

Real Time Freight Data

Public Sector Initiatives to Provide and Use Real Time Freight Data

Larry O'Rourke, ICF

8/28/2019

Overview

> This presentation will highlight examples of how public sector is working with transportation stakeholders to provide and use real time information about transportation conditions.

What is real-time freight data?

Information delivered immediately

Data can also be stored for later analysis

Processed using real-time computing

Location-enabled and wireless technology devices

What are the sources of real-time freight data?

Examples of real-time freight data

> Provision of Real Time Data

- Port Operations
- Parking availability
- Safety

> Use of Data in Planning, Operations and Policy Making

- Freight Mobility Indicator Dashboards
- > Identification of freight generators & corridors in freight planning
- > Identification of unauthorized parking

GeoStamp – Real Time Data for Port Operations

- ➤ GeoStamp partners with ports, terminal and carriers to provide real-time estimates of drayage truck turn times at ports and terminal yards
 - Port of Long Beach
- GeoStamp works with GPS providers and also has a mobile app
- ➤ Turn-time: the amount of time it takes a cargo truck to enter the port terminal, load or unload its cargo, and exit the port terminal
- ➤ Allows firms to geo-fence different areas in the port to identify where the waiting occurs:
 - Queue time
 - Terminal time
 - Customs windows
 - Chassis pits
- > Turn time reports allow for improved invoicing.
- Ports and carriers use data to improve operations

MAASTO Truck Parking Management Information System

- Mid-America Association of State Transportation Officials (MAASTO)
 - ➤ TIGER Grant for TPMIS in Eight MAASTO states include Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, Ohio and Wisconsin
 - Allows system interoperability across state lines
- > Data from cameras, inductive loops and other sensors
- ➤ Information distributed via DMS, Smartphone applications, 511 systems and in-cab devices.
 - Common API developed to exchange parking information
- > System launched January 2019

State Truck Parking Management Information Systems

Created with mapchart.net ©

Trucker Path offers an App that aggregates information from long haul truck drivers

- Over 1.5 million downloads
- Features over 6,000 locations where drivers can find available truck parking in realtime
- Crowd-sourced app has over 400,000 monthly parking updates
- Also provides a platform to distribute data from public TPMIS
- Key information
 - Truck parking availability
 - Weigh stations
 - Low clearances
 - Truck dealerships
 - Other Retail

Drivewyze - Safety Notifications

- Alerts provided for highrisk areas across the United States – audio and visual
- Drivers see alerts for upcoming high-risk areas.
 - Roll over 500 locations in 32 states identified with state partners.
 - Low bridge
- Allows drivers to reduce over speeding in risk areas

Connected Vehicle Future?

> Wyoming CV Pilot

- Improve monitoring and reporting of road conditions to vehicles on I-80.
 - Forward collision warning
 - > I2V Situational Awareness
 - Work Zone Warning
 - Spot Weather Impact Warning

Tampa-Hillsborough Expressway Authority (THEA) Connected Vehicle Pilot (THEA Pilot)

Curve speed warnings

Connected-Vehicle Data Possibilities

- Heavy breaking events
- Traction control engagement
- Rollover warnings

Public Sector Use of Real Time Freight Information

- > Typically freight planners and policymakers have used archived real time data sources to get access to more data
- > Definition of real time for planning
- > Use cases highlighted
 - Provide freight mobility indicators
 - Identify freight trip generators
 - Identify the location where trucks are parked to characterize the need for additional truck parking

FHWA's Freight Mobility Indicators

- Data Source: National Performance Management Research Data Set (NPMRDS)
 - Calculations using every Traffic Message Channel (TMC) for entire NHS.
- Preparing Freight Mobility Indicators
 - Delay
 - Total delay (vehicle-hours)
 - Delay per mile for sections (vehicle-hours per mile)
 - Truck delay percentage of total delay
 - Mobility
 - Travel Time Index (TTI)
 - Reliability
 - Planning Time Index (PTI)
 - Buffer Index (BI)
 - Truck Travel Time Reliability (TTTR) as defined for MAP-21

> Environmental metrics

Wasted fuel (gallons), CO2 generated due to congestion (pounds), cost (of wasted fuel and delay) (dollars)

Freight Corridors

FHWA's Freight Mobility Indicator Dashboard

- Provides the ability to zoom into many different facilities \ geographies
 - Interstate
 - Interstate and Freeway
 - Freeway
 - Arterials
 - Urban/rural
 - States by urban/rural
 - States by road type
 - 20 Cargo Airports
 - 26 Border Crossings
 - 20 Rail intermodal facilities
 - > 25 Ports
 - > 30 Major Freight Corridors

PTI magnitude for each of the top 18 cargo bearing airports in the U.S.

PTI for Rail Intermodal Facilities

2017 Missouri State Freight Plan

- Analyzed truck Global Positioning System (GPS) data from Missouri to identify census block groups where freight activity is most intense.
 - ➤ 400 freight-significant block groups out of a total of 4,506 in the State based on truck GPS data activity within each block group. ATRI's sample included.
 - > only stopped trucks to identify 400 block groups with the greatest freight intensity.
 - > Removed data points that fell on major roadways or at truck stops were removed from the dataset using various GIS based filters.
 - Used aerial imagery to identify data that fell within a block group but outside of a freight generator.
 - The end result was was a dataset that included only vehicle GPS positions within the vicinity of a freight generator facility.
 - ➤ Top 100 most intense freight generators among the 400 block groups in the state.

Compass Freight Study

- Freight Study for Boise-Nampa MPO (COMPASS).
- Used truck GPS data to identify
 - freight generators (map 1)
 - freight clusters (map 2)
 - identify the use of freight corridors in the region by manufacturing industries (map 3)
- COMPASS Freight Plan developed a freight improvement strategy based on this analysis

Maryland Statewide Truck Parking Study

Analyzed Four Months of INRIX GPS Data

Used to Identify "Stop Events" - over1.9 million Stops in Maryland

Process used to Classify Stop Events:

- > Identify parcels associated with freight
- Classify portions in MDOT Rest Areas as designated or undesignated
- Cluster and manually classify remaining stop events

≻Truck Stop Events Over 3 Hours

- ➤ 1,300+ Undesignated Stop Events
- ➤ 5,500 Designated Stop Events

I-95 Welcome Center

Conclusions

- Many exciting developments occurring in public sector partnerships to produce and use real time data
- Proliferation of mobile data collection devices and falling costs to process data means that the future will be data rich
- ➤ In the future new data from many sources, including connected and autonomous vehicles, will greatly expand real time data applications that are feasible and efficient for the public and private sectors
- Data distribution is often most successful when it relies on multiple methods of distribution and can leverage multiple existing platforms to deliver information to users.

Contact Information

- > Larry O'Rourke, ICF
- **>** 617-250-4226
- > Larry.orourke@ICF.com

