U.S. Department of Transportation
Federal Highway Administration
1200 New Jersey Avenue, SE
Washington, DC 20590

Skip to content U.S. Department of Transportation/Federal Highway AdministrationU.S. Department of Transportation/Federal Highway Administration

Federal Highway Administration Research and Technology
Coordinating, Developing, and Delivering Highway Transportation Innovations



Research and Development (R&D) Project Sites

[Printer friendly]


Project Information
Project ID:   FHWA-PROJ-07-0006
Project Name:   Fundamental Properties of Asphalts and Modified Asphalts III
Project Status:   Active
Start Date:  January 9, 2007
End Date:  July 8, 2013
Contact Information
Last Name:  Youtcheff
First Name:  Jack
Telephone:  202-493-3090
E-mail:  jack.youtcheff@dot.gov
Office:   Office of Infrastructure Research and Development
Team:   Pavement Materials Team [HRDI-10]
Program:   Fundamental Properties of Asphalt
Project detail
Roadmap/Focus area(s):   Infrastructure Research and Technology Strategic Plan and Roadmap
Project Description:   Identify, initiate, and complete fundamental research on conventional and modified binders. Material characterization: (1) Understand, predict, and prevent moisture susceptibility.(2) Develop procedures, tests, and models that can accurately predict long-term pavement performance.(3) Understand asphalt composition and its relationship to pavement performance.(4) Construct and monitor pavement validation sites akin to the Strategic Highway Research Program (SHRP) specific pavement studies (SPS) six sites.
Background Information:   Moisture damage is considered to be a widespread form of pavement damage. The effects of moisture on asphalt pavements include fatigue damage, rutting, physical hardening, and aging. Consequently, progress in understanding, predicting, or preventing moisture susceptibility will aid in establishing longer lasting, less expensive roadways. Several issues are considered within the reclaimed asphalt pavement/warm-mix asphalt (RAP/WMA) research that may largely impact the long-term performance of reclaimed asphalt pavement (RAP) and warm-mix asphalt (WMA). These include:The chemical and rheological compatibility of asphalt binders obtained from reclaimed asphalt pavement (RAP) (pavements) and reclaimed asphalt shingles (RAS) with fresh asphalt and the impact of using cooler WMA production temperatures.The suitability of RAP binders for multiple recycling.The impact of lower WMA temperatures on asphalt oxidation.The level of water found in various WMA mixtures. The accuracy of, and possible improvement to, the global aging system is being studied at the Western Research Institute (WRI) by analyses of data and materials obtained from the Federal Highway Administration's Accelerated Loading Facility and WRI validation sites.
Field Test:   Six validation sites are located in the United States and Canada, as well as the Turner-Fairbank Highway Research Center Pavement Testing Facility. Within each site, nearly identical sections were placed where the only difference was the asphalt binder or type of warm-mix asphalt (WMA) application.
Product Type:   Article
Draft standard, specifications, or guidelines
Research report
Test Methodology:   Evaluating how the chemistry affects physical response and its ultimate field performance. Various chemical, thermal, spectroscopic, and chromatographic techniques are being used. Developing and evaluating methods for determining the suitability of Reclaimed Asphalt Pavement (RAP) binders for multiple recycling and the impact of warm-mix asphalt (WMA) additives and RAP rejuvenators on performance. The chemical compatibility issue will be studied using automatic flocculation titrimetry, Corbett selective adsorption/desorption, and the Asphaltene Determinator. Physical measurements will be conducted with dynamic shear rheometry.
Expected Benefits:   The expected benefits for a number of the new test procedures are new capabilities, reduced lab technician times per test, lower analytical lab costs, and more accurate assessment of pavement aging.
Deliverables:   Reports and guidelines for improving asphalt sustainability.
Project Findings:   MoistureDeveloped small-scale separation methods to expand knowledge of molecular components that may be contributors to moisture-related premature roadway failures.Karl Fischer titration technique appears to be the most profitable approach of the various methods tried for ascertaining moisture content of asphalt binders.RapidDeveloped rheological instrumental technique for evaluating small quantities of binder at both high and low temperatures. This approach (4-mm parallel plate) has been found useful in characterizing asphalt emulsions.Developing methods for using Atomic Force Microscopy as a nano-rheometer. At present the nano-rheometer is capable of determining the rheological phase angle but not the moduli.Reclaimed Asphalt Pavement (RAP)/Warm-Mix Asphalt (WMA)Monitored existing validation sites (constructed under previous contract) and found significant differences in performance. OxidationDeveloped and validated rapid procedure for estimating pavement oxidation levels with depth using infrared spectroscopy on minute samplesDeveloped and applied Asphaltene Determinator Asphalt Aging Index Ratio (ADAIR) to track oxidative aging.
FHWA Topics:   Research/Technologies--Turner-Fairbank Highway Research Center (TFHRC)
TRT Terms:   Binders
Warm Mix Paving Mixtures
Reclaimed Asphalt Pavements
Asphalt Emulsions
Reclaimed Asphalt Pavement
FHWA Disciplines:   Pavement and Materials
Subject Areas:   Maintenance and Preservation


Federal Highway Administration | 1200 New Jersey Avenue, SE | Washington, DC 20590 | 202-366-4000
Turner-Fairbank Highway Research Center | 6300 Georgetown Pike | McLean, VA | 22101