# The Local Distribution Conundrum in Catastrophic Events

José Holguín-Veras, William H. Hart Professor Director of the VREF Center of Excellence for Sustainable Urban Freight Systems jhv@rpi.edu, Office 518-276-6221, Cell 518-221-7556

### Our goal is to avert this...



"We are asking for food, water, medicine, shelter and clothing. Aren't we humans?"

(Pictures taken by JHV 10 days after the disaster)

- Fieldwork: 9/11, Katrina, Indian Ocean, Haiti, Chile, Joplin, Japan, Nepal, Ecuador, etc. etc.
- Diagnosis and characterization:
  - Causes of problems encountered
  - How humanitarian logistics take place
  - Quantification:
    - Aimed at obtaining empirical estimates
      - Provide support to analytical modeling
- Define mechanisms to improve response
  - ♦ Policy Suggestions → FEMA, Catastrophic Planning Groups
- Basic research on analytical modeling
  - To develop Decision Support Tools

### The Top Ten Lessons Learned During Our Fieldwork...





- ◆ Disaster Response is a Socio-Technical Process
  ◆ Disasters ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ Catastrophes
- Commercial Logistics ≠ ≠ ≠ Post-Disaster Logistics
- Controlling Material Convergence is a MUST
- In Catastrophes: Local Distribution Is <u>The</u>
  <u>Challenge</u>, Solution: <u>Collaborative Aid Networks</u>
- Effective Private Sector Integration is KEY
- Supply and Demand Are Very Dynamic, Be Ready
- Controlling Precautionary/Opportunistic Buying Helps
- Preventing Collapse of Private Supply Chains Helps
- Comprehensive Approaches Are Needed

### Lesson #1: Disaster Response (DR) is More Than a Technical Problem...





### DR is a Socio-Technical System (STS)...<sup>(1)</sup>

The Disaster Response System A social network of individuals orchestrate operations

The set technical activities performed by the social network

The other socio-technical systems (e.g., transportation, communication) that support the disaster response



Resiliency and Disaster Response <u>depends on</u> the <u>Social</u> at the <u>Technical</u> at the core of the STS involved

### Lesson #2: Disaster and Catastrophes Are Not the Same...





### Disasters vs. Catastrophes <sup>(3, 4)</sup>

### Disaster:

…a non-routine event that exceeds the capacity of the affected area to respond to it in such a way as to save lives; to preserve property; and to maintain the social, ecological, economic, and political stability of the affected region…"

### Catastrophe:

- \* "most or all of the community-built structure is heavily impacted... [and] facilities and operational bases of most emergency organizations are themselves usually hit";
- \* "local officials are unable to undertake their usual work role";
- "help from nearby communities cannot be provided";
   "most, if not all, of the everyday community functions are sharply and concurrently interrupted"

### Disaster: Joplin, Missouri (50,000 residents)



### Disaster: Joplin, Missouri (160 deaths)

### **Private sector supply chains: partially destroyed**

🕒 Q Q

Imagery Date: 6/7/2011

### **Multiple entry points**

Challenging but doable local distribution

o Iron G es

### Local supplies: partially destroyed

Duquesne

# Small to midsize geographic area

Silver Creek

© 2011 Europa Technologies

Dennis Acres

Google

13 76 km

# Catastrophe: Minami Sanriku (19,170 residents)<sup>14</sup>



# Catastrophe: Minami Sanriku (1,205 fatalities)

Geocentre Consulting

### **Few entry points**

# Extremely complex local distribution

### **Private sector supply chains severely impacted**

magery Date: 3/13/2011 2

# Most local supplies are destroyed

Minamisanriku, Motoyoshi District, Miyagi Prefecture, Japan

### Could be an extremely large geographic area

Eye alt 3.60 km

<u>3000[6</u>

15

### Lesson #5-A: In Catastrophic Events the Local Distribution Is The Most Difficult Challenge... <sup>(1,2)</sup>





# Resources (staff-hours) consumed (Haiti)



Semi-trailer (driver and helper) moving 30 tonnes: Santo Domingo-Port-au-Prince (six hours drive)

Loading: 10 staff-hours (forklifts)Driving: 12 staff-hoursTotal: 22 staff hours

Six 5 tonne trucks (driver and helper) transport to six PODs (1.5 hours each way)

Ο

Ο

Ο

Ο

Ο

Loading: 240 staff-hours (helpers) Driving: 36 staff-hours Total: 276 staff hours

### Helpers split rations, organize distribution, handout rations

PODs

Loading: 240 staff-hours Rations: 1,080 staff-hours Total: 1,320 staff hours

### Relative manpower used $\rightarrow$ 1:12:60

## Lesson #5-B: Only the Collaborative Aid Networks Can Do the Local Distribution Effectively (Haiti's Lesson) <sup>(2)</sup>





## Why did this happen?

#### Home Page Today's Paper Video Most Popular Times Topics Most Recent

Get Home Delivery Log In Register Now



· Clinton Goes to Haiti

Post a Comment | Read (200)

### **Emergent Humanitarian Logistic Structures**

Three structures emerge with vastly different network topologies: Agency Centric Efforts, Partially Integrated Efforts, and Collaborative Aid Networks



### ACEs/PIEs in action







### CANs in action: Servicio Social de Iglesias



### Implication

- After large catastrophic events, the most efficient way to distribute critical supplies at the local level is through the use of the existing social networks
  - Extending the mission of these networks is easier than creating a network from scratch
  - Outside efforts are doomed to be ineffective for distribution:
    - They are not geared for that, their strength is long-haul
    - Too many PODs are needed: cars are not an option, people cannot walk several miles to get supplies
    - Not enough man-power to man the PODs needed
    - Not enough local know-how





### The Local Distribution Conundrum





Chief Implication: The local capacity to respond has been significantly compromised...

- Local supplies have been destroyed
- Communication/Financial networks are not fully operational
- The outside help has not been able to connect with the local logistic networks... (the "truck" crisis...)
- The local private sector cannot be expected to provide significant assistance ...
- \* "local officials are unable to undertake their usual work role";
- $\rightarrow$  The bulk of the help has to come from the outside...





### Current Response Framework Assumes...

The locals are expected to fend by themselves during the first 48 hours...

FEMA is expected to deliver within 72 hours to:

- State and Local Governments
- The local distribution of supplies is expected to be undertaken by the locals

In catastrophic events, the locals are not likely to be able to undertake the local distribution



### How Big Is the Challenge?





## The Major Challenge is the Local Distribution...

The number, size, and location of PODs (has a huge impact in the wellbeing of beneficiaries)

**\star** Key  $\rightarrow$  to have the right number of PODs, of the right size

Too few PODs lead to huge delays and suffering

\*Too many PODs, or PODs larger than needed  $\rightarrow$  Waste

Deciding on the optimal POD Network is not trivial

- Data about needs are shaky, non-existent, or incomplete
- The optimal configuration of the POD Network depends on the: level of difficulty to access the PODs, distance to the PODs, population density, cost of installing/ manning the PODs, risk faced by beneficiaries, etc. etc.

Efficient and effective use of resources is essential





28

# Result of an inadequate POD system...Haiti







### Resources Required to Deliver Aid in PR

| Input variables     |           |  |  |  |
|---------------------|-----------|--|--|--|
| Affected Population | 1,700,000 |  |  |  |

### **Estimate Optimal POD Configuration**

| POD Configuration                        |     |  |
|------------------------------------------|-----|--|
| Number of PODs                           | 334 |  |
| Number of Servers/lanes per POD          | 8   |  |
| Ration size (days of ration/beneficiary) | 10  |  |

| Resource requirements |        |  |
|-----------------------|--------|--|
| Manpower              | 17,727 |  |
| Supplies (tons)       | 34,000 |  |
| Trucks                | 5,678  |  |

| Logistics (direct) costs       |    |             |  |  |
|--------------------------------|----|-------------|--|--|
| Fixed cost for PODS            | \$ | 10,020,000  |  |  |
| Manpower cost                  | \$ | 42,545,481  |  |  |
| Distribution cost to PODS      | \$ | 108,266,083 |  |  |
| Indirect costs                 |    |             |  |  |
| Walking to POD                 | \$ | 61,374,002  |  |  |
| Waiting at POD                 | \$ | 3,292,552   |  |  |
| Replenishment of lost supplies | \$ | 630         |  |  |
| Keeping effort                 | \$ | 3,442,500   |  |  |
| Total Cost                     | \$ | 228,941,247 |  |  |

Estimated with the model developed by Jaller and HV

### To Deliver Supplies to Puerto Rico

| FOOD and WATER (11 pounds/day)           |            |           |  |  |
|------------------------------------------|------------|-----------|--|--|
| Input variables                          | 100% needs | 50% needs |  |  |
| Affected Population                      | 3,410,000  | 1,700,000 |  |  |
| Impacted Area (square miles)             | 3,515      | 3,515     |  |  |
|                                          |            |           |  |  |
| POD Configuration                        |            |           |  |  |
| Number of PODs                           | 569        | 355       |  |  |
| Number of Servers/lanes per POD          | 9          | 8         |  |  |
| Ration size (days of ration/beneficiary) | 10         | 10        |  |  |
|                                          |            |           |  |  |
| Resource requirements                    |            |           |  |  |
| Manpower                                 | 33,762     | 18,842    |  |  |
| Supplies (tons)                          | 15,500     | 7,727     |  |  |
| Trucks                                   | 2,845      | 1,420     |  |  |

A large deployment from the outside, e.g., National Guard to provide the backbone of the local distribution network...

- A parallel effort of local community organization to put in place the POD Network by...
  - Taking advantage of the Collaborative Aid Networks, e.g., religious organizations, civic groups...
  - Finding the trucks needed...(locally)
  - Locating the PODs in the right places...
  - Creating PODs with the right size...
  - Securing the local manpower needed...
  - Increasing the rations given to beneficiaries

A parallel effort to re-start private sector supply chains

# **Questions?**

# **José Holguín-Veras,** William H. Hart Professor

Director of the VREF Center of Excellence for Sustainable Urban Freight Systems



jhv@rpi.edu, Office 518-276-6221, Cell 518-221-7556



### References

- Holguín-Veras, J., M. Jaller, L. N. Van Wassenhove, N. Pérez and T. Wachtendorf (2012). "On the Unique Features of Post-Disaster Humanitarian Logistics." <u>Journal of Operations</u> <u>Management 30: 494-506.</u>
- Holguín-Veras, J., M. Jaller and T. Wachtendorf (2012). "Comparative Performance of Alternative Humanitarian Logistic Structures after the Port-au-Prince Earthquake: ACEs, PIEs, and CANs." <u>Transportation Research Part A: Policy and Practice</u> 46(10): 1623-1640.
- 3. Quarantelli, E. L., 2006. Catastrophes are different from disasters: implications for crisis planning and managing drawn from katrina. understanding Katrina: perspectives from the social sciences. Posted, November 15, 2010, Retrieved November 16, 2010, from http://understandingkatrina.ssrc.org/Quarantelli/
- 4. Wachtendorf, T., Brown, B., Holguín-Veras, J., 2012. Catastrophe characteristics and their impact on critical supply chains: problematizing materiel convergence and management following Hurricane Katrina. Journal of Homeland Security and Emergency Management (in press).
- Holguín-Veras, J., M. Jaller, L. N. Van Wassenhove, N. Pérez and T. Wachtendorf (2012). "Material Convergence: An Important and Understudied Disaster Phenomenon." <u>Natural Hazards Review</u> 15(1): 1-12.
- Holguín-Veras, J., E. Taniguchi, M. Jaller, F. Aros-Vera, F. Ferreira and R. G. Thompson (2014). "The Tohoku disasters: Chief Lessons Concerning the Post Disaster Humanitarian Logistics Response and Policy Implications." <u>Transportation Research Part A: Policy and Practice</u> 69(0): <u>86-104.</u>