage and adjust their own vehicle 
speed to appropriately enter the platoon gap. The third group, which drove without CACC, 
maintained longitudinal and lateral control of the vehicle. This group was provided with a variety 
of gap sizes to merge into, which was hoped to help determine whether participants generally 
prefer a shorter or longer gap distances or whether no preference is given (i.e., drivers will accept 
the gap presented).  

Equipment and Materials 

The Driving Simulator 
The experiment was conducted in the Federal Highway Administration (FHWA) Highway 
Driving Simulator. The simulator’s screen consists of a 200-degree portion of a cylinder with a 
radius of 2.7 m (8.9 ft). Directly in front of the driver, the design eye point of the simulator is  
3 m (9.5 ft) from the screen. The stimuli were projected onto the screen by 3 projectors with 
resolutions of 2,048 horizontal by 1,536 vertical pixels. Participants sat in a compact sedan. The 
simulator’s 6-degrees of freedom motion base was enabled. The typical motion for roll, pitch, 
and yaw fell within ±4 degrees. 

The simulated vehicle was equipped with a hidden intercom system that enabled 
communications between the participant and a researcher who ran the experiment  
from a control room. The researcher in the control room could also view the face  
video from the eye-tracking system and monitor the participants’ well-being. 

Eye-Tracking System 
The same eye tracking system used in the first in this series of four experiments was used in the 
present experiment. Gaze direction accuracy varied by participant. For the left eye, the mean 
accuracy of gaze position across all participants was 1.4 degrees (radius) with a 0.69-degree 
standard deviation. For the right eye, the mean accuracy was 1.2 degrees with a 0.94-degree 
standard deviation. In this study, the eye-tracking system was primarily used to determine 
whether participant glance behavior varied systematically based on experimental condition. The 
following display locations were tracked: 

• Multifunction touchscreen display that hosted either the CACC user interface. 
• Instrument panel (with speedometer and tachometer). 
• Rearview mirror. 
• Left-side mirror. 
• Right-side mirror. 
• Out the windshield (projection screen). 
• Right side of the wrap around screen (blind spot area). 

In addition to tracking the direction of gaze, the eye-tracking system computed eyelid opening 
and pupil diameter. These measures were also recorded at 120 Hz. 

Multifunction Display 
Similar to the other three experiments in this series, a 17.78-cm (7-inch) liquid crystal display 
touchscreen display was mounted on the center console above the radio. For the two conditions 
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that used the touchscreen, it displayed the set speed (always set to 112.65 km/h (70 mi/h)), the 
set following distance (always set to near), and the status of the CACC system (engaged or not 
engaged). The engage button on the right side of the display could be used by the participants to 
engage CACC. When the system was engaged, the text and icons appeared green; when the 
system was not engaged, the text and icons appeared red.  

For the control group, the multifunction display was turned off. The control condition was  
not given any specific directions in terms of following distance other than to drive as they 
normally would.  

Skin Conductance Sensor 
As in experiment 1, galvanic skin response (GSR) was measured with silver-chloride salt 
electrodes placed on the palmar-side base of two fingers on the participant’s left hand. The 
electrodes were connected to a small sensor with a Bluetooth® transmitter strapped to the  
left wrist.  

The Simulation Scenarios 

Participants drove in a dedicated center lane on a simulated eight-lane interstate highway 
(four lanes in each direction). The roadway was the same used in experiment 1 with a few minor 
variations. The entrance to the center dedicated lane was accessed from the left side of the 
roadway from a ramp. The simulation began with the participant’s vehicle as the third in the 
CACC platoon queue. Once the participant was ready to begin, the two vehicles in front of the 
participant accelerated and merged into the CACC lane and cruised at 112.65 km/h (70 mi/h). 
The two groups that drove with CACC engaged the system, and the participant’s vehicle 
maintained a 1.1-s gap between it and the vehicle in front of it. The control group participants 
could follow at any distance they chose.  

In total, there were 18 exit ramps, each placed approximately 2.33 km (1.45 mi) apart. 
Participants were asked to use exits 4, 8, 12, and 16. Exit ramps to the left of the main travel path 
that were not used by the participants were blocked by traffic barrels. This was intended to serve 
as a reminder to participants as to which exit ramps to use. Additionally, no traffic to the right of 
the barrier was present. 

Calibration of CACC Vehicle Size 

In experiment 1, the vehicle size was scaled down so participants could accurately perceive the 
correct following distance. This same vehicle scaling was used in experiment 2.  

Procedure 

Upon arrival at the research center, participants were asked to review and sign an informed 
consent statement. This was followed by the health screening to ensure that the participants were 
not at an increased risk of simulator sickness as a result of illness or lack of sleep. Participants 
were asked to show a valid driver’s license. A Bailey-Lovie eye chart was used to verify a 
minimum of 6/12 (20/40) visual acuity with correction if necessary. A slideshow presentation 
was shown to all participants. The presentation provided an overview of the experimental 
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instructions and familiarized participants with the NASA-TLX questions. The participants 
assigned to the CACC conditions were also shown videos that explained the CACC concept.  

Participants in all three experimental conditions were told the following: 

“I am going to ask you to exit and reenter the freeway every fourth exit. I will give you verbal 
reminders to exit the freeway. There will be orange construction barrels blocking the other exit 
ramps. There will be other traffic on the freeway. The traffic is continuous and will not stop.” 

Each condition was given additional instructions. 

The CACC with merge assist instructions were as follows: 

1. Set the gap to Near. 

2. Set the speed to 70 mi/h (112.65 km/h). 

3. You will control steering—follow the car in front. 

4. The system will accelerate and brake. 

• You do not need to use your brake on the exit/entrance ramps.  
• You can take over control by pressing the accelerator or brake. 
• Pressing the brake disengages the CACC system. 
• If you need to take control, press ENGAGE as soon as possible. 

The CACC without merge assist instructions were as follows: 

1. Set the gap to “Near.” 

2. Set the speed to 70 mi/h (112.65 km/h). 

3. You will control steering—follow the car in front. 

4. The system will accelerate and brake in the CACC lane. 

• The system will turn off once you leave the CACC lane (i.e., take the exit ramp). 
• The CACC system will NOT control your speed while merging.  
• After you reenter traffic, you will need to engage the CACC system again. 
• You can take over control by pressing the accelerator or brake. 
• Pressing the brake disengages the CACC system. 
• If you need to take control, press ENGAGE as soon as possible. 

The control condition instructions were as follows: 

1. The speed limit is 70 mi/h (112.65 km/h). 

2. Drive as you normally would. 
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Following the slideshow presentation, participants were fitted with the GSR sensor and seated in 
the simulator cab where the controls and displays were reviewed, and the instructions were 
repeated. While seated in the cab, participants were asked to complete the simulator sickness 
questionnaire (SSQ) to provide a symptoms baseline. Finally, the eye-tracking system was 
calibrated to the participants. 

Next, participants were asked to complete a brief practice drive. During the practice drive, 
participants were asked to merge into the dedicated CACC lane. They were asked to accelerate 
and gently brake. This was followed by more aggressive accelerating and braking, which was 
designed to help participants understand the limits of the vehicle dynamics. Drivers also moved 
between the travel lane and the breakdown lane (to the left) to familiarize themselves with the 
steering system. Once comfortable with the speed and steering dynamics of the simulated 
vehicle, participants practiced exiting and entering the main dedicated travel lane with a left exit 
and entrance ramp.  

If assigned to a CACC condition, participants were then asked to engage the CACC system. 
With no vehicles ahead, the CACC system accelerated to 120.70 km/h (75 mi/h) until it  
closed on a platoon of CACC vehicles traveling at 88.51 km/h (55 mi/h). The platoon traveled  
at 88.51 km/h (55 mi/h) for 2 min and then accelerated to 112.65 km/h (70 mi/h). This 
highlighted the ability of the cruise control system to follow at a specified distance, even  
when traffic slowed.  

Participants in the control condition were asked to drive as they normally would. The other 
vehicles in the simulation performed similarly as they did in the CACC conditions; they drove at 
88.51 km/h (55 mi/h) for 2 min and then accelerated to 112.65 km/h (70 mi/h). The platoon 
behaved in the same manner as for the CACC conditions. 

After traveling in the platoon at 112.65 km/h (70 mi/h) for 2 min, the NASA-TLX was 
administered verbally to all participants. This administration was intended to further familiarize 
participants with the workload assessment tool. With the conclusion of the workload assessment, 
participants were asked to take the next available off-ramp and come to a complete stop. 

After completion of the practice drive, participants were asked to exit the vehicle and complete 
the SSQ. 

The experimental scenario began with the participant seated in the third vehicle of a platoon  
of four vehicles. Once the participant was ready to begin, the two vehicles in front of the 
participant accelerated and merged into the CACC lane and cruised at 112.65 km/h (70 mi/h). 
The two groups that drove with CACC engaged the system, and the participant’s vehicle 
maintained a 1.1-s gap between it and the vehicle in front of it. Participants in the control 
condition were asked to drive as they normally would, with no specific instructions given about 
following distance. 

Participants were verbally reminded to exit the travel lane and then reenter traffic at the 
appropriate ramps. As soon as the participants successfully merged into traffic in the dedicated 
lanes after the first (exit 4) and fourth (exit 16) ramps, the NASA-TLX was administered to 
assess workload during the merge event (“during the preceding minute or so”). The NASA-TLX 
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was also administered as soon as exit 14 was passed. (Participants did not use this exit.) This 
administration was intended to assess workload during uneventful cruising in a CACC platoon 
(also described as during the last minute or so).  

After exiting the simulator, participants were asked to complete a final SSQ, debriefed, and paid 
for their time. 

Experimental Design 

The primary between-group independent variable was the level of cruise control automation used 
throughout the scenario.  

The three distinct participant groups were as follows: 

• Control: The driver manually controlled the longitudinal speed/gap in dedicated travel 
lane. The driver manually controlled the longitudinal speed/gap throughout merge. 

• CACC without merge assist: CACC controlled the longitudinal speed/gap in the 
dedicated travel lane. The driver manually controlled the longitudinal speed/gap 
throughout merge.  

• CACC with merge assist: CACC controlled the longitudinal speed/gap in the dedicated 
travel lane. CACC controlled the longitudinal speed/gap throughout the merge. 

In addition to workload, there was one additional within-subjects variable—driving period—with 
eight levels that were intended to distinguish the effects of CACC on driver behavior. The  
eight periods are described in table 1. 

Table 1. Driving period descriptions. 

Period Description 
1 15-s period ending 45 s prior to exit for first merge event. 
2 15-s period beginning 45 s prior to completing the first merge. 
3 15-s period ending 45 s prior to exit for second merge event. 
4 15-s period beginning 45 s prior to completing the second merge. 
5 15-s period ending 45 s prior to exit for third merge event. 
6 15-s period beginning 45 s prior to completing the third merge. 
7 15-s period ending 45 s prior to exit for fourth merge event. 
8 15-s period beginning 55 s prior to completing the fourth merge. 

 
Participants 

Participants were 60 licensed drivers recruited from the Washington, DC, metropolitan area. In 
total, data from 12 participants were not used due to poor data quality or simulator failures; data 
from 48 participants were used in analysis. Participants were required to be at least 18 years old 
and were screened for susceptibility to motion and simulator sickness. Table 2 shows the age 
group and gender counts by treatment group for the participants who provided useable data. The 
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mean age of the younger participants was 33.4 years (range 19.4 to 44.5 years). The mean age of 
the older participants was 56.6 years (range 46.5 to 77.9 years). 

Table 2. Demographic breakdown of participants in experiment 2 by treatment group. 

Condition 
Younger 
Females 

Younger 
Males 

Older 
Females 

Older 
Males Total 

Control 4 4 5 4 17 
CACC without merge assist 4 4 4 4 16 
CACC with merge assist 4 4 3 4 15 
Total 12 12 12 12 48 

 
Participants were paid $80 for their participation, which lasted between 1.5 and 2 h. 
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CHAPTER 3. RESULTS 

The results related to CACC and workload, physiological arousal, merge behavior, driving 
performance, distraction, and visual fixations are presented in this chapter. 

WORKLOAD 

The NASA-TLX was administered verbally at three points during the experiment: shortly after 
the first merge (exit 4), roughly halfway between the third and fourth merges (exit 14), and 
shortly after the fourth merge (exit 16). The effects of CACC and longitudinal assistance on 
workload were tested using generalized estimating equations (GEEs); normal response 
distribution, identity link function) with location as a repeated measure and experimental 
treatment condition as the between-group factor of interest. Resulting mean estimates with 
95-percent confidence intervals for each condition and location are shown in figure 1.  

 
MA = Merge assist. 

Figure 1. Graph. Estimated mean workload (NASA-TLX) by treatment group and location. 

As expected, experimental treatment condition significantly affected workload as measured by 
the NASA-TLX ( 2(2) = 32.76, p < 0.001). The mean NASA-TLX value for the control 
condition (M = 45.94) was significantly greater than both the with CACC merge assist  
(M = 17.40) and without CACC merge assist groups (M = 24.52; Dunnett-adjusted p-value,  
pD < 0.002). The with and without groups were not significantly different from one another  
(pD > 0.05). Location within the drive also significantly affected reported workload level  
( 2(2) = 23.84, p < 0.01). The mean NASA-TLX value at exit 4 (M = 37.63) was significantly 
greater than both exit 14 (M = 25.20) and exit 16 (M = 25.03; pD < 0.002). However, the mean 
NASA-TLX scores did not differ between exits 14 and 16. Participants reported higher 
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workloads near the beginning of the drive than near the end of the drive despite the fact that the 
NASA-TLX was assessed during a straight away and after a merge. 

As shown in figure 1, a significant location-by-condition interaction was found ( 2(4) = 11.39,  
p = 0.02). In order to more closely look at this interaction, each location was explored separately. 
Consistently across all three NASA-TLX assessment locations, condition significantly affected 
perceived workload; Exit 4 (χ2(2) = 32.51, p < 0.001), Exit 14 (χ2(2) = 16.02, p = 0.003), Exit 16 
(χ2(2) = 8.89, p = 0.012). Within each of the assessments, the control condition had a 
significantly greater mean NASA-TLX score than the CACC with merge assist and CACC 
without merge assist groups (all pD < 0.05). The interaction is the result of a difference in the first 
NASA-TLX assessment scores at exit 4. At this exit, the CACC without merge assist group has 
significantly greater workload scores than the CACC with merge assist group. This difference 
did not surface at the exit 14 and exit 16 assessments.  

PHYSIOLOGICAL AROUSAL 

The physiological measures of arousal assessed were GSR, eyelid opening, and pupil diameter. 
Each of these metrics naturally varied among participants, so raw values were converted to 
standardized z-scores. Data were sampled at approximately 120 Hz. (Some variation in sampling 
rate occurred as a result of occasional degraded signal quality.) The combined data sampling rate 
and length of each participant’s driving session (30 to 35 min) generated an extremely large set 
of data. In order to better manage and grasp the datasets, the following analyses focus on the 
eight periods of interest identified in table 1. 

GSR 

GSR is generally considered to be sensitive to sympathetic nervous system arousal, and it is 
more sensitive to spikes in arousal than it is to gradual changes in arousal for longer periods of 
time. If merging is indeed stressful, higher levels of GSR should be seen for the merging periods 
(2, 4, 6, and 8) relative to the cruising periods (1, 3, 5, and 7). Furthermore, the drivers in the 
control condition should also exhibit greater levels of GSR relative to those who used the CACC 
system as a result of the arousal reducing effect of the automation.  

Data from two participants in the control condition yielded GSR data that was not usable and, as 
a result, was eliminated from GSR analyses. 

Mean-standardized GSR scores were analyzed using GEE (normal response distribution, identity 
link function, etc.). Resulting mean estimates with 95-percent confidence intervals for each 
condition and period are shown in figure 2.  

χ 
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Figure 2. Graph. Estimated mean GSR (z-score, conductance) by period. 

Time period in the drive significantly affected GSR ( 2(7) = 139.16, p < 0.001). As shown in 
figure 2, overall, GSR was significantly greater during merge periods than preceding cruise 
periods. In other words, participants were more aroused during the merge periods than during the 
cruise periods.  

However, participant condition did not significantly affect mean GSR values ( 2(2) = 1.49,  
p > 0.05). That is, the presence of CACC did not significantly influence arousal as assessed by 
GSR. No significant interaction between participant condition and time period was found ( 2(14) 
= 17.26, p > 0.05). 

Eyelid Opening 

Eyelid opening is often associated with reduced alertness levels. In other words, as people 
become more relaxed or tired, eyelids tend to droop. If CACC reduces alertness, one might 
expect eyelid opening (measured in millimeters) to be smaller as the eyelids begin to droop with 
lower arousal levels (especially over time). As with GSR, the raw eyelid-opening measures were 
converted to z-scores. Eyelid-opening observations that the eye-tracking software classified with 
a quality rating less than 75 percent were excluded. This resulted in the exclusion of 39 percent 
of the eyelid-opening readings. 

GEE (normal response distribution, identity link function, etc.) was used to assess the influence 
of experimental condition, period, and their interaction on eyelid opening. Overall, experimental 
condition did not significantly affect eyelid opening ( 2(2) = 2.16, p > 0.05), nor did the time 
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period significantly influence eyelid opening ( 2(7) = 6.02, p > 0.05). The interaction between 
time period and condition was not significant ( 2(14) = 15.28, p > 0.05). 

Pupil Diameter 

Pupil diameter measurements for which the eye-tracking system reported less than 75 percent 
quality were excluded from the analysis. As with GSR and eyelid opening, each participant’s 
pupil diameter observations across the eight 15-s periods were converted to z-scores. Once again, 
a GEE was used to assess the influence of experimental condition, period, and their interaction 
on pupil diameter. Resulting mean estimates with 95-percent confidence intervals for each 
condition and period are shown in figure 3. 

 
Figure 3. Graph. Estimated mean pupil diameter (z-score, conductance) by period.  

Time period in the drive significantly affected pupil diameter ( 2(7) = 44.12, p < 0.001). Mean 
pupil diameter was significantly greater in period 2 than all other periods (except period 8; p < 
0.05). This suggests that during the first merge of the experimental drive, participants were more 
alert despite the practice drive merging. In addition, the mean pupil diameter was significantly 
greater during period 8 than all other periods except periods 2 and 4 (p < 0.05). While this result 
may seem somewhat surprising, it may be an artifact of the experimental design. Participants 
were aware that this was the last merge and that the experimental session would soon be over. As 
such, participants may simply have been more alert in anticipation of the completion of the task.  
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The participant experimental condition did not significantly affect pupil diameter ( 2(2) = 3.30,  
p > 0.05). The interaction between time period and experimental condition was also not 
significant ( 2(14) = 19.75, p > 0.05). 

DISTRACTION 

The NASA-TLX assessment indicated that the CACC system with merge assistance reduced 
workload as compared with the control condition. Despite this, no differences were found in 
physiological arousal levels between the experimental groups. However, drivers can engage in 
activities to mitigate the tendency toward reduced arousal on long drives by engaging in arousal-
stimulating secondary activities. In this experiment, participants were not discouraged from 
engaging in these activities. Care was also taken to avoid encouraging these activities, although 
participants were told that they could listen to the car radio or do what they normally do while 
driving. 

To explore potential engagement in other arousal-increasing tasks, non-driving activities were 
recorded during two segments in the drive. The first segment was the 30 s prior to the beginning 
of the first exit maneuver (exit 4). The second segment was 30 s near the exit 13 overhead sign. 
Table 3 shows the non-driving activities participants engaged in at locations.  

Table 3. The number of participants engaging in observable non-driving related activities 
by experimental condition group, combined across both observation periods. 

Non-Driving-Related Activity Control 

With 
CACC 
Merge 
Assist 

Without 
CACC 

Merge Assist 
Listening to radio 7 8 9 
Talking/singing 0 3 2 
Listening to radio and talking 0 2 2 
Moving hand away from steering wheel 9 3 4 
Moving hand away from steering wheel and listening 
to radio 

6 1 2 

Talking and moving hands 0 0 2 
Talking, moving hands, and listening to radio 0 0 1 
Listening to radio, pushing buttons on radio, and 
moving hands away from steering wheel 

0 1 0 

Listening to radio and pushing buttons on radio 1 0 0 
Total 23 18 22 
 
As a result of the relatively small occurrences of the different types of potentially distracting 
non-driving activities, all were collapsed by group into a single number for analysis. 
Experimental condition did not significantly affect the number of non-driving related activities 
that participants engaged in ( 2(2) = 1.10, p > 0.05). Similarly no difference between the  
two observation periods was found ( 2(1) = 0.62, p > 0.05). Nor was the interaction between 
experimental condition and observation period significant ( 2(2) = 1.63, p > 0.05). 
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MERGE BEHAVIOR 

Drivers’ actions during each merge were closely monitored to detect differences in driver 
behavior both over time and as a result of experimental condition. These behaviors included 
merge success and position, gap selection, and the distance used to complete the merge. The 
following analyses are not based on the eight previously defined driving segments but rather on 
the merges themselves. The beginning of each merge was defined consistently across all 
participants as the moment when the driver passed a specified point on the on-ramp (shortly after 
passing through the signalized intersection); merge endings were defined as the moment when 
half of the driver’s vehicle was laterally inside of the CACC platoon in the main lane of traffic. 

Merge Success 

As in the real world, a successful merge is one in which the driver avoids colliding with either 
vehicle defining the selected gap. As shown in table 4, several participants experienced a 
collision in the first merge attempt (despite the preceding practice drive), but the collision rate 
reduced with subsequent merges. 

Table 4. Frequency of collisions by treatment group and merge number. 

Condition Merge 1 Merge 2 Merge 3 Merge 4 
Control 9 2 2 1 
CACC without 5 1 1 3 
CACC with 0 0 0 0 

 
It should be noted that a single participant in the CACC without merge assist group reengaged 
the CACC system earlier than instructed during the second and fourth merges. This participant 
turned on the CACC while still on the acceleration ramp. As a result, the participant did not 
appropriately adjust speed in order to find an appropriate gap and collided with other vehicles 
during both of these merges.  

Because none of the drivers in the CACC with merge assist group collided with another vehicle, 
this group was excluded from the GEE model (binomial response distributions and logit link 
functions) analysis. That is, only the control and CACC without merge assist conditions were 
included. (It should be noted that if the drivers in the CACC with merge assist condition did not 
override the system or lose control of the vehicle, then it was not possible to collide with another 
vehicle in the simulation.) As one would expect, the analysis revealed no difference in collision 
rates between the control and CACC without merge assist groups. (Both groups were required to 
control speed and steering during the merge; 2(1) = 0.15, p > 0.05.) However, the merges 
themselves did influence the likelihood of a collision, ( 2(3) = 15.16, p = 0.002). More 
specifically, participants were more likely to experience a crash during the first merge than in the 
follow three subsequent merges (Bonferroni correction for multiple comparisons, p < .005). It 
appears that with practice, drivers became more familiar with and better at merging into traffic in 
the simulator. One might expect similar patterns in the real world.  

The interaction between participant condition and merge number was not significant in its 
influence on collisions during the merge ( 2(3) = 2.38, p > 0.05). 
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Merge Gap Position 

Merge position describes the location where the selected gap drivers chose to insert themselves 
within the platoon. Here it is defined as the ratio between (1) the distance between the front 
bumper of the participant and the rear bumper of the vehicle ahead and (2) the distance between 
the rear bumper of the participant and the front bumper of the following vehicle. In other words, 
values closer to zero reflect merges closer to the front of the gap (i.e., closer to the vehicle 
ahead), and a value of 0.5 reflects a perfectly centered gap. 

The algorithm used to control vehicle speed for those drivers in the CACC with merge assist was 
designed to place participant vehicles equally distant between two vehicles, allowing for a simple 
merge with only lateral adjustment in position.  

GEE (normal response distribution and identity link function) modelling found a significant 
effect of treatment group ( 2(2) = 11.29, p = 0.004). Perhaps surprisingly, the participants in the 
control condition tended to merge in a similar location in the gap as those people driving in the 
CACC with merge assist group. In contrast, the CACC without merge assist group entered the 
gap significantly closer to the vehicle in front of the participant vehicle in the platoon than both 
the control and CACC with merge assist groups (p < .005).  

Merge number did not significantly affect merge gap position ( 2(3) = 5.49, p > 0.05). The 
interaction between merge number and participant treatment condition was also not significant  
( 2(6) = 7.64, p = 0.27). Figure 4 shows the mean merge gap ratios by condition.  

 
Figure 4. Graph. Estimated mean merge position by treatment group. 

Gap Selection 

All CACC drivers (both without and with longitudinal merge assistance) were presented the 
constant repeating 1.1-s merge gaps. Control drivers, on the other hand, were presented with the 
following repeating sequence of possible merge gaps (minimum and maximum underlined):  

1. 0.7 s.  
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2. 1.1 s.  

3. 1.5 s.  

4. 0.9 s.  

5. 1.4 s.  

6. 1.2 s.  

7. 0.8 s.  

8. 1.0 s.  

9. 1.3 s. 

The platoon into which all drivers merged was moving at a nearly constant speed of 112.65 km/h  
(70 mi/h), meaning that a 0.1-s difference in merge gap is equivalent to 3.13 m (10.27 ft).  

Gap selection among control drivers was modelled using GEE (normal response distribution and 
identity link function) as a function of merge number and prior gap (geographically, the gap 
behind the selected gap). The merge number did not affect the gap selected ( 2(2) = 2.88,  
p = 0.24), suggesting that participants did not modify their gap selection criteria after repeating 
the task several times. A prior gap was found to have a significant effect ( 2(1) = 6.28, p = 0.01), 
but this is believed to be an artifact of the experimental design: the model produced a negative 
coefficient on prior merge gap, indicating that an increase in the prior gap was associated with a 
decrease in the selected gap. However, the sequence of gaps presented is guaranteed to produce 
this decision in six of the nine possible combinations. 

Table 5 shows the gaps presented to participants (repeated in this order) in the control group and 
the corresponding number of times it was selected. While the order in which the gaps were 
presented was not random, a chi-square revealed that no significant difference in the gap selected 
was found ( 2(8) = 11.41, p > 0.05). This indicates that participants were likely to enter the 
roadway at the gap presented at the bottom of the on-ramp rather than adjust speed and distance 
to find a more preferred or desirable gap.  
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Table 5. Gaps presented to the control group and corresponding number of times selected. 

Gap (s) 
Number of 

Occurrences 
0.7 4 
1.1 6 
1.5 9 
0.9 5 
1.4 8 
1.2 15 
0.8 8 
1.0 8 
1.3 5 

 
Distance Used 

The distance required to execute a merge may reflect the ease and/or comfort with which drivers 
make each merge. A short distance suggests that the driver quickly found and merged into a gap 
judged to be acceptable. However, a longer distance may suggest less comfort with gaps in the 
surrounding area or the need to adjust speed significantly to enter the traffic flow.  

This distance was modelled with GEE (normal response distribution, identity link function) as a 
function of treatment group, merge number, and the interaction thereof. Resulting mean 
estimates with 95-percent confidence intervals for each condition and period are shown in  
figure 5. 

 
1 m = 3.3 ft. 

Figure 5. Graph. Estimated mean distance used to merge by merge number and 
experimental condition. 
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Participant condition significantly affected the distance used to complete a merge ( 2(2) = 11.29, 
p = 0.004). On average, both the control (M = 550.08 m (1804.72 ft)) and without merge 
assistance (M = 527.33 m (1730.09 ft)) used more distance to merge into the flow of traffic than 
the with merge assist group (M = 489.10 m (1604.66 ft)). Both groups that manually controlled 
speed used more of the ramp space than the CACC with merge assist group. This may have 
implications in terms of driver expectation of merge location and optimization of on-ramp 
throughput.  

The distance used to complete the merge did not vary significantly based on merge number  
( 2(3) = 5.49, p > 0.05). However, a significant interaction between experimental condition and 
merge number was found ( 2(6) = 17.33, p = 0.008). In order to further explore the interaction, 
distance was examined individually at each of the merges. No significant effect of participant 
condition was found at the first merge ( 2(2) = 0.30, p > 0.05) or the second merge ( 2(2) = 3.26, 
p > 0.05). However, significant differences between conditions were found at both the third  
( 2(2) = 11.40, p = 0.003) and fourth ( 2(2) = 6.09 p = 0.048) merges. In the case of the  
third merge, the control group used significantly more distance to complete the merge than  
both the CACC with merge assist and CACC without merge assist groups (all pD < 0.05). At  
the fourth merge, the control group and the CACC without merge assist groups performed 
similarly, both using significantly more distance to complete the merge than the CACC with 
merge assist drivers.  

DRIVING PERFORMANCE 

The measures of driving performance taken during this experiment were steering entropy and 
average absolute steering wheel torque. Unlike the physiological metrics, none of these required 
standardization. The following analyses focus on the previously defined periods of interest.  

Steering Entropy 

Steering entropy is a technique that captures corrective response and is frequently used to assess 
driver inattentiveness. One might expect higher levels of inattention in the groups with CACC 
because these drivers were not required to maintain speed and may have subsequently had more 
resources available to allocate to other tasks (including mind wandering). 

Steering entropy was calculated for each subject within each 15-s cruising period (i.e., the 
periods where drivers were not expected to actively adjust steering to enter the platoon). 
Experimental condition was not found to significantly affect steering entropy values  
( 2(2) = 5.48, p > 0.05). Further, neither period ( 2(3) = 2.72, p > 0.05) nor the interaction 
between period and experimental condition ( 2(6) = 4.44, p > 0.05) were significant.  

VISUAL FIXATIONS 

One way in which visual attention can be inferred is by examining where drivers are looking. 
Drivers in the CACC with merge assist condition did not need to control speed to successfully 
merge into the main travel lane. As a result, these drivers may not have felt the need to visually 
track traffic as closely as the control and CACC without merge assist conditions. This section 
explores the differences and similarities in glance patterns. 
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Dynamic regions of interest (ROIs) were established to capture the number and duration of 
visual fixations to the merge area (the area to the right of the participant’s vehicle while merging 
into the CACC platoon, which is depicted in figure 6 as a red rectangle). Fixations were defined 
using eye-tracking software as consecutive gaze points falling within a radius of 1 percent of the 
projected screen within 300 ms (ending when new gaze points fall outside of an established 
radius for more than 120 ms).  

 

 
Figure 6. Screenshots. Illustrated dynamic merge area ROI. 

Two different approaches were used to examine glance behavior during merges. In the  
first approach, the number of fixations to the dynamic ROI was analyzed. In this case,  
participant condition did significantly influence the number of fixations to the ROI ( 2(2) = 7.12, 
p = 0.028). The control (M = 2.65) group had significantly more fixations to the ROI than the 
CACC with merge assist group (M = 2.34, pD = 0.024). The CACC without group (M = 2.41) did 
not significantly differ from the CACC with group or the control group (pD > 0.05). 

In the second approach, the length of each merge was taken into consideration. Recall that 
significant differences in the amount of time utilized to complete the merges appeared across the 
different participant conditions. Subsequently, the total amount of time spent looking at the ROIs 
was divided by the total merge time, thus creating a proportion value. Participant condition did 
not significantly affect the proportion of time drivers spent looking at the dynamic ROI during 
the merge ( 2(2) = 2.41, p > 0.05). Similarly, neither the merge number ( 2(3) = 0.05, p > 0.05) 
nor the interaction between participant condition and merge number ( 2(6) = 10.78, p > 0.05) 
were significant.  

TRUST IN THE CACC SYSTEM  

Both the CACC with and without merge assist groups were required to accept some level of trust 
in the system. Recall that those participants in the CACC with merge assist group were not 
required to accelerate or brake at any point to successfully complete the drive. Of the drivers in 
this group, only one ever used their own speed controls to override the system. It is not clear, 
however, whether this person did not trust the system or simply did not understand the 
functionality of CACC. Throughout much of the drive, the participant manually controlled speed 
(by pressing the accelerator and keeping CACC engaged), spun out during the second merge, and 
did not reengage the system during the fourth merge.  

Among participants in the without group, trust was examined during the cruising periods only 
because speed was manually controlled as drivers prepared to merge. Out of 16 participants in 
the without merge assist group, two engaged the accelerator pedal during a cruise period (one in 
period 1 and the other in period 7). However, in both cases, the pedal was used minimally (not 
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necessarily in a manner indicative of distrust in the system) and was possibly the result of simple 
resting the foot on the pedal.
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CHAPTER 4. DISCUSSION 

The goal of this study was to explore drivers’ abilities to merge with CACC platoons. Each 
participant completed four experimental merges in one of the following three different manners:  

• Merging with non-CACC vehicle into a left dedicated lane without CACC platooning and 
varying vehicle gaps.  

• Merging with CACC vehicle into the middle of a CACC platoon without speed 
assistance. 

• Merging CACC vehicle into a CACC platoon with longitudinal speed assistance. 

In addition to merging behavior and performance, workload and arousal were assessed.  

As one would expect, perceived workload was significantly higher for the control condition than 
for both the CACC with and CACC without merge assist groups. This indicates that controlling 
speed does increase drivers’ overall perceived workload. One might expect to reveal similar 
findings while using ACC and traditional cruise control dependent on traffic densities. It is often 
speculated that those people with lower perceived workload will engage in other activities to 
increase arousal (based on the Yerkes-Dodson Law).(4) However, no evidence was found that the 
different groups engaged in different or more non-driving tasks. Of course, it is reasonable to 
expect that the demand characteristics of the experimental environment dissuaded participants 
from participating in other activities given the social stigma associated with distracted driving. It 
remains possible that drivers may be more likely or willing to engage in non-driving activities 
under low perceived workload levels.  

Despite a perceived increase in workload, no differences in physiological arousal between the 
different groups were found. The lack of difference between the different groups could be the 
result of two different causes. The first is that the task participants engaged in was simply too 
mundane to elicit increases in arousal. In other words, the driving task was so simple and routine 
that it did not increase arousal levels. The second possibility is that the equipment used to assess 
physiological arousal was not sensitive enough to capture subtle differences between the 
different participant groups. 

Overall, participants were quite successful in merging into the constant platoon of vehicles. No 
drivers in the CACC with merge assist group collided with another vehicle while merging. 
However, as noted previously, if drivers in the CACC with merge assist condition did not 
override the system or lose control of the vehicle, then it was impossible to collide with another 
vehicle in the simulation because of the programming of the drive. In total, the control and 
CACC without merge assist groups experienced 24 collisions, over half (58 percent) of which 
occurred during the first merge. The improvement over time is likely the result of practice and 
experience (specifically, the experience of learning that the other vehicles do not respond quite 
like a real driver might). In the real world, as a driver, one might expect the vehicle behind you 
on a merging approach to slow and allow a more comfortable gap in order to complete the 
merge. Several of the participants that experienced a collision commented on the following 
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vehicle not creating a larger gap. For example, one participant said “In my mind, I think he 
should have let me in,” while another said “Come on, guys…Let me in.” Taken together, it 
appears that the unanticipated behavior of the other traffic may have contributed more to the 
collisions that the actual abilities of the driver. With this in mind, it is it important to take other 
typical behavior that is seen in manual driving into account when designing road technology 
applications (e.g., other drivers creating gaps or slowing for emergency vehicles).  

In sum, it appears that CACC with merge assist may increase the efficiency of drivers’ entering 
CACC platoons of vehicles. Drivers (with and without merge assistance) were willing to accept 
speed assistance in the simulated environment. Drivers also willingly entered gaps smaller than 
1.1 s, showing that there may be a potential for smaller gaps to be used in a real-world setting. 
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