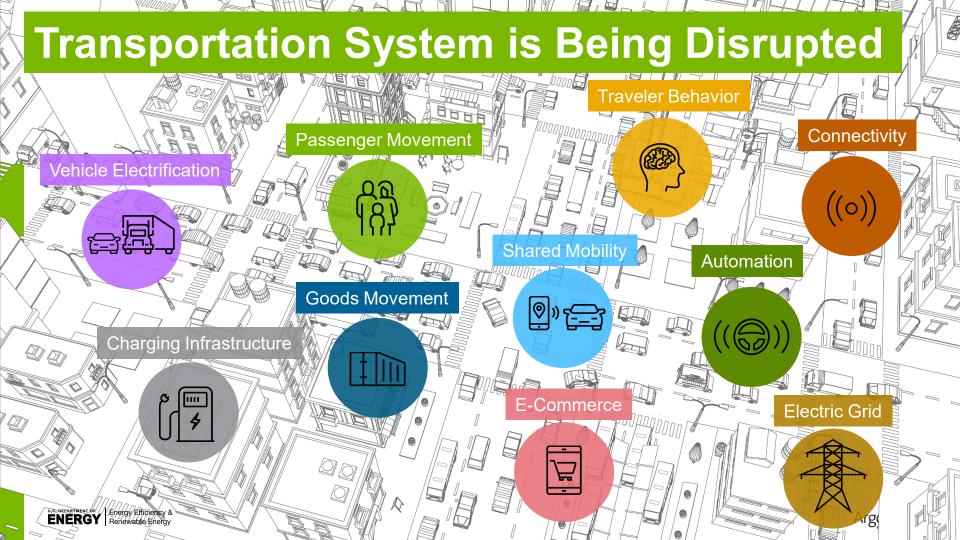


E-Commerce Impacts on Regional Travel and Energy Use:


Household Shopping and Parcel Delivery Tradeoffs

Monique Stinson¹, Annesha Enam¹, Amy Moore², Joshua Auld¹

¹Argonne National Laboratory ²Oak Ridge National Laboratory

FHWA Talking Freight Seminar December 19, 2019

Today: Examine the Impacts of E-commerce on Regional Travel and Energy Consumption

Research Question

As traditional (physical) shopping trips

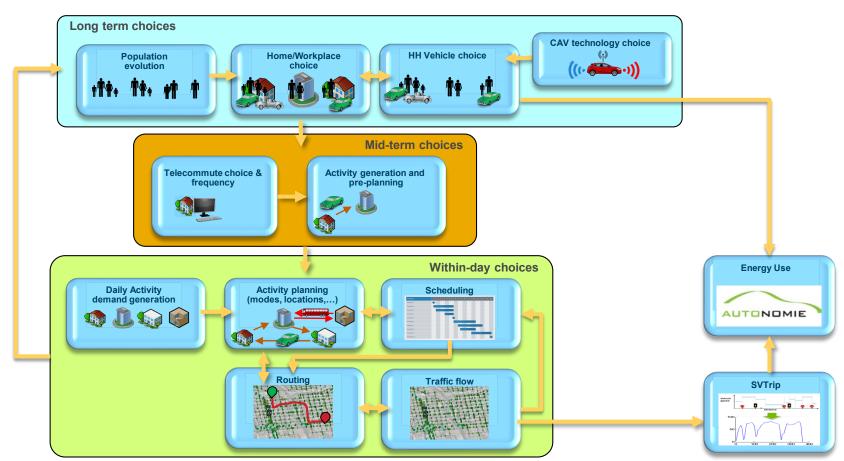
are replaced by

virtual (e-commerce) shopping "events"...

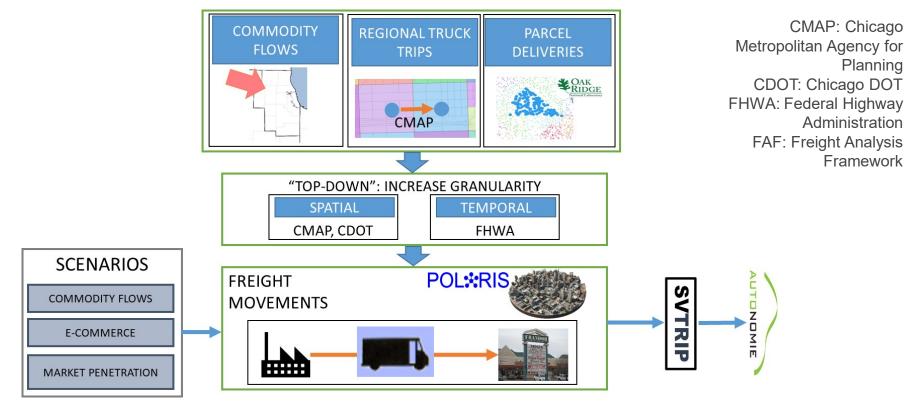
...what will be the net effect on regional Vehicle-Miles Traveled (VMT) and Fuel Use or Total Energy Consumption?

Scope

- Last-mile delivery
- Chicago Metropolitan Region:



APPROACH


ACTIVITY-BASED TRAVEL DEMAND (ABM) AND DYNAMIC TRAFFIC ASSIGNMENT (DTA) MODELING

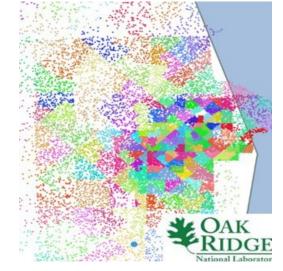
POL: RIS...allows us to explore tradeoffs that individuals make in their travel decisions

Implemented Freight Model in POLARIS

More details in Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility *Multimodal Freight Capstone Report* (in progress) ⁸

Methodology to Assess E-Commerce Impacts

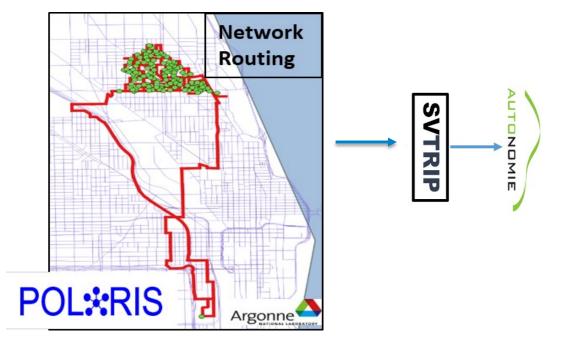
Step 1. Generate household delivery demand. Step 2. Generate parcel delivery supply.


E-commerce Demand: Household Behavioral Model

WholeTraveler survey data

UPB e-connerce delivery locations (17,71) UPB bodins UPB decisions e administra UPB decisions e administra UPB decisions (17,71)

E-commerce Supply*: Parcel Truck Stop Sequence Model



*Efficient delivery system with 120 stops per tour. Argo

Methodology to Assess E-Commerce Impacts

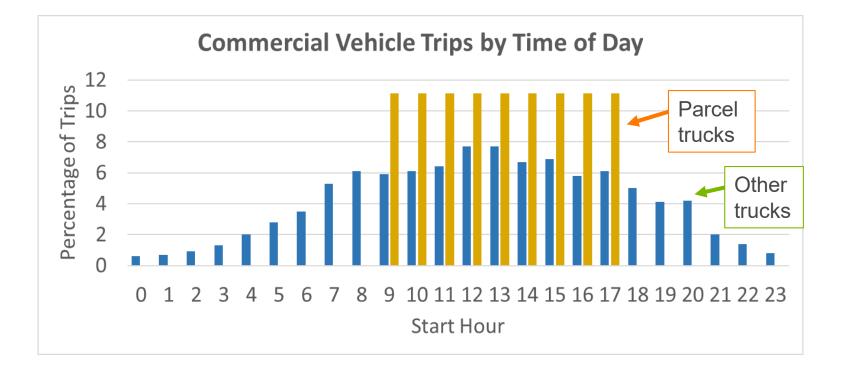
Step 3. Route delivery trucks in POLARIS. Step 4. Compute vehicle-miles traveled (VMT) and energy use.

Household E-commerce Demand Behavioral Model

More e-commerce demand for households with:

- Higher incomes
- More children (busier parents?)

Less e-commerce demand for households with:


- More vehicles
- Fewer adults
- Residence is walkable and/or relatively close to transit (highdensity)

Binary Choice: Whether Participates in E-commerce or not							
Variables	Estimates	t-stat					
Constant	-0.103	-1.64					
# of HH Children	0.104	1.39					
HH income less than 25k	-0.459	-2.33					
HH income between 25k and 50k	-0.54	-3.37					
HH income between 50k and 100k	-0.154	-1.41					
HH income greater than 200k	0.355	3.32					
Distance to nearest transit stop from home (in 100th of miles)	0.077	1.18					
Ratio of Delivery to Retail Shopping							
Parameters to the latent propensity							
Constant	2.882	11.7					
# of HH Adults	-0.146	-2.49					
HH income greater than 200k	0.369	3.29					
Walk Score (Range 0 to 10)	-0.057	-3					
# of HH Vehicle	-0.18	-2.8					
Threshold Parameters							
	-ve						
Theta 0	Infinity	Fixed					
Theta 1	0	Fixed					
Theta 2	1.576	11.86					
Theta 3	2.162	15.74					
Theta 4	2.738	19.23					
Theta 5	3.482	22.34					
	+ve						
Theta 6	Infinity	Fixed					
Summary							
Number of Observations	971						
Final Log-likelihood	-1362.45						
4.4	٨						

11

Temporal Disaggregation* Algorithm

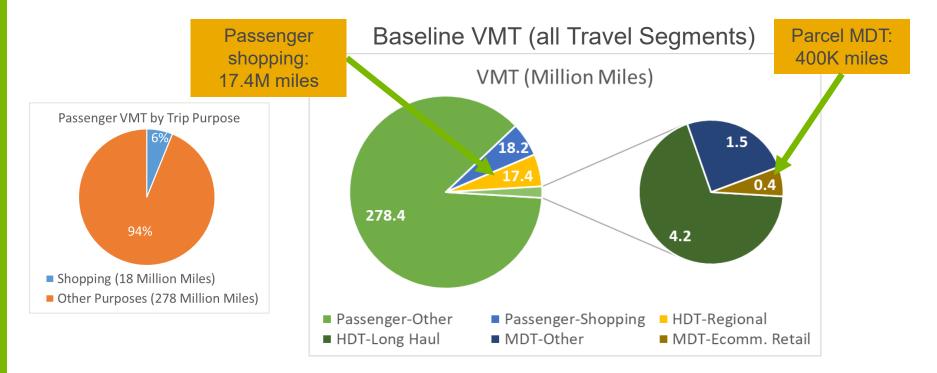
*The process uses data from: Chicago DOT Buildings Data, CMAP Land Use Inventory, and the FHWA Traffic Data Computation Method: Pocket Guide 12

Assumptions in Model Scenarios

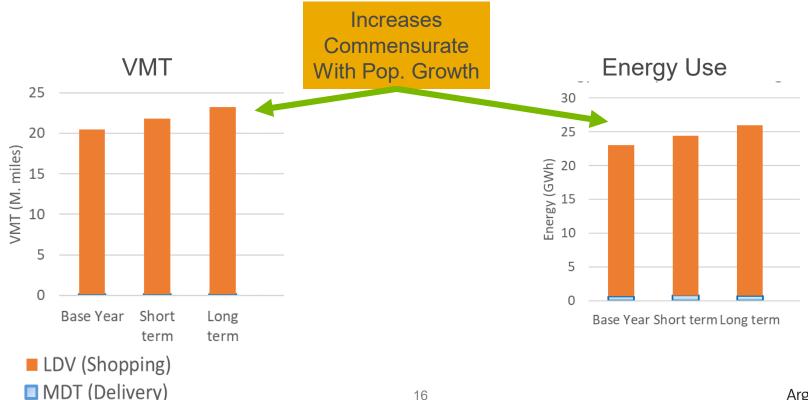
Scenario	E-commerce Delivery Rate (Deliveries per week per household)	Vehicle & Powertrain Technology	Other Important Assumptions
Baseline	1	-	-
Short Term	3	Baseline,	Increased TNC Use
Long Term	5	BAU (Business as usual), VTO Targets	2 scenarios: High TNC* Use & Low Private AV** Low TNC Use & High Private AV

*Transportation network company **Autonomous vehicle

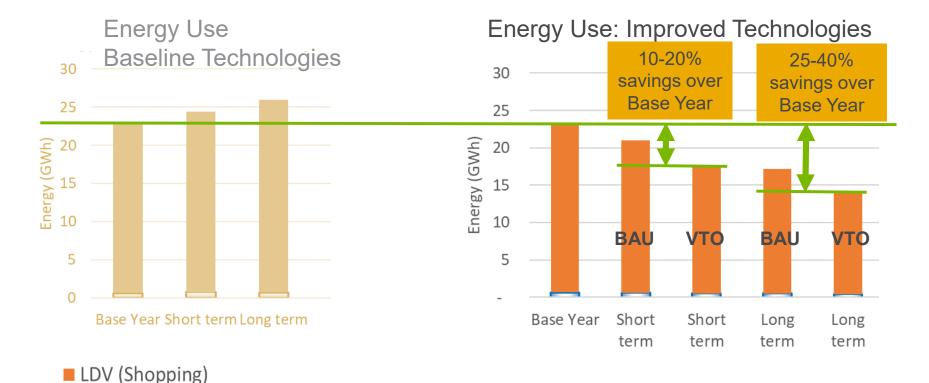
- Vehicle & Powertrain Technology: Increasing levels of electrification among passenger and commercial fleets
- Future growth in passenger and commercial trips due to **population growth** and **moderate commodity flow growth**


More details in SMART Workflow Capstone Report (in progress)

FINDINGS



Travel Segments in the E-commerce Analysis: --Medium-Duty Parcel Delivery Trucks (MDT) --Passenger Shopping Light-Duty Vehicles (LDV)



Slight Growth in VMT and Energy Use if E-commerce Rate Stays at **1 Delivery per Household per Week...**

Ceteris Paribus (e.g., <u>1 Delivery per Household per Week</u>), Vehicle Technology Improvements Can Greatly Reduce Energy Use

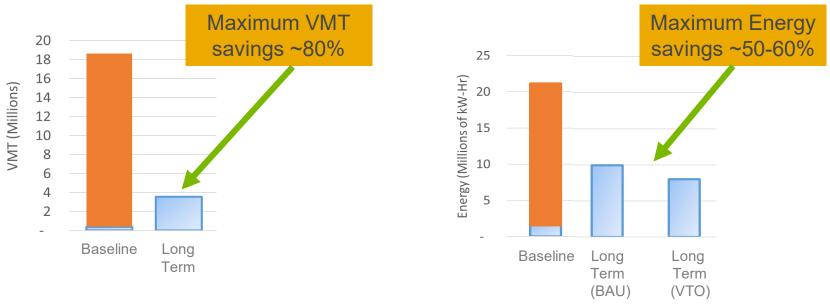
17

MDT (Delivery)

In a World with <u>Increasing E-commerce</u>, Parcel MDT VMT Grows by about 300-500%, but Total Last-Mile Retail VMT Decreases Significantly...

VMT Baseline Technologies

VMT: Improved Technologies AND More E-commerce

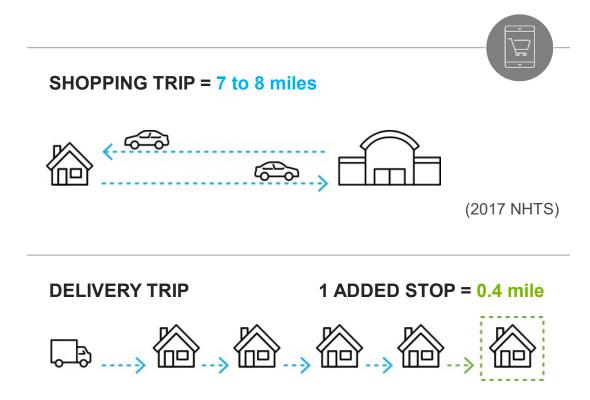


Energy Use is Likewise Significantly Reduced as E-commerce Increases...

Energy Use: Improved Technologies Energy Use **Baseline Technologies AND More E-commerce** 39-49%* 54-72%* 30 30 savings over savings over **Base Year Base Year** 25 25 Energy (GWh) 20 Energy (GWh) 20 15 10 10 5 **/TO** BAU TO BAU BAU 5 0 Base Year Short Short Long Long Long Long Base Year Short term Long term term term term term term term After accounting for Vehicle Technology LDV (Shopping) **High TNC High Private AV** Improvements: 29-54%* savings MDT (Delivery) Argonne 🗲

A corner case*: E-commerce deliveries replace ALL household shopping trips...

*This case is from an earlier version of the model.


→ overall trend: efficient e-commerce system saves last-mile VMT & energy
→ room to improve truck efficiency

LDV (Shopping)MDT (Delivery)

Why does this happen?

CONCLUSION

Summary of Results

- Although e-commerce is expected to generate a large increase in last-mile delivery, an overall net reduction in VMT (34-56%) and energy use (29-54%) is estimated to occur after also accounting for shopping trip reductions and vehicle technology changes
- Overall results differ somewhat due to assumptions about the future, especially:
 - The market penetration of electrification technologies
 - Levels of TNC and Private AV use among passengers
 - High usage of Private AV may generate longer LDV shopping trips

For more information:

Citywide Impacts of E-Commerce: Does Parcel Delivery Travel Outweigh Household Shopping Travel Reductions?

Monique Stinson[†] Vehicle and Mobility Simulations Argonne National Laboratory Lemont, Illinois USA mstinson@anl.gov Annesha Enam Vehicle and Mobility Simulations Argonne National Laboratory Lemont, Illinois USA mstinson@anl.gov

Amy Moore Transportation Planning and Decision Science Group Oak Ridge National Laboratory Knoxville, Tennessee USA mooream@ornl.gov

4th author: Joshua Auld, Vehicle and Mobility Simulations, Argonne National Laboratory, Lemont, Illinois USA, jauld@anl.gov

ABSTRACT

E-commerce has facilitated online ordering of goods by households in recent years. This technological advancement has disrupted shopping related transportation. While the National Household Travel Survey (NHTS [1]) finds that household shopping frequency has declined in the last 10-20 years, deliveries by parcel delivery trucks and vans [2] have increased. However, the net effect of these phenomena on overall trip making, vehiclemiles traveled (VMT) and fuel consumption has not been quantified. From a regional planning perspective, understanding the net effect is important for informing city policies—for example, in regards to land use and transportation planning.

The objective of this research is to address this gap. In this study, the net regional impact of e-commerce on transportation and fuel consumption is evaluated.

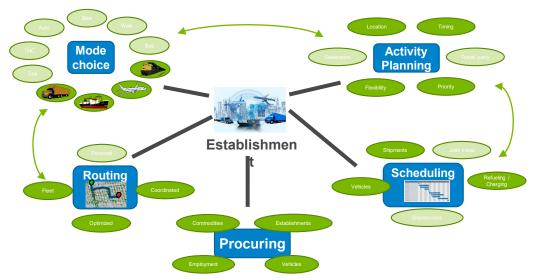
1 Introduction and Background

Generally speaking, city planning and policy measures aim to promote economic health, mobility, energy efficiency, and other desirable urban traits that enhance quality of life for residents. Access to shopping and low levels of congestion typically are considered desirable features in a metropolitan area.

In recent years, however, travel by motorized vehicles has grown to such levels that congestion is a top concern in many cities. At the same time, accessibility to shopping has been enhanced in a new way with the emergence of e-commerce, which has grown from less than 1% of US retail purchasing in 2000 to about 10% in 2018 [5]. Traffic by parcel delivery trucks, which transport deliveries from fulfillment centers and other e-commerce distribution points to homes and businesses, has grown <u>SCC '19</u> Proceedings of the 2nd ACM/EIGSCC Symposium on Smart Cities and Communities Article No. 10

Portland, OR, USA — September 10 - 12, 2019 <u>ACM</u> New York, NY, USA ©2019 <u>table of contents</u> ISBN: 978-1-4503-6978-7 doi>10.1145/3357492.3358633

See also: DOE SMART Workflow Capstone Report & Multimodal Freight Capstone Report


ACKNOWLEDGMENTS

The submission has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne") and UT-Battelle, LLC, Operator of Oak Ridge National Laboratory ("ORNL"). Argonne, a U.S. Department of Energy Office of Science laboratory, is funded and operated under Contract No. DE-AC02-06CH11357. ORNL, a U.S. Department of Energy Office of Science laboratory, is funded and operated under Contract No. DE-AC05-000R22725. The following Department of Energy project managers played a role in guiding this work: David Anderson and Prasad Gupte of the Vehicle Technologies Office (VTO). The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Next steps

Enhancements to the model: Stinson, Auld, Mohammadian (Oct 2018). **"An Agent-based Model of Freight Transportation with Emerging Trends in POLARIS**," *VREF Urban Freight Conference, Gothenburg, Sweden.*

Detailed scenario assumptions

Scenario Group	Scenario	Component Technology	Long Haul Commodity Flow - CAGR (%)	E-commerce Deliveries per Household	Passenger vehicle retirement rate (%)	Passenger VOTT Factor
Baseline	Base0	Baseline	N/A			
Baseline Short Term	Base1	Baseline	-	0.16 per day (about 1 per	0	1
	Base2	Short term BAU				
	Base3	Short term VTO Targets				
Baseline Long Term	Base4	Baseline		week)		
	Base5	Long term BAU				
	Base6	Long term VTO Targets				
А	A2	Short term BAU] 1	0.4 per day	45	High
	A3	Short term VTO Targets		(about 3 per week)	45	
В	B5	Long term BAU		0.7 por dov	68	
	B6	Long term VTO Targets			0.7 per day (about 5 per	75
С	C5	Long term BAU				15
	C6	Long term VTO Targets		week)	20	Low

