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BACKGROUND

The goal of transportation is generally stated as the safe and efficient movement of people and
goods.  To achieve this goal, designers use many tools and techniques.  One technique used to improve
safety on roadways is to examine the consistency of the design.  Design consistency refers to highway
geometry’s conformance with driver expectancy.  Generally, drivers make fewer errors at geometric
features that conform with their expectations.  An inconsistency in design can be described as a
geometric feature or combination of features with unusual or extreme characteristics that drivers may
drive in an unsafe manner. This situation could lead to speed errors, inappropriate driving maneuvers,
and/or an undesirable level of accidents.  

In the United States, design consistency on two-lane rural highways has been assumed to be
provided through the selection and application of a design speed.  One weakness of the design-speed
concept is that it uses the design speed of the most restrictive geometric element within the section,
usually a horizontal or vertical curve, as the design speed of the road.  Consequently, the design-speed
concept currently used in the United States does not explicitly consider the speeds that motorists travel
on tangents or less restrictive curves. Other weaknesses in the design-speed concept have generated
discussions and additional research into other methods for evaluating design consistency along two-lane
rural highways.  Both speed-based and non-speed-based highway geometric design consistency
evaluation methods have been considered.  These methods have taken several forms and can generally
be placed in the following areas:  vehicle operations-based consistency (including speed), roadway
geometrics-based consistency, driver workload, and consistency checklists.

 Some of these methods may be incorporated into the Interactive Highway Safety Design
Model (IHSDM).  IHSDM is being developed by the Federal Highway Administration (FHWA) as a
framework for “an integrated design process that systematically considers both the roadway and the
roadside in developing cost-effective highway design alternatives.”(1)  The focus of  IHSDM is on the
safety effects of design alternatives.  Design consistency is one of several modules which are to be
integrated with commercial computer-aided design (CAD)/ roadway design software in the current
version of  IHSDM.(2) Other IHSDM modules include: crash prediction, intersection diagnostic review,
roadside safety, driver/vehicle, policy review and traffic analysis.

OBJECTIVES

An earlier FHWA study, Horizontal Alignment Design Consistency for Rural Two-Lane
Highways (FHWA-RD-94-034), developed a design consistency evaluation procedure that used a
speed-profile model based on horizontal alignment.(3)  The objective of this study, “Evaluation of
Design Consistency Methods for Two-Lane Rural Highways” (FHWA-RD-99-173),  was to expand
the research conducted under the previous FHWA study in two directions.  These directions were 1) to
expand the speed-profile model and 2) to investigate three promising design consistency rating
methods.  
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The previous study’s model estimates speeds along a roadway using horizontal alignment data. 
Recommendations from that study included conducting further research to validate the developed
speed-profile model (including the 85th percentile speeds on curves and long tangents) and to validate
the assumed rates and locations relative to curves at which acceleration and deceleration actually
occurs.  To meet these recommendations, the objectives for the current FHWA study were to:

C Develop speed prediction equations for horizontal and vertical alignments and for other
vehicle types.

C Determine the effects of spiral transitions on speeds.
C Determine the deceleration and acceleration rates for vehicles approaching and departing

horizontal curves.
C Validate the speed prediction equations.
C Develop a speed-profile model for inclusion in IHSDM.
C Identify the relationship of the design consistency module to other modules and components

of  IHSDM. 

While predicting operating speed is the more common method for evaluating the consistency of
a roadway, other methods have been discussed and explored.  The three methods selected for
additional investigation in this study included: alignment indices, speed distribution measures, and driver
workload.  Alignment indices are quantitative measures of the general character of a roadway seg-
ment’s alignment.  These potential indicators may identify a geometric inconsistency when there is a
large increase in the magnitude of the alignment indices for a successive roadway segment or feature or
when a high rate of change occurs over some length of road.  Speed distribution measures that are
candidates for a consistency rating method include variance, standard deviation, coefficient of variation,
and coefficient of skewness.  Driver workload is a measure of the information processing demands
imposed by roadway geometry on a driver.  An increase in driver workload is a potential indication that
a feature is inconsistent.  Following is a summary of the major findings from the research efforts; other
reports contain additional details on the efforts undertaken during this research project.(4,5)

SPEED-PROFILE MODEL

In this research project, several different efforts were undertaken to predict operating speed for
different conditions such as on horizontal curves, vertical curves, and on a combination of horizontal and
vertical curves; on tangent sections; and prior to or after a horizontal curve.   Speed data were
collected at over 200 two-lane rural highway sites for use in the project.  In addition to using the data to
develop speed prediction equations for horizontal and vertical alignments, the effects of spiral curves
and vehicle types were examined.  Regression equations were developed for passenger car speeds for
most combinations of horizontal and vertical alignment. Table 1 lists the developed equations and/or the
assumptions made for the different alignment conditions.
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Table 1.  Speed Prediction Equations for Passenger Vehicles.
AC EQ#

(see note 1) Alignment Condition
Equation

(see note 2)
Num.
Sites R2 MSE

1. Horizontal Curve on Grade : -9% # G < -4% 21 0.58 51.95V85 ' 102.10 & 3077.13
R

2. Horizontal Curve on Grade : -4% # G < 0% 25 0.76 28.46V85 ' 105.98 & 3709.90
R

3. Horizontal Curve on Grade : 0% # G < 4% 25 0.76 24.34V85 ' 104.82 & 3574.51
R

4. Horizontal Curve on Grade : 4% # G < 9% 23 0.53 52.54V85 ' 96.61 & 2752.19
R

5. Horizontal Curve Combined with Sag 
Vertical Curve

25 0.92 10.47V85 ' 105.32 & 3438.19
R

6. Horizontal Curve Combined with Non-Lim-
ited Sight Distance Crest Vertical Curve

(see note 3) 13 n/a n/a

7.
Horizontal Curve Combined with Limited
Sight Distance Crest Vertical Curve (i.e., K #
43 m/%)

V85 ' 103.24 & 3576.51
R

(see note 4)

22 0.74 20.06

8. Sag Vertical Curve on Horizontal Tangent V85 = assumed desired
speed

7 n/a n/a

9.
Vertical Crest Curve with Non Limited Sight
Distance  (i.e., K > 43 m/%) on Horizontal
Tangent

V85 = assumed desired
speed

6 n/a n/a

10.
Vertical Crest Curve with Limited Sight Dis-
tance  (i.e., K # 43 m/%) on Horizontal Tan-
gent

9 0.60 31.10V85 ' 105.08 & 149.69
K
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NOTES:
1. AC EQ# = Alignment Condition Equation Number
1. Where: V85 = 85th percentile speed of passenger cars (km/h) K = rate of vertical curvature

R = radius of curvature (m) G = grade (%)
3. Use lowest speed of the speeds predicted from equations 1 or 2 (for the downgrade) and equations 3 or 4 (for

the upgrade).
4. In addition, check the speeds predicted from equations 1 or 2 (for the downgrade) and equations 3 or 4 (for the

upgrade) and use the lowest speed.  This will ensure that the speed predicted along the combined curve will
not be better than if just the horizontal curve was present (i.e., that the inclusion of a limited sight distance
crest vertical curve result in a higher speed).

For passenger vehicles, the best form of the independent variable in the regression equations is
1/R (i.e., inverse radius). Operating speeds on horizontal curves are very similar to speeds on long
tangents when the radius is approximately 800 m or more.  When this condition occurs, the grade of the
section controls and the contribution of the horizontal radius is negligible. Operating speeds on
horizontal curves drop sharply when the radius is less than 250 m. Figure 1 illustrates the collected data
and the developed regression equations.

Passenger vehicle speeds on limited sight distance (LSD) vertical curves on horizontal tangents
could be predicted using one over the rate of vertical curvature(1/K) as the independent variable.  A
statistically significant regression equation was not found for crest curves where the sight distance is not
limited; therefore, the desired speed was assumed. For sag curves on horizontal tangents, the plot of the
seven available data points and the regression analysis indicate that the desired speed should be
assumed.  Figure 2 illustrates the data and the suggested regression equation for limited sight distance
crest curves.

For non-limited sight distance (NLSD) crest vertical curves in combination with horizontal
curves, the lower speed of 1) the speeds predicted using the equations developed for horizontal curves
on grades or 2) the assumed desired speed should be used.  The collected speed data for that condition
were generally for large horizontal curve radii with several of the speeds being above 100 km/h. 
Drivers may not have felt the need to reduce their speed in response to the geometry for these large
radius horizontal curves.  For the horizontal curvature combined with either sag or limited sight distance
crest vertical curves, the radius of the horizontal curve was the best predictor of speed.  Figure 3 shows
the data and regression equations for combination curves.
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Figure 3. Combination Curves: V85 versus R.

 The analysis of spiral curves found that the use of spirals did not result in a significant difference
in speed when compared to similar sites without spirals.  Because most of the study sites had few spot-
speed observations for trucks and recreational vehicles, a limited analysis was performed for those sites
with a minimum of 10 observations.  The limited graphical analysis on trucks and recreational vehicles
(RVs) showed that the truck/RV speeds plotted near the  passenger car regression line with more of
the data being below than above the line.  Similar to the passenger car data, the truck/RV data showed
lower speeds for smaller radii curves.  Therefore, a design consistency evaluation should use the
equations based on passenger car data.  

Data were collected and analyzed at 21 sites to determine appropriate acceleration and
deceleration values prior to and after a horizontal curve. The validation results indicate that the
acceleration and deceleration assumptions employed in the previous speed-profile model  are not valid
for the set of study sites selected in this study.(3)  The only sites with acceleration and deceleration rates
which approached 0.85 m/s2 were those with curve radii less than 250 m.  New models were
developed to consider the effects of curve radius on acceleration/deceleration rates.  The models were
based on maximum acceleration and deceleration rates observed at the study sites.  Table 2 lists the
developed acceleration/deceleration equations and values.

The speed data collected in the field were used to determine whether alignment indices can
accurately predict speeds on a tangent.  Additionally, other possible influences of desired speeds of
motorists were examined.  The findings of this research indicated that combinations of alignment indices
and other geometric variables were not able to significantly predict the 85th percentile speeds of
motorists on long tangents of two-lane rural highways.  Other geometric variables examined included
region, total pavement width, vertical grade, driveway density, and roadside rating. 
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For those situations when a vehicle is traveling on an upgrade or downgrade, the equations
used in the TWOPAS model can be used to estimate speed for different vehicle types.(6)  The model
can be used to predict the speed of the vehicle at any point on the grade if its initial speed at the entry to
the grade is known.

A speed-profile model was developed from the previously discussed findings.  The model can
be used to evaluate the design consistency of a facility or to generate a speed profile along an alignment. 
The steps to follow in the model are shown in figure 4.  The initial step is to select the desired speed
along the roadway.  Based upon the findings from the research, the average 85th percentile speeds on
long tangents range between 93 and 104 km/h for the different states in this study.  Therefore, a speed
of 100 km/h is a good estimate of the desired speed along a two-lane rural roadway when seeking a
representative, rounded speed.  

The speed prediction equations are listed in table 1.  The speeds predicted using these
equations represent the speeds measured at the midpoint of the curve. The model assumes, however,
that this speed is constant throughout the horizontal or vertical curve. The equations used in the
TWOPAS model can be used to check the performance-limited speed at every point on the roadway
(upgrade, downgrade, or level).  If at any point the grade-limited speed is less than the tangent or curve
speed predicted using the speed prediction equations or the assumed desired speed, then the grade-
limited speed will govern. 

The speeds predicted from the previous three
methods (assumed desired speed, speeds predicted
using the speed prediction equations, and the speeds
from the TWOPAS equations) are compared and the
lowest speed selected.  If a continuous speed profile
for the alignment is needed, these speeds would then
be adjusted for deceleration and acceleration using
the speed- profile rates listed in table 2.  Figure 5
illustrates the different conditions that can occur with
supporting equations  listed in table 3.  The speeds for
the different alignment features could be compared at
any step in the speed-profile model to identify unac-
ceptable changes in speed between alignment fea-
tures.  For example, a flag could be raised if the
speed change from one curve to another is greater than (or equal to) a preset value such as:

Good design ªV85 # 10 km/h
Fair design 20 km/h $ªV85 $10 km/h
Poor design ªV85 $20 km/h

Select desired
speed

Predict speed for 
each curve

Predict grade-limited speed
using TWOPAS equations

Select lowest speed for each element

Adjust speeds for acceleration and deceleration

Complete Speed Profile

Perform
Design 

Consistency
Evaluation

Figure 4.  Speed-Profile Model Flowchart.
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In addition, a flag could be raised if acceleration or deceleration is greater than desired using the values
listed in the table 2.  

VALIDATION OF SPEED PREDICTION EQUATIONS

An initial effort within this study was to develop speed prediction equations using only part of
the collected data (91 total sites).  Six equations were developed from the data.  Between 5 and 28
sites were used in each equation development. The speeds predicted from these equations were then
compared to the observed values at similar sites.  Between 3 and 22 sites were used in the comparisons
for a total of 68 sites.  Figure 6 shows the plot of the speed that was predicted using the equation to the
speed observed in the field for each of the 68 sites.  The 6 speed prediction equations performed well
in the validation effort with a range of mean absolute percent error between 4.1 and 10 percent. 
Therefore, all of the data available as part of this research study was then used to developed the speed
prediction equations listed in table 1. 

SPEED DISTRIBUTION MEASURES 

Measures of vehicle operations that may be an appropriate basis for consistency rating methods
include speed variance, lateral placement (mean and variance), erratic maneuvers, and traffic conflicts. 
These measures have been evaluated as surrogate measures of accident experience and measures of
effectiveness of delineation treatments.(7-10)  In roadway delineation research, speed variance and lateral
placement variance have been considered as indicators of the effectiveness of alternative treatments at
reducing errors in the guidance level of the driving task.  Design inconsistencies also increase guidance-
level errors, and it is reasonable to hypothesize that these measures would be correlated with and could
complement speed reduction in evaluating design consistency.
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Table 2. Deceleration and Acceleration Rates.

Deceleration Rate, d (m/s2) Alignment Condition Acceleration Rate, a
(m/s2)

Speed Profile

Radius, R (m)

R $ 436

d

 0.00

1-4 Horizontal Curves on Grade: 
-9% # G < 9%

Radius, R (m) a

R > 875 0.00

175 # R < 436

R < 175

% 0.6794 & 295.14
R

1.00

436 < R # 875 0.21

250 < R # 436 0.43

175 < R # 250 0.54

1.00 5 Horizontal Curve Combined 
with Sag Vertical Curve

0.54

(use rates for Alignment 
Conditions 1 to 4) 6

Horizontal Curve Combined
with Non-Limited Sight 
Distance Vertical Curve

(use rates for Alignment
Conditions 1 to 4)

1.00 7

Horizontal Curve Combined
with Limited Sight  Distance
Crest Vertical Curve (i.e., K

# 43 m/%)

0.54

n/a 8 Sag Vertical Curve 
on Horizontal Tangent n/a

n/a 9

Vertical Crest Curve with
Non- Limited Sight Distance 
(i.e., K > 43 m/%) on Hori-

zontal Tangent

n/a

1.00 10

Vertical Crest Curve with
Limited Sight Distance  (i.e.,
K # 43 m/%) on Horizontal

Tangent

0.54

where:  K = rate of vertical curvature      G = grade (%)

Design Consistency (all alignment conditions)

1.00 to 1.48 Good Design 0.54 to 0.89

1.48 to 2.00 Fair Design 0.89 to 1.25

>2.00 Poor Design > 1.25
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Figure 5. Acceleration/Deceleration Conditions.
(See table 3 for variable definitions.)
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Figure 5. Acceleration/Deceleration Conditions  (continued).
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LSCc '
2V 2

fs & V 2
n & V 2

n%1

25.92 d
(1)

Xfd '
V 2

fs & V 2
n%1

25.92 d
(2)

Xfs ' LSCa & Xfd & X fa (6)

Xtd '
V 2

a & V 2
n%1

25.92 d
(7)

Xcd '
V 2

n & V 2
n%1

25.92 d
(3)

Xca'
V 2

n%1 & V 2
n

25.92 a
(4)

Xfa '
V 2

fs & V 2
n

25.92 a
(5)

Va ' Vn % ªVa (8)

ªVa '
&2Vn % [4V 2

n % 44.06(LSCa & Xcd)]
1
2

2
  (9)

V a
n%1 ' Vn % a (LSCa) (10)

Table 3. Equations for Use in Determining Acceleration and Deceleration Distances.

Note: when calculating Va the curve with the larger radius is to be used.

    

Where:
Vfs = 85th percentile desired speed on long tangents (m)
Vn = 85th percentile speed on Curve n (km/h)
Vn+1 = 85th percentile speed on Curve n + 1 (km/h)

                V a
n+1         = 85th percentile speed on Curve n + 1 determined as a function of the assumed                    

acceleration rate (km/h)
Va = maximum achieved speed on roadway between curves in conditions B (km/h)
?Va = difference between speed on Curve n and the maximum achieved speed on roadway 

between curves in Condition B (km/h)
d = deceleration rate, see table 2  (m/s2)
a = acceleration rate, see table 2  (m/s2)
LSCc = critical length of roadway to accommodate full acceleration and deceleration (m)
LSCa = length of roadway available for speed changes (m)
Xfd = length of roadway for deceleration from desired speed to Curve n + 1 speed (m)
Xcd = length of roadway for deceleration from Curve n speed to Curve n + 1 speed (m)
Xtd = length of roadway for deceleration from Va to Curve n + 1 speed (m)
Xca = length of roadway for acceleration from Curve n speed to Curve n + 1 speed (m)
Xfa = length of roadway for acceleration from Curve n speed to desired speed (m)
Xfs = length of roadway between two speed limited curves at desired speed (m)
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Speed distribution measures—including variance, standard deviation, coefficient of variation,
and coefficient of skewness—are logical candidates for a consistency rating method to complement
speed reduction estimates from the 85th percentile speed models.  The rationale for using spot-speed
variability measures is that inconsistent features are expected to cause more driver errors and greater
variation in guidance-level decisions (i.e., speed and path choice) than consistent features. 
Correspondingly, it was hypothesized that inconsistent features would exhibit more spot-speed
variability than consistent features and that single-vehicle accidents resulting from guidance-level errors
will increase with increasing speed variability.    

Graphical evaluations were initially performed to obtain an appreciation of how the speed
distribution measures varied in relationship to roadway geometry and speed measures, such as posted
speed.  For horizontal curves, standard deviation of speed generally varied from 6 to 12 km/h as
illustrated in figure 7.  As mean speed increased, standard deviation of speed became more variable,
suggesting that restrictive geometry controlled both mean speed and standard deviation for small radius
horizontal curves.  The graphical analysis of the effects of roadway geometry on speed distribution
measures presented no clear indication of a relationship between any of the measures (variance,
standard deviation, coefficient of variation, coefficient of skewness, coefficient of kurtosis) and
geometric elements (tangent length, horizontal curve radius, horizontal or vertical curve length, deflection
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angle, superelevation, lane/pavement width, rate of vertical curvature, approach grade, departure
grade) with one exception.  For radii 100 m and less, standard deviation was lower than for larger radii. 

The analyses conducted to examine the relationship between standard deviation of speeds and
design or posted speed also did not produce any significant relationships.  Expected trends in the data
were found which related speed measures to these two speed components, but the variation of the data
suggested that design and posted speed were not accurate predictors of speed distribution measures. 
In addition, an evaluation using regression was also performed.  Linear relationships between speed
distribution measures of successive features existed because the same sample of drivers were being
measured.  Extreme differences existed for some locations where the horizontal distribution measures
did not fit the linear trend with respect to the tangent measures.  These locations may be locations
where inconsistencies are present, but without accident data no inferences can be made regarding these
design inconsistencies. 

In summary, the results from the analyses indicated that speed variance generally decreased
on horizontal curves as compared to the upstream tangent.  Given this finding and the limited statistical
relationships, it is not appropriate to consider speed variance as a design consistency measure for
horizontal curvature.
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Alignment INDICES 

In this study, one of the alternative methods investigated for rating the design consistency of a
roadway was alignment indices.  Alignment indices are quantitative measures of the general character of
a roadway segment’s alignment.  Problems with geometric inconsistencies arise when the general
character of alignment changes between segments of roadway.  A common example is where the
terrain transitions from level to rolling or mountainous, and the alignment correspondingly changes from
gentle to more severe.  Proposed indicators of geometric inconsistency are large increases in the
magnitude of alignment indices for successive roadway segments or a high rate of change in alignment
indices over some length of roadway.

Germany uses a horizontal alignment index that indicates the alignment severity.(11) The British
use two indices–one for alignment and one for layout–to check for compatibility between a roadway
segment’s design speed and likely operating speeds on the roadway.(12)  Polus and Dagan proposed
alignment indices based upon: the proportion of a roadway section that is curved, the ratio of the
minimum and maximum radii of a roadway section, the ratio of the average radius of curves on a
roadway section to the minimum radius for the roadway’s design speed, and a spectral analysis of the
extent to which the alignment exhibits a cyclical or repeating pattern.(13)  Their preliminary evaluations
suggested that such indices hold promise as measures of consistency.

Table 4 provides a list of the alignment indices selected for use in this study.  This table also
shows the equations necessary to compute the indices and the resulting units.  These indices were
initially used to determine if they, together with other geometric variables such as vertical grade, could
predict speed on a tangent.  A subset of the alignment indices shown in table 4 that were selected for
examination as possible measures in rating the design consistency of two-lane rural highways included:
Average Radius, Maximum Radius/Minimum Radius, Average Tangent Length, and Average Rate of
Vertical Curvature.  In addition, the ratio of individual curve radius to average radius and the ratio of
individual tangent length to average tangent length were also examined.  

None of the alignment indices studied were statistically significant predictors of the desired
speeds of motorists on long tangents of two-lane rural highways.  Of the geometric variables examined,
only the vertical grade at the tangent site significantly affected the desired speeds of motorists on long
tangents of two-lane rural highways.  The relationship of alignment indices to safety is discussed below
in the section titled Relationship of Design Consistency Measures to Safety.  

DRIVER WORKLOAD

Generally, little visual information processing capacity is required of the experienced driver to
perform the driving task on two-lane rural highways.  A consistent roadway geometry allows a driver to
accurately predict the correct path while using little visual information processing capacity, thus allowing
attention or capacity to be dedicated to obstacle avoidance and navigation.  Several research efforts
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have been undertaken to measure the effects of design consistency on driver workload.  The logic
underlying these efforts is that the more difficult or unusual a feature or feature combination, the greater
the visual information processing requirement and, in turn, the less desirable the feature.

This current project validated and extended work begun previously by Krammes et al.(3)  Like
the previous study, a test-track study to examine driver workload was performed.  Companion efforts
using on-road studies, simulator studies, and an eye-mark system were also performed.  Curve
sequence, radius, deflection angle, and separation distance between curves were examined through the
use of vision occlusion and subjective ratings. 

Table 4.  Alignment Indices Selected for Evaluation.

Horizontal Alignment Indices
• Curvature Change Rate - CCR (deg/km)

where:
?   =  deflection angle (deg)
L  =   length of section (km)

• Degree of Curvature - DC  (deg/km)
where:

DC = degree of curvature (deg)
L = length of section (km)

• Curve Length: Roadway Length - CL:RL
where:

CL = curve length (m)
L = length of section (m)

• Average Radius - AVG R  (m)
where:

R = radius of curve (m)
n = number of curves within section

• Average Tangent - AVG T  (m)
where:
 TL = tangent length (m)
  n = number of tangents within 

section

Vertical Alignment Indices
• Vertical CCR - V CCR  (deg/km)

where:
A = absolute difference in grades       

(deg)
L = length of section (km)

• Average Rate of Vertical Curvature - V AVG K (km/%)
where:
   L = length of section (km)
   A = algebraic difference in grades

(%)
   n = number of vertical curves

• Average Gradient - V AVG G  (m/km)
where:
  ? E = change in elevation between

VPIi-1 and VPI  (m)
  L = length of section (km)

Composite Alignment Indices 
• Combination CCR - COMBO  (deg/km)

where:
? = deflection angle (deg)
A = absolute difference in

grades (deg)
L = length of section (km)

In the vision occlusion procedure, drivers wore a Liquid Crystal Display (LCD) visor that was
opaque except when the driver request a 0.5 s glimpse through the use of a floor-mounted switch.  The
visual demand was computed as the ratio of the glimpse length divided by the time elapsed from the last
glimpse until the time of the present request.  The calculation provides a measure of the percentage of
time that a driver is observing the roadway at any point along the roadway.  The value increases as the
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time between successive glances grows shorter, and decreases as the interval between glances
increases.  The more information the driver needs for controlling of the driving function, the more often
the scene ahead must be sampled, i.e., the workload increases.

In a second phase to the vision occlusion testing, the glimpses were received at a rate set by the
experimenter.  Beginning at a point that did not provide sufficient vision to drive the roadway, the rates
were progressively increased until the drivers could successfully drive the features.  An assessment of
the tolerance for workload change were developed by comparing the visual demand during the driver-
controlled vision occlusion to the visual demand during the experimenter-controlled vision occlusion.

Subjective ratings were obtained using a modified Cooper-Harper scale, used widely in aircraft
testing.  The scale ranges from 1 (very easy) to 10 (impossible).  Descriptive terms were modified to
relate the scale to the driving environment, and anchor definitions were provided to ensure that drivers
compared the scaling to familiar circumstances.  

Visual demand was determined at three types of facilities:  test track environment (24 subjects
driving 6 single curves and 4 paired curves for 6 runs), on-road (6 subjects driving 5 curves for 4 runs),
and simulation (24 subjects driving 12 curves for 6 runs).  The general pattern was for the visual
demand to begin to rise about 90 m from the beginning of the curve, peak near the beginning, remain
level or slightly drop through the curve, and then gradually return to the baseline level after the end of
the curve. Figure 8 illustrates this pattern for the test track data. 
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Figure 8.  Visual Demand Averaged Over All Subjects for Each Single
Curve.

To compare the data between testing facilities, two measures were calculated: VD and VD30. 
VD is the visual demand averaged over the length of the curve.  Because this approach results in a
value that is directly proportional to the length of the curve and long curves may have lower VD values
because more of the lower “tail” is included in the calculation, other measures were investigated.  The
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visual demand for the initial 30 m following the PC (VD30) was also calculated and compared between
testing facilities.  This measure allows for a better understanding of the effect of the roadway geometry
in or near the peak VD, although the absolute peak associated with a particular run might or might not
be included in that 30 m.

Driver workload increases linearly with the inverse of radius.  That is, as radius becomes
smaller, driver workload increases.  This finding is supported by the variety of measures and techniques
used to evaluate driver workload.  Both subjective (modified Cooper-Harper rating) and objective
(visual demand) measures of driver workload indicated similar trends.  The effect of deflection angle
was persistent but small in overall influence and practical significance for driver workload.  Analyses
examining subjective and objective measures indicated a modest effect, although the subjective measure
(modified Cooper-Harper rating) provided a clearer indication of the influence of deflection angle on
workload.

The examination of paired curves revealed that neither type of curve pair (i.e., broken back- or
S-curve) nor curve pair separation greatly influenced VD, although their influence was statistically
significant. Somewhat contradictory results were found, indicating different responses depending on the
run.  An interaction between separation and pair type indicated that closely spaced S-curves had
significantly higher workload than closely spaced broken-back curves when run 1 results were
examined.  Runs 2-6 results indicated that widely spaced curves had higher VD than closely spaced
curves.  Both of these findings were unexpected. It was anticipated that S-curves would be more
consistent with driver expectations (and be associated with lower workload) and that more closely
spaced curves would impose a greater workload through carryover from the previous curve.  The VD
changes observed were relatively small, however, and further research should be conducted to confirm
or extend these results. 

When vision was not occluded in simulation occlusion test sessions, drivers primarily looked
ahead searching for points where roads curved and generally ignored edge markings in the near field. 
Where in the distance drivers looked depended upon the curve direction (left or right) and how sharp
the curve was.  The sharper the curve, the more likely drivers were to look at the outside lane line
(versus the inside lane line).  This finding may have implications for delineation placement (i.e., providing
enhanced outside lane line treatments for sharp curves).

Several different workload measures and testing environments were used in the course of this
research project.  Figure 9 provides overall visual comparisons for VD.  Examining the figure, it is
apparent that the measures used in the project to represent driver workload were relatively robust.  Of
the six possible comparisons, statistical analyses showed that five resulted in the conclusion that no
significant difference in slope (with respect to the inverse of radius) existed between the TTI test track
study regression equations and the comparison equations.  This finding provides a level of confidence
that workload differences between features can reliably be predicted.  The exception to this finding was
between the current test track study and the simulator study for one measure of workload, VD.
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The comparisons between intercepts, or constants, yielded the finding that those intercepts
were generally significantly different.  The cause for these differences is difficult to determine exactly,
but differences in roadway markings (i.e., alternating markers every 9.2 m compared to  markers on
both sides every 6.1 m, painted center stripes and edge lines compared to raised markings, etc.),
testing environments (test track versus simulator, test track versus highway), and the use of different
subjects probably account for many of the differences. 
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Figure 9. Overall Equations: VD.

The finding that there is no difference in the slope of the regression line when comparing test
track results with on-road results, but that there is a difference in the intercept, would indicate that
relative levels of workload can be ascertained, but not absolute levels.  This finding shows promise in
determining differences in workload levels between successive highway features, but not in baseline
levels.  Because most applications of driver workload are expected to be with respect to changes in
level rather than in absolute terms, the general agreement with respect to the slope of the workload
measures used is very encouraging.  The overall robustness in response should yield a greater
confidence in the measures used and lead to further use, research, and future application.

RELATIONSHIPS OF DESIGN CONSISTENCY MEASURES TO SAFETY

Before a design consistency methodology is recommended to geometric designers, however, it
would be valuable to demonstrate that the proposed design consistency measures are, in fact, related to
safety.  Following is a summary of the evaluation.  A database was developed to test the relationship to
safety of the roadway alignment indices.  To assemble this database, data were obtained from the
FHWA Highway Safety Information System (HSIS) for state-maintained two-lane rural highways in the
State of Washington.  Criteria used in establishing study segments included: a minimum section length of
6.4 km, a maximum section length of 32 km, minimum posted speed limit of 88.5 km/h or more, and
elimination of portions of roadway with features that might interfere with the analysis.  These criteria
resulted in 291 highway sections available for analysis.  The analysis considered only non-intersection
accidents between 1993 and 1995 that involved:  1) a single vehicle running off the road; 2) a multiple-
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vehicle collision between vehicles traveling in opposite directions; or 3) a multiple-vehicle collision
between vehicles traveling in the same direction.  All accidents involving parking, turning, or passing
maneuvers, animals in the roadway, bicycles, or motorcycles were excluded. 

The safety evaluation considered seven candidate design consistency measures: the speed
reduction from one geometric design feature to another and six alignment indices.  Regression models
were developed to investigate the relationship between each candidate design consistency measure and
safety.  The statistical models developed were not intended for use as accident predictive models but
were instead intended to illustrate the nature of the relationship of candidate design consistency
measures to safety.  Accident frequencies were modeled as a function of exposure (annual average
daily traffic -- AADT -- and section length, both on the logarithmic scale) and each of the alignment
indices taken one at a time. Sensitivity analyses were also conducted to examine the sensitivity of the
predicted accident experience to the alignment index.  

Of the candidate design consistency measures, four have relationships to accident frequency
that are statistically significant and appear to be sensitive enough that they may be potentially useful in a
design consistency methodology.  These four candidate design consistency measures are:

• Predicted speed reduction by motorists on a horizontal curve relative to the preceding
curve or tangent.

• Ratio of an individual curve radius to the average radius for the roadway section as a
whole.

• Average rate of vertical curvature for a roadway section.
• Average radius of curvature for a roadway section.

Thus, these measures appear promising for assessing the design consistency of roadway alignments.

Of these candidate design consistency measures, the speed reduction on a horizontal curve
relative to the preceding curve or tangent clearly has the strongest and most sensitive relationship to
accident frequency.  Table 5 is an example of the relationship between speed reduction between
successive geometric elements and accident rates.  Accident frequency is not as sensitive to the
alignment indices reviewed as it is to the speed reduction for individual horizontal curves.  In addition,
the evaluation has shown that the speed reduction to a horizontal curve is a better predictor of accident
frequency than the radius of that curve.  This observation makes a strong case that a design consistency
methodology based on speed reduction provides a better method for anticipating and improving the
potential safety performance of a proposed alignment alternative than a review of horizontal curve radii
alone.
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Table 5.  Accident Rates at Horizontal Curves by Design Safety Level.

Design safety level*

Number of
horizontal

curves

3-yr
accident
frequency

Exposure
(million veh-

km)

Accident rate
(accidents/

million veh-km)
Good: ªV85 # 10 km/h
Fair: 10 km/h < ªV85 # 20 km/h
Poor: ªV85 > 20 km/h

4,518
622
147

1,483
217
47

3,206.06
150.46
17.05

0.46
1.44
2.76

Combined 5,287 1,747 3,373.57 0.52

*ªV85 = difference in 85th percentile speed between successive geometric elements (km/h)

CONCLUSIONS

The following general conclusions were developed based upon the findings of the study.

Speed-Profile Model

• This research produced speed prediction equations that can be used to calculate the
expected 85th percentile speed along an alignment that includes both horizontal and vertical
curvature.

• The average 85th percentile speed for long tangents ranged from 93 to 104 km/h for the
states in this study.  Based on the data and engineering judgment, the operating speeds on
tangents and the maximum operating speeds on horizontal curves could be rounded to 100
km/h.

• After establishing that current acceleration and deceleration rates and assumptions are not
valid, at least for the sites selected in this study, new models were developed that predict
acceleration and deceleration in the vicinity of a horizontal curve as a function of curve
radius. 

• The various findings from this study were used to develop a speed-profile model.  This
model can be used to evaluate the design consistency of a facility or to generate a speed
profile along an alignment.

• The speed-profile model developed in the research appears to provide a suitable basis for
the IHSDM design consistency module.  Therefore, IHSDM should contain a design
consistency module based on the speed-profile model developed in this research.
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Alignment Indices

• The alignment indices did not explain the variation in measured speeds on long tangents nor
are they as sensitive to accident frequency as speed reduction predictions. 

Speed Distribution Measures

• Based upon the findings from this research, speed variance is not appropriate as a design
consistency measure for horizontal curves. 

Driver Workload

C Driver workload has very good potential as a design consistency rating measure.  Addi-
tional investigation is necessary to develop threshold values indicating limits to driver
workload change, with the work examining workload tolerance performed in this study
providing a starting point.

C The vision occlusion method is sensitive to changes in road geometry and is a promising
measure of effectiveness.  Vision occlusion should be considered for use in future studies
when the visual demand/workload of driving situations is to be determined.

C The preferred method of computing vision demand for a horizontal curve is over a relatively
small fixed-length portion of roadway after the beginning of the curve to eliminate potential
confounding between the summary measures used and the length of the curve.  In this study
measures based on the first 30 m of the test curves were used successfully.

C Based on this research, simulator results can provide reasonable estimates of real world
estimates of workload and should be considered for use in future studies of visual demand.

Relationships of Design Consistency Measures to Safety

C Of the candidate design consistency measures, the speed reduction on a horizontal curve
relative to the preceding curve or tangent has the strongest relationship to accident fre-
quency.

C The following alignment indices are also related to safety:
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< Ratio of an individual curve radius to the average radius for the roadway section as a
whole.

< Average rate of vertical curvature for a roadway section.
< Average radius of horizontal curvature for a roadway section.

However, these alignment indices are not as strongly related to safety as speed reduction.

RECOMMENDATIONS

The following recommendations are made based upon the findings and conclusions of this study:

• Additional insight into the influence of speeds on tangent sections of various lengths and
grades is needed.  This proposed research would greatly enhance the effectiveness of any
speed-profile model because it may validate the assumptions currently being made.

• The acceleration and deceleration models developed here were exclusively related to the
impact of the horizontal curve.  It is recommended that a similar effort be undertaken to
assess the impact of vertical curves, as well as horizontal-vertical curve combinations on
acceleration and deceleration profiles. 

• Further research should be conducted to extend all aspects of this research, such as speed
prediction equations, acceleration/deceleration behavior, and the speed-profile model, to
roadway types other than two-lane rural highways.

• Further refinements should be made to the IHSDM design consistency module in future
research to include a capability to identify design inconsistencies based on factors other
than horizontal and vertical alignment.  Such factors might include intersections, driveways,
and auxiliary lanes.

• Further research should be conducted in estimating operating speeds of trucks and
recreational vehicles for different horizontal and vertical curves.  Additional data are
required to develop regression models to estimate their operating speeds.

• Because the safety evaluation demonstrated that predicted speed reduction has the
strongest relationship to accident frequency, speed reduction should be the primary
measure in any design consistency methodology for horizontal and vertical curvature.  To
accomplish this, better methods to predict speeds need to be investigated.  Alignment
indices may be appropriate measures to supplement speed reduction in a design consis-
tency methodology, but they should not be considered as the primary measure.
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C Additional effort is recommended to apply the driver workload techniques evaluated and
developed in this study to other design conditions (i.e., more complex curves, intersections,
signs and signals, and traffic).  Studies relating driver workload to traffic conflict or accident
risk could assist in further evaluating its usefulness in geometric design.  Low-cost simulation
with on-the-road or test track inputs should be an essential element of that program.

C Additional research is desired to develop a better theoretical model of visual demand. 
Further studies of the influence of aging on visual demand would also enhance the possible
application of driver workload measures.
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