
HEC 17: Highways in the River Environment :: Floodplains, Extreme Events, Risk and Resilience

Webinar C: Chapters 7 and 8

Presenters: Joe Krolak, Brian Beucler, Rob Kafalenos, Cynthia Nurmi, Rob Hyman

Webinar Logistics

Webinar Schedules

Webinar A: Introduction, Floodplains, Riverine Flood Events, Non-Stationarity (Chapters 1-4) January 25, 2017, 10 am to 12 pm (Eastern Std Time) https://www.fhwa.dot.gov/engineering/hydraulics/media.cfm

Webinar B: Climate Modeling and Risk and Resilience (Chapters 5 & 6)

February 8, 2017, 11 am to 1 pm (Eastern Std Time) <u>https://www.fhwa.dot.gov/engineering/hydraulics/media.cfm</u>

Webinar C: Analysis Framework and Case Studies (Chapters 7 & 8)

February 22, 2017, 11 am to 1 pm (Eastern Std Time) https://www.fhwa.dot.gov/engineering/hydraulics/media.cfm

People Presenting

Joe Krolak FHWA HQ Principal Hydraulic Engineer Brian Beucler FHWA HQ Senior Hydraulic Engineer

Rob Kafalenos FHWA HQ :: Environmental Protection Specialist

Cynthia Nurmi FHWA Resource Center Hydraulic Engineer

Rob Hyman FHWA HQ :: Environmental Protection Specialist

Authors to Acknowledge

- * Roger T. Kilgore
 - * Kilgore Consulting & Management
- George (Rudy) Herrmann
 - * Desert Sky Engineering and Hydrology
- Wil Thomas
 - * Michael Baker International
- David B. Thompson
 - * Thompson Hydrologics

Peer Exchange Panel

* Karen Metchis & Chris Weaver

SEPA

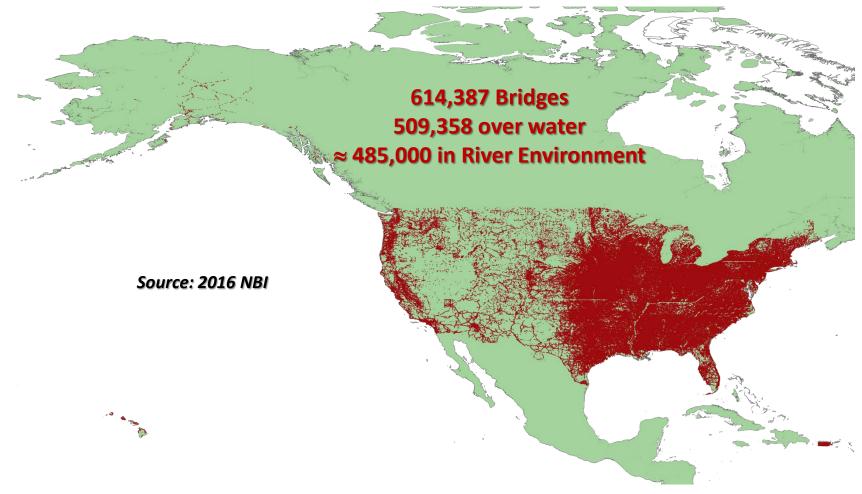
Kate White & Jeff Arnold

✤ USACE

* Robert Mason, Robert Hirsch & Tim Cohn * USGS

Helped to inform FHWA on Federal insights ...

Why HEC-17?



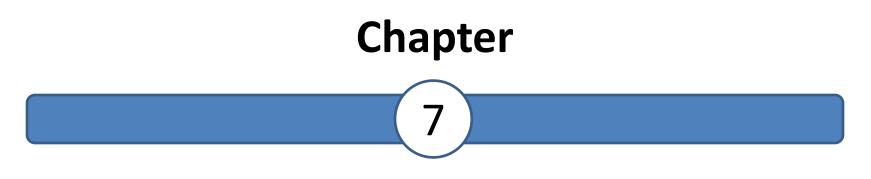
Intent

* Provide

- Best currently available science, technology and information
- National consistency and relevance to our highway programs
- * Focus Areas
 - * Floodplains
 - * Extreme Events
 - ✤ Risk
 - * Resilience
- * Assist
 - ✤ Our transportation partners
 - * FHWA
 - * Other agencies

Why the River Environment?

Missing: nationally applicable riverine information on focus areas


What Do We Know?

What Don't We Know?

Pulling It All Together

••••	Floodplain Policy	Chapter 2
	Sest actionable engineering / science methods and data	
**	Riverine Flooding	Chapter 3
	 Traditional hydrologic approaches 	
•*•	Nonstationarity	Chapter 4
	 Sources of nonstationarity 	
***	Climate Science and Modeling	Chapter 5
	Weather vs Climate, scenarios, ensembles, uncertainty	
	Large scale models driven by greenhouse gas forcings	
	Downscaling required, FHWA CMIP tool recommended	
•*•	Risk and Resilience	Chapter 6
	Risk "evolution", exceeding design criteria vs damage	
	Resilient designs	

Analysis Framework

11

Before we Begin...

Observations vs Projections

- * Observations are measurements taken looking back in time
- * Projections are future estimates of "observations yet to occur"
- * Observations are of fine spatial/temporal scale
- * Projections are of coarse spatial/temporal scale

Precipitation vs Flow

- * Precipitation falls from the sky onto watersheds...GCMs give precip
- * Flow determined by conditions in watersheds...we need flow
- * Chapter 7 deals mainly with precipitation nonstationarity

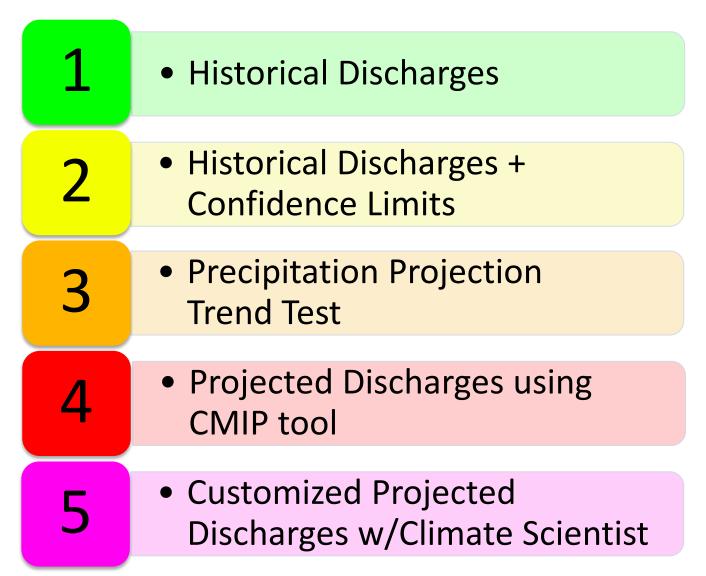
Climate Science vs Hydrology

- Climate science set up to answer broader global longer term questions
- * Hydrology focuses on specific sites, answers specific local questions
- * Both fields work with uncertainty

Analysis Framework

Recognizes Uncertainties

- * Data uncertainty (variability and emissions scenarios)
- * Model uncertainty (hydrologic and GCM's)

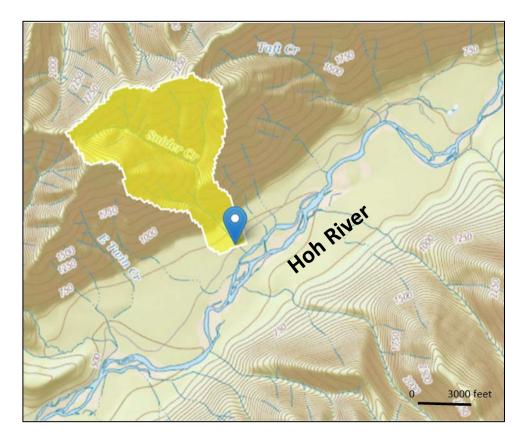

Levels of Analysis

- * Historic observations vs future projections
- * Effort grows and shifts to projections as risk increases
- * Incorporation of projections into various hydrologic models
- * Watershed size vs level of analysis
- * Service life considered using confidence intervals
- * Skillset/membership of design teams shifts as risk increases

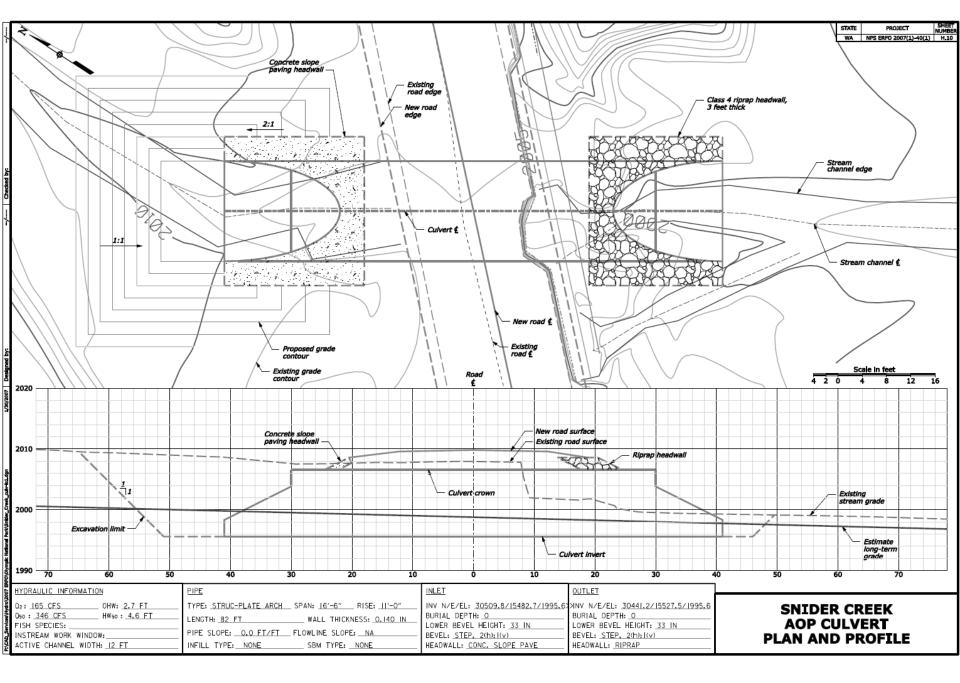
Programmatic Information

- * How to approach multitudes of assets
- * Regional studies can lead to simplifying assumptions

Five Levels of Analysis


Let's Run through an Example

Snider Creek Culvert



Snider Creek Culvert Stats

- Upper Hoh Road crosses an alluvial fan
- Emergency-funded construction 2007, replaced 36 inch culvert
- * 16.5 ft x 11.0 ft structural plate arch
- Oversized to provide debris and sediment passage
- Embedded to mitigate for long term degradation
- Upstream slope 5%, downstream slope 3%
- Active channel width 16 ft, bankfull depth 3 ft
- Drainage area 1.1 square miles

StreamStats Results

StreamStats Version 3.0

Flow Statistics Ungaged Site Report

Date: Mon Feb 20, 2017 3:44:12 PM GMT-5 Study Area: Washington NAD 1983 Latitude: 47.8438 (47 50 38) NAD 1983 Longitude: -123.9671 (-123 58 02) Drainage Area: 1.1 mi2

Peak-Flow Basin Characteristics								
100% Region 1 (1.1 mi2)								
Parameter		Regression Equation Valid Range						
	Value	Min	Max					
Drainage Area (square miles)	1.1	0.15	1294					
Mean Annual Precipitation (inches)		45	201					

	Peak-Flow Statistics									
Chatiatia	Value	Unit	Standard Error (norcent)		of record 90-Percent Prediction Interva	ediction Interval				
Statistic	Value	Unit	Standard Error (percent)	Equivalent years of record	Min	Max				
PK2	177	cfs	32	1						
PK10	280	cfs	33	2						
PK25	329	cfs	34	3						
PK50	371	cfs	36	3						
PK100	415	cfs	37	4						
PK500	516	cfs								

http://pubs.er.usgs.gov/usgspubs/wri/wri974277 (http://pubs.er.usgs.gov/usgspubs/wri/wri974277) Sumioka_ S.S._ Kresch_ D.L._ and Kasnick_ K.D._ 1998_ Magnitude and Frequency of Floods in Washington: U.S. Geological Survey Water-Resources Investigations Report 97-4277_ 91 p.

 Accessibility
 FOIA
 Privacy
 Policies and Notices

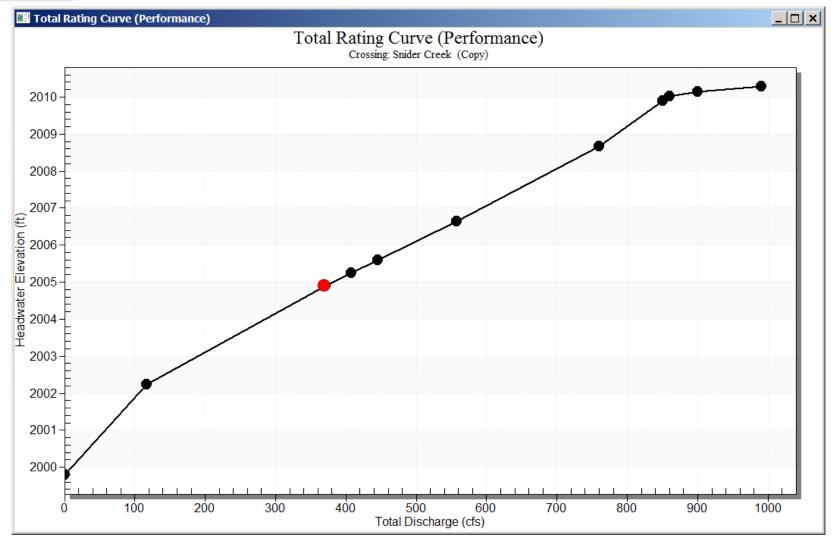
 U.S. Department of the Interior | U.S. Geological Survey
 URL: http://streamstatsags.cr.usgs.gov/v3_beta/FTreport.htm
 Page Contact Information: StreamStats Help
 Str

 Page Last Modified: 08/09/2016 14:34:10 (Web2)
 Str
 Str

Streamstats Status News

* Q50

- = **371** cfs
- Std Error
- ✤ M.A.P.
 - = 141 inches
- **♦ HW/D < 1**
- Note the reference document


1

Hydraulic Results

Hydraulic Parameters	Design Flow Q50	Q50 + 20%	Q50 + 50%	Flow at Barrel Top	Roadway Overtops
Flow in cfs	371	445	557	760	860
Headwater Elevation (ft)	2004.9	2005.6	2006.6	2008.6	2010.0
Headwater Depth (ft)	5.1	5.8	6.8	8.8	10.2
Clearance / Freeboard (ft)	1.8/5.1	1.1 / 4.4	0.1/3.4	-1.9 / 1.4	-3.3 / 0
Headwater-to-Diameter Ratio, HW/D	0.74	0.84	0.99	1.28	1.47
US Bed Elevation @ Invert (ft)	1999.8				
US Top of Barrel Elevation (ft)	2006.7				
Open Diameter considering Embedment (ft)	6.9				

This is a very resilient culvert Q50 HW/D = 0.74 < 1, 5.1 ft until road overtops

Performance Curve, Q50=371 cfs

Determine Confidence Limits

Confidence Limits for Regression Equations

* Step 1: Estimate design flow

2

- * Step 2: Compute log of design flow
- * Step 3: Compute standard error in log units
- * Step 4: Compute confidence limits in log units
- * Step 5: Compute confidence limits in flow units
- Step 6: Assess/design plan/project

Assume greater than 75 years remaining service life

- * From Table 7.5, use 90% confidence interval
- * Wide interval reflects larger uncertainty over longer life

Determine Confidence Limits

* Step 1: Estimate design flow

2

 $Q_T = a(A)^b(P)^c$, A = area, P = M. A. P., abc = regression coefs $Q_{50} = 0.666(1.1)^{0.921}(141)^{1.26} = 371$ cfs

* Step 2: Compute log of design flow

$$Y_T = \log_{10}(Q_T) = \log_{10}(371) = 2.569$$

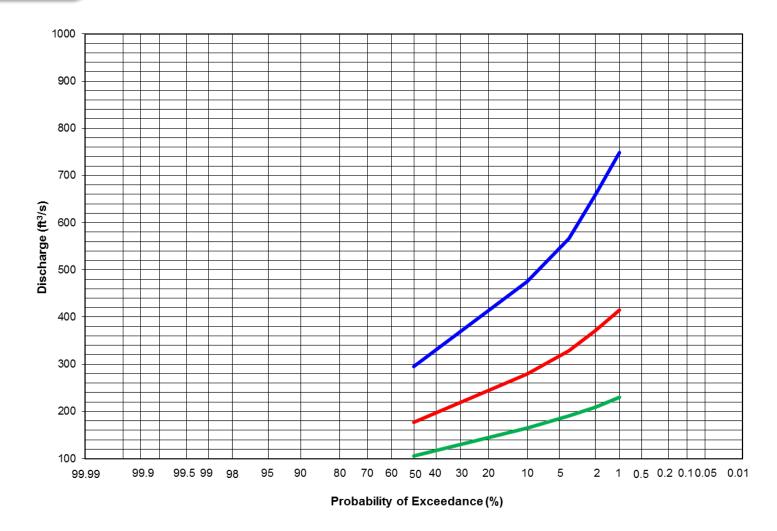
Step 3: Compute standard error in log units

$$SE_{log10} = \left[\frac{1}{5.302} \ln\left\{ \left(\frac{SE_{\%}}{100}\right)^2 + 1 \right\} \right]^{0.5}$$
$$= \left[\frac{1}{5.302} \ln\left\{ \left(\frac{36}{100}\right)^2 + 1 \right\} \right]^{0.5} = 0.152$$

Determine Confidence Limits

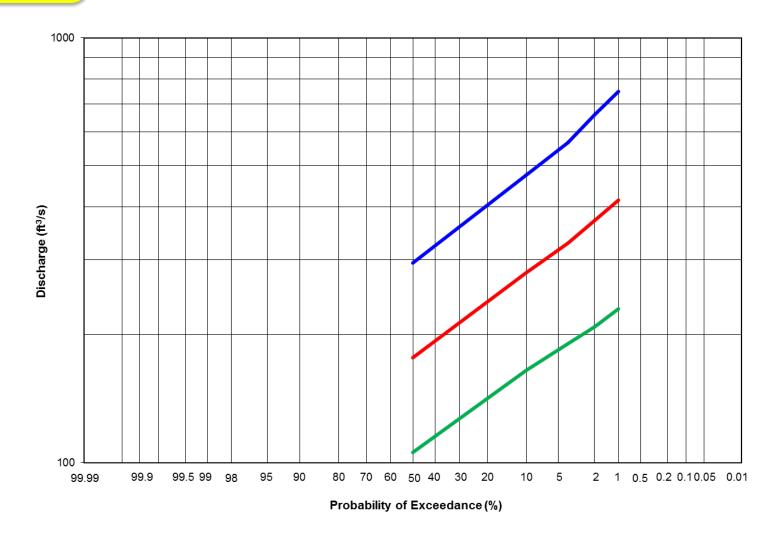
* Step 4: Compute confidence limits in log units

2


Table 7.6: For confidence interval of 90 percent, Kc = 1.645 $Y_{T,U} = Y_T + K_c SE_{log10} = 2.569 + 1.645(0.152) = 2.819$ $Y_{T,L} = Y_T - K_c SE_{log10} = 2.569 - 1.645(0.152) = 2.319$

* Step 5: Compute confidence limits in flow units $Q_{T,U} = 10^{Y_{T,U}} = 10^{2.819} = 659 \text{ cfs}$ $Q_{T,L} = 10^{Y_{T,L}} = 10^{2.319} = 208 \text{ cfs}$

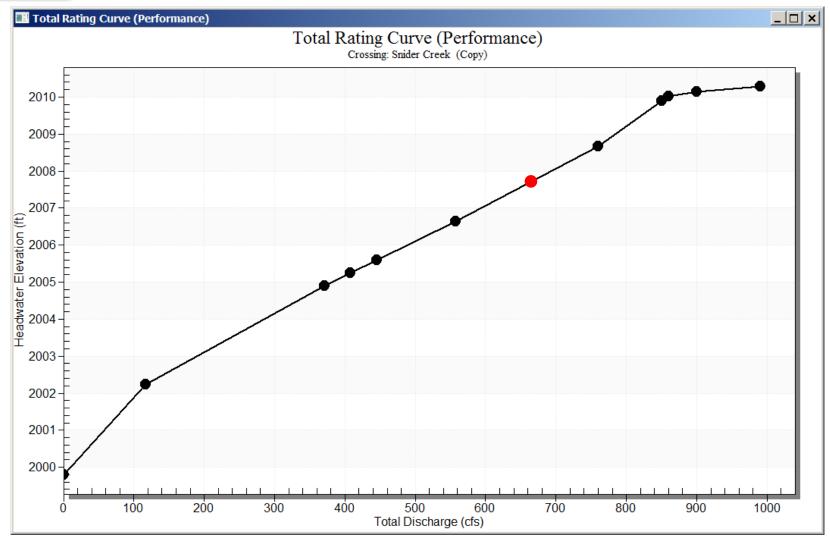
Step 6: Assess/design plan/project Go back to Hydraulic Results Table


```
2
```

Confidence Limits Log-Normal

2

Confidence Limits Log-Log


Hydraulic Results

Hydraulic Parameters	Design Flow Q50	Q50 + 20%	Q50 + 50%	Flow at Barrel Top	Roadway Overtops
Flow in cfs	371	445	557	760	860
Headwater Elevation (ft)	2004.9	2005.6	2006.6	2008.6	2010.0
Headwater Depth (ft)	5.1	5.8	6.8	8.8	10.2
Clearance / Freeboard (ft)	1.8/5.1	1.1 / 4.4	0.1/3.4	-1.9 / 1.4	-3.3 / 0
Headwater-to-Diameter Ratio, HW/D	0.74	0.84	0.99	1.28	1.47
US Bed Elevation @ Invert (ft)	1999.8				
US Top of Barrel Elevation (ft)	2006.7				
Open Diameter considering Embedment (ft)	6.9				

At upper limit Q50 = 659 cfs ...less resilient culvert Barrel inundated but no roadway overtopping HW/D > 1

Performance Curve, Q50=659 cfs

2

HEC 17: Highways in the River Environment - Floodplains, Extreme Events, Risk and Resilience - Webinar C – 22 Feb 2017

Precipitation Projection Trend Test

- Projected vs. Historical T-year, 24 hour, Precipitation
 - * If trend weak, stay with level 2

2

- * If trend strong, consider looking at level 4
- * Test requires DCHP precipitation projection data
 - * Step 1: Average the modeled daily precip across all cells
 - * Step 2: Determine maximum annual value for each year
 - * Step 3: Select baseline and future periods
 - * Step 4: Compute baseline & future T-year 24 hr precip per model
 - * Step 5: Estimate projected T-year 24 hr precip per model
 - * Step 6: Compute mean for projected T-year 24 hr precipitation
 - * Step 7: Evaluate for further analyses using Climate Change Indicator

3 Precipitation Projection Trend Test

- ***** Using RCP 8.5 and CMIP 5 BCCAv2 daily downscaled data
- * We have 20 models
- Step 1: Average the modeled daily precip across all cells Used one cell to save time, see next slide
- Step 2: Determine maximum annual value for each year Computed w/CMIP tool for calendar yrs 1950 to 2000
- Step 3: Select baseline and future periods Baseline 1950-2000, Future 2050-2099

Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections

		a Screen Shot 2017-02-16 at 2.13.22 PM -	
-		ee page form below. Then press 'Submit Requ	iest'.
Submit Request	Form Status (completed ==	<u> </u>	Size (%, 100 max): 1
	1.1 1.2 1.3 2.4 2.5 2.6 3	7 3.8 3.9 3.10	Recorder and a contraction of the second
Page 1: Temporal & Spatial Extent	Page 2: Products, Variables, Projections	age 3: Analysis, Format, & Notification	
		Lat: 47.8074 Lon	-123.7846
Step 1.1: Time Period	?	1 - Contraction	330 4 2 2 2 A A
	Map Satellite		Pas BB
Period Jan \$ 1950 \$ through Dec	; €] 2099 €	HohlRain Forest	oh River
	The state	Hoh Rain Forest Visitor Center	A second
Step 1.2: Domain	?		
NLDAS Basin Specific View All	÷		
		2	AN THE
Step 1.3: Spatial extent selection m	ethod ?		
	A un Ro		
 Tributary Area 38.038862 -122.265747 	Upper Not	CARLEN MAY	
Map Outlet Location			
	Jan Bran		
Rectangular Area	2 ALTER	A THE PARTY	
Latitude 39 \$.9375 \$ to 39 \$.9375 ¢ N		
Longitude -95 \$.0625 \$ to -95	¢ .0625 \$ E		A CHURCH CHURCH
Location			
47.8443 -123.9666	The second	AVSTAN	SA CARA
Map Location			
		THE REAL	
		TARA A	
MATION NCAR ZUS	GS	PARTE A	
		ALL	Star Barrin
GENTRAL			Map data ©2017 Google Terms of Use Rep

Precipitation Projection Trend Test

Step 4: Find baseline & future T-year 24 hr precip per model Fitted AMS to Log Pearson Type III distribution (vs GEV)

This sheat provides a time series of annual maximum daily precipitation amounts from 1950-2000. See file 'CMIP5 1950-2000 Precipitation Data' for underlying calculation

Observed	Data	Model Pr	ojections									1	
			Annual M	aximum 24	l-hr Precipi	tation (in)							
				Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8	Model 9	M
Year	Annual Ma	aximum 24 Year	Multi-Mo	access1-0	bcc-csm1-	canesm2.	ccsm4.1.r	cesm1-bg	cnrm-cm5	csiro-mk3	gfdl-cm3.	gfdl-esm2	gf
1950	3.61	1950	4.09	5.58	5.02	3.63	4.63	4.00	4.15	3.38	3.88	3.88	
1951	6.11	1951	. 3.72	3.90	3.05	2.60	3.35	5.27	5.54	3.32	3.06	3.54	
1952	3.78	1952	3.79	3.10	5.04	4.76	2.98	4.14	3.15	2.61	4.72	3.73	
1953	5.17	1953	3.89	6.22	3.32	4.40	3.65	3.51	4.71	5.10	4.54	4.33	
1954	4.91	1954	3.90	3.65	4.16	3.63	4.62	3.30	3.36	4.81	3.34	3.32	
1955	4.62	1955	3.75	3.69	4.91	3.78	3.21	3.71	2.65	4.20	2.93	4.71	
1956	6.67	1956	4.03	2.66	4.00	3.59	3.36	3.36	8.52	4.01	6.82	3.22	
1957	4.90	1957	3.85	3.46	2.98	3.82	3.12	3.48	3.95	3.89	3.91	4.31	
1958	4.06	1958	4.02	6.15	2.86	3.83	3.50	5.00	4.63	3.27	4.46	3.23	
1959	5.83	1959	4.13	5.00	3.72	4.97	4.65	4.20	3.80	4.51	3.45	4.88	
1960	5.07	1960	4.64	3.94	4.20	4.82	5.35	3.47	4.13	5.61	5.68	4.50	
1961	7.12	1961	3.86	3.59	3.08	3.06	5.65	3.04	2.92	3.15	3.39	4.31	
1962	5.21	1962	3.80	4.06	2.86	3.93	3.21	3.17	3.27	3.84	3.56	5.19	
1963	4.13	1963	3.82	6.11	3.95	3.32	3.59	3.53	3.19	3.96	3.75	4.17	
1964	3.01	1964	3.98	3.97	3.46	3.57	4.90	4.70	4.53	4.02	4.12	3.19	
1965	4.52	1965	3.72	3.72	3.54	2.83	3.31	3.97	5.37	3.30	4.09	4.18	
1066	1 22	1066	2 50	2 5 7	2 51	ר <u>ס</u> ר	200	דד כ	201	2 00	2 CC	אד כ	Γ

HEC 17: Highways in the River Environment - Floodplains, Extreme Events, Risk and Resilience - Webinar C – 22 Feb 2017

3 Precipitation Projection Trend Test

***** Step 5: Estimate projected T-year 24 hr precip per model

- Compute difference between future and baseline T-year, 24 hr precip per model
- Add this difference to the observed T-year 24 hr precip for each model

* Step 6: Compute mean for projected T-year 24 hr precipitation

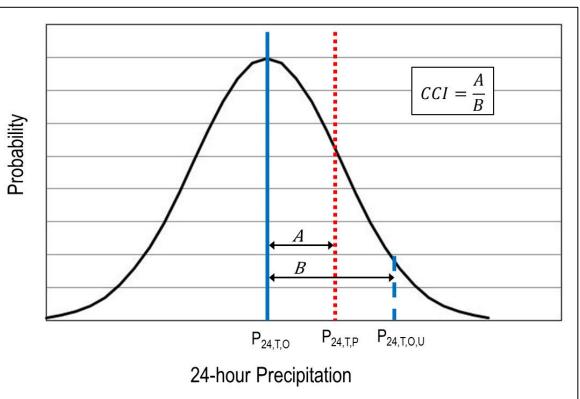
Compute mean of projected T-year 24 hr precip from all the models (in our case 20 models)

✤This is your P_{24,T,P} term

3

Climate Change Indicator

- *CCI* = Climate change indicator
- $P_{24,T,P}$ = Projected T-year 24-hour precipitation
- $P_{24,,T,O}$ = Observed T-year 24-hour precipitation -


 $P_{24,T,O,U}$ = Upper 90% confidence limit T-year 24-hour

precipitation for the observed data – – –

 $CCI = \frac{P_{24,T,P} - P_{24,T,O}}{P_{24,T,O,II} - P_{24,T,O}}$

If CCI > 0.8, trend is strong, consider further analysis w/ future projections

Projected Discharges and Confidence Limits

Projected discharges explicitly incorporate future precipitation projections

* Methods vary for rainfall/runoff vs statistical

- Will temperature will shift fraction of snow vs rain?
- Consider other sources of nonstationarity
 - * Landuse: Database of impervious areas from EPA
- Calculate and evaluate projected confidence limits
 - * Compare to historical confidence limits from Level 2

Though not required climate scientist and hydrologist can help

Projected Discharges and Confidence Limits

Incorporating projections into rainfall/runoff hydrology

- For precip inputs with sub-daily durations, may use historic ratio of daily, T-year precipitation to sub-daily T-year precipitation from NOAA Atlas 14
- * Minnesota Pilot project (to be described later) demonstrates rainfall runoff methods
- Our example uses statistical hydrology
 - * Regression equation with precipitation variable (M.A.P.)
- Steps to our Level 4 analysis
 - * Step 1: Determine future mean annual precipitation (M.A.P.)
 - * Step 2: Check regression equation limitations
 - ***** Step 3: Compute future discharge (incl. other nonstationarities)
 - * Step 4: Compute and evaluate projected confidence limits

Projected Discharges and Confidence Limits

* Step 1: Determine future mean annual precipitation (M.A.P.)

Determine from CMIP tool output

Projected Changes in Precipitation Conditions RCP 8.5 Snider Creek										
Hide Details										
	Baseline (1950-1999) 2050-2099 (2050-2099)									
Click column headings for additional info	Observed Value	Modeled Value	Projected Value	Change from Baseline	% Change from Observed		inty Range (100% ce Interval) High			
Average Total Annual Precipitation	147.6 inches	147.1 inches	157.1 inches	9.5 inches	6%	151.1 inches	163.1 inches			
"Very Heavy" 24-hr Precipitation Amount (defined as 95th percentile precipitation)	2.0 inches	1.7 inches	2.1 inches	0.1 inches	5%	2.0 inches	2.2 inches			
"Extremely Heavy" 24-hr Precipitation Amount (defined as 99th percentile precipitation)	3.4 inches	2.8 inches	3.6 inches	0.3 inches	8%	3.4 inches	3.8 inches			
Precipitation Events per Year (2.0 inches in 24 hrs)	13.6 times	17.7 times	17.9 times	4.3 times	31%	16.0 times	19.8 times			
Precipitation Events per Year (3.4 inches in 24 hrs)	2.7 times	3.6 times	4.8 times	2.1 times	77%	4.0 times	5.7 times			

Projected Discharges and Confidence Limits

* Step 2: Check regression equation limitations

From StreamStats output and State regression manual: 45 inches > 157.1 inches > 201 inches

Step 3: Compute future discharge (incl. other nonstationarities)

From WFL report (Hamlet et. al. 2013): Snider Creek is a rain dominant basin and will remain so in the future

Olympic National Park not expected to see significant land use changes (exception would be wildfire...a short term situation)

 $Q_T = a(A)^b(P)^c$, A = area, P = M.A.P., abc = regression coefs

$$Q_{50} = 0.666(1.1)^{0.921}(157.1)^{1.26} = 425 \text{ cfs}$$

Find Projected Confidence Limits

* Step 4a: Estimate design flow

$$Q_{50} = 0.666(1.1)^{0.921}(157.1)^{1.26} = 425 \text{ cfs}$$

* Step 4b: Compute log of design flow

$$Y_T = \log_{10}(Q_T) = \log_{10}(425) = 2.628$$

* Step 4c: Compute standard error in log units

$$SE_{\log 10} = \left[\frac{1}{5.302} \ln\left\{\left(\frac{SE_{\%}}{100}\right)^2 + 1\right\}\right]^{0.5}$$
$$= \left[\frac{1}{5.302} \ln\left\{\left(\frac{36}{100}\right)^2 + 1\right\}\right]^{0.5} = 0.152$$

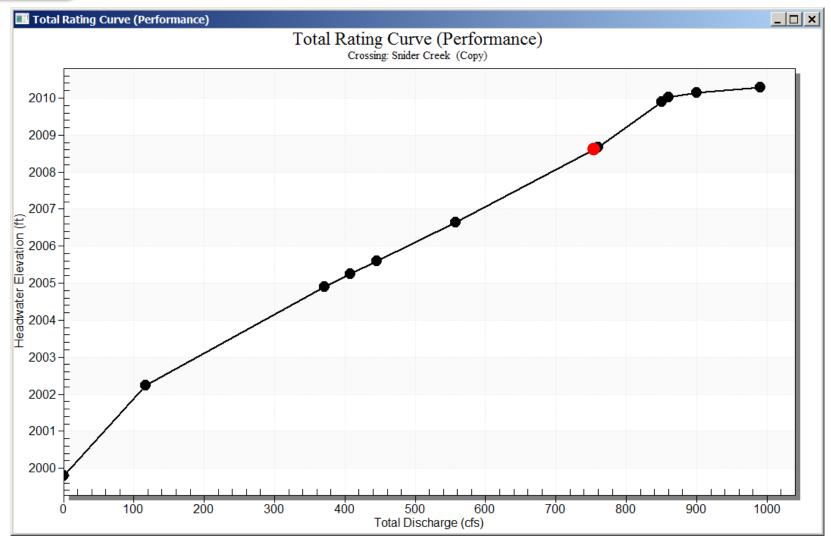
Determine Confidence Limits

* Step 4d: Compute confidence limits in log units

Table 7.6: For confidence interval of 90 percent, Kc = 1.645 $Y_{T,U} = Y_T + K_c SE_{log10} = 2.628 + 1.645(0.152) = 2.878$ $Y_{T,L} = Y_T - K_c SE_{log10} = 2.628 - 1.645(0.152) = 2.378$

★ Step 4e: Compute confidence limits in flow units $Q_{T,U} = 10^{Y_{T,U}} = 10^{2.878} = 755 \text{ cfs}$ $Q_{T,L} = 10^{Y_{T,L}} = 10^{2.378} = 239 \text{ cfs}$

Step 4f: Assess/design plan/project Go back to Hydraulic Results Table


Hydraulic Results

Hydraulic Parameters	Design Flow Q50	Q50 + 20%	Q50 + 50%	Flow at Barrel Top	Roadway Overtops
Flow in cfs	371	445	557	760	860
Headwater Elevation (ft)	2004.9	2005.6	2006.6	2008.6	2010.0
Headwater Depth (ft)	5.1	5.8	6.8	8.8	10.2
Clearance / Freeboard (ft)	1.8/5.1	1.1 / 4.4	0.1/3.4	-1.9 / 1.4	-3.3/0
Headwater-to-Diameter Ratio, HW/D	0.74	0.84	0.99	1.28	1.47
US Bed Elevation @ Invert (ft)	1999.8				
US Top of Barrel Elevation (ft)	2006.7				
Open Diameter considering Embedment (ft)	6.9				

At upper limit Q50 = 755 cfs ...even less resilient Barrel inundated, roadway closer to overtopping If no precip. term in regression?...consider Level 5

4

Performance Curve, Q50=755 cfs

HEC 17: Highways in the River Environment - Floodplains, Extreme Events, Risk and Resilience - Webinar C – 22 Feb 2017

Level 5 Example: Iowa DOT

Iowa Bridge and Roadway Vulnerability Assessment Pilot (2015)

43

5

Project Partners

Lead: Iowa DOT (Dave Claman, Hydraulic Engineer)

Iowa State University

(Christopher J. Anderson, Eugene S. Takle)

- * Climate science and climate projections expertise
- * Lead and contributing authors to IPCC AR4, NCA Agriculture

University of Iowa IIHR

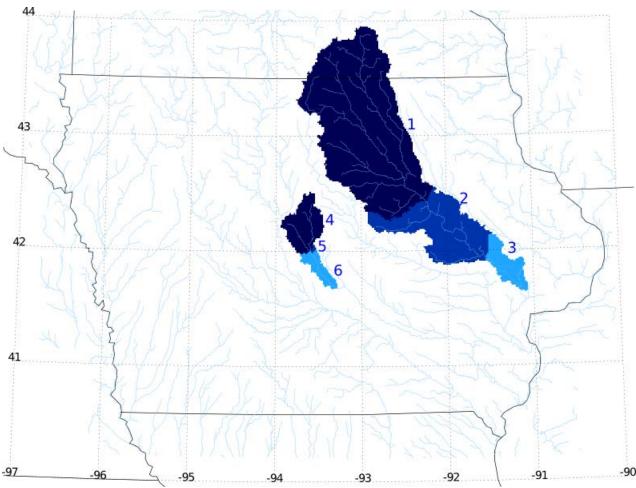
(Witold F. Krajewski, Ricardo Mantilla)

* Hydrology and hydraulics engineering and modeling

* Iowa Flood Center: ifis.iowafloodcenter.org

What makes this a Level 5?

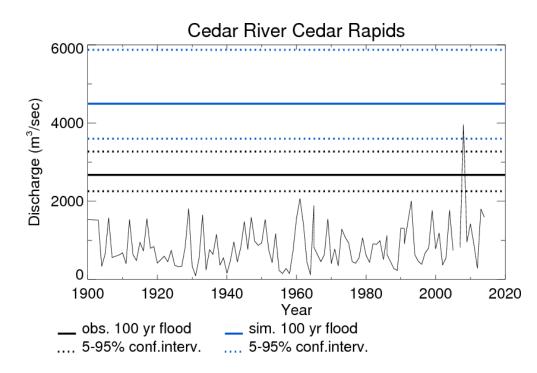
Climate scientist


Advanced hydrologic modeling

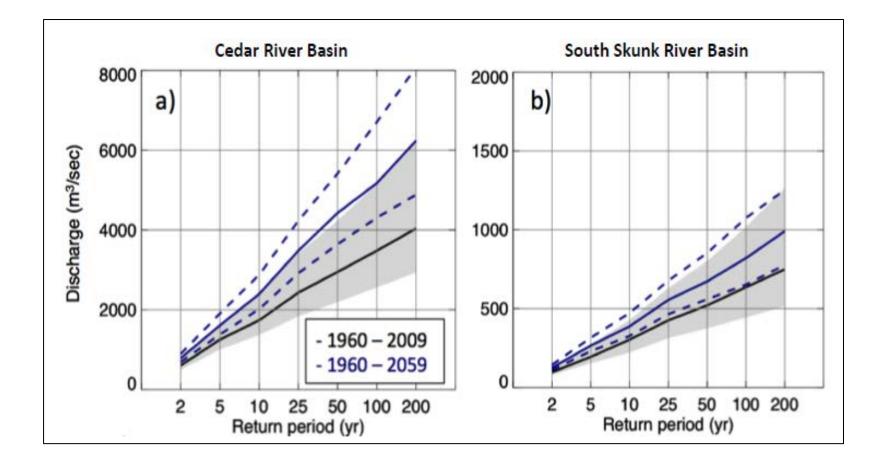
Selected alternative climate data sets

*Asynchronous Regional Regression Model (ARRM)

- CUENCAS hydrological model, distributed rainfall-runoff hillslope model
- Limited to flood season


Two river basins examined: Cedar, South Skunk

5

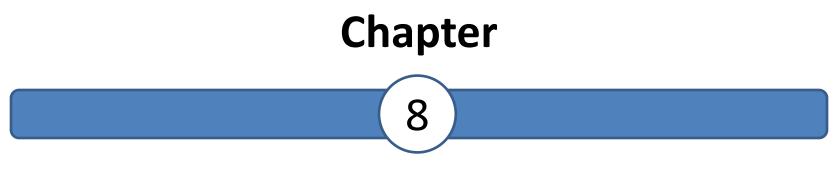

Modeling

- Linked precipitation
 projections to streamflow in
 Skunk and Cedar River Basins
- Generated continuous 140
 year streamflow simulation
 (1960-2100)
- Modeled projected 100-yr flood levels for 6 locations


```
5
```

Flood Frequency Curves

5


Insights

- Determined using this type of climate data was best for basins 250 km² and greater
- Four of six locations found vulnerable to future flooding (100-yr flows)
- Flood projections are more model-specific than emission scenario-specific

Questions?

Case Studies

Case Studies

Bridge 02315 (Barkhamsted, Connecticut)

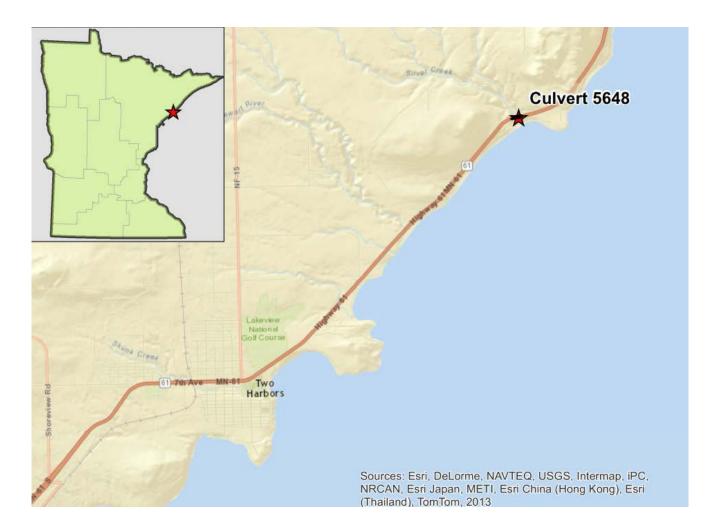
USGS Regression Analysis for New York and Vermont

Minnesota Pilot Project

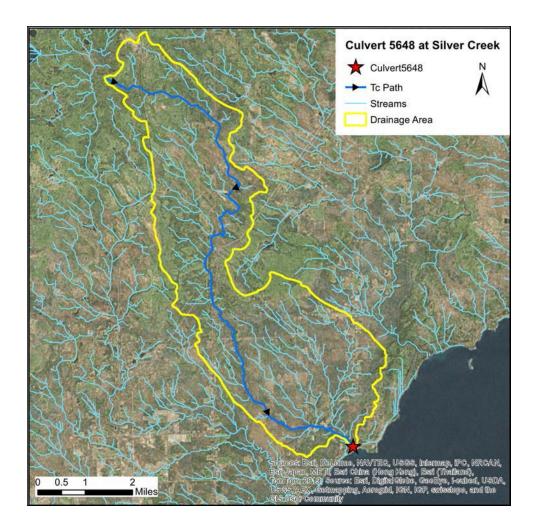
Gulf Coast 2: Airport Boulevard Culvert (Mobile, AL)

Cedar and South Skunk River Iowa Pilot Project

Minnesota Pilot Project


High Level System-wide Assessment

- Metrics to qualitatively assess
 - Sensitivity
 - Exposure
 - Adaptive Capability
- Ranked assets
- Team

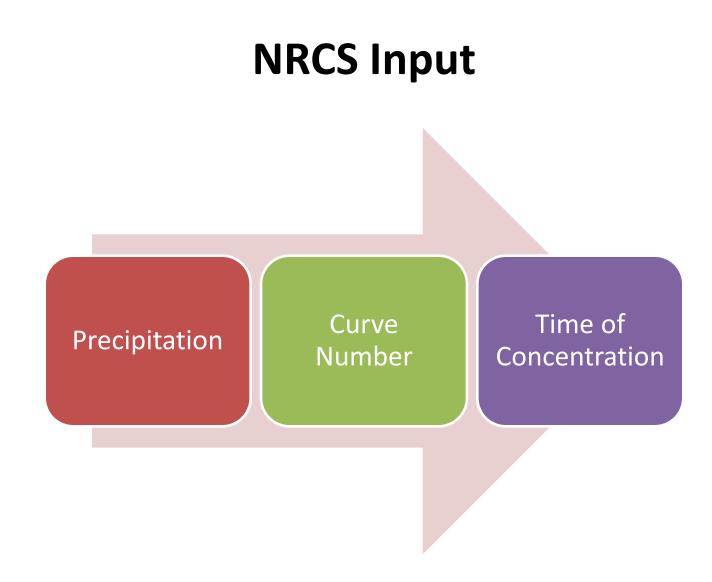

Case Studies

- MN 61 Culvert #5648
- US 63 Culvert #5722

MN61 Culvert 5648 over Silver Creek

Watershed

Existing Culvert


- * 2 10'x10' by 90' long
- * Built 1936
- Cracks, Spalling,Exposed Rebar

Hydrologic Methods

NRCS Method

USGS Regression

Precipitation

NOAA Atlas 14

Best available and actionable historic data

Climate Projections

Precipitation

Scenarios	GCMs	Output	Time Period	Bias Correction
 Low emissions scenario: RCP4.5 Medium emissions scenario: RCP6.0 High emissions scenario: RCP8.5 	• 22 models	 24 hour precipitation depths 	• 2040 • 2070 • 2100	 Compare historical rainfall and climate projections

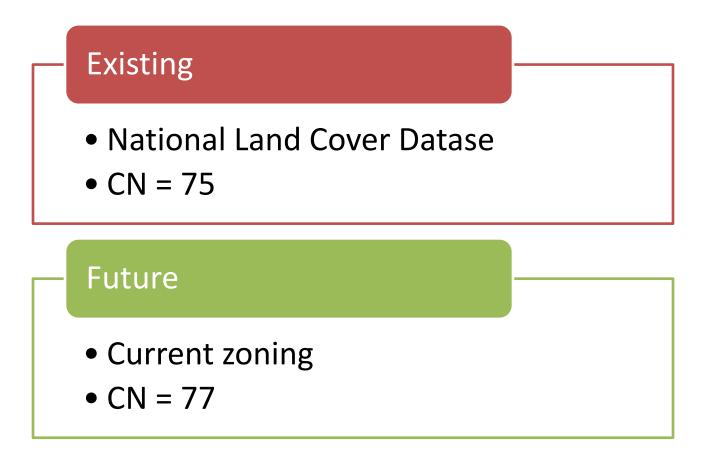
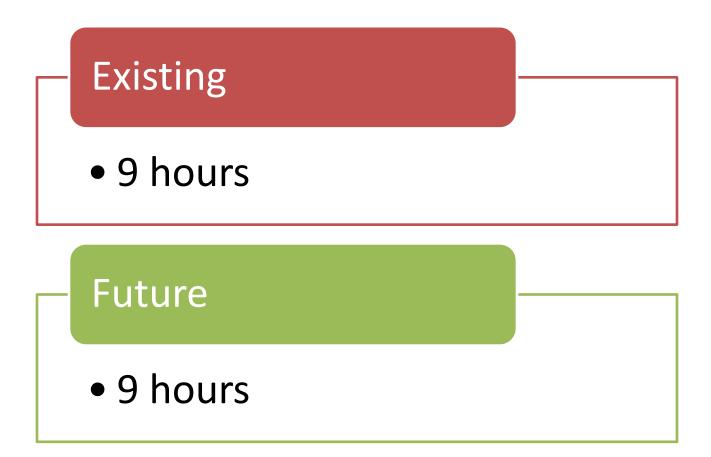

Bias Correction

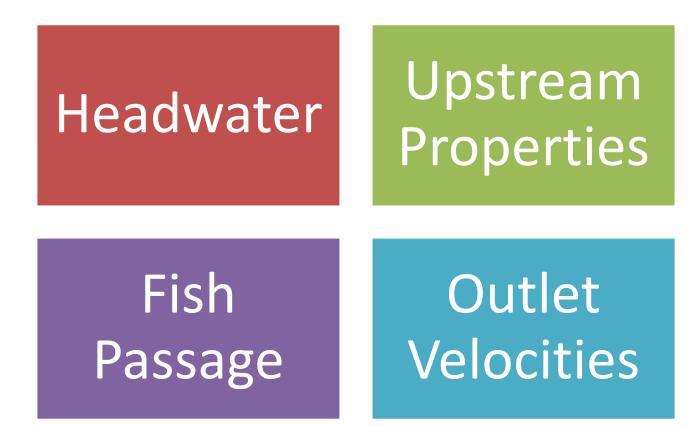
Table 4: 24-Hour Precipitation Depths at Culvert 5648, Low Scenario


	Atlas 14 Precipitation Depth (in) ¹	Low Scenario Precipitation Depth (in)								
24-Hour Storm Return Period		20	40	20	70	2100				
		% Increase	Depth	% Increase	Depth	% Increase	Depth			
2-year storm	2.48	3.08%	2.56	4.72%	2.60	5.48%	2.62			
5-year storm	3.26	3.12%	3.36	4.77%	3.42	5.55%	3.44			
10-year storm	3.89	3.22%	4.02	4.93%	4.08	5.74%	4.11			
25-year storm	4.8	3.43%	4.96	5.25%	5.05	6.11%	5.09			
50-year storm	5.53	3.63%	5.73	5.55%	5.84	6.46%	5.89			
100-year storm	6.31	3.85%	6.55	5.90%	6.68	6.86%	6.74			
500-year storm	8.26	4.47%	8.63	6.85%	8.83	7.96%	8.92			

¹Source: NOAA, 2014b

Land Use

Time of Concentration



Flows

Table 8: TR-20 Projected Peak Flows at Culvert 5648

	Existing	Low Scenario Discharges		Medium Scenario Discharges			High Scenario Discharges			
24-Hour Storm Return Period	Discharges (cfs)	2040 (cfs)	2070 (cfs)	2100 (cfs)	2040 (cfs)	2070 (cfs)	2100 (cfs)	2040 (cfs)	2070 (cfs)	2100 (cfs)
2-year storm	770	1070	1100	1120	1090	1160	1230	1180	1370	1550
5-year storm	1350	1760	1810	1830	1800	1900	2000	1930	2190	2460
10-year storm	1880	2360	2420	2450	2420	2540	2660	2580	2920	3250
25-year storm	2690	3260	3350	3390	3340	3500	3670	3550	4010	4460
50-year storm	3370	4010	4120	4170	4113	4300	4500	4360	4920	5480
100-year storm	4140	4810	4940	5000	4930	5170	5420	5240	5940	6610
500-year storm	6090	6870	7060	7150	7040	7410	7800	7520	8590	9630

Design Limitations

Culvert Design Options

14x14 2-cell Culvert

16x14 2-cell Culvert

52-foot long single span bridge

57-foot long single span bridge

Economic Analysis

Table 13: Projected Life Cycle Costs for Culvert 5648 Adaptation Options With Social Costs, Medium Scenario

	Period 1 2025-2055	Period 2 2056-2085	Period 3 2086-2100	Initial Construction Costs	Total Damage/ Repair Costs by 2100	Total Life Cycle Cost by 2100
Base Case: Replace in Kind	122,352	111,568	40,147	\$643,069	\$274,067	\$917,136
Option 1: Two Cell Culvert	18,226	9,041	14,708	\$697,413	\$41,975	\$739,388
Option 2: 52-Foot Bridge	72,592	55,207	30,455	\$1,023,476	\$158,254	\$1,181,730
Option 3: 57-Foot Bridge	25,839	11,130	3,808	\$1,095,934	\$40,777	\$1,136,711

Note: Options with the best life cycle cost-effectiveness are highlighted in green.

Table 14: Projected Life Cycle Costs for Culvert 5648 Adaptation Options With Social Costs, High Scenario

	Period 1 2025-2055	Period 2 2056-2085	Period 3 2086-2100	Initial Construction Costs	Total Damage/ Repair Costs by 2100	Total Life Cycle Cost by 2100
Base Case: Replace in Kind	290,776	125,251	46,990	\$643,069	\$463,017	\$1,106,086
Option 1: Two Cell Culvert	20,990	111,568	36,756	\$697,413	\$169,314	\$866,727
Option 2: 52-Foot Bridge	58,740	26,785	41,520	\$1,023,476	\$127,045	\$1,150,521
Option 3: 57-Foot Bridge	27,913	23,937	39,611	\$1,095,934	\$91,461	\$1,187,395

Note: Options with the best life cycle cost-effectiveness are highlighted in green.

Questions?

Next Steps

HEC-17 2nd Edition is evolving document

- ***** Science and climate modeling continues to advance
- * Methods will evolve with the science
- * HEC-17 represents attempt to modify current practice, rather than start from scratch

New Research in Progress

- Updating Precipitation Frequency Estimates under Non-Stationary Climate Conditions
 - Develop methods to integrate non-stationary climate effects into precipitation frequency estimates (like NOAA Atlas 14)
 - * NWS/FHWA
- Flood Frequency Estimation for Hydrologic Design under Changing Conditions
 - Adjust flood-frequency analysis for observed and projected change for rivers showing trends in peak flows
 - * USGS/FHWA

Potential Impact of Climate Change on US Precipitation Frequency Estimates

- Examine historical trends in exceedances of precipitation frequency thresholds in different regions
- Sonnin & Co. LLC

More Research In Progress

- Climate Change Effects on Stream Geomorphology: Maple River Stream Instability Study
 - Evaluate future channel instability at site in Iowa given historic instability and climate change
 - * TetraTech
- Sensitivity of Drainage Infrastructure to Climate Change
 - Hydraulic analysis of increased precipitation on drainage infrastructure, including quantifying cost of inaction
 - * FHWA Federal Lands Highway Divisions

Even More Research!

- NCHRP 15-61: Applying Climate Change Information to Hydrologic and Hydraulic Design of Transportation Infrastructure
 - * Design guide of national scope
 - * Provide hydraulic engineers with the tools needed to amend practice to account for climate change
 - * Builds on HEC-17
 - * Completion 2018

72

Links to Other Resilience Related Work

- Transportation Engineering Approaches to Climate Resilience (TEACR)
- Hurricane Sandy project
- Sreen Infrastructure Pilots
- Adaptation Pilots
- Gulf Coast 2 Study

www.fhwa.dot.gov/environment/sustainability/resilience/

Questions?

