SAFETEA-LU 1808: CMAQ Evaluation and Assessment

Phase I Final Report

FHWA-HEP-08-019

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for its contents or use thereof. This report does not constitute a standard, specification, or regulation. The U.S. Government does not endorse products or manufacturers. Trade and manufacturers' names appear in this report only because they are considered essential to the object of the document.

Quality Assurance Statement

The Federal Highway Administration provides high quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.

Technical Report Documentation Page

1. Report No.	2. Government Accessi	on No.	3. Recipient's Catalog No.	
FHWA-HEP-08-019				
4. Title and Subtitle			5. Report Date	
SAFETEA-LU 1808: Congestion Mitigation		ovement Program	October 2008	
Evalutation and Assessment - Phase 1 Final	Report	·	6. Performing Organizatio	n Code
			······································	
			8. Performing Organizatio	n Report No.
7. Author(s) Michael Grant, Rich Kuzmyak, Lilly Shoup	o, Eva Hsu, Teddy Kro	lik, and David Ernst		
9. Performing Organization Name and Address ICF International	;		10. Work Unit No. (TRAIS)
9300 Lee Highway Fairfax, Virginia 22031			11. Contract or Grant No. DTFH61-04-D-00015	
			13. Type of Report and Pe	eriod Covered
12. Sponsoring Agency Name and Address			CMAQ Evaluation and	review 2000 - 2005
Office of Natural and Human Environment	t			
Federal Highway Administration 1200 New Jersey Ave, SE				
Washington, DC 20590			14. Sponsoring Agency C HEPN-1	ode
15. Supplementary Notes This report was overseen by a review panel Administration, and the U.S. Environmenta		atives of Federal High	hway Administration, Fe	deral Transit
Administration (FHWA) CMAQ database. emissions of transportation-related pollutar volatile organic compounds (VOCs) – and r study team also conducted additional analy reducing emissions of each pollutant.	nts, including carbon m particulate matter (PM	ionoxide (CO), ozone j 10 and PM2.5), as wel	precursors – oxides of ni ll as on traffic congestion	trogen (NOx) and and mobility. The
17. Key Words The Congestion Mitigation and Air Quality Program (CMAQ), CMAQ, air quality, eva cost-effectiveness, SAFETEA-LU 1808	-	electronically throug of Natural and Huma	nent document is available to th the Federal Highway A an Environment, Washin .gov/environment/cmaqp	Administration Office Igton DC, 20590
19. Security Classif. (of this report)	20. Security Classif	. (of this page)	21. No. of Pages	22. Price
Unclassified	Unclassified		152	

Contents

Ex	ecutive Summary	i
1.	Introduction Purpose of the Study Context for the CMAQ Program Relevant Literature and Studies Report Organization	1 2 6
2.	Study Approach Project Categories and Distribution Project Selection Procedures Data Collection Procedures	
3.	Impacts of Projects on Air Quality and Congestion General Observations Traffic Flow Improvements Shared Ride Programs Travel Demand Management Bicycle/Pedestrian Facilities Transit Service Improvements Transit Vehicle Replacements and Related Infrastructure Dust Mitigation Projects Freight/Intermodal Projects Diesel Emissions Reduction	
4.	Project Analysis and Selection Practices that Support Effectiveness Emissions Reduction Cost-Effectiveness Examples of Good Practices Next Steps	50 60
Ар	pendix A. List of State and Local Contacts	67
Ар	pendix B. Emissions Factors and Assumptions Used in Emissions Reduct Effectiveness Calculations	
Ар	pendix C. CMAQ Project Templates	71
Ар	pendix D. CMAQ Project Cost Effectiveness Calculations	145

List of Figures

Figure 1: Share of CMAQ Projects Obligated FY 2000 to FY 2005 by Project Category	8
Figure 2: Percentage of CMAQ Funding FY 2000 to FY 2005 by Project Category	9

List of Tables

Table 1: CMAQ Projects Included in the Study by Project Category and Subcategory	10
Table 2: States Receiving Largest CMAQ Apportionments, FY 1991 - FY 2005	11
Table 3. Consumer Price Index (CPI) Factors	53
Table 4. Project Life Periods Used for Evaluating Projects	
Table 5. VOC, NOx, and CO Cost-Effectiveness of Selected CMAQ Projects by Strategy	
Table 6. PM Cost-Effectiveness of Selected CMAQ Projects by Strategy	58
Table 7: Selected States and MPOs with Standardized Tools or Emission Calculation Methods	61
Table 8: Identified States and MPOs with Transparent Project Selection Methods	63
Table 9: Selected States and MPOs that Conduct or Call for Post-Project Analysis	

EXECUTIVE SUMMARY

The Congestion Mitigation and Air Quality Improvement (CMAQ) Program provides funds to States for transportation projects designed to improve air quality and reduce traffic congestion, particularly in areas of the country that do not attain national air quality standards. Created by the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991, the program was reauthorized under the Transportation Equity Act for the 21st Century (TEA-21) in 1997, and again as part of the Safe, Accountable, Flexible, Efficient, Transportation Equity Act: A Legacy for Users (SAFETEA-LU) in 2005. Since 1991, the CMAQ Program has provided funding to over 16,000 projects, and has been a key mechanism for supporting investments that help urban areas meet air quality goals, encourage alternatives to driving alone, and improve traffic flow.

In SAFETEA-LU Section 1808, Congress required the U.S. Department of Transportation, in consultation with the Environmental Protection Agency (EPA), to evaluate and assess the direct and indirect impacts of CMAQ-funded projects on air quality and congestion levels. This study responds to that request by analyzing 67 CMAQ-funded projects, using data supplied by States and metropolitan planning organizations (MPOs) in the Federal Highway Administration (FHWA) CMAQ database. From this information, the study team examined the estimated impacts of these projects on emissions of transportation-related pollutants, including carbon monoxide (CO), ozone precursors – oxides of nitrogen (NOx) and volatile organic compounds (VOCs) – and particulate matter (PM₁₀ and PM_{2.5}), as well as on traffic congestion and mobility. The study team also conducted additional analyses of the selected set of CMAQ-funded projects to estimate their cost-effectiveness at reducing emissions of each pollutant.

Congestion and Mobility Benefits

As shown in the set of projects examined in this study, many CMAQ projects help to reduce traffic congestion and improve mobility. Traffic flow improvement projects, which include traffic signalization improvements, incident management programs, and intersection improvements, are designed to improve traffic speeds and minimize delays experienced by drivers. Although many of these projects are small in scope (e.g., an individual intersection improvement), they can have a sizable impact on travel times in specific locations. For instance, among the traffic flow projects that reported travel time savings – installation of coordinated signalized intersections along a roadway in Newark, Ohio; two intersection improvements in East Baton Rouge Parish, Louisiana; and traffic signal optimization for arterial highways in Lexington, Kentucky – the projects were estimated to save from 702 to 6,360 vehicle hours of delay per day. In total, traffic flow improvement projects represented 42 percent of the CMAQ-funded projects (32 percent of CMAQ funding) during fiscal years (FY) 2000 to 2005, according to the FHWA CMAQ database. In addition to traffic flow improvements, freight and intermodal projects are frequently designed to shift goods movement from trucks to rail, and reduce congestion associated with truck traffic on major freight corridors.

Other projects are designed primarily to enhance mobility by increasing travel options, such as transit, bicycling, walking, and ridesharing. Most of the vanpool, park-and-ride, bicycle/pedestrian, and transit bus service improvement projects examined in this study were estimated to remove from about one hundred to several hundred vehicle trips per day. The magnitude of congestion relief effects from this level of vehicle travel reduction is difficult to assess, and was typically not reported by project sponsors. The primary benefit from these projects is enhanced mobility for travelers, as travelers have a greater range of options to meet their travel needs and have greater access to employment, services, and recreational opportunities. These projects often also have other benefits such as reducing travel costs for individuals and supporting improved quality of life in communities. Mobility can also be enhanced through projects that improve incident management, freeway traveler information, and transit information, which improve travel time reliability and enable people to plan their travel routes, mode choice, and time of travel more effectively.

Air Quality Benefits

CMAQ projects typically reduce motor vehicle emissions one of three ways: 1) by encouraging changes in travel behavior that reduce motor vehicle miles traveled (VMT), such as shifts to ridesharing, transit, bicycling, or walking; 2) by improving traffic flow, thereby reducing vehicle idling and stop-and-start driving conditions that are associated with higher levels of emissions; and 3) by implementing technologies to reduce the rate of emissions, such as conversion to alternative fueled buses, or retrofits of diesel vehicles. In addition, in some locations, targeted approaches have been used to reduce wind blown particulate matter from roadways, such as funding street sweepers and application of de-icing chemicals instead of sand.

Although the limited number of projects examined in this study does not allow for definitive conclusions about the effectiveness or cost-effectiveness of different types of CMAQ projects, some general findings are noted below.

First, since many CMAQ projects are small in scale (e.g., a single park-and-ride lot, a bicycle path, a transit shuttle), many of these projects yield small reductions in motor vehicle emissions. Among the projects reviewed in this study, the majority had emissions reduction estimates of less than 50 kg per day of both VOC and NO_x , and less than 500 kg per day of CO. In the context of regional air quality concerns, these estimated emissions reductions are generally quite small. The combined impact of multiple projects, and longer-term, indirect benefits (e.g., supporting transit-oriented land use patterns), however, may be more substantial.

Second, a wide variation in estimated emissions effects and cost-effectiveness occurs within project types. Some individual projects showed very strong cost-effectiveness, while other similar types of projects appeared to have poor cost-effectiveness at reducing specific pollutants. Within a given project category, estimated project cost-effectiveness typically varied by a factor of 10 or more (e.g., the most cost-effective new bus service in the set of projects examined was estimated to cost \$130,000/ton of VOC removed, while the least cost-effective new bus service was estimated to cost \$1.5 million/ton of VOC removed). This high level of variability suggests that local context and project-specific factors are important determinants of the level of emissions reductions that can be expected from projects.

Third, although there is a wide range of estimated emissions benefits and cost-effectiveness at reducing emissions across the set of projects examined, there are some patterns when looking at impacts on individual pollutants. Strategies that aim to reduce vehicle travel, such as shared ride programs, travel demand management, bicycle/pedestrian facilities, and transit improvements, typically reduce emissions of all major on-road transportation related pollutants – VOC, NO_X, CO, and PM₁₀ and PM_{2.5} – with the largest reductions occurring in ozone precursors and CO. PM reductions from these projects tended to be very small and in many cases were not reported by project sponsors.

Traffic flow improvements, such as signal syncronization and freeway management projects, are typically implemented to improve travel speeds on congested roadways, or to reduce idling time. The emissions effects of traffic flow improvements depend on the overall speed improvement and initial speeds. VOC emissions generally decline with increasing speeds, but NO_X and CO emissions can increase at higher speeds. As a result, a traffic flow project could reduce VOC emissions but yield a small increase in NO_X , and may have little or no effect on PM.

Finally, diesel emissions-focused strategies can be quite cost-effective at reducing PM emissions. Among the sample projects, dust mitigation-focused projects offered the most cost-effective means for reducing PM_{10} and $PM_{2.5}$ from wind-blown dust in locations where they were practical. Diesel engine retrofits and truck idle reduction strategies tended to be the most cost-effective set of strategies for reducing particulate matter outside of the dust mitigation strategies. This is perhaps not surprising, given that diesel vehicles are large emitters of particulate matter, but it is also notable that some diesel engine retrofit projects

examined in this study were quite cost-effective at reducing ozone precursors and CO as well. For instance, one type of diesel soot filter used to retrofit transit buses was certified to reduce PM, VOC, and CO emissions each by 60 percent; another technology used in a project to retrofit transh collection trucks was estimated to reduce PM emissions by 80 percent, while also reducing CO by 67 percent and VOC by 95 percent.

Effective Implementation of the CMAQ Program

In addition to determining the impacts of a sample of CMAQ projects on air quality and congestion, SAFETEA-LU Section 1808 directs an evaluation and assessment of CMAQ projects to "ensure the effective implementation of the program." This report is the first phase of a two phase effort being undertaken by DOT, in consultation with EPA, to address the goals of this evaluation and assessment. This Phase I report focuses on an evaluation of a set of CMAQ projects for the purpose of determining their air quality and congestion benefits, while Phase II involves case studies to further explore approaches to CMAQ project selection and implementation that are effective in achieving air quality improvement and congestion relief.

In the course of collecting data on the selected projects a variety of good practices that States and MPOs use to analyze and select projects for CMAQ funding were revealed. These approaches include: development of standardized templates, calculation guidebooks, and spreadsheets that help to ensure a consistent set of project inputs from project sponsors and to make calculations easier and less prone to error; development of systematic procedures for ranking projects, including consideration of project cost-effectiveness at reducing air pollutant emissions of concern and other factors; and coordination with air agencies and local agencies in the project selection process. The information gathered for this Phase I report was used to help select locations for case study visits in Phase II.

The analysis of emissions reduction cost-effectiveness in this study also provides a possible analytic framework that may help States and MPOs develop their own analysis when considering projects for funding. It is important to note, however, that CMAQ projects also generate other benefits beyond emissions reductions, such as congestion relief, travel time savings, energy savings, enhanced mobility, and other transportation system user benefits, which are not quantified in the emissions reduction cost-effectiveness figures but are important considerations in the overall benefit-cost associated with each project. These many factors also are often important considerations in project selection. Many States and MPOs value the CMAQ Program for the flexible funding it provides to help them address air quality concerns from transportation sources and to help support a wide range of transportation objectives, such as enhancing multi-modal accessibility, improving transportation system reliability, and strengthening community livability.

1. INTRODUCTION

Purpose of the Study

The Congestion Mitigation and Air Quality Improvement (CMAQ) Program provides funds to States for transportation projects designed to reduce traffic congestion and improve air quality, particularly in areas of the country that do not attain national air quality standards. Created by the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991, the program was reauthorized under the Transportation Equity Act for the 21st Century (TEA-21) in 1998 and again as part of the Safe, Accountable, Flexible, Efficient, Transportation Equity Act: A Legacy for Users (SAFETEA-LU) in 2005. From its beginning, the CMAQ program has been a key funding mechanism for helping urban areas meet air quality goals and supporting investments that encourage alternatives to driving alone and improve traffic flow. Since 1991, the Program has provided \$22.7 billion in funding to States, metropolitan planning organizations (MPOs), and transit agencies to invest in projects that reduce criteria air pollutants regulated from transportation-related sources. The CMAQ program is also credited with gaining State and regional support for the mandates of the 1990 Clean Air Act Amendments (CAAA).¹

In TEA-21, Congress funded a study to better understand the efficiency and effectiveness of the CMAQ program, which was undertaken by the Transportation Research Board (TRB). Building on this effort, the further reauthorization of the CMAQ program in Section 1808 of SAFETEA-LU requires the U.S. Department of Transportation, in consultation with the U.S. Environmental Protection Agency (EPA), to conduct an evaluation and assessment of a representative sample of CMAQ projects, for the purpose of: (A) determining their congestion and air quality benefits, and (B) ensuring effective implementation of the program. Moreover, SAFETEA-LU placed increased emphasis on funding cost-effective strategies, calling for States and MPOs to give priority in distributing funds to diesel retrofits and "cost-effective congestion mitigation activities that provide air quality benefits."²

The language of SAFETEA-LU Section 1808 requiring an evaluation and assessment of CMAQ projects is included below.

(f) EVALUATION AND ASSESSMENT OF CMAQ PROJECTS.—Section 149 of such title (as amended by subsection (e)) is amended by adding at the end the following:

(h) EVALUATION AND ASSESSMENT OF PROJECTS.-

(1) IN GENERAL.—The Secretary, in consultation with the Administrator of the Environmental Protection Agency, shall evaluate and assess a representative sample of projects funded under the congestion mitigation and air quality program to—

(A) determine the direct and indirect impact of the projects on air quality and congestion levels; and(B) ensure the effective implementation of the program.

(2) DATABASE.—Using appropriate assessments of projects funded under the congestion mitigation and air quality program and results from other research, the Secretary shall maintain and disseminate a cumulative database describing the impacts of the projects.

(3) CONSIDERATION.—The Secretary, in consultation with the Administrator, shall consider the recommendations and findings of the report submitted to Congress under section 1110(e) of the Transportation Equity Act for the 21st Century (112 Stat. 144), including recommendations and findings that would improve the operation and evaluation of the congestion mitigation and air quality improvement program.

This report is the first phase of a two phase effort being undertaken by FHWA, in consultation with EPA, in order to meet the requirements in Section 1808(f) of SAFETEA-LU. The purpose of this report is to

¹ Transportation Research Board. Special Report 264: The CMAQ Program: Assessing 10 Years of Experience. 2002. Page 19.

² SAFETEA-LU 1808(d) amending 23 USC 149 (f)(3)(A)(ii).

examine the direct and indirect impacts of CMAQ-funded projects on air quality and congestion levels. This evaluation was conducted by gathering data reported in FHWA's national database of CMAQ projects, as well as additional background collected from States and MPOs to analyze the total annual costs (i.e., CMAQ and non-CMAQ funds), estimated annual emissions reductions, and congestion relief benefits for a small number of CMAQ funded projects. The report also contains an assessment of the air quality cost-effectiveness of these selected projects, and preliminary information on good practices being implemented by State DOTs and MPOs for prioritizing and selecting CMAQ projects. This preliminary information is followed by a Phase II report that involves case studies of a sample of State DOTs and MPOs to highlight approaches that advance the effective implementation of the program.

Context for the CMAQ Program

Any evaluation of CMAQ projects should recognize the magnitude of the air quality and congestion problems in the United States and have realistic expectations concerning the influence one program can have on reducing transportation-generated pollution and mitigating traffic congestion. Despite substantial progress in improving air quality nationally since the 1970s, over 100 million Americans still live in areas of the country that do not meet EPA's National Ambient Air Quality Standards for one or more pollutants. Traffic congestion is a growing problem affecting urban areas of all sizes, with congestion affecting more trips, over more hours of the day, on more roadways than in the past. According to Texas Transportation Institute's *Urban Mobility Study*, traffic congestion creates a \$78 billion annual drain on the U.S. economy in the form of 4.2 billion lost hours and 2.9 billion gallons of wasted fuel.³

While the CMAQ program provides targeted resources to address the role of transportation in these air quality and congestion challenges, the resources provided by the CMAQ program are modest in comparison to the overall Federal transportation program. In total, SAFETEA-LU provides \$286.4 billion in guaranteed funding for Federal surface transportation programs over five years through FY 2009. This includes \$193.6 billion in Federal-aid Highway program authorizations and \$52.6 billion for Federal transportation program is authorized at \$8.6 billion, or 4.4 percent of the total Federal-aid Highway program (three percent of the total Federal surface transportation program funding). Given other State and local sources of funding, which make up about half of all highway and transit capital expenditure and the majority of operating expenses, the Federal CMAQ program represents less than two percent of total transportation spending in many metropolitan areas.

A single major transportation infrastructure project in an urban area can cost more than \$1 billion, and there are a number of major highway and transit projects being constructed across the U.S. that cost in the multiple billions of dollars. At an authorized level of approximately \$1.7 billion per year under SAFETEA-LU, the CMAQ program – which provides funding to all 50 States and the District of Columbia – is not able to substantially "solve" the air quality or congestion problems facing metropolitan areas across the country. However, the incremental benefits of the program are an important part of the solution.

The CMAQ program provides funds that are targeted to areas of the country with the most severe air quality problems, which tend to be the largest metropolitan areas experiencing some of the worst traffic congestion. Many metropolitan areas rely on the CMAQ program as a flexible funding source to support a wide range of projects that improve air quality, reduce traffic congestion, and support a multi-modal transportation system, and as a mechanism to help fund air quality mandates under the Clean Air Act. CMAQ funded projects are often small in scale – e.g., a bicycle path, a park-and-ride lot, a new transit shuttle service, or a traffic signalization improvement. Still, they may have important benefits at a corridor or local level, where the benefits of a single project can make a difference. CMAQ funds also are

³ Texas Transportation Institute, 2007 Urban Mobility Report. September 2007. Available at: <u>http://mobility.tamu.edu/ums/report/</u>.

used to leverage other Federal and State and local funding sources, and to support regional efforts such as regional ridesharing programs, incident management programs, and traveler information systems.

Establishment of the CMAQ Program

The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 was a landmark surface transportation Act which, for the first time, emphasized intermodalism - the seamless linking of highway, rail, bicycle, pedestrian, and other modes. The Act included provisions and new programs designed to address the Nation's growing transportation challenges, such as improving safety, reducing traffic congestion, improving efficiency in freight movement, increasing intermodal connectivity, and protecting the environment. ISTEA opened the transportation planning process to more public involvement than ever before, bringing new players to the table when decisions were being made and increasing collaboration among existing stakeholders. This diversity in transportation decision-making has resulted in additional positive benefits for communities, because transportation investment decisions are built upon input from transportation stakeholders and the general public.

ISTEA also made funding available to new kinds of programs, and established the Congestion Mitigation and Air Quality Improvement (CMAQ) program – the first federally funded transportation program explicitly targeting air quality improvement. Approximately 4 percent of total funding for the 1992–1997 Federal surface transportation program, or \$6 billion, was authorized for CMAQ projects that would offer alternatives to single occupant vehicle (SOV) travel, improve travel efficiency as a means of addressing traffic congestion, and promote cleaner motor vehicles in the Nation's most polluted areas.⁴

From its inception, the primary policy focus of the CMAQ program has been on air quality improvement, reflecting the requirements placed on the transportation sector by the Clean Air Act Amendments (CAAA) of 1990 to help meet national air quality goals. It provides flexible funding for States to use in nonattainment areas to help them address air quality concerns from transportation sources. Over time, the CMAQ program has become a key funding mechanism to support investments that not only help urban areas meet air quality goals, but also help focus transportation planning on a more inclusive, environmentally sensitive, and multimodal approach.

Apportionment and Eligible Projects

Federal CMAQ funds are apportioned annually to each State according to the severity of the air quality problem and the population of each nonattainment or maintenance county (based upon Census Bureau data).⁵ Each State is guaranteed a minimum apportionment of one-half percent of the year's total program funding, regardless of whether the State has any nonattainment or maintenance areas. These minimum apportionment funds can be used anywhere in the State for projects eligible for either CMAQ or the Surface Transportation Program (STP).

To be eligible for CMAQ funds, a project must be included in the MPO's current transportation plan and Transportation Improvement Program (TIP) (or the current Statewide TIP, or STIP in areas without an MPO).⁶ In nonattainment and maintenance areas, the project also must meet the conformity provisions

⁴ See Transportation Research Board. *Special Report 264: The CMAQ Program: Assessing 10 Years of Experience*. 2002. Page 19.

⁵ 23 USC 149(b)-(c).

⁶ 23 USC 134-35, 149(d).

contained in Section 176(c) of the Clean Air Act and the transportation conformity rule at 40 CFR Part 93. In general, there are three types of CMAQ eligible activities:⁷

- Capital Investment CMAQ funds may be used to establish new or expanded transportation projects or programs that reduce emissions, including capital investments in transportation infrastructure, congestion relief efforts, diesel engine retrofits, or other capital projects.
- Operating Assistance Operating assistance is limited to new transit services, intermodal facilities, and travel demand management strategies (including traffic operation centers); and the incremental cost of expanding existing transit services. In using CMAQ funds for operating assistance, the intent is to help start up viable new transportation services that can demonstrate air quality benefits and eventually cover their costs as much as possible. Once these projects have become part of the baseline transportation network and no longer represent additional air quality benefits, other funding sources should supplement and ultimately replace their CMAQ funds for operating assistance (i.e., there is a three-year limit on the use of CMAQ operating assistance).
- Planning and Project Development Activities in support of eligible projects also may be appropriate for CMAQ investments. Studies that are part of the project development pipeline (e.g., preliminary engineering) under the National Environmental Policy Act (NEPA) are eligible for CMAQ support, as are FTA's Alternatives Analyses. General studies that fall outside specific project development do not qualify for CMAQ funding. Examples of such efforts include major investment studies, commuter preference studies, modal market polls or surveys, transit master plans, and others. These activities are eligible for Federal planning funds.

The CMAQ *Interim Program Guidance* dated October 31, 2006 lists 16 categories of projects eligible for CMAQ funding, which FHWA has traditionally grouped into the following categories:

- Traffic flow improvements (e.g., traffic signalization, freeway management, high-occupancy vehicle lanes);
- Shared ride programs (e.g., regional ridesharing, vanpool programs, and park-and-ride lots);
- Travel demand management (e.g., regional marketing, employer trip reduction programs);
- Bicycle/pedestrian facilities and programs;
- Transit (e.g., new bus services, new rail services/equipment, service upgrades/amenities, bus replacements, alternative fuel buses); and
- Other projects, including diesel engine retrofits, freight/intermodal projects, dust mitigation projects, and other qualifying projects, including experimental pilot projects, which are allowed under the law as demonstrations to determine their benefits and costs.

CMAQ-funded projects or programs must reduce CO, ozone precursor (NOx and VOCs), PM, or PM precursor (e.g., NOx) emissions from transportation.⁸ These reductions should contribute to the area's

⁷ FHWA Memorandum. October 31, 2006. "Guidance on the Congestion Mitigation and Air Quality Improvement (CMAQ) Program Under the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users." Pages 10 – 11, interpreting 23 USC 149(b).

⁸ 23 USC 149(b).

overall clean air strategy.⁹ The traditional Federal share for most eligible CMAQ projects has been 80 percent. However, some projects that also focus on safety efforts have been funded at 100 percent Federal share.¹⁰ More recently, the 2007 Energy Independence and Security Act provides the option of 100 percent Federal share for all CMAQ projects in FY 2008 and FY 2009.¹¹

State DOTs and MPOs, the key agencies for transportation planning at the local and regional level, operate under broad guidance regarding project eligibility when they determine project selection and implementation decisions. Notwithstanding the statutory formula for determining the apportionment amount, the State may use its CMAQ funds in any ozone, CO, or PM nonattainment or maintenance area. States may do so according to local preference; there is no obligation to allocate CMAQ funds in the same way they are apportioned.

CMAQ projects are usually proposed and evaluated at the MPO level and then chosen at the State level using a variety of selection processes. To support a transparent, open process, MPOs, State DOTs, and transit agencies are encouraged to establish and make available a project selection process that clearly identifies the basis for selecting projects, including emissions benefits, cost effectiveness, and additional selection factors such as congestion relief, greenhouse gas reductions, safety, system preservation, access to opportunity, sustainable development and freight, reduced SOV reliance, multi-modal benefits, or other criteria. At a minimum, projects should be identified by year and proposed funding source.¹²

Required Emissions Analyses

The CMAQ statute includes emissions reduction as a requirement for CMAQ-invested projects or programs.¹³ Project sponsors must estimate the expected emissions reductions for projects funded under the program, with particular attention to the pollutants of concern in the project implementation area (CO, VOCs, NOx, PM_{2.5} and PM₁₀).¹⁴ According to the Interim Program Guidance, quantified emissions benefits (i.e., emissions reductions) and emissions increases should be included in all project proposals, except where it is not possible to quantify emissions changes, in which case a qualitative assessment may be provided. Emissions effects should be estimated and reported in a consistent fashion (i.e., kg/day) across projects to allow accurate comparison during the project selection process.

State and local transportation and air quality agencies may conduct CMAQ-project air quality analyses with different approaches; FHWA does not specify the emissions reduction methodologies to be used. However, FHWA stipulates that every effort should be taken to ensure that determinations of air quality benefits are credible and based on a reproducible and logical analytical procedure for inclusion in FHWA's national CMAQ database.¹⁵

⁹ FHWA Memorandum. October 31, 2006. "Guidance on the Congestion Mitigation and Air Quality Improvement (CMAQ) Program Under the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users." Page 11, interpreting 23 USC 149(b).

¹⁰ 23 USC 120(c).

¹¹ See Section 1131 of the Energy Independence and Security Act of 2007 (P.L. 110-140, H.R. 6).

¹² See FHWA Memorandum. October 31, 2006. "Guidance on the Congestion Mitigation and Air Quality Improvement (CMAQ) Program Under the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users." Page 26, interpreting 23 USC 149(b).

¹³ The exception is for states receiving minimum apportionment that do not have, and have had, a nonattainment area designed under the Clean Air Act, in which case the State may use funds for any project eligible under the Surface Transportation Program. 23 USC 149(b)-(c).

¹⁴ 23 USC 149(b)-(c).

¹⁵ See FHWA Memorandum. October 31, 2006. "Guidance on the Congestion Mitigation and Air Quality Improvement (CMAQ) Program Under the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users." Page 25.

Relevant Literature and Studies

While this study focuses on a set of CMAQ-funded projects from FHWA's national CMAQ database, it also builds upon and is intended to supplement past efforts to assess the impacts of CMAQ projects.

Since the program's inception, FHWA and EPA have developed several documents that have described the emissions benefits, congestion benefits, and other positive effects of CMAQ funded projects. For instance, FHWA developed a document in 1996, *Congestion Mitigation and Air Quality Improvement Program – Indirect Benefits*, which highlights the CMAQ program's indirect benefits to MPOs and other stakeholders in the transportation planning process, and provided examples of specific projects and their benefits.¹⁶ In 1999, EPA created a brochure on the CMAQ program, "Creating Transportation Choices: Congestion Mitigation and Air Quality Improvement Program Success Studies," which highlights a set of examples of CMAQ-funded projects.¹⁷ In 2003, FHWA developed a report, *CMAQ: Advancing Mobility and Air Quality*, which describes the ways in which CMAQ projects can improve mobility.¹⁸ The report documents nine examples of CMAQ projects and how they have enhanced mobility, and includes information on the emissions benefits reported for these projects.

For over a decade, FHWA and EPA also have undertaken efforts to assess the effectiveness of the CMAQ program, to examine cost-effectiveness, and to provide information on recommended practices for estimating emissions effects. In 1997, FHWA sponsored a literature review on the *Cost Effectiveness of Transportation Control Measures by CMAQ Category*, which documented a range of studies summarizing the emissions benefits of projects funded under CMAQ.¹⁹ To address concerns about the effectiveness of the CMAQ program at reducing motor vehicle emissions during the deliberations that led to passage of TEA-21, the EPA in coordination with FHWA, conducted a detailed assessment of CMAQ project effects and costs (*Costs and Emissions Benefits of CMAQ Project Types*, 1999). The study documented emissions effects, costs, methodologies and assumptions for 24 CMAQ projects within six project categories.²⁰

In TEA-21, Congress called for an evaluation of the benefits and cost-effectiveness of projects funded under the CMAQ program. The Transportation Research Board (TRB) conducted this study, which examined the emissions benefits of CMAQ-funded projects, based on available literature and conducted a comparison against other pollution reduction measures to evaluate the program's cost effectiveness. Overall, the TRB study (published as Special Report 264) concluded that the CMAQ program had been valuable to its designed objectives, and supported its continuation subject to some targeted findings and recommendations. Perhaps the most critical finding in the review was the inability to evaluate performance of funded projects due to poor or absent information. This resulted in a recommendation for a more formal evaluation component attached to future funding of the CMAQ program. The study noted that the CMAQ program had not been structured to be evaluated in a rigorous way (local flexibility was an important feature of the program), thus making it impossible to perform a rigorous scientific analysis of benefits of CMAQ-funded projects.²¹

¹⁶ Federal Highway Administration, *Congestion Mitigation and Air Quality Improvement Program: Indirect Benefits*. Publication No. FHWA-PD-97-045, 1997.

¹⁷ Hagler Bailly, "Creating Transportation Choices: Congestion Mitigation and Air Quality Improvement Program Success Studies," for U.S. EPA, 1999.

¹⁸ Federal Highway Administration, CMAQ Advancing Mobility and Air Quality. Publication No. FHWA-EP-03-045, 2003.

¹⁹ Center for Transportation and the Environment (CTE), North Carolina State University, Cost Effectiveness of Transportation Control Measures by CMAQ Category, FHWA, 1997.

²⁰ Hagler Bailly, Costs and Emissions Impacts of CMAQ Project Types, U.S. EPA, 1999.

²¹ Transportation Research Board. Special Report 264: The CMAQ Program: Assessing 10 Years of Experience. 2002.

This study is designed to supplement the findings of previous research by examining a small number of CMAQ-funded projects, with a focus on projects funded in years 2000 and later. By examining CMAQ projects that have been implemented, this study provides information on the estimated impacts that have been achieved on congestion levels and air quality.

Report Organization

This report is organized into three major sections:

- Study Approach (Section 2) discusses the parameters and methodology used for this study, including the approach and methodology used for gathering project information.
- Impacts of Projects on Air Quality and Congestion (Section 3) presents the results of the review of 67 projects. It reports on the estimated congestion benefits, emissions benefits, and costs of the selected projects, organized by project category for analysis purposes. This analysis relies on data provided by the project sponsors, used in their own analyses for reporting to FHWA's CMAQ database.
- **Project Analysis and Selection Practices that Support Effectiveness (Section 4)** uses information from the set of projects to assess cost-effectiveness at reducing emissions, and examines how State and local agencies are using this type of information for project prioritization and decision making. First, it examines the cost-effectiveness of the CMAQ projects by project category in dollars per ton of pollution reduced. For this analysis, emissions estimates of the projects were generally recalculated using standardized emissions factors (rates of emissions in grams per mile) in order to fill in gaps in reported emissions effects and to enable comparisons among projects that were implemented in different locations at different times. This section then includes a preliminary discussion of some approaches that have been used by States and MPOs to enhance the effectiveness of their project selection processes, drawing on the data collection effort conducted for this study. This preliminary information will form the basis for selecting locations for cases studies, which will be conducted in Phase II to examine program implementation at the State and local level.

Appendixes provide additional information on assumptions used in the calculations, and include short write-ups of each project in a standardized template.

2. STUDY APPROACH

As noted previously, this evaluation responds to a desire by Congress to better understand the direct and indirect impact of CMAQ projects on air quality and congestion levels after more than 15 years of experience. Congress also wanted to ensure the effective implementation of the program, make sure the DOT maintain and disseminate a cumulative database of annual CMAQ reports and that the DOT and EPA consider recommendations to improve the operation and evaluation of the CMAQ program.

The study team determined it was best to approach the request in two phases. This Phase I report is intended to satisfy the understanding of the air quality and congestion benefits of a sample of CMAQ projects. To conduct the evaluation, a small set of CMAQ projects was chosen, background data were collected, and analysis was conducted to determine the effects of these projects on emissions and on congestion levels. In addition, the research team collected data on the costs of these projects – both from CMAQ funding and other funding sources – and conducted additional analyses to assess the cost-effectiveness of the sample projects at reducing emissions of each pollutant. In Phase II, FHWA, in consultation with EPA, conducted case studies of several States and metropolitan areas to understand project analysis, selection, and prioritization procedures.

This section describes the approach to selecting the CMAQ projects and collecting data used in the Phase I study.

Project Categories and Distribution

The research team attempted to select a set of projects for evaluation that would reflect typical projects funded through the program. As noted earlier, the CMAQ program has traditionally organized projects into several large categories. Figure 1 presents a breakdown of the number of CMAQ funded projects by these major categories for FY 2000 to FY 2005.

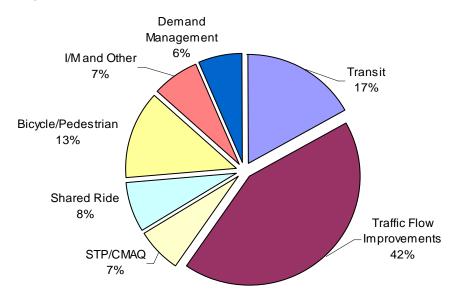


Figure 1. Share of CMAQ Projects Obligated FY 2000 to FY 2005 by Project Category.

Figure 2 presents a breakdown of the percentage of total CMAQ funding received by projects in these major categories for FY 2000 to FY 2005.

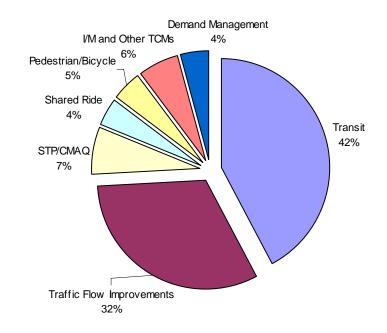


Figure 2. Percentage of CMAQ Funding FY 2000 to FY 2005 by Project Category.

As can be seen from these two diagrams, transit and traffic flow improvement projects together made up over half the total number of projects funded and received nearly three-quarters of total funding. Transit projects, in particular, made up a larger share of funding than share of projects because many transit projects were larger in scale and involved more capital funding (e.g., vehicle purchases, new transit lines, etc.). In contrast, pedestrian/bicycle projects made up a smaller share of funding than their proportion of total projects since these projects tended to be small and involved less funding per project.

In developing a set of projects for analysis in this study, the CMAQ projects were organized into the major categories that FHWA has traditionally used to group CMAQ projects in its database. Subcategories were broken out where categories are larger and diverse, and additional categories were created for project types that currently are the focus of additional attention (e.g., diesel engine retrofits, freight/intermodal projects).

Given that more than half the projects funded by CMAQ over this period were either traffic flow improvements or transit projects, the study team determined that in order to ensure an adequate number of projects across the various project categories, the number of projects analyzed in each category would not be proportional to the number of funded projects or total funding by category. Rather, to ensure a reasonable number of projects across all categories, the study team endeavored to include a minimum of three projects within each subcategory. Larger samples were included for categories that historically have had more CMAQ projects funded or that are currently the focus of additional attention. In two cases (High-Occupancy Vehicle Lanes and Conventional Bus Replacements), fewer projects were collected, due to data limitations and relatively few projects that have been funded in recent years for these types of projects.

Table 1 illustrates the project categories and subcategories, and the number of CMAQ projects that were analyzed.

Category	Subcategory	Number of Projects
	Traffic Signalization/	6
	Intersection Improvements	
Traffic Flow Improvements	Freeway Management	4
	High-Occupancy Vehicle	1
	Lanes	
	Regional Ridesharing	3
Shared Ride Programs	Vanpool Programs	4
	Park and Ride lots	5
Travel Demand Management		4
Bicycle/Pedestrian Projects		4
Transit Service	New Bus Services	3
	New Rail Services	3
Improvements	Service Upgrades/Amenities	5
Transit Vehicle	Conventional Bus	2
Replacements and Related	Replacements	
Infrastructure	Alternative Fuel	4
Innastructure	Vehicles/Fueling Facilities	
Dust Mitigation		3
Freight/Intermodal		6
Diesel Emissions Reduction	Diesel Engine Retrofits	7
Dieser Emissions Reduction	Truck Idle Reduction	3
	Total	67

Table 1. CMAQ Projects Included in the Study by Project Category and Subcategory.

Project Selection Procedures

Once the broad organization of projects was determined, a screening analysis based solely on information contained in the CMAQ database was conducted. The CMAQ database is a tool developed by FHWA to capture information about CMAQ projects, including funding information, emissions reduction estimates, the MPO, nonattainment or maintenance area, and a brief project description.

The process of selecting a small set of projects for analysis focused on identifying entries in the database which met the following selection criteria:

- Projects funded in the FY 2000 funding cycle or later;
- Quantitative emissions reductions were reported for at least one of the following pollutants: NO_X, VOC, CO, or PM;
- Reported emissions effects appeared "reasonable", based on judgment of the study team (i.e., eliminating projects with suspect or unusual emissions results); and
- Projects represented "typical" projects within the category (i.e., eliminating specialized or unusual project examples, based on project description).

In addition to the above selection criteria, the initial screening focused largely, but not exclusively, on States that are apportioned the highest levels of CMAQ funding. This was done to achieve a representative sample of projects, since these States fund a larger number of projects; also, staff within these States would be able to provide information on more projects per contact should follow-up be needed. (See Table 2 for a list of States with the largest CMAQ apportionments over the period FY 1991

to FY 2005, along with the amount obligated.) A final consideration was the overall geographic diversity of the sample, and balance between large projects and small projects. The CMAQ funds received by the selected projects ranged in scope from \$33,000 for a signal synchronization project in Tennessee to \$36.2 million for a transit improvement project that involved double tracking segments of a commuter rail line between Dallas and Ft. Worth. In some cases, CMAQ funded only a small portion of the total project costs, helping to leverage other Federal (specifically, FTA) or state and local funds; this was the case in particular for some of the larger transit projects and HOV project. In many other cases, CMAQ provided the majority or sole source of funding.

State	Арр	mount ortioned illion \$)	0	mount bligated fillion \$)
California	\$	4,019.1	\$	3,637.8
New York	\$	1,698.6	\$	1,401.7
Texas	\$	1,469.8	\$	1,208.7
New Jersey	\$	1,084.2	\$	987.4
Illinois	\$	950.1	\$	817.1
Pennsylvania	\$	858.8	\$	821.2
Ohio	\$	774.8	\$	731.5
Maryland	\$	614.2	\$	539.9
Massachusetts	\$	582.1	\$	475.7
Florida	\$	521.2	\$	506.0
Michigan	\$	478.5	\$	427.1
Connecticut	\$	476.9	\$	434.4
Georgia	\$	445.1	\$	387.5
Arizona	\$	412.2	\$	381.6
	C 3 7		1	

Table 2. States Receiving	Largest CMAO	Apportionments	FY 1991 - FY 2005.
Table 2. States Receiving	Dargest Chiny	Apportionnents	

Source: Memo from April Marchese, Director, Office of Natural Environment to FHWA Division Administrators on March 23, 2007 Available online at: <u>http://www.fhwa.dot.gov/environment/cmaqpgs/msgobsrec1.htm</u>.

Data Collection Procedures

After using the project selection criteria identified above to identify a reasonable set of projects from the CMAQ Database, a combination of methods was used to gather missing or incomplete information on the selected projects. For example, Internet searches were conducted to find project-specific information that might be available online, as well as to obtain the contact information for the State or MPO CMAQ representative. In several cases, information on CMAQ projects was available from Transportation Improvement Program (TIP) reports, congestion mitigation reports, and posted evaluation reports online.

If data were still missing and accurate contact information could be obtained, CMAQ representatives at the State DOT or MPO were contacted. Representatives were provided information on the purpose of the evaluation project and the specific CMAQ ID numbers of interest, and were asked for reports on the emissions reduction methodology originally used to calculate the emissions benefit, project cost information, and any available project evaluations. A list of the State and local project sponsors consulted for backup information for this report is listed in Appendix A.

In several cases, initial projects for which data and methodologies were gathered were eliminated from the study. This occurred due to limited or incomplete documentation of assumptions, which made it

difficult to determine how precisely the emissions benefits were calculated; or due to assumptions that appeared unusually high or low and did not appear to be representative of typical projects within the project category. In a couple of cases, it was found that the project sponsor incorrectly calculated emissions effects based on the documentation provided (i.e., due to a mathematical error, or improper conversion). In these cases, the reported values were corrected.

Once missing or incomplete CMAQ reports, TIP reports, and/or emissions calculations were provided by the local representative to supplement data from the CMAQ database, the data were entered into individual project "templates." These one-page project profiles are designed to capture in one place all the critical facts, such as calculated travel impacts, emissions factors used, and the non-Federal and Federal costs related to the example. The individual profiles for each of the CMAQ-funded projects analyzed in this report can be found in Appendix C.

In selecting projects for inclusion in this study, emphasis was placed on profiling to the fullest extent possible, the costs, impacts on congestion and air quality, and other benefits for each project. While the selected projects are intended to be representative of typical CMAQ-funded projects, the emissions effects and congestion effects estimated for these projects are not statistically significant indicators of the effects of projects that have been funded through the CMAQ program.

3. IMPACTS OF PROJECTS ON AIR QUALITY AND CONGESTION

This section describes the reported impacts of the selected CMAQ projects on transportation emissions and congestion levels. The data reported in this section are based on the materials reported by the sponsors of CMAQ-funded projects, or by the State DOT or MPO responsible for reporting to FHWA. These estimates of project effects reflect project-specific factors and local conditions, such as typical vehicle trips lengths and factors that affect vehicle emissions rates (such as temperatures, vehicle fleet mix, and vehicle speeds and operating conditions). They often utilize data from past local studies reflecting local factors (e.g., park-and-ride lot utilization rates, transit ridership levels on new services).

While these data are generally the best estimates of expected emissions benefits available to the project sponsors, the data have some limitations that that should be noted. Specifically, the reported effects are forecasts of expected effects, typically based on sketch planning analysis methods. In most cases, the effects have not been validated based on before-and-after studies or other post-project evaluations. For some types of projects, such as bicycle and pedestrian projects and transit service amenities, it is difficult to predict effects, given limited scientific studies, analysis tools, and established approaches for estimating travel and emissions impacts. As a result, there is a fairly high degree of uncertainty in some of the results. Another limitation is that in many cases, State DOTs or MPOs reported emissions benefits only for pollutants of concern in the local area, such as ozone-precursors. Consequently, effects on emissions of carbon monoxide and particulate matter were not reported for many projects, even in cases where the projects would be expected to reduce emissions of these pollutants.

Overall findings are summarized below, followed by a brief discussion of the project impacts organized in major project category and subcategory groupings. For each project type, a table summarizing quantitative findings is accompanied by a commentary on findings and trends.

General Observations

Direct and Indirect Effects on Congestion and Mobility

Some CMAQ projects are designed to reduce traffic congestion and to minimize delay experienced by drivers. Traffic flow improvement projects - such as traffic signalization improvements, incident management programs, and intersection improvements - reduce recurring and/or nonrecurring traffic delay on the transportation system. Project sponsors used a range of different techniques, from simulation modeling to simplified sketch planning, to estimate changes in travel delay or speeds.

Although many traffic flow improvement projects are small in scope (e.g., an individual intersection improvement), targeted investments can yield significant improvements in roadway level of service and intersection performance in specific locations. Consequently, these projects can have a large impact on the daily travel conditions experienced by individual drivers in the area where the project is implemented. Moreover, on highly-traveled corridors, even small changes in travel speeds can result in substantial travel time savings when multiplied over thousands of vehicles. For instance, an intersection improvement project in Louisiana estimated that travel conditions would improve from Level of Service (LOS) F, reflecting heavy congestion, to LOS C, and would yield a reduction of 1,459.2 vehicle-hours of delay per weekday.

Projects that reduce vehicle travel may also have impacts on congestion, but these effects are generally not quantified, and the primary travel benefit of these projects is generally enhanced mobility and multimodal choices. Projects such as bike and pedestrian facilities, shared ride programs, travel demand management (TDM) programs, and transit improvements may reduce vehicle miles traveled (VMT) by passenger vehicles, particularly during peak periods, and, therefore, may contribute to reduced traffic congestion. Freight/intermodal projects are often designed to shift goods movement from trucks to rail, and thereby reduce congestion associated with truck traffic on corresponding freight corridors. These individual projects, however, often have limited impacts on travel demand in specific corridors or on a region-wide basis. For instance, several projects examined (including vanpool projects, park and ride lots, bicycle and pedestrian projects, and transit service improvements) were estimated to reduce less than 200 vehicle trips each day. Reductions of this level of trips may not have measurable effects on traffic congestion. Moreover, changes in travel speeds and delay depend on the volume of traffic by time of day, and impacts are non-linear (i.e., a reduction in 1,000 cars will not necessarily have twice the effect of a reduction in 500 cars on travel speeds). As a result, the magnitude of congestion relief due to VMT-reduction projects is difficult to predict or assess. There also are no standardized and simple methodologies to assess these effects. Given the lack of a specific funding for this type of analysis, and other demands placed on the program, it is perhaps not surprising that quantitative data on congestion benefits are very limited.

A primary purpose of bicycle and pedestrian projects, share ride programs, TDM programs, and transit service improvements is to enhance mobility by allowing greater travel choices. Over the long term and in combination other projects, projects such as bicycle paths and transit shuttles may improve mobility further by supporting transit-oriented development, an improved pedestrian environment, and enhanced multi-modal choices.

Some eligible CMAQ projects will not have any effects on traffic congestion or mobility. For instance, diesel engine retrofits and bus replacements are designed to reduce emissions rates from on-road vehicles without changing travel patterns. Similarly, dust mitigation projects are designed to reduce wind-blown dust on roadways without any changes in traffic congestion or mobility.

Direct and Indirect Effects on Air Quality

Overall, the analysis of selected projects suggests that emissions reductions have been achieved across the wide range of projects funded through the CMAQ Program, and that ultimately, each project helped contribute to some extent toward air quality goals. CMAQ projects can help reduce emissions through:

- 1) improving traffic flow, thereby reducing vehicle idling and stop-and-start driving conditions that are associated with higher levels of emissions;
- 2) encouraging changes in travel behavior that reduce motor vehicle miles traveled (such as shifts to ridesharing, transit, bicycling, or walking); and
- 3) using technologies to reduce the rate of emissions (such as through purchases of cleaner buses, or retrofits of diesel vehicles).

Given the small scale and localized nature of many CMAQ projects (e.g., a park-and-ride lot, a bicycle path, a transit shuttle), many CMAQ projects only yield small direct reductions in motor vehicle pollution. Among the projects reviewed in this study, the majority had emissions reduction estimates of less than 50 kg per day of both VOC and NOx, and less than 500 kg per day of CO. Although these estimated reductions are generally quite small, the combined effect of many small projects and those that are more regional in nature may help in achieving regional air quality goals. In fact, a number of regions take emissions reduction credit for regional demand management programs and other CMAQ-funded projects as part of their regional conformity analyses.

Moreover, the combined effect of many similar projects may help to achieve longer-term and more substantial indirect benefits to air quality. For instance, by contributing to development of a more multimodal transportation system, by supporting access to transit, and by focusing attention to operational strategies, CMAQ projects can help support longer-term changes in travel behavior, land use, and attitudes toward transportation that support air quality goals and other related planning goals. These effects are very difficult to assess, and are not quantified for purposes of reporting to FHWA.

Additional Considerations on Air Quality Impacts

It should be noted that although project sponsors reported estimates of emissions benefits in the CMAQ database, and a consistent metric of kg per day is used, there are limitations associated with reporting a single emissions figure for each pollutant for each project. In considering the overall benefits of CMAQ projects on air quality, it is important to consider the following factors:

- Days of Effectiveness Some projects have impacts every day of the year, while others only have effects on weekdays (such as projects that affect peak period traffic), and others have effects on even fewer days. For instance, bicycle projects might only be effective in encouraging shifts from driving during days when the weather is mild (for instance, the analysis of a bike path in Indiana assumed use 132 days per year), and analysis of a dust mitigation project that involved use of de-icing chemicals rather than sand would only be effective during winter months. The analysis of an ozone action days program in Rhode Island reported emissions effects based on changes in transit ridership due to a free transit program, and noted that the free transit days occurred on 4 days in 2005. Consequently, the reported emissions benefits in the CMAQ database are not sufficient to compare the impacts of projects at a national level. Many project sponsors estimate emissions benefits on an annual basis, in addition to daily effects, and this is particularly important to States and MPOs that rank projects on the basis of effects or cost-effectiveness as part of their selection process.
- **Duration of Benefits** Some project benefits are expected to occur in the short-term, such as operational programs, like a ridesharing program or travel demand management incentives program. Other project benefits may have longer lasting impacts, notably infrastructure projects, like park-and-ride lots, transit rail, and bicycle and pedestrian facilities, which would be expected to last for perhaps more than 10 years and continue to generate emissions benefits over this time period.
- Changes in Effectiveness over Time Since the CMAQ database only requires reporting of one emissions figure for each pollutant, emissions benefits were typically calculated or reported for one year in time. However, in reality, the stream of emissions benefits for a project is not likely to be constant over time. Overall, emissions rates from motor vehicles are declining, and so a project that produces a near constant travel impact, such as a park-and-ride lot or transit shuttle service (which are capacity constrained), is likely to have declining emissions benefits over time. On the other hand, some projects, such as regional employer trip reduction programs, might achieve increasing benefits over time as population and congestion in a region grow. Although not reported to the FHWA CMAQ database, some project sponsors estimated a stream of benefits over time, which is useful for purposes of project ranking and selection.

The following sections summarize congestion and emissions benefit findings for the projects reviewed in this study by project category.

Traffic Flow Improvements

Traffic flow improvements are designed specifically to meet the dual goals of the CMAQ program: decreasing congestion and reducing air pollution. In this report, traffic flow improvements are broken into three subcategories:

- Traffic Signalization and Intersection Improvements;
- Freeway Management; and
- High-Occupancy Vehicle Lanes.

Examining the emissions impacts of these strategies typically involves estimating travel speeds with and without the improvement in order to develop two different emissions factors for each situation. These emissions factors are then applied to VMT along the facility. In some cases, emissions benefits are calculated by estimating the reduction in vehicle delay and applying an idle emissions factor (grams per hour).²² Some of these project analyses also account for changes in vehicle volumes associated with the improvements.

Traffic Signalization and Intersection Improvements

Seven CMAQ-funded traffic signalization and intersection improvement projects were reviewed in this analysis; quantitative cost and emissions findings are summarized in the table below.

STATE	CMAQ FUNDING	TOTAL COST	PROJECT TITLE	YEAR Funded	VOC (kg/day)	CO (kg/day)	NOx (kg/day)	PM10 (kg/day)	PM2.5 (kg/day)
			Signal Timing						
Michigan	\$660,000	\$660,000	along Ryan Rd.	2002	-40.1	NR	NR	NR	NR
			Continuous Flow						
			Intersection at						
			Airline and						
Louisiana	\$4,400,000	\$5,500,000	Sherwood Forest	2004	- 20.1	NR	- 5.2	NR	NR
			Fiber Optic Cable						
			Installation for						
			Traffic Signal						
Kentucky	\$320,000	\$400,000	Optimization	2005	- 33.5	- 378.0	- 9.1	NR	NR
			Signal Timing						
			along West Main						
Ohio	\$355,302	\$639,543	Street	2005	- 5.1	-90.7	- 3.9	NR	NR
			Signal Timing on						
			SR-169 from						
			Cedar Bluff to						
Tennessee	\$33,000	\$33,000	College St.	2005	- 15.0	NR	+ 2.2	NR	NR
			Installation of						
			Reversible Lanes						
			on Nicholasville						
Kentucky	\$400,000	\$500,000	Road (US 27)	2006	- 2.9	-45.0	-1.1	NR	NR
			Construction of a						
			two lane						
			roundabout at						
New			Fuller St. and						
York	\$2,000,000	\$4,870,000	Washington St.	2007	-24.2	-24.2	-1.9	NR	NR

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

²² Calculated based on the emissions factor (in grams per mile) at 2.5 miles per hour, the slowest speed in MOBILE6, multiplied by 2.5 miles per hour, to generate an idle emissions factor in grams per hour.

Congestion/Mobility Benefits

Traffic signalization and intersection improvement projects are typically designed to reduce traffic congestion, increase travel speeds, and/or reduce delay. Congestion benefits were reported for each of the signalization and intersection improvement projects in the study, as described briefly below:

- Interconnection and modernization of 15 traffic signals along an urban minor arterial (Ryan Road) in Macomb County, Michigan, which borders the City of Detroit to the South and Lake St. Clair to the east, was estimated to improve travel speeds by 4 mph in both peak and off-peak periods, due to reduced delay at intersections.
- A modification to two intersections in East Baton Rouge Parish (Airline Highway US 61 and Siegen Lane/Sherwood Forest Boulevard) was undertaken to increase traffic flow and reduce congestion and delay. The intersections were operating at level of service F during peak hours, and a new design called a Continuous Flow Intersection would improve traffic operations at the intersection to acceptable levels of service. Simulations conducted using the VISSIM Microscopic Simulation Model, which estimates average delay in seconds per vehicle for each approach to the intersections, showed that the proposed improvements would enhance the throughput at the intersection for two hours during the morning peak period and two hours during the evening peak period while reducing delay time. For instance, in the evening peak at the intersection of Siegen/Sherwood and Airline, existing conditions were 6,200 vehicles per hour each experiencing an average of 178.3 seconds of delay, for a total of 368.5 vehicle hours of delay per peak hour; with the improvements, it was estimated that 6,700 vehicles per hour would experience an average of 34.4 seconds of delay, for a total of 64.0 vehicle-hours of delay per peak hour. In total, the two components of the intersection would reduce delay by 299.3 vehicle-hours in each morning peak hour and 429.9 vehicle hours in each evening peak hour, for a total of 1,459.2 vehicle hours saved per weekday.
- In Lexington, Kentucky, the installation of fiber optic cable for traffic signal optimization for the arterial highway network was estimated to reduce delay by 4 minutes per vehicle (determined by using an average reduction for a sample of 18 intersections), resulting in an estimated 6,360 vehicle hours of delay per day saved throughout the entire network.²³
- Installation of coordinated signalized intersections to replace stop control at several intersections along Main Street in the City of Newark, Ohio was estimated to reduce delay by 702 vehicle hours per day at four of the main intersections involved in the project, based on analysis using a traffic simulation model.
- Tennessee DOT estimated an increase in average speed of 34 mph to 38 mph after traffic signal timing synchronization for a roadway in Knoxville, affecting 25,935 average daily vehicle trips.
- Installation of reversible lanes along Nicholsonville Road (US 27) in Fayette County, Kentucky, to allow three northbound lanes during the morning peak period was estimated to result in a 17 percent reduction in delay, or 63 vehicle hours saved during the morning and evening peak hour each day. According to the region's Congestion Management System report, for approximately 1.5 hours each morning, a queue of traffic bound for Lexington extended for a distance of nearly one-half mile, and often further due to incidents or inclement weather. The project would take advantage of unutilized median space and low early morning left turning volumes to create a

²³ Hours of delay was not reported directly by the project sponsors, but was calculated by the study team based on information provided in the project sponsor's emissions analysis.

third northbound traffic lane in the morning peak period by reassigning one of the left turn lanes on each side of an intersection as a through lane during this period.

• In Albany, New York, conversion of a signalized intersection into a roundabout was estimated to increase average speeds from 15 mph to 29 mph, and affect 48,670 vehicles over a quarter mile. These figures were calculated based on changes in vehicle delay, which were estimated to fall from an average of 31 to 47 seconds per vehicle at each approach to an average of 6 to 16 seconds.

Emissions Benefits

In general, traffic signalization and intersection projects that reduce vehicle delay will reduce emissions across all types of pollutants. However, traffic flow projects that increase travel speeds may have different effects on different pollutants. VOC emissions generally decline with increasing speeds, while CO and NOx emissions can begin to increase at speeds beyond 32 to 35 mph. As a result, some projects that increase speeds around certain ranges may actually increase CO and NOx emissions.

For the selected projects, the project sponsors estimated daily emissions reductions ranging from 2.9 kg to 40.1 kg of VOC. Daily NOx emissions reductions associated with each project show a smaller effect (from 1.1 kg to 9.1 kg reduced), with one project exhibiting a 2.2 kg increase in NOx emissions due to speed increases beyond 35 mph. CO reductions reported by sponsors indicate 24.2 kg to 378.0 kg emissions reductions each day.

None of the sponsors reported reductions in PM for these projects. Since EPA's MOBILE6 model does not account for the effects of changes in vehicle operating speeds on PM emissions, one would expect no reportable change in PM emissions for projects that alter vehicle operating speeds. Several project sponsors, however, calculated emissions benefits based on reduced vehicle idling time (e.g., calculating reduction in delay time due to the project and multiplying by idle emissions factors), in which case, PM emissions reductions could be calculated.

Costs

The total project costs for the signalization and intersection improvement projects ranged in magnitude from \$33,000 to \$5.5 million. The non-CMAQ share of project funding ranged from 0 to 20 percent of the total project cost. The total cost of signal timing projects will vary greatly depending on a number of local and project-specific factors, including the methods for coordinating signals, the number of signals included in the project, and the length of the roadway. The most expensive two projects both involved capital projects to redesign intersections. At \$4.87 million and \$5.5 million, respectively, the development of a continuous flow intersection in Louisiana and the construction of a roundabout in New York required substantially more funding than the signal timing projects. Although the capital costs are relatively expensive, the infrastructure and emissions benefits, associated with these types of projects could be long lasting.

Freeway Management

Four CMAQ-funded freeway management projects were documented in this analysis; quantitative findings are summarized in the table below.

STATE	CMAQ FUNDING	TOTAL COST	PROJECT TITLE	YEAR Funded	VOC (kg/day)	CO (kg/day)	NOx (kg/day)	PM10 (kg/day)	PM2.5 (kg/day)
			ITS on I-10						
			from Acadian						
			St. to Highland						
Louisiana	\$2,712,940	\$2,712,940	Blvd.	2003	-189.6	NR	-489.0	NR	NR
			Duwamish ITS						
Washington	\$998,037	\$2,000,000	System	2004	-76.0	-939.0	-4.0	NR	NR
			Incident						
			Management						
Connecticut	\$1,279,246	\$1,421,384	System on I-95	2005	-6.1	NR	-3.00	NR	-0.004
			Alabama						
			Service Patrols						
Alabama	\$240,000	\$800,000	Program	2007	-31.3	NR	-11.9	NR	-0.12

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

Freeway management projects improve traffic flow along major highways and often target travel impacts during peak periods when delays most often occur. These projects include service patrols that assist or remove disabled vehicles from blocking travel lanes, computer systems that control traffic flow onto freeways, monitoring devices that scan for incidents and provide motorist assistance or reroute traffic around the incident, and other Intelligent Transportation System (ITS) components. In most metropolitan areas, traffic incident-related delay (not including other non-recurring delay caused by weather, work zones, etc.) is estimated to account for between 25 and 30 percent of total congestion delay.²⁴ When vehicles are cleared from the motorway and/or other vehicles are alerted to incidents ahead, idling is reduced and traffic speeds along freeways can return to more optimal levels.

Congestion/Mobility Benefits

Freeway management projects can reduce recurring and/or nonrecurring delay associated with incidents. For example, an ITS system project in Seattle, Washington included interconnection of traffic signals and controller equipment upgrading, installation of variable message signs and other driver information systems, and implementation of traffic control strategies to monitor traffic conditions and accidents. This project was designed to minimize the conflicts among freight movement, transit travel, commuter traffic, and ferry access, while enhancing safety and mobility for people and goods. The project sponsors estimated a 10 percent increase, or 2 mph, in both peak and off peak speeds due to the program.

In Connecticut, development of a 13.94 mile portion of an incident management system on I-95 included the installation of a fiber-optic communication system, video surveillance, traffic flow monitors, and a link to the Bridgeport Operations Center. The incident management project was designed to allow operational problems to be identified sooner and enable faster dispatch of the proper response equipment and medical services to a site. Based on data from the "Connecticut Freeway Management System" report, which reported effects for a 65 mile length corridor, it is estimated that this type of system will result in annual delay savings of 368,000 vehicle hours, assuming proportional benefits for the 13.94 mile corridor (based on an assumption of a congested incident speed of 5 mph, and a free flow speed of 55 mph).

²⁴ FHWA. 2003. Freeway Management and Operations Handbook. <u>http://ops.fhwa.dot.gov/freewaymgmt/publications/frwy_mgmt_handbook/toc.htm</u>.

The Alabama Service and Assistance Patrol (ASAP) Program, an incident management program of the Alabama DOT and Alabama State Troopers, offers services to disabled motorists to reduce response time and to minimize major disruption of interstate traffic flow. This program was estimated to result in a savings of 3,849 vehicle hours of delay per incident for an estimated 111 incidents per year, resulting in a savings of over 427,000 vehicle hours per year. An advanced traffic management center in the Baton Rouge metropolitan area, including incident detection and response, motorist assistance, and surveillance components along I-10, also was designed to reduce incident-based delay, but did not report hours of delay reduced.

Emissions Benefits

As with other traffic flow improvements, freeway management projects that cause an increase in travel speeds may have varying effects on different pollutants, depending on the magnitude of the overall speed change. Emissions reductions reported by project sponsors for the four projects indicated daily VOC emissions reductions ranging from 6.1 kg to 189.6 kg per day, and daily NOx emissions reductions ranging from 4.0 kg to 489.0 kg per day. One project sponsor estimated a 939.0 kg CO emissions reduction; the three other projects did not report CO reductions. Two projects reported PM_{2.5} emissions benefits of 0.004 and 0.12 kg per day. Due to reduced vehicle idling, one would expect reductions of CO and PM for each project.

It should be noted that the Louisiana project, which reported the highest emissions reductions, assumed that the incident detection and response, motorist assistance, and surveillance components of the ITS project along I-10 would result in a 4.41 percent reduction in total emissions for traffic along the I-10. This assumption appears to be somewhat high in comparison to the other analyses, and is based on data showing that 4.9 percent of freeway emissions are associated with nonrecurring congestion, and an assumed 90 percent reduction in incident-based emissions. The 90 percent effectiveness factor is based on an effectiveness rate of 50 percent for incident detection and response, 25 percent for motorist assistance, and 15 percent for surveillance.

Costs

The total project costs of the selected projects ranged in magnitude from \$800,000 to \$2,712,940. In general, most freeway management projects involve major corridors or a network of roadways and so have substantial capital and/or operating costs. The non-CMAQ share of project funding ranged from 0 percent to about 50 percent of the total project cost.

High-Occupancy Vehicle (HOV) Lanes

Although the CMAQ program has helped to fund a number of HOV projects throughout the history of the program, only a small number of HOV projects have used CMAQ funding since FY 2000, which is the focus of this representative analysis. Consequently, only one project was identified for analysis in this study – construction of an HOV interchange in Dallas. Quantitative findings are summarized in the table below.

STATE	CMAQ FUNDING	TOTAL COST	PROJECT TITLE	YEAR FUNDED	VOC (kg/day)	CO (kg/day)	NOx (kg/day)	PM10 (kg/day)	PM2.5 (kg/day)
			Dallas						
			HOV						
Texas	\$17,152,000	\$254,570,093	Interchange	2002	-68.8	NR	-135.3	NR	NR

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

An HOV lane is a travel lane usually reserved for use by vehicles with more than one occupant, such as carpools, vanpools and buses, during peak periods or longer periods. They are often located next to the regular or general purpose lanes. Most users of HOV facilities can expect a substantial savings in travel time, as well as a commute time that is more reliable and predictable on a daily basis. Because HOV lanes carry vehicles with a higher number of occupants, the amount of vehicles needed to transport those occupants is reduced, resulting in fewer vehicle trips and lower overall VMT.

There are approximately 126 HOV freeway projects in 27 metropolitan areas in the U.S. These HOV facilities include over 1,000 miles of roadway, most often on interstate freeways. HOV lanes have also been implemented on arterial roads, especially those related to bus-only applications.²⁵

Congestion/Mobility Benefits

HOV lanes improve mobility for people who choose to rideshare and for transit users by allowing a faster trip compared to being in general purpose lanes. HOV lanes also offer congestion benefits primarily by encouraging more passengers to travel in fewer vehicles, and can provide more person throughput on a fixed amount of transportation infrastructure. Additionally, some States open HOV lanes to unrestricted traffic during non-peak hours, increasing the overall capacity for vehicle movement.

In Dallas, the HOV interchange project sponsors estimated that 2,929 daily vehicle trips would be reduced due to the HOV facility, based on an estimate that 56 percent of transit and rideshare users on the facility previously drove alone. Effects on overall congestion levels and speeds on the highway were not quantified, although the calculation of emissions effects took into account the differences in speeds between the general purpose lanes and HOV lane.

Emissions Benefits

HOV lanes affect air pollution emissions in several ways. First, restricting the lanes to certain vehicles encourages ridesharing among commuters and results in fewer vehicle trips and an overall reduction in emissions of all pollutants. HOV lanes also increase travel speeds for HOV traffic, and sometimes along the entire roadway. Increases in travel speeds, as noted previously, will have different effects for different pollutants depending on the magnitude of the increase.

The Dallas HOV interchange project was estimated to reduce 68.8 kg of VOC and 135.3 kg of NOx per day. CO and PM reductions were not reported for this project, but might occur due to the reduction in vehicle travel. The calculation accounted for both a reduction in VMT due to people shifting to transit and

²⁵ FHWA. "Frequently Asked HOV Questions" <u>http://ops.fhwa.dot.gov/freewaymgmt/faq.htm#faq7</u>

ridesharing, and an increase in vehicle speeds for the traffic shifting from general purpose lanes to the HOV lane. The analysis did not take into account the potential speed changes that occur for the vehicles remaining in the general purpose lanes.

Costs

The construction of a new HOV lane and the ramps and other infrastructure required for an HOV system can be expensive. The total public cost of the reviewed project was \$254,570,093, but the CMAQ program only paid for approximately 7 percent of the total project cost. The bulk of funding came from National Highway System (NHS) funding, along with a lesser amount from State and local sources. Although HOV projects incur large capital costs upfront, the infrastructure and corresponding emissions benefits, may be long-lasting.

Shared Ride Programs

Shared ride programs encompass a wide variety of projects that focus on changing travel behavior to reduce air pollutant emissions from light-duty vehicles. These programs offer services that encourage single-occupant vehicle travelers to group rides with other travelers, generally in carpools or vanpools, thus increasing the average number of occupants per vehicle trip and reducing total vehicle trips and VMT. Projects analyzed include:

- Regional Ridesharing Programs;
- Vanpool Programs; and
- Construction of Park and Ride Lots.

Regional Ridesharing

STATE	CMAQ FUNDING	TOTAL COST	PROJECT TITLE	YEAR FUNDED	VOC (kg/day)	CO (kg/day)	NOx (kg/day)	PM10 (kg/day)	PM2.5 (kg/day)
			11 County						
			Ridesharing						
			Program						
Maryland	\$956,000	\$956,000	Operations	2002	-35.0	NR	-110.0	NR	NR
			University of						
			Pittsburgh TDM						
Pennsylvania	\$480,000	\$600,000	Program	2005	-26.2	-187.4	-30.9	NR	NR
			CommuteSmart						
			Commuter						
			Services						
			Program						
Alabama	\$700,000	\$700,000	Operations	2007	-10.2	NR	-12.0	NR	-0.1

Three CMAQ-funded regional ridesharing programs were documented in this analysis.

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

Regional ridesharing programs provide ride-matching services, employer outreach, and incentives to commute by carpool or vanpool. These incentives can include free gas cards, award programs, and travel subsidies. Ride-matching may encourage people to establish regular carpool routines or can be dynamic and create systems to match individuals who want to travel to/from similar locations in real-time. These programs largely serve a supportive or facilitative role, and help to optimize use of existing transportation infrastructure and services. Their success depends, in part, on the commute options existing in the community, such as HOV lanes and transit services.

Congestion/Mobility Benefits

Regional ridesharing programs can improve mobility by giving people greater options in meeting their travel needs, and can reduce travel costs for people who choose to rideshare. The congestion benefits of a regional ridesharing program will depend on the number of new carpools and vanpools that are formed and the extent to which participants previously drove alone. It should be noted, however, that if some of the persons who choose to rideshare previously rode transit, this mode switch would not necessarily be beneficial to congestion or emissions. Reductions in VMT are also dependent on the length of the trips, and the length of the carpool trip to pick up riders.

The Birmingham MPO estimated that its regional CommuteSmart Commuter Services Program – which includes a ridesharing database, a vanpool program with 34 vans in 2007, and a carpool program – would result in a reduction of about 312 vehicle trips per weekday. The primary users of these services have

longer-than average commutes. At an average one-way trip length of 39.5 miles, the program reduces a total of 9,470 vehicle miles of travel per weekday.

The TDM program in the Oakland area of Pittsburgh, Pennsylvania surrounding the University of Pittsburgh, offers ridesharing coordination, employer-sponsored vanpools, and carpool programs. This program was estimated to reduce 2,024 vehicle trips per day at an average one-way trip distance of 5.45 mile, for a total of 22,062 vehicle miles reduced per day.

The Maryland program - which funds a ridesharing program in eleven counties in the Baltimore and Washington, DC metropolitan areas - was estimated to reduce about 3,000 vehicle trips per weekday, based on data showing 12,360 rideshare applicants in the programs and an estimate that 24 percent will take part in ridesharing each day. At an average one-way trip distance of 14 miles, this program results in about 84,000 vehicle miles reduced per day.

None of the project sponsors for the three projects submitted information on delay reductions or travel speed improvements anticipated with the projects.

Emissions Benefits

By encouraging people who would normally drive alone to share trips, ridesharing programs reduce motor vehicle travel and associated emissions. Daily emissions reductions associated with the selected projects range from 10.2 kg to 35.0 kg of VOC and from 12.0 kg to 110.0 kg of NOx. One project was estimated to result in a CO emissions reduction of 187.4 kg per day. $PM_{2.5}$ emissions effects were reported in the analysis of one project, showing a reduction of 0.1 kg per day. However, since these projects reduce VMT, all three projects would likely reduce emissions of all pollutants.

Costs

The CMAQ program is a key funding source for many regional ridesharing programs, with grants used to cover operating expenses, such as advertisements, outreach materials, and commute incentive purchases. The total public cost of these projects ranged in magnitude from \$600,000, for two years of the Pittsburgh program (\$300,000 per year) to \$956,000 for the annual costs of the eleven-county Maryland program. The non-CMAQ share of project funding ranged from 0 to 20 percent of the total project cost.

VANPOOL PROGRAMS

Three CMAQ-funded vanpool programs were reviewed in this analysis. Findings are summarized in the table below.

STATE	CMAQ FUNDING	TOTAL COST	PROJECT TITLE	YEAR FUNDED	VOC (kg/day)	CO (kg/day)	NOx (kg/day)	PM10 (kg/day)	PM2.5 (kg/day)
			15 new vans for						
Utah	\$448,000	\$448,000	vanpool leasing program	2002	-12.2	-136.9	-14.9	NR	NR
			5 new vans for vanpool leasing						
Utah	\$148,866	\$180,866	program	2005	-3.2	-37.2	-4.0	NR	NR
			6 new vans for LexTran						
Kentucky	\$96,000	\$120,000	Vanpool	2006	-10.4	-80.2	-5.3	NR	NR

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

Vanpool programs provide vehicles that are owned by an organization or public agency to commuters who live in a common geographic area and who share an employment destination. Each vanpool carries between seven and fifteen passengers on a van or bus, operates on weekdays, and typically travels between one or two common pick-up locations and the place of work. The vehicles may be operated by a paid driver or by the commuters themselves, depending on local or program preferences. Employers or institutions frequently enable vanpool operations in any of a variety of supportive or financial ways.

Each of the selected projects involved the purchase of passenger vans: 15 new 8-passenger vans for the Utah Transit Authority (UTA) Vanpool Leading Program in 2002 to be used in the Salt Lake City and Ogden areas; five new 8-passenger vans for the UTA Vanpool Leasing Program in 2005 to be used in the Ogden and Layton area; and six new 12-passenger vans for LexVan, a commuter vanpool program managed by the Lexington Bluegrass Mobility Office in Kentucky.

Congestion/Mobility Benefits

Vanpool projects can improve mobility by giving people an option to meet their commuting needs at lower cost than driving alone. The congestion benefits of vanpool programs will vary depending on the number of vanpools established through the program, the number of passengers, and the length of a trip. Typically, vanpools are successful in areas with longer commutes and where they utilize established park and ride lots as the common pick up location. For small vanpool programs serving a limited number of passengers, the net reduction in vehicle trips is small: the three reviewed projects were estimated to remove from 40 to 120 drivers from the road each day, and reduce overall VMT by 3,000 to 6,600 vehicle miles traveled per day. Consequently, congestion benefits would be too difficult to quantify. These projects, however, can result in important benefits to individual passengers, including reduced fuel and vehicle maintenance costs, and improved quality of life due to reduced commuting stress and time that can be spent reading or in other activities during the vanpool trip.

Emissions Benefits

Vanpools reduce VMT on the roads, and therefore should reduce emission of all pollutants. Although the vanpool vehicle may produce more emissions than an individual automobile, the emissions are considerably less than the total of the seven to fifteen individual vehicle trips that are typically replaced. Among the three projects, estimated daily VOC emissions reductions associated with each project ranged from 3.2 kg to 12.2 kg, daily NOx emissions reductions ranged from 4.0 kg to 14.9 kg, and daily CO reductions ranged from 37.2 kg to 136.9 kg.

Costs

CMAQ funding for vanpool programs may be used for capital costs, such as purchase of new or replacement vans, or for operating expenses, such as paid advertisements and printing outreach materials. For these three projects, CMAQ funding was used for the purchase of additional vans and does not include any operating costs. The total public cost of the selected projects ranged in magnitude from \$120,000 to \$448,000. The non-CMAQ share of funding ranged from 0 percent to 20 percent of the total project cost, and in some cases, included the vanpool fares.

Park and Ride Lots

STATE	CMAQ FUNDING	TOTAL COST	PROJECT TITLE	Year Funded	VOC (kg/day)	CO (kg/day)	NOx (kg/day)	PM10 (kg/day)	PM2.5 (kg/day)
			Two new 25						
Maryland	\$132,817	\$132,817	space lots	2000	- 0.01	NR	-0.06	NR	NR
			Lake Geneva						
			and Root						
Wisconsin	\$48,000	\$48,000	Creek Lots	2000	- 1.5	NR	- 3.8	NR	NR
			MD 210 and						
			MD 373 500						
Maryland	\$1,218,831	\$1,218,831	space lot	2002	- 1.4	NR	- 5.9	NR	NR
			Walton/Union						
			Lot with 200						
Kentucky	\$844,800	\$1,056,000	spaces	2005	-0.9	- 33.8	- 3.2	NR	-0.1
			Expansion of						
			Terrace						
			Station						
			Transfer Lot						
Washington	\$4,150,000	\$20,000,000	to 880 spaces	2005	- 18.0	- 145.0	- 9.0	NR	NR

Five CMAQ-funded park and ride lot projects were reviewed in this analysis.

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

Park and ride lots are transportation facilities that provide people a secure location to park their vehicles before joining a carpool, vanpool, or transit service. Typically located in suburban areas, these projects provide commuters the flexibility of driving to a central location near their home and then completing the majority of their commute using transit or ridesharing. The selected projects range widely in size and include:

- Construction of two new 25-space lots in Cecil County, Maryland;
- Construction of 300 spaces at two lots in Southeastern Wisconsin;
- Addition of 500 spaces at an existing lot in suburban Maryland;
- Development of a new 200-space lot, along with improvements to existing lots, including improving signage, adding bicycle parking racks, and providing information kiosks in Kentucky; and
- Construction of a new multi-level parking structure over an existing park-and-ride lot in Seattle, Washington, increasing capacity from 388 to 880 spaces.

Congestion/Mobility Benefits

The congestion benefits of park and ride lots are associated with reductions in freeway and arterial VMT during peak periods when commuters use the park and ride lots. The reductions are dependent on the number of spaces that will be created as part of the project, and the utilization of the available spaces.

The projects generally reported 126 to 738 vehicle trips reduced per day (the exception is the small park and ride project in Cecil County, Maryland). More precisely, vehicle trips are not eliminated since users still drive to the lot; these trips are shorter in length since commuters drive to the park and ride facilities. Since carpool trips, however, tend to be longer than average regional vehicle trip lengths, VMT reduction typically is larger than for other types of programs affecting a similar number of trips (e.g., bicycle projects, bus services).

Emissions Benefits

These projects improve air quality by reducing the number of vehicle miles traveled each day. Because motorists are required to drive to the park and ride lots, these projects will not reduce the number of vehicle cold starts, when the highest levels of CO, NOx, and VOCs are emitted.

Estimates of daily VOC emissions reductions associated with each project ranged from 0.01 kg to 18.0 kg. Daily NOx emissions reductions associated with each project ranged from 0.06 kg to 9.0 kg.

It should be noted that the project with the smallest impacts (two park and ride lots in Maryland funded in 2000) only involved the addition of 50 parking spaces, and assumed a very low utilization rate (15 percent) and a low percentage of users who are new riders (15 percent). The 2002 Maryland park and ride project used more typical assumptions, estimating that 56 percent of spaces would be utilized and 45 percent would be new riders; using similar assumptions for the 2000 park and ride project would result in emissions estimates approximately 11 times larger (e.g., -0.13 kg/day VOC, -0.65 kg/day NOx). Park and ride lot projects would be expected to reduce emissions of all motor vehicle-related pollutants. CO reductions reported by two projects indicate 33.8 kg to 145.0 kg emissions reductions each day, and PM_{2.5} emissions reductions were reported by one project in Kentucky to be 0.1 kg each day.

Costs

CMAQ funding is usually provided as a portion of the total cost of construction of new facilities or the expansion and/or resurfacing of park and ride lots. The total public cost of these projects ranged widely, from \$48,000 for two park and ride lots in Wisconsin to \$20 million for construction of a multi-level parking garage in the Seattle region. In the case of the \$20 million project, \$4.15 million in capital costs were funded through CMAQ over two different funding years.

Travel Demand Management

Travel demand management (TDM) programs typically focus on reducing the number of vehicle trips by commuters during peak hours. TDM strategies are often linked to employer-based strategies and include encouragement of alternative work schedules, telework programs, guaranteed ride home initiatives, and Ozone Alert Days. They also may involve regional marketing efforts to support transit, ridesharing, and other travel options.

Four CMAQ-funded TDM projects were reviewed in this analysis, two of which are part of the Metropolitan Washington Council of Governments' (MWCOG) Commuter Connections Program.

STATE	CMAQ FUNDING	TOTAL COST	PROJECT TITLE	Year Funded	VOC (kg/day)	CO (kg/day)	NOx (kg/day)	PM10 (kg/day)	PM2.5 (kg/day)
			Coordinate						
			Telework						
Colorado	\$73,000	\$91,250	Program	2001	-2.0	-14.0	-2.0	NR	NR
			Regional						
DC,			Employer						
Maryland,			Outreach,						
Virginia	\$9,000	\$15,000	Bicycles	2002	-1.0	NR	-1.0	NR	NR
			Regional						
DC,			Guaranteed						
Maryland,			Ride Home						
Virginia	\$772,110	\$1,678,500	Program	2005	-95.2	NR	-216.8	NR	NR
Rhode			Ozone Alert						
Island	\$168,000	\$168,000	Days	2005	-23.0	-251.3	-26.5	NR	NR

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

TDM strategies often are implemented through directing marketing, services, and informational tools to encourage the use of available travel options. Commuters frequently are the focus of TDM actions because of their regular, predictable driving patterns, the possibilities of employer partnerships, and expanded opportunities for ridesharing programs.

Congestion/Mobility Benefits

Travel demand management programs improve mobility by supporting a range of travel options, including not only choices of alternatives modes to driving alone, but also telecommuting and changes in work schedules to avoid travel during peak period hours. The congestion benefits of TDM strategies can be attributed to shortened vehicle trips, the shifting of peak-period trips to non-peak hours, and the elimination of trips altogether. For the four selected projects, estimated vehicle trip reductions ranged from 125 vehicle trips per day for the Washington, DC-area bicycle outreach effort to 12,350 vehicle trips per day for the region's Guaranteed Ride Home Program. Since these programs are part of an integrated TDM program involving multiple elements, and credit is being taken for this program as a Transportation Emissions Reduction Measure (TERM) as part of the region's conformity determination, the regional MPO (MWCOG) has taken care to analyze the impacts utilizing surveys and other tracking data. As with other types of VMT reduction programs, impacts on travel speeds are generally difficult to assess and were not quantified by the project sponsors.

Emissions Benefits

Emissions reductions estimated by project sponsors were generally small for the selected projects, with the exception of the Washington, DC region's Guaranteed Ride Home program. Daily VOC and NOx emissions reductions associated with two of the projects were at or under 2.0 kg/day; in the case of the DC region's Guaranteed Ride Home program, emissions reductions were estimated at 95.2 kg/day of

VOC and 216.8 kg/day of NOx reduced. The Rhode Island program is an example of an "episodic" type program which is not in effect every day, but only on occasions when an ozone alert day is called. Hence, its benefits – associated with a fare free transit program on ozone alert days – only accrue on those few days a year when these events occur.

Costs

CMAQ funding is usually provided as an operating subsidy for TDM strategies. The total public cost of these projects ranged from \$15,000 for the Washington, DC regional outreach on bicycling to more than \$1.67 million programmed for the regional Guaranteed Ride Home program, including the costs of marketing, payment for rides, and staff labor. Total funding for the Commuter Connections program has ranged from \$4.28 million to \$5.11 million annually over the period FY 2002 to FY 2008, and includes seven related TDM program elements: Metropolitan Washington Telework Resource Center (TRC), Expanded Telecommuting, Guaranteed Ride Home, Integrated Rideshare, Employer Outreach, Employer Outreach for Bicycling, and Mass Marketing (a large-scale, comprehensive media campaign). Funding comes from Maryland, Virginia, and the District of Columbia, of which CMAQ funding makes up at least half.

Bicycle/Pedestrian Facilities

Bicycle and pedestrian projects and programs include a wide range of investments and strategies to facilitate and encourage non-motorized travel. Some examples of these projects include bicycle paths and lanes, sidewalks, bicycle racks or lockers, pedestrian urban design enhancements, bicycle/pedestrian marketing materials, and bicycle sharing projects.

STATE	CMAQ FUNDING	TOTAL COST	PROJECT TITLE	Year Funded	VOC (kg/day)	CO (kg/day)	NOx (kg/day)	PM10 (kg/day)	PM2.5 (kg/day)
			8.3 mile						
			Swansea						
			Bikeway						
Massachusetts	\$639,008	\$1,300,000	Facility	2002	-0.5	-3.0	-1.1	NR	NR
			4.3 mile Bike						
			Path to Pinhook						
Indiana	\$1,600,000	\$2,000,000	Park	2005	-0.4	-2.7	-0.5	NR	NR
			Construction of						
			a Transit Bike						
Colorado	\$63,910	\$600,000	Depot	2006	-0.9	-6.7	-0.9	NR	NR
			NYC						
			CyclistNET						
			Marketing						
New York	\$2,400,000	\$3,000,000	Program	2007	-2.4	-38.4	-2.0	-0.9	-0.04

Four CMAQ-funded bicycle and pedestrian projects were reviewed in this analysis.

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

Bicycle and pedestrian projects often serve multiple goals, including improving mobility and safety. By providing bicycle and pedestrian access across barriers such as arterial roads, freeways, and/or train tracks, these projects can not only substitute for driving trips but also can improve mobility and access for non-drivers. Projects can also improve the safety of walkers and bicyclers by filling in gaps on existing, planned, or proposed routes and addressing potential hazards in existing facilities. Non-motorized forms of transportation require no fossil fuels, and are often considered in the context of goals such as sustainability, reducing energy consumption, and reducing greenhouse gas emissions.

Congestion/Mobility Benefits

Bicycle and pedestrian projects can contribute to improvements in mobility by providing additional options for people who might choose walking or biking. These projects improve the ability to reach desired goods, services, activities and destinations using non-motorized forms of transportation and may help diminish the need for automobile travel.

Bicycle and pedestrian projects may reduce congestion to the extent they shift mode choice from single occupancy vehicles to bikes and walking, and often are more successful in reducing VMT in locations where short driving trips, such as trips to local shopping areas, schools, or commercial districts, are common. While bicycle and pedestrian projects can reduce vehicle trips during both peak and off-peak times, congestion benefits are usually limited due to the relatively short distances of trips and to seasonal limitations on bicycling in some areas. The four projects reviewed had estimated reductions of 83 to 902 vehicle trips per day, with the largest figure reported for the New York bicycling program. Given the relatively small impacts at reducing vehicle travel, the bicycle and pedestrian projects assessed for this study did not provide estimates for changes in speed or delay times on the system.

Emissions Benefits

Bicycle and pedestrian projects generally have modest effects on emissions. Typically, pedestrian trips have a maximum distance of 1 mile and bicycle trips a limit of 5 miles, which reduces the ability of these projects to substitutes for driving for many commuters. Bicycle and pedestrian projects may be more effective when designed to enhance access to transit, so that longer trip lengths may be reduced.

Project sponsors generally estimated small reductions in motor vehicle emissions – typically under 1.0 kg/day for VOC and NOx. CO reductions reported by sponsors indicate a range of benefits from 2.7 kg to 38.4 kg emissions reductions each day. PM_{10} emissions reductions were reported by one project to be 0.9 kg each day. The same project reported daily $PM_{2.5}$ emissions reductions of 0.04 kg. All of the projects, however, would be expected to reduce PM_{10} and $PM_{2.5}$ from motor vehicle exhaust.

Costs

CMAQ funding is usually provided for capital improvements, but can also be an operating subsidy for the operation of marketing or bike sharing programs. The total public cost of these projects range in magnitude from \$600,000 to \$3 million. The non-CMAQ share of project funding ranged from 0 percent to 89 percent of the total project cost in the case of the Colorado bike depot (CMAQ costs reported were for architectural design and engineering documents to create the site design).

Transit Service Improvements

CMAQ funds may be used to support projects that increase the use of public transportation systems. Generally, there are three broad categories of transit service-related projects or programs: provision of new or expanded bus services, provision of new or expanded rail services, and service upgrades and rider amenities on existing transit services. Routine maintenance and rehabilitation of existing transit facilities are not eligible for CMAQ funding. However, substantial changes to transit stations or facilities that are likely to increase ridership and reduce emissions are eligible.²⁶

New Bus Services

These strategies include the establishment of new routes, increased frequency of vehicles, expanded hours of operation, or increased coverage of routes. Three CMAQ-funded projects that provide new bus services were analyzed.

STATE	CMAQ FUNDING	TOTAL COST	PROJECT TITLE	Year Funded	VOC (kg/day)	CO (kg/day)	NOx (kg/day)	PM10 (kg/day)	PM2.5 (kg/day)
			City of Racine						
			New Sunday						
Wisconsin	\$157,382	\$196,727	Bus Service	2001	-2.9	NR	-3.2	NR	NR
			Expanded S92						
New York	\$264,000	\$420,000	Bus Route	2005	-6.7	-153.4	+7.2	+1.0	+1.0
			Expanded						
Rhode			Route 30 and						
Island	\$440.000	\$550,000	New Route 12	2005	-6.7	-191.0	-11.1	NR	NR

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

Bus service improvement projects improve both air quality and congestion levels in the local community by increasing the use of transit services and reducing the number of auto trips. New bus routes make transit a more convenient transportation option and may reach areas of the community that were previously underserved or not served at all. Reductions in wait times for transit vehicles may lead to a faster overall trip for passengers, further increasing the number of transit users. Finally, increasing the hours of transit service along certain routes allows people to use the transit system at hours that were not previously available, thus allowing them more latitude in scheduling their trips and allowing for unforeseen changes in itinerary.

Congestion/Mobility Benefits

New bus service can reduce congestion by reducing vehicle trips and VMT. The extent of benefits will depend on several factors, including the extent to which new transit users drive to bus stops, the length of the new service, and the number of additional buses in operation in mixed-traffic. New bus services provide mobility improvements, to the extent that the services provide additional transportation options for users to choose. Mobility benefits will likely be greatest when land-use patterns and other supporting strategies, such as bicycle/pedestrian connections and rider amenities, are already in place. The projects selected for this study reduced between 72 to 358 vehicle trips per day, and project sponsors did not assess impacts on delay and travel speeds.

Emissions Benefits

Bus service improvements can reduce emissions of all pollutants by reducing the number of trips by single-occupancy vehicles and VMT. However, the new bus services also produce emissions, which may

²⁶ FHWA "Guidance on the Congestion Mitigation and Air Quality Improvement (CMAQ) Program Under the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users." Page 11.

offset some of the emissions reductions from personal vehicles and in some cases, NOx and PM emissions could increase due to emissions from the diesel engines in buses if the new services do not attract a sufficient number of new riders who previously drove. Emissions reductions reported by project sponsors indicate a range of anticipated benefits from implementation of these projects. Daily VOC emissions reductions associated with each project ranged from 2.9 kg to 6.7 kg. Daily NOx emissions reductions associated with each project ranged from 3.2 kg to 11.1 kg. Due to increased emissions from the new bus services, the New York project estimated a NOx emissions increase of 7.2 kg per day and PM_{10} and $PM_{2.5}$ increase of 1.0 kg/day. The other two projects did not account for the increase in emissions due to the new bus services, only the reduced emissions from personal vehicles.

Costs

CMAQ funding is usually provided for the operating costs associated with new bus services, but can also be available as a portion of the capital costs to purchase new buses. Only one of the projects, the S92 bus route on Long Island, included estimates of transit fares in determining project costs. The project sponsors estimated a total project cost of \$420,000 and farebox revenues equal to \$90,000, resulting in a net public cost of \$330,000. The total public costs of the selected projects, without consideration for farebox revenues, ranged in magnitude from \$196,727 to \$550,000.

service projects were reviewed in this analysis.

CMAQ PROJECT VOC TOTAL Year CO NOx **PM10 PM2.5** STATE FUNDING COST Funded TITLE (kg/day) (kg/day) (kg/day) (kg/day) (kg/day) Purchase of 5 New Light Utah \$4,000,000 \$4,000,000 **Rail Vehicles** 2002 -27.0 -305.0 -33.0 NR NR TRE Double Tracking of \$36.253.821 \$70.472.342 Segments 2003 -67.2 NR -110.0 NR NR Texas Construct **Rail Station** Platforms \$2,400.000 \$3.000.000 2005 Connecticut and Bridge -6.0 NR -6.0 NR -1.0

New passenger rail services include establishing new routes, increasing the frequency of service,

expanding the hours of operation, or the overall coverage of transit corridors. Three CMAQ-funded rail

New Rail Services

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

Projects to expand rail services can improve both air quality and congestion levels by reducing the number of auto trips, as well as bus transit trips, which may contribute to congestion and emissions. The projects include purchase of new light rail vehicles for the TRAX North/South line in Salt Lake City to enable additional services; double tracking segments of the Trinity Railway Express (TRE) commuter rail line between Dallas and Fort Worth to enable expanded capacity; and construction of a new commuter rail station along the Metro-North commuter rail line to serve Fairfield, Connecticut, including students of Fairfield University and nearby areas within the city of Bridgeport.

Congestion/Mobility Benefits

New and expanded rail services may provide mobility improvements in the form of increased transportation mode options for users in the community, and often will provide faster travel times than existing bus services. Improvements in mobility will likely be greatest when land-use patterns, intermodal connections, and other supporting strategies, such as bicycle/pedestrian connections and rider amenities, are already in place. New or expanded rail services also may reduce congestion by attracting riders who previously drove their own vehicles. The congestion benefits will depend on several factors, including the extent to which new transit riders drive to the station, the length of vehicle trips reduced, and the existence of supporting land use patterns and bicycle, pedestrian, and parking access to stations. The three selected projects were estimated to reduce from 400 (Connecticut) to 5,400 (Dallas) vehicle trips per day. The project sponsors did not assess impacts on delay and travel speeds.

Emissions Benefits

New rail services and routes may reduce emissions of all pollutants by reducing VMT. These types of projects are often most effective when implemented in areas that have a large, established transit network. Daily VOC emissions reductions estimated by project sponsors ranged from 6.0 kg to 67.2 kg. Daily NOx emissions reductions ranged from 6.0 kg to 110.0 kg. CO emissions reductions were reported by one project sponsor as 305.0 kg per day. PM_{2.5} emissions reductions were reported by one project sponsor to be 1.0 kg per day. These emissions effects only take into account the reduction in personal vehicle travel.

The emissions benefits of projects to provide new diesel rail services should include consideration of the increase in off-road emissions from operating locomotives. In the case of the Utah and Connecticut reviewed projects, there were no new diesel emissions, since these involved light rail and construction of a new rail station but no new service. The documentation for the Dallas project noted that there will not be any new emissions of NOx and VOC from diesel locomotives due to the double-tracking project;

however, presumably the calculation of emissions benefits accounts for new ridership associated with higher service levels.

Costs

All three of the projects had costs that were several million dollars, reflecting the high capital costs of transit rail cars, track, and stations. The Texas project, which was the largest at \$70.4 million, received substantial funding from other sources. This is often the case for large capital investment projects which receive funding from multiple sources, including Federal, State, and local programs.

Service Upgrades/Amenities

This category of CMAQ projects includes strategies to increase transit marketing, provide more widely accessible transit information, improve transit passenger amenities, and create new intermodal connections at transit stations (e.g., improved bus circulation, parking, and interface between bus and rail). Five CMAQ-funded service upgrades/amenities were reviewed in this analysis.

STATE	CMAQ FUNDING	TOTAL COST	PROJECT TITLE	Year Funded	VOC (kg/day)	CO (kg/day)	NOx (kg/day)	PM10 (kg/day)	PM2.5 (kg/day)
			Fitchburg						
			Intermodal Trans.						
			Center Parking						
Massachusetts	\$388,000	\$625,000	Garage	2002	-14.0	-143.0	-27.0	NR	NR
			Operation						
			Welcome Aboard						
			Infrastructure	2004 -					
Missouri	\$960,000	\$1,200,000	(bus shelters)	2006	-2.5	NR	-3.4	NR	NR
			Suffolk County						
			Transit Marketing						
New York	\$160,000	\$200,000	Program	2004	-2.4	-40.7	-2.2	-0.07	-0.03
			Laketran AVL-						
Ohio	\$2,800,000	\$3,500,000	MDT System	2005	-4.0	-47.0	-13.0	NR	NR
			Rail Utility						
			Construction &						
Connecticut	\$89,000	\$111,000	Parking Spaces	2007	-6.0	NR	-6.0	NR	-1.0

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

Increased marketing, provision of more widely accessible transit information, additional customer service, and availability of parking may increase the number of people using public transportation. For instance, Operation Welcome Aboard in Missouri is a passenger amenity project to construct bus shelters at 100 highly utilized stops throughout the Kansas City transit service area. The new facilities will have a coordinated look and feel with the bus fleet and feature valuable route and schedule information. While the project will not expand existing bus routes or create new transit services, the project sponsors estimate that an additional 450 individuals will ride transit each day as a result. The installation of Automatic Vehicle Location (AVL) and Mobile Data Terminal (MDT) systems on Laketran transit vehicles in Ohio is designed to improve the system's paratransit operations, by improving schedule adherence, improving route planning and scheduling, and reducing operating costs; it is estimated to result in a 17.5 percent increase in paratransit ridership.

Congestion/Mobility Benefits

Transit service upgrades and amenities may improve mobility if they make it easier for the public to use public transportation and rely less on their personal vehicles. Since these projects focus on increasing the number of transit riders, they potentially can reduce traffic congestion by reducing the number of personal vehicle trips taken each day. Travel behavior studies have long shown that transit riders respond positively to service improvements that reduce travel or waiting time. Adding more vehicles so as to reduce headways and wait time, or providing routing improvements that reduce travel time or increase reliability are all strategies that can increase ridership. Providing riders with a seat or less crowding can also make the trip more enjoyable, comfortable, and safe, helping to increase the number of transit trips (and reduce the use of SOVs) by encouraging more frequent use by existing riders and attracting individuals who would otherwise drive private vehicles.

Project sponsors for the selected projects reported reductions in vehicle trips ranging from 176 per day (for the Suffolk County Transit Marketing) to 490 per day (for the Fitchburg parking garage at the MART

intermodal transportation center). However, since benefits from service upgrades are typically indirect, the projects selected for this study did not assess impacts on delay and speed.

Emissions Benefits

Emissions reduction estimates reported by project sponsors were generally small to moderate. Daily VOC emissions reductions associated with each project range from 2.4 kg to 14.0 kg. Daily NOx emissions reductions associated with each project range from 2.2 kg to 27.0 kg. CO reductions reported by sponsors indicate a range of benefits from 40.7 kg to 143.0 kg emissions reductions each day. CO, PM_{10} , and $PM_{2.5}$ emissions were not reported for some of the projects, but would be expected to drop for each of the selected projects.

Costs

The total public cost of these projects ranged in magnitude from \$200,000 to \$3,500,000. The non-CMAQ share of project funding ranged from 20 percent to 38 percent of the total project cost.

Transit Vehicle Replacements and Related Infrastructure

Vehicle replacements are designed to reduce the emissions rates of vehicles due to improved technologies or switching to cleaner alternative fuels. While this category is primarily dominated by transit bus purchases, it can also include other public vehicles, such as school buses or government fleets, and related infrastructure, such as fueling stations. Generally, these strategies do not affect congestion levels; instead, they focus primarily on emissions reductions.

Alternative Fuel Vehicles/Fueling Facilities

Projects to purchase alternative fuel vehicles or construct refueling facilities and related other infrastructure are included in this category. Four CMAQ-funded alternative fuel projects were reviewed in this analysis.

STATE	CMAQ FUNDING	TOTAL COST	PROJECT TITLE	Year Funded	VOC (kg/day)	CO (kg/day)	NOx (kg/day)	PM10 (kg/day)	PM2.5 (kg/day)
			Compressed						
			Natural Gas						
			Fueling						
Maine	\$150,000	\$1,305,903	Station	2002	-2.8	NR	-2.1	NR	NR
			Purchase 12						
			Alternative						
Pennsylvania	\$5,608,000	\$7,010,000	Fuel Buses	2002	-3.0	-12.0	-91.0	NR	NR
			CT Clean						
			Fuels						
Connecticut	\$688,800	\$861,000	Program	2005	-6.8	NR	-12.5	NR	NR
			Purchase 3						
			CNG Transit						
New York	\$1,000,000	\$1,250,000	Buses	2007	-1.5	-7.6	-4.3	NR	-1.4

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

Vehicles that use non-conventional fuels, such as CNG, LNG, electric, or hybrid electric, will reduce emissions while generally having little to no impact on overall VMT. Vehicles that operate using these fuels generally emit fewer pollutants than similar vehicles which run using gasoline or diesel. Other projects provide funding to construct facilities to service, fuel, or provide maintenance for the vehicles in order to encourage their continued use. Alternative fuel vehicle projects provide States and MPOs the opportunity to use high-profile fleets, such as public transit and school districts, to increase public awareness and approval of alternative fuels. This may lead to interest in other fleet operators in switching to alternative fuels.

To encourage alternative fuel vehicle projects to be undertaken in partnership with the private sector, the Transportation Equity Act for the 21st Century contained special provisions for alternative fuel projects that are part of a public-private partnership. For purchase of privately owned vehicles or fleets using alternative fuels, CMAQ funds may be used for only the incremental cost of an alternative fuel vehicle compared to a conventionally-fueled vehicle. Furthermore, if other Federal funds are used for vehicle purchase, such funds should be applied to the incremental cost before CMAQ funds are applied.²⁷

Congestion/Mobility Benefits

These strategies are unlikely to reduce congestion since they are not changing transit service in a manner that would be expected to affect ridership. However, bus replacements may increase transit ridership to a

²⁷ See Federal Highway Administration Guidance. CMAQ and Alternative Fuel Vehicle Projects. (2005) <u>http://www.fhwa.dot.gov/environment/cmaqpgs/altfuel/index.htm</u>.

small degree by improving the ease and comfort of transit or improving the reliability of service. These effects are very difficult to determine, and none of the sponsors of the selected projects estimated this effect.

Emissions Benefits

Emissions reductions estimates associated with the replacement of transit vehicles are attributable solely to the lower emissions rates of the new vehicles, not to any effects on transit ridership and diversion of trips from private vehicles. An important consideration with these types of projects is the service life of urban transit buses, which is generally at least 12 years. According to FTA regulation, Federal funds cannot be used to replace vehicles before the end of their useful service life.²⁸ However, according to EPA guidance for taking credit for emissions reductions, credit can only be taken for the remaining years of service of the older vehicle, not the entire service life of the new vehicle.²⁹ Consequently, transit vehicle replacement projects will have an immediate emissions benefit when the older vehicle is replaced; however, they likely only have a few years of emissions benefits, over the period of time when the vehicle has reached the end of its service life but might still be continuing in service. The emissions benefits calculations presented in the selected examples only reflect the first year of benefit, and probably should only be assumed for a maximum of a few additional years.

Emissions reductions reported by project sponsors for this set of projects generally indicate the largest emissions reductions from NOx. Daily VOC emissions reductions associated with each project range from 1.5 kg to 6.8 kg. Daily NOx emissions reductions associated with each project range from 2.1 kg to 91.0 kg. CO reductions reported by sponsors indicate a range of benefits from 7.6 kg to 12.0 kg emissions reductions each day. Two project sponsors did not report any CO emissions benefits. PM_{2.5} emissions reductions were reported by one project to be 1.4 kg each day.

Costs

The total public cost of these reviewed projects ranged in magnitude from \$861,000 to \$7,010,000. The non-CMAQ share of project funding was 20 percent of total project cost for most of the analyzed projects. A natural gas fueling station for public and private fleets operating in the Greater Portland area, Maine, received most of its funding from sources other than CMAQ.

²⁸ See 49 U.S.C. 5309.

²⁹ This approach is consistent with EPA guidance on diesel engine retrofits ("Diesel Retrofits: Quantifying and Using Their Benefits in SIPs and Conformity - Guidance for State and Local Air and Transportation Agencies", June 2006) and on early retirement of vehicles ("Guidance for the Implementation of Accelerated Retirement of Vehicles Programs", February 1993).

Conventional Bus Replacements

Conventional bus replacement projects replace older diesel buses with new diesel vehicles that emit fewer pollutants. Two bus replacement projects were reviewed in this analysis.

STATE	CMAQ FUNDING	TOTAL COST	PROJECT TITLE	Year Funded	VOC (kg/day)	CO (kg/day)	NOx (kg/day)	PM10 (kg/day)	PM2.5 (kg/day)
			100 Replacement						
Maryland	\$5,000,000	\$26,500,000	Local Buses	2002	-17.0	NR	-188.9	NR	NR
			61 Replacement						
Ohio	\$4,864,440	\$6,949,200	Local Buses	2003	-9.6	-35.5	-11.6	NR	NR

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

The projects included in this category take advantage of improvements in heavy duty diesel technology. Diesel engines today are cleaner and emit fewer pollutants than similar engines more than 10 years ago, so in principle, retiring the older, more-polluting buses will reduce emissions. The new, less polluting vehicles run along existing routes and do not change overall vehicle mileage or service levels, so have no claimed effect on transit ridership. Conventional bus replacement projects have historically comprised a large share of CMAQ funding requests; however, in recent years States and MPOs have opted to replace aging bus fleets with CNG or other alternative fueled vehicles whose emissions rates are even lower than current generation diesel buses.³⁰ These projects were captured in the Alternative Fuel Vehicles/Fueling Facilities project category.

Congestion/Mobility Benefits

These strategies are unlikely to have congestion or mobility benefits since they are not changing transit service in a manner that would be expected to affect ridership. However, conventional bus replacements may increase transit ridership to a small degree by improving the ease and comfort of transit or improving the reliability of service. These effects are very difficult to determine, and neither of the sponsors of the selected projects estimated this effect.

Emissions Benefits

The emissions benefits from these strategies would be subject to the same caveats applied to alternative fuel vehicle projects. Specifically, if replacement buses are purchased for the purpose of replacing buses that have remaining service life, the emissions credit can only extend to the period of remaining service life of the vehicle being replaced, and with the presumption that the older vehicle will not still be operated.

With these caveats in mind, emissions reported by the sponsors of the example projects indicated daily VOC emissions reductions from 9.6 kg to 17.0 kg. Daily NOx emissions reductions associated with the projects ranged from 11.5 kg to 188.9 kg. CO reductions reported by one project indicated a benefit of 35.5 kg emissions reductions each day.

Costs

CMAQ funding is provided for the capital investment in the new transit vehicles. The total public cost of these projects ranged in magnitude from \$6,949,200 to \$26,500,000. However, given the expense of bus purchases, CMAQ funds are often used only to supplement FTA funding and are a small share of the overall funding. In the case of the Maryland bus replacement project, more than 80 percent of funding came from sources other than CMAQ.

³⁰ Transportation Research Board. Special Report 264: The CMAQ Program: Assessing 10 Years of Experience. 2002.

Dust Mitigation Projects

Road dust reduction strategies are designed to reduce the amount of fugitive dust (PM_{10} and $PM_{2.5}$) that is suspended into the air by tires on roadways. Three CMAQ-funded dust mitigation projects were reviewed in this analysis.

STATE	CMAQ FUNDING	TOTAL COST	PROJECT TITLE	Year Funded	VOC (kg/day)	CO (kg/day)	NOx (kg/day)	PM10 (kg/day)	PM2.5 (kg/day)
			Graaf Avenue						
California	\$174,360	\$197,360	Paving Project	2004	NR	NR	NR	-143.0	NR
			Lincoln Ave						
Idaho	\$319,600	\$319,600	Paving Project	2004	NR	NR	NR	-175.5	NR
			Purchase of a						
			Liquid De-Icer						
Idaho	\$152,889	\$165,000	Truck	2005	NR	NR	NR	-6,292.0	NR

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

Particles suspended by vehicular movement on paved and unpaved roads are a major contributor to fugitive dust emissions. The origins of this particulate matter differ from the particulate matter that is emitted from vehicles' tailpipes. Exhaust particulate emissions are created from engine combustion while dust mitigation projects control particulate matter originating from the roadway. When vehicles travel along roads, the force of the wheels on the road surface causes the pulverization of surface material. The particles are lifted and dropped from the rolling wheels, and the road surface is exposed to strong air currents in turbulent shear with the surface. The air disturbance behind the vehicle continues to act on the road surface after the vehicle has passed.³¹

Typical dust mitigation projects include paving shoulders, curbs and gutters, roads, and access points. When paving is not feasible, such as for industrial roads with heavy vehicles and/or spillage of material in transport, watering or chemical suppressants may be used. Other CMAQ projects to address the amount of particulate matter released into the air include adding street sweepers, replacing non-certified sweepers with newer vehicles, using new vehicles to increase the frequency of sweeping in existing areas, or using new vehicles to expand the area that is regularly swept. Regular street sweeping on paved roads removes sand and/or other de-icing materials, and other deposition of dirt on roads, reducing the level of road dust.

Congestion/Mobility Benefits

These strategies will have limited, indirect impact on congestion levels, though some benefits may be observed through speed improvements on previously unpaved or icy roads. Since dust mitigation projects are not intended to improve congestion, the sponsors for projects selected for this study did not assess travel impacts.

Emissions Benefits

The quantity of dust emissions from a given segment of road depends on various factors such as whether it is paved or unpaved, precipitation levels, and traffic volumes. Emissions reductions reported by project sponsors at the local level indicated a range of daily PM_{10} emissions reductions from 143.0 to 6,292.2 kg.

Costs

CMAQ funding is usually provided for capital improvements, such as the paving of a road shoulder or purchase of a new street sweeper. The total public cost of the selected projects ranged in magnitude from

³¹ See U.S. EPA. AP 42, Fifth Edition, Volume I, Chapter 13: Miscellaneous Sources. Unpaved Roads. <u>http://www.epa.gov/ttn/chief/ap42/ch13/draft/d13s0202.pdf</u>.

\$165,000 to \$319,600. The non-CMAQ share of funding ranged from 0 percent to 11 percent of the total cost.

Freight/Intermodal Projects

An intermodal system includes both origins and destinations (for example, ports railheads and warehouses), as well as the links between them (such as roads or rail).³² Strategies that reduce emissions from the movement of freight and cargo through air quality nonattainment areas are grouped together in the category of freight/intermodal projects. Six CMAQ-funded freight/intermodal projects were reviewed in this analysis.

STATE	CMAQ FUNDING	TOTAL COST	PROJECT TITLE	Year Funded	VOC (kg/day)	CO (kg/day)	NOx (kg/day)	PM10 (kg/day)	PM2.5 (kg/day)
011112		0001	South Portland	1 411404	(119, 000,)	(1.9, 444))	(19,000)	(ing) and j)	(1.8, 44, 5)
			Truck to Rail						
Maine	\$283,941	\$355,180	Intermodal Facility	2000	-0.7	NR	-4.2	NR	NR
			South Portland –						
			Rail Line Rehab						
			for Freight						
Maine	\$128,501	\$494,098	Shipping	2002	-0.2	NR	-2.0	NR	NR
			Westmoreland						
			Intermodal Freight	2002-					
Pennsylvania	\$7,600,000	\$9,500,000	Facility	2003	NR	-1.9	-13.3	NR	NR
			Arlington						
New York	\$1,700,000	\$9,000,000	Intermodal Yard	2004	-209.0	-1,712.2	-1,008.8	-37.0	-30.1
			Norfolk Southern						
			Rail Extension and						
Pennsylvania	\$10,000,000	\$12,500,000	Rehabilitation	2004	-11.5	-64.7	-53.5	NR	NR
			Freight Rail						
			Construction along						
Connecticut	\$1,409,600	\$1,762,000	Waterfront Street.	2006	-0.5	NR	-18.4	NR	-0.2

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

Emissions from heavy-duty trucks and large-scale freight facilities can contribute significantly to the overall air pollution in urban areas. Projects that shift movement to a more efficient mode of transport or improve the efficiency of freight transfers between modes will reduce emissions. Some strategies will shift trips from road to rail, reducing emissions and congestion caused by heavy duty vehicles. Other intermodal projects improve the efficiency of transfers between water-borne, truck, and/or rail vehicles. By reducing the amount of time vehicles are required to wait at these transfer stations, idling emissions will be reduced.

Congestion/Mobility Benefits

Reducing the movement of freight by heavy-duty trucks through urban areas can result in congestion relief benefits. Each of the sample projects was designed to reduce truck vehicle travel by shifting freight movement to rail. For instance:

- The sponsors of the Maine projects estimated reductions of up to 2,250 trucks per year by 2006 due to construction of two projects: rail siding as part of an intermodal transfer and rehabilitation and/or replacement of tracks.
- The Westmoreland Intermodal Freight Facility, a project to reduce the amount of freight cargo traveling through downtown Pittsburgh, was estimated to reduce 14 miles of travel for 20,000 truck loads.

³² See Federal Highway Administration Guidance. *CMAQ and Intermodal Freight Transportation*. (2005) <u>http://www.fhwa.dot.gov/environment/cmaqpgs/intermodal/index.htm</u>.

- In New York, capacity improvements to a rail yard were expected to increase rail efficiencies and reduce the movement of freight shipments by truck though the metropolitan New York area. The project sponsors estimated that 10,268 truck trips per day would reduce 6 miles of travel for one segment (Visy Paper Mill Bayonne Bridge and Transfer Station), and 15,786 truck trips per day would reduce 5 miles for the other segment.
- The Norfolk Southern rail extension and rehabilitation project in Pennsylvania was designed to fund the construction of 5.25 miles and rehabilitation of 7 miles of train track in Indiana County to create a more direct route for delivery of coal. The sponsors estimated the project would reduce 43,478 truck trips per year.
- In Connecticut, the installation of additional railroad track and the associated utility relocations was expected to reduce congestion by shifting an estimated 4,000 truck shipments per year to rail.

The effects on roadway congestion and speeds, however, were not quantified in the analyses provided to the study team.

Emissions Benefits

Emissions reduction estimates reported by project sponsors vary, depending on the modes of transportation affected by the project and the amount of freight that is moved. The Arlington Intermodal Yard in New York, in particular, reported very large emissions reductions, based on assumptions of significant diversions of truck traffic to rail. Most of the calculations do not account for increased railroad diesel emissions, or any congestion or idling associated with transfers between truck and rail.

Costs

Funding under CMAQ has been used to improve efficiency of truck, rail and marine operations, as well as intermodal freight facilities where air quality benefits can be shown. Capital improvements that increase the efficiency of freight movement between truck and rail, for example, as well as up to three years operating assistance for these types of projects, are appropriate for CMAQ funding if emissions reduction can be demonstrated.³³ The total public cost of these projects ranged from \$355,180 to \$12,500,000. The non-CMAQ share of project funding ranged from 20 percent to 81 percent of the total project cost.

³³ 23 USC 149(b)(1), (3). See FHWA Factsheet. "CMAQ and Intermodal Freight Transportation" Available at: <u>http://www.fhwa.dot.gov/environment/cmaqpgs/intermodal/index.htm</u>.

Diesel Emissions Reduction

Diesel emissions reduction strategies are designed to reduce emissions from on-road and off-road diesel engines (e.g., those used in construction equipment, locomotives, marine vessels), and include use of retrofit technologies and idle reduction technologies.

Diesel Engine Retrofits

The term "retrofit" is broadly defined by EPA to include any technology, device, fuel or system that, when applied to an existing diesel vehicle or engine, achieves emissions reductions beyond that required by EPA regulations at the time of a vehicle or engine's certification. Retrofit technologies may include EPA verified emissions control technologies and fuels and CARB-verified emissions control technologies.³⁴ Seven CMAQ-funded diesel engine retrofit projects were reviewed in this analysis.

STATE	CMAQ FUNDING	TOTAL COST	PROJECT TITLE	Year Funded	VOC (kg/day)	CO (kg/day)	NOx (kg/day)	PM10 (kg/day)	PM2.5 (kg/day)
Maryland	\$5,458,000	\$23,036,000	142 Bus Engine Upgrades	2001	NR	NR	NR	NR	-34.8
New York	\$1,200,000	\$1,500,000	WCDOT Diesel Engine Retrofit of 177 Transit Buses	2004	-3.0	-45.9	+14.61	NR	-2.3 ²
Pennsylvania	\$1,793,520	\$2,242,520	Install 235 Emissions Reduction Devices on Local Buses	2004	-7.3	-111.2	0	NR	NR
Oregon	\$49,692	\$62,115	Install filters on 9 trash collection vehicles	2005	-1.4	-2.5	0	-0.3	NR
Michigan	\$3,360,000	\$4,200,000	3 Locomotive Diesel Engine Retrofits	2007	-10.0	NR	-132.1	NR	-3.7
New York	\$424,000	\$530,000	Diesel Engine Retrofits of 53 County Vehicles	2007	-0.4	-1.7	0	-0.2	-0.1
New York	\$1,368,000	\$1,710,000	Rockland County retrofit of on-road diesel vehicles	2007	-140.3	-969.9	0	-138.4	-125.9

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

¹ Project sponsor calculated an increase in NOx emissions based on data from retrofits and existing emissions from tailpipe testing. The project sponsors noted that the increase in NOx emissions is highly unusual and it is widely accepted that these retrofits have no impact on NOx.

² Project sponsor did not report PM reductions in CMAQ database but included information on emissions rates in project backup information to enable calculation.

Diesel engine retrofits are typically aimed especially at reducing particulate matter from heavy-duty diesel engines, as well as other pollutants. Verified technologies purchased and installed through these projects included the Englehard DPX soot filter and bus engine overhauls. As with all CMAQ projects,

³⁴ A list of the EPA verified technologies can be accessed at: <u>www.epa.gov/otaq/retrofit/verif-list.htm</u>.

retrofitted vehicles must operate predominantly within or in close proximity to nonattainment or maintenance areas.³⁵

CMAQ-funded diesel retrofit projects include a wide range of measures to reduce diesel emissions by retrofitting vehicles/equipment with new or improved emissions control equipment, upgrading engines, replacing older engines with newer/cleaner engines, and using cleaner fuels. The selected projects included installation of retrofit devices on transit buses, trash collection vehicles, a range of county-owned vehicles, and locomotives.

Congestion/Mobility Benefits

Diesel engine retrofits are not designed to provide congestion benefits and do not affect travel.

Emissions Benefits

Project sponsors reported that daily VOC emissions reductions ranged from 0.4 kg to 140.3 kg. One project sponsor did not report any VOC emissions effects. Most of the selected projects were not expected to reduce NOx (i.e., particulate filters, such as the Englehard DPX soot filter, reduce emissions of PM, VOC, and CO, but not NOx), according to EPA's Diesel Retrofit Technology Verification.³⁶ However, the Michigan locomotive repowering project was estimated to reduce a substantial amount of NOx, due to lower fuel use and an 86 percent estimated reduction in ozone precursors. A reported increase in NOx emissions from a diesel engine retrofit project is highly unusual. The project sponsor for the New York project that reported noted that it is widely accepted that these retrofits have no impact on NOx; however, an increase was reported based on data from the retrofit manufacturers and emissions from tailpipe testing of the subject vehicles.

PM reductions of 0.1 to 138.4 kg/day were reported for the sample retrofit projects. In the case of the Pennsylvania bus retrofit project, no PM emissions reductions were reported; however, EPA reports a 60 percent reduction in PM emissions associated with the Englehard DPX soot filter. The CO reductions reported by sponsors indicate a range of benefits from 1.7 kg to 969.9 kg emissions reductions each day. Two projects did not report any CO emissions benefits.

Costs

CMAQ funding is usually provided for equipment such as new diesel engines, truck stop electrification infrastructure, or purchase of retrofit devices. Funding may also be provided to offset a portion of the cost of installation or operation of a regional retrofit program. The total public cost of these projects range in magnitude from \$530,000 to \$23,036,000, depending on the number of vehicles to be retrofitted and the type of device used. The non-CMAQ share of project funding ranged from 20 percent to 76 percent of the total project cost.

³⁵ 23 USC 149(b)-(c). See FHWA, 2003. "Eligibility of Freight Projects and Diesel Engine Retrofit Programs" Memorandum. <u>http://www.fhwa.dot.gov/environment/cmaqpgs/retrom.htm</u>.

³⁶ For a listing of verified retrofit technologies and their emissions reductions, see: <u>http://www.epa.gov/oms/retrofit/verif-list.htm</u>.

Truck Idle Reduction

Unnecessary idling often occurs when trucks wait for extended periods of time to load or unload materials or supplies, or when equipment is left on overnight when it is not being used. Idle reduction strategies eliminate this unnecessary idling by heavy duty vehicles which can save fuel, prolong engine life, and reduce emissions. There are several technologies available to address idling. Some of these technologies are mobile and attach onto the truck (mobile Auxiliary Power Units (APUs)), and provide air conditioning, heat, and electrical power to operate auxiliaries such as a microwave. Another technology involves electrifying truck parking spaces (stationary Truck Stop Electrification (TSE)) with or without modifying the truck. This involves power from the electrical grid providing energy to operate stationary equipment or on-board truck equipment to provide cab heating, cooling, and other needs.³⁷ Three truck idling reduction projects were reviewed in this analysis.

STATE	CMAQ FUNDING	TOTAL COST	PROJECT TITLE	Year Funded	VOC (kg/day)	CO (kg/day)	NOx (kg/day)	PM10 (kg/day)	PM2.5 (kg/day)
Tennessee	\$1,000,000	\$1,000,000	100 Auxiliary Power Units	2003	-4.5	NR	-60.4	NR	NR
Kentucky	\$500.000	\$835.000	50 Auxiliary Power Units	2005	-6.7	- 46.7	-110.2	NR	NR
Tennessee	\$788,240	\$985,300	59 Auxiliary Power Units	2005	NR	NR	-79.7	NR	2.2

NR – Values were not reported by the local project sponsor or State DOT in the CMAQ database or other materials for the project.

For long haul trucks, the truck driver must have 10 hours off duty after driving 11 hours.³⁸ Surveys have found that 70 to 80 percent of truck drivers say the need for heating or air conditioning is the main reason they idle their trucks while off duty. They also cite the need to operate on-board electrical appliances, such as a television or refrigerator, and to ensure the engine block, fuel, and oil remain warm. Long duration truck idling occurs at truck stops, travel centers, distribution hubs, airports, borders, ports, and roadsides.³⁹

Congestion/Mobility Benefits

Truck stop idle reduction projects are not designed to provide congestion benefits and do not affect travel.

Emissions Benefits

Truck stop idle reduction projects are designed primarily to reduce NOx and PM emissions. While some project sponsors in the past estimated reductions in VOC and CO using MOBILE idle emissions factors, EPA's "Guidance for Quantifying and Using Long Duration Truck Idling Emission Reductions in State Implementation Plans and Transportation Conformity" (January 2004) provides long-duration idling emissions factors only for NOx and PM. At the time the emissions calculations were conducted for the 2003 Tennessee project and the 2005 Kentucky project, this guidance had not yet been available or used.

The three projects reported NOx emissions reductions estimates of 60.4 to $110.2 \text{ kg/day.}^{40}$ Only the 2006 Tennessee projects have estimated PM_{2.5} emissions reductions of 2.2 kg/day. Using long-duration truck

³⁷ See Federal Highway Administration Guidance. *CMAQ and Idle Reduction Technologies*. (2005) <u>http://www.fhwa.dot.gov/environment/cmaqpgs/idlereduct/index.htm</u>.

³⁸ See 49 CFR, Part 395. For additional information: <u>http://www.fmcsa.dot.gov/rules-regulations/topics/hos/hos-2005.htm</u>.

³⁹ See Federal Highway Administration Guidance. CMAQ and Idle Reduction Technologies. (2005).

⁴⁰ The 2003 Tennessee project had an estimated 60.4 kg/day in NOx based on MOBILE emissions factors; using long-duration idle emissions factors available from the EPA guidance, released in 2004, the project would reduce 135.0 kg/day.

idling emissions factors currently available from EPA, the 2003 Tennessee and 2005 Kentucky projects would have had PM emissions reductions of 3.7 kg/day and 1.8 kg/day, respectively.

Costs

CMAQ funding is usually provided for truck stop electrification infrastructure and equipment. The total public cost of these projects ranged in magnitude from \$835,000 to \$1,000,000.

4. PROJECT ANALYSIS AND SELECTION PRACTICES THAT SUPPORT EFFECTIVENESS

In the previous section of this report, data gathered from the national CMAQ database and local project sponsors were presented to document reported congestion and emissions benefits, as well as characteristics of the broad types of strategies. This section focuses on using information from the selected set of projects to assess the projects' air quality cost-effectiveness and to examine how some areas are using this type of information for program prioritization and decision making.

This section is divided into two parts. First, a discussion of the cost-effectiveness of the selected projects at reducing emissions of each of the primary pollutants – VOC, CO, NOx, and PM_{10} and $PM_{2.5}$ – is provided. In order to calculate air quality cost-effectiveness in a way that allows appropriate comparisons, project costs and emissions effects have been recalculated to fill in gaps in reported emissions reductions and to "normalize" the results to a common year, 2008.

Second, initial observations on good practices that States and MPOs have used to analyze, prioritize, and select CMAQ projects; including use of cost-effectiveness analysis and consideration of other factors are provided. Phase II of this evaluation and assessment study further expand upon this information through development of case studies of specific locations to understand State DOT and MPO practices and to help enhance the effectiveness of the program.

Emissions Reduction Cost-Effectiveness

The Role of Cost-Effectiveness Assessment

Understanding the cost-effectiveness of CMAQ projects should be an important consideration in project selection decisions at the State and local level. SAFETEA-LU directs that States and MPOs give priority to "diesel retrofit projects and. . .other cost-effective emission reduction activities, taking into consideration air quality and health effects" and to "cost-effective congestion mitigation activities that provide air quality benefits."⁴¹ Moreover, States and MPOs, as good stewards of public dollars, will maximize the value of their investment of CMAQ funds by targeting it toward projects that provide the most benefit per dollar. Indeed, conducting a cost-effectiveness assessment provides States and MPOs with the ability to stretch limited transportation funding resources across a wide range of projects that demonstrate congestion, energy, environment, air quality, and mobility benefits.

Given the role of the CMAQ program as a key funding source to help transportation agencies meet air quality goals consistent with attainment of regional air quality plans, cost-effectiveness at reducing air pollutant emissions is often considered an important metric of CMAQ program effectiveness. At the same time, it is important to recognize that the benefits of the CMAQ program go well beyond emissions reduction, and States and MPOs often take into account these other considerations in making project selection decisions. In this study, cost-effectiveness for the 67 sample projects was calculated in regard to emissions reductions alone due to the availability of information on emissions reduction estimates for a wide variety of CMAQ-funded transportation projects. However, emissions reduction cost-effectiveness may not be the only measure of cost-effectiveness for a project, just as air quality is not the only benefit that may be considered in project selection.

In many urban areas and states with severe traffic congestion problems, a project's cost-effectiveness at alleviating traffic congestion will often be an important consideration. A project that reduces traffic congestion in a targeted corridor may be viewed as more beneficial than another project that reduces the same level or more emissions but does not provide congestion relief benefits. These congestion relief

⁴¹ SAFETEA-LU 1808(d).

benefits are difficult to quantify using a standard metric (such as hours of traveler delay reduced) across all projects, based on the complexities of modeling and assessing these impacts, particularly for small projects.

CMAQ projects generate a wide range of other benefits, which may also be important factors in project selection. These benefits include, among others, enhancing mobility and access, creating more reliable travel times and transit services, encouraging physical activity, reducing greenhouse gas emissions, creating better connections between transportation and land use, and fostering a more multi-modal transportation system. Most of these benefits are difficult, if not impossible, to quantify in a standard metric, and thus are not usually considered in a cost-effectiveness framework. However, these benefits may be very important in the context of regional transportation goals. The flexibility inherent in the CMAQ program allows local areas to determine their own procedures and criteria for project assessment. States and MPOs are using a suite of evaluation criteria, including air quality and energy conservation benefits, local cost participation share, and intermodal, multi-modal, and social mobility concerns, to ensure all are being addressed in regional transportation planning and programming.⁴²

Methodology for Analyzing Emissions Reduction Cost-Effectiveness of the Selected Projects

The study team calculated cost-effectiveness of the sample projects with respect to reductions of VOC, NOx, CO, PM_{10} , and $PM_{2.5}$. Cost-effectiveness figures were developed for each pollutant independently, rather than as a composite figure. This was done for two primary reasons: 1) At the national level, it is difficult to determine the most appropriate means of weighting each pollutant, given that some pollutants are of more concern in some parts of the country than others. 2) Some strategies are targeted toward reducing individual pollutants, such as dust mitigation projects, which focus on PM_{10} reduction. Lumping together the reduction of a full set of pollutants, therefore, would not show how different types of strategies can be more or less effective at reducing different pollutants.

In order to increase the comparability of emissions and cost figures across the sample projects, the study team recalculated project costs and emissions effects. Recalculations were conducted largely because for many projects, data were missing on specific pollutants – commonly CO and PM. In addition, the projects were implemented in a wide range of different locations, at different times, and emissions benefits were reported for different years. Since the U.S. vehicle fleet is on average, much cleaner today than it was 10 years ago, a project that eliminates a mile of travel will have less emissions reduction benefit in 2010 than the same project in 2000. Consequently, it was useful to standardize the emissions effects to a common year using a standard set of default emissions factors for purposes of analyzing cost-effectiveness across the selected projects. Project costs, including operating and capital costs, were also adjusted to reflect constant 2008 dollars to enable better comparisons. Costs were standardized using the Consumer Price Index (CPI) which may result in reduced cost-effectiveness for multi-year projects.

The following discussion provides more detail on the calculation procedures used in this study. The procedures for "normalizing" emissions and costs are described below first. This is followed by a description of the general steps in conducting cost-effectiveness analysis, which could be used for any calculations of project cost-effectiveness, including those conducted at the State or local level. In fact, the study team found that a number of State DOTs and MPOs were using the same basic approach to calculate cost effectiveness for their proposed projects.

PROCEDURES TAKEN TO ENSURE COMPARABILITY OF COST AND EMISSIONS DATA FROM SAMPLE PROJECTS

The "normalization" procedures used to standardize the projects in this study included three main steps.

⁴² Integrating Air Quality and Transportation Planning: A Compendium of Workshop Summaries for Regional Councils and metropolitan planning organizations. 2001-2005. Available at: www.narc.org/uploads/File/01Workshop Summaries 2005 Edit.pdf.

- 1. Establish baseline running and trip start emissions factors for 2008 across multiple pollutants.
- 2. Recalculate emissions reductions using standardized calculation methodologies and 2008 emissions factors.
- 3. Recalculate project costs in 2008 dollars using the Consumer Price Index (CPI).

These steps are described below.

1) Develop "Normalized" Emissions Factors. In order to improve comparability of results, a common set of emissions factors for CO, NOx, VOC, PM₁₀, and PM_{2.5} emissions was developed using MOBILE6.2 for analysis year 2008. MOBILE is EPA's approved model for estimating pollution from highway vehicles. The model calculates emission factors (in grams per vehicle-mile) for a variety of pollutants from passenger cars, motorcycles, light- and heavy-duty trucks. Some of the emissions factors are based on testing of tens of thousands of vehicles and account for changes in vehicle emission standards over time, changes in vehicle populations and activity levels, and variation in local conditions such as temperature, humidity and fuel quality.⁴³

In the data collected from State DOTs and MPOs, some projects' emissions effects had been calculated with an earlier version of the model, MOBILE5a, or EMFAC, the California emissions model. In this analysis, the 2008 emissions factors from MOBILE6.2 were applied to all the selected projects, where feasible, reducing differences due to the time the project was implemented, local weather and vehicle fleet mix, and/or region-specific modeling assumptions. For additional information on the assumptions and inputs used to develop the normalized emissions factors, please see Appendix B. It should be noted that while this normalization was helpful for purposes of this study, State DOTs and MPOs should not apply this procedure in their own project assessments. They should use the best available data at the local level to develop appropriate emissions factors for conditions in their area.

Emissions factors for some types of CMAQ projects, such as diesel engine retrofits, bus replacement, and dust mitigation projects, were not standardized. These technologies vary widely in their ability to achieve emissions reductions and depend on specific local conditions (e.g., road dust levels depend on precipitation and silt loadings). Consequently, the emissions factors reported by project sponsors, or the most recent EPA certification data for retrofits, were used in the calculation of cost-effectiveness.

2) Recalculate Emissions Reductions, as appropriate. Using the normalized emissions factors, emissions reductions were then recalculated (as kg/day). This generally was done using the project's reported travel impacts (e.g., VMT reductions, speed changes), using the methodologies that the project sponsors had used.

3) Adjust Total Public Costs to Constant Dollars. CMAQ and non-CMAQ project costs reported by local sponsors were converted to a 2008 base by using the average annual Consumer Price Index published monthly by the U.S. Bureau of Labor Statistics.⁴⁴ CPI values for respective years in relation to 2008 are shown in Table 3, along with the corresponding adjustment factor. The CPI for January 2008 is 211.08. To convert dollar values in one year to constant dollars in a second year, multiply the first-year dollar value by a factor whose numerator is the average annual CPI of the second year and whose denominator is the average annual CPI of the first year. For instance, to convert \$10,000 in 2000 dollars to 2008 constant dollars, multiply \$10,000 by the average annual CPI in 2008 divided by the average annual CPI in 2000:

⁴³ U.S. Environmental Protection Agency. Office of Transportation and Air Quality. *Description and History of the MOBILE Model*. (2004) <u>http://www.epa.gov/OMS/mobile.htm</u>.

⁴⁴ U.S. Department Of Labor, Bureau of Labor Statistics. Consumer Price Index for All Urban Consumers - (CPI-U), U.S. city average, All items. <u>*ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.txt.*</u>

\$10,000 * (211.1 / 172.2) = \$10,000 * 1.226 = \$12,259 in 2008 constant dollars.

Year	СРІ	Factor	Year	СРІ	Factor
1999	166.6	1.267	2004	188.9	1.118
2000	172.2	1.226	2005	195.3	1.081
2001	177.1	1.192	2006	201.6	1.047
2002	179.9	1.173	2007	207.3	1.018
2003	184.0	1.147	2008	211.1	1.000

Table 3. Consumer Price Index (CPI) Factors.

CALCULATING EMISSIONS REDUCTION COST-EFFECTIVENESS USING THE NORMALIZED RESULTS

Once normalized emissions figures and costs were developed, cost-effectiveness at reducing each type of emissions was calculated using a standard approach, as listed in the three steps below:

- 1) Calculate average annual emissions reduction;
- 2) Calculate annualized cost of the project;
- 3) Divide the annualized cost of the project by the annual emissions reduction.

The cost figures used in the calculations represent the total public costs associated with implementing a project. This includes funding from the CMAQ program for capital and operating costs, as well as any other Federal, State, or local sources. Some individual projects were funded over multiple years or multiple States, and so the cost used in the calculations reflected all of these components. In some cases, CMAQ only paid for a small portion of a project's total costs. Some State and MPO analyses that the study team reviewed involved calculations of both overall project cost-effectiveness (based on the full costs of the project) and cost-effectiveness associated with CMAQ dollars alone (not including other Federal, state, and local funding sources). However, the results presented in this study reflect full project cost-effectiveness at reducing emissions using total public funds. The measure of cost-effectiveness reported in this study is dollars per ton (although it can also be reported as dollars per kg, or another similar metric). The steps in this process are described below.

1) Convert to Annualized Emissions Reductions. Emissions reductions per day should be converted into annualized values as kg per year (which the study team converted to tons per year). Although the national CMAQ database reports emissions reductions in kg per day, in most cases the emissions benefits are not realized on all 365 days of the year, but are restricted to only work travel/weekdays or to a smaller number of days when the program is in effect (e.g., on ozone exceedance days, days when bicycling is considered most feasible, or days of application of de-icing chemicals). In most of the project examples, the project sponsor included an estimate of the number of days during which the strategy would be effective. In these situations, the local figure was used. However, in instances where it was not provided, the following standard scaling factors were used:

- For projects that affect only peak period or weekday commuter travel, daily effects were multiplied by 250.
- For projects that affect all traffic, daily effects were multiplied by 365.

2) Calculate Annualized Cost of the Project. To calculate the annualized cost of the project, two pieces of information are needed:

- Project funding The total project funding cost is needed. This should include funding from the CMAQ program, as well as any other Federal, state, or local sources.
- Capital recover factor (CRF) The capital recovery factor is used to determine how to annualize funding dollars over the life of the project, assuming that projects with service lives beyond 1 or 2 years represent an opportunity cost in the use of those public resources equal to the value of those resources if invested for the same time period at a societal rate of interest. The capital recovery factor is calculated using the following equation:

CRF = $\frac{(1+i)^{n} x (i)}{(1+i)^{n}-1}$

Where i = discount rate (as a decimal fraction)n = project life (in years)

The annualized cost of the project is calculated by multiplying total project funding by the CRF, as shown in the following equation:

Annualized cost = Project funding x CRF

The discount rate reflects the rate at which society (taxpayers) values future benefits in terms of resources that it must give up now. As a result, it "discounts", or places a lower value on, future benefits from the investment compared to current benefits. A lower discount rate increases the effective value of future benefits (emissions reductions) by lowering the annualized cost used in the comparison.⁴⁵ A 7 percent discount rate was used in this analysis, which is the value used by the Federal Transit Administration (FTA) in its New Starts program, and is the rate recommended by the Office of Management and Budget (OMB) for Federal investment analysis.

"Project life" represents the period of time over which a project remains effective at reducing emissions and congestion levels, and varies by the type of project. For example, a standard transit bus is expected to provide service for 12 years, whereas the service life of a vanpool vehicle may be only 5 years. For some projects, effects last for many years; in other cases, the effects continue only for the length of time when direct funding is provided. Individual project life periods, determined by the specific circumstances of each project and local jurisdiction, were sometimes reported by project sponsors, and these were typically used in the calculations. However, some general rules are provided in Table 4, based on a review of project life periods used by other sources, and these were generally used where no other data were provided.⁴⁶

⁴⁵ For example, imagine two projects, each reducing 1 pound of emissions per year. The first project costs \$1,000 and has 5 years of effects; the other project costs \$2,800 but has 20 years of effects. At a 7 percent discount rate, the first project appears more cost effective, while with a 5 percent discount rate, the second project appears more cost effective.

⁴⁶ See: California Air Resource Board, "Methods to Find the Cost-Effectiveness of Funding Air Quality Projects," 1999; Birmingham Regional Planning Commission, "A Guide for Estimating the Emissions Effects and Cost-Effectiveness of Projects Proposed for CMAQ Funding," 2002; Maricopa Association of Governments, "Methodology for Evaluating Congestion Mitigation and Air Quality Improvement Projects"; U.S. Environmental Protection Agency, "Summary Review of Cost and Emissions Information for 24 Congestion Mitigation and Air Quality Improvement Projects," 1999; Transportation Research Board Special Report 264, "The Congestion Mitigation and Air Quality Improvement Program: Assessing 10 Years of Experience."

CATEGORY	SUBCATEGORY	PROJECT LIFE
CATEGORY	SUBCATEGORI	EXPECTANCY (YEARS)
	Traffic Signalization	10
Traffic Flow Improvements	Freeway Management	10
frame flow improvements		20
	High-Occupancy Vehicle Lanes	
	Regional Ridesharing	1 to 2
	Vanpool Programs	1
Shared Ride Programs	- ongoing assistance	1 to 2
	- purchase of vans	5
	Park-and-Ride lots	12
Travel Demand Management	Regional Approaches/Employer Trip	1 to 2
	Reduction programs	
Bicycle/Pedestrian Facilities	-	15
	New Bus Services	
	- purchase of new buses	12
	- operations	1
	New Rail Services	
Transit Improvements	- Railcars	20
	- Track/stations	30
	Service Upgrades	
	- Amenities	2
	- Bus shelters, etc.	10
	Conventional Bus Replacements and	4
Technology Improvements	Alternative Fuel Buses (assumed remaining	
(primarily transit)	life of vehicles)	
Dust Mitigation Projects	-	20
Freight/Intermodal Projects	-	20
	Diesel Engine Retrofits	Varies
Engine Retrofit Technologies	Truck Stop Electrification	10

Table 4. Project Life Periods	Used for Evaluating Projects.
Tuble II Tojeet Elle Terroub	esed for Evaluating Frojects.

3) Calculate Cost-effectiveness. Once air pollutant emissions and costs were standardized into annualized values, a cost-effectiveness calculation was determined for each project sample. Cost effectiveness is calculated using the following equation:

Cost Effectiveness (\$/ton) = (Annualized Cost) / (Annual Emissions Reduction)

A project is more cost effective when it achieves its results at the lowest possible cost. For each project, cost effectiveness was calculated according to the estimated reductions of VOC, NOx, CO, PM_{10} , and $PM_{2.5}$ emissions individually.

Results

The results of the cost-effectiveness analysis for each pollutant are presented below, in Tables 7 and 8, which summarize the minimum and maximum cost-effectiveness figures for individual projects studied within each category and subcategory. Given the small number of projects studied, the median value has not been provided.

In examining emissions reductions by individual pollutant, it is important for State DOTs and MPOs to consider the specific air quality issues that are faced in their areas. Moreover, the health effects, emissions inventories, and control sources for each pollutant are also different. For instance, transportation sources produce significantly more CO than PM; correspondingly, reducing a ton of PM often costs more than

reducing a ton of CO. The benefits of reducing a ton of PM may also be more valuable, based on health studies showing the significant effects of PM on human health.

Across the project categories, some patterns emerge, although the results are limited due to the small number of projects studied, and cannot be used to determine statistically significant median cost-effectiveness values or confidence intervals. The projects profiled in this study are intended to be illustrative of typical projects funded through the CMAQ program, but do not represent a statistical sampling of the CMAQ database. The largest sample category size in this study is seven diesel engine retrofit projects. It is important to note that these figures are not directly comparable to the results from some other studies, such as the TRB study on the CMAQ program, cited in the Appendix to the CMAQ Interim Guidance.⁴⁷

⁴⁷ For instance, in the TRB study, emissions benefits for NOx and VOC were combined and weighted, resulting in a composite cost-effectiveness figure, whereas this study presents separate figures for each pollutant. Moreover, in the TRB study, emissions benefits expected to occur in the future were "discounted", but for this study, all emissions benefits were counted equally. The inherent economic logic of discounting presumes that short-term benefits are preferable to benefits in the long-term. This study, however, values a ton of emissions reduction in year 1 as equivalent to a ton of emissions reduction in year 10. This approach makes the reporting of dollars per ton reduced more intuitive when reporting emissions reductions for individual pollutants. It also is consistent with the fact that emissions reductions in a nonattainment area need to be continued into the future in order for compliance with the ambient air quality standards.

	No.	VOC (\$/ton)		NOx (\$/ton)		CO (\$/ton)	
Category	Projects	Low	High	Low	High	Low	High
Traffic Flow Improvements							
Traffic Signalization	7	\$2,000	\$5.6 M	\$5,000	+	\$500	+
Freeway Management	4	\$1,000	\$98,000	\$10,000	+	\$2,000	+
High-Occupancy Vehicle Lanes	1	\$18.9 M		\$40.5 M		\$1.3 M	
Shared Ride Programs							
Regional Ridesharing	3	\$86,000	\$494,000	\$78,000	\$440,000	\$7,000	\$39,000
Vanpool Programs	4	\$34,000	\$158,000	\$29,000	\$160,000	\$3,000	\$13,000
Park-and-Ride Lots	5	\$14,000	\$8.5 M	\$12,000	\$4.9 M	\$1,000	\$384,000
Travel Demand Management	4	\$16,000	\$2.9 M	\$15,000	\$2.9 M	\$1,000	\$223,000
Bicycle/Pedestrian Facilities	4	\$551,000	\$6.0 M	\$667,000	\$7.4 M	\$46,000	\$453,000
Transit Improvements							
New Bus Services	3	\$130,000	\$1.5 M	\$222,00	\$1.4 M	\$9,000	\$15,000
New Rail Services	3	\$88,000	\$416,000	\$89,000	\$380,000	\$7,000	\$33,000
Service Upgrades/Amenities	5	\$11,000	\$1.5 M	\$7,000	\$1.5 M	\$1,000	\$116,000
Bus Replacements/Technologies							
Conventional Bus Replacements	2	\$852,000	\$1.5 M	\$134,000	\$231,000	\$706,000	
Alternative Vehicles/Fueling Facilities	4	\$152,000	\$2.9 M	\$82,000	\$316,000	\$124,000	\$734,000
Dust Mitigation Projects	3						
Freight/Intermodal Projects	6	\$37,000	\$424.2 M	\$2,000	\$213,000	\$7,000	\$3.7 M
Diesel Emissions Reduction							
Diesel Engine Retrofits	7	\$7,000	\$677,000		\$21,000	\$1,000	\$174,000
Truck Idle Reduction	3			\$2,900	\$4,600	\$6	,800

Table 5. VOC, NOx, and CO Cost-Effectiveness of Selected CMAQ Projects by Strategy.

NOTE: Cost-effectiveness calculations noted with a plus sign (+) indicate that project(s) in the category showed an increase in the pollutant of concern. Projects with (--) indicate categories where a cost effectiveness calculation was not applicable due to zero pollution reduced.

	No.			PM _{2.5} (\$/ton)
Category	Projects	Low	High	Low	High
Traffic Flow Improvements					
Traffic Signalization	7	\$287,000	\$68.9 M	\$442,000	\$106.2 M
Freeway Management	4	\$279,000	\$15.7 M	\$430,000	\$135.9 M
High-Occupancy Vehicle Lanes	1				
Shared Ride Programs					
Regional Ridesharing	3	\$2.0 M	\$11.1 M	\$4.2 M	\$24.1 M
Vanpool Programs	4	\$695,000	\$3.8 M	\$1.5 M	\$8.3 M
Park-and-Ride Lots	5	\$285,000	\$128.2 M	\$616,000	\$277.5 M
Travel Demand Management	4	\$390,000	\$79.8 M	\$845,000	\$172.9 M
Bicycle/Pedestrian Facilities	4	\$22.8 M	\$259.6 M	\$49.4 M	\$562.1 M
Transit Improvements					
New Bus Services	3	\$6.1 M	\$6.1 M	\$13.3 M	(+)
New Rail Services	3	\$2.3 M	\$9.7 M	\$5.0 M	\$21.2 M
Service Upgrades/Amenities	5	\$184,000	\$41.6 M	\$398,000	\$90.1 M
Bus Replacements/Technologies					
Conventional Bus Replacements	2				
Alternative Vehicles/Fueling Facilities	4				\$676,000
Dust Mitigation Projects	3	\$15	\$700		
Freight/Intermodal Projects	6	\$66,000	\$10.8 M	\$80,000	\$13.2 M
Diesel Emissions Reduction					
Diesel Engine Retrofits	7	\$7,000	\$1.7 M	\$8,000	\$2.1 M
Truck Idle Reduction	3	\$110,300	\$173,600	\$110,300	\$173,600

Table 6. PM Cost-Effectiveness of Selected CMAQ Projects by Strategy.

NOTE: Cost-effectiveness calculations noted with a plus sign (+) indicate that project(s) in the category showed an increase in the pollutant of concern. Projects with (--) indicate categories where a cost effectiveness calculation was not applicable due to zero pollution reduced. One figure reported between the high and low categories indicates that only one project reported emissions effects for that pollutant.

As seen in the tables, a high level of variability is found in the results for each individual category of projects, indicating that local context and project-specific factors are an important determinant of cost-effectiveness. The range of estimated figures for air quality cost-effectiveness within individual categories is very large, with some individual projects showing very strong cost-effectiveness for certain pollutants, while others clearly appear to have lower cost-effectiveness for certain pollutants, as indicated by costs of several million dollars per ton.

This finding seems to indicate that some projects are better suited for reducing certain pollutants and likely were selected for reasons other than emissions reductions (e.g., congestion mitigation, social effects). Indeed, while air quality cost-effectiveness is an important aspect of transportation agencies' project selection, these other benefits can have significant impacts on overall urban mobility, livability, and sustainability initiatives.

Observations regarding the various categories of projects are noted below.

TRAFFIC FLOW, SHARED RIDE, AND DEMAND MANAGEMENT PROJECTS.

Some traffic flow improvements and projects that target reductions in single-occupancy vehicle travel – such as shared ride and travel demand management programs – were very cost-effective in reducing the ozone precursors, VOC and NOx, as well as CO. Due to the relatively limited contribution of personal motor vehicles to PM, in comparison to VOC, NO_X, and CO, none of these strategies appeared to be very cost-effective at reducing PM. Moreover, the MOBILE6 model used to generate the emissions changes for this analysis does not take into account the impact of changes in vehicle speeds on PM emissions levels.⁴⁸ Therefore, the PM emissions reductions reported from traffic flow projects in this analysis were only calculated based on reductions in vehicle idling due to reductions in incident-based or intersection delay. These projects often have important non-emissions benefits, including travel time savings, reductions in greenhouse gases, and supporting increased non-motorized travel.

TRANSIT AND TECHNOLOGY/FUELS PROGRAMS

Transit improvements that target reductions in motor vehicle travel, such as new rail or bus services and service upgrades/amenities, appear to offer the potential for relatively high cost-effectiveness at reducing VOC, NOx, and CO emissions, but fared poorly in reducing PM. Overall, bus replacement projects fared poorly in cost-effectiveness at emissions reduction. The costs are used to purchase vehicles that will last 12+ years in service, but emissions benefits can only be credited for a limited number of years, not the full service life of the new bus.

DUST MITIGATION

Projects focused on dust mitigation offered some of the most effective means measured in this study for reducing PM_{10} and $PM_{2.5}$ emissions in locations where they were practical. These projects, including paving unpaved roads and application of deicing chemicals to reduce sand application, achieved substantial reductions in particulate matter (in the form of wind-blown dust) for far less public resources than other types of project categories.

DIESEL EMISSIONS REDUCTION AND FREIGHT/INTERMODAL PROJECTS

Diesel retrofits, truck idle reduction, and freight/intermodal projects are categories of projects that have received increased emphasis in recent years. These categories had some of the most cost-effective projects within the reviewed projects at reducing both ozone precursors and particulate matter. However, there was a very large range, with some projects fairing poorly when focusing solely on the cost-effectiveness of emissions reductions. This may be due in part to the fact that different retrofit technologies target different pollutants. For instance, one retrofit project showed high cost-effectiveness at reducing NOx,

⁴⁸ See Preamble to 40 CFR Part 93 for additional discussion of EPA's conformity decisions.

whereas some retrofits showed no impact on NOx.⁴⁹ Use of idling reduction technology to reduce longduration truck idling showed the best cost-effectiveness at reducing NOx emissions.

Examples of Good Practices

States use a variety of processes and procedures to identify, select, and evaluate projects for inclusion in the CMAQ program. Drawing on the observations and results of the project analysis and information from State and local project sponsors, the following sections provide examples to illustrate the range of approaches taken by States and MPOs. Examples of good approaches identified through this research include:

- Use of standardized emissions calculation methodologies and tools in order to help ensure validity and comparability of emissions reduction estimates;
- A documented, transparent project prioritization/selection process, including consultation of States and MPOs with State and local air quality agencies; and
- Collection of post-project data to determine whether projected impacts were achieved.

These practices are discussed below.

Standardized Tools or Emission Calculation Methods

State and local transportation and air quality agencies have the flexibility to conduct CMAQ project air quality analyses with different analytical approaches. While FHWA does not specify a single set of methods for use in CMAQ emissions estimation, every effort should be taken to ensure that determinations of air quality benefits are credible and based on reproducible and logical analytical procedures.

USE OF ACCEPTED EMISSIONS CALCULATION APPROACHES

An important first step in making decisions is to base those decisions on appropriate methodologies and reasonable assumptions. There are several online resources and published guides available to State and local transportation practitioners that describe the modeling tools and other methods that can be used to assess the emissions benefits of projects applying for CMAQ funds.

The most recent and comprehensives of these is a guidebook, *Multi-pollutant Emissions Benefits of Transportation Strategies* (2006). This compendium includes sketch planning methods for 35 different categories of transportation strategies, based on a review of many guidance documents and analytical tools. The report includes calculations of emissions impacts for sample projects, based on real project examples, and identifies EPA and FHWA guidance documents that should be referenced. It also reports on the direction of emissions impacts (increase, decrease, neutral or uncertain) that are typically expected for each transportation strategy on the following seven pollutants: CO, PM₁₀, PM_{2.5}, NOx, VOCs, SOx, and NH₃. The report is available at: www.fhwa.dot.gov/environment/conformity/mpe_benefits.

The report A Sampling of Emissions Analysis Techniques for Transportation Control Measures (2000) includes a brief overview of 19 methods which include pre-packaged and customizable software tools as well as worksheets or other procedures for calculating benefits. They collectively address a wide range of potential CMAQ projects, including travel demand management, traffic flow improvements, and vehicle

⁴⁹ For comparison purposes, EPA's document, "The Cost-Effectiveness of Heavy-Duty Diesel Retrofits and Other Mobile Source Emission Reduction Projects and Programs," May 2007, and "Diesel Retrofit Technology: An Analysis of the Cost Effectiveness of Reducing Particulate Matter and Nitrogen Oxides Emissions from Heavy-Duty Nonroad Diesel Engines through Retrofits," May 2007, estimated a range of \$18,700 to \$87,600 per ton of PM emissions reduced, and a range of \$1,900 to \$19,000 per ton of NOx reduced for various retrofit scenarios.

and fuel technology strategies. The report also includes references to other sources of information on CMAQ program effectiveness. The report, including information on the source and availability of the methods is available online at: www.fhwa.dot.gov/environment/cmaqeat.

EPA has published a number of methodology guides for calculating emissions impacts of different types of strategies, notably diesel retrofits and program to reduce long-duration truck idling. The national Clean Diesel Program sponsored by EPA has published information and materials that relate to on- and off-road diesel engines. In particular, the Diesel Emissions Quantifier is an interactive tool developed by EPA to help State/local governments, fleet owners/operators, and others estimate emissions reductions and cost effectiveness for clean diesel projects. The Quantifier uses emissions factors and other information from EPA's National Mobile Inventory Model (NMIM) which includes the MOBILE 6.2 and NONROAD2005 models. For further information access: www.epa.gov/cleandiesel/publications.

A number of the methodologies identified through the review of the selected projects referenced these documents, particularly EPA guides and certification data related to emissions benefits of diesel retrofits and long-duration idle reduction.

STANDARDIZED APPROACHES FOR COMPARISONS OF PROJECTS

Some State DOTs and MPOs have developed their own guidebooks or emissions modeling tools to assist in documenting and evaluating proposed CMAQ projects and programs. These tools can help the State DOT or MPO in evaluating projects, reduce calculation errors, and ensure that local project sponsors provide information that is consistent and comparable with other similar projects. Several States have provided project sponsors with a spreadsheet into which sponsors can enter project-specific assumptions and receive back emissions benefits calculations. These guidebooks and tools often contain default parameters viewed as appropriate to the region.

Table 7 highlights several States and MPOs that provide emissions calculation aids or tools.

State DOT or MPO	Standardized Tools or Emission Calculation Methods
Maricopa Association of Governments (Phoenix area, Arizona)	"Methodology for Evaluating Congestion Mitigation and Air Quality Improvement Projects" report provides standardized methodologies for calculating direct emissions effects (kg/day reduced) and cost- effectiveness at reducing emissions (\$/metric ton)
Birmingham Regional Planning Commission (Alabama)	"A Guide for Estimating the Emissions Effects and Cost- Effectiveness of Projects Proposed for CMAQ Funding" includes standardized methodologies that are used to assess emissions impacts of different types of CMAQ projects, as well as cost- effectiveness
California	"Methods to Find the Cost-Effectiveness of Funding Air Quality Projects" guidebook and automated database contains standardized methods for estimating the emissions benefits and cost-effectiveness of different types of CMAQ projects; Access database files automate calculation procedures.
North Front Range MPO (Fort Collins area, Colorado)	A CMAQ Air Quality Benefit Program Excel workbook that includes a spreadsheet which allows project sponsors to select the Type, Area, and Category for the project being submitted. Based on those selections, the spreadsheet directs the sponsor to provide category-specific evaluation criteria and then it automatically

Table 7. Selected States and MPOs with Standardized Tools or Emission Calculation Methods.

	calculates the emissions benefits and cost-effectiveness of the project. Two measures of cost-effectiveness are used: total current year project cost/annual emissions reduced, and CMAQ funds/annual emissions reduced. Although the calculation is automatic, within the workbook is another spreadsheet that provides the formulas used for the calculations.
Massachusetts Executive Office of Transportation	Excel workbook automatically calculates emissions benefits based on sponsor-provided assumptions; also provides sample air quality analysis methods.
New York State DOT	"CMAQtraq" application feeds into the DOT's database tool to determine air quality results. Local project sponsor provide input data with the application, and the DOT enters the information into the Microsoft Access database tool to determine the project's air quality results. The current version of CMAQtraq (ver. 6.2) has MOBILE6.2 emissions factors embedded in the calculations.
Pennsylvania DOT	"PAQONE" software analyzes a variety of transit, non-motorized travel, and roadway improvements using standardized methods
Wasatch Front Regional Council (Salt Lake City area, Utah)	Excel workbook automatically calculates emissions benefits based on default values or sponsor-provided assumptions.

Cost-Effectiveness Calculations

Analyzing the cost-effectiveness of CMAQ projects for both emissions reductions and congestion mitigation effects should be an important step in the project selection process, both in terms of the benefits that accrue to the States or MPOs receiving CMAQ funding and the net benefits achieved nationally by the funds distributed through the Federal CMAQ program. Broad statements about the types of projects that will or will not be funded in certain areas should be avoided because the types of strategies that are most cost-effective will vary due to local factors. Rather, States and MPOs may use cost-effectiveness calculations as a mechanism to objectively compare projects during review and selection. Examining project cost effectiveness can also be a way of bringing attention to the design or proposed application of the project, and can provide help in judging its suitability or most effective implementation strategy.

Several of the State DOTs and MPOs that provided project information for this study also had calculated cost-effectiveness, and were using standardize procedures to calculate cost-effectiveness. While the estimates of project duration, discount factors, and pollutants of concern varied, these methods allow projects to be evaluated across strategies and geographies to determine the most appropriate for funding.

For instance, in Alabama, standardized emissions calculation worksheets for common CMAQ strategies are provided to local project sponsors by the Birmingham MPO. The MPO, State DOT, and other agencies input information and assumptions for their projects into the spreadsheet model to determine travel impacts, emissions reductions, and cost effectiveness. The cost effectiveness is calculated using the following equation: Cost Effectiveness = (Annualized cost) / (Annual Emissions Reduction). Annualized costs include a 7 percent discount rate and a capital recovery factor to account for the project service life multiplied by the total capital cost of the project to estimate the average annual cost. Cost effectiveness calculations are provided for HC, NOx, PM_{10} , (HC + NOx), (PM_{10} – NOx), and (PM_{10} + NOx) in both

dollars per lb per year and dollars per kg per year. In the case of the North Front Range MPO in Colorado, two measures of cost-effectiveness were calculated: total project cost/annual emissions reduced, and CMAQ funds/annual emissions reduced. The second calculation takes into account the source of project funding, and enables projects with a higher non-CMAQ funding share to shower better cost-effectiveness.

Transparent, Inclusive Selection Processes

While the CMAQ program is intended to enable local agencies the flexibility to select projects that meet the transportation infrastructure, political, and geographic needs of local areas, FHWA CMAQ Interim Guidance includes language requiring that,

"The CMAQ project selection process should be transparent, in writing, and publicly available. The process should identify the agencies involved in rating proposed projects, clarify how projects are rated, and name the committee or group responsible for making the final recommendation to the MPO board or other approving body."⁵⁰

Although the collection of data did not reveal readily available documentation of the CMAQ project selection process in most cases, it did identify several States and MPOs that appear to have consistent and robust project selection procedures. In addition, SAFETEA–LU encourages State DOTs and MPOs to consult with State and local air quality agencies about the estimated emissions reductions from CMAQ proposals. States which seek guidance and/or evaluation assistance from these agencies will also ensure more accurate air quality analyses for CMAQ projects. Table 8 provides examples of State DOTs and MPOs that appear to have documented, transparent project selection methods.

State DOT or MPO	Selection Process
North Front Range MPO (Fort Collins, Colorado)	Current process utilizes a three-tiered scoring system to rank projects: 50 percent of the score is assigned to short-term air quality impacts (rankings based on VMT and carbon monoxide reduction estimates for year one); 20 percent for long-term benefits (estimated for years two through five), and 30 percent for bonus features (e.g., overmatch, multi-agency or public/private partnerships, and multi-modal projects). Standardized calculation procedures are used to analyze emissions effects. CMAQ Project Selection Committee includes representatives form the Colorado Department of Transportation, Colorado Air Pollution Control Division, FHWA, FTA, and U.S. EPA. Selection Committee develops list of recommended projects based on project scoring, as well as other intangible elements (which may include regional equity, project readiness, synergies with projects funded from STP or other sources, and project mix).
Hillsborough MPO (Tampa, Florida)	CMAQ projects are evaluated by a committee of representatives of the MPO, FDOT, Florida Department of Environmental Protection, and the Hillsborough County Environmental Protection Commission (EPC) based on a series of qualitative and quantitative measures. Final project ranking is based on the average total score

⁵⁰ Sec. 1808: Addition to CMAQ Eligible Projects. <u>Publication of Interim Guidance on the Congestion Mitigation and Air</u> <u>Quality Improvement (CMAQ) Program</u>. Dec. 19, 2006 Federal Register.

	assigned by each of the four reviewing agencies. The ranking is based on 5 criteria, each scored on a scale one to five: 1) projects that remove vehicles from the road or reduce travel delay; 2) outreach projects that change the public's driving behaviors; 3) projects with the most efficient dollar per ton cost/benefit figure for reducing NOx; 4) projects with air quality benefits to be realized within 3 years of funding; and 5) projects identified in CMS Study and/or 2025 LRTP Interim Plan.
Georgia DOT	A project selection process, developed by GDOT, the Environmental Protection Division, the Georgia Regional Transportation Authority, and Georgia Environmental Facilities Authority – together known as State Air Quality Partners – is used consistently across the State. Previously, CMAQ funds were confined to Atlanta area, but with PM2.5 designations, a new approach was developed. The process does not sub-allocate funding to specific MPOs but instead seeks to support the most beneficial projects for reducing emissions and meeting air quality goals across the state.
Rouge Valley MPO (Oregon)	The Rouge Valley MPO awards points for meeting certain evaluation criteria outlined in a Project Evaluation Questions & Intent questionnaire form. Criteria include emissions reduction, and other considerations, such as: long-term air quality improvement, potential to reduce reliance on automobiles, potential to mitigate congestion, completes a multi-modal transportation system, located in city limits or inside Urban Containment Boundary, and diesel retrofits. Points awarded for the criteria are used to develop an overall score for each project.
Southwestern Pennsylvania Commission (Pittsburgh MPO)	The MPO provides potential project sponsors with a CMAQ application and instruction package, including schedule, guidelines, and selection criteria to guide sponsors of candidate projects through the CMAQ process. Application forms can be filled out electronically. Candidate CMAQ projects are placed into appropriate investment categories and sent to appropriate SPC members, PennDOT Districts, and transit agencies as well as SPC's CMAQ Evaluation Committee. Projects are evaluated for effects on emission and cost-effectiveness based on standardized models developed for PennDOT. A scorecard is completed by SPC staff for each project rating each candidate project on consistency with priority project types (e.g., diesel retrofits, traffic signal improvements, TDM, commuter bicycle/pedestrian improvements) and 9 ancillary selection factors to develop total weighted score. CMAQ Evaluation Committee members use this information to develop recommendations for each investment category.
Wasatch Front Regional Council (Salt Lake City, Utah MPO)	The MPO has adjusted its evaluation criteria and procedures over time. In the past, a score was calculated using a weighted ranking system that considered the following: (10%) Project in a congested corridor (15%) Length (years) of project effectiveness (25%) Emissions reduction (25%) Congestion reduction (VHT) (25%) Cost This objective ranking was then combined with subjective rankings by staff and 3 different committees consisting of city planners and elected officials. Currently, the MPO uses air quality cost-effectiveness rankings as a primary criterion for project selection within different categories of projects. The MPO generally allocates a certain percentage of funding for each major project category (e.g.,

bicycle/pedestrian projects, transit projects) in order to ensure a variety of project types are implemented, and ranks project cost-effectiveness within each category.
Field visits are also conducted of projects proposed for funding.

Collecting Project-Specific Data and Conducting Project Evaluation Studies

Regardless of the model or methodology used to calculate emissions benefits of CMAQ-funded projects, good inputs are needed to produce good outputs. States and MPOs should take efforts to gather data through surveys and other data collection methods to justify and/or make assumptions. Some States, such as Michigan and New York, require project sponsors to provide the source and justification of all inputs and assumption used in the emissions calculations. Not only does this ensure that the project demonstrates an air quality benefit, but it allows the State to evaluate the accuracy of the analyses. Many of the project samples cited local data in their calculations, including factors such as average trip lengths, park-and-ride utilization rates, number of actual vanpool riders, transit riders, number of rideshare matches, etc.

A comparison of forecasted impacts (via project selection methodologies) to actual results (based on ex post evaluation) can help inform the rigor and accuracy of calculation methodologies and project selection procedures. State DOTs report the status and effectiveness of the CMAQ programs in their States to the U.S. Department of Transportation. The information from these reports is entered into the CMAQ database and can provide States with an effective tool for monitoring and evaluating the results of CMAQ-funded projects. Performing project evaluation studies allows States to periodically review their project selection criteria to ensure it remains appropriate and up-to-date. Evaluation studies also provide States and MPOs with new and more accurate data to be used in future emissions analysis calculations. For example, data on the actual speed improvements along freeways due to an ITS system implementation may lead to an increase in the baseline speeds along freeways in the entire region.

Although post-project analysis is not commonly conducted on a program-wide basis for all CMAQ projects within a state or MPO area, in some cases, post-project evaluations are conducted by States and MPOs for specific projects or types of projects, especially those that are included as part of a regional conformity analysis. Post-project evaluation is a good practice in helping to provide information on the accuracy of emissions forecasts and assumptions used in emissions calculations. In some cases, however, post-project analysis may not be practical, such as for a small project where conducting a rigorous evaluation might cost nearly as much as the project itself. Some examples of post-project evaluations that have been conducted are listed in Table 9 below.

State or MPO	Types of Post-Project Analysis Conducted
California	The California Air Resources Board uses post-project evaluation reports generated by regional air districts as part of a state grant process to update the California emissions methodology guidebook.
Georgia DOT	Detailed evaluations have been conducted for the regional Clean Air/TDM program.
New York State DOT	New York State DOT conducts an annual evaluation of its Clean Air / Ozone Action Days outreach program.

Metropolitan Washington Council of Governments (Washington, DC area)	MWCOG conducts a regular evaluation of its Transportation Emissions Reduction Measures (TERMs), which include a number of programs funded in part by CMAQ (from allocations from Maryland, Virginia, and the District of Columbia). The TERMs report includes collection of data on participation rates in programs, including collection of survey data.
---	---

Next Steps

The study team's collection of data on the selected set of projects revealed a number of strengths and limitations in the analysis of CMAQ projects. On the one hand, many of the project analyses were conducted based on relatively limited data, using sketch planning methodologies, with limited verification of results. This is perhaps not surprising given the limited scope of many projects, limited data and tools available for analyzing many of these projects, and the costs and effort associated with conducting detailed evaluation studies. On the other hand, it appears that a number of states and MPOs have implemented good practices to help standardize the emissions analyses, collect local data for use in calculations, rank project cost-effectiveness, and implement systematic procedures for evaluation. These procedures often take into account multiple factors beyond emissions reduction cost-effectiveness.

In Phase II of this evaluation project, FHWA, in consultation with EPA, conducted a set of limited on-site case studies and/or program analyses. These case studies add to the national understanding of how the CMAQ program operates at the state and local levels, and may build on five case studies (Los Angeles, Chicago, Houston, Washington, DC, and Albany) conducted as part of the TRB study on the CMAQ Program. The Phase II case studies provide information on how States and MPOs are analyzing, prioritizing, and selecting projects, and implementing the CMAQ program to meet State and local objectives. The insights gained from these studies will help to inform States and MPOs about best practices, and a variety of potential ways to improve the effectiveness of their CMAQ program implementation efforts.

STATE CONTACT AGENCY **EMAIL** Alabama Harry Hee **Birmingham DOT** hhe@rpcgb.org Arizona Beverly Chenausky Arizona DOT bchenausky@azdot.gov Maricopa Association of dgiles@MAG.maricopa.gov Arizona Dean Giles Governments California Jody Tian Caltrans Jody.Tian@dot.ca.gov SANDAG California Sookyung Kim ski@sandag.org California **KCOG** Raquel Pacheco rpacheco@kerncog.gov California Harold Brazil MTC hbrazil@mtc.ca.gov California Jason Paukovits COFCG jasonp@fresnocog.org Colorado Steve Cook Denver Regional COG scook@drcog.org Colorado Tia Raamot North Front Range MPO tramot@nfrmpo.org Connecticut Judy Raymond Connecticut DOT Judy.Raymond@po.state.ct.us District of Daivamani siva@mwcog.org Metropolitan Washington COG Columbia Sivasailam David Lee Florida Florida DOT David.Lee@dot.state.fl.us Florida Florida DOT Brian Pessaro Brian.Pessaro@dot.state.fl.us Idaho Lisa Josleyn Idaho DOT Lisa.Josleyn@itd.idaho.gov Indiana Mid-America COG Cory Hull chull@macog.com Indiana Indiana DOT Jerry Halperin JHalperin@indot.IN.gov Indiana Gary Evers Northwestern Indiana RPC gevers@nirpc.org David Schaars Kentucky Lexington Area MPO Davids3@lfucg.com Louisiana Huey Dugas Baton Rouge MPO hdugas@brgov.com Maine Duane Scott Maine DOT Duane.scott@maine.gov Howard Simons Maryland DOT hsimons@mdot.state.md.us Maryland Executive Office of Ethan.Britland@eot.state.ma.us Massachusetts Ethan Britland Transportation Michigan Pete Porciello Porciellop@michigan.gov Michigan DOT Missouri James Joerke Mid-America RC Jjoerke@marc.org New York New York DOT John Zamurs jzamurs@dot.state.ny.us New York New York DOT Christa Ippoliti cippoliti@dot.state.ny.us Ohio Ohio DOT Dave Moore Dave.Moore1@dot.state.oh.us Ohio Kentucky Indiana Regional areser@oki.org Ohio Andy Reser COG Oregon Matt Hermen Rogue Valley COG mhermen@rvcog.org Pennsylvania Michael Baker Pennsylvania DOT michaelba@state.pa.us Rhode Island Katherine Trapani State Planning Council Tennessee **Knoxville Regional TPO** Mike Conger Mike.Conger@knoxtrans.org Tennessee Nashville MPO Matt Meservy Matt.meservy@nashville.gov North Central Texas COG Texas Christie Jestis cjestis@nctcog.org

APPENDIX A. LIST OF STATE AND LOCAL CONTACTS

Texas	Shelley Whitworth	Houston-Galveston Area Council	Shelley.whitworth@h-gac.com
Texas	Andrew DeCandis	Houston-Galveston Area Council	Andrew.DeCandis@h-gac.com
Utah	Kip Billings	Wasatch Front RC	kbillings@wfrc.org
Washington	Kelly McGourty	Puget Sound RC	kmcgourty@psrc.org
Wisconsin	John Duffe	Wisconsin DOT	John.Duffe@dot.state.wi.us

APPENDIX B. EMISSIONS FACTORS AND ASSUMPTIONS USED IN EMISSIONS REDUCTION COST-EFFECTIVENESS CALCULATIONS

Most CMAQ projects and programs can be analyzed in multiple ways, and variations of these approaches are available. The methods described in this report are generally simple sketch planning approaches that involve three main factors: 1) estimating the travel, speed, or vehicle changes associated with the strategy; 2) estimating emissions impacts; and 3) calculating cost effectiveness. The cost-effectiveness calculation is described in further detail in Section 4. This appendix describes the emissions factors used to recalculate normalized emissions reductions using data provided by the project sponsor.

Unless otherwise noted in each of the report sections, all of the on-road projects presented in this report were recalculated using emissions factors generated from MOBILE6.2. Factors were generated using standard defaults for Year 2008. Emissions were generated for start (trip-based factors assuming 100 percent cold start) and running emissions (per mile factors). The recognition of a difference between trip starts emissions and running emissions is significant, since emissions control equipment does not function as effectively from a "cold start" causing the release of more pollutants during the first few miles of a trip. Finally, the modeling employed the "NO REFUELING" command in MOBILE6.2, since refueling emissions are associated with gas stations and are not normally affected by the types of projects outlined in this report.

Guidance is available from EPA and FHWA on the use of MOBILE6.2 for further information.

Parameter or Variable	Values or Sources
Vehicle Fleet and Activity Inputs	
VMT mix	EPA national average (default)
Mileage accrual rates	EPA national average (default)
Vehicle model year (registration) distribution	EPA national average (default)
Diesel sales fractions	EPA national average (default)
Soak time distribution	EPA national average (default), or All soak times >720 minutes (corresponds to 100% cold starts).
Starts per day distribution	EPA national average (default), or Zero starts per day (for running emissions only)
Region	Low altitude
Vehicle speeds	Varied 2.5 mph and 3-65 mph by integers, with single average speed per scenario.
Roadway facility (functional classes)	Arterial (allows use of specific average speeds)
Seasonal/Meteorological Inputs	
Month of evaluation	July
Temperatures for all pollutants	Minimum: 68.0° F Maximum: 94.0° F (Representative summer temperatures only. Actual source for these values is high-ozone-day data from Boston, MA nonattainment area SIP.)
Absolute humidity	MOBILE6.2 default
Fuel Inputs	

Table B-1. Major Input Parameters for MOBILE6.2 Emissions Factor Modeling.

Parameter or Variable	Values or Sources
ASTM Class	MOBILE6.2 default
Oxygenated fuels	No (MOBILE6.2 default)
Reformulated gasoline	No (MOBILE6.2 default)
Gasoline RVP	8.7 psi(Representative summer RVP only. Actual source for this value is Philadelphia, PA nonattainment area SIP.)
Diesel fuel sulfur content	15 ppm
State Program Inputs	
Inspection/Maintenance (I/M) Program	No program (MOBILE6.2 default)
Low Emitting Vehicle (LEV) Program	No program (MOBILE6.2 default)
Anti-tampering program (ATP)	No program (MOBILE6.2 default)
Stage II refueling controls	Not modeled (NO REFUELING command used).
Other Inputs	
Particulate matter emissions parameters	EPA national average (default)
All other inputs	EPA national average (default)

APPENDIX C. CMAQ PROJECT TEMPLATES

This appendix provides information about the reviewed projects gathered in the research phase of this study. The information provided by project sponsors was transcribed into individual project "templates." The project template was designed to compile all the critical detail about particular project facts in one place to ease subsequent reviews, comparisons, and analysis.

The project templates record the following information reported by project sponsors about each CMAQ project:

- Indentifying Information: Category and Subcategory, State, Year, and CMAQ ID number;
- Description of critical project characteristics and background;
- Impacts on travel: change in vehicle trips, vehicle miles traveled (VMT), transit trips, creation of vanpools, and congestion (speed and delay);
- Emissions reductions: change in emissions of volatile organic compounds (VOC), NOx, CO, PM_{2.5}, and PM₁₀, measured in kilograms per day; and
- Project Costs and cost-effectiveness: Capital (annualized) and operating costs, from CMAQ and non-CMAQ sources, Annualized costs, and a cost-effectiveness calculation, if provided by the local project sponsor.

The profiles were designed to record supporting information concerning the methodologies employed in any of the steps (travel, emissions, costs), such as assumptions, time frames, service lives, and discount rates. Notes were also entered at the bottom of the templates to document the general quality of the information and to note any discrepancies between the CMAQ database and the information provided by the project sponsor.

Category:	TRAF	FIC FL	ow impro	VEMENTS	Subcategory: Traffic Signalization					
CMAQ Proj					Project Year: 2002					
Location: N					MPO: Southeast Michigan Council of Governments					
				n Rd 8 Mile to	23 Mile - This project will fund the coordination of traffic					
					en, Sterling Heights, and Shelby Township in Michigan.					
					h and Lake St. Clair to the east; Ryan Rd. serves as a major					
					ject, vehicle travel speeds are expected to increase 4 mph					
during both peak and off-peak periods. TRAVEL IMPACTS										
Δ Vehicle tri		NA	MF	HODOLOGY/A	SSUMPTIONS:					
Δ VMT:	ipoi	NA			rarterial affected: 15 miles					
Δ Speed:		+ 4 m			olume = 23,519 vehicles with 40% of travel occurring in peak					
Δ Delay:		NA		2						
Δ SOV		NA			5 miles * 23,519 vehicles * 0.4 = 141,114 miles					
$\Delta CP/VP$		NA			= 15 miles * 23,519 vehicles * 0.6 = 211,671 miles					
$\Delta CP/VP$ $\Delta Transit$		NA								
Δ Walk		NA	Tro	el Speeds befor	e project are 31 mph in peak, and 41 mph in off-peak.					
Δ Bike		NA	Tro	Travel Speeds after project are 35 mph in peak, and 45 mph in off-peak.						
EMISSIONS	2	NA		•						
Δ VOC		076 kala		METHODOLOGY/ASSUMPTIONS:						
	- 40	.076 kg/c NA	1							
ΔNO_X				Emissions reductions calculated using Mobile 5a running emissions factors (g/mile) for VOC at the following speeds:						
ΔCO		NA		Peak: 31 mph: VOC = 1.843 35 mph: VOC = 1.697						
ΔPM_{10}		NA								
$\Delta PM_{2.5}$	40	NA	lavi	Off Peak: 41 mph: VOC = 1.526 45 mph: VOC = 1.434						
∆Total		.076 kg/c		Calculate daily emissions reduced = (change in peak emissions * Peak VMT) +						
	(0	.0442 tpc		(change in off-peak emissions * Off-peak VMT)						
			(cric	VOC Emissions = $((1.697 - 1.843) * 141,114 \text{ miles}) + ((1.434 - 1.526) * 1.526)$						
				211,671 miles + 1,000 = -40.076 kg/day						
COSTS				211/071111000/						
				Pro	ject life:10 yrs Interest rate:7%					
	(CMAQ	NON-	TOTAL	METHODOLOGY/ASSUMPTIONS:					
			CMAQ							
Capital	\$6	60,000	\$0	\$660,000	Materials provided by the local sponsor indicate no local					
Adm/oper	÷0	\$0	\$0	\$0	match for this project.					
Total	\$6	60,000	\$0	\$660,000						
					The cost effectiveness analysis provided by the project					
cost:	Total annualized public		\$`	10,256	sponsor assumes the service life of the project and					
-	Annual revenues:			None	amortization period are 15 years.					
Net public c			\$1	60,000						
Annual priva		st	ψ	NA	1					
Total net co		л	\$	60,000						
TUIAI HELCUSI			¢۵	00,000						

NOTE: Emissions reductions reported by the project sponsor do not match the emissions reductions in the CMAQ database (-57 kg/day VOC).

Category:	TRA	FIC FL	II WC	MPROVI	EMENTS		S	Subcategory:	Traffic	: Signalization		
CMAQ Proje	ect ID:	LA20040	0001				Project Year:	2004				
Location: B				าล			MPO: Capital		ning Co	mmission		
					on at Airline a	nd Sh	erwood Forest					
modification	of an	intersect	ion – J	Airline Hi	ghway @ Sher	wood F	Forest Blvd. – in	order to incre	ase traff	ic flow and		
reduce cong	gestior	n and dela	ay usii	ng an inn	ovative interse	ction in	nprovement con	cept called co	ntinuous	s flow		
							to the left-turn of					
							raffic and left-tu					
							tal traffic delay b					
						nance t	raffic flow and re	educe emissio	ns durin	ig off-peak		
			e grea	itest durir	ng peak hours.							
TRAVEL IM		S NA		METHO								
Δ Vehicle trip)\$:				DOLOGY/ASS			conic Simulati	on mode	ol usod rocont		
ΔVMT :		NA					VISSIM Micros			in seconds per		
∆Speed:		NA					otal Delay = Pea					
Δ Delay:		- 38					tion in delay is c					
		vehic hours/f			k periods and s		,					
ΔSOV		NA		1 in pou		Junne						
$\Delta CP/VP$		NA		The ana	he analysis showed that the proposed improvements would enhance traffic flow							
∆Transit		NA		during p	luring peak hours – increasing from 5,800 to 6,500 VPH in the AM peak, and from							
Δ Walk		NA			6,200 to 6,700 VPH in the PM peak. Average delay would drop from 92.6 to 36.0							
∆Bike		NA			ec/veh in the AM peak, and 178.3 to 34.4 sec/veh in the PM peak. Net reduction							
				in delay is 84.2 veh-hr/hr in the AM peak and 304.5 veh-hr/hr in the PM peak.								
				Intersec	Intersection analysis also shows change in LOS for each intersection segment.							
Emissions			_									
∆ VOC		20.12 kg/			METHODOLOGY/ASSUMPTIONS:							
ΔNO_X	-	5.18 kg/c	lay	Emissions reductions calculated from changes in delay.								
∆C0		NA		Emissions factors were developed using MOBILE6, using 2.5 Mph speed, and								
ΔPM_{10}		NA		converted into idle emissions factors.								
$\Delta PM_{2.5}$		NA			Emissions factor for VOC = 10.35 g/m							
∆Total		25.30 kg/		LIIISSIU	Emissions factor for NOX= 2.67 g/mi							
		(0.028 tp	u)	Emissio	ns reduction =	Delav	in vehicle-hours	/hour * Emissi	ons Fac	tor * 2.5		
							r) * 2 hours per					
				and 2-h	our Pm peak s	eparate	ely, and summe	d)		·		
Costs								1				
							_ 10 _ yrs	Interest rate	:7_	_%		
		VAQ		-CMAQ	Total	Meth	odology/Assump	otions:				
Capital		0,000	\$1,1	00,000	\$5,500,000	A	moe that project	has herefite ()(() day	a par year Ta		
Adm/oper		\$0		\$0	\$0		mes that project					
Total		4,400,000 \$1,100,000			\$5,500,000	calculate overall cost-effectiveness, need to develop assumptions regarding useful life of project (could be 20						
Total annua			st:		\$904,773	years for an infrastructure project of this nature, although						
Annual reve					NONE					in constant over		
Net public cost:				\$5.5 M		ong of a period).						
Annual private cost				NA		5 1						
I otal net co	Total net cost				\$5.5 M							

AFFIC FLO	NI WC	/IPROVE	EMENTS	Subcategory: Traffic Signalization						
	0008			Project Year: 2005						
				MPO: Lexington Area MPO						
		nstallatio	on For Traffic	Signal Optimization - This project will fund an expansion of the						
				yette County. Fiber optic cables provide a more reliable and						
				nal system data and video needs. It also provides the needed						
				roadside subsystems like vehicle detection and surveillance. Fiber						
				nents of the existing, aging copper wire and analog telephone						
				rruption of service due to lightning strikes and electrical power						
	3013 01	iu iesseni	rig uciays caus							
		METHC	DOLOGY/AS	SUMPTIONS:						
				r vehicle, based on a report on the Integrated Traffic Signal						
				hich determined the reduction in delay and corresponding						
				using an average reduction for 18 intersections and						
-	nicle									
		Vehicle counts provided by Kentucky Transportation Cabinet, Division of Planning.								
NA										
NA										
NA										
- 35.5 kg/d	lay	METHODOLOGY/ASSUMPTIONS:								
- 9.1 kg/da	av	Emissions factors are based on EPA calculations for general vehicle fleet mix. The								
0		percentage of vehicle types or classifications was used to determine the grams of								
0		pollutant reduced per minute by the reduction in delay, using Our Nation's								
NA		Highways, from the Federal Highway Administration (FHWA).								
- 44.6 kg/d	lay	1								
				ounts per arterial) x (minute of delay reduced by fiber optic) x						
· •		(g/min p	Del VOC, NOX	x, CO) = total grams VOC, NOx, CO per day						
			Proi	ect life: NA vrs Interest rate: 7 %						
CMAO	N	ION-		METHODOLOGY/ASSUMPTIONS:						
CIVITIC			TOTAL	METHODOLOGI MOSOMI HONS.						
\$320,000			\$400 000	Cost-effectiveness was not provided by the project sponsor.						
r										
S:		Nor	ne							
ost										
		\$400,	,000							
	D: KY20054 ton, Kentur er Optic Ca istallation for istallation for infrastructure technology way for all ur TS NA NA NA A NA A NA A NA A NA A NA A N	D: KY20050008 ton, Kentucky er Optic Cable In astallation for the a hunication medium infrastructure into the ation greatly reduce frastructure and it at technology has he way for all users an TS NA NA NA NA NA NA NA NA NA NA	D: KY20050008 iton, Kentucky er Optic Cable Installation isstallation for the arterial roamunication medium for the cunfrastructure into the foreseed indication greatly reduces mainter frastructure and it all but elin technology has helped to elivay for all users and lesseni TS NA METHC NA METHC NA Delay = NA System emissio projectil NA METHC NA METHC NA Delay = System System emissio projectil NA NA NA METHC Emissio percent pollutar Highwa - 378.0 kg/day (averag (0.05 tpd) (averag \$320,000 \$80,000 \$320,000 <t< td=""><td>ton, Kentucky er Optic Cable Installation For Traffic istallation for the arterial road network in Fa nunication medium for the current traffic sig infrastructure into the foreseeable future for ation greatly reduces maintenance requiren frastructure and it all but eliminates the inte technology has helped to eliminate most o way for all users and lessening delays cause TS NA METHODOLOGY/AS NA Delay = 4 minutes pe System from 2001, w emissions savings by projecting it througho NA NA NA Vehicle counts provice NA NA NA WETHODOLOGY/AS Emissions factors are percentage of vehicle pollutant reduced per Highways, from the F NA (average of vehicle cr (g/min per VOC, NOX CMAQ NON- TOTAL CMAQ \$0 \$20,000 \$80,000 \$400,000 \$400,000</td></t<>	ton, Kentucky er Optic Cable Installation For Traffic istallation for the arterial road network in Fa nunication medium for the current traffic sig infrastructure into the foreseeable future for ation greatly reduces maintenance requiren frastructure and it all but eliminates the inte technology has helped to eliminate most o way for all users and lessening delays cause TS NA METHODOLOGY/AS NA Delay = 4 minutes pe System from 2001, w emissions savings by projecting it througho NA NA NA Vehicle counts provice NA NA NA WETHODOLOGY/AS Emissions factors are percentage of vehicle pollutant reduced per Highways, from the F NA (average of vehicle cr (g/min per VOC, NOX CMAQ NON- TOTAL CMAQ \$0 \$20,000 \$80,000 \$400,000 \$400,000						

NOTE: Emissions reductions reported in CMAQ database differ from estimates provided or calculated from sponsor-provided documentation. Reductions reported in the CMAQ database were reported in the template. The project calculation showed much higher values (-200.94 kg/day VOC, -54.89 kg/day NOx, -2,272 kg/day CO); however, a more recent, similar project reported figures closer to the values reported in the CMAQ database. The project specifics seem to indicate that the delay reduction (4 min/vehicle) is an extrapolation of the effects of the project across the entire system, not just for the 18 intersections.

Category:	TRAF	FIC FLC	DW IN	IPROVE	MENTS	S		Sub	category: Ti	raffic Signal	lization		
		0112005	0022				Droject V	Droject Vegr. 2005					
	CMAQ Project ID: OH20050033 Location: Newark, Ohio							Project Year: 2005 MPO: Licking County Area Transportation Study					
			a alar		Main Ct	root					along		
							This project v re taken direc						
							duce the amou						
							9 south bound						
			15 306		n Sueei,	, 31/	9 South Douhu	Tamps, SK7		ramps, unior	i Sileei,		
and Eleventh Street. TRAVEL IMPACTS													
Δ Vehicle trip		NA		METHC		Y/AS	SUMPTIONS						
$\Delta V MT:$	03.	NA					Syncro Versic		Mineriod The	re is minor			
Δ Speed:		NA					entire busine				are		
Δ Delay:		- 70					n delay was ca						
		hours/					pproach Volur						
∆sov		NA					otal Delay Re			(
$\Delta CP/VP$		NA		5		<i>,</i>	5						
Δ Transit		NA		SR79S	(1,568 v	/eh * 2	26.1 veh/sec) -	- (1,568 veh [•]	* 6.5 veh/sec)	= -8.54 hours	s/day		
Δ Walk		NA			SR79S (1,568 veh * 26.1 veh/sec) – (1,568 veh * 6.5 veh/sec) = -8.54 hours/day SR79N (1,523 veh * 1,579 veh/sec) – (1,523 veh * 15.5 veh/sec) = -661.7 hour/day								
Δ Bike		NA			Union St. (1,580 veh * 9.2 veh/sec) – (1,580 veh * 22.6 veh/sec) = +5.88 hours/day								
		1171		11th St.	11th St. (1,536 veh * 95.4 veh/sec) - (1,568 veh * 7.2 veh/sec) = -37.63 hour/day								
EMISSIONS													
Δ VOC		115 kg/d		METHODOLOGY/ASSUMPTIONS:									
ΔNO_X		909 kg/d	-	Emissions reductions calculated using Mobile6. Idle emissions calculated using							ising		
Δ CO	- 90	.710 kg/c	lay	exhaust emissions for a 2.5 mile/hour average speed.									
ΔPM_{10}		NA											
$\Delta PM_{2.5}$		NA		The Mobile Factors used Main Street as a Minor Arterial Urban – Class 16 and all									
∆Total		.02 kg/da		intersecting streets as Local I				- Class 19 to	determine er	nissions.			
00070	(0	.0099 tpc	0099 tpd)										
COSTS						D '		· · ·		7 0/			
					TOT				nterest rate:	7%			
		CMAQ		ION-	TOT	AL	METHODOL	OGY/ASSUN	IPTIONS:				
Conital	¢ ว	EE 202		MAQ 34,241	¢4201	E 1 2	Documentati	on provided k	w the State in	dicatos tho n	roloct		
Capital Adm/oper	- J J	<u>55,302</u> \$0	\$Z(\$0	\$639,! \$0				by the State in nd 2006 and s				
Total	\$2		\$29	<u>ەں</u> 34,241	\$639,				Cost-effective		i iunus		
						545	provided by s						
Total annua	iiizeu p	JUDIIC		\$98,·	414		provided by .	sponson					
	cost:			Nono					Total]			
	Annual revenues: Net public cost:			None \$639,543		FFY 05	FFY 06	FFY 07	Obligated				
	Annual private cost			\$639,543 NA			\$55,214.50	\$359,563.00	-\$59,475.57	\$355,301.93			
Total net co				\$639			Project spon	sor assumes	service life is	5 years. The	L COST-		
				Ψ007	,510				his study used				
								nalization pro					
							J						

Category:	TRAF	FIC FLC	DW IN	IPROVE	MENTS	Subcategory: Traffic Signalization				
CMAQ Proj	ect ID:	TN2005	0016			Project Year: 2005				
Location: K						MPO: Knoxville Urbanized Area MPO				
Description	: Signa	al Timing	j on S	SR 169 Ce	edar Bluff to	to College St This project will fund the traffic signal timing and				
synchroniza	ation of	traffic sig	gnals	along Mic	dlebrook P	Park from Cedar Bluff St. to College St.				
TRAVEL IN	IPACT	S								
Δ Vehicle tri	ps:	NA				ASSUMPTIONS:				
Δ VMT:		NA		5		35 average daily traffic x 9.47 mile corridor length = 245,065 VMT				
∆Speed:		+ 4 m	ph	on corri						
∆Delay:		NA				vement in speed/travel of 12% for traffic signal upgrades of this				
∆SOV		NA				e publication "A Toolbox for Alleviating Traffic Congestion and				
$\Delta CP/VP$		NA			ing Mobility'					
∆Transit		NA		Average	e speed incr	creased from 34 mph to 38 mph.				
Δ Walk		NA								
∆Bike		NA								
EMISSION	S									
Δ VOC	- 14	.969 kg/c	lay	METHODOLOGY/ASSUMPTIONS:						
ΔNO_X	+ 2.	.206 kg/d	ау	Emissions factors for before project implementation and after project						
Δ CO		NA		implementation based on MOBILE6 and average speeds of 34 mph and 38 mph,						
ΔPM_{10}		NA		respecti	vely.					
$\Delta PM_{2.5}$		NA								
∆Total	- 12	.763 kg/c	lay	Emissions reduction = VMT x (Emissions Factor before project – Emissions Factor						
	(C).014 tpd))	after pro	oject)					
						duction = $245,065$ VMT x ($1.883 - 1.826$) / $1000 = 14.969$ kg/day				
COSTS				NOX EII	IISSIONS Teu	duction = 245,065 x (1.847 – 1.856) / 1000 = -2.206 kg/day				
00313					Dr	roject life:10 yrs Interest rate:7%				
	ſ	CMAQ	Ν	ION-	TOTAL					
				MAQ	IUIAL					
Capital	\$	33,000		\$0	\$33,000	Cost-effectiveness was not provided by the project sponsor.				
Adm/oper	ψ	\$0		\$0 \$0	<u>\$03,000</u> \$0					
Total	\$?	33,000		\$0 \$33						
				\$5,0						
cost:	Total annualized public			Ψ0,0						
	Annual revenues:			Nor	ne					
Net public c				\$33,0						
Annual priv		st		N/						
Total net co				\$33,0						

Strategy: TRAFFIC FLOW IMPROVEMENTS							Category: Traffic Signalization		
CMAQ Project		0009			Project Ye	ar 2006			
Location: Ken	0007			MPO: Lex		rea MPO			
		f Reve	ersible La	anes on Nich			- This project will create a third		
							s on Nicholasville Road (US 27) from		
Southpoint Dr	ive to Tiverto	n Way	y. By takir	ng advantage	of unutilized m	edian spa	ice and low early morning left-turning		
							ssign one of the left-turn lanes as a		
							bansion of the computerized traffic		
signal system to add new reversible lane signals. This project will improve the traffic flow on Nicholasville Road,									
which will in turn reduce traffic congestion, accidents, and delays, and ultimately improve air quality. TRAVEL IMPACTS									
Δ Vehicle trips			METHO		SUMPTIONS:				
$\Delta V MT$:	NA NA			vehicle-hours)					
Δ Speed:	NA NA		J .	•	= 362 vehicle-l	hours of d	lelav		
Δ Speed. Δ Delay:	- 63				299 vehicle-hou				
	vehic						5		
	hou		Change	e in delay due	to project imple	ementatio	n = 362 - 299 = 63 vehicle-hours =		
ΔSOV	NA		17% red	duction in dela	ay.				
ΔCP/VP	NA	1							
∆Transit	Fransit NA			Reduction in delay determined by the Synchro model output, based on a one-hour					
Δ Walk	Walk NA			simulation. These one hour peak delay reductions, per day, were used to determine an average delay for two hours of peak travel reductions.					
∆Bike	NA		determine an average detay for two hours of peak traver reductions.						
EMISSIONS			1						
Δ VOC	- 2.889 kg/	day	METHODOLOGY/ASSUMPTIONS:						
ΔNO_X	- 1.089 kg/		The delay reductions were used to calculate the emissions savings using						
∆ CO	- 44.95 kg/	day	emissions factors provided by US EPA Office of Transportation and Air Quality.						
ΔPM_{10}	NA		Reduction in delay * average of vehicle mix for kg/min per CO, NOx, VOC * 255						
$\Delta PM_{2.5}$	NA		days per year.						
∆Total	- 4 kg/day								
COSTS	(0.0044tpd)								
Annualized pu	uhlic costs			Proi	ect life: 10 _	vrs	Interest rate:7_%		
7 innualized pe	CMAQ	N	ION-	TOTAL	METHODOL				
	0.000		MAQ		Assumes ben				
Capital	\$400,000			\$500,000			5 5		
Adm/oper	\$0		\$0	\$0	Cost-effective	eness was	s not provided by project sponsor.		
Total	\$400,000			\$500,000					
Total annualized public \$74,536									
cost:	cost:								
Annual reven			None						
Net public cos		<u> </u>	\$500,000		ļ				
Annual private			<u>N/</u>						
Total net cost			\$500	,000					

Category: TRA	FFIC FLOW I	MPROVEMENTS	Subcategory: Traffic Signalization					
CMAQ Project ID): Not Yet Assig	ned	Project \	/ear: 20	07			
Location: Albany			MPO: Capital District Transportation Committee (CDTC)					
		Two Lane Roundabout at						
		about at the intersection of						
		unty. The intersection curre	0			•		
		ide the construction of side					5	
TRAVEL IMPAC								
Δ Vehicle trips:	NA	METHODOLOGY/ASSU	MPTIONS	à:				
ΔVMT :	NA	48,670 average traffic vo			09 were o	calculated usin	na the CDTC	
Δ Speed:	+ 14 mph	STEP Model. The CDTC					0	
Δ Delay:	- 6.5	intersection count and us					0	
	sec/veh.	with the existing signalize						
∆sov	NA	was used to conduct an a						
		intersection and was use						
$\Delta CP/VP$	NA	under the new, roundabo						
Δ Transit	NA	avg "New Roundabout" d					- uolaj 0 000	
Δ Walk	NA	Washington Ave and	CONTRACTOR NUMBER OF STREET, ST		stratum and the same	-	1000	
∆Bike	NA	Leg	Flow	Avg	Avg	Max Delay	1999 counts Max Queue	
			(veh/hr)	Delay	Queue	Contraction of the second second		
		Washington Ave EB	1212	5 sec	2	7 sec	2	
		Fuller Rd NB	591	5 sec	1	7 sec	The second secon	
		Washington Ave WB Fuller Rd SB	1368	6 sec 4 sec	2	9 sec 6 sec	3	
			an she i si sa sagane			When the work of the little of the		
		Washington Ave and Fuller 200	Rd Roundal 9 total appro	bout Capa ach volum	city RODEL	Analysis 1999 c STEP Model	counts increased to	
		Leg	Flow	Avg	Avg	Max Delay	Max Queue	
			(veh/hr)	Delay	Queue			
		Washington Ave EB	1454	14 sec	5	25 sec	9	
		Fuller Rd NB	709	10 sec	27	18 sec 30 sec	3	
		Washington Ave WB Fuller Rd SB	1642	16 sec 6 sec	2	11 sec	3	
		VMT was estimated using Speeds were calculated conditions and 29 mph w The STEP model was als existing signalized interse Roundabout Design Unit using the RODEL Round approach vehicles under	over that s with the rou so used to ection for conducte about Ca	same dis undabou calcula the no-b d an ana pacity m	t t. te seconc uild scen alysis of th odel to ca	15 mph under Is of delay for ario. The NYS ne proposed in	r existing vehicles with the SDOT nprovement	
EMISSIONS								
	24.17 kg/day	METHODOLOGY/ASSU	MPTIONS	 S:				
	1.94 kg/day	The NYSDOT software p			a was use	ed to estimate	emissions, using	
	24.17 kg/day	the "Traffic Flow Improve						
ΔPM_{10}	NA	with the following emission						
$\Delta PM_{2.5}$	NA	CO = Before: 18.01	After: 16					
		VOC = Before: 1.01						
	26.11 kg/day (0.029 tpd)	NOx = Before: 0.95						
	(0.029 ipu)		After: 0.					
COSTS		Droiset	lifo, NA) ITO	Inter	act rate: 7	0/	
		Project	life:NA_	yrs	Inter	est rate:7_	_%	

	CMAQ	NON- CMAQ	TOTAL	METHODOLOGY/ASSUMPTIONS:
Capital	\$2.0 M	\$2.87 M	\$4.87 M	
Adm/oper	\$0	\$0	\$0	Funding will include planning, design, and construction of
Total	\$2.0 M	\$2.87 M	\$4.87 M	the intersection improvement. A cost effectiveness
Total annualiz	Total annualized public		,981	calculation was not provided by the project sponsor.
cost:	-			
Annual reven	ues:	No	ne	
Net public cos	Net public cost:		7 M	
Annual private cost		NA		
Total net cost		\$4.8	7 M	

Category: T	RAFFIC	FLOW	IMPROV	/EMENTS	Sub	category: Freeway Management				
CMAO Projec	CMAQ Project ID: LA20030008					3				
Location: Baton Rouge, Louisiana					Project Year: 200	ional Planning Commission				
				Acadian St. to		ect will continue phase II of the Baton				
						Acadian St. to Highland Blvd. to				
					sistance, and surveillar					
TRAVEL IMP	ACTS									
Δ Vehicle trips	S:	NA	METH	ODOLOGY/AS	SUMPTIONS:					
ΔVMT:		NA								
∆Speed:		NA				not assumed to be affected.				
∆Delay:		NA	Emiss	ions reductions	will occur through a re	duction in nonrecurring congestion.				
ΔSOV		NA								
ΔCP/VP		NA								
∆Transit		NA								
Δ Walk		NA								
∆Bike		NA								
EMISSIONS										
Δ VOC	- 1	89.601	METH	METHODOLOGY/ASSUMPTIONS:						
	kg/day △ NO _X - 488.972		Emissi	Emissions factors for baton rouge based on MOBILE Model; assumed running speed of 40						
				 MPH. Emissions reductions were applied to the length of 110, as follows: 1) Freeway emissions = freeway VMT (from Tranplan model) * Emissions factor (from MODILE is groups (mile)) 						
Δ C0	kg/day NA			MOBILE in grams/mile)						
ΔPM_{10}		NA	2) Fr	 Freeway emissions due to nonrecurring congestion = freeway emissions * 0.049 (assumes 4.9% of freeway emissions are caused by nonrecurring congestion using data from Lindley, J. A. "Urban Freeway Congestion: Quantification of the Problem and 						
$\Delta PM_{2.5}$		NA								
Δ Total	-6	78.573			otential Solutions." 1987.)					
		g/day		 Emissions reduced due to program = freeway emissions due to nonrecurring congestion * effectiveness factor. Effectiveness factor assumed to be 0.90, based on 						
		748 tpd)	CC							
	X -	- - - -		effectiveness rate of 50% for Incident Detection and Response, 25% for Motorist						
00070			As	Assistance, and 15% for Surveillance.						
COSTS					-+ 116- 10					
					ct life:10yrs	Interest rate:7%				
	CMAC	_	NON-	TOTAL	Methodology/Assump	00015:				
Conital	¢0 710 0			¢0 710 040	Accumac that protect	has hanafite 240 days not year (all				
Capital	\$2,712,9	40	\$0 \$0	\$2,712,940		has benefits 260 days per year (all ctiveness calculation will need to take				
Adm/oper	\$0 \$2,712,0	40	\$0 \$0	\$0 \$2,712,040	,					
Total				\$2,712,940		f the capital equipment.				
	Total annualized public		\$44	3,109						
	cost:									
Annual reven				one						
Net public cos				12,940						
Annual privat				IA 10.040						
I otal net cost	Total net cost			12,940						

NOTE: Assumption that 4.9% of freeway emissions are due to nonrecurring congestion is based on old source and there may be more recent data available. Calculation seems to assume 90% reduction in emissions associated with non-recurrent congestion, and it is not clear that the effectiveness of each ITS component should be additive.

Category:	TRAFFIC FLOW IMPROVEMENTS					Subcategory: Freeway Management			
CMAQ Proi	CMAQ Project ID: WA20040027					Project Year: 2004			
Location: S						MPO: Puget Sound Regional Council			
				tem - This	project will r	minimize the conflicts among freight movement, transit travel,			
						ety and mobility for people and goods. The project will			
include, am	ong ot	her things	: inte	erconnectio	n of traffic s	ignals and controller equipment upgrading, installation of			
variable me	ssage	signs and	d othe	er driver info	ormation sys	stems, implementation of traffic control strategies, and CCTV			
and roadwa			or tra	ffic condition	ons and acci	idents.			
TRAVEL IM	IPACT	S							
Δ Vehicle trip	0S:	NA				SUMPTIONS:			
ΔVMT:		NA				input into TCM Tools included the expectation that the project			
Δ Speed:		+ 2 m	bh			k and off-peak period speeds by 10% (from 19 to 21 mph),			
∆Delay:		NA		with an av	verage daily	traffic (ADT) of 200,000 in 2010.			
∆sov		NA							
∆CP/VP		NA							
∆Transit		NA							
Δ Walk		NA							
∆Bike		NA							
EMISSIONS	S								
\triangle VOC	-	76 kg/day		METHODOLOGY/ASSUMPTIONS:					
ΔNO_X		4 kg/day				calculated using the TCM Tools program created by Parsons			
∆ C0	- 9	39 kg/day	y			a Research in 1994, which applies project data to the project			
ΔPM_{10}		NA		year's (2004) MOBILE emissions factors and regional data to produce the					
$\Delta PM_{2.5}$		NA		emissions reductions for CO, VOCs, and NOx.					
∆Total		80 (kg/day							
	(0).088 tpd)							
COSTS									
			-1			oject life:10 yrs Interest rate:7%			
	(CMAQ		NON-	TOTAL	METHODOLOGY/ASSUMPTIONS:			
			_	CMAQ	40.5.1				
Capital	\$9	998,037	\$1	,001,963	\$2.0 M	Total Project Cost: ~\$2,000,000 (other funds in the project			
Adm/oper		\$0		\$0	\$0	include other Federal and State/local funds). Cost-			
Total		998,037	\$1	,001,963	\$2.0 M	effectiveness was not provided by the project sponsor.			
	Total annualized public			\$318,1	90	Project assumes benefits 252 days per year.			
cost:					r rojeti assumes benenis 202 days per year.				
Annual reve				None		4			
Net public c				\$2.0		4			
Annual priva		St		NA		4			
Total net cost			\$2.0 N	N					

NOTE: The CMAQ project amount in the CMAQ database is \$862,192 for this project. Total project costs and CMAQ funding provided by the State were used to calculate the amounts in the table.

portion of n of a ations allowing ent and					
n of a ations allowing					
n of a ations allowing					
n of a ations allowing					
ations allowing					
allowing					
ent and					
fects of					
vill result					
ength of					
65 miles, based on a congested incident speed of 5 mph, and a free flow speed of 55 mph. The daily VMT traveled without an IM system in place is 1.72 MVH x 5					
mph / 365 days = 23,561 VMT.					
METHODOLOGY/ASSUMPTIONS:					
For Fairfield County: VOC reduction = $(1.700 + 0.400) \times 22.561 / 65$ miles x 10.22 miles = 4.48 kg/day					
VOC reduction = (1.700 – 0.490) x 23,561 / 65 miles x 10.22 miles = 4.48 kg/day NOx reduction = (1.988 – 1.395) x 23,561 / 65 miles x 10.22 miles = 2.20 kg/day					
$PM2.5 reduction = (0.288 - 0.287) \times 23,561 / 65 miles \times 10.22 miles = 2.20 kg/day$					
$FWZ.5 reduction = (0.200 - 0.207) \times 25,5017.05 IIIIIeS \times 10.22 = 0.004 \text{ Kg/day}$					
For Greater Connecticut Area:					
VOC reduction = $(1.700 - 0.490) \times 23,561 / 65$ miles x 3.72 miles = 1.63 kg/day					
NOx reduction = $(1.988 - 1.395) \times 23,561 / 65$ miles x 3.72 miles = 0.80 kg/day					
9, 44					

NOTE: Emissions reductions reported in CMAQ database differ from estimates provided or calculated from sponsor-provided documentation (-9.1 kg/day VOC, -4.6 kg/day NOx).

Category:	TRAF	FFIC FLOW IMPROVEMENTS					Subcategory: Freeway Management		
CMAQ Proje	CMAQ Project ID: Not Yet Assigned					Project Year: 2007			
Location: Birmingham, AL						MPO: Birmingham RPC			
Description:	Alaba	ama Ser\	/ice P	atrols Pr	ogram	- The	e Alabama Service and Assistance Patrol, or "A.S.A.P" has		
							oortation and the Alabama State Troopers since 1997. A.S.A.P		
							ed motorist to reduce response time by appropriate authorities		
							major disruption of interstate flow at an incident location. In		
				0			permit the State Troopers to monitor traffic flow at priority,		
high-traffic flow locations, which are more likely to have a traffic incident. A.S.A.P. operators patrol from									
pm.									
TRAVEL IM									
Δ Vehicle trip	DS:	NA					SSUMPTIONS:		
ΔVMT:		NA					e relocated to ramps and 69 accidents were relocated from a travel		
Δ Speed:		NA					y Alabama DOT for 7/3/2006-6/29/2007 period.		
Δ Delay:		- 3,84					of disabled vehicles which occur during peak period = 25% of incidents which occur in peak period = 50%		
(vehicle		incide	ent				dents (travel lane opened during project) = 111 accidents		
hours/incide	ent)						project = 1400 vehicle/hour/lane		
∆sov		NA		Average	number	of blo	ocked lanes during incidents = 1.1 lanes		
∆CP/VP		NA					nes for the InterState highway = 3 lanes		
∆Transit		NA		Incident duration prior to project = 1.10 hours					
Δ Walk		NA		Incident	duration	atter	project implementation = 0.71 hours		
∆Bike		NA		Incident Delay = Traffic volume * (Average number of blocked lanes during incidents / t lanes in corridor) * Incident duration Change in delay = Incident delay without project – Incident delay with project					
EMISSIONS				(7,126 vehicle hours – 3,277 vehicle hours = 3,849 vehicle hours)					
Δ VOC		1.25 kg/d	av	METHO			SSUMPTIONS:		
ΔNO_X		1.88 kg/d		METHODOLOGY/ASSUMPTIONS: HC Idle Emissions Factor during incident 19.018 grams/hour					
ΔCO		NA	uy	NOx Idle Emissions Factor during incident 7.230 grams/hour					
ΔPM_{10}		NA		PM 2.5 Standard PM idle emissions factor 0.072 grams/hour (2005)					
$\Delta PM_{2.5}$	- 0	.12 kg/da	av.	PM 2.5 Standard NOx idle emissions factor 6.618 grams/hour (2005)					
Δ Total		3.1 kg/da		F					
	т	5. i ky/uu	y	For each pollutant, the Change in delay * Emissions Factor / 1,000 * 111 annual incidents 260 working days = kg of emissions reduced per day.					
COSTS				200 WUH	king uays	<u>s = ку</u>	g of effissions reduced per day.		
Annualized	nublic	costs				Proi	oject life:1 yrs Interest rate:7%		
7 WIII III III III III III III III III I		CMAQ	Ν	ION-	TOT		METHODOLOGY/ASSUMPTIONS:		
				MAQ		, \L	Cost information is provided for 1 year of operating funding, or 260		
Capital	\$0		\$0		\$0		days per year.		
Adm/oper		40,000	\$0		\$800,0	000			
Total				000,000 0,000	\$800,0		Project sponsor calculated cost effectiveness as: the Annual		
	Total annualized public		Ψ000				 project cost / (Emissions reduced * 260 days) 		
cost:				\$800,000			VOC Cost Effectiveness, \$105 dellars/kalveer		
Annual reve	nuas			\$800	000		VOC Cost Effectiveness: \$105 dollars/kg/year NOx Cost Effectiveness: \$277 dollars/kg/year		
Net public c							PM2.5 Cost Effectiveness: \$27,827 dollars/kg/year		
Annual priva		st		\$800,000 PN NA					
Total net co		л					-		
Total net cost				\$800,000					

IOV Lanes ments 575 in the project as added for al priorities e Source upancy of ted to the (1 – 1 / 2.14						
575 in he project as added for al priorities e Source upancy of ted to the						
575 in he project as added for al priorities e Source upancy of ted to the						
The project as added for al priorities e Source upancy of ted to the						
as added for al priorities e Source upancy of ted to the						
al priorities e Source upancy of ted to the						
upancy of ted to the						
ted to the						
ted to the						
ted to the						
ted to the						
(1 – 1 / 2.14						
(1 – 1 / 2.14						
(1 – 1 / 2.14						
(1 – 1 / 2.14						
(1 – 1 / 2.14						
Calculate VMT reduction = 2,929 trips reduced * 20 mile average auto trip length.						
METHODOLOGY/ASSUMPTIONS:						
Emissions reductions calculated using Mobile6 running emissions factors, assuming a 43 mph						
running speed on freeways before the project = NOx: 1.22 and VOC 0.53 grams/mile. Speed-						
based running exhaust emissions factor for the HOV facility, assuming a 51 mph speed = NOx: 1.32 and VOC 0.51 grams/mile. Speed-based running exhaust emissions factor for general						
purpose lanes, assuming a 43 mph speed = NOx: 1.22 and VOC 0.53 grams/mile.						
Calculate change in running exhaust emissions from vehicles shifting from general purpose						
lanes to HOV lanes. Assume Average Peak Traffic on HOV lanes after project is 783						
nange in						
icles shifted						
away from general purpose lanes. Assume Average Peak Traffic on general purpose lane before						
project is 10,358 vehicles/hour and the Average Peak Traffic on general purpose lane after						
project is 10,797 vehicles/hour. Calculate the reduction in auto start emissions from trip reductions using an auto trip end						
emissions factor for NOx: 0.39 grams/mile and VOC: 1.25 grams/mile and the trip reductions. Calculate the reduction in auto running exhaust emissions from trip reductions using the						
emissions factor before project implementation and the vehicle miles reduced.						
\$254,570,093 total at letting (\$229,853,137 Category 2 funds (NHS account in Texas), \$17,152,000 CMAQ,						
Funds, and \$3,154,100 local). A cost effectiveness calculation was not provided by the project sponsor.						
general urpose anange ir icles sh e lane b e after end duction the gory 2 AQ, Ribbo ss						

Category: S	HARED RID)E PROGRAM	ЛS	Subcategory: Regional Ridesharing				
CMAQ Projec	t ID: MD2002	20010		Project Year: 2002				
Location: Ma				MPO: No MPO Identified – State-sponsored Project				
		desharing Pro	gram Operat	ions - This project will promote and encourage the				
establishment	t of carpools a	and vanpools ir	n eleven Mary	land Ridesharing Programs. The programs are operated by				
				Calvert Frederick, Harford, Howard, Montgomery and Prince				
U		-County Counc	cil.					
TRAVEL IMP								
Δ Vehicle trips	: - 3,000	5		SSUMPTIONS:				
Δ VMT:	- 84,0		Assumes 12,360 individual rideshare applicants in the eleven programs (based on					
	/day	y actual o	lata from past	years).				
Δ Speed:	NA							
∆Delay:	NA			= 12,360 applicants * 0.24 formation rate = 3,000 vehicle trips				
∆SOV	NA			sumes 24 percent of total applicants will take part in				
∆CP/VP	NA	ridesna	ring each day).				
∆Transit	NA		duaad 2,000) vehiele tring * 20 miles - 04,000 vehiele miles not day				
Δ Walk	NA		VMT reduced = 3,000 vehicle trips * 28 miles = 84,000 vehicle miles per day (assumes one-way trip is 14 miles).					
∆Bike	NA	(assum						
Emissions								
Δ VOC	- 35.0 kg/c		lology/Assump					
ΔNO_X	- 110.0 kg/		Emissions reductions were calculated by multiplying VMT reduction by per-mile					
∆ C0	NA		emissions factors. Emissions were calculated based on 2005 stabilized running					
ΔPM_{10}	NA		emissions factors developed for Baltimore region based on MOBILE Model					
$\Delta PM_{2.5}$	NA	(11/16/	(11/16/1999 run). The assumed running speed is 35 MPH.					
∆Total	- 145 kg/d		VOC Emissions Easter, 0.4 grams/mile					
	(0.16 tpd		VOC Emissions Factor: 0.4 grams/mile					
		NOX Er	NOx Emissions Factor: 1.3 grams/mile					
		Note: e	Note: emissions factor assumes no cold start or hot soak emissions are affected					
COSTS		NOLE. E						
00010			Proi	ect life: 1 vrs Interest rate: 7 %				
	CMAO	NON-						
	0	CMAQ						
Capital	\$0		\$0	This project has been funded with CMAQ over multiple				
				emissions reductions.				
	Total annualized public \$956,000							
	•							
			ne					
		N.						
COSTS Capital Adm/oper Total Total annualiz cost: Annual revent Net public cost Annual private Total net cost	CMAQ \$0 \$956,000 \$956,000 zed public ues: st: e cost	NOx Er Note: e NON- CMAQ \$0 \$0 \$0 \$0 \$0 \$956	missions facto Proj TOTAL \$0 \$956,000 \$956,000 ,000 ne ,000 A	ect life: 1 yrs Interest rate: 7% METHODOLOGY/ASSUMPTIONS: This project has been funded with CMAQ over multiple years. All calculations apply to 1 year of operating costs an				

NOTE: Methodology assumes that all new carpoolers/vanpoolers previously drove alone (this may be reasonable, but perhaps should be confirmed through surveys). Carpool/vanpool formation rate should account for the fact that all new carpools/vanpools may not operate each day (this may be imbedded in the calculation of this rate).

Category: SHARED RIDE PROGRAMS					Subcategory: Regional Ridesharing			
CMAO Proi	AQ Project ID: PA20050202				Project Year: 2005			
Location: C					MPO: Southwestern Pennsylvania Commission MPO			
				OM Program -	The Oakland Area TDM Program will fund the operation,			
					for employees and employers in Oakland, part of metropolitan			
					the program expanded existing ridesharing coordination,			
					The promotional budget will include 20% print media, 20%			
)% promotion					
TRAVEL IM			•					
Δ Vehicle tri	ips:	- 2,02	24 METH	ODOLOGY/AS	SSUMPTIONS:			
	•	/day	/ Annua	l Program Bud	get = \$300,000 - \$50,000 overhead			
ΔVMT:		- 22,0	62 Avera	je work trip len	ngth = 10.9 miles			
		/day	/ Estima	te the number	of vehicle trips reduced per \$1 of the program = 2.04 trips day			
△ Speed:		NA						
Δ Delay:		NA			on = (\$250,000 * 2.04) / 252 = - 2,024 trips per day			
Δ SOV		NA	Round	trip VMT Redu	uction = -2,024 * 10.9 miles = -22,062 miles per day			
Δ CP/VP		NA						
∆Transit		NA						
Δ Walk		NA						
∆ Bike		NA						
EMISSIONS	S							
Δ VOC		6.2 kg/da	2	METHODOLOGY/ASSUMPTIONS:				
ΔNO_X	- 3	0.9 kg/da			buted into Rural and Urban locations and Freeway, Arterial,			
∆ C0	-18	37.4 kg/da	ay and Lo	and Local facility types using data from a 1996 County Percent VMT by Faci				
ΔPM_{10}		NA		Area Type document. Emissions reductions calculated using Mobile 5a emission				
$\Delta PM_{2.5}$		NA		factors for each of these locations and facility types.				
∆Total		7.1 kg/da						
	(().063 tpd))					
COSTS								
			NON		ect life: _2_ yrs Interest rate: _7_%			
		CMAQ	NON-	TOTAL	METHODOLOGY/ASSUMPTIONS:			
Capital	_	¢O	CMAQ	¢O	Euroding is for 2 years of approxima subsidu for the program			
	¢ 4	\$0	\$0	\$0	Funding is for 2 years of operating subsidy for the program			
Adm/oper		80,000	\$120,000	\$600,000 \$600,000				
	Total \$480,000 \$120,000		\$1ZU,UUU	\$000,000	4			
	Total annualized public		\$35	3,670				
	cost:							
Annual reve				one	4			
Net public c		~ †),000 IA				
Annual priva		51						
Total net cost		۵ ۱.	08 M					

NOTE: The documentation is unclear on details about the cost assumptions. The travel methodology suggests that the program budget on which the trip reduction benefits are estimated is \$250,000/year, though this is supposed to be the budget without overhead; for this project. Moreover, the effectiveness calculation is based on an assumption of 2.04 vehicle trips reduced per day for each \$1 of the program, but documentation was not provided; it is unclear where this metric was derived and whether it is appropriate for this program.

Category: S	HARED RID	E PROGRA	MS	Subcategory: Regional Ridesharing				
CMAQ Projec	t ID: Not Yet	Assigned		Project Year: 2007				
Location: Birr	mingham, AL			MPO: Birmingham Regional Planning Commission				
Description: C	CommuteSma	art Commuter	⁻ Services Pro	ogram Operations - The project will fund the continuing				
				rogram in Birmingham, Alabama. The program includes a				
		npool program	with up to 34	vans in 2007 and a carpool program.				
TRAVEL IMP								
Δ Vehicle trips	s: - 311.7		METHODOLOGY/ASSUMPTIONS:					
ΔVMT:			Number of Vanpool vans = 34 vehicles					
Δ Speed:	- 7,407.			ancy = 9.64 people per van of vanpoolers previously took carpools = 9%				
Δ Delay:				17,380 trips/year				
ΔSOV				1,078,692 miles/year				
$\Delta CP/VP$	76 0			Trips = 107,303 trips/year				
	trips	/day Ann	ual Passenger I	Miles = 4,241,282 miles/year				
∆Transit	uip3	Pas		th per trip (one way) = 39.53 miles per trip				
				pancy = 1.09 people per car				
Δ Walk		NUr	nuer or days pro	oject affected per year = 260 days per year				
∆Bike		Dail	v Vehicle Trip R	Reduction: (107,303 passenger trips / 1.09 average auto occupancy				
				/ 260 days/year = 311.78 daily vehicle trip reduction.				
		Of t	hose trips, carpo	ool trip reduction = 76 trips/day.				
				ing into account the van miles): 4,241,282 passenger miles / 1.09				
			auto occupancy x ((1 – 9% percent of vanpoolers previously took carpools) - 1,078,692 van miles) / 260 days/year = 9,469.98 daily VMT.					
			Of that VMT reduction, carpool VMT reduction = 188,929 miles/year / 260 days/year =					
			726.65 daily carpool VMT reduction.					
EMISSIONS								
Δ VOC	- 10.21 kg/d	ay METH	DOLOGY/AS	SUMPTIONS:				
ΔNO_X	- 11.96 kg/d	ay Emissio	Emissions reductions calculated using Mobile6 emissions factors for 2005 at a 35 mph					
ΔCO	NA		iverage operating speed.					
ΔPM_{10}	NA		Auto HC emissions factor 1.1640 grams/mile					
$\Delta PM_{2.5}$	- 0.133 kg/d		Auto NOx emissions factor 1.2720 grams/mile					
∆Total	-22.17 kg/da	V V	Van HC emissions factor 1.5630 grams/mile Van NOx emissions factor 1.5160 grams/mile					
	(0.024 tpd)	-	Auto PM2.5 emissions factor, 0.0133 grams/mile					
			Van PM2.5 emissions factor, 0.0140 grams/mile					
COSTS								
			Proj	ect life:1yrs Interest rate:7_%				
	CMAQ	NON-	TOTAL	METHODOLOGY/ASSUMPTIONS:				
		CMAQ		Total project cost = 1.07 Capital recovery factor * \$700,000 =				
Capital	\$0	\$0	\$0	\$749,000 / year				
Adm/oper	\$700,000	\$0	\$700,000	Cast Effectiveness Calculation, \$740,000 project appual cast /				
Total	\$700,000	\$0	\$700,000	Cost Effectiveness Calculation: \$749,000 project annual cost / (Emissions reduced (kg/day) * 260 days of effect)				
Total annualiz	zed public	\$700),000					
cost:	-			HC Cost Effectiveness = \$282 per kg/year				
Annual revenu	ues:	No	ne	NOx Cost Effectiveness = \$241 per kg/year				
Net public cos	st:	\$700),000	PM2.5 Cost Effectiveness = \$21,707 per kg/year				
Annual private	e cost	N	A					
Total net cost		\$700),000					

Category: SHARED RIDE PROGRAMS					Subcategory: Vanpool Programs			
CMAQ Project ID: UT20020006					Project Year: 2002			
Location: S					MPO: Wasatch Front Regional Council			
				easing Program	n - This project is the purchase of 15 8-passenger vans for			
Salt Lake C	tity and	l Ogden al	reas.	0 0				
TRAVEL IN	IPACT	S						
Δ Vehicle tri	ps:	Na	METHO	DOLOGY/ASS	UMPTIONS:			
ΔVMT:		- 5,520 /	day Assume	es 8 passengers	per van and 46 miles average daily round trip.			
Δ Speed:		NA						
Δ Delay:		NA			8 passengers/van x 15 vans x 23 miles one-way trip x 2 trip			
ΔSOV		NA	lengths	reduce reduced	l/day = 5,520 VMT reduced.			
$\Delta CP/VP$		NA						
∆Transit		+ 15 va	ns					
Δ Walk		NA						
∆Bike		NA						
EMISSIONS	S							
Δ VOC	- 1	2.2 kg/day	/ METHO	METHODOLOGY/ASSUMPTIONS:				
ΔNO_X	- 1	4.9 kg/day	/ Assume	Assumes that project has benefits 250 days/year.				
∆ CO	- 13	36.9 kg/da		Emissions reductions calculated by applying passenger car CO, NOx, and VOC				
ΔPM_{10}		NA	g/mile r	g/mile rates for freeways and arterials.				
$\Delta PM_{2.5}$		NA						
∆Total	- 2	7.1 kg/day	/					
	(0.03 tpd)						
COSTS				1				
			•		t life:_5 yrs Interest rate:7_%			
	(CMAQ	NON-	TOTAL	METHODOLOGY/ASSUMPTIONS:			
	<u> </u>		CMAQ		Cost benefit was calculated using a weighted ranking			
Capital	\$4	448,000	\$0	\$448,000	system that considered the following:			
Adm/oper	-	\$0	\$0	\$0	1) (10%) Project in a congested corridor			
Total		448,000	\$0	\$448,000	2) (15%) Length (years) of project effectiveness			
	Total annualized public		\$128	3,200	3) (25%) Emissions reduction			
cost:					4) (25%) Congestion reduction (VHT)			
Annual reve				one	5) (25%) Cost This objective ranking was then combined with subjective			
Net public of				3,000	rankings by staff and 3 different committees consisting of			
Annual priv		st		IA	city planners and elected officials.			
Total net co	ost		\$448	3,000				

NOTE: The project description provided by the sponsor lists a purchase of 15 vehicles, while the project description in the CMAQ database describes this project as the purchase of 70 vans. The project cost provided by the sponsor lists the project cost as \$377,582, while the database lists the CMAQ-allotted funds as \$448,000. The discrepancy might stem from the difference in the amount of vehicles purchased. The calculation does not explicitly account for any increase in emissions from the vans operating.

Category:	SHAF	red Rid)e pr	Rogran	/IS	Subcategory: Vanpool Program			
CMAO Proje	CMAQ Project ID: UT20050005						Project Year: 2005		
	Location: Ogden and Layton, Utah					MPO: Wasatch Front Regional Council MPO			
					asing F	Progra	am - This project is the expansion of the UTA Vanpool Leasing		
							and Layton area.		
TRAVEL IM	<u> </u>	<u> </u>				<u> </u>			
Δ Vehicle trip		NA		METHO	DOLO	GY/AS	SSUMPTIONS:		
ΔVMT:		- 3,000	/dav	Daily VI	MT redu	uction	= 5 vans x 8 passengers per van x 45 mile one-way trip x 2		
Δ Speed:		NA					day / 1.2 personal auto occupancy rate = 3,000 VMT reduced.		
Δ Delay:		NA							
∆sov		NA							
ΔCP/VP		+ 5 va	ins						
∆Transit		NA]					
Δ Walk		NA							
∆Bike		NA							
EMISSIONS	S								
Δ VOC	- 3	3.2 kg/da	у	METHC	DOLO	GY/AS	SSUMPTIONS:		
ΔNO_X		1.0 kg/da		Passen	ger car	CO, N	NOx, VOC g/mile rates for freeways and arterials applied.		
Δ CO	- 3	7.2 kg/da	iy	Freewa					
ΔPM_{10}		NA		VOC emissions factor = 1.38 g/mile					
$\Delta PM_{2.5}$		NA		NOx emissions factor = 1.98 g/mile					
∆Total		7.2 kg/da		CO emissions factor = 14.32 g/mile					
	(0).008 tpd))	Arterial:					
				VOC emissions factor = 2.32 g/mile					
				NOx emissions factor = 2.03 g/mile CO emissions factor = 29.61 g/mile					
COSTS				COEIII	22101121	actor			
00010						Proi	ject life: yrs Interest rate:7%		
	C	CMAQ	Ν	ION-	TOT		METHODOLOGY/ASSUMPTIONS:		
				MAQ					
Capital	\$1	48,000		2,866	\$180	,866	Cost/benefit calculation – Projects were ranked from first to		
Adm/oper		\$0		\$0	\$(last for cost/congestion benefit (VHT reduced) and cost/air		
Total	\$1	48,000	\$3	2,866	\$180		quality benefit (tons emissions). The benefits were multiplied		
Total annua				\$47,			by the project life – the number of years the benefits would		
cost:	- 1	-					be returned. The two rank scores were then added together		
Annual reve	enues:			Noi	ne		and all projects were ranked again based on this composite		
Net public c				\$180,866			score. The objective ranking was then combined with		
Annual priva		st		N	4		subjective rankings by staff and 3 different committees		
Total net co	Total net cost			\$180	,866		consisting of city planners and elected officials.		

NOTE: Emissions reductions provided by the State sponsor do not match those reported in the CMAQ database (-5 VOC, -54 CO, and -6 NOx). The calculation does not explicitly account for any increase in emissions from the vans operating..

Category: S	HAR	ED RID	e PR	DGRAN	ЛS	Subcategory: Vanpool Program				
CMAQ Projec	t ID: I	KY2006	0004			Project Year: 2006				
Location: Lexington, Kentucky						MPO: Lexington Area MPO				
				Fran Va	npool Servic	e - This project is the purchase of six new 12-passenger vans				
						the Lexington Bluegrass Mobility Office. LexVan leases these				
						rk. The passengers are matched to a vanpool group using				
ridesharing co	omput	ter softw	are an	d each p	bassenger pay	ys a monthly fare which covers all operating costs, fuel, and				
insurance. Th	is pro	igram ha	as a dir	ect effe	ct in reducing	the number of single occupant vehicles (SOVs) during peak				
hours.										
TRAVEL IMP				- 1						
Δ Vehicle trips	:		/day			ASSUMPTIONS:				
Δ VMT:		- 3,30	0 /day			noves a maximum of 11 SOVs from the road system and has				
Δ Speed:		Ν	А	a 50	mile average	e LexVan round trip.				
Δ Delay:		Ν	А	.,.						
∆sov		Ν				tion = 6 vans x 11 SOV removal x 2 trips = 132 vehicle trips				
$\Delta CP/VP$		+ 6 va	ns/day	rem	oved per day.					
∆Transit		Ν	А			122 suchiala taian ann ann da 25 aoile ann an tain (basa d an 50				
Δ Walk		Ν	А			132 vehicle trips removed x 25 miles per trip (based on 50				
∆Bike		Ν	А	mile round trip) = 3,300 VMT reduction/day.						
EMISSIONS										
Δ VOC	- 1(0.40 kg/d	day	METHO	DOLOGY/AS	SSUMPTIONS:				
ΔNO_X	- 5	.28 kg/d	lay		he emissions rates are for hydrocarbons (HC), carbon monoxide (CO), and					
∆ CO	- 8(0.19 kg/o	day		oxides of nitrogen (NOx) and are from U.S. Environmental Protection Agency					
ΔPM_{10}		NA			EPA) highway vehicle emissions factor models. They assume an average properly					
$\Delta PM_{2.5}$		NA		maintained vehicle on the road in July, operating on typical gasoline on a warm						
∆Total	- 1!	5.68 kg/o			summer day (72-96 degrees F).					
	((0.017 tpc	<i>J j</i>	VOC: 3.15 g/mile x 50 mile vanpool round trip x 66 SOV reduction / 1000 = 10.40						
					g/day					
				NOx: 1.60 g/mile x 50 mile vanpool round trip x 66 SOV reduction / 1000 = 5.28						
				kg/day	30 a/mile x 50	T mile vannool round trip x 66 SOV reduction $/ 1000 - 80, 10$				
				kg/day	CO: 24.30 g/mile x 50 mile vanpool round trip x 66 SOV reduction / 1000 = 80 .19					
COSTS	L			ngiuuy						
					Proie	ect life: 5 yrs Interest rate: 7 %				
	CI	MAQ	N	DN-	TOTAL	METHODOLOGY/ASSUMPTIONS:				
	5.	-		1AQ		The per day reductions based on an average of 21				
Capital	\$9	6,000		,000	\$120,000	work/school days in a given month or 252 days in the 12				
Adm/oper		\$0		50	\$0	months per year period used for the emissions analysis.				
Total		6,000		,000	\$120,000					
Total annualiz			ı	\$30,		The cost for the purchase of 6 new 12-passenger vans is				
cost:				1		estimated at \$20,000 each. This includes the installation of				
Annual reven	ues:			No	ne	extra equipment. Such as side steps, striping, grab handles,				
Net public cos						etc. The entire local match is paid from the LexVan				
Annual private						(vanpool) program fares.				
Total net cost			\$120,000							
					rease in emissions from the vans operating					

NOTE: The calculation does not explicitly account for any increase in emissions from the vans operating.

Category:	SHAF	red Rid	E PROGRAM	MS	Subcategory: Park and Ride Lots				
CMAQ Proj	ect ID:	MD2000	0017		Project Year: 2000				
Location: N					MPO: Baltimore Metropolitan Council				
			Space Lots - (Construction o	f two new park and ride facilities at I-95 interchanges at MD				
					parking spaces.				
TRAVEL IN	(IPACT)	S							
Δ Vehicle tri	ps:	0	METHO	DOLOGY/AS	SSUMPTIONS:				
Δ VMT:	-	- 23/d							
∆Speed:		NA			= 50 parking spaces * 15% utilization rate * 15% new riders =				
Δ Delay:		NA	1.15 ve	hicle trips red	uced per day (zero change in trip starts).				
∆SOV		NA							
$\Delta CP/VP$		NA			5 vehicle trips reduced * 20 mile round trip = 23 vehicle miles				
∆Transit		NA	reduce	d per day.					
Δ Walk		NA	1						
∆Bike		NA			nd the percentage of new riders were determined from ark and ride lots.				
EMISSION	S		Suivey	s at existing pa					
Δ VOC		012 kg/d	av METHO	DOLOGY/AS	SSUMPTIONS:				
ΔNO_X		058 kg/d	- J		s were calculated by multiplying VMT reduction by per-mile				
ΔCO		NA		emissions factors. Emissions were calculated based on 1999 emissions factors					
ΔPM_{10}		NA	develo	developed for the Baltimore region based on the MOBILE model. Assumed running					
$\Delta PM_{2.5}$		NA	speed i	speed is 60 mph.					
∆Total	-0.0	070 kg/da	ау						
	(0.0)00077 tp		VOC Emissions Factor: 0.552 g/mi					
00070			NOX Er	missions Facto	pr: 2.559 g/mi				
COSTS				Drai	and life 10 mm				
			NON	TOTAL	ect life:12yrs Interest rate:7%				
		CMAQ	NON- CMAQ	TOTAL	METHODOLOGY/ASSUMPTIONS:				
Capital	¢1	32,817	\$0	\$132,817	Cost-effectiveness was not provided by sponsor. In order to				
Adm/oper	ψI	\$0 \$0	\$0 \$0	\$132,017	calculate cost-effectiveness, assume the project has				
Total	\$1	32,817	\$0 \$0	\$132,817	benefits 250 days per year for 12 years.				
Total annua									
cost:			\$12,	537					
Annual reve	enues:		No	ne					
Net public of			\$132						
Annual priv		st	N						
Total net co			\$132	,817					

NOTES: Assumptions regarding travel impacts seem very low. In particular, a 15% utilization rate means that on average only 7.5 of the 50 new spaces are utilized, and only about one person per day is assumed to reducing a vehicle trip. Also, the assumption of a 20 mile round trip (10 miles each way) for a park and ride trip sounds low, particularly given that the lots are located in Cecil County, about 20 miles from Wilmington, DE and from Aberdeen, MD, and 40 miles from close-in Baltimore suburbs. In the CMAQ database, this project appears to have been improperly listed as in the Metropolitan Washington Council of Governments' MPO. Current Maryland State Highway Administration web site shows 25 spaces at I-95 @ MD 279 (Elkton) lot and 17 spaces at I-95 @ MD 272 (Elkton) lot.

Category: SH	HARED RID	E PROG	RAN	IS	Subcategory: Park and Ride Lots				
CMAQ Project	ID: WI20000	034, WI20	0000	035	Project Year: 2000				
Location: Sou					MPO: Southeastern Wisconsin RPC				
			Cree	ek Lot - These	e are two out of a group of three park and ride lots being				
					oup of four candidate sites recommended in the Regional				
					ts are designed to encourage carpooling and use of existing				
public transpor	rtation.								
TRAVEL IMPA	NCTS								
Δ Vehicle trips:	0				/ASSUMPTIONS:				
ΔVMT:	- 3,600)/day			ces constructed for all 3 lots, average occupancy of 40%, and				
∆Speed:	NA	1			ay commute of 10 miles. Lot-specific calculations were not				
Δ Delay:	NA	ł	conc	lucted.					
ΔSOV	NA	ł							
ΔCP/VP	NA	ł			tion = 450 spaces * 40% utilization rate = 180 vehicle trips per				
∆Transit	NA	A	day	(zero change	in trip starts).				
Δ Walk	NA	Ą							
∆Bike	NA	ł	VMT reduction = 180 vehicle trips reduced * 20 mile roundtrip length = 3,600 daily VMT reduced.						
EMISSIONS									
Δ VOC	- 1.52 k	g/day	MET	HODOLOGY	/ASSUMPTIONS:				
ΔNO_X	- 3.81 k	g/day							
ΔCO	NA	Ą	Emissions reductions were calculated by multiplying VMT reduction by per-						
ΔPM_{10}	NA	Ą	emis	sions factors	for a typical summer day, based on MOBILE.				
$\Delta PM_{2.5}$	NA								
∆Total	- 5.33 k	ig, aa j	Assı	umes speed =	35 mph.				
COSTS	(0.0059	7 (pu)							
0313				Droi	ect life: 12 yrs Interest rate: 7 %				
	CMAQ	NON-		TOTAL	ect life:12yrs Interest rate:7% METHODOLOGY/ASSUMPTIONS:				
	CIVIAU	CMAC		TOTAL					
Capital	\$48,000	\$0	د	\$48,000	CMAQ cost of \$24,000 per lot was listed in documentation				
Adm/oper	\$0	\$0		\$0	provided by State and FHWA CMAQ database (cost noted				
Total	\$48,000	NA		\$48,000	here is for two lots listed in CMAQ database for FY 2000).				
Total annualize	ed public		NA	ł	Cost-effectiveness was not provided by sponsor. In order to				
cost:					calculate cost-effectiveness, assume the project has				
Annual revenu	es:		Nor	ne	benefits 250 days per year for 20 years. Cost should be				
Net public cost	t:		\$48,0	000	scaled up to reflect full cost of all three park and ride				
Annual private			NA fa		facilities – assume \$72,000 (\$24,000 x 3).				
Total net cost			\$48,(000					

NOTE: Calculated emissions reductions are based on all three park and ride lots, although separate CMAQ projects were listed only for these two park and ride lots in FY 2000. Travel calculation assumes that all users of the park and ride facility previously were driving alone (no adjustment to account for share of users who previously carpooled, unless that is somehow incorporated into the utilization factor).

Category: S	SHARED F	RIDE PI	Rogran	ЛS	Subcategory: Park and Ride Lots				
CMAQ Proje	ct ID: MD20	020001			Project Year: 2002				
Location: Ma					MPO: Washington Metropolitan Council of Governments				
		MD 37	3 500-Spa	ace Lot - Repla	ace/expand existing park and ride facility at MD 210 / MD 373				
by adding 50	0 spaces.			•					
TRAVEL IMP	ACTS								
Δ Vehicle trips	S:	0	METHO	DOLOGY/AS	SUMPTIONS:				
ΔVMT:	- 5,3	93/day	_						
Δ Speed:		NA	Vehicle	trip reduction	= 500 parking spaces * 56% utilization rate * 45% new riders				
Δ Delay:		NA	= 126 v	ehicle trips red	luced per day (zero change in trip starts).				
ΔSOV		NA							
ΔCP/VP		NA			vehicle trips reduced * 42.8 mile round trip = 5,393 vehicle				
∆Transit		NA	miles re	educed per day	<i>.</i>				
Δ Walk		NA							
∆Bike		NA			d the percentage of new riders were determined from rk and ride lots.				
EMISSIONS			<u> </u>						
Δ VOC	- 1.	375	METHODOLOGY/ASSUMPTIONS:						
	kg/	day	Emissions reductions were calculated by multiplying VMT reduction by per-mile						
ΔNO_X	- 5.	889	emissio	emissions factors. Emissions were calculated based on 2005 (year of service					
	kg/	day	opening) emissions factors developed for Baltimore region based on Mobile model.						
Δ C0	<u> </u>	A	Assumed running speed is 50 mph, based on posted speed limit.						
ΔPM_{10}	N	A							
$\Delta PM_{2.5}$	N	A	VOC Emissions Factor: 0.255 grams/mile						
∆Total	- 7.	264	NOx Er	NOx Emissions Factor: 1.092 grams/mile					
	kg/	day							
	(0.008	01 tpd)							
COSTS									
	I				ct life: 12 _ yrs Interest rate: 7%				
	CMAQ		NON-	TOTAL	METHODOLOGY/ASSUMPTIONS:				
			CMAQ						
Capital	\$1,218,8	31	\$0	\$1,218,831	Cost-effectiveness was not provided by sponsor. In order to				
Adm/oper	\$0		\$0	\$0	calculate cost-effectiveness, assume the project has				
Total	\$1,218,8	31	\$0	\$1,218,831	benefits 250 days per year for 12 years.				
Total annuali cost:	zed public		\$180),050					
Annual reven			Nc	one	4				
Net public co				IA	4				
Annual privat				IA IA	4				
				IA IA	4				
Total net cost			IN	л					

NOTE: In the CMAQ database, this project appears to have been improperly listed as in the Pedestrian/Bicycle category. Current Maryland State Highway Administration web site shows MD 210 @ MD 373 (Aceokeek) park and ride lot contains 489 spaces.

Category: S	SHARED F	ide pi	Rogra	MS	Subcategory: Park-and-Ride Lots						
CMAQ Project		50012			Project Year: 2005						
Location: Uni					MPO: Ohio-Kentucky-Indiana Regional COG						
				Snaces - This	project is the continued expansion and development of park-						
					sit routes in Boone, Kenton, and Campbell Counties.						
					e, adding bike parking racks, providing information kiosks, and						
updating Parl	k & Ride br	chures	Acquisi	itions of a new s	site for a new lot will provide approximately 200 new parking						
					expansions will attract more riders to the system; thereby						
					missions, improving air quality, and reducing congestion.						
TRAVEL IMP		J		1 ' 5							
Δ Vehicle trips		0	METH	ODOLOGY/AS	SUMPTIONS:						
ΔVMT:		0 /day	# of pa	arking spaces a	t 1 lot = 200						
Δ Speed:		IA		tion rate = 60%							
Δ Delay:		IA	Avera	ge round-trip dis	stance = 32 miles						
ΔSOV		A	1								
$\Delta CP/VP$		A			parking spaces x 60% utilization rate x 2 trip lengths						
∆Transit	1	A	reduce	ed/day x 16 mile	e round trip = 3,840 vehicle miles reduced per day.						
Δ Walk	1	A									
∆Bike	1	IA									
EMISSIONS											
Δ VOC	- 0.88 k	g/day	METH	ODOLOGY/AS	SUMPTIONS:						
ΔNO_X	- 3.19 k	/ /	Emissions reductions were calculated by multiplying VMT reduction by per-mile emissions								
∆ C0	- 33.83 k	g/day	factors.								
ΔPM_{10}	NA	0 1	Emissions factors based on local 2003 parameters, using MOBILE6 model. Assumes								
$\Delta PM_{2.5}$	- 0.12 k	g/day	running speed is 41 mph (Weighted average running speed = 41 mph using OKI Travel								
∆Total	- 4.0	7	Forecasting Model).								
	(0.0044	tpd)	VOC Emissions Factor: 0.23 grams/mile								
			NOx Emissions Factor: 0.83 grams/mile								
				CO Emissions Factor: 8.81 grams/mile							
COCTC		_	PM2.5	Emissions Facto	r: 0.03 grams/mile						
COSTS				Droio	at life 10 yrs Intersect rate 7 0/						
	CMAO	Ν		Projec TOTAL							
	CMAQ		ion- Maq	TOTAL	METHODOLOGY/ASSUMPTIONS: Land Acquisition: \$711,000						
Capital	\$844,800		11,200	\$1,056,000	Construction: \$325,000						
Adm/oper	\$044,000 \$0	φΖ	\$0	\$1,050,000	Marketing and Outreach: \$20,000						
Total	\$844,800	\$2	<u>پو</u> 11,200	\$1,056,000							
Total annuali		ΨΖ		3,695	Future operating expenses will be funded through local						
COSt:			φ14	J ₁ U7J	revenue source and fare revenue. Cost-effectiveness was						
Annual reven	IIPS.		N	one	not provided by the project sponsor.						
Net public co				56,000							
Annual privat				NA							
Total net cos				56,000							
		$\varphi_1, 0$	00,000								

NOTE: The emissions reductions reported for VOC and PM2.5 in the documentation are slightly different from the amounts calculated using the methodology reported (-1 VOC, No Data $PM_{2.5}$).

Category:	SHA	RED RI	DE	PROGRAM	IS	Subcategory: Park and Ride Lots			
	oot ID		100		0025	Draiget Vegr. 2005			
	CMAQ Project ID: WA20010004, WA20050035 Location: Seattle, Washington					Project Year: 2005			
					on Trancfa	MPO: Puget Sound Regional Council er Lot to 880 Spaces - This project will fund the construction			
						an existing park-and-ride lot located at I-5 and 236th Street			
						from 388 to 880 spaces. Improvements will also be made to			
						iting, bicycle racks, and security features. The Terrace Station			
						the University of Washington, for an average one-way			
distance of						j <u>j</u> j			
TRAVEL IN	IPAC	ΓS							
Δ Vehicle tri	ps:	0		METHODO	LOGY/AS	SUMPTIONS:			
ΔVMT:		- 8,85	6	VMT reduc	tions were	calculated using a 12 mile average one-way trip distance from			
		/day		the lot to a	final destin	ation and the number of additional parking stalls added (492).			
Δ Speed:		NĂ							
∆Delay:		NA		5		= 492 spaces x 75% utilization x 12 miles one-way trip length x			
∆sov		NA		2 trips = 8,	856 VMT re	eduction).			
ΔCP/VP		NA							
∆Transit		NA							
Δ Walk		NA							
∆Bike		NA							
EMISSION									
Δ VOC		3.0 kg/da		METHODOLOGY/ASSUMPTIONS:					
ΔNO_X		.0 kg/da	,			calculated using the TCM Tools program created by Parsons			
ΔCO	- 14	5.0 kg/da	ay			Research in 1994, which applies project data to MOBILE			
ΔPM_{10}		NA				regional data to produce the emissions reductions for CO,			
$\Delta PM_{2.5}$	0	NA		VOCs, and NOx.					
∆Total		7.0 kg/da							
COSTS	(0	.030 tpd))						
0313						roject life:30 yrs Interest rate:7%			
	C	MAQ	NI	ON-CMAQ	TOTAL	roject life:30 yrs Interest rate:7% METHODOLOGY/ASSUMPTIONS:			
Capital		.15 M		\$15.85 M	\$20 M	CMAQ funding for this project was \$865,000 for			
Adm/oper		\$0		\$0 \$0	\$20 IVI \$0	WA20010004 and \$3,285,000 for WA20050035 in the			
Total	¢1	"о .15 М	4	\$15.85 M	\$20 M	CMAQ database. (For a total of \$4.15M.)			
Total annua				\$1,742,0					
cost:	anz.cu	Public		Ψι,/ͲΖ,		The Total Project Cost is estimated as \$20,000,000. Other			
Annual reve	nues			None		funds in the project include other Federal and State/local			
Net public of				\$20 N		funds besides CMAQ. Cost-effectiveness was not provided			
Annual priv		ost		NA NA		by the project sponsor.			
Total net co				\$20 N	1				

NOTE: It is unclear how old the emissions factors used for this project are.

Category: TI	RAVEL DEM	iand ma	ANAG	GEMEN	Subcategory: TDM			
CMAQ Project	t ID: CO2001	0042				Project Year: 2001		
Location: Denver, Colorado						MPO: Denver Regional COG		
						pject funds a free telework consulting service for employers in program provides consultations, design, implementation,		
TRAVEL IMP	ACTS							
Δ Vehicle trips	: - 16,	031	METH	ODOLC)GY/A	ASSUMPTIONS:		
	/we	ek V	/ehicl	e trip re	ductio	on = 87,127 employees at companies with a telework program		
ΔVMT:	- 223	,413 >	(0.05	, percent	tage o	of employees that telework x 1.84 average days per week that		
	/we					k instead of commute x 2 = $16,031$ vehicle trips reduced		
∆Speed:	N		veekly			•		
∆Delay:	N	Ą	5					
ΔSOV	N	۹ ۱				7,127 employees at companies with a telework program * 0.05		
ΔCP/VP	N	A K	bercer	ntage of	empl	loyees that telework * 26 mile average trip distance * 1.84		
∆Transit	N		average days per week that employees telework instead of commuting = 223,413					
Δ Walk	NA		weekly VMT reduction.					
∧Bike	N	Ą						
EMISSIONS								
Δ VOC	- 2.0 kg/d	ay MI	ETHO	DOLOG	SY/AS	SSUMPTIONS:		
ΔNO_X	- 2.0 kg/d	-	Emissions reductions ca			s calculated using 2006 MOBILE6 factors.		
ΔCO	- 14.0 kg/c	-				Ŭ		
ΔPM_{10}	NA							
$\Delta PM_{2.5}$	NA							
∆Total	- 4 kg/da	V						
	(0.0044 tp	2						
COSTS		· 1						
					Proj	ject life: NA yrs Interest rate: 7 %		
	CMAQ	NON	-	TOT	AL	METHODOLOGY/ASSUMPTIONS:		
		CMAG	C			Assumes 240 work days per year.		
Capital	\$0	\$0		\$0				
Adm/oper	\$73,000	\$18,25	50	\$91,2	250			
Total	\$73,000	\$18,25	50	\$91,2	250			
Total annualiz	zed public		\$91,2	250]		
cost:	•							
Annual reven	ues:		Non	ne]		
Net public cos	st:		\$91,250]		
Annual private			NA	١]		
Total net cost			\$91,2	250				

Category:	TRAV	/EL DEN	MAND	MANA	GEMENT	Subcategory: TDM				
	act ID:	DC2002	0006	VA 2002	0072	Project Year: 2002				
CMAQ Project ID: DC20020006, VA 20020072 Location: District of Columbia					0072	MPO: Metropolitan Washington COG				
				Bicycle	s - This proje	ect provides information to businesses to encourage their				
						employer would include: a list of maps and other resources;				
						ons of bicycle parking types and rack vendors; information on				
						of a person or organization that would teach classes on				
						r questions on a range of subjects. The overall project and				
						nmuter Connection activities.				
TRAVEL IM										
Δ Vehicle trip	DS:	- 125 /	day	METHC	DOLOGY/AS	SUMPTIONS:				
∆VMT:		- 500 /	,	Assume	es 7% of all en	nployers contacted will participate in the program, with 3.5%				
∆Speed:		NA	4	promoti	ng biking as a	part of their voluntary program. Assumptions based on M-				
$\Delta Delay:$		NA		47c ana	ilysis assumpt	tions.				
∆sov		NA								
ΔCP/VP		NA		3580 er	nployers * 7%	participation = 251 new employer participants.				
∆Transit		NA		•						
Δ Walk		NA		Assumes 2% of the employees at those firms will participate; 31 employees will						
∆Bike		NA		participate. Assumes a 4 mile average trip length and 2 trips per day.						
EMISSIONS	S									
Δ VOC	- 1	l.0 kg/da	у	METHODOLOGY/ASSUMPTIONS:						
ΔNO_X	- 1	1.0 kg/da	у	Used MOBILE6 emissions factors.						
Δ CO		Kg		Measurement of air quality impacts used modeling assumptions of measure M-47c						
ΔPM_{10}		NA		"Employ						
$\Delta PM_{2.5}$		NA								
∆Total		.0 kg/day								
	(0.	.0022 tpc) (t							
COSTS										
						ect life: _1_ yrs Interest rate:7_%				
	C	CAM		ON-	TOTAL	METHODOLOGY/ASSUMPTIONS:				
Capital		¢0			¢∩	Assumes benefits 250 days/year.				
Capital Adm/opor	¢	<u>\$0</u> 0.000		\$0	\$0 \$15,000					
Adm/oper Total		9,000 9,000		000 0,000	\$15,000					
Total annua		•	ψ	•						
cost:	nzeu p	UDIIC		\$15,000						
Annual reve	nues			Nor	าค					
Net public c				None \$15,000						
Annual priva		st		<u>۱۵,</u>						
Total net cos		-		\$15,0						

NOTE: Project costs in CMAQ database do not match with total costs due to how project costs are categorized by DC, Maryland, and Virginia. According to the Commuter Connections annual work program for 2002, the total cost is \$15,000 (\$5,000 from each jurisdiction). DC uses 100% CMAQ funds; VA uses 80% CMAQ, 20% other funds; and MD uses100% other funds.

Category:	TRAV	EL DEN	IAND	MANA	GEMENT	Subcategory: TDM					
CMAQ Proje	ct ID: I	DC2005	0008			Project Year: 2005					
Location: Di						MPO: Metropolitan Washington COG MPO					
				ome (Gl	RH) - This proc	ogram is an added incentive to employers and employees					
participating ir	n the C	ommuter	Conne	ctions pro	ides the security of a ride home in the event of an emergency,						
					m provides up to four free rides home per year in a taxi or rental car						
						at least two days per week. Since a sizeable portion of GFH					
						H benefits, the most common benefit of GRH may be the continuation					
						nsportation and emissions impacts of the GRH program were ng of 2004, which polled 1,000 commuters who had registered for					
						ked detailed questions regarding commute patterns, the permanence					
						n to commuters' decisions to start/continue use of alternative modes.					
TRAVEL IMF	PACTS	ò									
Δ Vehicle trip:	S:	- 12,350) /day	METH	IODOLOGY/A	ASSUMPTIONS:					
Δ VMT:		- 348,28	3/day	Based	d on surveys,	, new participants were grouped into those who work and live					
∆Speed:		NA	۱			ropolitan Statistical area (11,574) and those who work within					
Δ Delay:		NA	١			outside (2,245). For those living within the MSA, assume 0.91					
∆sov		NA	١			ed per new participant and a 28.2 mile one-way trip length. For					
ΔCP/VP		NA	١		participants living outside the MSA, assume a 0.81 vehicle trip reduction per new						
∆Transit		NA	٩	participant and a 28.2 mile one-way trip length within the MSA.							
Δ Walk		NA	١	V a la la la	Vehicle trips reduction = (11,574 participants * 0.91 VTR per new participant) +						
∆Bike		NA	٩								
				(2,243	(2,245 participants * 0.81 VTR per new participant) = 12,350 trips reduced/day.						
				VMT reduction = 12,350 VTR * 28.2 miles one-way trip length = 348,283 miles							
				reduced per day.							
EMISSIONS											
Δ VOC		.25 kg/da	av	METHO	DOLOGY/AS	SSUMPTIONS:					
ΔNO_X		5.82kg/d				is calculated using Mobile6.					
ΔCO		NA				3					
ΔPM_{10}		NA									
$\Delta PM_{2.5}$		NA									
∆Total	- 3	12 kg/da	у								
COSTS											
					Proje	pject life: yrs Interest rate:7_%					
	CI	MAQ	N	ON-	TOTAL	METHODOLOGY/ASSUMPTIONS:					
			CN	JAQ							
Capital		\$0		\$0	\$0	Cost-effectiveness was not provided by the project sponsor.					
Adm/oper	\$77	72,110	\$90	6,390	\$1,678,500						
Total		72,110		6,390	\$1,678,500						
Total annuali	ized pi	ublic cos	t:	\$1,6	78,500						
Annual rever	nues:			None							
Net public co				\$1,6	578,500						
Annual priva	te cost	t			NA						
Total net cos				\$1,6	78,500						
NOTE Project costs in CMAO data				aco do po	t match with to	total costs due to how project costs are categorized by DC.					

NOTE: Project costs in CMAQ database do not match with total costs due to how project costs are categorized by DC, Maryland, and Virginia. According to the Commuter Connections annual work program for 2005, the total cost is \$1,678,500 for (\$167,850 from DC; \$755,325 from Maryland; \$755,325 from Virginia). DC uses 100% CMAQ funds; VA uses 80% CMAQ, 20% other funds; and MD uses100% other funds. Results are based on survey data but appear to be quite large for a GRH program when considered independently from other regional TDM outreach elements that are quantified separately.

Category: TR	AVEL DEM	and N	ANAG	EMENT	Subcategory: TDM				
CMAQ Project					Project Year: 2005				
Location: Rhoo					MPO: Rhode Island State Planning Council				
		iys - Th	is progr	ram informs th	e public when ground level ozone will reach unhealthy levels				
					ng on those days. It is an effort by the State to develop public				
information exp	laining the re	lationsh	ip betw	een transporta	ation and air quality. The free transit program is only				
implemented or	n days when	ground	level oz	one will reach	unhealthy levels; in FY 2005, the program was implemented				
on 4 days.									
TRAVEL IMPA	CTS								
Δ Vehicle trips:	- 2,509	/day			ASSUMPTIONS:				
Δ VMT:	- 21,875	5/day	Utiliza	ation rates det	ermined from existing ridership. (60,207 persons/day)				
\triangle Speed:	NA			50/1	· · · · · · · · · · · · · · · · · · ·				
Δ Delay:	NA				ase in ridership on ozone alert days. (This increase is based				
\triangle SOV	NA				tically valid review). There were 4 ozone alert days in FY 2005 $\frac{1}{2}$				
Δ CP/VP	NA		(00,2	07 persons/da	y $*5\% = 3,010$ persons/day increase for 4 days).				
∆ Transit	+ 3,0		Daily	vehicle trin re	duction = 3,010 persons/day \div 1.2 persons/vehicle = 2,509				
A 14/11	persons			les/day reduce					
\triangle Walk	NA		Verne		ум.				
∆ Bike	NA	L .	Assumes average round trip distance = 8.72 miles						
			Daily VMT reduction = 2,509 daily vehicle reduction * 8.72 miles = 21,875 daily						
			VMŤ	VMT removed.					
EMISSIONS									
Δ VOC	- 23.0 kg/c		METHODOLOGY/ASSUMPTIONS:						
ΔNO_X	- 26.5 kg/c				were calculated by multiplying VMT reduction by per-mile				
∆C0	- 251.3 kg/	j	emissions factors.						
ΔPM_{10}	NA		Assumes speed = 35 mph.						
△PM _{2.5}	NA		NOTE: Emissions reduction only is for 4 days.						
Δ^{Total}	- 49.5 kg/c	a g	NUTE:	EIIIISSIOIISTeu	luction only is for 4 days.				
00000	(0.05 tpc	1)	_						
COSTS			Drojact	Life 1 year	r Interact rate: 7 0/				
	CMAQ		Project CMAQ	Life: <u>1 year</u> Total	r Interest rate:7%				
Capital	\$0		0	\$0	IVIL ITTODULUUT/ASSUIVIETTOINS.				
Capital Adm/oper	\$0 \$168,000		0	\$0 \$168,000	Calculations apply to 1 year of operating costs and				
		-			emissions reductions. Note that to calculate annual				
Total	\$168,000	\$	\$0 \$168,000 \$168,000		emissions reductions, the daily total should be multiplied by				
Total annualize	u public		\$168	,000	only 4 (since effects are estimated only for episode days).				
cost: Annual revenue)C'		Mo	no					
Net public cost:			No \$168						
Annual private			<u>۱۵۵ چ</u> N						
	2021		\$168						
I UTAI TIEL CUST	Total net cost			,000					

NOTE: This project is listed in CMAQ database under the "Transit" category since it largely involves transit fares.

Category: I	BICYCLE/PE	DESTRIAN		Subcategory: Bicycle Pedestrian			
CMAQ Proje	ect ID: MA2002	20040		Project Year: 2002			
Location: Sv	wansea, Mass	achusetts		MPO: Southeastern Regional Planning and Economic Development District			
future link be	etween the Tai	unton River Tra	il and the East I	wansea bike path project forms an essential part of the Bay Trail in Rhode Island. The proposed route along Old with a few bicycle path segments.			
TRAVEL IMP							
Δ Vehicle trip	s: -212/		DOLOGY/ASS				
ΔVMT:	- 633			kers in service area x 1.0% bicycle commuting mode share			
∆Speed:	NA			on-work trips = 67 one-way trips			
∆Delay:	NA			θ one-way work trips + 67 one-way non-work trips) x 2 = 212			
∆sov	NA	daily tri					
ΔCP/VP	NA			half the length of the bike facility.			
∆Transit	NA			(2 x 39 one-way trips) + (2 x 67 one-way trips) * (0.5 x 8.3			
Δ Walk	NA	miles fa	acility length) = 6	533 daily VMT reduction			
∆Bike	+ 1.(facility ar the common househol The Bicy	Work trips were calculated by estimating a 1 mile service area radius around the length of the 8.3 mile facility and then calculating the proportion of the total land of the community, the total population of the community, the number of households in the community, and the number of workers per household that would be served. The Bicycle Commuting Mode Share was estimated using the population density for the service area and a "Percent Bike Use for Commuting" table published by MassHighway Planning Department.				
EMISSIONS							
ΔVOC	- 0.5 kg/da	iy METHC	METHODOLOGY/ASSUMPTIONS:				
ΔNO_X	- 1.1 kg/da	iy Emissio	ons factor calcul	ated from MOBILE5A, using 35 mph average commuter			
ΔCO	- 3.0 kg/da	iy travel s	travel speed.				
ΔPM_{10}	QÂ	VOC er	VOC emissions factor = 0.819 g/mile				
$\Delta PM_{2.5}$	NA		NOx emissions factor = 1.672 g/mile				
∆Total	-1.6 kg/da	y Summe	er CO emissions	s factor = 5.096 g/mile			
COSTS							
	-			t life:15 yrs Interest rate:7%			
	CMAQ	NON-	TOTAL	METHODOLOGY/ASSUMPTIONS:			
		CMAQ		Assumes benefits 200 days/year.			
Capital	\$639,008	\$660,902	\$1,300,000				
Adm/oper	\$0	\$0	\$0	Cost-effectiveness was provided by the project sponsor,			
Total	\$639,008	\$660,902	\$1,300,000	but calculated only on first year costs (not annualized).			
Total annual	ized public	\$16	7,471				
cost:							
Annual rever			one				
Net public co	ost:	\$1,30	00,000				
Annual priva			A				
Total net cos	st	\$1,30	00,000				

NOTE: A qualitative analysis for CO is listed for this project in the CMAQ database. However, a quantitative emissions reduction calculation for CO was provided by the State sponsor.

Category: B	ICYCLE/PEI)FSTR		ACII ITIES	Subcategory: Bicycle/Pedestrian				
0,3	ct ID:IN20050				Project Year: 2005				
Location: Inc		009			MPO: Michiana Area COG				
		Dath to	Dinho	ok Dark Droi	ect constructed phase 1 of the Riverside Trail, a paved bike path				
					begin early in 2008 and will complete the trail north to Darden Road				
					liana 933. When completed, the trail system will run 4.3 miles and				
					n of the city to access the downtown business district via				
connections with the East Race Walkway. It also provides pedestrians easier access to educational facilities at the Univers									
	Notre Dame and Indiana University South Bend using the River North Bikeway/Walkway.								
TRAVEL IMPACTS									
Δ Vehicle	- 83 /day (w				//ASSUMPTIONS:				
trips:	in-seas	1			I on guidance "Estimating the Effect of Bicycle Facilities on VMT and				
Δ VMT:	-249/day (w				d by the Seattle Engineering Department. Documentation notes				
	in-seas	on)	unce	enainty and dim	iculty in estimating new bicycle riders.				
Δ Speed:	NA		Assi	ume new bicycle	e riders equivalent to 1% of current drive alone workers in				
∆Delay:	NA				s tracks: 8,939 drive alone commuters $x 1\% x 2$ trips each = 179				
∆SOV	NA		new	bicycle trips div	verted from driving.				
ΔCP/VP	NA				uters divert 65% of the time: 179 bicyclists x .65 = 116 average new				
∆Transit	NA			trips per day du					
Δ Walk	NA			eased autos = ced per day du	116 new bike trips / 1.4 passengers per vehicle = 83 vehicle trips				
∆Bike	+ 116 trip				rage trip length: Decreased VMT = 83 vehicle trips reduced x 3 mile				
		(weekudy, iii-							
	seaso	n)		0 . 0					
			Assu	umes seasonal	use: 6 months per year.				
EMISSIONS	- 1								
Δ VOC (HC)	- 0.37 kg/	1	ЛЕТНС	DOLOGY/AS	SSUMPTIONS:				
ΔNO_X	- 0.45 kg/								
ΔCO	- 2.65 kg/				om MACOG's Conformity Analysis from the Mobile 5A model				
ΔPM_{10}	NA	١	with yea	ar 2000 socioe	economic data were used.				
$\Delta PM_{2.5}$	NA								
∆ _{Total}	- 0.82 kg/								
00070	(0.00090	tpd)							
COSTS				Drat	est life. 15 une listerest rate. 7 0/				
	CMAO		NI		ect life:15yrs Interest rate:7%				
	CMAQ	NO CM		TOTAL	METHODOLOGY/ASSUMPTIONS:				
Capital	\$1,600,000	\$ 400,0		\$2,000,000	Estimated seasonal use is 132 days each year (6 months				
Adm/oper	0	() () () () () () () () () ()		0	per year x 22 days per month). Multiple daily figures by 132				
Total	\$1,600,000	\$ 400,0	000	\$2,000,000	to get annual emissions effects.				
Total annuali			\$237						
cost:			Ψ201	1002	The total project cost for phases I and II will be \$3,500,000.				
Annual reven	ues:		No	ne	CMAQ funding for Phase II will be \$1,200,000 with an				
Net public co			\$2,000		additional \$300,000 local match.				
Annual privat			N		In order to calculate cost-effectiveness, assume the project				
Total net cost			\$2,000		life is 20 years.				
				•	1				

NOTE: Although project methodology and assumptions are well documented in an analysis report, the presentation of the calculation varies slightly from what is presented above. The calculation steps provided by the project sponsor were reordered to make the results clearer. In the reported evaluation, the results are presented in annual figures and order of steps differs.

Category: BICYCLE/PEDESTRIAN FACILITIES							Subcategory: Bicycle Pedestrian		
CMAQ Project ID: Not Yet Assigned						Project Year: 2006			
Location: F	Fort Co	llins, Colo	orado				MPO: North Front Range MPO		
Description	: Cons	truction	of a 🛛	Fransit B	ike Dep	oot - T	his project will fund the construction of a secure bicycle		
parking faci	lity wh	ich will er	ncoura	age the u	se of bi	cycling	g trips for work and to everyday destinations. The bike depot		
							provide rentals, repairs, maintenance and safety information,		
restrooms and changing areas, bus pass sales, and other services geared toward bicyclists and transit user									
site may host community events and contain a small cafe or retail business in the future; the facility's location would provide easy access to other multi-modal connections.									
			er mu	lti-modal	connec	tions.			
TRAVEL IN			1	METUC		0)////			
Δ Vehicle trip	ps:	- 120 /					SUMPTIONS:		
ΔVMT :		- 480 /					e of 160 average total daily trips by bicycle.		
\triangle Speed:		NA					ion of users that formerly commuted by SOV is 0.75.		
Δ Delay:		NA		ASSUME	es avera	age of	e-way trip distance is 4 miles.		
∆SOV		NA		Daily vo	hicla tri	in rodu	uction = $160 \times 0.75 = 120$ vehicle trips reduced daily.		
$\Delta CP/VP$		NA					= 160 added participants x 0.75×4 miles = 480 daily miles		
∆Transit				reduced.					
Δ Walk				1000000	••				
∆Bike	<u></u>	NA			_	_			
EMISSIONS		072 4.01	1011						
Δ VOC		9072 kg/c		-			SUMPTIONS:		
ΔNO_X		9072 kg/c		Average Fort Collins Network Vehicle speed is 25.4 mph. Emissions reductions calculated by multiplying VMT reduction by vehicle emissions					
\triangle CO \triangle PM ₁₀	- 0.0	6768 kg/c NA	lay	VOC emissions reduction = $480 \text{ VMT x } 0.00189 \text{ kg/mile} = 0.9072 \text{ kg/day}$					
		NA		NOX emissions reduction = 480 VMT x 0.00189 kg/mile = 0.9072 kg/day					
$\Delta PM_{2.5}$ $\Delta Total$	1 (3144 kg/c	101/				ion = 480 VMT x 0.01391 kg/mile = 6.6768 kg/day		
		020000 t		0000					
COSTS	(0.0	020000 l	pu)	I					
00010						Proi	ect life:6 yrs Interest rate:7%		
	(CMAQ	Ν	ION-	TOT		METHODOLOGY/ASSUMPTIONS:		
				MAQ			Project assumes benefits 252 days per year and a total		
Capital	\$	63,910		36,090	\$600	,000	project life of 6 years.		
Adm/oper		\$0		\$0	\$(
Total	\$	63,910	\$53	36,090	\$600		2 measures of cost-effectiveness were reported:		
Total annua	alized p	oublic		¢101	707		Total Program Cost-Effectiveness (kg/\$)		
cost:	<u> </u>			\$131,	171		CMAQ Cost-Effectiveness (kg/\$)		
Annual reve	Annual revenues: None			ne					
Net public c	cost:			\$600,	000				
Annual priva		st		NA					
Total net co	ost			\$600,	000				

NOTE: The State provides a spreadsheet that automatically calculates emissions reductions, based on several set assumptions, as well as assumptions entered by the MPO.

Category:	BICY	CLE PE	DEST	rrian p	ROJECTS	Subcategory: Bicycle Pedestrian				
CMAQ Proje	ect ID:	Not Vet	Δεείαι	ned		Project Year: 2007				
Location: N			hssiyi	icu		MPO: New York Metropolitan Transportation Council				
			FT M	arketing	Program - Th	his project will fund the creation of NYCyclistNet, a Web-based				
						ng tour maps, and an interactive routing system. NYCyclistNet				
						vell as to find up-to-date bicycle parking information and				
download a series of bicycle tours of the city from the Internet. The project will also provide City bike planne										
collect and analyze information about the bicycle network and improve system performance.										
TRAVEL IM	TRAVEL IMPACTS									
Δ Vehicle trip	DS:	- 902 /	day			SSUMPTIONS:				
Δ VMT:		- 3,608	/day			diverted bike trip is 4 miles and the number of daily bike users				
Δ Speed:		NA		in NYC	increases fror	m 120,000 before the project to 121,200 after implementation.				
Δ Delay:		NA				1.000				
∆SOV		NA		Auto trip	preduction =	1,200 new riders / 1.33 average vehicle occupancy = 902.				
∆CP/VP		NA		Evicting	AADT for off	acted readways in all five beroughs is 142,000. Calculate the				
∆Transit		NA			Existing AADT for affected roadways in all five boroughs is 143,900. Calculate the decrease in AADT after implementation = 1,200 new bike users / 1.33 average					
Δ Walk		NA		vehicle occupancy / 0.627 short trip factor/ 0.01 diversion factor = 142,998.						
∆Bike		NA		Vornoro						
				VMT ree	duced = 902 t	rips reduced * 4 mile trip = 3,608 miles.				
EMISSIONS	5									
Δ VOC	- 2.	37 kg/da	ıy	METHC	DOLOGY/AS	SSUMPTIONS:				
Δ NO _X	- 1.	96 kg/da	iy	Emissions reductions calculated using the CMAQtraq program developed by						
∆ CO		.43 kg/da		NYSDOT using the "BikePed Bikeway" module. Running emissions factors were						
ΔPM_{10}		482 kg/d	4	used at 25 mph in each of the boroughs of New York City. Analysis assumes 19						
$\Delta PM_{2.5}$		426 kg/d	4	work days per year.						
Δ Total	- 4.	33 kg/da	ıy							
COSTS										
00010					Proi	ect life:10 yrs Interest rate:7_%				
	С	MAQ	Ν	ION-	TOTAL	METHODOLOGY/ASSUMPTIONS:				
			С	MAQ						
Capital	\$0		\$0		\$0	The project will be funded and implemented over four years				
Adm/oper	\$2.4	1 M	\$600	0,000	\$3.0 M	(FY2007 – 2010). The total project life is 10 years and				
Total	\$2.4	1 M	\$600	0,000	\$3.0 M	assumes benefits 190 work days per year.				
Total annua	lized p	ublic		\$434,	800					
cost:										
Annual reve				Nor						
Net public c				\$3.0						
Annual priva		t		N/						
Total net cost \$3.0 M					M					

Category: T	RANSIT IM	PROVEM	ENTS		Subcategory: New Bus Services				
CMAQ Project		0004			Project Year: 2001				
Location: Ra					MPO: Milwaukee-Racine				
			day Rus	Sorvico	- This project will expand the current bus service in the City				
					ected that service would run from 8 AM to 4 PM, and would be				
					an hourly basis, using nine buses. Morning trips would focus				
on church-rel	ated activities	and aftern	oon trins	on shon	ning and social activities				
on church-related activities and afternoon trips on shopping and social activities. TRAVEL IMPACTS									
Δ Vehicle trips		y (Sunday	METHO		GY/ASSUMPTIONS:				
		only)							
ΔVMT:		NA	Assum	es that 9	new bus trips per vehicle hour will be generated on the new				
∆Speed:		NA			ould replace drive alone trips.				
Δ Delay:		NA	1						
ΔSOV		NA	Vehicle	trip red	uction = 9 new bus trips per vehicle hour x 8 hours of service				
ΔCP/VP		NA	= 72 tri	ps reduc	ced each Sunday.				
∆Transit	+ 7	2/day							
	(St	unday)							
Δ Walk		NA							
∆Bike	∆Bike NA								
EMISSIONS									
Δ VOC	- 2.9 kg/d	ay ME	THODOL	OGY/AS	SSUMPTIONS:				
Δ NO _X	- 3.2 kg/d								
Δ CO	NA				s were calculated by multiplying VMT reduction by per-mile				
ΔPM_{10}	NA	em	issions fa	ctors for	a typical summer day, based on MOBILE.				
$\Delta PM_{2.5}$	NA								
Δ Total	-6.1 kg/d	ау							
COSTS	l								
00010									
00010				Proi	ect life: 1 yrs Interest rate: 7 %				
00010	СМАО	NON-	T(Proj DTAL	ect life:1yrs Interest rate:7% METHODOLOGY/ASSUMPTIONS:				
	СМАQ	NON- CMAC							
Capital	CMAQ \$0		<u>)</u>						
		CMAC	<u>)</u>	DTAL	METHODOLOGY/ASSUMPTIONS: Cost-effectiveness was not provided by sponsor. In order to calculate cost-effectiveness, assume the project has				
Capital	\$0	CMAC \$0	2 5 \$19	DTAL \$0	METHODOLOGY/ASSUMPTIONS: Cost-effectiveness was not provided by sponsor. In order to calculate cost-effectiveness, assume the project has benefits 52 days per year, since emissions reductions were				
Capital Adm/oper	\$0 \$157,382 \$157,382	CMAC \$0 \$39,34 \$39,34	2 5 \$19	DTAL \$0 96,727	METHODOLOGY/ASSUMPTIONS: Cost-effectiveness was not provided by sponsor. In order to calculate cost-effectiveness, assume the project has				
Capital Adm/oper Total	\$0 \$157,382 \$157,382	CMAC \$0 \$39,34 \$39,34	5 \$19 5 \$19	DTAL \$0 96,727	METHODOLOGY/ASSUMPTIONS: Cost-effectiveness was not provided by sponsor. In order to calculate cost-effectiveness, assume the project has benefits 52 days per year, since emissions reductions were				
Capital Adm/oper Total Total annualiz cost: Annual reven	\$0 \$157,382 \$157,382 zed public ues:	CMAC \$0 \$39,34 \$39,34 \$	5 \$19 5 \$19 5 \$19 196,727	DTAL \$0 96,727	METHODOLOGY/ASSUMPTIONS: Cost-effectiveness was not provided by sponsor. In order to calculate cost-effectiveness, assume the project has benefits 52 days per year, since emissions reductions were				
Capital Adm/oper Total Total annualiz cost:	\$0 \$157,382 \$157,382 zed public ues:	CMAC \$0 \$39,34 \$39,34 \$	5 \$19 5 \$19 196,727	DTAL \$0 96,727	METHODOLOGY/ASSUMPTIONS: Cost-effectiveness was not provided by sponsor. In order to calculate cost-effectiveness, assume the project has benefits 52 days per year, since emissions reductions were				
Capital Adm/oper Total Total annualiz cost: Annual reven	\$0 \$157,382 \$157,382 zed public ues: st: e cost	CMAC \$0 \$39,34 \$39,34 \$ \$ \$	5 \$19 5 \$19 5 \$19 196,727	DTAL \$0 96,727	METHODOLOGY/ASSUMPTIONS: Cost-effectiveness was not provided by sponsor. In order to calculate cost-effectiveness, assume the project has benefits 52 days per year, since emissions reductions were				

NOTE: The project documentation could not provide the assumptions for average trip length and how they estimated 9 new bus trips per vehicle hour. The value seems low, given that the service will include 8 routes, implying only about one passenger per each bus. It should be noted that the daily emissions reduction is for each Sunday (emissions rates are based on summer weather conditions).

Category:	TRAN	ISIT IMPROV	MENTS		Subcategory:	New Bus Service			
CMAQ Proj	ect ID:	NY20050028		Project Year: 2005					
		and, New York	(MPO: New York Metropolitan Transportation Council					
County Trai minutes. P	Description: Expanded S 92 Bus Route - This project will fund upgrades to the current Monday – Saturday Suffolk County Transit (SCT) bus route S 92, improving bus frequencies during AM and PM peak periods from 1 hour to 30 minutes. Prior to July 2004, this bus route operated approximately 1,505 miles of daily revenue service between								
Orient Point/Greenport and East Hampton via Riverhead, Southampton Village, and Sag Harbor. The 70 mile long									
bus line regularly reaches capacity halfway along the route, leaving riders behind to catch taxis and carpool rides from other drivers. In some instances, employers from Southampton would travel to Riverhead and the North Fork to collect workers due to the uncertainty of the transit service. This project would provide additional AM and PM peak									
			juencies – 4 AM trips and 4						
			ninute interval will offer mo			a trips will increase			
TRAVEL IN					.3.				
Δ Vehicle tri		- 358 /day	METHODOLOGY/ASSU	APTIONS:					
ΔVMT :		- 6,640 /day	The additional ridership v		timated at 200 pas	ssengers/day on			
Δ Speed:		NA	weekdays and 160 on Sa						
ΔDelay:		NA	19 miles. Travel speeds a	5	01	0 1 0			
ΔSOV		NA	Autos daily vehicle t						
$\Delta CP/VP$		NA	passengers = 360 tr		,				
Δ Transit		+ 2 bus	Autos daily VMT cha	/MT change = 360 trips x 19 mile trip length = 6,840 VMT					
		trips/day	reduction.						
Δ Walk		NA	There will be 2 new round	ltrip bus trips each d	lay with the new s	service. The bus			
Δ Bike		NA	travels 140 miles on each						
		147 (Bus daily trip change						
			Bus daily VMT change = + 280 miles/day						
			Total daily vehicle trip change = 360 auto trips reduced – 2 new bus trips = 358						
			daily vehicle trip reduction.						
			Total daily VMT change = 6,849 auto VMT reduction – 280 bus VMT increase =						
			6,640 daily VMT reductio	1.					
EMISSION									
Δ VOC		.66 kg/day	METHODOLOGY/ASSU			histo Daduation due			
ΔNO_X		.22 kg/day	The NYSDOT software p						
Δ CO		3.39 kg/day	to Transit" module to estin						
ΔPM_{10}		0.96 kg/day	the "New Transit Bus" mo						
$\Delta PM_{2.5}$	+ 1	.00 kg/day	service. Effects were cal	Luialeu iui 200 uays	year with the follo	owing emissions			
Δ Total		NA	factors (g/mile): CO: Autos = 16.0	$P_{\rm HC} = 6.20$					
			VOC: Autos = 0.72						
			NOx: Autos = 0.72						
			PM2.5: Autos = 0.01						
			PM10: Autos = 0.02						
			Total Emissions = (Autos		88 000 Autos mil	es) - (Bus emissions			
			factor * 72,800 bus miles		00,000 / M(03 // M)				
COSTS									
			Project I	fe:3 yrs	Interest rate:	7 %			
F									

	CMAQ	NON- CMAQ	TOTAL	METHODOLOGY/ASSUMPTIONS:
Capital	\$0	\$0	\$0	This project will have 260 days of operation. The project
Adm/oper	\$264,000	\$156,000	\$420,000	cost is for 3 years of operating subsidy. The non-CMAQ
Total	\$264,000	\$156,000	\$420,000	portion of the project cost will be funded by the local
Total annualiz cost:	zed public	\$135	,907	government with \$90,000 in transit fares and county funding for \$66,000.
Annual reven	ues:	\$90,	000	
Net public cos	et public cost: \$330,000			
Annual private	Annual private cost		4	
Total net cost		\$330	,000	

NOTE: The \$264,000 CMAQ funding amount provided by the project sponsor does not match the \$336,000 listed in the CMAQ database. The emissions reductions estimates provided by the project sponsor also do not match those listed in the database (-2.5 kg/day VOC, +2.1 kg/day NOx, -59.3 kg/day CO, -0.3 kg/day PM₁₀, and -0.4 kg/day PM_{2.5}). The calculations in the document provided for this project did not account for the additional 160 weekend passengers; it only calculated Vehicle Trip Reduction (-200/day) and VMT Reduction (-3,800/day) for 200 additional passengers. Within the project documentation, the project is described as providing an additional four AM trips and four PM trips; however, the project calculations only account for 2 additional trips per day.

Category: T	RANSIT IMPROV	/EMENTS	Subcategory: N	lew Bus Services					
CMAO Projec	t ID: RI20050003		Project Year: 2005						
Location: Rh			MPO: Rhode Island State Planning C	ouncil					
Description: E	Expanded Route 3		program developed and implemented						
			s portion was added to Route 30, and						
was created.	was created.								
Travel impact	s (For New Exp	ress Portion of Route 3							
Δ Vehicle trips	: - 53/day	Methodology/Assumptions (For Route 30):							
∆VMT:	- 771/day		crease due to new express portion of	Route 30 service:					
Δ Speed:	NA	•	w service – 985 with old service).						
Δ Delay:	NA	5	4 new \div 1.2 persons/vehicle = 53 da	ily vehicle					
∆SOV	- 874 /day	reduction.							
∆CP/VP	NA		30 round trip = 14.42 mi (calculated ba	ased on half of non-					
∆Transit	+ 64	express portion of route +							
	person/day		vehicle trips reduced * 14.42 miles = 1	//I VIVI reduction					
Δ Walk	NA	per day.							
∆Bike	NA								
		Portion of Route 30):							
Δ VOC	- 0.92 kg/day	Methodology/Assumptions	s (For Route 30):						
Δ NO _X	- 1.05 kg/day								
Δ CO	- 17.89 kg/day		e calculated by multiplying VMT reduc	tion by per-mile					
ΔPM_{10}	NA	emissions factors.							
$\Delta PM_{2.5}$	NA	Assumes speed = 35 mph							
Δ Total	-2.0 kg/day	CO emissions calculated f	or winter.						
Travel impact	s (For New Rou								
△Vehicle trips		Methodology/Assumptions	(For Route 12):						
	- 6,638 /day	55 1	· · · ·						
∆Speed:	NA	CALCULATE TRAVEL ON	I OLD ROUTE: Utilization rates deter	rmined from existing					
∆Delay:	NA	ridership. (448 persons). [Daily vehicle reduction = 448 persons/	day÷1.2					
∆SOV	NA	persons/vehicle = 373 dail							
ΔCP/VP	NA	Roundtrip length of old Ro							
∆Transit	+ 187 /day	5	3 daily vehicle reduction * 15.9 miles =	= 5,932 daily VMT					
Δ Walk	NA	reduction							
∆Bike	NA	Oslavista Tarili N. 5							
		persons/day. Daily vehicle 529 daily vehicle reductior NEW Route 12 Roundtrip		ersons/vehicle =					
		Difference equals net chai	nge due to new route.						
	or New Route 1	/							
Δ VOC	- 5.78 kg/day	Methodology/Assumptions							
Δ NO _X	- 10.00 kg/day	Emissions were calculated by multiplying VMT by per-mile emissions factors from							
Δ CO	- 173.11 kg/day	MOBILE in the base case	(with old route) and with the expander	d route.					

ΔPM_{10}	NA								
$\Delta PM_{2.5}$	NA	Ass	sumes: Sp	eed = 3	5 mph for roadways wher	e miles reduced under old route;			
∆ Total	NA	Spe	eed = 55 r	nph for i	roadways where miles rec	duced with expanded route.			
		8.0 Em (wir	Emissions reductions with old route: 7.06 kg/day VOC, 137.69 kg/day CO (winter), 8.07 kg/day NOx. Emissions reductions with expanded route: 12.84 kg/day VOC, 310.79 kg/day CO (winter), 18.07 kg/day NOx. CO emissions only for winter.						
Emissions (fo			1						
А нс	NA	Me	ethodology	/Assum	ptions:				
Δ VOC	- 6.7 kg/d								
ΔNO_X	- 11.1 kg/c	auy	Sum totals from both routes						
∆ C0	- 191.0 kg/	day							
ΔPM_{10}	NA								
$\Delta PM_{2.5}$	NA								
∆ Total	-17.8 kg/d	ау							
Costs									
					ect life:_2_ yrs	Interest rate: 7 _%			
	CMAQ	Non-CM/		otal	Methodology/Assumptic	ons:			
Capital	\$440,000	\$110,00		0,000					
Adm/oper	\$0	\$0		\$0		ts on whether costs include capital or			
Total	\$440,000	\$110,00		0,000	only operating expenses	5.			
Total annualiz	zed public	\$	\$328,780						
cost:					-				
Annual revenues:			NA		-				
Net public cos		\$	\$550,000		-				
Annual private			NA		-				
Total net cost		\$	\$550,000						

NOTE: Calculation methodology does not take into account changes in bus emissions associated with changes to the bus services.

Category:	TRAN	NSIT IMF	PROV	EMENT	S	Subcategory: New Rail Services			
CMAQ Proj	ect ID:	UT20020	0001			Project Year: 2002			
Location: L						MPO: Wasatch Front Regional Council			
Description	Purc					his project is the expansion of the current Light Rail service TRAX North/South line.			
TRAVEL IMPACTS									
Δ Vehicle tri	0S:	- 2,046	/day	METHC	DOLOGY/ASS	UMPTIONS:			
ΔVMT:		- 24,5	52	Assume	es 1,023 daily n	ew light rail round-trip riders x 2 trips per day = 2,046 vehicle			
		/day	/	trips rec	luced.				
∆Speed:		NA							
Δ Delay:		NA				1023 new riders * 24 average round trip = 24,552 VMT			
ΔSOV		NA		reduced	1 .				
ΔCP/VP		NA							
∆Transit		NA							
Δ Walk		NA	NA						
∆Bike	NA								
EMISSIONS	S								
Δ VOC	- 2	7.0 kg/da	iy		DOLOGY/ASS				
ΔNO_X	- 3	3.0 kg/da	iy	Emissions reductions calculated by applying passenger car CO, NOx, and VOC					
Δ CO	- 3(05.0 kg/da	ay	g/mile rates for freeways and arterials.					
ΔPM_{10}		NA							
$\Delta PM_{2.5}$		NA		Congestion was measured by converting VMT reduction to Annual Vehicle Hour					
Δ Total	-6	0.0 kg/da	у	reduced: 75% on congested freeways @ 35 mph, 25% on congested arterials @ 17 mph.					
COSTS									
						t life:_20_ yrs Interest rate:7%			
		CMAQ		NON-	TOTAL	METHODOLOGY/ASSUMPTIONS:			
			С	CAM		Cost benefit was calculated using a weighted ranking			
Capital	\$4	,000,000		\$0	\$4,000,000	system that considered the following:			
Adm/oper		\$0		\$0	\$0	6) (10%) Project in a congested corridor			
Total	\$4	,000,000		\$0	\$4,000,000	7) (15%) Length (years) of project effectiveness			
Total annua	alized p	oublic		\$443	3,012	8) (25%) Emissions reduction			
cost:						9) (25%) Congestion reduction (VHT)			
Annual reve					one	10) (25%) Cost			
Net public c					0,000	This objective ranking was then combined with subjective			
Annual priva		st			A	rankings by staff and 3 different committees consisting of			
Total net co	st			\$4,00	0,000	city planners and elected officials.			

Category:	TRANSIT IMPI	ROVMENTS		Subcategory: New Rail Services					
CMAO Proje	ect ID: TX200301	47		Project Year: 2003					
/	allas, Texas			MPO: North Central Texas Council of Governments					
		acking of Segm	ents - This projec	t will fund the construction of double tracking segments of the					
				. This project was selected during the 1999 Call for Projects					
held by the Dallas-Ft. Worth MPO and selected based on the demonstrated costs per ton of NOx emissions reduced. The project									
part of a long-range plan by TRE to continue adding capacity through new siding construction. The strategy reduces er									
providing new rail system services and/or expanding existing services to increase overall system ridership. The reduction									
methodology is adapted from "The Texas Guide to Accepted Mobile Source Emissions Reduction Strategies" published by Texas Transportation Institute, 2003.									
TRAVEL IMPACTS									
Δ Vehicle trip		av METHOR	OLOGY/ASSUN	IPTIONS [.]					
$\Delta V \text{Officient}$	- 108,000/	<u> </u>		iders were previously vehicle drivers. Estimate new transit					
Δ Speed:	- 108,000/ NA			e. $(6,750 \text{ riders} * 0.8 = 5,400 \text{ vehicle trips reduced})$					
Δ Delay:	NA	·		, , , , , , , , , , , , , , , , , , ,					
ΔSOV	NA			e length is 20 miles (5,400 vehicle trips reduced x 20 miles =					
$\Delta CP/VP$	NA	108,000 v	ehicle miles reduce	ed per day).					
$\Delta CP/VP$ $\Delta Transit$	NA		ach trancit uchiele	takes 5 trips per day and travels on average of 470 miles					
$\Delta Walk$	NA	Assume e	ach transit venicie	takes 5 trips per day and travels an average of 679 miles.					
	NA								
EMISSIONS									
Δ VOC	- 67.18 kg/da		OLOGY/ASSUM						
ΔNO_X	- 110 kg/day			ted using Mobile6 emissions factors, assuming a 34 mph					
$\Delta \text{ CO}$	Kq			y types. Speed-based running exhaust emissions factor for					
ΔPM_{10}	NA		roadways before project = NOx: 1.00 and VOC 0.56 grams/mile. Auto trip-end emissions						
$\Delta PM_{2.5}$	NA		factors = NOx: 0.39 and VOC: 1.25 grams/trip. Transit trip-end emissions factors for NOx and						
Δ Total	NA		VOC are 0.0 grams/mile because starting emissions factors are not associated with the						
	1177	diesel loco	diesel locomotives that will be used in the TRE system equipment.						
		Reduction	Reduction in daily auto start emissions from trips reduced = 5,400 trips x auto trip-end						
			emissions factor for NOx and VOC. Reduction in daily auto running emissions = 108,000						
			miles x speed based running exhaust emissions factor for roadways for NOx and VOC.						
			Increase in daily emissions from additional train starts = 5 transit trips * transit trip-end						
00070		emissions	factor (zero).						
COSTS									
				life:20 yrs Interest rate:7_%					
	CMAQ	NON-CMAQ	TOTAL	METHODOLOGY/ASSUMPTIONS:					
Capital	\$36,253,821	\$34,218,521	\$70,472,342	11449 - TRE Quiet Zones and Quad Gates					
Adm/oper	\$0	\$0	\$0	\$4,174,000 total (\$3,339,200 STP-MM, \$834,800 local)					
Total	\$36,253,821	\$34,218,521	\$70,472,342	94,174,000 (0(a) (93,337,200 STP-1VIIVI, 9034,000 10(d))					
Total annua	lized public	¢7.70	1 000	TRE Elevated Double Tracked Section from West of Irby					
cost:		\$7,03	57,631,000 to Gilbert Rd: \$66,298,342 total (\$36,253,821 CMAQ,						
Annual reve	nues:	No	one	\$1,328,585 STP-MM, \$2,519,859 TxDOT PASS Funds, \$26,196,077 local).					
Net public c		\$70,4	72,342						
Annual priva		N	A						
Total net co		\$70,4	72,342	A cost effectiveness calculation was not provided by the project sponsor.					

NOTE: Emissions reductions reported in the CMAQ database are different than those reported by the State because assumptions and emissions factors have been updated since the original calculations (-458 kg/day VOC, -78.1 kg/day NOx, - 479.3 CO). The calculation does not account for any increase in emissions from the commuter rail.

Category: TRANSIT IMPROVEMENTS						Subcategory: New Rail Services			
		CT2005	0007			Droject Vegry 2005			
CMAQ Proje Location: Fa						Project Year: 2005 MPO: Greater Bridgeport Regional Planning Agency			
				tion Diati	forms and Br	idge - This project will fund the construction of a new			
						d station. The project will serve the residents of Fairfield,			
						- as well as nearby areas such as Black Rock within the city of			
						be a joint development, with a developer providing parking			
						d an access roadway.			
TRAVEL IM									
Δ Vehicle trip	1	0		METHO	DOLOGY/AS	SSUMPTIONS:			
ΔVMT :	-	- 15,7	92			parking spaces for rail patrons.			
		/day				otal ridership would be from new riders (based on rail ridership			
∆Speed:		NA				y the Department for the new West Haven/Orange Rail Station			
$\Delta Delay:$		NA		Study).					
ΔSOV		NA		Roundt	rip distances b	based on data from the Department's 2000 AM Peak Rail			
ΔCP/VP		NA				eld resident users, 21% destined to points within Connecticut,			
∆Transit		NA		79% de	stined to New	/ York.			
Δ Walk		NA							
∆Bike		Vehicle trip reduction =1,200 parking spaces x 1/3 new ridership utilization = 400							
						ced (no trip starts reduced).			
						0 vehicle trips reduced x 21% x 30 miles) + (400 vehicle trips $(400 \times 122)^{-12} \times 1520^{-12} $			
EMICCIONC				reduced	1 x 79% x 42 r	miles) = 2520 + 13,272 = 15,792 VMT reduced daily.			
EMISSIONS									
Δ VOC		b.0 kg/da				SUMPTIONS:			
ΔNO_X ΔCO	- C	5.0 kg/da	у	Emissions reductions calculated using Mobile6.2 with an average speed of 50 mph.					
		Kg NA		Trips within Connecticut (30 miles roundtrip):					
ΔPM_{10} $\Delta PM_{2.5}$	1	I.0 kg/da		Daily emissions reduction = VMT x emissions factor.					
Δ Total		2.0 kg/da				rips (42 miles roundtrip):			
		2.0 kg/uz .0132 tpd				ction = VMT x emissions factor.			
COSTS	(0.	.0152 ipu	1)						
00010					Proje	ect life: 30 yrs Interest rate: 7 %			
	C	CMAQ	Ν	ION-	TOTAL	METHODOLOGY/ASSUMPTIONS:			
				MAQ	1 O I / L				
Capital	\$2.4	4 M		0,000	\$3.0 M	Assume benefits 260 days per year.			
Adm/oper	\$0		\$0	.,	\$0	······································			
Total		4 M		0,000	\$3.0 M	Cost-effectiveness was not provided by the project sponsor.			
Total annual				\$261					
cost:	P			,		Annualized Cost = \$3.0M x 0.081 CRF = \$37,000 (assuming			
Annual rever	nues:			No	ne	no private costs and no parking revenue).			
Net public co				\$3.0		C/E = \$37,000 / (0.0132 x 260) = \$10,781/ton.			
Annual priva		st		N					
Total net cos				\$3.0) M				

NOTE: Emissions reductions reported in CMAQ database differ from estimates provided or calculated from sponsor-provided documentation (-12 kg/day VOC and -12 kg/day NOx). This project description does not distinguish between public and private costs and revenues, although there will presumably be cost-sharing and/or revenues (i.e. Parking fee revenues) between the public and private sectors.

Category:	TRAN	NSIT IM	PROV	/EMENT	S		Subcatego	rv:	Service Upgrades/Amenities	
CMAQ Proj					-		Project Year: 2002			
Location: F				etts				Re	gional Planning Commission	
					ae - This pro	iect i			ulti-level bus circulation/parking	
									eet in Fitchburg. The project will	
									n, fare collection system, and	
interface with the regional bus service and commuter rail station. The project will also provide an addition										
square feet of retail space in the new facility to be rented out to commercial establishments, including banking,										
restaurants, and dry cleaners.										
TRAVEL IMPACTS										
Δ Vehicle tri	ps:	0		-	DOLOGY/A					
Δ VMT:		- 21,0	70	387 tota	parking space	es – 2	25 spaces for MART sta	aff –	35 spaces for commercial	
		/day	/						engers. Assume 100% utilization	
Δ Speed:		NA							chburg Commuter Rail Station will	
∆Delay:		NA		increase	6% per year a	and ev	ventually reach an estir	mate	ed 410 one-way rail passengers.	
∆SOV		NA		Lising a	1000 survev o	f rail r	riders in the Montachus	ott s	area, 89.5% of passengers travel to	
ΔCP/VP		NA					, a one-way trip of 43 m			
∆Transit		NA							es parked at the facility will have as	
Δ Walk		NA							* 75% = 245 vehicle round trips	
∆Bike		NA		removed = 490 vehicle trips removed (no trip starts reduced).						
				Daily VIV reduced		245 v	vehicle round trips remo	oveo	* 86 mile round trip = 21,070 VMT	
EMISSION	S									
Δ VOC	- 1	4.0 kg/da	ау	METHC	DOLOGY/A	SSUN	MPTIONS:			
ΔNO_X	- 2	7.0 kg/da	ау	Emissions reductions calculated using Mobile 5a emissions factors. Assumes						
Δ C0	- 14	43.0 kg/d	ay	average travel speed along the Route 2 corridor is 50 mph.						
ΔPM_{10}		NA								
$\Delta PM_{2.5}$		NA		Note: The calculated CO emissions reduction is only for winter months.						
∆ Total	-4	41 kg/day	1							
	(0	.0451 tpc	I)							
COSTS										
					Pro	ject li			erest rate: <u>7</u> %	
	C	CMAQ		ION-	TOTAL		ETHODOLOGY/ASSI			
			С	MAQ		Ass	sumes benefits 250 c	days	s/year.	
Capital	\$3	88,000	\$2	37,000	\$625,000					
Adm/oper		\$0		\$0	\$0				ness was provided by the project	
Total	\$3	88,000	\$2	37,000	\$625,000		5		kg of emissions reduced =	
Total annua cost:	alized p	oublic		\$625,	000	Pro	pject cost / Adjusted i	net	change (kg/year).	
	nunci			No	20	VO	C cost effectiveness =	\$62	5,000 / 3,483 kg/year = \$179	
Annual reve				NOI			NOx cost effectiveness = $$625,000 / 6,805$ kg/year = $$91$			
Net public o		~ 1		\$625, NA		Wir	nter CO cost effectiven	ess	= \$625,000 / 35, 197 kg/year = \$18	
Annual priv Total net co		51		\$625,			nualized cost = \$625,00 E = \$50,625 / (0.0451 x			
							_ – #JU,UZJ7 (U.U4JTX	200	η – ψτ, τη πολιοτι	

NOTE: The emissions reduction methodology for the Intermodal Transportation Center does not account for the additional revenues from renting commercial space on the facility or the additional operating cost of the new facility.

Category: T	RANS	SIT IMF	PROVEMEN	TS	Subcategory: Service Upgrades/Amenities				
CMAQ Projec	t ID: N	//02004	0023		Project Year: 2004 - 2006				
Location: Kar	nsas C	City, Mis	souri		MPO: Mid-American Regional Council				
				rd Infrastructu	re - Operation Welcome Aboard is a program designed to				
					activeness & usefulness of bus shelters. The project will				
					nt scheme of Metro buses. Signage at stops will also be				
					and schedule information. By making bus stops more inviting				
and useful, ne	ew ride	ers will k	be more likely	to find out abo	out transit services and use them.				
Travel impact	S								
Δ Vehicle trips	:	- 405/c	lay Metho	dology/Assum	ptions:				
ΔVMT:		- 4,050/			dership will be 450 people/day and the average Bus Trip				
Δ Speed:		NA			Estimate that 90 percent of the new bus riders will be switching				
∆Delay:		NA	from a	utos. Estimate:	s were derived from internal analysis.				
ΔSOV		NA							
∆CP/VP		NA			= 450 people/day * 0.9 new ridership factor = 405 vehicle				
∆Transit		+ 450/0	day trips/d						
Δ Walk		NA	VIVI I	educed = 405 v	vehicle trips x 10 miles = 4,050 VMT reduction				
∆Bike		NA	Mothe	Methodology based on December 1995 guidance from CARB entitled "Emissions					
				Reduction Calculation Methodologies."					
Emissions			Reduc						
Δ HC	[NA	Metho	dology/Assum	ntions:				
Δ VOC	- 2	49 kg/d	av Emiss	Emissions reductions were calculated by multiplying VMT reduction by per-mile					
ΔNO_X		.38 kg/d	-	emissions factors. Emissions factors developed for the Kansas City region based					
ΔCO	0.	NA		on MOBILE model; assumed running speed is 35 mph.					
ΔPM_{10}		NA							
$\Delta PM_{2.5}$		NA							
Δ Total		NA							
Costs									
				Proj	ect life: _10 yrs Interest rate:7%				
	CN	AN	Non-CMAQ		Methodology/Assumptions:				
Capital	\$960	0,000	\$240,000	\$1.2 M					
Adm/oper	9	\$0	\$0	\$0	The multi-year project has joint sponsorship by Kansas and				
Total	\$960	0,000	\$240,000	\$1.2 M	Missouri. Kansas will provide 10% of the CMAQ and local				
Total annualiz	zed pu	blic	\$19	0,900	match, while Missouri assumes 90% of the CMAQ and local				
cost:					match funding.				
Annual revenues:		Ν	one	2224 2225 2224					
Net public cos	st:			.2 M	2004 2005 2006 KS20040011 \$40 KS20040011 \$20 KS20040011 \$14				
Annual private	e cost			JA	KS20040011 \$60 KS20040011 \$20 KS20040011 \$16				
Total net cost			\$1	.2 M	MO20040023 \$540 MO20050009 \$180 MO2006006 \$144				
					To calculate cost effectiveness, need to assume life of project (recommend 10 years).				

Category: TI	Ransit imi	PROVEMENT	ſS	Subcatego	ry: Service Upgrades/Amenities				
		1000(
CMAQ Project				Project Year: 2004					
Location: Suf			lestin - Due		tropolitan Transportation Council				
					a suite of service upgrades and				
					ks will entail (1) review current orm the public of the new SCT color				
					nd administer a rider survey.				
TRAVEL IMPA		inal paratration			nu auminister a nuer survey.				
Δ Vehicle trips:		day METHO		SUMPTIONS:					
ΔVMT :	- 2,499	j		50m 110115.					
	- 2,499 /day		h these efforts	SCT estimates the syste	em will attract 176 new riders each				
∆Speed:	NA				miles per day and the average travel				
Δ Delay:	NA	,			n operates 307 days per year.				
ΔSOV	NA								
$\Delta CP/VP$	NA		rip Reduction -	= - 176 trips/day x 14.2 m	niles = 2,499.2 VMT reduced.				
Δ Transit	NA								
Δ Walk	NA								
Δ Bike	NA								
EMISSIONS									
Δ VOC	- 2.39 kg/da	av METHO	METHODOLOGY/ASSUMPTIONS:						
ΔNO_X	- 2.19 kg/da				as used to estimate emissions for the				
ΔCO	- 40.72 kg/d	2	project, using the "Transit Vehicle Reduction" module at 18 mph running speeds.						
ΔPM_{10}	- 0.067 kg/d	-	Effects were calculated for 307 days/year with the following emissions factors						
$\Delta PM_{2.5}$	- 0.033 kg/d	ay (g/mile)	(g/mile):						
∆ Total	- 4.58 kg/da	a y	CO: 16.29						
	(0.0050 tpc	4/	VOC: 0.96						
			NOx: 0.87						
			0.0133						
00070		PIMTO:	0.0269						
COSTS			Drol	act life, 2 stra	Interact rate: 7 0/				
	CMAO	NON-	TOTAL	ect life:_2 yrs METHODOLOGY/ASSU	Interest rate: <u>7</u> %				
	CMAQ	CMAQ	TUTAL	IVIE I HUDULUG Y/ASSU					
Capital	\$0	\$0	\$0						
Adm/oper	\$0	\$0	\$0						
Total	\$160,000	\$40,000	\$200,000						
		\$40,000							
COSt:	Total annualized public		,000						
Annual revenu	IPS.	No	ne						
Net public cos		\$200							
Total net cost	,	\$200							
Annual private		N	A						

Category: 1	ran	sit impf	ROVEMENTS	S	Subcategory: Service Upgrades/Amenities			
CMAQ Proje	ect ID:	OH20050	800		Project Year: 2005			
Location: C	uyaho	ga County	r, Ohio		MPO: Northeast Ohio Areawide Coordinating Agency			
Description:	Laket	ran AVL-	MDT System	- Installation of	automatic vehicle location (AVL) and mobile data terminal			
					vehicle operations as part of the system's paratransit			
					adherence, reducing operations cost, improving efficiency,			
			g the number	of vehicles nee	ded, and improving routes planning and scheduling.			
TRAVEL IMPACTS								
Δ Vehicle trip)S:	NA		DOLOGY/ASS				
∆VMT:		-465,55			on in the number of vehicles required to serve the same			
		/year			and a 15-18% decrease in travel time on transit.			
∆Speed:		NA			ase in Paratransit ridership (54,387 passengers) traveling an			
Δ Delay:		NA	average	e of 8.56 miles p	er passenger. (465,553 VMT reduced)			
∆SOV		NA	A.e.e.u.a.l	V/VIT no du otion				
∆CP/VP		NA			= 54,387 passengers * 8.56 miles of service provided =			
∆Transit		NA	405,553	465,553 VMT reduction				
Δ Walk		NA						
∆Bike		NA						
EMISSIONS								
Δ VOC		l.0 kg/day		DOLOGY/ASS				
ΔNO_X		3.0 kg/day			vere calculated using VMT reductions and EPA Standards in			
∆ C0	- 4	7.0 kg/day	r g/mile f	or HC, CO, NOx	and PM in 2004.			
ΔPM_{10}		NA						
$\Delta PM_{2.5}$		NA						
∆ Total		7.0 kg/day						
	(0.	0187 tpd)						
COSTS								
					t life:10 yrs Interest rate:7%			
	(CMAQ	NON-	TOTAL	METHODOLOGY/ASSUMPTIONS:			
O and t	**	000.000	CMAQ	¢2,502,000	The project is cally between two ways of 4 Min 6			
Capital	\$2,	800,000	\$700,000	\$3,500,000	The project is split between two years, \$1.1 M in funding			
Adm/oper	# 0	\$0	\$0	\$0 ¢2.500.000	will be used in 2004 and \$2.4 M in 2005. Cost-			
Total		800,000	\$700,000	\$3,500,000	effectiveness was not provided by sponsor.			
	Total annualized public			3,580	Assume technology lasts 10 years.			
cost:			K I		Assume technology lasts to years.			
Annual reve				one				
Net public co		.+		0,000				
Annual priva		5l		IA NO OOO				
Total net cost			\$3,50	00,000				

Category:	TRAN	ISIT IMF	PROV	EMENT	S	Subcategory: Service Upgrades/Amenities			
CMAQ Proje	ect ID·	Not Yet	Assia	ned		Project Year: 2007			
Location: C			nooigi	licu		MPO: South Central Regional COG			
			ail Utili	ity Cons	truction - Th	his project will fund the construction of an additional 199			
						station along the Shoreline East Line. An AM Peak Rail			
						etermine the destination towns for and percentage of trips			
made by pa									
TRAVEL IM			ut the						
Δ Vehicle trip		- 298	/day	METH	IODOLOGY/	ASSUMPTIONS:			
ΔVMT:		- 10,		VMT	reductions we	ere calculated using the length of highways in each county for			
		/ye				ion. Fairfield County had 30% of the VMT reduction (3,172			
∆Speed:		N/				aven County had 70% of the VMT reduction (7,530 miles).			
$\Delta Delay:$		N/		_ `					
ΔSOV		N/		Assur	ne a 100% ut	tilization of the proposed 199 parking spaces in Year 2007.			
$\Delta CP/VP$		N/				on = 199 spaces x 100% utilization x 2 trips per day = 298			
Δ Transit		N/		vehicl	e trips reduce	ed daily.			
Δ Walk		N/							
∆Bike		N/							
EMISSIONS									
Δ VOC		.0 kg/da	v	METHO	DOLOGY/AS	SSUMPTIONS:			
ΔNO_X		.0 kg/da				om MOBILE model with 50 mph traveling speed.			
ΔCO	0	Kq	,	21110010					
ΔPM_{10}		NA		Fairfield	Fairfield County:				
$\Delta PM_{2.5}$	- 1	.0 kg/da	v	VOC emissions factor = 0.544 g/mile					
Δ Total		2.0 kg/da		NOx emissions factor = 0.508 g/mile					
		0132 tpd		PM2.5 emissions factor = 0.011 g/mile					
	(0)	0102 (po	•,			ů –			
				New Haven County:					
				VOC emissions factor = 0.546 g/mile					
					NOx emissions factor = 0.524 g/mile				
				PM2.5 €	emissions fac	ctor = 0.011 g/mile			
COSTS									
			-			ject life:12yrs Interest rate:7_%			
	C	MAQ		ON-	TOTAL	METHODOLOGY/ASSUMPTIONS:			
				DAN	****				
Capital		,000	\$22,0	000	\$111,000	Assumes project benefits 260 days each year.			
Adm/oper	\$0		\$0		\$0				
Total		,000			\$111,000	Cost-effectiveness was not provided by the project sponsor.			
Total annua	lized p	ublic		\$14,2	227				
cost:						4			
Annual reve				Nor		4			
Net public c				\$111,					
Annual priva		t		NA		4			
Total net cost			\$111,	,000					

NOTE: Project cost information taken from 2007 STIP.

Category: T	ECHN	OLOG	iy impi	Rovm	ENTS	Subcategory: Conventional Bus Replacements	
CMAO Projec	CMAQ Project ID: MD20020008					Project Year: 2002	
	Location: Maryland					MPO: Metropolitan Washington COG	
		nlacem	nent I o	cal Bu	ses - Purchase	of 100 conventionally fueled local buses for the Maryland	
						place 100 buses older buses that have been in operation	
since 1988.	liou autor		iy nooti	1110 11			
Travel impact	S						
△Vehicle trips		0		Meth	odology/Assum	otions:	
		0			55		
Δ Speed:		0		MTA	buses operate a	an average of 330 days and travel an average of 26,650 miles	
Δ Delay:		0		each	year. (26,650	miles * 100 buses = 2,665,000 VMT)	
ΔSOV		0					
ΔCP/VP		0				vill replace existing buses, there are no estimated travel	
∆Transit		0		impad	cts.		
Δ Walk		0					
∆Bike		0					
Emissions							
Δ VOC		17.0 k		Metho	odology/Assum	ptions:	
ΔNO_X	- 1	188.9 k	kg/day	Emissions savings were estimated using the difference between the emissions			
Δ CO		NA		factors for the 1988 buses and the 2002 replacement buses:			
ΔPM_{10}		NA	۱			g/mi (1988 bus) – 2.560 g/mi (2002 bus) = 2.100 g/mi savings	
$\Delta PM_{2.5}$		NA	١		NOx: 36.24	g/mi (1988 bus) – 12.88 g/mi (2002 bus) = 23.36 g/mi savings	
∆ Total		NA	۱				
						55,000 VMT * 2.1 g/mi savings) / 330 days = 17.0 kg/day	
Casta		_		NOX	reduced = (2,66)	5,000 VMT * 23.36 g/mi savings) / 330 days = 188.9 kg/day	
Costs					Droico	t life: 4 yrs Interest rate: 7 %	
	CMA	۸0	Non-C	MAO	Total	t life:4yrs Interest rate:7% Methodology/Assumptions:	
Capital	\$5.0		\$21.		\$26.5 M	พธิแบนบบบรูมหวรมเทศแบทร.	
Adm/oper			<u>، ۲ کې</u> \$(\$26.5 IVI \$0	Cost-effectiveness was not provided by sponsor. In order to	
Total					\$0 \$26.5 M	calculate cost-effectiveness, estimate the remaining useful	
		\$5.0 M \$21.				life of the older vehicles.	
cost:	alized public			 ,18	0,000		
Annual reven				Ne	no		
Net public cos				None \$26,500,000			
Annual private				\$26,500,000 NA			
Total net cost					00,000		
I ULAI TIEL CUSL			ΨΖ0, J	000,000			

NOTE: Emissions reductions that come from replacing an older vehicle with a newer, cleaner vehicle will not provide emissions reduction credit longer than the period of time that the older vehicle would have been kept in service without the replacement program (per EPA's Diesel Retrofit SIP and Conformity guidance, <u>http://www.epa.gov/cleandiesel/publications.htm</u>.) The duration of benefit will therefore depend on the remaining life of the vehicles. This causes some difficulty in calculating cost-effectiveness, since the buses will be used for perhaps another 12+ years (and will allow for continued transit services), but the emissions benefits associated with replacement may only last for a couple years.

Strategy: T	ECHI	NOLOGY	' IMPROVMEN	NTS	Category: Conventional Bus Replacements			
CMAQ Project	ct ID:	Not Yet A	Assigned		Project Year: 2003			
Location: Sou					MPO: Ohio-Kentucky-Indiana Regional COG			
			nt Buses - This	project will fund	the purchase of 61 new 40-foot coaches to replace 15-year old			
					re manufactured to adhere to much stricter air quality standards			
than the coach	nes the	ey replace.	The coaches will	l be equipped wit	th security cameras and bike racks to increase security and			
					for disability accessibility. They also come equipped with ITS			
equipment and relief.	d MET	RO, which	are connected to	ARTIMIS, allow	ving the transfer of information on highways to aid in congestion			
TRAVEL IMP	PACTS	S						
Δ Vehicle trips		NA	METHOD	OLOGY/ASSU	IMPTIONS:			
		+ 45 bu	Methodolo	gy does not acco	ount for any reduction in person motor vehicle travel, simply the			
		miles/da	replaceme	nt of existing bus	ses. The methodology actually assumes an increase in VMT			
∆Speed:		NA	from the b	uses, as the new	v buses travel more.			
Δ Delay:		NA						
ΔSOV		NA		ally VMT for old and MOBILE 6.2.	buses = 77 VMT is the default value for 15-year old urban transit			
$\Delta CP/VP$		NA		IY IVIODILE 0.2.				
Δ Transit		NA	Average d	aily VMT for new	buses = 122 VMT is the default value for 1-year old urban			
Δ Walk		NA	transit bus	es using MOBIL	E 6.2.			
∆Bike		NA						
EMISSIONS								
Δ VOC	-9	.639 kg/da	ay METHOD	METHODOLOGY/ASSUMPTIONS:				
Δ NO _X		.639 kg/d	ay Calculation		6.2 emissions factors for 15-year old and 1-year old urban transit			
Δ CO	-35	5.530 kg/d		buses operating on local streets.				
ΔPM_{10}		NA		Emissions factors for 15-year old urban transit buses:				
$\Delta PM_{2.5}$		NA		VOC = 2.74 g/mile; NOx = 24.20 g/mile; CO = 12.61 g/mile Emissions factors for 1-year old urban transit buses				
∆ Total		NA			IOX = 10.59 g/mile; CO = 6.44 g/mile			
					ed by multiplying VMT by emissions factor.			
			Total old b	Total old bus emissions – Total new bus emissions = Total emissions reduction				
				VOC: 12934 – 3295 = 9.639 kg/day				
				CO: 59499 – 47860 = 11.639 kg/day NOX: 114234 – 78704 = 35.530 kg/day				
COSTS			NOX	. 114234 - 7870	ч =			
00313				Project	life:4yrs Interest rate:7%			
	(CMAQ	NON-	TOTAL	METHODOLOGY/ASSUMPTIONS:			
			CMAQ					
Capital	\$4.	864,440	\$2,084,760	\$6,949,200	A cost effectiveness calculation was not provided by the			
Adm/oper	÷.,	\$0	\$0	\$0	project sponsor. Emissions reductions that come from			
Total	\$4.	864,440	\$2,084,760	\$6,949,200	replacing an older vehicle with a newer, cleaner vehicle will not			
	Total annualized public				provide emissions reduction credit longer than the period of			
cost:		\$2,353	3,000	time that the older vehicle would have been kept in service without the replacement program (per EPA's Diesel Retrofit				
Annual reven	ues:		Nor	ne	SIP and Conformity guidance.) The duration of benefit will			
Net public co			\$6,949		therefore depend on the remaining life of the vehicles. This			
Annual privat		t	N/		causes some difficulty in calculating cost-effectiveness, since			
Total net cos			\$6,949		the buses will be used for perhaps another 12+ years (and will allow for continued transit continues)			
					allow for continued transit services).			

NOTE: The methodology uses MOBILE6.2 defaults, but do not appear to be based on actual travel data for these buses. It is unclear why the new buses would travel more than the old buses, so this seems to be a very conservative assumption (reduces the amount of emissions benefit). Emissions reductions reported in the CMAQ database differ from estimates provided or calculated from sponsor-provided documentation (-1 kg/day VOC, -60 kg/day CO, and -22 kg/day NOx).

Category: TECHNOLOGY IMPROVEMENTS						Subcategory: Alternative Fuel Vehicles/Fueling Facilities		
CMAQ Proj	ect ID:	ME2002	20020			Project Year: 2002		
	Location: Cumberland County, Maine					MPO: Portland Area Comprehensive Transportation Study		
Description	: Com	oressed	Natur	al Gas F	ueling Statio	on - This project will fund the construction of a fast fill		
compressed	d natur	al gas fa	cility f	or public	and private fle	eets based in, or operating from the Greater Portland area.		
						effort by METRO to convert the transit bus fleet to natural gas. Ind a total of 21 buses by 2015.		
TRAVEL IN	IPACT	S						
Δ Vehicle tri	ps:	NA		METHO	DOLOGY/AS	SSUMPTIONS:		
ΔVMT:	-	NA		METRO	D's existing bu	uses use an average of 32 gallons of diesel fuel per day.		
Δ Speed:		NA						
Δ Delay:		NA				gallons of fuel = 128 gallons/day		
∆sov		NA		2015: 2	21 buses * 32	2 gallons of fuel = 672 gallons/day		
ΔCP/VP		NA						
∆Transit		NA						
Δ Walk		NA						
∆Bike		NA						
EMISSION	S	-						
Δ VOC	- 2.	768 kg/d	ay	METHO	DOLOGY/AS	SSUMPTIONS:		
Δ NO _X	- 2	.13 kg/da	ау	Assumes that diesel engines emit 27.04 g/gal of VOC and 83.2 g/gal of NOx.				
Δ CO		NA		Assumes that natural gas reduces VOC emissions by 80% over diesel fuel				
ΔPM_{10}		NA		Assumes that natural gas reduces NOx emissions by 20% over diesel fuel				
$\Delta PM_{2.5}$		NA						
∆ Total		.90 kg/da .0054 tpc		2004 VOC: 128 gallons/day * 27.04 g/gal * 0.8 = 2.768 kg/day 2004 NOx: 128 gallons/day * 83.2 g/gal * 0.2 = 2.13 kg/day				
				2015 VOC: 672 gallons/day * 27.04 g/gal * 0.8 = 14.536 kg/day				
COCTC				2015 N	UX: 672 gallor	ns/day * 83.2 g/gal * 0.2 = 11.182 kg/day		
COSTS					Droi	iast life, 10 urs Interest rate, 7 0/		
			N			ject life:12 yrs Interest rate:7%		
		CMAQ		ion- Maq	TOTAL	METHODOLOGY/ASSUMPTIONS:		
Capital	\$15	50,000	\$1,1	55,903	\$1,305,903			
Adm/oper	\$0		\$0		\$0			
Total	\$15	50,000	\$1,1	\$1,155,903 \$1,305,90				
Total annua	Total annualized public		\$192	,912				
cost:								
Annual reve				No				
Net public of				\$1,30				
Annual priv		st		N				
Total net co	Fotal net cost			\$1,30	5,903			

Category:	TECH	INOLOGY	(IMPROVEM	ENTS	Subcategory: Alternative Vehicles/ Fueling					
					Facilities					
CMAQ Project ID: PA20020062					Project Year: 2002					
Location: P					MPO: Delaware Valley Regional Planning Commission					
					s project will fund the acquisition of 12 forty-foot, low floor					
					0 additional buses. These buses, through the combination					
					age batteries, and an electric propulsion system, will					
			rs, reduce exh	aust emissions a	and fuel consumption, and improve brake life through					
regenerative										
TRAVEL IM					IDTIONO					
∆Vehicle trip	OS:	NA	-	OLOGY/ASSUN						
Δ VMT:		NA			ed used diesel fuel and had an annual 27,207 vehicle					
Δ Speed:		NA	revenue r	miles per bus.						
Δ Delay:		NA		placementhus	on and hybrid/cleatric yehicles and will still have an arrival					
ΔSOV		NA			es are hybrid/electric vehicles and will still have an annual					
ΔCP/VP		NA	27,207 Ve	ehicle revenue m	nies per bus.					
∆Transit		NA	Total row	Tatal revenue miles are multiplied by a 1.15 deadh and factor to a second formulate						
Δ Walk		NA		Total revenue miles are multiplied by a 1.15 deadhead factor to account for vehicle travel to and from the programmed bus routes.						
∆Bike		NA								
EMISSIONS										
Δ VOC		3.0 kg/day		METHODOLOGY/ASSUMPTIONS:						
ΔNO_X		1.0 kg/day			alculated from the Mobile model using an average running					
Δ CO	- 1	2.0 kg/day	speed of 13.5 mph for both conventional and replacement buses.							
ΔPM_{10}		NA								
$\Delta PM_{2.5}$		NA		Emissions reductions were calculated for the year 2002, assuming operation 250						
∆ Total		94 kg/day			terim version of PAQONE created specifically for DVRPC to					
	(0.	1035 tpd)			fits. A diesel fuel type was selected for the older buses and					
00000	_		a CNG fu	el type for the ne	ewer ones.					
COSTS				Droise	t life: A ure Interest rate: 7 0/					
			NON-	Projec TOTAL	t life:4 yrs Interest rate:7% METHODOLOGY/ASSUMPTIONS:					
		CMAQ	CMAQ	TUTAL	WETHUDULUGT/ASSUMPTIUNS:					
Capital	¢	5.608 M	\$1.402 M	\$7.010 M	Cost-effectiveness was not provided by sponsor.					
Adm/oper	φί	\$0	\$1.402 IVI \$0	\$7.0101vi \$0	Cost encentreness was not provided by sponsor.					
Total	¢ F	ο 5.608 M	\$0 \$1.402 M	\$0 \$7.010 M						
				28,000						
Total annua cost:	inzeu p	unic	ΦΖ,42	20,000						
Annual reve	nues		Niz	one						
Net public c				10,000						
Annual priva		t		IO,000 IA						
		01		0,000						
Total net cost		¢7,01	10,000							

NOTE: The calculations provided in the documentation are unclear and might suggest that the formula for vehicle travel to/from bus routes = 108.8 daily mileage per bus x 12 buses x difference in emissions rates x 1.15 deadhead factor. Emissions reductions that come from replacing an older vehicle with a newer, cleaner vehicle will not provide emissions reduction credit longer than the period of time that the older vehicle would have been kept in service without the replacement program (per EPA's Diesel Retrofit SIP and Conformity guidance). The duration of benefit will therefore depend on the remaining life of the vehicles.

Strategy: TI	ECHNOLOGY	(IMPROVEN	MENTS	Category: Alternative Vehicles/ Fueling Facilities			
CMAO Projec	ct ID: CT20050	025		Project Year: 2005			
Location: Co				MPO: No MPO Identified/State-sponsored project			
		s Program - T	his project is th	e funding of provision of technical assistance to			
				fuel projects in the NY/NJ/CT non-attainment area – these			
include purch	ases of diesel	particulate filte	ers for buses an	d other equipment. The purchase and/or conversion of			
alternate fuel	vehicles in the	public or priva	ate sector are a	imed primarily at air quality improvement. Alternate fuel			
		ally powered v	vehicles, resultir	ng in lower levels of controlled emissions.			
TRAVEL IMP							
Δ Vehicle trips	S: NA		DOLOGY/ASS				
ΔVMT:	NA			iesel Particulate Filters.			
∆Speed:	NA			, with plans to install 31 more.			
Δ Delay:	NA			driven based on MOBILE6.2 estimates:			
∆sov	NA			ns = 34.3 miles/day			
ΔCP/VP	NA		senger cars = 28	8.8 miles/day /s/week vehicle is used = 5 days/week.			
∆Transit	NA	Average	e number of day	/s/week vehicle is used = 5 days/week.			
Δ Walk	NA						
∆Bike	NA						
EMISSIONS							
Δ VOC	- 6.75 kg/day		METHODOLOGY/ASSUMPTIONS:				
ΔNO_X	-12.49 kg/da	y Emission	Emissions reduction benefits calculated using the Department of Energy's "AirCRED" model, with variables such as the number of vehicles, the type of vehicles, an estimate of				
ΔCO	NA		average daily distance driven, and the average number of days per week the vehicle is				
			used, entered into the model.				
	-19.2 kg/day						
			Greater Connecticut Moderate Ozone Non-Attainment Area: VOC emissions reduction = 0.11 lbs MHC/day x 0.4536 lb/kg x 153 days = 7.63 kg/day.				
			Then, convert NMHC to VOC = 7.63 / 0.93 x 0.45 = 3.39 kg/day				
00000		NOx	emissions reduct	ion = 0.12 lbs/day x 0.4536 lb/kg x 153 days = 8.33 kg/day			
00313			Droioc	t life: 7 vrs Interest rate: 7 %			
	CMAO	NON					
	CIVIAU		TUTAL				
Canital	\$688.800		\$861.000	nosumes benefits for 105 days/year.			
				A cost effectiveness calculation was not provided by the			
· · · ·							
		ψ172					
	ues:	No	ne				
 △ PM₁₀ △ PM_{2.5} △ Total ○ COSTS ○ COSTS ○ Costs ○ Costal ○ Costal<td>ues: st: e cost</td><td>used, en used, en NY/NJ/C VOC kg/day. NOX Greater VOC Then, cc NOX NOX \$172,200 \$0 \$172,200 \$172,200 \$0 \$0 \$172,200 \$0 \$172,200 \$0 \$172,200 \$0 \$172,200 \$0 \$172,200 \$0 \$172,200 \$0 \$172,200 \$0 \$172,200 \$172,200 \$172,200 \$0 \$172,200 \$0 \$172,200 \$172,200 \$0 \$172,200 \$1</td><td>tered into the mo T Moderate Ozo emissions reduct Then, convert NM emissions reduct Connecticut Mod emissions reduct onvert NMHC to V</td><td>odel. ne Non-Attainment Area: tion = 0.10 lbs NMHC/day x 0.4536 lb/kg x 153 days = 6.94 MHC to VOC = 6.94 kg/day / 0.93 x 0.45 = 3.36 kg/day. ion = 0.06 lbs/day x 0.4536 lb/kg x 153 days = 4.16 kg/day. erate Ozone Non-Attainment Area: tion = 0.11 lbs MHC/day x 0.4536 lb/kg x 153 days = 7.63 kg/da /OC = 7.63 / 0.93 x 0.45 = 3.39 kg/day ion = 0.12 lbs/day x 0.4536 lb/kg x 153 days = 8.33 kg/day</td>	ues: st: e cost	used, en used, en NY/NJ/C VOC kg/day. NOX Greater VOC Then, cc NOX NOX \$172,200 \$0 \$172,200 \$172,200 \$0 \$0 \$172,200 \$0 \$172,200 \$0 \$172,200 \$0 \$172,200 \$0 \$172,200 \$0 \$172,200 \$0 \$172,200 \$0 \$172,200 \$172,200 \$172,200 \$0 \$172,200 \$0 \$172,200 \$172,200 \$0 \$172,200 \$1	tered into the mo T Moderate Ozo emissions reduct Then, convert NM emissions reduct Connecticut Mod emissions reduct onvert NMHC to V	odel. ne Non-Attainment Area: tion = 0.10 lbs NMHC/day x 0.4536 lb/kg x 153 days = 6.94 MHC to VOC = 6.94 kg/day / 0.93 x 0.45 = 3.36 kg/day. ion = 0.06 lbs/day x 0.4536 lb/kg x 153 days = 4.16 kg/day. erate Ozone Non-Attainment Area: tion = 0.11 lbs MHC/day x 0.4536 lb/kg x 153 days = 7.63 kg/da /OC = 7.63 / 0.93 x 0.45 = 3.39 kg/day ion = 0.12 lbs/day x 0.4536 lb/kg x 153 days = 8.33 kg/day			

NOTE: Emissions reductions reported in CMAQ database (-11.4 kg/day VOC, -40.3 kg/day NOx) differ from estimates provided or calculated from sponsor-provided documentation.

Category:	TECH	INOLOC	GY IMI	PROVE	MENTS	Subcategory: Alternative Fuel Vehicles/ Fueling		
						Facilities		
CMAQ Proj	ect ID:	Not Yet	Assign	ed		Project Year: 2007		
Location: Nassau County, New York						MPO: New York Metropolitan Transportation Council		
					an Transit CN	IG Buses - This project will fund the purchase of three		
						uses will be at the end of their useful life and continued use		
						s, and poor, inefficient service.		
TRAVEL IN	IPACT	S						
Δ Vehicle tri	ps:	NA		METHC	DOLOGY/AS	SSUMPTIONS:		
∆VMT:		NA						
Δ Speed:		NA				g replaced are 1997 CNG buses which average 14 mph.		
Δ Delay:		NA		Each bu	us travels 160	miles each day and operates 360 days per year.		
ΔSOV		NA						
ΔCP/VP		NA						
∆Transit		NA						
Δ Walk		NA						
∆Bike		NA						
EMISSIONS	S							
Δ VOC	-	.50 kg/da	av	METHC	DOLOGY/AS	SSUMPTIONS:		
ΔNO_X	- 4.34 kg/day		-	"After" analysis conducted using CO, VOC, and PM emissions factors from a 2004 model				
ΔCO			-	year 6081H John Deere engine test conducted by University of West Virginia for				
ΔPM_{10}			- <u>)</u>	Washington Metropolitan Area Transit Authority (WMATA).				
$\Delta PM_{2.5}$	- 1	- 1.40 kg/day						
Δ Total		NA	^ <u>)</u>	 "Before" emissions factors for CO, NOx, and VOC derived from 1990 and 2000 NYSDOT emissions factor tables for Nassau County. "Before" emissions factors for PM10 and 				
				PM2.5 are default 2000 values from the CMAQtraq program from NYSDOT.				
				Emissior	ns factors used	in calculations:		
					BEFORE	AFTER		
				CO (g/m		0.13		
				VOC (g/i		0.05		
				NOx (g/r		16.62 0.0061		
				PM _{2.5} (g/ PM ₁₀ (g/				
COSTS				- will (g/				
					Proi	ect life: 4_ yrs Interest rate: 7_%		
	C	CMAQ	N	ON-	TOTAL	METHODOLOGY/ASSUMPTIONS:		
			CN	DAN				
Capital	\$	1.0 M	\$25	0,000	\$1.25 M	The project life of the new CNG buses is 8 years. However,		
Adm/oper		\$0	\$0		\$0	since comparison is against old buses which are near the		
Total	\$	1.0 M	\$250,000 \$1.25 M er		\$1.25 M	end of their useful life, the cost-effectiveness analysis in this		
Total annua	alized p	oublic		\$375,	,700	study accounts for fewer years.		
cost:								
Annual reve	enues:			Nor	ne	No cost effectiveness calculations were provided by the		
Net public c				\$1.2		project sponsor.		
Annual priva		st		N/				
Total net co				\$1.2				
					or remaining useful life of the old huses or the different in cost and			

NOTE: Typically, replacement projects should only account for remaining useful life of the old buses, or the different in cost and emissions associated with a CNG bus vs. a conventional diesel bus.

Category: D	UST MITIC	Gatio	N		Subcategory: Dust Mitigation		
CMAQ Project	t ID: CA200	40439			Project Year: 2004		
Location: Rid					MPO: Kern Council of Governments		
					venue Paving Project" will provide funding for the City of		
					es of parking, and install curb, gutter, and sidewalk on both		
sides of the st	reet. This p	roject i	ncludes th	ne last unpave	ed section of Graaf Avenue within the city limits. It serves as a		
direct route to	Immanual	Christia	an School	and other cor	nmercial activity centers. The total length of the project is 0.25		
miles, along G		e betw	een Norm	a St. and Wa	yne St.		
TRAVEL IMPA			1				
Δ Vehicle trips:		A	-		SUMPTIONS:		
∆VMT:		A	Using v	isual observat	tion, there are about 300 average daily trips (ADT).		
∆Speed:		A	The tet				
∆Delay:		A	I ne tota	ai project leng	th is 1,320 feet.		
ΔSOV		A	27 275	appual VMT -	= 300 ADT * 365 days per year * (1,320 feet / 5,280 feet per		
ΔCP/VP		<u>A</u>	mile)	alliluai vivil =	= 500 ADT 505 days per year (1,520 leet / 5,200 leet per		
∆Transit		<u>A</u>					
Δ Walk		A					
∆Bike	N	<u>A</u>					
EMISSIONS △ VOC	NA		METUC				
ΔNO_X	NA		METHODOLOGY/ASSUMPTIONS: Using visual observation, the average traffic speed on the road is 30 mph. The silt				
ΔCO	NA		content of the road material was estimated as 28.5%. The road carries residential				
ΔPM_{10}			traffic, comprised mostly of cars, SUVs, and trucks; therefore, the mean vehicle				
$\Delta PM_{2.5}$	NA	luy	weight was estimated 2.5 tons. Data from the Western Regional Climate Center				
Δ Total	NA		indicates the number of days with at least 0.01 inches of precipitation was 19 in				
			1998. The particle size multiplier was 0.36, from PM10 guidelines.				
					n was used to calculate the quantity of size specific		
			•		from the unpaved road.		
			E 0.2	(r v 28.5)	$\frac{30}{30}\left(\frac{2.5}{3}\right)^{0.7}\left(\frac{4}{4}\right)^{0.5}\left(\frac{365-19}{365}\right)$ (11b/VMT)		
			E = 0.3	(5.9) - 12	$\left(\frac{36}{30}\right)\left(\frac{2.3}{3}\right) \left(\frac{4}{4}\right) \left(\frac{363-19}{365}\right) (11b/VMT)$		
			E = 4.2	2 Ib/VMT			
COSTS							
					ect life:20 yrs Interest rate:7_%		
	CMAQ		NON-	TOTAL	METHODOLOGY/ASSUMPTIONS:		
			CMAQ		Engineering costs were comprised of \$16,909 CMAQ and		
Capital	\$174,360	\$2	22,637	\$197,360	\$2,191 in local funding. Construction costs were split		
Adm/oper	\$0	**	\$0	\$0 #107.2(0	between \$157,814 in CMAQ funding and \$20,446 in local		
Total	\$174,360				match.		
	Total annualized public		\$20,8	817	The cost effectiveness calculation provided by the project		
COST:	10.01		NI	• •	sponsor uses a 0.071 capital recovery factor.		
Annual revenu		_	NOI		(0.071 * \$197,360) / 143 kg/day = \$97.98 per kg of PM10		
Net public cos			\$197,				
Annual private	ecost		N/				
Total net cost	net cost \$197,360			,300			

Category:	DUS	t mitig	ATIO	N		Subcategory: Dust Mitigation				
CMAQ Proj	ect ID:	ID20040	003			Project Year: 2004				
Location: S	Sandpoint, Idaho					MPO: Bannock Planning Organization				
Description	: Linco	oln Ave. S	Sandp	ooint - Th	nis project will	fund the paving of Lincoln Avenue from Pine Street to Main				
Street in or	der to r	educe th	e gen	eration of	PM10. Emis	sions inventory studies have shown that fugitive road dust				
						ost western US communities, contributing to 53% of the annual				
						The air quality improvement plan for the Sandpoint				
			es red	ucing fug	itive road dus	st by paving and resurfacing.				
TRAVEL IN	-	-								
Δ Vehicle tri	ps:	NA				SUMPTIONS:				
Δ VMT:		NA			length = 0.48					
∆Speed:		NA		Average	e Daily Traffic	(ADT) = 1,030 vehicles/day				
Δ Delay:		NA		T 1						
∆SOV		NA				supplied ADT using vehicle counts. VMT was based on data				
∆CP/VP		NA				ck Planning Organization 1998 Household Survey,				
∆Transit		NA			COMPASS 1997-98 Valley Origin and Destination Study, and Northern Idaho Corridor Plans.					
Δ Walk		NA		CUTTUUT FTATIS.						
∆Bike		NA								
EMISSION	S									
Δ VOC		NA		METHODOLOGY/ASSUMPTIONS:						
ΔNO_X		NA			unpaved roads = 0.360 kg/VMT					
Δ CO		NA		Particulate matter for paved roads = 0.005 kg/VMT						
ΔPM_{10}	- 175	5.512 kg/	day							
$\Delta PM_{2.5}$		NA				= (0.360 kg/VMT – 0.005 kg/VMT) x (1,030 vehicles) x (0.48				
∆ Total		.512 kg/c				lay				
	(().193 tpd))							
COSTS										
						ect life: <u>20</u> yrs Interest rate: <u>7</u> %				
	C	CMAQ		ION-	TOTAL	METHODOLOGY/ASSUMPTIONS:				
Conital	<u>م</u>	10 / 00	C	MAQ ¢0	¢010 / 00	Annual amissions reduction 177 kg/day v 2/0 days				
Capital	\$3	19,600		\$0 ¢0	\$319,600	Annual emissions reduction = 177 kg/day x 260 days =				
Adm/oper	¢ ኅ	\$0		\$0 \$0	\$0 \$210,400	46,020 kg/year emissions reduction				
Total		19,600		\$0	\$319,600	The statewide average number of days with less than 0.01				
	Total annualized public			\$33,	/10	inches precipitation is 260 days. 20-year project life was				
	cost:			N I		determined by the average life of maintained paved roadway				
Annual reve						in Idaho.				
Net public o		. +		\$319,						
Annual priv		51		¢210						
Total net cost		\$319,600								

NOTE: Emissions reductions for PM10 reported in the CMAQ database (255.11 kg/day) differ from those calculated and provided by the State (175 kg/day). A cost benefit calculation was provided by the State which assumed emissions benefits 260 days/year for 20 years.

Category: [OUST MITIC	GATIO	N		Subcategory: Dust Mitigation				
		0017							
CMAQ Project					Project Year: 2005				
Location: Bar				r Truck Dro	MPO: Bannock Planning Organization				
					bject to purchase a liquid de-icing truck to reduce application of				
Chloride on g	A10 emissions. The truck will use a combination of Magnesium								
Chilonae on gi	I avei i uaus a	nu ani	u-icing ch	ennicais on pa	aveu Tudus.				
TRAVEL IMP									
Δ Vehicle trips	: NA	١	-		SSUMPTIONS:				
∆VMT:	141,84	45.5	0	0	d = 33.45 miles				
	/da	у	VMT on	gravel = 2,24	47.3 miles/day				
Δ Speed:	NA	4		<i>c</i>					
∆Delay:	NA				d = 191.06 miles				
ΔSOV	NA		VIVII =	139,598.2 mil	les/day				
ΔCP/VP	NA			ne haced on d	late obtained from Dennock Dianning Organization 1000				
∆Transit	NA				lata obtained from Bannock Planning Organization 1998 COMPASS 1997-98 Valley Origin and Destination Study, and				
Δ Walk	NA			n Idaho Corrid	, , , , , , , , , , , , , , , , , , ,				
∆Bike	NA	۱	Norther						
EMISSIONS	r		1						
Δ VOC	NA				SSUMPTIONS:				
ΔNO_X	NA				ere obtained from the EPA's Compilation of Air Pollutant				
Δ CO	NA				AP-42, September, 1998). Environmental staff at the Idaho				
ΔPM_{10}	- 6,292 kg/	′day	Transpo	ortation Depar	rtment determined the control efficiency was 0.70.				
$\Delta PM_{2.5}$	NA		Doduction in DM10 by application of Magnophym Chlorida 0 7070 DM articles						
∆ Total	- 6,292 kg/		<i>Reduction in PM10 by application of Magnesium Chloride</i> = 0.7073 PM emissions						
	(6.93 tp	d)	factor * 0.70 * 2,247 VMT = 1,113 kg/day						
					<i>by application of Anti-icing chemical</i> = 0.053 PM emissions				
			Tactor	0.70 139,59	98 VMT = 5,179 kg/day				
			Total Pl	V10 reduction	n = 1,113 kg/day + 5,179 kg/day = 6,292 kg/day				
COSTS	<u> </u>		- otarri						
				Proi	iect life:8_ yrs Interest rate:7%				
	CMAQ	Ν	ION-	TOTAL	METHODOLOGY/ASSUMPTIONS:				
			MAQ						
Capital	\$152,889		2,111	\$165,000	The project life was determined by the average life of similar				
Adm/oper	\$0		\$0	\$0	equipment. Days of Activity per year = 200 days per year for				
Total	\$152,889	\$1	2,111	\$165,000	Magnesium Chloride and 90 days per year for the anti-icing				
Total annualiz			, \$29		chemicals				
cost:									
Annual reven	ues:		Nor	ne	1				
Net public cos		1	\$165		1				
Annual private			NA		1				
Total net cost			\$165,		1				

NOTE: Costs include purchase of the trucks, but does not account for on-going operating costs. Assumption of 200 days of application per year sounds high, but is presumably accurate for the local area.

Category:	FREI	GHT/ IN	TERM	IODAL		Subcategory: Freight/Intermodal					
CMAQ Proje	ect ID:	ME2000	0004			Project Year: 2000					
Location: C				Counties	, Maine	MPO: Lewiston-Auburn Comprehensive Transportation Study					
Description:	South	n Portlan	nd Tru	ck to Ra	il Intermodal	Facility - The South Portland Truck to Rail Intermodal					
	Facility will provide funding to construct rail siding as part of an intermodal transfer. Inbound kaolin clay is currently										
	transloaded from ships onto trucks for transport to paper mills. After completion of this project, the raw materials will										
	be transported via rail, reducing the number of heavy duty vehicle trips required. The emissions analysis was										
conducted in 1999 and assumed the project would reach full capacity by 2006.											
	TRAVEL IMPACTS										
Δ Vehicle trip	DS:	- 2,25				SUMPTIONS:					
		/yea				sage is a constant 2,250 trucks per year by 2006 and one					
Δ VMT:		- 225,0				North, one third South and one third West. Assume the					
A Chard		/yea				truck is 100 miles round trip and all truck emissions from nicles (HDDV) traveling at 40 mph. The facility will operate 365					
Δ Speed:		NA		days pe	2	incles (TDDV) traveling at 40 mpn. The facility will operate 505					
∆Delay: ∆SOV		NA NA		uays pe	i year.						
ΔSOV $\Delta CP/VP$		NA NA		1999	1999 750 trucks removed = 75,000 miles reduced						
$\Delta CF/VF$ $\Delta Transit$		NA		2006: $2,250$ trucks removed = 225,000 miles reduced							
Δ Walk		NA		2015:		removed = 225,000 miles reduced					
Δ Bike		NA		2018:	2,250 trucks	s removed = 225,000 miles reduced					
EMISSIONS	5	1171	<u> </u>								
Δ VOC		.71 kg/da	٩V	METHC	DOLOGY/AS	SSUMPTIONS:					
ΔNO_X		.22 kg/da	-	Emissions reductions calculated using Mobile running emissions factors for HDDV							
ΔCO		NA	1	at 40 mph. Emissions were calculated for 2006, 2015, and 2018 for comparison							
ΔPM_{10}		NA		purposes.							
$\Delta PM_{2.5}$		NA									
△ Total	- 4	.93 kg/da	ay								
	(0	.0054 tpd	d)								
COSTS											
						ect life:20 yrs Interest rate:7%					
	C	CAM		ON-	TOTAL	METHODOLOGY/ASSUMPTIONS:					
	***	0.044		MAQ	AOFE 400						
Capital		33,941	\$71,2	239	\$355,180						
Adm/oper	\$0	00.041	\$0	220	\$0 \$255,100						
Total		33,941	\$71,2		\$355,180						
Total annua	lized p	oublic		\$41,0	JY6						
cost: Annual revenues: None					20						
Annual reve											
Net public co		\t		\$355, NA							
Annual priva		51									
TUIAI HELCO	ગ		[\$355,	100						

NOTE: Analysis does not account for any increase in railroad emissions.

Category:	FRE	ight/ in	TERMODA	L	Subcategory: Freight/Intermodal					
CMAQ Proj					Project Year: 2002					
			Vork Counti	es Maine	MPO: Portland Area Comprehensive Transportation Study					
					reight Shipping - This project will fund the rehabilitation and/or					
					The rehab of the rail will allow freight to be shipped by rail					
	instead of truck. Existing train traffic will not be impacted as additional freight will be added to existing trains. The									
					ing along the interstate south to reach Boston and beyond.					
	g	unat uno o	noung a don							
TRAVEL IN	TRAVEL IMPACTS									
Δ Vehicle tri	ps:	- 1,00	0/ Meth	HODOLOGY/A	ASSUMPTIONS:					
		yea			ks being removed from the highway is approximately 1,000					
Δ VMT:		- 70,0			that the trucks would normally travel down I-95 to Kittery					
		/yea			age speed 50 mph in Cumberland County and 60 mph in York					
∆Speed:		NA			state. Assumes each round trip truck trip would be					
Δ Delay:		NA			iles. Assume all truck emissions are from heavy duty diesel					
∆SOV		NA	·	les (HDDV) an	d the siding works 5 days a week 52 weeks a year.					
∆CP/VP		NA	000/	1 000 1						
∆Transit		NA	0015	2006: 1,000 trucks removed per year = 70,000 miles reduced						
Δ Walk		NA	2020		ks removed per year = 70,000 miles reduced					
∆Bike		NA	2020		<pre>ks removed per year = 70,000 miles reduced</pre>					
EMISSION										
Δ VOC		0.18 kg/da			SSUMPTIONS:					
ΔNO_X	- '	1.96 kg/da		Emissions reductions calculated using Mobile running emissions factors for HDDV						
Δ CO		NA		at 50 and 60 mph. Emissions were calculated for 2006, 2015, and 2018 for						
ΔPM_{10}		NA	comp	comparison purposes.						
$\Delta PM_{2.5}$		NA								
∆ Total		2.14 kg/da								
00070	((0.0024 tpc	1)							
COSTS					alast life, 20 yrs listerest sate, 7 0/					
			NON-	TOTAL	oject life:20 yrs Interest rate:7% METHODOLOGY/ASSUMPTIONS:					
		CMAQ	CMAQ	TOTAL	METHODOLOGY/ASSUMPTIONS:					
Capital	¢1	28,501	\$365,597	\$404.000	_					
Capital Adm/opor	\$0		\$305,597 \$0	\$494,098 \$0	_					
Adm/oper			\$0 \$365,597	\$0						
					-					
Total annualized public \$54,720										
cost: Annual reve	nuoc		N	lone	-					
Net public of				94,098						
Annual priv		st		NA	-					
Total net co		51		94,098	-					
	JSI		φ 4	1070 F						

NOTE: Analysis does not account for any increase in railroad emissions.

Category:	FREI	GHT/IN1	ΓERM	ODAL		Subcategory: Freight/Intermodal				
CMAQ Proje	ect ID·	PA2002	0059	PA20030)090	Project Year: 2002 - 2003				
Location: P					,0,0	MPO: Southwestern Pennsylvania Regional Planning				
2000410111		9.1, 1 01.11	.ej.ru	iid		Commission				
Description:	West	morelan	d Inte	rmodal I	Freight Facili	y - The Westmoreland Intermodal Center is a project to				
reduce the a	amoun	t of freigl	ht carc	jo traveli	ng through do	wntown Pittsburgh. A portion of the cargo currently entering				
and leaving	the reg	gion on t	rucks	will be di	verted onto ra	il freight carriers at the Facility, reducing congestion on the				
region's freeways and major arterials. Currently, cargo either enters the region on trucks via major radial highways										
and is delivered to various points through the region or is picked-up at various points and leaves the region on trucks										
via the highways. By diverting a portion of the cargo to rail freight carriers serving the Intermodal Facility, the cargo										
	will be transloaded to/from trucks at the facility for pick-up/delivery through the region.									
TRAVEL IM						CUMPTIONS				
Δ Vehicle trip	DS:	NA				SUMPTIONS:				
ΔVMT :		- 897/0	3			s of cargo each year will be diverted to the Facility, the ruck loads per year. Assume an average 1-way freight trip in				
Δ Speed:		NA				facility is 94 miles, and with the facility will be 80 miles.				
Δ Delay:		NA				= 20,000 year truck trips / 312 operating days per year * 14				
ΔSOV $\Delta CP/VP$		NA			er trip = 897.4					
$\Delta CP/VP$ $\Delta Transit$		NA NA		ninee p						
Δ Walk		NA		Calcula	te the change	in truck VMT to deliver cargo with and without construction of				
Δ Bike		NA		the Fac	ility.					
		1 1 1 1								
EMISSIONS		001 1/.				CUMPTIONS				
Δ VOC		001 kg/d				SUMPTIONS: alculated using heavy duty diesel emissions factors from Mobile				
ΔNO_X ΔCO		$\frac{3.3 \text{ kg/da}}{0.0 \text{ kg/da}}$	-			for years 2001, 2004, and 2012 to compare emissions with and				
ΔPM_{10}	- 1	.90 kg/da NA	ıy			he facility. (Emissions change due to implementation of project =				
$\Delta PM_{2.5}$		NA			MT x Emission					
Δ Total	_1	3.3 kg/da	W							
		o.o kg/uu	.y	Emissions reductions reported are for 2001 only. Travel speeds determined from the SPC travel demand model. Note that the average speed for a truck trip from the Intermodal						
				Facility t	o the average p	bick-up/delivery point (38 mph) is lower than the average speed for a y entering into the region to the average pick-up/delivery point (47				
				mph).	i nunn a nignwa	y entering into the region to the average pick-up/derivery point (47				
					Emissions @ 4	17.0 mph:				
						1.06 / 1000 = 1,982.32 kg/year				
						0.44 / 1000 = 17,671.68 kg/year				
					1,872,000 x 5. nissions @ 38.0	24 / 1000 = 9,809.28 kg/year				
						1.24 / 1000 = 1,984.00 kg/year				
						8.45 / 1000 = 13,520.00 kg/year				
				CO =	1,600,000 x 5.	76 / 1000 = 9,216.00 kg/year				
						uild – No Build Emissions.				
	VOC emissions change = 1,984.00 - 1,982.32 = -0.32 kg/year NOx emissions change = 13,520.00 - 17,671.68 = -4,151.68 kg/ye									
CO emissions change = $9,216.00 - 9,809.28 = -593.28$ kg/year										
COSTS										
						Project life:20 yrs Interest rate:7%				
	С	CMAQ	N	ION-	TOTAL	METHODOLOGY/ASSUMPTIONS:				
				MAQ						
Capital	\$	7.6 M	\$1	1.9 M	\$9.5 M	Assume trucks operate at the facility 6 days/week and the				
Adm/oper		\$0		\$0	\$0	total service life of the project is 10 years. The cost-				

Total	\$7.6 M	\$1.9 M	\$9.5 M	effectiveness analysis in this study assumes a 20-year				
Total annualiz	zed public	\$1,028	3,000	service life.				
Annual reven	ues:	Noi	ne	Cost-effectiveness calculations were not provided by				
Net public cos	st:	\$9.5	M	sponsor.				
Annual private	Annual private cost		Ą					
Total net cost		\$9.5	M					

NOTE: State provided information indicates total CMAQ funding of \$7.6 M and a \$1.9 M local match. The CMAQ database lists the project in FY 2002 (\$8,750,000) and 2003 (\$1,357,000) for a CMAQ funding total of \$10,107,000. Analysis does not account for any increase in rail emissions. In the CMAQ database, kg/year figures were incorrectly reported as kg/day.

Category:	FRE	GHT/IN1	[ERN	IODAL				Sı	ubcategory: I	reigh	ıt/Intermodal
CMAQ Proj	ect ID:	NY2004	0036			Proi	ect Year: 2004				
Location: S				rk			D: Poughkeepsie-Du	utchess	County Transi	oortatio	on Council
					This pro		will fund intermodal				
							I improve the efficier				
							he reliability of the r				
							area. The project w				
							ck, and construct a r				
							se seemingly minor				
efficiencies at the yard by allowing one locomotive to be housed in the yard to classify and haul traffic for pickup or										or pickup or	
delivery.											
TRAVEL IMPACTS											
Δ Vehicle trip	ps:	- 26,0	54				SUMPTIONS:				
		/day					ation breaks the pro		0	s: Visy	Paper Mill –
∆VMT:		- 140,5	538				Transfer Station – G	Goethal	Bridge.		
		/day	/		yoone S						
Δ Speed:		NA	L.				of 30 mph assumed				
Δ Delay:		NA			5 5		s per day. The ave	erage mi	iles of vehicle	ravel p	per day is 6,
∆sov		NA			302 day						
$\Delta CP/VP$		NA					iction = 10,268 truck				
∆Transit		NA				r Rec	fuction = 61,608 x 3	02 days	5 = 18,605,616		
Δ Walk		NA		Trans/C							
∆Bike		NA					mph assumed for th				
				5	5	ks per	day. The average	miles of	t vehicle travel	per da	ay is 5, for 302
				days/ye		. .		_			
							tiction = 15,786 truck				
							luction = $78,930 \times 30$				AT realization
	c			Da	IIY VIVI I	Real	uction = 23,836,860	/ 302 0	ays/year = 78,	930 VI	vit reduction.
EMISSIONS		0.01 kg/s		METHO							
Δ VOC		9.01 kg/c				OGY/ASSUMPTIONS:					
ΔNO_X		08.80 kg/				OT software package CMAQtraq was used to estimate emissions for ents, using the "Goods Vehicle Reduction" module. Effects were					
ΔCO		12.21 kg/	-				ys/year with the follo				
ΔPM_{10}		7.00 kg/d					actor = 12.18				
$\Delta PM_{2.5}$	- 30).07 kg/d	ау				factor = 1.49		10 emissions f		
∆ Total		NA					factor = 7.18	1 111		45101 -	
						reduced = (Emissions factor * Visy/Bayoone miles reduced) +					
							rans/Goethal miles r				
COSTS				(·/		
						Proi	ect life: 20_ yrs	Ir	nterest rate:	7 9	6
	(CMAQ	Ν	ION-	TOTA		METHODOLOGY/				
		_		MAQ							
Capital	\$	1.7 M					The NY Economic	: Develo	pment Commi	ssion \	will provide the
Adm/oper		\$0	1	\$0	\$0		local share of fund				
Total	\$	1.7 M	\$	7.3 M	\$9.0		development costs				
Total annua				\$949			provided by the pr				
cost:	~~ p			Ψ/1/j				- '			
Annual reve	enues.			Nor	ne						
Net public c											
Net public cost: \$9.0 M							1				

Annual private cost	NA
Total net cost	\$9.0 M

NOTE: The \$1.7 Million CMAQ funding total provided by the project sponsor does not match the \$1.3 Million listed in the CMAQ database. The analysis seems to assume a very large number of trucks reduced, and does not account for rail emissions. It is not entirely clear if the truck assumptions were meant to be annual estimates rather than daily.

Category:	FRE	IGHT/IN	TERN	IODAL		Subcategory: Freight/Intermodal			
CMAQ Proje	ect ID:	PA2004	0076			Project Year: 2004			
Location: Ir				svlvania		MPO: Southwestern Pennsylvania Commission MPO			
					nsion and Re	ehabilitation - This project will fund the construction of 5.25 miles			
						and Shelocta, in Indiana County in order to create a more direct route			
					ta. Currently, coal is delivered by a combination of truck and rail				
						via rail, will reduce the amount delivered by trucks. The new rail route			
						rade, higher speed, and higher capacity than the existing rail line.			
Locomotive power required to haul 130 loaded coal cars per train over the new route will be less than that required to opera over the existing route with only 100 loaded coal cars per train; therefore, it is estimated that the new route will enable a									
decrease in the locomotive power required while, at the same time, increase by 30% the tonnage hauled per train.									
TRAVEL IMPACTS									
Δ Vehicle trip		- 174 /	dav	METHC	DOLOGY/AS	SSUMPTIONS:			
ΔVMT :	,01	- 8,970	3			2-way trip length = 41.26 miles			
Δ Speed:		NA	2			2-way trip Length is assumed to be 25% of the Mine-based length =			
$\Delta Delay:$		NA		10.315 n					
ΔSOV		NA				ay truck trips before project = 107,396			
$\Delta CP/VP$		NA		Number	of yearly 2-way	ay truck trips after project = 63,918			
Δ Transit		NA		Total Da	ily Truck VMT	= Daily Mine-based VMT + Daily Home-based VMT			
Δ Walk		NA				= Daily Mille-based VMT + Daily Home-based VMT ngs = VMT before project – VMT after project			
Δ Bike		NA		VMT before = $5,538,967/year = 22,156/day;$ VMT after = $3,296,575/yr = 13,186/day$					
				Δ VMT = 8,970/day					
					5				
						e total coal delivered by truck to the power station originates in the			
				project area, and consequently, $\frac{1}{2}$ of the total truck VMT. Delivery occurs 250 days of the year. Estimated tons of coal that will be diverted from truck to rail = 1,000,000 tons/year.					
EMISSIONS	5			Jour 20					
Δ VOC	- 11	1.48 kg/d	ay	METHODOLOGY/ASSUMPTIONS:					
ΔNO_X		3.46 kg/d	-	Emissions reductions were calculated for heavy duty diesel trucks at an average					
Δ CO		4.67 kg/d	4	speed of 36 mph using MOBILE6 emissions factors for 2004 and 2012.					
ΔPM_{10}		NA	1	Reported emissions reductions are for 2004 only.					
$\Delta PM_{2.5}$		NA		Emissions factors:					
Δ Total	-64	l.94 kg/da	ay	VOC = 1.28; NOx = 7.21; CO = 5.96					
		.0715 tpd	5						
COSTS									
					Proj	ject life:20 yrs Interest rate:7_%			
	C	CMAQ	N	ON-	TOTAL	METHODOLOGY/ASSUMPTIONS:			
				MAQ					
Capital	\$	510 M		2.5 M	\$12.5 M	Cost-effectiveness was not provided by sponsor.			
Adm/oper		\$0		\$0	\$0				
Total \$10 M \$2.5 M \$12.5 M						Annualized cost = \$12.5 m x 0.081 CRF = \$1.0125 mil			
Total annua	lized p	oublic		\$1,318	3,500				
cost:						C/E = \$1.0125 mil / (0.0715 x 250) = \$56,643/ton			
Annual reve	nues:			Nor	ne				
Net public c	ost:			\$12.	ōΜ				
Annual priva		st		NA		<u> </u>			
Total net co	st			\$12.	δM				

NOTE: The travel and emissions impact calculations did not include train emissions effects due to the increased tonnage of coal being carried by the rail cars.

Category FREIC	GHT/INTERM	ODAL	Subcategory: Freight/Intermo	dal				
CMAQ Project ID:	CT20060022		Project Year: 2006					
Location: New Ha		cut	MPO: South Central Regional COG					
Description: Freig	ht Rail Constr	ruction along Waterfront	Street - This project will advance the railroad track					
			ated utility relocations. The track work will be performed					
force account and the right of way for this work will be transferred from another project (92-541). The railroad track								
			by diverting some share of the transportation of freight a	nd				
cargo through Nev		ruck to rail.		_				
TRAVEL IMPACT	-		NETIONS					
Δ Vehicle trips:	- 15.38/day	METHODOLOGY/ASSU						
ΔVMT :	- 1,408 /day		vas provided by the operator of the rail service in the area. ments annually are diverted from truck to rail.					
Δ Speed:	NA		l per year = 1,000 railcar shipments annually x 4 truck-equival	lent				
∆Delay:	NA		per year = 15.38 vehicle trips removed per day.	, or n				
∆sov	NA							
$\Delta CP/VP$	NA		way (61 miles average) and 50% of truck trips are round-trip					
Δ Transit	NA	(122 miles average) from th						
Δ Walk	NA		= (50% x 4000 annual truck trips x 61 miles / 260 days/year) + ps x 122 miles / 260 days/year) = 1,408 VMT reduced daily.					
∆Bike	NA		55 x 122 miles 7 200 days/year 7 = 1,400 vivit reduced daily.					
			$M_{2.5}$ non-attainment areas, 50% of truck trips are one-way (27 miles average) and truck trips are round trip (42 miles average)					
		50% of truck trips are round trip (43 miles average). Daily VMT reduction = (50% x 4000 annual truck trips x 27 miles / 260 days/year) + (50% x						
			/ 260 days/year) = 623 VMT reduced daily in PM _{2.5} non-	-				
		attainment areas.						
EMISSIONS								
	460 kg/day	METHODOLOGY/ASSU						
	.437 kg/day	51	truck trip is on expressway and 10% is on arterial.					
Δ CO	NA	Emissions factors, express $VOC = 0.314$ almilo:	<i>sway:</i> NOx = 13.630 g/mile; PM _{2.5} = 0.261 g/mile					
ΔPM_{10}	NA	<i>Emissions factors, arterial:</i>						
$\Delta PM_{2.5}$ - 0.	162 kg/day							

Δ Total	NA	VC	0C = 0.453 g/mile	; NOx = 8.300 g/mile; P	PM _{2.5} = 0.260 g/mile						
		reduction NOx em x 8.3 g/n PM _{2.5} en	VOC emissions reduction = $(1,408 \text{ VMT} \text{ reduction x } 0.314 \text{ g/mile x } 90\%) + (1,408 \text{ VMT} \text{ reduction x } 0.453 \text{ g/mile x } 10\%) = 461 \text{ g/day VOC reduction}$ NOx emissions reduction = $(1,408 \text{ VMT} \text{ reduction x } 13.630 \text{ x } 90\%) + (1,408 \text{ VMT} \text{ reduction x } 8.3 \text{ g/mile x } 10\%) = 18,441 \text{ g/day NOx reduction}$ PM _{2.5} emissions reduction = $(623 \text{ VMT} \text{ reduction x } 0.261 \text{ g/mile x } 90\%) + (623 \text{ VMT} \text{ reduction x } 0.260 \text{ g/mile x } 10\%) = 162 \text{ g/day PM}_{2.5} \text{ reduction}$								
		trackage Estimate based or VOC = 1 NOx = 1 $PM_{2.5} = 1$ Overall e VOC em NOx em	Additional locomotive emissions due to increased train trip length to service the additional trackage (Additional emissions = gallons consumed x emissions factor): Estimate 15 gallons of additional fuel consumed per day. Use EPA emissions factors, based on the age of the locomotive fleet. VOC = 15 gallons x 21.0 g/gal = 0.32 g/day of additional VOC emissions. NOx = 15 gallons x 262.0 g/gal = 3.93 g/day of additional NOx emissions. PM _{2.5} = 15 gallons x 9.2 g/gal = 0.14 g/day of additional PM _{2.5} emissions. Overall emissions reductions: VOC emissions reduction = $461 - 0.32 = 460.68$ g/day NOx emissions reduction = $18,441 - 3.93 = 18,437.07$ g/day PM _{2.5} emissions reduction = $162 - 0.14 = 161.86$ g/day								
COSTS											
Annualized p	oublic costs			ct life:20 yrs	Interest rate:7_%						
	CMAQ	NON- CMAQ	TOTAL	METHODOLOGY/AS Assumes project has	SSUMPTIONS: s movement 260 days/year.						
Capital	\$1,409,600	\$352,400	\$1,762,000								
Adm/oper	\$0	\$0	\$0	Cost-effectiveness w	as not provided by the project						
Total	\$1,409,600	\$352,400	\$1,762,000	sponsor.							
Total annual	ized public	\$174	1,100								
cost:											
Annual rever			one								
Net public co			2,000								
Annual priva			IA								
Total net cos	st	\$1,76	2,000								

NOTE: Sponsor's calculation incorrectly showed value in kg rather than grams, overstating emissions effects. The analysis could also consider what portion of the truck's VMT is occurring in the impact area.

Category I	DIESE	EL EMIS	SION	IS REDL	ICTION	Subcategory: Diesel Engine Retrofits				
CMAQ Proje	ect ID:	MD2001	0025			Project Year: 2001				
Location: B						MPO: Baltimore Metropolitan Council				
Description:	12 Bi	is Engin	e Upg	grade - Th	nis project will	fund 142 engine overhauls on the MTA bus fleet, including				
						tified engine rebuild kit. Each bus engine's rebuild is				
scheduled a	is need	ded or af	ter 30	0,000 mil	es of service.					
TRAVEL IM	PACT	S								
Δ Vehicle trip	DS:	NA		METHC	DOLOGY/AS	SUMPTIONS:				
Δ VMT:		NA								
∆Speed:		NA				available for service and the total vehicle miles in FFY 2001				
∆Delay:		NA		were 21	,774,843.					
∆SOV		NA		101 774	0.40 11 / 7					
ΔCP/VP		NA		(21,774	,843 miles / /	94 buses * 142 Buses = 3,894,241 overhaul bus miles)				
∆Transit		NA								
Δ Walk		NA								
∆Bike		NA								
EMISSIONS	5			METHO						
Δ VOC		NA		METHODOLOGY/ASSUMPTIONS:						
ΔNO_X		NA		Southwestern Research and MTA data indicates that each gram per brake horsepower-hour (g/bhp-hr) is equal to 1.5 tons of PM per 100,000 bus-miles.						
ΔCO		NA		norsept	wei-noui (g/r					
ΔPM_{10}	2/	NA	<u>0</u> 1/	(3 894 3	041 overhaul I	bus miles / 100,000 miles * 1.5 tons = 58.41 tons of PM per				
$\Delta PM_{2.5}$ $\Delta Total$	- 34	1.77 kg/d NA	ay	g/bhp-hr)						
		NA								
				Data provided by the Engelhard Automotive Emissions Systems indicates that depending on the age of a bus and engine type. the PM can be reduced between						
				depending on the age of a bus and engine type, the PM can be reduced between 0.46 and 0.05 g/bhp-hr. The average will vary around 0.255 g/bhp-hr of PM.						
				0.255 g	/bhp-hr x 58.4	11 (conversion of g/bhp-hr to tons)= 14.9 tons of PM per year				
				14.01						
COSTC				14.9 tor	IS OF PIVI per y	/ear * 2.4837895 conversion factor = kilograms / day				
COSTS					Droi	oct life: 7 vrc liptoroct rate: 7 0/				
	0	CMAQ	Ν	ION-	TOTAL	ect life:_7_ yrs Interest rate: <u>7</u> % METHODOLOGY/ASSUMPTIONS:				
		MIAU		MAQ	TUTAL					
Capital	\$5	.458 M		.578 M	\$23.036 M	The total cost budgeted for the MTA fleet is \$23.036 million;				
Adm/oper		\$0		\$0	\$0	funds requested from the CMAQ program total \$5.458				
Total	\$5	.458 M	\$17	.578 M	\$23.036 M	million, or 23.69 % of the total cost. Cost-effectiveness was				
Total annua	lized p	oublic		\$5,095	5,000	not provided by the project sponsor.				
cost:										
Annual reve				Nor						
Net public c				\$23.0						
Annual priva		st		NA						
Total net co	st			\$23.0	36 M					

NOTE: The CMAQ funding portion listed in the CMAQ database for this project is \$4,366,000.

Category: D	DIESE	EL EMIS	sioi	NS RED	JCTION		Sub	category:	Diesel Engin	e Retrofits	
CMAQ Project	ct ID:	NY2004	0032			Project	Year: 2004	1			
Location: Net						MPO: New York Metropolitan Transportation Council					
Description: V	NCDO	OT Diese	el Enc	gine Retr	ofit of 177 Tr				the retrofit of 1		
									ssive regenerati		
									plan articulated		
TRAVEL IMP								•			
Δ Vehicle trips	5:	NA		METHODOLOGY/ASSUMPTIONS:							
ΔVMT:		NA		Orion b	uses travel 10	,944 weekda	ay miles an	d 9,784 wee	ekend miles. No	eoplan	
∆Speed:		NA		buses tr	avel 7,056 we	eekday miles	and 9,500	weekend n	niles. This sche	dule	
∆Delay:		NA							es and dead-hea	ad miles	
∆sov		NA		provide	d by the West	chester DOT	and the se	ervice contra	actor.		
ΔCP/VP		NA									
∆Transit		NA		Assume	e 254 weekda	ys per year a	ind 104 we	ekend days	s per year.		
Δ Walk		NA									
∆Bike		NA									
EMISSIONS											
Δ VOC	- 2.	96 kg/da	١V	METHC	DOLOGY/AS	SUMPTION	S:				
ΔNO_X		.64 kg/da	-	Emissions reductions were calculated from emissions with the retrofits provided by							
		.94 kg/da							n tailpipe testing		
ΔPM_{10}		NA	1	average	e speed from t	esting Bee-L	ine bus du	ty cycle is 2	0 mph.		
$\Delta PM_{2.5}$		NA			Condition			s Factors (g/r	· ·		
Δ Total		NA		Orion:	E.Jatian	CO	VOC	NOx	PM	-	
					Existing: Retrofit:	7.94	0.31	39.4 38.5	0.62	-	
				Neopla		CO	VOC	NOx	PM		
					Existing:	1.59	0.34	31.4	0.29		
					Retrofit:	0.11	0.0	36.4	0.034]	
									ion Bus VMT x		
									Veoplan buses :	K Neoplan	
				Bus VM	T x (Existing of	emissions ra	<u>te – retrofit</u>	emissions	rate))		
COSTS						1.116 7					
			-			ect life:_7_ y		Interest r			
	C	MAQ		ION-	TOTAL	METHODO	LUGY/ASS	SUMPTION	5:		
	*	1.0.14		MAQ	ф4 г м						
Capital	\$	1.2 M	\$3(00,000	\$1.5 M						
Adm/oper		\$0	***	\$0	\$0 #1.5.M						
			\$1.5 M								
Total annualized public \$311,000				000							
cost:											
Annual reven				Nor							
Net public cos				\$1.5							
Annual private		t		NA							
Total net cost				\$1.5					ual and it is wir		

NOTE: The project sponsor noted that the increase in NOx emissions found is highly unusual, and it is widely accepted that this technology will have no impact on NOx. The other reductions also do not match with EPA's estimates: 60% reduction in HC, CO, and PM; no impact on NOx. The project sponsor did not calculate PM emissions reductions, but the cost-effectiveness analysis determined these values should be (2.3 kg/day reduced) The CMAQ funding portion listed in the CMAQ database for this project is \$4,366,000.

Category:	DIE	SEL EMIS	SSION	IS REDU	CTION	Subcategory: Diesel Engine Retrofits						
CMAQ Proje	ect IE): PA2004(0011			Project Year: 2004						
Location: P				vania		MPO: Delaware Valley Regional Planning Commission						
			,		ion Device on Lo	cal Buses - This project includes the purchase and						
						is fleet. The proposed retrofit device is an Englehard DPX						
soot filter, a	n exh	naust emis	sions	filter. 155 b	ouses are Neoplan	Articulated buses with a 1999 Detroit Diesel Series 50						
						30 of the buses are Eldorado buses with a 2000 Cummins						
ISB engine	and r	nileages ra	anging	<mark>y</mark> from 38,7	33 to 149,199 mile	es.						
TRAVEL IM	PAC	TS										
Δ Vehicle trip)S:	NA		METHOD	OLOGY/ASSUMF	PTIONS:						
ΔVMT:		NA				e revenue miles for each of the 235 buses is 27,207 miles,						
Δ Speed:		NA				.15, and an average bus speed of 13.5 mph. Assumes each						
$\Delta Delay:$		NA		bus opera	ates an average of	250 days per year.						
ΔSOV		NA										
ΔCP/VP		NA										
∆Transit		NA										
Δ Walk		NA										
∆Bike		NA										
EMISSIONS	5											
Δ VOC		-7.33 kg/	/day	METHOD	OLOGY/ASSUMF	PTIONS:						
ΔNO_X		NA		The EPA has certified this device to reduce HC and CO emissions by 60%, with no								
Δ CO		-111.2	2	impact on NOx. Emissions reductions were calculated by multiplying the total emissions								
		kg/da	у			es using MOBILE6 emissions factors and then multiplying the						
ΔPM_{10}		NA		VOC and CO emissions by 0.60.								
$\Delta PM_{2.5}$		NA										
∆ Total		-7.33 kg/										
		(0.008 t	pd)									
COSTS												
						fe:7-8yrs Interest rate:7%						
		CMAQ		N-CMAQ		METHODOLOGY/ASSUMPTIONS:						
Capital	\$1	,793,520	\$4	49,000	\$2,242,520	Calastad through the 2002 DV/DDC Commentations CNAAC						
Adm/oper						Selected through the 2002 DVRPC Competitive CMAQ						
	Total \$1,793,520 \$4				\$2;212;020	Program by the MPO, for funding in 2004. Cost-						
Total annua	lized	public		N	A	effectiveness was not provided by sponsor.						
cost:												
Annual reve		5:			ne							
Net public c					2,520							
Annual priva		ost			A							
Total net co	st			\$2,24	2,520							

NOTE: Emissions reductions provided by the State sponsor do not match those reported in the CMAQ database. Reported values are – 0.77 VOC, - 6.29 CO, and - 0.57 NOx. EPA reports a 60% reduction in PM emissions, which are included in the cost-effectiveness calculations as 6.5 kg/day PM₁₀ reduction and 5.7 kg/day PM_{2.5}.

Category:	DIESE	L EMIS	SIONS REDU	ICTION	Subcategory: Diesel Engine Retrofits							
CMAQ Proje	ect ID:	OR2005	0011		Project Year: 2005							
Location: N					MPO: Rogue Valley COG							
exhaust after	er-treatr	ment cor	trols on 9 dies	el-powered tr	nicles – This project will fund the installation of advanced rash collection trucks owned by Rogue Disposal and Recycling or was used to identify those 9 vehicles in the garbage hauling							
					vith these devices. The filters will effectively reduce emissions							
					ucing CO and VOC emissions by 67 percent and 95 percent,							
			n reductions w	ill include ber	nzene, formaldehyde, and polycyclic aromatic hydrocarbons.							
TRAVEL IM												
Δ Vehicle trip	0S:	NA	METHO	DOLOGY/AS	SSUMPTIONS:							
ΔVMT :		NA	Degue	Dianagalia fla	at of elektron discal neuroral track collection trucks consume							
Δ Speed:		NA			et of eighteen diesel-powered trash collection trucks consume							
∆Delay:		NA			s of fuel per year, emit a total of 2.13 tons of CO, 0.86 tons of of PM, and travel up to 855,000 total miles annually.							
ΔSOV		NA	v003,		or i m, and travel up to 000,000 total miles armually.							
∆CP/VP ∆Transit		NA NA										
		NA NA										
Bike		NA										
EMISSIONS	S											
Δ VOC		43 kg/da	v METHC	DOLOGY/AS	SSUMPTIONS:							
ΔNO_X		NA			PO provided Mobile6 inputs for EPA's Retrofit Calculator.							
Δ CO	- 2.	49 kg/da		Based on the manufacturer's report, the following manual calculations were used:								
ΔPM_{10}		28 kg/da	1									
$\Delta PM_{2.5}$		NA		VOC reductions: 0.86 tons VOC per year x 9/18 x 95% reduction x 907 conversion								
∆ Total	-1.	.7 kg/day	, factor /	factor / 260 days = 1.43 kg reduced per day								
				CO reductions: 2.13 tons VOC per year x 9/18 x 67% reduction x 907 conversion factor / 260 days = 2.49 kg reduced per day								
					ons VOC per year x 9/18 x 80% reduction x 907 conversion .28 kg reduced per day							
COSTS												
					ect life: 7_ yrs Interest rate: 7_%							
	C	Maq	NON- CMAQ	Total	METHODOLOGY/ASSUMPTIONS: The project received an increase in funds to retrofit nine							
Capital	\$4	9,692	\$12,423	\$62,115	additional vehicles in July 2007. The grand total of this							
Adm/oper		\$0	\$0	\$0	project has been amended to \$124,615. CMAQ is funding							
Total		9,692	\$12,423	\$62,115	80% of this project, \$99,692.							
Total annua cost:	•	ublic	\$12,									
Annual reve			No									
Net public c			\$62,									
Annual priva		t	N/		4							
Total net co			62,1		differ from values reported in the CMAO database (VOC) 1.20							

NOTE: Emissions reductions calculated above slightly differ from values reported in the CMAQ database (VOC: 1.39 kg/day, CO: 2.31 kg/day, PM₁₀: 0.28 kg/day). EPA's retrofit calculator has since been replaced by new modeling tools: the Diesel Emissions Quantifier and the National Mobile Inventory Model (NMIM).

Category:	DIES	EL EN	IISSIOI	NS RED	JCTION	Subcategory: Diesel Engine Retrofits							
CMAQ Proj	ect ID:	Not Ye	et Assig	ned		Project Year: 2007							
Location:			U			MPO: Southeast Michigan Council of Governments							
				Engine I	Retrofits - Thi	s project will fund the repowering of six switcher (4-axle)							
						an Generator Set (GENSET) diesel locomotive engine technology.							
						roit rail yard for five years. Each existing locomotive is stripped from							
						vides power. The engine is replaced with three smaller, ultra-clean							
						th new control, and operating equipment. The Southeast Michigan							
					es repowering t	hree locomotives in 2007 and another three in 2008; this analysis							
only account TRAVEL IN			2007 rep	owerings.									
Δ Vehicle trip			IA	METHO	DOLOGY/ASSI								
	5.			None.	DOLOGIASSI	UMPTIONS.							
∆VMT:			IA IA	NOTE:									
<u>∆Speed:</u>			IA A										
∆Delay: ∆SOV			IA IA										
$\Delta CP/VP$			IA IA										
Δ Transit			IA A										
Δ Walk			IA										
∆Bike			A										
EMISSIONS	S												
Δ VOC	- 9	.96 kg/	day	METHC	DOLOGY/AS	SUMPTIONS:							
ΔNO_X	- 13	32.1 kg	/day			ns are calculated using the USEPA emissions standard for a Tier 0							
Δ CO		NA	3			e PM and VOC emissions are conservatively calculated using the							
ΔPM_{10}		NA				PA emissions factors of 0.44 g/bhp-hr PM and 1.01 g/bhp-hr VOC							
$\Delta PM_{2.5}$	- 3	.68 kg/	dav			dards of 0.72 g/bhp-hr PM and 2.1 g/bhp-hr VOC. Conventional							
Δ Total	-	NA	· · J			000 gal/yr. According to USEPA, the Brake-Specific Fuel 5 20.8 bhp-hr/gal. GENSET locomotive emissions factors are based							
						he standards (grams/bhp-hr) since the locomotive is powered by							
						has the same meaning as VOC and HC. The GENSET fuel use is							
						ntional switcher (45,000 gal/yr). The Brake-Specific Fuel							
				Consum	ption (BSFC) fo	or a GENSET engine is reported as 19.5 bhp-hr/gal.							
						= BSFC * Fuel Used * Emissions Factor * 3 Locomotives							
						* 60,000 * 14.0 * 3 = 52,416 kg/year							
						i * 45,000 * 2.85 * 3 = 7,503 kg/year x = (52,416 - 7,503) / 340 days per year = 132.1 kg/day							
				Daily I		λ (02, 110 1,000) / 010 days pol year = 152.1 kg/day							
				Calculati	on also assum	es 86% reduction in ozone precursors and 76% reduction in PM.							
COSTS													
					Proje	ect life:5 yrs Interest rate:7%							
	CM	AQ	NON-	CMAQ	TOTAL	METHODOLOGY/ASSUMPTIONS:							
Capital	\$3.3	6 M	\$84	0,000	\$4.2 M	A separate emissions and cost effectiveness analysis was							
Adm/oper	\$			50	\$0	conducted for the three locomotives scheduled for repowering in							
Total	\$3.3			0,000	\$4.2 M	2008. Assumes the three locomotives operate 340 days per year							
Total annualized public						with a 5 year design life. Cost effectiveness = Total project cost / (Emissions reduction * 5							
cost:				\$1,042	2,000	years * 340 days)							
Annual revenues:					ne	Cost per Kg over the design life for VOC = \$248.05							
Net public c				\$4.2		Cost per Kg over the design life for NOx = \$18.70							
Annual private cost NA						Cost per Kg over the design life for $PM2.5 = 671.36							
Total net co				\$4.2									
			<u> </u>			lated using similar methods as the NOx calculation shown							

NOTE: The VOC and PM_{1.5} emissions reductions were calculated using similar methods as the NOx calculation shown.

Category:	DIES	SEL EMIS	SSIO	NS RED	UCTION	Subcategory: Diesel Engine Retrofits								
CMAQ Proj	ect ID	: Not Yet	Assio	ined		Project Year: 2007								
Location: C						MPO: New York Metropolitan Transportation Council								
					3 County Ve	hicles - This project will fund the diagnostic review and								
						ed vehicles over 8,500 pounds that are owned by the City of								
						treatment and diagnostic review to ensure that the retrofits								
meet the ne	eds o	of the vehi	cle's c	locument	ed usage and	d performance. All of the retrofit technologies will be verified								
by the US E	EPA or	r the Calif	ornia I	Air Resou	urces Board ((CARB).								
TRAVEL IM	IPAC1	rs –												
Δ Vehicle trip	0S:	NA		METHC	DOLOGY/AS	SSUMPTIONS:								
ΔVMT:		NA				fit approximately 53 on-road diesel powered vehicles and								
Δ Speed:		NA			luty equipmer									
∆Delay:		NA			/8A: 25 Vehi									
∆SOV		NA			/8B: 6 Vehicl									
$\Delta CP/VP$		NA			/7: 14 Vehicle									
∆Transit		NA			/6: 1 Vehicle									
Δ Walk		NA			HDDV5: 2 Vehicles HDDV4: 1 Vehicle									
∆Bike		NA			/3: 4 Vehicles									
EMISSIONS	S			וססוו		5								
Δ VOC	- (0.44 kg/da	ay	METHC	DOLOGY/AS	SSUMPTIONS:								
ΔNO_X		NA		Emissions reductions calculated using Mobile6, EPA, and CARB emissions factors										
Δ CO	-1	1.71 kg/da	y	for a variety of heavy duty vehicles traveling at 23 mph for 4.43 miles per day for										
ΔPM_{10}	- (0.18 kg/da	iy	305 days/year with and without the retrofits. The assumed speed, operating days										
$\Delta PM_{2.5}$	- (0.14 kg/da	ау	and travel distance was reported by Rockland County Highway Dept. as an										
Δ Total		NA		average	e of their fleet	t vehicles equipped with GPS technology.								
COSTS														
						ject life:7 yrs Interest rate:7%								
	(CMAQ		ION-	TOTAL	METHODOLOGY/ASSUMPTIONS:								
				MAQ		Sponsor assumes \$10K/vehicle/retrofit for all 53 vehicles.								
Capital		24,000		5,000	\$530,000	A constant flow of benefits were assumed for 7 years								
Adm/oper	\$0		\$0		\$0	following project completion. Cost effectiveness was								
Total	\$4	24,000	\$106	5,000	\$530,000	calculated as kg of pollution reduced for each CMAQ dollar								
Total annua	lized	public		\$100	100	of funding.								
cost:						CO effectiveness: - 1.23 kg per CMAQ\$(thousands)								
Annual reve		:		Noi		VOC effectiveness: - 0.32 kg per CMAQ\$(thousands)								
Net public c				\$530		PM2.5 effectiveness: - 0.10 kg per CMAQ\$(thousands) PM10 effectiveness: - 0.13 kg per CMAQ\$								
Annual priva		ost		N		TIVITU EITECTIVETTESS U. IS KY PET CIVIAQA								
Total net co	st			\$530	,000									

NOTE: Benefits were estimated for 7 years (2011-2017). The calculation only assumes the vehicles travel 4.43 miles per day per vehicle, which sounds conservative.

Category:	DIES	EL EMIS	SIONS	REDI	JCTION	Subcategory: Diesel Engine Retrofits						
CMAQ Proj	ect ID:	Not Yet	Assigne	d		Project Year: 2007						
Location: R						MPO: New York Metropolitan Transportation Council						
					his project wil	I fund the diagnostic review and installation of retrofit devices						
						puses, and DPW vehicles. Rockland County has passed a						
						hicles that have a gross weight over 8,500 pounds to be						
retrofitted with the best available technology verified by EPA or CARB. This project is a direct result of that law,												
though only vehicles with replacement years of 2010 and beyond will be retrofitted with the project.												
TRAVEL IN	IPACT	S										
△Vehicle trips: NA METHODOLOGY/ASSUMPTIONS:												
ΔVMT:		NA										
∆Speed:		NA										
∆Delay:		NA										
ΔSOV		NA										
$\Delta CP/VP$		NA										
∆Transit		NA										
Δ Walk		NA										
∆Bike		NA										
EMISSIONS	S											
Δ VOC	- 14	0.33 kg/c	1			SUMPTIONS:						
ΔNO_X		NA		Emissions reductions calculated using Mobile6, EPA, and CARB emissions factors								
Δ CO		9.84 kg/c		for a variety of vehicle types traveling at posted speeds. The assumed speed,								
ΔPM_{10}		8.35 kg/c	·		ravel distance was reported by Rockland County Highway							
$\Delta PM_{2.5}$	- 12	5.88 kg/c	lay D	Dept. as	s an average of	of their fleet vehicles equipped with GPS technology.						
∆ Total		NA										
COSTS												
			n			ect life:7-15 yrs Interest rate: <u>7</u> %						
	0	CMAQ	NO		TOTAL	METHODOLOGY/ASSUMPTIONS:						
		0 (0 1 (CMA		** =* **							
Capital	\$1	.368 M	\$342,		\$1.71 M	Sponsor assumes \$10K/vehicle/retrofit for all vehicles.						
Adm/oper		\$0	\$0		\$0	A constant flow of benefits were assumed for 7-15 years						
Total		.368 M	\$342,	000 \$323,	\$1.71 M	following project completion. Cost effectiveness was calculated as kg of pollution reduced for each CMAQ dollar						
	•					of funding.						
	cost:					CO effectiveness: - 242.21 kg per CMAQ\$						
Annual reve				Nor		VOC effectiveness: - 34.92 kg per CMAQ\$						
Net public c	~+		\$1.7 ⁻		PM2.5 effectiveness: - 31.03 kg per CMAQ\$							
Annual priva		51		N/		PM10 effectiveness: - 34.10 kg per CMAQ\$						
Total net co	ISL			\$1.71	I IVI	J. J						

NOTE: The cost-effectiveness analysis used in this study accounts for a stream of benefits over 7 years.

Category: DIE	ESEL EMISS	SIONS REDU	ICTION	Subcategory: Truck Idle Reduction							
CMAQ Project	ID: TN20030	011		Project Year: 2003							
Location: Knox				MPO: Knoxville Urbanized Area MPO							
Description: TS	E: IdleAire 1	100 Units at V	Vatt Rd This pro	pject will provide funding for the installation of 100 IdleAire							
				ne IdleAire devices are capable of providing heating, air-							
conditioning, ar	nd other serv	ices to a truck	cab, as an altern	ative to using the truck's engine to provide continuous							
power. Emissic	ons reduction	s will be achie	ved due to the fac	ct that the trucks no longer have to idle their engines in							
order to have a		ting or air-con	ditioning.								
TRAVEL IMPA		I									
Δ Vehicle trips:	NA		DOLOGY/ASSU	MPTIONS:							
Δ VMT:	NA	None.									
∆Speed:	NA										
∆Delay:	NA										
∆sov	NA										
∆CP/VP	NA										
∆Transit	NA										
Δ Walk	NA										
∆Bike	NA										
EMISSIONS											
Δ VOC	- 4.47 kg/day		DOLOGY/ASSU								
ΔNO_X	- 60.4 kg/day		Emissions reductions were calculated using a truck idle emissions factor from								
ΔCO	NA		MOBILE6. Emissions for one truck idling for 10 hours each day are estimated to								
ΔPM_{10}	NA	be remo	be removed by each IdleAire unit, as reported by the IdleAire company.								
$\Delta PM_{2.5}$	NA										
Δ Total	- 64.87 kg/da		VOC emissions reduction = 44.7 g/unit * 100 units / 1000 = 4.47 kg/day NOx emissions reduction = 604 g/unit * 100 units / 1000 = 60.4 kg/day								
COSTS											
00313			Project I	ife:10 yrs Interest rate:7%							
	CMAQ	NON-	TOTAL	METHODOLOGY/ASSUMPTIONS:							
	CINAC	CMAQ	TOTAL								
Capital	\$1.0 M	\$0	\$1.0 M	Cost-effectiveness was not provided by the project							
Adm/oper	\$0	\$0	\$0	sponsor.							
Total	\$1.0 M	\$0	\$1.0 M	1'							
Total annualize			63,300	1							
cost:	- Paolo	φι	20,000								
Annual revenue	es:	Ν	lone	1							
Net public cost)00,000	1							
Annual private			NA	1							
Total net cost)00,000	-							

Note: When the figures were recalculated using EPA's current guidance on long duration truck idling; this results in a 135.0 kg/day reduction of NOx and 3.68 kg/day reduction of PM.

Category:	DIESE	EL EMIS	SION	IS REDL	ICTION	Su	bcategory: Truck Idle Reduction						
	oct ID:	KV2006	0012			Project Year: 2006							
CMAQ Proj Location: C						MPO: Clarksville MF	20						
			1	ntor Flor	strification (l		k Grove hired IdleAire to install 50						
							it 89, in Christian County, Kentucky.						
						g, as well as a wide rang							
							driver to completely shut down the						
truck's engine, eliminating the air pollution associated with idling. This such ATE project will save 182,500 g diesel fuel annually, remove over 1,700 tons of emissions annually, and remove existing barriers to the qua													
driver rest, such as noise, vibrations, and fumes.													
TRAVEL IMPACTS													
Δ Vehicle tri		NA		METHC	DOLOGY/AS	SUMPTIONS:							
ΔVMT:		NA		-									
Δ Speed:		NA											
$\Delta Delay:$		NA											
ΔSOV		NA											
$\Delta CP/VP$		NA											
∆Transit		NA											
Δ Walk		NA											
∆Bike		NA											
EMISSION	S												
Δ VOC		68 kg/da	ау	METHC	DOLOGY/AS	SUMPTIONS:							
ΔNO_X		0.17 kg/d		The emission factors for CO and VOC come from EPA's Mobile6 Emissions Model									
ΔCO		5.74 kg/d		to estimate the emissions from idling trucks. NOx and PM factors are calculated									
ΔPM_{10}		Na		based on 2004 EPA Guidance.									
$\Delta PM_{2.5}$		Na		1									
△ Total		Na					it) x 50 units / 1000 (g to kg						
				conversion factor) = Emissions Reduction (kg/day).									
00070				An Idle	Aire utilization	rate of 10 hours per day	/ 365 days per year is assumed.						
COSTS					 Dr-!	ant life, 15.00 years	Interact rate: 7 0/						
			N			ect life:15-20yrs	Interest rate: <u>7</u> %						
		CMAQ		ion- Maq	TOTAL	METHODOLOGY/ASS							
Capital	¢⊏	00,000		55,000	\$835,000		atisfy the capital needs of the initial ts. The IdleAire Corp will pay for the						
Adm/oper	C¢ O	\$0	<u>۵</u> ۵:	\$0	\$835,000 \$0	on-going operational co							
Total	¢۲		¢21		\$0 \$835,000		,						
1					٦								
cost: Annual revenues:													
				10N \$835									
Net public cost:\$835,00Annual private costNa													
Total net co		51		\$835,									
	JSI			4000	000								

Category:	DIESE	EL EMIS	SION	IS REDL	ICTION	Subcategory: Truck Idle Reduction						
CMAQ Proj	ect ID:	TN2006	0026			Project Year: 2006						
Location: J				nessee		MPO: Knoxville Urbanized Area MPO						
					erson Co Th	his project will provide funding for the installation of 59 IdleAire						
						/. The IdleAire devices are capable of providing heating, air-						
						Iternative to using the truck's engine to provide continuous						
						e fact that the trucks no longer have to idle their engines in						
order to have	c c											
TRAVEL IMPACTS												
△Vehicle trips: NA METHODOLOGY/ASSUMPTIONS:												
ΔVMT:		NA		None.								
∆Speed:		NA										
Δ Delay:		NA										
ΔSOV NA												
ΔCP/VP		NA										
∆Transit		NA										
Δ Walk		NA										
∆Bike		NA										
EMISSION	S											
Δ VOC		NA		METHC	DOLOGY/AS	SSUMPTIONS:						
ΔNO_X	-79	9.65 kg/da	ау			s for trucks are taken from the EPA guidance document –						
ΔCO		NA		"Guidance for Quantifying and Using Long Duration Truck Idling Emissions								
ΔPM_{10}		NA		Reductions in State Implementation Plans and Transportation Conformity."								
$\Delta PM_{2.5}$	- 2	17 kg/da	ay									
∆ Total	- 8	1.8 kg/da	ау	Emissions for one truck idling for 10 hours each day are estimated to be removed								
				by each IdleAire unit, as reported by the IdleAire company.								
				NO								
						ction = $135 \text{ g/hr/unit} * 10 \text{ hours} * 59 \text{ units} = 79.65 \text{ kg/day}$						
COSTS				PIVI _{2.5} ei	missions redu	iction = 3.68 g/hr/unit * 10 hours * 59 units = 2.17 kg/day						
COSTS					Droi	ect life: 10 yrs Interest rate: 7 %						
		CMAQ	N	ION-	TOTAL	ect life:10 yrs Interest rate:7% METHODOLOGY/ASSUMPTIONS:						
				MAQ	TUTAL	WILTHODOLOGT/ASSUWIFTIONS.						
Capital	¢7	88,240		97,060	\$08E 300	Cost-effectiveness was not provided by the project sponsor.						
Adm/oper	پ	\$0	φĽ	\$0 \$0	\$705,300	Cost-enectiveness was not provided by the project sponsor.						
						Annualized Cost = \$985K x 0.142 CRF = \$139,870						
						$C/E = $139,870 / (0.088 \times 365) = $4,355/ton$						
Total annualized public \$146,900 cost:												
Annual revenues: None						4						
None None None None						4						
Annual private cost NA						4						
Total net co		31		\$985		4						
	131			ψ700,	000							

NOTE: Assume that these facilities would be demanded all days of the year, consistent with Interstate trucking activity.

				A	nnual Emis	sions Redu	ction (kg/yea	ır)	A manualized		Cos	t Effectivenes	ss (\$/ton)	
Category	Subcategory	CMAQ PROJECT ID	PROJECT DESCRIPTION	VOC	со	NOX	PM10	PM2.5	Annualized Project Cost	VOC	CO	NOX	PM10	PM2.5
Traffic Flow Improvements	Traffic Signalization	MI20020058	Ryan Rd. 8 Mile Rd. To 23 Mile Rd.	2,715.0	-16,858.9	-1,706.1	0.0	0.0	\$110,256	\$36,840	-\$5,933	-\$58,627	\$0	\$0
Traffic Flow Improvements	Traffic Signalization	LA20040001	Continuous Flow Intersection- Airline @Sherwood Forest	1,916.6	7,052.1	649.3	11.9	7.7	\$904,773	\$428,247	\$116,390	\$1,264,080	\$68,974,198	\$106,166,167
Traffic Flow Improvements	Traffic Signalization	KY20050008	Fiber Optic Cable Installation	31,311.2	115,206.8	10,607.7	194.4	126.3	\$61,553	\$1,783	\$485	\$5,264	\$287,233	\$442,113
Traffic Flow Improvements	Traffic Signalization	OH20050033	West Main Street New Signals	3,461.5	12,736.2	1,172.7	21.5	14.0	\$98,414	\$25,792	\$7,010	\$76,132	\$4,154,132	\$6,394,106
Traffic Flow Improvements	Traffic Signalization	TN20050016	Sr-169 Cedar Bluff To College St	1,975.2	-14,400.0	-828.3	0.0	0.0	\$5,078	\$2,332	-\$320	-\$5,562	\$0	\$0
Traffic Flow Improvements	Traffic Signalization	KY20060009	Lane Use Control - Reversible Lanes	304.7	1,121.0	103.2	1.9	1.2	\$74,536	\$221,937	\$60,319	\$655,103	\$35,745,553	\$55,020,116
Traffic Flow Improvements	Traffic Signalization	Not yet assigned	2 Lane Roundabout At Fuller And Washington	113.8	601.5	86.7	0.0	0.0	\$467,981	\$3,730,970	\$705,808	\$4,896,080	\$0	\$0
Traffic Flow Improvements	Freeway Management	LA20030008	Baton Rouge Phase 2 Its	15,300.6	197,991.9	39,702.2	1,438.4	934.5	\$443,109	\$26,272	\$2,030	\$10,125	\$279,456	\$430,144
Traffic Flow Improvements	Freeway Management	WA20040027	Duwamish Its	2,973.6		2,268.0	0.0	0.0	\$318,190	\$97,073	\$17,787	\$127,274	\$0	\$0
Traffic Flow Improvements	Freeway Management	CT20050001	I/M System Design And Construction	4,173.7	15,560.5	1,322.4	0.0	1.5	\$218,725	\$47,541	\$12,752	\$150,051	\$0	\$135,906,590
Traffic Flow Improvements	Freeway Management	MI20050090	3 Changeable Message Boards On I-75		-78,068.8	-942.5	0.0	0.0	\$23,082	\$737	-\$268	-\$22,218	\$0	\$0
Traffic Flow Improvements	Freeway Management	Not yet assigned	Alabama Service And Assistance	8,102.6	29,812.7	2,745.0	50.3	32.7	\$871,432	\$97,568	\$26,517	\$287,995	\$15,714,389	\$24,187,834

APPENDIX D. CMAQ PROJECT COST EFFECTIVENESS CALCULATIONS

			Patrol											
Traffic Flow Improvements	High-Occupancy Vehicle Lanes	TX20020069	Dallas Hov Interchange Ih 635 Us 75	1,351.7	18,950.6	632.2	0.0	0.0	\$28,194,393	\$18,922,053	\$1,349,691	\$40,458,088	\$0	\$0
Shared Ride Programs	Regional Ridesharing	MD20020010	Maryland Ridesharing Program	12,214.8	153,913.7	13,830.8	551.0	254.5	\$1,200,211	\$89,139	\$7,074	\$78,724	\$1,976,153	\$4,278,198
Shared Ride Programs	Regional Ridesharing	PA20050202	University Of Pitt Tdm	3,778.6	48,421.7	3,899.3	144.7	66.8	\$358,669	\$86,112	\$6,720	\$83,444	\$2,248,489	\$4,867,780
Shared Ride Programs	Regional Ridesharing	Not yet assigned	Rideshare Program	1,400.0	17,674.1	1,570.0	62.1	28.7	\$762,503	\$494,078	\$39,138	\$440,593	\$11,136,120	\$24,108,721
Shared Ride Programs	Vanpool Programs	UT20020006	Expansion Of Uta Vanpool Leasing Program (Salt Lake And Ogden)	733.9	8,871.4	725.2	30.3	14.0	\$128,200	\$158,471	\$13,110	\$160,365	\$3,832,426	\$8,321,080
Shared Ride Programs	Vanpool Programs	UT20050005	Expansion Of Uta Vanpool Leasing Program (Ogden/ Layton)	781.1	9,061.0	837.8	34.9	16.1	\$47.676	\$55,372	\$4,773	\$51.622	\$1,238,280	\$2,685,195
Shared Ride Programs	Vanpool Programs	KY20060004	New Passenger Vans For Lextran	820.9	10,440.1	944.4	40.0	18.5	\$30,643	\$33,865	\$2,663	\$29,437	\$694,959	\$1,505,981
Shared Ride Programs	Park-and-Ride Lots	MD200017	I-95/Md 279 And I-95/Md 272	2.2	48.4	3.8	0.1	0.1	\$20,497	\$8,453,705	\$384,182	\$4,908,851	\$128,188,176	\$277,516,130
Shared Ride Programs	Park-and-Ride Lots	WI20000034, WI20000035	Lake Geneva Park And Ride	464.2	5,764.4	565.0	23.6	10.9	\$7,408	\$14,478	\$1,166	\$11,894	\$284,595	\$616,124
Shared Ride Programs	Park-and-Ride Lots	MD20020001	Md 210 At Md 373 Peak And Ride Construction	563.5	10,071.3	852.9	34.0	15.7	\$180,050	\$289,871	\$16,218	\$191,501	\$4,802,166	\$10,396,268
Shared Ride Programs	Park-and-Ride Lots	KY20050012	Tank - Walton/Union Park And Ride Development	460.7	6,677.2	612.1	25.2	11.6	\$143,695	\$282,971	\$19,523	\$212,970	\$5,175,501	\$11,204,505
Shared Ride Programs	Park-and-Ride Lots	WA20010004; WA20050035	Mountlake Terrace Station	1,487.7	18,475.8	1,810.9	75.7	35.0	\$1,741,954	\$1,062,245	\$85,532	\$872,653	\$20,880,023	\$45,203,414

TDM	TDM	CO20010042	Coordinate Telework Program	6,683.7	85,192.1	7,112.0	270.5	125.0	\$116,371	\$15,795	\$1,239	\$14,844	\$390,221	\$844,795
TDM	TDM	DC20020006	Employer Outreach And Bicycles Fy 2003	117.5	1,547.5	101.4	3.2	1.5	\$18,832	\$145,450	\$11,040	\$168,487	\$5,417,471	\$11,728,348
TDM	TDM	DC20050008	Fy06 Guaranteed Ride Home		637,587.5	57,326.3	2,284.5	1,055.2	\$1,941,109	\$34,798	\$2,762	\$30,718	\$770,832	\$1,668,784
TDM	TDM	RI20050010	Ozone Alert Days	61.2	788.6	61.1	2.2	1.0	\$194,284	\$2,879,727	\$223,494	\$2,882,338	\$79,844,584	\$172,856,506
Bicycle Pedestrian	Bicycle Pedestrian	MA20020040	Swansea Old Warren Rd. Bikeway Facility	138.0	1.834.8	111.6	3.2	1.5	\$167,471	\$1,100,607	\$82,804			\$102,982,286
Bicycle Pedestrian	Bicycle Pedestrian	IN20050009	Bike Path To Pinhook Park	35.7	475.1	28.9	0.8	0.4	\$237,332	\$6,023,188	\$453,217		\$259,655,935	\$562,132,272
Bicycle Pedestrian	Bicycle Pedestrian	Not yet assigned	Bike Depot	126.2	1,504.1	104.3	3.1	1.4	\$131,797	\$947,239	\$79,494			\$84,823,991
Bicycle Pedestrian	Bicycle Pedestrian	Not yet assigned	NYC Cyclistnet	715.4	8,524.0	591.0	17.3	8.0	\$434,833	\$551,441	\$46,278	\$667,428	\$22,809,613	\$49,380,807
Transit Improvements	New Bus Services	WI20000004	City Of Racine New Sunday Bus Service	150.8	0.0	166.4	0.0	0.0	\$250,886	\$1,509,283	\$0	\$1,367,788	\$0	\$0
Transit Improvements	New Bus Services	NY20050028	S92 New Bus Route	951.2	13,525.2	229.6	20.1	-0.4	\$135,907	\$129,618	\$9,116	\$537,083	\$6,139,286	-\$275,107,412
Transit Improvements	New Bus Services	RI20050003	Service Initiatives Route 30 And Route 12	729.2	18,952.9	1,343.8	48.6	22.4	\$328,780	\$409,027	\$15,737	\$221,962	\$6,137,442	\$13,287,023
Transit Improvements	New Rail Services	UT20020001	Light Rail Vehicles	4,592.3	54,122.7	4,524.7	161.0	74.4	\$443,012	\$87,514	\$7,426	\$88,822	\$2,495,576	\$5,402,702
Transit Improvements	New Rail Services	TX20030147	TRE Double Tracking Of Segments	16,644.3	207,403.7	18,194.1	708.4	327.2	\$7,631,105	\$415,928	\$33,378	\$380,497	\$9,772,506	\$21,156,615
Transit Improvements	New Rail Services	CT20050027	Rail Station Platforms And Bridge	1,716.0	30,670.7	2,597.5	103.6	47.8	\$261,293	\$138,134	\$7,729	\$91,257	\$2,288,406	\$4,954,197
Transit Improvements	Service Upgrades/Amenities	MA20020069	Fitchburg ITC Parking Garage	2,201.5	39,347.5	3,332.4	132.9	61.4	\$92,327	\$38,046	\$2,129	\$25,135	\$630,289	\$1,364,520
Transit Improvements	Service Upgrades/Amenities	MO20040023	Operation Welcome Aboard Infrastructure	709.1	9,105.4	723.0	26.6	12.3	\$190,914	\$244,252	\$19,021	\$239,538	\$6,519,661	\$14,114,492

Transit Improvements	Service Upgrades/Amenities	NY20040006	Suffolk County Transit Marketing Program	666.4	6,564.8	595.1	19.0	8.8	\$123,607	\$168,276	\$17,081	\$188,430	\$5,911,468	\$12,797,808
Transit Improvements	Service Upgrades/Amenities	OH20050008	Laketran AVL- MDT System	327.4	4,220.6	326.2	11.7	5.4	\$538,585	\$1,492,350	\$115,766	\$1,497,977	\$41,600,710	\$90,061,880
Transit Improvements	Service Upgrades/Amenities	Not yet assigned	Commuter Rail And Utility Construction	1,162.9	20,785.1	1,760.3	70.2	32.4	\$14,227	\$11,098	\$621	\$7,332	\$183,862	\$398,046
Technology and Fuel Programs	Conventional Bus Replacements	MD20020008	100 Replacement Local Buses	5,610.0	0.0	62,337.0	0.0	0.0	\$9,179,510	\$1,484,405	\$0	\$133,589	\$0	\$0
Technology and Fuel Programs	Conventional Bus Replacements	Not yet assigned	Ham - Sorta - 61 Replacement Buses	2,506.1	3,026.1	9,237.8	0.0	0.0	\$2,353,541	\$851,946	\$705,551	\$231,126	\$0	\$0
Technology and Fuel Programs	Alternative Fuel Vehicles/Fueling Facilities	ME20020020	Fast Fill Compressed Natural Gas Facility	719.7	0.0	553.8	0.0	0.0	\$192,912	\$243,173	\$0	\$316,011	\$0	\$0
Technology and Fuel Programs	Alternative Fuel Vehicles/Fueling Facilities	PA20020062	Alternative Fuel Buses	750.0	3,000.0	22,750.0	0.0	0.0	\$2,428,240	\$2,937,150	\$734,288	\$96,829	\$0	\$0
Technology and Fuel Programs	Alternative Fuel Vehicles/Fueling Facilities	CT20050025	Ct Clean Fuels Program	1,032.8	0.0	1,911.0	0.0	0.0	\$172,670	\$151,676	\$0	\$81,971	\$0	\$0
Technology and Fuel Programs	Alternative Fuel Vehicles/Fueling Facilities	Not yet assigned	Purchase 3 Forty Foot Urban Transit Cng Buses	540.0	2,743.2	1,562.4	0.0	504.0	\$375,688	\$631,146	\$124,241	\$218,138	\$0	\$676,227
Dust Mitigation	Dust Mitigation	CA20040439	Graaf Avenue Paving Project	0.0	0.0	0.0	52,195.0	0.0	\$20,817	\$0	\$0	\$0	\$362	\$0
Dust Mitigation	Dust Mitigation	ID20040003	Lincoln Ave Sandpoint	0.0	0.0	0.0	45,633.1	0.0	\$33,710	\$0	\$0	\$0	\$670	\$0
Dust Mitigation	Dust Mitigation	ID20050017	Liquid De-Icer Truck	0.0	0.0	0.0		0.0	\$29,865	\$0	\$0	\$0	\$15	\$0
Freight/Intermodal	Freight/Intermodal	ME20000004	Rail Siding Construction	97.2	488.0	2,038.7	69.2	56.9	\$41,096	\$383,558	\$76,393	\$18,287	\$538,502	\$655,448
Freight/Intermodal	Freight/Intermodal	ME20020005	Rehab/Replace Tracks On Sprague Industrial Spur	24.9	148.3	830.6	21.5	17.7	\$54,723	\$1,997,735	\$334,684	\$59,767	\$2,304,829	\$2,805,363

Freight/Intermodal	Freight/Intermodal	PA20020059 PA20030090	Westmoreland Itc	2.2	250.8	4,374.3	86.2	70.8	\$1,028,708	\$424,194,830	\$3,721,007	\$213,345	\$10,831,847	\$13,184,175
Freight/Intermodal	Freight/Intermodal	NY20040036	Arlington Intermodal Yard	23,385.8	117,353.4	378,629.3	13,059.5	10,729.5	\$949,286	\$36,825	\$7,338	\$2,274	\$65,942	\$80,263
Freight/Intermodal	Freight/Intermodal	PA20040076	Norfolk Southern Rail Ext	1,058.5	5,256.4	19,944.8	690.0	566.9	\$1,318,453	\$1,130,019	\$227,547	\$59,970	\$1,733,406	\$2,109,846
Freight/Intermodal	Freight/Intermodal	CT20060022	Rail And Utility Construction	176.8	876.4	3,238.3	112.6	92.5	\$174,141	\$893,459	\$180,259	\$48,784	\$1,402,472	\$1,707,043
Engine Retrofit Technologies	Diesel Engine Retrofits	MD20010025	Bus Engine Upgrade	0.0	0.0	0.0	0.0	9,040.2	\$5,094,530	\$0	\$0	\$0	\$0	\$511,236
Engine Retrofit Technologies	Diesel Engine Retrofits	NY20040032	Wcdot Diesel Engine Retrofit Of 177 Transit Buses	1,059.7	16,446.5	0.0	0.0	823.4	\$311,010	\$266,254	\$17,155	\$0	\$0	\$342,657
Engine Retrofit Technologies	Diesel Engine Retrofits	PA20040011	Emissions Reduction Device	1,832.5	27,805.0	0.0	1,635.0	1,432.5	\$371,869	\$184,095	\$12,133	\$0	\$206,333	\$235,500
Engine Retrofit Technologies	Diesel Engine Retrofits	OR20050011	Exhaust After- Treatment Controls On Trash Collection Trucks	371.8	647.4	0.0	72.8	0.0	\$12,457	\$30,395	\$17,456	\$0	\$155,229	\$0
Engine Retrofit Technologies	Diesel Engine Retrofits	Not yet assigned	3 Locomotive Repowers	3,386.4	0.0	44,914.0	0.0	1,251.2	\$1,042,808	\$279,358	\$0	\$21,063	\$0	\$756,090
Engine Retrofit Technologies	Diesel Engine Retrofits	Not yet assigned	Orangetown Diesel Vehicle Retrofits	134.2	521.6	0.0	54.9	42.7	\$100,116	\$676,780	\$174,142	\$0	\$1,654,351	\$2,127,022
Engine Retrofit Technologies	Diesel Engine Retrofits	Not yet assigned	Diesel Engine Retrofits Of Rockland County Vehicles		295,801.2	0.0	42,196.8		\$323,016	\$6,847	\$991	\$0	\$6,945	\$7,632
Engine Retrofit Technologies	Truck Stop Electrification	TN20030011	Tse: Idleaire 100 Units Watt Rd.	0.0	0.0	49,275.0	1,343.2	1,343.2	\$163,332	\$0	\$0	\$3,007	\$110,313	\$110,313
Engine Retrofit Technologies	Truck Stop Electrification	KY20060013	50 Advance Travel Center Electrification (Idle Aire)	0.0	17,060.1	40,212.1	671.6	671.6	128,490.99	\$0	\$6,833	\$2,899	\$173,563	\$173,563

Engine Retrofit Technologies	Truck Stop Electrification	TN20060026	Install Idleaire At Sites In Jefferson Co	0.0	0.0	29,072.3	792.1	792.1	\$146,881	\$0	\$0	\$4,583	\$168,232	\$168,232	
---------------------------------	-------------------------------	------------	---	-----	-----	----------	-------	-------	-----------	-----	-----	---------	-----------	-----------	--