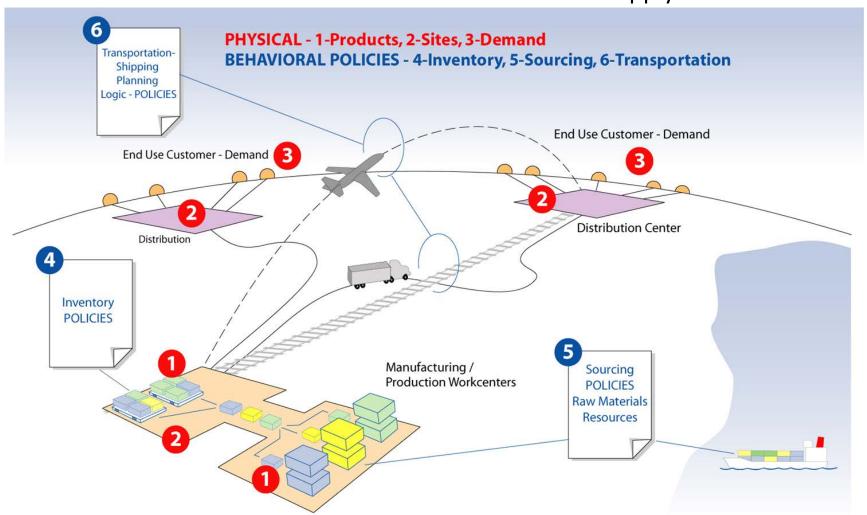


Development of a Freight Transportation Network Optimization Strategy – An Overview

August 19, 2015


Project Background

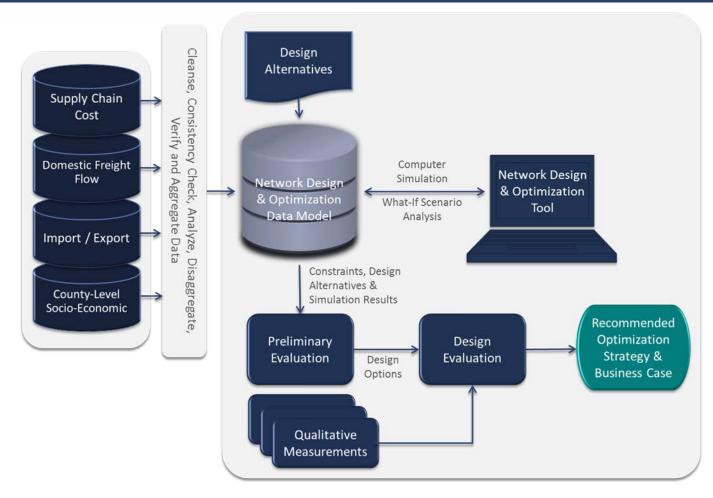
- Vision: To effectively identify and prioritize investment opportunities for an optimized freight transportation network to lower transportation costs and promote business growth in Iowa.
- lowa DOT can optimize statewide freight transportation network to reduce transportation costs
 - Traditional approaches focus more on capacity planning
 - Traditional methods don't quantify cost saving opportunities in a multimodal network
- This project uses a demand-based supply chain network design and optimization approach to Iowa DOT planning

Supply Chain Network and Optimization

□ ~80% of the landed costs are locked in with the supply chain network

Optimization Analysis

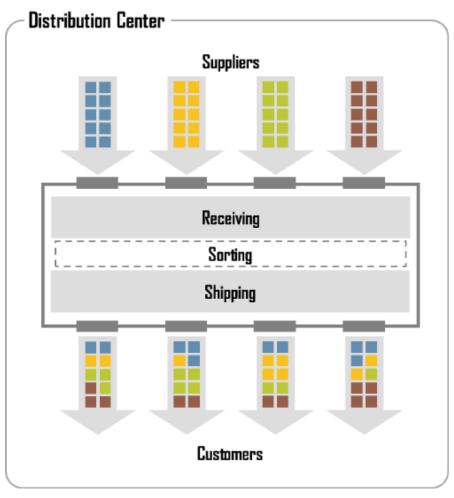
Quantitative Analysis

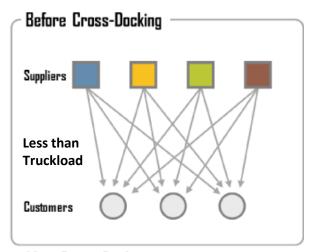

- Cost, lead time requirement, capacity, etc.
- Economic viability
- Improved network resilience

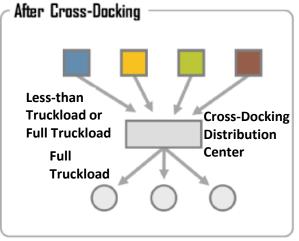
Qualitative Analysis

- Strategic alignment
- Increasing network capacity and resiliency
- Tax incentive / funding availability
- Job creation and local buy-in
- Service levels / transportation time
- Road mile reduction
- Project implementation risks

Business Architecture Overview


Benefits of Multi-Modal Freight Optimization

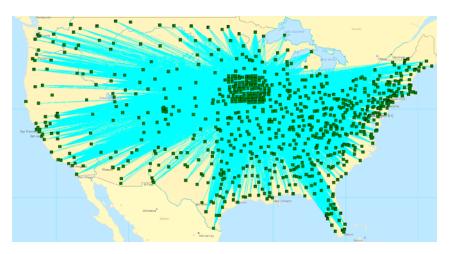

- Determine the highest value multi modal infrastructure public and private investments that are measured by:
 - lowering the cost of transportation
 - Increases transportation responsiveness and predictability
 - Incent business expansion
- Identify commercial freight road networks that are irrelevant
- Reduce road freight truck traffic
- Improve transportation network resiliency


Case Study 1 – Cross Dock Facility

Cross Dock Overview

Case Study 1 - Cross-Dock Opportunity Analysis

- Evaluated total cost saving opportunities in four regions
- Region 1 has the highest cost saving, but Regions 2 & 3 are more viable options because of existing access to interstate highways
- □ Selected Region 2 as the primary site candidate with the concept to colocate cross-dock and intermodal facilities in a logistics park


Location	Total Annual Saving Opportunity
Region 1	\$909 Million
Region 2	\$883 Million
Region 3	\$908 Million
Region 4	\$713 Million

Case Study 1 - Cross-Dock Network Impact

Current State

Future State

Benefits:

- Leverage freight consolidation to reduce transportation costs
- Reduce long distance truck traffic and improve environmental sustainability

Case Study 2 - Intermodal Facility

Opportunity Size – Focusing on High Volume Origin-Destination Pairs

The total market opportunity for high volume Origin-Destination pairs: \$289 million net annual savings

Item	Opportunity
Annual Gross Transportation Saving	\$412 Million
Empty Container Reposition Cost	(\$123 Million)
Total Outbound Container Number	247,000
Total Inbound Container Number	42,000
Total Container Shortage	205,000
Annual Net Saving	\$289 Million
Annual Lift Number	494,000

Case Study 2 – IM Facility Network Impact

Current State Future State

Optimization Benefits:

- Leverage rail network to reduce transportation costs
- Reduce truck traffic and improve environmental sustainability

Questions

Richard Langer, Managing Director

Quetica, LLC

651-964-4646 x800

richard.langer@quetica.com

www.quetica.com

