HEC 17: Highways in the River Environment :: Floodplains, Extreme Events, Risk and Resilience

Webinar B: Chapters 5 and 6

Presenters: Brian Beucler, Rob Kafalenos, Rob Hyman

Webinar Logistics

Webinar Schedules

Webinar A: Introduction, Floodplains, Riverine Flood Events, Non-Stationarity (Chapters 1-4) January 25, 2017, 10 am to 12 pm (Eastern Std Time) https://www.fhwa.dot.gov/engineering/hydraulics/media.cfm

Webinar B: Climate Modeling and Risk and Resilience (Chapters 5 & 6)

February 8, 2017, 11 am to 1 pm (Eastern Std Time) https://www.fhwa.dot.gov/engineering/hydraulics/media.cfm

Webinar C: Analysis Framework and Case Studies (Chapters 7 & 8)

February 22, 2017, 11 am to 1 pm (Eastern Std Time) https://collaboration.fhwa.dot.gov/dot/fhwa/WC/Lists/Seminars/DispForm.aspx?ID=1296 *register by Feb 16

People Presenting

Joe Krolak FHWA HQ Principal Hydraulic Engineer **Cynthia Nurmi** FHWA Resource Center Hydraulic Engineer

Rob Kafalenos FHWA HQ :: Environmental Protection Specialist

Rob Hyman FHWA HQ :: Environmental Protection Specialist

Brian Beucler FHWA HQ Senior Hydraulic Engineer

Authors to Acknowledge

* Roger T. Kilgore

* Kilgore Consulting & Management

George (Rudy) Herrmann

* Desert Sky Engineering and Hydrology

Wil Thomas

* Michael Baker International

- David B. Thompson
 - * Thompson Hydrologics

Why HEC-17?

Intent

* Provide

- Best currently available science, technology and information
- National consistency and relevance to our highway programs
- * Focus Areas
 - * Floodplains
 - * Extreme Events
 - ✤ Risk
 - * Resilience
- * Assist
 - ✤ Our transportation partners
 - * FHWA
 - * Other agencies

Climate Modeling

Nonstationarity and Climate

- Chapter 4: Nonstationarity
- Chapter 5: Climate Modeling (Today's focus)

Observed Trends: Temperature and CO₂

Weather and Climate

- What's the difference between weather and <u>climate</u>?
- Weather <u>prediction</u> vs climate <u>projections</u>
 - ***** Weather forecast: 2 in. rain next Saturday
 - Projection: Average temperature is expected to increase by 2-4° F by mid-century

Variability in the Weather

***** Causes of variability include:

- * El Nino
- * La Nina
- * Volcanic eruptions

Causes of Changes in Climate

Screenhouse gas emissions

- Methane (CH₄)
- * Nitrous Oxide (N₂O)
- Hydrofluorocarbons (HFCs)

Long lived pollutants

Radiative Forcing (watts/M²)

- Measure of the change in the earth's energy balance—the balance of incoming (sunlight) and outgoing energy (heat)
- Sreenhouse gases: positive forcing

IPCC, The Physical Science Basis, 2007

Projections of Future Conditions

Is Climate Model Output Sufficient for Engineering Applications?

While advancing in complexity, global climate models currently lack required fidelity needed by engineers

Is Climate Model Output Sufficient for Engineering Applications?

While advancing in complexity, global climate models currently lack required fidelity needed by engineers

Is Climate Model Output Sufficient for Engineering Applications?

While advancing in complexity, global climate models currently lack required fidelity needed by engineers

Global Climate Models (GCMs)

What data do climate models produce?

* Temperature, precipitation projections

How many models are there?

* Dozens

Climate models

How can I get a GCM on my phone or laptop??

Which model should I choose?? [trick question] *Ensemble of models*

Scale of GCM results

* Thousands of square miles

Developing Projections

Emissions Scenarios

What is a scenario?

- * Tells the model future GHG concentrations
- * Affects the strength of the forcings calculated by the model

Based on assumptions about the future

- * Economic growth
- * Technological development
- * Fossil fuel, renewable energy
- * Population growth rates

Two Sets of Scenarios:

- * Representative Concentration Pathways (RCP)
- * Special Report on Emissions Scenarios (SRES)

Representative Concentration Pathways (RCP) Scenarios

RCP Scenario	Description			
RCP 8.5 Rising radiative forcing leading to 8.5 (~1370 ppm CO ₂ equivalent) by 2100.				
RCP 6.0	Stabilization, 6 W/m ² (~850 ppm CO ₂ equivalent) at stabilization after 2100			
RCP 4.5	Stabilization, 4.5 W/m ² (~650 ppm CO ₂ equivalent) after 2100			
RCP 2.6	Peak at ~3 W/m ² (~490 ppm CO ₂ equivalent) before 2100 and then declines.			

FHWA recommends: RCP 6.0, RCP 8.5

Special Report on Emissions Scenarios (SRES)

SRES Scenarios

- Developed in 2000
- Used in multiple model runs and studies
- CO₂ concentrations: 550-750 ppm, or higher

Coupled Model Intercomparison Project (CMIP) database

- CMIP5 results for RCP scenarios/models
- CMIP3 Results for the SRES scenarios/models

Global Temperature Increase: SRES, RCP Scenarios

Annual Max Precipitation

Three Sources of Uncertainty

- Natural variability
- Scientific or
 Model Uncertainty
- Scenario Uncertainty

Gulf Coast 2 / Hawkins and Sutton, 2009

Developing Projections

Climate Model Output is too Coarse for Engineering Applications

Downscaling

- Used to develop projections at a smaller scale
- Two types:
 - * Statistical downscaling
 - *****Used in FHWA recommended databases
 - * Dynamic downscaling

Downscaling

- Statistical Downscaling -- Relies on statistical relationships between local weather and larger weather patterns
- ***** Several different statistical processes:
 - * Bias Corrected Constructed Analogs (BCCA)
 - * Bias Corrected Spatially Downscaled (BCSD)
 - * Asynchronous Regional Regression Model (ARRM)
 - * Localized Constructed Analogs (LOCA)

Dynamic Downscaling

Sources of Downscaled Data

- Downscaled Climate and Hydrology Projections (DCHP)
 - Uses Coupled Model Intercomparison Project (CMIP) model runs
 - Statistically downscaled data from multiple models/scenarios
 - * Supported by multiple federal agencies
 - http://Gdo-dcp.ucllnl.org/downscaled_cmip_projections/ dcpInterface.html

Request Data for your Location from the DCHP Website

Raw DCHP Data

	А	В	С	D	E	F	G	Н	I.	J	К
1	1961	1	1	0.038	31.027	0.058	19.534	0.09	6.048	0.052	6.70
2	1961	1	2	0.304	15.282	0.341	1.187	7.939	8.233	0.018	0.17
3	1961	1	3	1.081	4.049	2.91	0.444	1.83	0	0.141	0.16
4	1961	1	4	3.849	0.236	1.656	4.006	0	0.027	0.009	
5	1961	1	5	0.007	0.5	0.337	0.248	2.462	0	0	
6	1961	1	6	0.562	0.296	2.579	0.131	14.372	3.931	0.238	1.27
7	1961	1	7	15.771	0.159	1.969	1.463	0.413	0.007	0.073	11.31
8	1961	1	8	8.676	0.832	0.055	0.171	0.119	0	1.525	6.1
9	1961	1	9	0	3.334	28.738	0.153	15.386	0.831	5.037	1.18
10	1961	1	10	0	3.615	12.319	5.086	15.661	13.652	10.034	0.06
11	1961	1	11	0.277	0.047	0	2.305	2.602	0.025	2.531	0.55
12	1961	1	12	3.224	0	0.167	0	0.117	15.119	0.147	
13	1961	1	13	12.025	0.082	21.148	0	0	0.046	1.842	3.38
14	1961	1	14	0.006	2.725	3.412	0.061	0	0.199	3.532	17.68
15	1961	1	15	0	13.502	0	0.328	0	1.562	0.039	7.45
16	1961	1	16	0	12.965	0.743	0.038	0.264	5.408	0.234	0.12
17	1961	1	17	2.469	0.114	35.139	0.981	0.016	8.176	0.34	0.00
18	1961	1	18	4.755	1.414	3.844	0.235	0.021	0.836	0.181	0.92
19	1961	1	19	0.745	1.606	0.018	0.493	0.18	0.026	0.209	9.62
20	1961	1	20	0.047	0.115	0	0.137	0.12	8.64	0.078	1.
21	1961	1	21	0.035	0.357	0.347	0.43	0.301	11.421	5.227	0.24
22	1961	1	22	0.25	0.185	6.474	19.053	0.167	1.262	11.56	0.1
23	1961	1	23	3.678	3.061	1.109	8.561	0.803	8	2.899	0.33
24	1961	1	24	2.737	15.672	0.005	0.01	1.102	0.088	0.986	1.03
25	1961	1	25	0.043	0.209	0.181	5.892	0.231	0.076	0.002	0.12
26	1961	1	26	0.81	0.186	0.807	10.074	0.007	0.067	2.62	0.04
27	1961	1	27	23.589	1.236	0.071	1.178	0.332	0.95	1.298	0.14
28	1961	1	28	4.153	0.831	0.141	0.074	0.133	32.918	0	0.01
29	1961	1	29	0.664	0.019	0.079	0.013	0.003	2.209	2.349	0.04
30	1961	1	30	0.168	0.044	1.101	0	0.21	0	6.299	1.87
31	1961	1	31	0.021	24.922	8.293	1.052	0.154	0.002	1.429	0.16
32	1961	2	1	0.372	18.018	1.086	2.708	0.087	1.516	1.971	0.25

CMIP Climate Data Processing Tool

FHWA developed tool to help crunch the data

- ***** Excel spreadsheet that processes DCHP datasets
- * Calculate variables relevant to transportation agencies

CMIP Climate Data Processing Tool – Output

		Projected Changes in Temperature Conditions RCP 6.0			
		Miami, FL			
		Hide Details			
Click to jump to derived variables related to Annual Averages Annual Extreme Heat	Seasonal Extre	Average Total Annual Precipitation	Γ		
	_	"Very Heavy" 24-hr Precipitation Amount (defined			
	Baseline (19	as 95th percentile precipitation)			
Click column headings for additional info	Observed	"Extremely Heavy" 24-hr Precipitation Amount			
	Value	(defined as 99th percentile precipitation)			
Annual Averages		Average Number of Baseline "Very Heavy"			
Average Annual Mean Temperature	76.1 ° F	Precipitation Events per Year (0.0 inches in 24 hrs)	_		
Average Annual Maximum Temperature Average Annual Minimum Temperature	68.4 ° F	Average Number of Baseline "Extremely Heavy"	F		
Annual Extreme Heat		Precipitation Events per Year (0.0 inches in 24 hrs)	Г		
Hottest Temperature of the Year	94.6 ° F	1			
"Very Hot" Day Temperature (Very Hot defined as 95th Percentile Temp)	91.7 ° F	Average Total Monthly Precipitation			
"Extremely Hot" Day Temperature (Extremely Hot defined as 99th Percentile Temp)	93.8 ° F	Average Total Seasonal Precipitation			
August Number of Dave and Very About		Largest 3-Day Precipitation Event per Season	_		
Average Number of Days per Year Above Baseline "Very Hot" Temperature (91,7°F)	18.3 days				
Average Number of Days per Year Above	20.0 0012				
Baseline "Extremely Hot" Temperature (93.8°F)	3.7 days	Annual Maximum 24-br Precipitation (in)			
Average Number of Days per Year above 95°F	1.3 days				
Average Number of Days per Year above 100°F	0.0 days	0.0 days 0.0 days 0.0 days n/a 0.0 days 0.1 days			

CMIP Climate Data Processing Tool

- Tool user guide steps through entire process
- Online webinars describe how to use tool in detail
- Tool is free to download and use

Tool User's Guide				
June 2015				

U.S. DOT CMIP Climate Data Processing

Prepared by ICF International for the U.S. Department of Transportation Center for Climate Change and Environmental Forecasting under The Guif Coast Study, Phase 2, Impacts of Climate Change and Variability on Transportation Systems and Infrastructure.

www.fhwa.dot.gov/environment/sustainability/resilience/tools/

1

Other Sources of Downscaled Data

- USGS Geo Data Portal
 - * Statistically downscaled data from multiple sources

http://cida.usgs.gov/gdp/

- North American Regional Climate Change Assessment Program (NARCCAP)
 - * Dynamically downscaled data for SRES A2 scenario

* www.narccap.ucar.edu/

Questions?

Risk and Resilience

Why a Chapter on Risk and Resilience?

* 23 CFR 650 Subpart A

* "Location studies shall include discussion of ... The risks associated with the implementation of the action,..."

FHWA Order 5520

- * "...developing engineering solutions...that address risk and promote resilience..."
- Risk-based asset management
- Balance social, economic, environmental interests
- Design standards provide consistency
- Expand thinking about design to include:
 - * Evolving service lives, function, multiple events, retrofits
 - * Changing watershed and climate (nonstationarity)

Terminology

Design Events

Considerations

Preservation

Risk

Χ

Probability

R

S

K

Design Event Check Event AEP Return Period Design Life Service Life Range of Events Nonstationarity

Consequences

Damage Overtopping Exceed Design Maintenance Higher Costs Loss of Life Loss of Service Scour (?!?)

Backpacking Risk

Probability

Low Consequences?

High Consequences

Design Criteria Example

Roadway Classification*	Annual Exceedance Probability (percent)	Return Period (years)	
Interstate, Freeways (Urban/Rural)	2%	50	
Principal Arterial	2%	50	
Minor Arterial System, ADT>3000 VPD	2%	50	
Minor Arterial System, ADT=<3000 VPD	4%	25	
Collector System with ADT>3000 VPD	4%	25	
Collector System with ADT=<3000 VPD	10%	10	
Local Road System	20%-10%	5-10	

*Average Daily Traffic (ADT): Vehicles per Day (VPD)

Performance over Design Life

$$P = 1 - \left(1 - \frac{1}{T}\right)^n_{\text{Eq. 6.1}}$$

- P = probability that the design flood level will be equaled or exceeded in n years
- *n* = design or expected service life, years
- T = the return period of the design storm, years

$$P = 1 - \left(1 - \frac{1}{50}\right)^{75} = 0.78 \ (78 \ percent)$$

Odds of Q50 flooding bridge over 75 year life is 78%!

Performance over Design Life

Evolving Conditions over Service Life

Changes in functional classification

* Upgrade from secondary to primary road

Nonstationarity

- * Change in land use (urbanization, flood control projects)
- * Change in precipitation patterns
- * Change in watershed characteristics (cover, wildfire!)

✤ See example problem HEC 17 page 6-6:

- * Uses Eq. 6.1
- * Flood probability increases over time

Example problem HEC 17 page 6-6

* Regression includes Mean Annual Precipitation (MAP)

***** MAP projected to increase* over 100 year service life

AEP	0.5	0.2	0.1	0.04	0.02	0.01
Return Period	Q2	Q5	Q10	Q25	Q50	Q100
Flow with Current MAP (ft ³ /s)	2,280	5,240	7,800	12,000	15,800	20,500
Flow with Future MAP (ft ³ /s)	3,110	7,020	10,200	15,500	20,300	26,000

$$P = 1 - \left(1 - \frac{1}{50}\right)^{100} = 0.87$$
 $P = 1 - \left(1 - \frac{1}{25}\right)^{100} = 0.98$

◇ Probability of 15,800 cfs event 87% → 98% over 100 years
◇ *If MAP decreases, P decreases too

Modifying Existing Facilities

- Service life
- If remaining life is short (<30 yrs)</p>
 Additional risk due to "nonstationarity" is minimal
- If remaining life is long (>30 yrs)
 Consider additional risk due to "nonstationarity"

Modifying Existing Facilities

Ugh Oh?

We're Good?

Look at a Range of Events

In addition to design flood...

- * Check floods above design flood
- Sackwater impacts to upstream properties
- Impacts to FEMA regulated floodplains
- Performance curves...shapes convey resilience
- Smaller floods...siltation? Maintenance issues?
- Wide floodplains...channel meandering patterns?
- Temporary construction flood diversions required?

Resilience

The ability to anticipate, prepare for, and adapt to changing conditions and withstand, respond to, and recover rapidly from disruptions.

FHWA Order 5520, December 15, 2014

Performance Curve: Little Existing Resilience

Performance Curve: Lots of Existing Resilience

Exceeding Design Criteria

Design discharge exceedances from:

- * Random, but natural, high discharges
- * Changes in watershed/climate
- * Incorrect estimate of design discharge
- Does exceedance create risk to safety or the asset?

23 CFR 650.115: Consider costs, economic, engineering, social, environmental concerns

Consider Impacts to Surrounding Vicinity

Structural Damage

Usually result of exceeding hydraulic capacity...not necessarily exceeding design criteria

Can we anticipate/design for these exceedances?

Recognizing Risk / Designing with Resilience

- Need to recognize potential for evolving (rather than static) risks and build in resilience
- This is NOT changing design criteria, rather recognizing design discharge may evolve over time
- Example: A "resilient" bridge design:
 - * accommodates the planned design discharge
 - * survives higher discharges w/o catastrophic failure,
 - * returns to service cheaply/quickly if overtopped
 - * is elevated above damaging waves including debris

Questions?

