FHWA Infrastructure Carbon Estimator

Talking Freight Webinar

April 15, 2015

Today's Speakers

- John Davies, FHWA
- Frank Gallivan, ICF
- Jeff Houk, FHWA

Why Address Infrastructure GHG Emissions?

- Traditional transportation air quality analysis has only considered localized impacts of short-lived pollutants (e.g., concentrations of carbon monoxide near roads)
- Focus has been on operational emissions (exhaust from vehicles using roads)
 - construction emissions are temporary (once construction is over, the emissions don't matter anymore)
 - maintenance vehicle emissions are accounted for in operation estimates
- Unlike traditional pollutants—
 - the impacts of GHGs are based on cumulative emissions (construction, operation, and maintenance emissions all have the same impact); and
 - The location of the emissions doesn't matter (they impact atmospheric concentrations regardless of where they occur)

GHG Emissions Analysis – Current State of Practice

- Approximately 32 states have Climate Action Plans
- Most large MPOs conduct GHG and/or energy analysis of long-range transportation plans
 - Required by law in CA, NY, OR, and other states
- Some states also require project-level analysis
- Only NY MPOs consider construction and maintenance emissions in analysis
- Pending guidance from White House CEQ may require the estimation of construction-related GHG emissions for some large proposed projects

Objectives of FHWA's Construction and Maintenance GHG Calculator

- Create a simple, user-friendly sketch tool to
 - Provide estimates of energy and GHG emissions from transportation infrastructure (roads, parking, bike / ped, transit)
 - Address construction and maintenance activities
 - Estimate energy and emissions benefits of alternative construction and maintenance practices, including their incremental costs
 - Use information available during long range planning / analysis (as opposed to detailed material quantity and construction activity estimates)

Capabilities

Roadways and parking facilities

Public transportation

Bicycle and pedestrian facilities

Lifecycle Approach: Indirect Energy/Emissions

Upstream Energy and Emissions

Materials

Energy and fuel used in raw materials extraction

Energy and fuel used in materials production*

Energy and fuel used in raw materials transportation

Chemical reactions in materials production**

Lifecycle Approach: Direct Energy/Emissions

Mitigation Strategies

User can apply the following strategies to reduce energy and emissions from construction and maintenance activities:

- Alternative fuels and vehicle hybridization
- Alternative vegetation management
- Alternative snow management
- In-place roadway recycling
- Warm mix asphalt
- Recycled and reclaimed materials
- Preventive maintenance

• Step 1: Input general information about your project/plan.

AK
20

Roadway Routine Maintenance	2
Total existing centerline miles	50000
Total existing lane miles	200000
Total newly-constructed centerline miles	1.75
Total newly-constructed lane miles	7

Rail, Bus, and Bicycle Routine Maintenance	
Total existing track miles of light rail	30
Total existing track miles of heavy rail	50
Total newly-constructed track miles of rail	0
Total existing lane miles of bus rapid transit	20
Total newly-constructed lane miles of bus rapid transit	0
Total existing lane miles of bicycle lanes	50
Total newly-constructed lane miles of bicycle lanes	1

• Step 2: Input information about construction and maintenance activities

Roadway Projects							
		Roa	Roadway Rehabilitation				
Facility type	New Roadway (lane miles)	Construct Additional Lane (lane miles)	Re- Alignment (lane miles)	Lane Widening (lane miles)	Shoulder Improvement (centerline miles)	Re- construct Pavement (lane miles)	Resurface Pavement (Iane miles)
Rural Interstates	0	0	0	0	50	0	10
Rural Principal Arterials	5	0	0	10	0	0	30
Rural Minor Arterials	0	0	20	0	0	0	0
Rural Collectors	0	0	0	20	0	0	0
Urban Interstates / Expressways	0	0	0	0	40	20	30
Urban Principal Arterials	0	0	0	0	0	0	10
Urban Minor Arterials / Collectors	0	0	0	0	0	0	0

• **Step 3:** Input information about construction delay

Total project-days of lane closure

Average daily traffic per directional segment for facilities requiring lane closure

Percentage of facility lanes closed during construction

6

50%

• Step 4: Input mitigation strategies

Energy / GHG reduction strategies

Strategy	Baseline	Planned	Max potential	Applied to			
	deployment	deployment	deployment				
Alternative fuels and vehicle hybridization							
Hybrid maintenance vehicles and equipment	0%	10%	44%	Fuel use by maintenance equipment			
Switch from diesel to B20 in maintenance	0%	10%	100%	Fuel use by maintenance, equipment			
vehicles and equipment	078	1078	100 /0	The use by maintenance equipment			
Switch from diesel to B100 in maintenance	0%	10%	100%	Fuel use by maintenance, equipment			
vehicles and equipment	070	1070	10070	The use by maintenance equipment			
Combined hybridization/B20 in maintenance	0%	10%	44%	Fuel use by maintenance, equipment			
vehicles and equipment	070	1070	7770	The use by maintenance equipment			
Vegetation management							
Alternative vegetation management strategies				Eucluse by vocatation management			
(hardscaping, alternative mowing, integrated	No	Yes	N/A				
roadway/vegetation management)				equipment			
Snow fencing and removal strategies							
Alternative snow removal strategies (snow	No	Voc	NI/A	Fuel use by show removel equipment			
fencing, wing plows)	INU	Tes	N/A	Fuel use by show removal equipment			
In-place roadway recycling							
				Asphalt and fuel use by construction			
Cold In-place recycling	0%	0%	99%	equipment in roadway resurfacing and			
				BRT conversions			

• **Step 5:** View impacts of construction and maintenance activities

	Annualized energy use (mmBTUs), per year over 20 years						
	Unmitigated						
	Roadway - new construction	Roadway- rehabilitation	Roadway - total	Bridges	Rail, bus, bicycle, ped.	Total	
Upstream Energy Materials	89,975	152,838	242,813	24,643	178,067	445,523	
Direct Energy Construction Equipment Routine Maintenance	33,942	27,079	60,021	10,747	61,606	132,374 158,585	
Total	123,917	179,917	302,834	35,390	239,673	736,482	
	Annual GHG emissions (MT CO2e), per year over 20 years						
	Unmitigated						
	Roadway - new construction	Roadway- rehabilitation	Roadway - total	Bridges	Rail, bus, bicycle, ped.	Total	
Upstream Emissions Materials	5,626	9,276	14,902	2,065	12,507	29,474	
Direct Emissions							
Construction Equipment	2,402	1,975	4,377	784	4,491	9,652	
Routine Maintenance						11,564	
Total	8,028	11,251	19,279	2,849	16,998	50,690	

• Step 6: View impacts on vehicle operations

Construction delay	Result	Energy use (mmBTUs)	GHG emissions (MT CO2e)
Total project-days of construction/lane closure	20		
Project lifetime (years)	20		
Additional energy use / emissions due to delay (per project-day)		2.8	0.2
Total energy use / GHG emissions due to construction delay		56	5
Annual energy use / GHG emissions due to construction delay, per year		2.8	0.2
Pavement smoothness	Result	Energy use (mmBTUs)	GHG emissions (MT CO2e)
Total lane miles of roadway reconstruction / resurfacing	100		
Project lifetime (years)	20		
Reduced Energy use / GHG emissions due to smooth pavement		28	2
Annual energy / emissions savings due to pavement smoothness		1.4	0.1
Total		Energy use (mmBTUs)	GHG emissions (MT CO2e)
Total Appualized Delay and Payament Smoothness Impacts		1.4	0.1

Case Study: Hypothetical Port Access Project

- Improve access to a small, recently expanded port (500 trucks/day)
 - Because of deficient bridges, trucks travel an indirect route through town to access port
 - Space restrictions at port mean that trucks have to idle along city streets while waiting for access
- Project would:
 - Widen existing southern access roadway
 - Reconstruct two bridges to handle heavy trucks
 - Build 100 spaces of truck parking at port, which would require relocation and extension of ½ mile of rail access line
- Changes in truck exhaust CO2 emissions (from shorter access route and less idling) modeled with EPA's MOVES emissions model
- Infrastructure CO2 emissions calculated with FHWA ICE tool

Port: No Build scenario

Port: Build scenario

Port example: results

- ICE construction and maintenance analysis:
 - No Build: 56 tons CO2/year (maintenance of existing system)
 - Build: 223 tons CO2/year (construction of new infrastructure, plus maintenance of existing and new infrastructure)
 - Net difference: 167 tons/year
- MOVES analysis (truck emissions) (average between 2020 and 2040):
 - No Build: 4913 tons CO2/year
 - Build: 723 tons CO2/year
 - Net difference: -4190 tons/year
- Project payback period (when do truck emissions savings offset construction & maintenance emissions?)
 - Total net C&M emissions = 167 tons/year x 20 years = 3340 tons
 - On-road emissions benefit = 4190 tons/year
 - Payback period ~ 10 months

For more information

- ICE tool, users guide and research report posted on FHWA's climate change web site:
 - www.fhwa.dot.gov/environment/climate_change/mitigation/publications_ and_tools/carbon_estimator/
- FHWA contacts:
 - John Davies: JohnG.Davies@dot.gov
 - Jeff Houk: Jeff.Houk@dot.gov
- ICF International contact:
 - Frank Gallivan: Frank.Gallivan@icfi.com

