

FREIGHT IN A BICYCLE-FRIENDLY CITY: AN EXPLORATORY ANALYSIS USING NYC OPEN DATA

Alison Conway Assistant Professor of Civil Engineering The City College of New York

FHWA Talking Freight Webinar March 16, 2016

Freight in New York City

- Population
 - 8.5 million in the Five Boroughs
 - 20+ million in metro areas
- World city with a diverse economy
 - Tremendous local demand
 - Critical foreign trade gateways

Motivation

Methods

Results

Future Research

• Designated truck routes

The City College of New York

Existing Challenges to Urban Goods Movement in NYC

- Widespread traffic congestion (Lomax, Schrank, and Eisele, 2015)
- High parking fines (Holguin-Veras, 2011)
- Expensive tolls (King, Gordon, and Peters, 2014)
- Inadequate available parking for CVs (Jaller, Holguin-Veras, and Hodge, 2013)
- Parking/loading dock requirements not updated since 1950s (Morris, 2009)

New Challenges

- Urban revitalization
- e-Commerce boom
- Shrinking urban street capacity
 - Bicycle network
 - Pedestrian-friendly intersections

Motivation

• Bus rapid transit corridors

The City College of New York

Methods

Results

Expected Impacts

- Reduced lane capacity
- Limited turning radii
- Changes in street directionality
- Lost parking capacity
- Reduced curb access

+ congestion and idling + double parking + freight VMT

+ emissions + accident exposure + infrastructure damage + industry costs

The City College of New York

Methods

Motivation

Results

Project Goal and Approach

• Goal

• To provide basic quantitative evidence of **truck route impacts** and of **CV-bicycle interactions** on the multimodal network by visualization and basic analysis of NYC open datasets

Analyses

- Truck route impacts from bicycle network growth
- Collision locations
- Parking conflict locations

NYC Open Datasets

- Collision data includes only incidents that warrant an NYPD report
- Parking violations are issued only in locations where enforcement is performed

The City College of New York

Motivation Methods Results Future Research

1. Extent of network overlap

- 2. Lane types on overlapping network
- 3. Collision locations by infrastructure type
- 4. Collision locations vs. freight demand factors
- 5. Critical violation blocks
- 6. Parking choices

Field Observations US Census Population Data

Economic Census LEHD Data

The City College of New York

Motivation Methods Results Future Research

Networks and Overlap

- 794 mi local truck routes
- 604 mi bicycle routes
- Overlapping segments
 - 89 miles
 - About 2/3 installed since 2000

The City College of New York

Motivation Methods

Results

Limited Network Lane Classifications

	On-Street	Bike Lanes	Truck Route Overlap		Truck Route Overlap Installed Since 2000		
Total Length (mi)	36	363.4		70.5		55.1	
Lane type	Length	Percent	Length	Percent	Length	Percent	
Signed Route	27.7	7.6	3.9	5.5	3.0	5.5	
Sharrows	57.4	15.8	14.0	19.9	11.2	20.3	
Bike-Friendly Parking	23.4	6.4	7.2	10.3	7.2	13.1	
Standard	218.4	60.1	31.3	44.4	23.3	42.3	
Curbside	25.0	6.9	6.6	9.4	3.7	6.7	
Protected Path	11.7	3.2	7.5	10.6	6.7	12.1	

The City College of New York

Motivation Methods

Results

Collision Locations

		On St	reet Bicyc	le Lanes	Truck Route Overlap					
edi () zano,	Length	Number of Collisions		Length	Number of Collisions					
		(mi)	All	CV	(m)	All	CV			
	Total	363.4	4358	122	70.5	2282	78			
	Lane Type	Percent								
	Signed Route	7.6	3.9	4.9	3.9	3	2.6			
	Sharrows	15.8	18.4	16.4	14	18.2	12.8			
	Bike-Friendly Parking	6.4	2.5	0	7.2	1.6	0			
	Standard	60.1	53.2	46.7	31.3	44.4	39.7			
	Curbside	6.9	6	9	6.6	4.3	11.5			
0.250.	Protected Path	3.2	15.9	23	7.5	28.5	33.3			

Future Research

The City College of New York

Motivation

Methods

Results

Demand Factors

The City College of New York

			Large CV				Small C	/	
		Yes	No			Yes	No		
Observations		50	4308			73	4285		
		Med	ian	p-value	p-value Median		dian	p-value	
Рор	ulation Density	29824	17194	0.123		38350	17041	0.001 **	
Empl	oyment Density	51023	59104	0.360		71079	59035	0.097	
yment in	Construction	1.37	1.49	0.940		1.83	1.49	0.428	
	Manufacturing	1.04	0.84	0.172		1.44	0.83	0.052 *	
	Wholesale	3.28	1.88	0.014 *	* *	2.60	1.91	0.064	
iplo tor	Retail	6.87	9.60	0.072 *	k	8.89	9.60	0.191	
e of Em Sec	Transp. & Warehousing	0.78	0.44	0.040 *	k *	0.77	0.44	0.039 **	
Jar	Service	60.91	58.32	0.952		61.26	58.32	0.853	
S	Entertainment	12.19	14.34	0.260		15.68	14.29	ME	
Motivation Metho		ods R	lesults	Future R	Rese	arch			

Parking Violations

- 1 million + total parking violations over 3 months
- 4,452 CV bicycle lane violations
- 4,271 on known on-street lane types
- 20+ violations on 23 blocks
 - Standard lanes
 - Four boroughs
 - Varying land uses

The City College of New York

Motivation Methods

Results

Field Observation Locations

The City College of New York

Motivation Methods

Results

Parking Availability

No Legal Curb Option
 Legal Curb Option Elsewhere on Block
 Legal Curb Option @ Delivery Location

Parking Choice

Other
No Parking/No Standing Zone
Bicycle Lane and Fire Hydrant
Fire Hydrant
Bicycle Lane
Bus Lane/Bus Stop
Travel Lane
Legal Curbside Space

Parking Choices by Sector

	Observed	Legal Pa	rking at	Legal Parking on		
		Loca	tion	Block		
	Total	% Available	% Used	% Available	% Used	
Food and Beverage	43	51	68	16	43	
Parcel	58	12	43	19	9	
Moving Truck	6	17	100	0		
Service Vehicle	35	14	80	34	75	

Key Observations

- 55 mi (41 mi dedicated) bicycle lanes installed on truck route network since 2000
- All bicycle collisions disproportionately concentrated:
 - On truck routes
 - In protected lanes
- Commercial vehicles frequently must choose whether to obstruct a single travel lane or to park illegally
- Parking availability and choices vary considerably by location and sector

The City College of New York

Motivation Methods

Results

- Measure the short and long term implications of reduced capacities for CV operations and for the surrounding area
- Examine detailed accident causality on specific types of bicycle infrastructure
- Evaluate demand and operator-specific curb management strategies

Acknowledgements

- Volvo Research and Education Foundations
- Student Researchers
 - Lisa Chauvet
 - Medwin Chiu
 - Niloofar Gharamani
 - Victor Leal-Tavares
 - Nathan Tavernier
 - Xue Bing Yeap

- Student Fellowship Programs
 - Brazilian Scientific Mobility Program
 - CCNY's NSF-funded programs
 - Louis Stokes Alliance for Minority Participation (LSAMP)
 - STEM Talent Expansion Program (STEP)
 - FHWA Eisenhower Fellowship Program
 - French Ministry of Ecology, Sustainable Development and Energy

The City College of New York

