# Freight Vehicles Life-Cycle Emissions Assessment

presented to

**Talking Freight** 

presented by Cambridge Systematics, Inc.

**Chris Porter** 

CAMBRIDGE SYSTEMATICS

April 15, 2015

## Agenda

Freight's contribution to transportation emissions

- Forecasts and trends
- Vehicle and fuel technology strategies
- Operational strategies
- Demand management and mode shift
- Policies by control scope
- Conclusions



# Freight Contribution to Transportation Emissions



Source: U.S. EPA National Emissions Inventory, 2011.



# Direct versus Life-Cycle Emissions by Mode



Source: CS and EERA for NREL Transportation Energy Futures Study Freight Analysis Tool, 2012 (based on 2007 FAF and GREET I\_2011).

# Direct versus Life-Cycle Emissions by Fuel Type



#### **Relative GHG Emissions**

Source: CS for NREL Transportation Energy Futures, 2012 (based on GREET1\_2011).

### **Freight Forecasts**

#### Percent of 2011



Source: U.S. DOE Annual Energy Outlook, 2014 Reference Case.



# **Freight Emissions Controls**

- Example from Connecticut
- 2020 versus 2009: 25% increase in truck VMT, 50% NO<sub>x</sub> reduction, >80% PM reduction



Source: de la Torre Klausmeier Consulting, CS, and ERG for Connecticut Department of Energy and Environmental Protection, 2013.

# **Freight Emission Reduction Strategies**

- Vehicle and fuel technology
- Vehicle operations
- Demand and mode shift







# **Vehicle and Fuel Technology**

| Strategy                               | Effectiveness                                           | Cost                                                                                  |
|----------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------|
| Reduce or Eliminate<br>Extended Idling | High                                                    | Low/net savings<br><\$1,000-4,000/ton NO <sub>x</sub>                                 |
| Remote OBD I/M                         | Medium-High<br>for NO <sub>x</sub> , PM                 | Low-medium<br>\$1,700-\$3,500/ton NO <sub>x</sub>                                     |
| Convert to Natural Gas                 | Low for No <sub>x</sub><br>Moderate for CO <sub>2</sub> | Low/net savings                                                                       |
| Accelerated Retirement for Drayage     | High                                                    | \$4,000-\$32,000/ton No <sub>x</sub><br>May be net savings for<br>trucks>15 years old |
| SmartWay Retrofits<br>(aero/rolling)   | Medium for $NO_x$ , $CO_2$                              | Low/net savings                                                                       |
| Diesel Retrofits                       | High for NO <sub>x</sub> , PM                           | \$11,000-\$70,000/ton PM                                                              |

Source: de la Torre Klausmeier Consulting, CS, and ERG for Connecticut Dept. of Energy and Environmental Protection, 2013; CS and ERG, NCHRP 25-25 Task 59 Report, 2010.

# Vehicle and Fuel Technology Rail and Marine

| Ctrue to and                                |                                                             |                                                        |  |
|---------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|--|
| Strategy                                    | Benefits                                                    | Costs                                                  |  |
| Repower yard or line-<br>haul with Tier 2-4 | 20-60%+ NO <sub>x</sub> , 70%+ PM<br>10-30% CO <sub>2</sub> |                                                        |  |
| Genset yard locomotives                     | 60-90% NO <sub>x</sub> , 80% PM<br>35% CO <sub>2</sub>      | \$3,800/ton NO <sub>x</sub>                            |  |
| Hybrid line haul<br>locomotives             | 50% NO <sub>x</sub> , 10% PM<br>15% CO <sub>2</sub>         |                                                        |  |
| Reduced speed zones at ports                |                                                             | 20% reduction in speed =<br>40% reduction in emissions |  |
| Auxiliary engine<br>fuel requirements       |                                                             |                                                        |  |
| Cold ironing                                |                                                             | \$15,000 to \$30,000/ton<br>of NO <sub>x</sub>         |  |

Source: de la Torre Klausmeier Consulting, CS, and ERG for ConnDEEP, 2013.



# **Freight Operations**

| Strategy                                      | Effectiveness      | Cost               |
|-----------------------------------------------|--------------------|--------------------|
| Empty backhaul reduction                      | Medium?            | Low                |
| Increasing load limits                        | Low                | Low/net<br>savings |
| Electronic screening                          | Low                | Net savings        |
| Truck parking and routing info                | Low                | Unknown            |
| Delivery restrictions (location, time of day) | Low (localized)    |                    |
| Queue management at ports/ terminals          | Medium (localized) |                    |

Source: de la Torre Klausmeier Consulting, CS, and ERG for ConnDEEP, 2013; and CS assessment.



## **Demand Management and Mode Shift**

| Strategy                                                            | Effectiveness<br>(mode shift %) | Cost <sup>a</sup>  |
|---------------------------------------------------------------------|---------------------------------|--------------------|
| Freight rail and waterway infrastructure improvements and expansion | High (10-20%)                   | High               |
| Freight re-regulation                                               | Medium-high (<10%)              | Low                |
| Truck size and weight regulation                                    | Medium (<5%)                    | Low                |
| Fuel tax, GHG pricing, user fees                                    | Medium (<5%)                    | Low/net<br>revenue |
| Truck hours-of-service regulation                                   | Low (2-3%)                      | Low                |
| Short-sea shipping                                                  | Low                             | ?                  |

<sup>a</sup> Public-sector costs only.

Source: CS for NREL Transportation Energy Futures Study, 2013.

### Demand Management and Mode Shift (continued)



**Hundreds of Miles** 

Source: CS for NREL Freight Analysis Tool (2012) & FAF 3.2.



# **Evaluation Tools**

| Source            | ΤοοΙ                                           | Uses                                                   |
|-------------------|------------------------------------------------|--------------------------------------------------------|
| EPA               | MOVES emission factor model                    | Accelerated retirement, diesel retrofits, starts       |
| CARB              | EMFAC model                                    | and hoteling, vehicle activity                         |
| EPA               | SmartWay Drayfleet Model                       | Drayage fleet equipment<br>and operations              |
| EPA               | SmartWay Fleet<br>Performance Model            | Performance of fleet (truck) operations                |
| EPA               | Diesel Emission Quantifier                     | Diesel truck retrofit or rebuild                       |
| U.S. DOT          | Freight Routing and Emissions<br>Analysis Tool | Comparing land-side<br>and water-side routes           |
| U.S. DOT/<br>FHWA | Freight Analysis Framework                     | Freight flows by commodity & mode<br>(base + forecast) |
| USDOE/<br>NREL    | Freight Analysis Tool                          | Modal shift, commodity flow,<br>and demand impacts     |
| USDOE/<br>ANL     | GREET Fleet<br>Footprint Calculator            | Life-cycle petroleum<br>and GHG footprints             |

Plus various private tools...



# **Strategies by Control Scope**

#### National

Fuel economy and emissions regulations

Vehicle and fuel standards

Regulations and incentives pertaining to long-haul truck activity and equipment

#### **Regional (multistate)**

Rail, marine, and intermodal infrastructure investment

Corridor strategies (e.g., fueling stations)

#### **State and Metro**

Drayage truck retrofit and replacement

Truck parking and idling

I/M programs

Alt fuels for local fleets

#### Carriers

Vehicle replacement, engine retrofit, alternative fuels

Supply chain/logistics efficiency

Aero/rolling retrofits



# Conclusions

- Expect significant declines in criteria pollutants due to recent standards
- Expect increases in CO<sub>2</sub> emissions freight traffic growth more than offsetting efficiency improvements
- Some control strategies that can be implemented locally or regionally
- What will change in the future?
  - » Economic growth and/or structure?
  - » Fuel prices market- or policy-driven?
  - » Further regulations? (emissions, GHG)
  - » New technologies?

