Large Urban Freight Traffic Generators: Opportunities for City Logistics Initiatives

Miguel Jaller, Ph.D.

Research Associate

VREF Center of Excellence for Sustainable Urban Freight Systems

Center for Infrastructure, Transportation, and the Environment

Rensselaer Polytechnic Institute

jallem@rpi.edu

Talking Freight Seminar, October 16th, 2013

Co-Authors:

- ✤Prof. Cara Wang, Ph.D.
- Prof. José Holguín-Veras, Ph.D.

Research partially supported by:

- ✤NCFRP 25 "Freight Trip Generation and Land Use"
- NCFRP 38 "Improving Freight System Performance in Metropolitan Areas"
- U.S.DOT. "Integrative Freight Demand Management in the New York City Metropolitan Area – Implementation Phase."

Volvo Research and Educational Foundation (VREF)

Outline

- 1. Urban freight large traffic generators
- 2. Opportunities for city logistics
- 3. Identification methods

Large traffic generators

Ports, airports, intermodal terminals, etc...

2008 North American Rank	Port	TEUs	Boxes	Population (2008)	Area (sq. mi.)	Employment
1/2	LA/LB	14,200,110	7,980,729	12,923,547	4,850	6,574,300
3	NY/NJ	5,265,058	3,068,935	18,815,988	6,720	9,407,500
4	SAVANNAH	2,616,126	1,458,135	329,329	1,359	180,300
9	HOUSTON	1,794,309	1,102,545	5,728,143	10,062	2,765,500
10	SEATTLE	1,704,492	1,005,273	3,344,813	5,894	1,850,500
17	MIAMI	828,349	473,154	5,413,212	6,137	2,848,700
20	BALTIMORE	612,877	395,467	2,668,056	599	1,411,800
27	PORTLAND	245,459	140,405	2,175,113	6,684	1,161,000
29	NEW ORLEANS	235,336	153,709	1,134,029	3,755	528,300

Large buildings/establishments

Grand Central Terminal More than 180 establishments Between 150-200 truck trips per day

Supplying a Midtown Hotel

m Federa Fede

A week of Truck Deliveries to a Midtown Luxury Hotel

*Visualization of vehicle stops only, actual truck and load sizes vary. Data from 3/11-3/15 2013 Loading Dock Records

Shipment size vs. vehicle type vs. distance

Freight trip generation

Urban establishments' FTG vs. Port's FTG

County	Population	Establish- ments	Estimated employ- ment	 Estimated daily FTA 	Percentage of total FTA per day	Estimated daily FTP	Percentage of total FTP per day
1. Manhattan	1,537,195	102,597	2,062,079	182,427	49%	161,144	47%
2. Brooklyn	2,465,326	44,043	521,992	75,865	_20%	73,431	21%
3. Queens	2,229,379	41,551	518,953	71,447	19%	68,883	20%
4. Bronx	1,332,650	15,528	224,179	26,320	7%	26,838	8%
5. Staten Island	443,728	8,376	100,975	14,464	4%	12,910	4%
Grand Total	8,008,278	212,095	3,428,177	370,522	100%	343,206	100%

		Estimated Truck			
	Port	Trips Generated			
	LOS ANGELES/LONG BEACH	16 289			
	NEW YORK/NEW JERSEY	9,166			
	SAVANNAH	4,640			
	HOUSTON	3,236			
	SEATTLE	3,082			
	MIAMI	1,585			
NIC.	BALTIMORE	1,217			
	PORTLAND	589			
	NEW ORLEANS	572			

About 2.6% of Manhattan FTG

The urban freight traffic is generated by the 100k+ establishments in the Manhattan

Large urban freight traffic generators (LTGs)

- Specific facilities housing businesses that individually or collectively produce and attract a large number of daily truck trips.
- Large Buildings and landmarks: those that house scores of establishments which generate a large aggregated freight truck traffic
- Large establishments: those, that because of their size, generate significant amounts of freight

Opportunities for City Logistics Initiatives

Off-hour deliveries and receiving stations

Off-hour deliveries at a centralized receiving station and then distributed to the different stores, offices, restaurants

(+) reduce freight trips attracted
(+) reduce parking needs
(-) requires coordination efforts
(-) space may not be available

10

Pick-up/drop-off points/ unattended deliveries

Pick-up/Drop-off: local collection and distribution depots, or boxes, from which consumers can pick up ordered goods (e.g., locker banks)

These systems can be installed in or near LTGs

- Unattended Deliveries: strategies that do not require staff for pick-up or drop off
 - Double door systems
 - Virtual cages
 - Video or alarm monitored equipment

11

Parking and loading/unloading initiatives

Parking is a major issue in large urban areas

Alternatives:

- Parking pricing
- Reserved parking
- Low-scale nearby delivery areas
- On-street loading bays
 - (+) low capital investment
 - (+) reduce congestion
 - (+) reduce double parking
 - (-) conflict with pedestrians / cyclists
 - (-) require enforcement
 - (-) limited space availability

Identifying Urban Freight Large Traffic Generators

Identification: Complementary procedures

Buildings/landmarks that have their own ZIP code

- (+) These are buildings/landmarks that in opinion of USPS generate a lot of mail (and maybe deliveries)
- ↔(+) Accurate geolocation
- (-) Includes unknown mix of freight /non-freight related est.

Large buildings

- Parcel areas (top 1%)
- Establishments with more than 250, 500 and 1000+ employees
 - *(+) Comprehensive
 - (-) Some industries with constant FTG per establishment
 - (-) No accurate geolocation (only at ZIP code level)

Landmark buildings (unique zip codes)

		ıts	Estimated				1	ıts	Estimated		
Zip Code	Zip Code Description	Establishmer	Daily FTA	Daily FTP	Total daily FTG	Zip Code	Zip Code Description	Establishmer	Daily FTA	Daily FTP	Total daily FTG
10118	Empire State Building	594	1,014	898	1,912	10152	Seagram Building	88	98	101	200
10165	5 Lincoln Building	462	573	546	1,119	10178	101 Park Avenue	73	85	89	174
10119	1 Penn Plaza	300	460	454	914	10115	475 Riverside Drive	66	79	71	150
10170) Graybar Building	309	373	375	748	10069		55	81	68	149
10123	450 Fashion Avenue	240	337	330	667	10104	1290 Avenue of the Am	36	69	68	137
10166	5 Met Life Building	130	345	277	622	10171	West Vaco Building	54	64	71	135
10282	2	227	283	272	555	10041	55 Water Street	39	81	46	127
10112	e General Electric Buildin	130	232	316	548	10154	Bristol Myers Building	52	66	61	127
10107	Fisk Building	222	279	262	542	10172	Chemical Bank Building	57	62	63	125
10120	112 W 34th Street	68	332	198	530	10285	Shearson American Ex	20	29	86	115
10169	Helmsley Building	227	265	249	514	10105	Burlington Building	48	58	54	112
10281		153	263	239	502	10158	605 3rd Avenue	49	51	56	107
10103	B Tishman Building	103	266	199	464	10270	AIG	46	57	49	106
10122	Pennsylvania Building	169	235	227	463	10055	Park Avenue Plaza	44	44	49	93
10168	Grand Central Station	184	241	221	462	10177	Marine Midland Buildin	33	39	46	85
10110	500 5th Avenue	177	226	205	431	10286	Bank of New York	40	43	41	84
10155	Architect & Design	140	253	166	419	10173	342 Madison Avenue	30	39	41	80
1011	International Building	164	208	193	401	10080	Merrill Lynch	29	32	32	64
10106	5 888 Fashion Avenue	118	182	147	329	10043	CITIBANK	29	30	31	61
1012	2 Penn Plaza	86	134	189	322	10162	Pavilion Building	17	23	26	49
10174	Chrysler Building	125	149	164	313	10199	GPO Official Mail	5	30	9	39
10153	General Motors Building	101	126	177	302	10102	Radio City BRM	9	24	13	37
10167	Bear Sterns Building	118	147	142	288	10072	Philip Morris	5	25	7	32
10279	Woolworth Building	117	132	150	282	10292	Bache Halsey Stuart Sh	14	14	14	28
10176	French Building	103	143	124	268	10081	JP Morgan Bank	12	12	13	25
10175	5 521 5th Avenue	92	129	110	239	10278	Jacob K. Javits	7	7	9	16
10271	Equitable Building	93	104	103	207	10179	Bear Sterns Building	7	7	7	14
1015	745 5th Avenue	72	103	102	205	10260	ID Morgon Donk	E.	ć	ć	10
							Total	4,912	7,030	6,761	13,791

Large establishments (employment)

Large buildings (parcel area)

Top 1% parcels in terms of area in the city

SUSTAINABLE URBAN FREIGHT SYSTEMS

They produce highly concentrated traffic impacts

Manhattan	No.	Establish- ments 102,597	 0⁄0*** 	Estimated employ- ment 2,062,079	9⁄0***	Estimated daily FTA 182,427	º⁄o***	Estimated daily FTP 161,144	 0⁄0***
Landmarks*	56	5,994	5.84%	196.497	9.53%	7.030	3.85%	6,761	4.20%
Large Establishments]	24,667	24.04%	1,732,875	84.04%	43,224	23.69%	40,274	124.99%
250-499 employees		13,542	13.20%	706,010	34.24%	25,796	14.14%	24,093	14.95%
500-999 employees	 	6,203	6.05%	493,294	23.92%	10,982	6.02%	8,866	5.50%
1000+ employees	, 	4,922	4.80%	533,571	25.88%	6,446	3.53%	7,314	4.54%
Large Area Parcels	146	20,778	20.25%	467,350	22.66%	67,949	37.25%	**	

* More than 5 establishments

** No models available

*** Percentage from total values for Manhattan

FTA = Freight Trips Attracted

FTP = Freight Trips Produced

Key findings

Advantages:

- Easy to identify
- Concentration of a large number of establishments in a reduced set of locations
- They generate a significant share of daily truck traffic
- Their close spatial location allow for green last mile distribution strategies
- Size and economy of scales/ cargo consolidation

Disadvantages:

- Lack of storage space for large volumes of goods
- Security management
- Limited loading facilities lead to increased scheduling complexities

References

City Logistics

- Augereau, V. and L. Dablanc (2008). An Evaluation of Recent Pick-up Point Experiments in European Cities: The Rise of Two Competing Models? Innovations in City Logistics. E. Taniguchi and R. Thompson, Innovations in City Logistics: 303-320.
- BESTUFS (2007) "Good Practice Guide on Urban Freight Transport." BESTUFS, from <u>http://www.bestufs.net/</u>.
- FREILOT. (2010). "Urban Freight Energy Efficiency Pilot." Retrieved January 1, 2013, from <u>http://www.freilot.eu/en/home/</u>.
- Jones, E., A. Chatterjee and R. Marsili (2009). "A Collaborative Plan for Curbside Freight Delivery in Washington D.C." ITE Journal 79(5): 22-25.
- PIARC (2011) "Public Sector Governance of Urban Freight Transport."
- Quak, H. (2008). Sustainability of Urban Freight Transport: Retail Distribution and Local Regulations in Cities. Ph.D., Erasmus Research Institute of Management (ERIM).
- Holguín-Veras, J., M. Jaller, J. Amaya, X. Wang, C. González-Calderón, I. Sánchez-Díaz, M. Browne, J. Wojtowicz, S. Hodge, S. Rhodes, and D. Haake (2013). Public Sector Freight Interventions in Metropolitan Areas I: Governance, Supply Side, and Traffic Operations.
- Holguín-Veras, J., J. Amaya, M. Jaller, X. Wang, J. Wojtowicz, C. González-Calderón, I. Sánchez-Díaz, S. Hodge, M. Browne, S. Rhodes, and D. Haake (2013). Public Sector Freight Interventions in Metropolitan Areas II: Pricing, Logistics, and Demand Management.
- Holguín-Veras, J., X. Wang, S. Hodge, S. Campbell, I. Sánchez-Díaz, R. Marquis, M. Jaller, S. Rothbard, and J. Wojtowicz (2012). Unassisted Off-Hour Deliveries and Their Potential Role in Freight Transportation demand Management: Results from an Attitudinal Survey.

References

Off-Hour Deliveries

- Holguín-Veras, J. (2008). "Necessary Conditions for Off-Hour Deliveries and the Effectiveness of Urban Freight Road Pricing and Alternative Financial Policies in Competitive Markets." Transportation Research Part A: Policy and Practice 42(2): 392-413.
- Holguín-Veras, J., J. Polimeni, B. Cruz, N. Xu, G. List, J. Nordstrom and J. Haddock (2005). "Off-Peak Freight Deliveries: Challenges and Stakeholders' Perceptions." Transportation Research Record 1906: 42-48.
- Holguín Veras, J., R. Marquis, S. Campbell, J. Wojtowicz, X. Wang, M. Jaller, S. Hodge, S. Rothbard and R. Goevaers (2013a). "Fostering the Use of Unassisted Off-Hour Deliveries: Operational and Low-Noise Truck Technologies." Transportation Research Record (in print).
- Vilain, P. and P. Wolfrom (2000). "Value Pricing and Freight Traffic: Issues and Industry Constraints in Shifting from Peak to Off-Peak Movements." Transportation Research Record 1707: 64-72.

Freight Trip Generation

- Holguín-Veras, J., M. Jaller, L. Destro, X. Ban, C. Lawson and H. Levinson (2011). "Freight Generation, Freight Trip Generation, and the Perils of Using Constant Trip Rates." Transportation Research Record 2224: 68-81. 10.3141/2224-09
- Holguín-Veras, J., M. Jaller, I. Sanchez, J. Wojtowicz, S. Campbell, C. Lawson, H. Levinson, E. Levine-Powers and L. Tavasszy (2013) "Freight Trip Generation and Land Use: Final Report." from http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_739.pdf.
- Holguín Veras, J., I. Sánchez-Díaz, C. Lawson, M. Jaller, S. Campbell and H. Levinson (2013b).
 "Transferability of Freight Trip Generation Models." Transportation Research Record (in print).

References

- Jaller, M., I. Sanchez, J. Holguín-Veras, and C. Lawson (2013). Area Based Freight Trip Generation Models.
- Lawson, C., J. Holguín-Veras, I. Sánchez-Díaz, M. Jaller, S. Campbell and E. Powers (2012). "Estimated Generation of Freight Trips Based on Land Use." Transportation Research Record 2269: 65-72. 10.3141/2269-08
- Jaller, M., I. Sanchez, and J. Holguín-Veras (2013). Freight Trip Attraction, Freight Trip Production, and the Role of Freight Intermediaries.

Parking

- Cambridge Systematics (2007) "Increase Cost of Parking in the Manhattan Central Business District (CBD)." Technical Memorandum prepared for New York City Economic Development Corporation and the New York City Department of Transportation., from https://www.dot.ny.gov/programs/repository/Tech%20Memo%20on_Parking.pdf.
- Jaller, M., J. Holguín-Veras and S. Hodge (2013). "Parking in the City: Challenges for Freight Traffic." Transportation Research Record (in print).
- Shoup, D. (2005). The High Cost of Free Parking, American Planning Association, Chicago.
- New York City Department of Transportation. (2012). "Park Smart." Retrieved July 20, 2012, from <u>http://www.nyc.gov/html/dot/html/motorist/parksmart.shtml</u>.
- NYC Department of City Planning (2011) "Parking Best Practices: A Review of Zoning Regulations and Policies in Select US and International Cities." Transportation Division.
- ✤ Rizzo Associates (2001) "Access Boston 2000-2010: Parking In Boston." First Edition.
- Holguín-Veras, J. (2002). "Revealed Preference Analysis of Commercial Vehicle Choice Process." Journal of Transportation Engineering 128(4): 336.

Thank you! Questions! jallem@rpi.edu

