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INTRODUCTION 

The safety, mobility, and accessibility of the United States highway transportation network depends on the 
effective operation and maintenance of over 620,000 bridges nationwide. Central to this is the inspection 
of bridges to assess condition, and strategic investment in maintenance, preservation, rehabilitation, and 
replacement. 

Since 1972, inventory, condition, and performance data associated with all bridges on public highways in 
the United States has been collected and reported to Federal Highway Administration (FHWA). Bridge-
specific information such as age and service, functional descriptions, geometric data, structure type and 
materials, loads and load ratings, inspection date and frequency, navigation data, condition ratings, and 
other data are collected through regularly scheduled bridge inspections. Data is then reported to an 
FHWA database known as the National Bridge Inventory (NBI).  

General condition ratings are assigned to major bridge components including deck, superstructure, and 
substructure, as well as culverts. The condition ratings assigned during inspections utilize a 0 to 9 scale 
based on the severity, extent, and effect of the deterioration on strength or serviceability, with 0 being the 
lowest or worst condition and 9 the best. These ratings provide a consistent standard for the collection of 
bridge and bridge-length culvert data but lack granularity to support refined maintenance, preservation, 
rehabilitation, and replacement decision-making that include economic considerations. 

Element-level data collection for bridges was introduced nationally and standardized in the 1990s by 
AASHTO’s “Guide for Commonly Recognized (CoRE) Structural Elements” and more recently the “Manual 
for Bridge Element Inspection (MBEI)”. It was introduced to support refined condition and needs 
assessment and asset management modeling, analysis, and decision making. Element-level data is 
designed to improve objectivity and provide quantitative information about the condition of each bridge 
element that comprises a bridge component along with detail on the severity and extent of deterioration 
or damage within each element.  

Starting in 2014, States that were not collecting element data began collecting it for bridges on the 
National Highway System (NHS) for reporting to the NBI. To support the reporting of element-level data, 
FHWA issued the “Specification for the National Bridge Inventory - Bridge Elements”, which references the 
AASHTO MBEI. Table 1 lists the bridge elements that have inventory and condition data reported to the 
NBI.  

Element-level data collection does not relieve agencies from collecting and reporting component-level 
condition data to the NBI. Also, each data type has different utilities and applications within agency 
business processes for inspection program management, maintenance, asset management, and 
transportation performance management target setting. 

To assist States in comparing the data sets, FHWA and researchers developed various “translators” to 
convert CoRE Manual element condition states into component ratings. With the introduction of the 
MBEI, FHWA later sponsored development of a new “convertor” which is documented in the April 2013 
“Component-Element Converter Technical Manual”. A universal profile was developed for converting 
element condition states to component condition ratings that is independent of component type, design, 
and material. A separate universal profile was also developed for converting component condition ratings 
to element condition states. These two profiles were developed from a limited data set available at the 
time. The “convertors” like the one developed by FHWA continue to support States. A particular use is in 
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support of element-level asset management modeling and analyses. When forecasts and simulations of 
future conditions, work programs, and performance outcomes are based on element-level deterioration, 
work actions, costs, and benefits, the future condition outcomes often need to be converted to 
component ratings for ease of comprehension by stakeholders. Another use of convertors is the support 
of inspection data quality review. Converted element condition states are often compared to inspector 
component ratings to identify any gross differences representative of potential data errors or inspection 
inconsistencies.  

Now that FHWA has amassed element-level data for all NHS bridges, it is possible to refine or create new 
conversion models. The primary objective of the project was to create multiple conversion profiles to 
convert element-level condition states to component-level condition ratings, while considering material 
composition as a major subfactor. These profiles included a universal conversion profile (element to 
component) that was representative of all element and component types and four component conversion 
profiles that were representative of each component (deck, superstructure, substructure, and culvert) 
irrespective of material type. Conversion profiles that considered the material composition of each 
component were also developed. Lastly, a universal conversion profile that converts the component-level 
condition rating into element-level condition states was developed. This conversion profile was 
representative of all element and component types, irrespective of material type.  

This report provides a step-by-step summary of the efforts undertaken to develop the various conversion 
profiles and includes sufficient details so that an independent party can repeat the process to update the 
profiles as additional data becomes available. 
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Table 1. Bridge elements reported to the NBI according to Specification for the National Bridge Inventory Bridge 
Elements  

Component Element Units 
Element Number 

Steel Prestressed 
Concrete 

Reinforced 
Concrete Timber Masonry Other 

Deck/Slab Deck SF 13 12 31 60 
Open Grid Deck SF 28 
Concrete Filled Grid Deck SF 29 
Corrugated or Orthotropic Deck SF 30 
Slab SF 38 54 65 
Top Flange SF 15 16 

Superstructure Closed Web/Box Girder LF 102 104 105 106 
Girder/Beam LF 107 109 110 111 112 
Stringer LF 113 115 116 117 118 
Truss LF 120 135 136 
Arch LF 141 143 144 146 145 142 
Main Cable LF 147 
Secondary Cable EA 148 149 
Floor Beam LF 152 154 155 156 157 
Pin, Pin and Hanger Assembly EA 161 
Gusset Plate EA 162 

Substructure Column EA 202 204 205 206 203 
Column Tower (Trestle) LF 207 208 
Pier Wall LF 210 212 213 211 
Abutment LF 219 215 216 217 218 
Pile Cap/Footing LF 220 
Pile EA 225 226 227 228 229 
Pier Cap LF 231 233 234 235 236 

Culvert Culvert LF 240 245 241 242 244 243 
Bridge Rail Bridge Rail LF 330 331 332 334 333 

Component Element Units Element Number 
Joint Strip Seal LF 300 

Pourable LF 301 
Compression LF 302 
Assembly with Seal (Modular) LF 303 
Open LF 304 
Assembly without Seal LF 305 
Other LF 306 

Bearing Elastomeric EA 310 
Movable (roller, sliding, etc.) EA 311 
Enclosed/Concealed EA 312 
Fixed EA 313 
Pot EA 314 
Disk EA 315 
Other EA 316 

Wearing Surfaces and Protective 
Coatings 

Wearing Surfaces SF 510 
Steel Protective Coatings SF 515 
Concrete Protective Coatings SF 521 

LITERATURE REVIEW 

The AASHTO CoRE guide describes a set of three to five condition states (CS1-3, CS1-4, or CS1-5) that are 
used to describe the condition of various bridge elements. Element-level data collection has progressively 
matured and is today an integral part of bridge asset management systems. The AASHTO MBEI replaced 
the AASHTO CoRE guide and offers significant changes to the condition state language and reconfigures 
the condition states to be consistent (CS1-4) across all element types. The MBEI classifies bridge elements 
as either National Bridge Elements (NBEs), Bridge Management Elements (BMEs), or Agency Defined 



9 

Elements (ADEs). The condition states describe the severity of distress or deficiencies using a four-point 
system as follows: CS 1 – Good, CS 2 – Fair, CS 3 – Poor, and CS 4 – Severe. Beginning in 2015, States and 
bridge owners are required to report their element-level data to the FHWA for bridges located on the 
NHS. 

In the NBI data set, prior to 2015 only the condition of the three main bridge components (deck, 
substructure, and superstructure) and the condition of culverts are represented. Condition details for 
other bridge elements such as bearings, joints, etc. are not explicitly represented. Element-level inspection 
protocols however do consider these elements in addition to the overall deck, substructure, and 
superstructure. The collection and use of element-level condition data is fundamental to the ability to 
clearly understand asset conditions, predict future conditions, and program cost-effective actions that 
extend element and bridge service lives. The introduction of element-level bridge inspection techniques in 
the early 1990s represented a significant advancement in bridge inspection and management practices 
and has been adopted by transportation departments throughout the U.S. Elements are defined 
according to seven classifications that include Deck/Slab, Superstructure, Substructure, Bridge Rail, Joint, 
Bearing, Wearing Surface, and Protective Coatings. All elements are evaluated using a four-level 
condition-state scale.  

As States expanded their use of element-level data collection systems, researchers set out to develop a 
translator algorithm that converted the new, more detailed element condition data into component 
condition ratings. A number of attempts were made to convert the element-level condition states to 
component condition rating and vice versa. An early project was conducted by Hearn et al. (1997) at the 
University of Colorado at Boulder, with the collaboration of the Colorado Department of Transportation 
(CDOT). The product, named NBI Translator, was able to combine CoRE elements into matching NBI fields. 
This methodology was later developed as a software tool known as the NBI Translator (or BMSNBI) and 
was adopted by Pontis (now AASHTOWareTM Bridge Management) as a built-in module. General 
skepticism about the estimation accuracy of the NBI Translator was later raised based on the study of 
several departments of transportation’s (DOTs) bridge management systems (Hale et al 2007; Bektas et al. 
2012). In a separate study, another conversion approach was proposed by Al-Wazeer et al. (2007) to 
improve the results of the NBI Translator. In this study, artificial neural network (ANN) models were 
developed based on the CoRE and NBI data collected from Wisconsin and Maryland. The results revealed 
that the ANN model yielded better estimations as compared to the NBI Translator model. However, this 
conclusion was only valid for the states that the ANN models were trained and tested on, and therefore, 
could not be generalized for wider use. In another study, Sobanjo et al. (2008) developed a conversion 
tool, called NewTranslator, that functioned similar to the Bridge Health Index calculation, which is a single-
number assessment of a bridge’s condition based on the bridge’s economic worth determined from an 
element-level inspection. Comparison of Sobanjo et al.’s results with the BMSNBI indicated an improved 
accuracy level in the higher range of NBI ratings, but the model underperformed with the assignment of 
NBI ratings in lower condition ratings. Later in 2012, Bektas et al. (2012) proposed a new conversion 
methodology using the classification and regression trees concept. The method was developed using 
bridge condition data (NBI and CoRE elements) provided by three state departments of transportation. A 
similar technique was later proposed by Fiorillo and Nassif (2019) using deep convolutional neural 
networks for mapping the relationship between NBI component- and element-level data.  

FHWA recently developed conversion profiles that correlate element condition states to component 
condition ratings and vice versa using MBEI data. These are termed their first generation MBEI conversion 
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profiles. These profiles were developed using a limited data set and were independent of component 
type, design, and material. This work yielded a universal profile for converting element condition states to 
component condition ratings and a separate universal profile for converting component condition ratings 
to element condition states. A review of these methodologies and prior research provides several key 
observations relevant to this project: 

 Models developed on the basis of complex statistical methods or artificial intelligence/machine 
learning approaches such as ANN or NN, while capable of better accuracies than analytical models, 
suffer from major drawbacks. These techniques are mostly inspired by natural rules and present 
solutions based on experience and development of various discriminators, which are not readily 
transparent. As a result, these models act as black boxes and cannot explicitly provide a transparent 
function correlating the output to the given inputs. The computations must be conducted in a-priori 
format requiring significant trial-and-error operations, which limit their availability using commonly 
available software such as a Microsoft Excel spreadsheet with embedded static tables/matrices. 

 Most of the conversion models were developed using CoRE condition state definitions rather than the 
more current MBEI definitions. For the models developed using the MBEI condition state definitions, 
the models were derived using limited data sets and applied independent of component type, design, 
and material. 

 As defined by the AASHTO MBEI, members are divided into two elements consisting of the base 
member and its protective system. As such, the protective system is evaluated separately from the 
base element. The expression and rate of change of deterioration in the protective coating systems 
(e.g., paint systems for steel members or asphalt with membrane wearing surfaces for decks) relative 
to the same experiences in the base member may be significantly different. There is no discussion in 
the conversion models regarding how these elements behave in an independent manner. 

 The various models were generally found to have lower conversion accuracies at the low and high 
ends of the condition rating range (8-9 or 3-4), where there is a lack of historical data for model 
calibration. In addition, some of the models tend to constantly over-rate or under-rate compared to 
the actual condition ratings. This skew in the prediction capability of each model often exacerbates 
the errors at either the high or low end of the condition rating scale.  

 The conversion of element-level condition states from component condition rating remains a 
challenge given the lack of granularity associated with component-level inspections as compared to 
that of element-level inspections. Therefore, the derivation of the element information from 
component data has a limitation on its accuracy.  

PRELIMINARY INVESTIGATION OF NHS BRIDGES 

The InfoBridge platform developed by FHWA was utilized to gain a general understanding of the format 
and structure of NBI component- and element-level data that are available for NHS bridges.  

Figure 1 represents how the NHS bridges are geographically distributed nationwide while Figure 2 shows 
the distribution of the bridges based on their main material type (NBI Item 43A). Further, plots the 
distribution of NHS bridges based on deck material type (NBI Item 107). Similar plots for substructure and 
culverts are possible but have not been included herein.  
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Figure 4 through Figure 7 plot the distribution of current condition ratings (reported as of 2022) for the 
main components. A review of Figure 4 through Figure 7 generates the following observations: 

1. Most NHS bridges share Reinforced Concrete, Steel, and Prestressed Concrete as their primary
superstructure material (NBI Item 43A). The quantity of available data for other types of superstructure
materials is minimal. Further, it was observed through a preliminary study of nationwide data that the
prominent superstructure material types differ among states including the observation that some
states build bridges using only one or two primary materials.

2. Most NHS bridges share concrete as their primary deck material.

3. Most NHS bridge components are rated at 5 through 8.

Figure 1. Geographical nationwide distribution of NHS bridges (nearly 146,400 bridges). 
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Figure 2. Distribution of NHS bridges based on main span (superstructure) material type (NBI Item 43A). 

36% Reinforced Concrete 
31% Steel 
32% Prestressed Concrete 
<1% Others (Wood, Masonry, Al., etc.)  
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Figure 3. Distribution of NHS bridges based on deck type (NBI Item 107). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

77% CIP Concrete 
5% Precast Concrete 
0.3% Steel (all types) 
18% Others, NA, etc.  
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Figure 4. Distribution of NHS bridges based on deck condition rating (NBI Item 58). 
  

CR-9 1% 
CR-8 7% 
CR-7 39% 
CR-6 23% 
CR-5 9% 
CR-4 1% 
Culvert & NA (20%)  
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Figure 5. Distribution of NHS bridges based on superstructure condition rating (NBI Item 59). 

 

  

CR-9 2% 
CR-8 14% 
CR-7 36% 
CR-6 19% 
CR-5 9% 
CR-4 1% 
Culvert & NA (19%)  
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Figure 6. Distribution of NHS bridges based on substructure condition rating (NBI Item 60). 

 

  

CR-9 1% 
CR-8 10% 
CR-7 40% 
CR-6 21% 
CR-5 8% 
CR-4 1% 
Culvert & NA (19%)  
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Figure 7. Distribution of NHS bridges based on culvert condition rating (NBI Item 62). 

 

  

CR-9 0% 
CR-8 1% 
CR-7 9% 
CR-6 7% 
CR-5 2% 
CR-4 0% 
Culvert & NA (81%)  
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TECHNICAL APPROACH 

Since the development of the FHWA first-generation MBEI data conversion profiles, all States now collect 
and report element data for all NHS bridges in their inventories. The increase in available data offers an 
opportunity to develop new, more refined, and more accurate conversion profiles to translate element-
level condition states to component condition ratings and vice versa. The additional data also allows the 
extension of these profiles to include the consideration of material composition for both element and 
component. Figure 8 illustrates the process that was followed to develop the conversion profiles. Some 
steps were performed only once (e.g., data preparation and cleaning), which is denoted as “Data 
Processing” stage, while the final step was repeated to produce the different conversion profiles, which is 
depicted as the “Data Modeling” stage. 

Data sets used in this study include element-level data sets, which are publicly available for the years 
2015-2022 at the FHWA website (https://www.fhwa.dot.gov/bridge/nbi/element.cfm), and the other NBI 
data, which is available for the years 1992-2022 at the FHWA website 
(https://www.fhwa.dot.gov/bridge/nbi/ascii.cfm).  

Figure 8. Deployed analytical framework. 

The discrete efforts outlined in Figure 8 are briefly described below. 

 Data Collection: The objective of this step was to identify and collect available data resources 
required for the development of conversion profiles. 

 Data Assembling: The NBI component- and element-level data are separately reported and 
published by FHWA. In this step, the data were combined into a single fact table for further model 
development.  

 Data Cleaning: In this step, the data set was thoroughly reviewed to identify null, miscoded, 
unmatched, or otherwise unreliable data elements. Multiple approaches were used to review and 
“clean” the data.  

 Data Aggregation: Various aggregation techniques were employed to combine condition state 
quantities of multi-element components into unified condition states for later conversion profile 
development and validation.  

https://www.fhwa.dot.gov/bridge/nbi/element.cfm
https://www.fhwa.dot.gov/bridge/nbi/ascii.cfm
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 Model Development (Element to Component): Multiple statistical models were studied and tested 
to deliver the final profiles for converting element condition states to condition ratings. When 
possible, the models were validated against a subset of the overall data set that was not used for 
model development. If this was not permissible given the size of the data set, then the models were 
validated against the same data used for model development.  

 Model Development (Component to Element): Similarly, a set of statistical analyses was conducted 
to develop a profile to convert component-level condition rating to element-level condition states. 
Reconstructing more granular information (element-level) from a coarse source (components) proved 
to be difficult.  

Data Collection 

The NBI component- and element-level data published by FHWA between 2015 and 2022 serve as the 
primary data sets for the conversion profile development. The NBI component- and element-level data 
from the following two sources were utilized for data modeling.  

 https://www.fhwa.dot.gov/bridge/nbi/ascii.cfm 

 https://www.fhwa.dot.gov/bridge/nbi/element.cfm 

NBI component- and elemental-level data are collected, checked, and warehoused throughout the year 
by the bridge’s respective owner (e.g., state transportation department, Federal agency, or tribal 
government), with newly collected or altered data added to their inventory database(s) within three 
months of the date collected or changed. The bridge owner then annually submits the NBI component- 
and element-level data to FHWA. Thus, by March 15th of each year the FHWA has received the NBI 
component- and element-level data from all bridge owners. These data are then checked and published 
to the two FHWA websites cited above. The annual NBI component- and element-level data published by 
FHWA are available for download by year. Each year’s data file consists of that year’s current data for all 
bridges regardless of when the bridge was last inspected. So, for example, a bridge that is on a 48-month 
inspection cycle and was last inspected in October 2017 will show the same data in the 2018, 2019, 2020, 
and 2021 report. A bridge that is on a 12-month reinspection cycle and is inspected in October each year 
will show new data assuming the condition has changed or the same data if the condition has remained 
unchanged in each annual report. As such, each year’s data file can be considered as a snapshot of bridge 
conditions as of December 31st plus any data for bridges inspected and accepted by the bridge owner 
through the first three months of the reporting year.  

The data published in 2015-2016, representing the first two submittals of element data to FHWA, were 
discarded due to uncertainty in the data quality, particularly with respect to whether the element-level 
data were “migrated” or “combined migrated and field collected” (i.e. some bridges have migrated data 
and others have field collected data). Migrated data are element data that have been converted from the 
AASHTO CoRE specification and format to the AASHTO MBEI specification and format, namely from CoRE 
to NBE/BME. If, however, there were 2017-2022 submittals that the owner reported contained “combined 
migrated and field collected data”, those data years were removed as well. When downloading element-
level data from the FHWA website, some States also included elements from non-NHS bridges. Only NHS 
bridges were considered for analysis per the scope of this project. 

https://www.fhwa.dot.gov/bridge/nbi/ascii.cfm
https://www.fhwa.dot.gov/bridge/nbi/element.cfm
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Data Assembling 

Each annual NBI data set consists of one row of data (composed of many columns) for each bridge, while 
the element-level data set includes several rows of data (with a few columns) for each bridge. The two 
data sets were linked using a common data element(s) to become the fact table. 

The NBI database includes over one hundred items, of which only a few are useful to the current project. 
To reduce the size of the data set required for modeling as well as to increase the model efficiency, the 
final fact tables only included applicable items. Table 2 lists the items that were extracted as part of the 
query.  

Table 2. List of items to be extracted from NBI component- and element-level databases. 

Bridge Keys Element-level Fact Table NBI Fact Table Index 

State Code (1) Element Code/Parent Code Component Name (D, SP, SU, Cul) Error Code 

Structure Number (8) Total Quantity Routine Inspection Date (90) 

Date of Data Submittal CS1 Quantity Component Rating *  (58-60, 62) 

CS2 Quantity Type of Deck (107) 

CS3 Quantity NHS or non-NHS (104) 

CS4 Quantity Inspection Frequency (91) 

Fracture Critical Inspection Date (93A) 

Type of Main Material (43A) 

Type of Main Design (43B) 

Approach – Type of Material (44A) 

Approach – Type of Design (44B) 

General Rating (G, F, P) 

Underwater Inspection Date (93B) 

Other special inspection Date (93C) 

* The component rating (deck, superstructure, substructure, culvert) will be selected based on the category to which the
element belongs (according to Table 1).

Joining of element-level facts and NBI facts was accomplished using a key combination consisting of state 
code, structure number along with the date of data submission. Each row from the element-level table 
was joined to the corresponding NBI data for that state/structure number/submittal date key 
combination. The component rating (NBI Items 58-60 and 62) presented on each row corresponded to 
the element also present on that row. So, for example, NBI Item 58 Deck component ratings were paired 
on the same rows with deck-specific element-level data. If that element was inspected more than once 
within the 2017-2022 time horizon, multiple rows of that element (per inspection period) were available in 
the fact table. Usage of the term “data row” in this report corresponds to each individual row from the fact 
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table. The fact table also included an index column for denoting possible data errors. This index facilitated 
the inclusion or exclusion of data should a particular data element be suspicious or unmatched. Table 3 
provides a sample of one row from the fact table that was discussed in Table 2. Further details are 
discussed in the data cleaning section below.  

Among the element-level data, some elements could be reported along with their protective systems (e.g. 
reinforced concrete deck (12) in concert with wearing surface (510) or steel beam (107) along with the 
steel protective coating (515)). These additional elements are called bridge management elements (BMEs). 
Since the NBI condition rating for main components (deck, superstructure, substructure, and culvert) are 
instructed to be collected regardless of the protective coating system, only the NBEs (Element 
Number<300) were considered within the modeling scheme.  

Table 3. Example row from the fact table. 
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Data Cleaning 

Once the NBI component- and element-level data were integrated and unified in a common data format, 
multiple cleaning filters were employed to ensure the reliability of the data. It was assumed that data flags 
and errors identified by FHWA data validation checks had been corrected (NBI Data Checks 2020; Element 
Data Errors and Checks 2020). According to cleaning criteria listed below, data with pending flags or 
errors were removed for profile development. Errant data was denoted through the use of row identifiers 
(i.e., index column) that removed the data from statistical analyses but not physically from the data set. 
This allowed for data “cleaning” methods to be reviewed again and if necessary reversed.  

Data conditions that warranted special attention included: 

 The annual NBI component- and element-level data published by FHWA is available for download by 
year. Each year’s data file consists of that year’s current data for all bridges regardless of when the 
bridge was last inspected. So, for example, a bridge that is on a 24-month inspection cycle and was 
last inspected in October 2017 will show the same data in the 2018 and 2019 reports. To avoid 
repeatability in the fact table, only data rows associated with 2018 were kept and the repeated data 
row corresponding to 2019 was flagged to be excluded from data modeling. The error index for 
flagging such data rows in the fact table is defined as 1. To formulate this approach, the following 
steps were conducted in the data cleaning process: 
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 For 2018-2022 data submittal files, if the difference between the data file submittal year and
bridge inspection year (NBI Item 90) was greater than 1, then the data row was flagged. For
example, for data submittal 2019, only data rows with bridge inspection year (NBI Item 90) of 2018
and 2019 were left unflagged.

 For the 2017 data submittal file, if the difference between the data file submittal year and bridge
inspection year (NBI Item 90) was greater than 2, then the data row was flagged. For this data
submittal file, only data rows with bridge inspection year (NBI Item 90) of 2015 or 2016 were kept.

 Once the data file for each submittal year was processed individually, all the data submittal files
(multiple years) for a given state were aggregated and checked for duplicates. Per the previous
discussion, if the 2018 submittal included the 2017 inspection date (for a given bridge), that data
row was kept; if the 2017 submittal file included the 2017 inspection date, that data row was also
kept; therefore, there is a higher chance of duplication due to biannual frequency of inspection
data. In this case, the record with the minimum difference between submittal and inspection years
was kept in the fact table. To that extent, this step ensured that no data row for a given bridge
associated with the same inspection date was duplicated in the final fact table. Due to the
programming configuration, this step was conducted prior to the development of fact tables,
therefore, no error index was assigned.

Bridges that have different main and approach span material types (as identified by NBI items 43A and 
44A) were excluded from the modeling. In some cases, however, different material types that were closely 
aligned were considered to be uniform for profile development purposes. For example, concrete and 
concrete continuous were considered matching. Table 4 below describes how each data row in the fact 
table was processed to address closely matching material types between Items 43A and 44A. For each 
data row, if the 43A code in the left column did not associate with the 44A code in the right column, the 
data row was flagged with Index 2. For reference, the NBI material type coding is shown in Table 5.  

Table 4. Main span vs. approach span material type. 
NBI 43A (Main Spans) 44A (Approach Spans) 

1, 2 0*, 1, 2 

3, 4 0, 3, 4 

5, 6 0, 5, 6 

7 0, 7 

8 0, 8 

9 0, 9 
* This included all the elements designated as “0”, “00”, or “000”.
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Table 5. NBI coding designation for items 43A and 44A. 
Code Description 

1 Concrete 

2 Concrete continuous 

3 Steel 

4 Steel continuous 

5 Prestressed concrete* 

6 Prestressed concrete continuous* 

7 Wood and timber 

8 Masonry 

9 Aluminum, Wrought Iron or Cast Iron 

0** Other 

99 Miscoded data 
*Includes post-tensioned concrete
**Not applicable for Item 44

 Given that very few components in the data set were rated 2 or lower (<<100), component ratings of 
2 or lower were excluded. This check was performed for each component independently. The error 
index for flagging such data rows in the fact table was defined as 3. 

 Removed data rows with Total Element Quantity equal to 0 resulted in an error index in the fact table 
defined as 4. 

 Depending on the type of conversion profiles, if any of the NBI ratings for main components (deck, 
superstructure, substructure, and culvert) were missing (null) or not applicable (N), the corresponding 
bridge-inspection period was removed. Alternatively, the elements for some bridges corresponded to 
a certain type of bridge (i.e., a culvert), however, the NBI component ratings corresponded to a bridge 
with three main components (deck, superstructure, substructure). The opposite scenario was also 
observed. This check was performed for each component independently. This data was reviewed and 
if found to be in error, it was flagged as a 5 in the fact table. 

 It is well understood that main span material (NBI Item 43A) often corresponds to the superstructure 
component. Therefore, if a given bridge’s superstructure elements did not match with the correct 
material type (43A), then that superstructure component (any associated data rows for that 
component in the fact table) was flagged with Index 6. Table 6 indicates how each data row in the fact 
table was processed to match NBI item 43A and the superstructure element codes.  

Table 6. Main span vs. superstructure’s elements material types. 
NBI 43A (Main Spans) Superstructure Element 

1, 2 105,110,116,144,155 

3, 4 102,107,113,120,141,147,148, 152,161,162 

5, 6 104,109,115,143,154 

7 111,117,135,146,156 

8 145 

9, 0 106,112,118,136,142,149,157 
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 Similar to the superstructure elements, if a given structure’s culvert elements did not match the 
correct material type (43A), then that culvert (any associated data rows for that culvert component in 
the fact table) was flagged with Index 7. Table 7 lists how each data row in the fact table was 
processed to match NBI Item 43A and the culvert elements. According to Table 7, if the element 
number did not match the 43A code, the data row was flagged with Index 7.  

Table 7. Main span vs. culvert’s elements material types. 
NBI 43A (Main Spans) Culvert Element 

1, 2 241 

3, 4 240 

5, 6 245 

7 242 

8 244 

9, 0 243 

 Similar to the superstructure, the NBI has a separate definition for deck material type (NBI Item 107). 
Therefore, if a given bridge’s deck elements did not match the correct deck material type (NBI Item 
107), the row data associated with that deck component was excluded from the modeling. Table 8 
presents how each data row in the fact table was matched between NBI Item 107 and the deck 
elements. According to Table 8, if the element code did not match the NBI Item 107 code, the data 
row was flagged with Index 8. For reference, the NBI material coding for Item 107 is shown in Table 9. 

Table 8. Deck structure type vs. deck element material types. 
NBI 107 Deck Element 

1, 2 13,15,12,38,16 

3, 4, 5, 6 28,29,30 

8 31,54 

7, 9, N 60,65 

Table 9. NBI coding designation for Item 107. 
Code Description 

1 Concrete Cast-in-Place 

2 Concrete Precast Panels 

3 Open Grating 

4 Closed Grating 

5 Steel plate (includes orthotropic) 

6 Corrugated Steel 

7 Aluminum 

8 Wood or Timber 

9 Other 

N Not applicable 

99 Miscoded data 
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 A bridge with a given component rating of 7 or above with any element (comprising the component) 
in Condition State 4 (CS4>0%) was flagged with an error index of 9. The data rows associated with 
that specific component were flagged and other components of that bridge were not flagged. For 
example, if a substructure component was rated as 7, and it was composed of three substructure 
elements and one of the elements was rated as 1% in CS4 but the other two elements were rated at 
CS4 equal to 0%, then all three rows were flagged. No other data rows associated with other main 
components (i.e. superstructure or deck) were flagged unless they experienced the same mismatch.  

 A bridge with a given component rating of 6 or less with all elements (comprising the component) in 
Condition State 1 (CS1=100%) was flagged with an error index of 10. The data rows associated with 
that specific component were flagged and other components of that bridge were not flagged. For 
example, if a substructure component was rated as 6, and it was composed of three substructure 
elements and two of the elements were rated as 100% in CS1 but the last element was rated at CS1 
equal to 99%, then none of the data rows were flagged. In turn, if all three elements were rated as 
CS1=100%, then all three data rows associated with these three elements were flagged. No other data 
rows associated with other main components (i.e. superstructure or deck) were flagged unless they 
experienced the same mismatch.  

Appendix I provides a concise step-by-step flowchart to reproduce the fact table should additional data 
become available in the future.  

Data Aggregation 

Nearly 1.4 million data rows were retained after processing and cleaning the data. Each row represents a 
component rating and element condition states pair with some pairs representing the individual elements 
of multi-element components. The large quantity of data in the combined component- and element-level 
data sets, while beneficial to the stated outcomes, creates unique challenges in deciphering and finding 
meaningful relevancy between different data subsets. Before delving into the data aggregation techniques 
employed in this study, the following assessments provide rationale behind the exploration of specific 
aggregation techniques.  

• In mapping the element-level condition states to component ratings, it is important to
understand how these two inspection procedures are conceptually interlinked in practice and how
the condition rating/condition states are assigned. For instance, for a given deck with a small area
of spalling, but is otherwise in nearly “new” condition, a rating above 7 (described as having some
minor problems present) will not typically be assigned. However, the same deck would receive
99%, 0%, 1%, and 0% for CS1, CS2, CS3, and CS4, respectively. Therefore, the application of a
weighted average would not be justifiable for this case because the weighted score would
overestimate the condition rating at 8 or better.

• To evaluate the effect of the element conditions of multi-element components on developed
profiles and accuracy of the profiles, all the data rows no matter the component type (deck,
superstructure, substructure, culvert) were considered for modeling. Some components included
only one element while some others included multiple elements. Different aggregation methods
(discussed later in this report) were developed to handle different types of components and
evaluate the effect of aggregation techniques on profile accuracy.

• During the preliminary data analysis, it was observed that main components (deck, superstructure,
and substructure) are often inclusive of one, two, or three element types. For deck components,
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over 95% of bridges had a single element while the rest were composed of multi-elements 
(mostly two elements). For superstructure components, over 90% of the bridges were represented 
by a single element while the rest were multi-element. Finally, for substructure components, 
slightly over 15% of the bridges were represented by a single element while the rest were multi-
element.  

Aggregation Methods for Components Comprised of Multiple Elements 

Superstructure and substructure components are typically composed of two or more elements, which are 
inspected and assessed individually. The manual for Bridge Inspector’s Reference Manual, which is the 
primary reference for NHI Course No. 130055 Safety Inspection of In-Service Bridges, has set certain 
criteria to determine an overall condition rating for a multi-element component. This includes 
identification and quantification of defects on each element, and assignment of an overall rating based on 
a cumulative understanding of component condition and any safety concern. Inspectors taking NHI 
Course No. 130055 are considered correct in their condition assessment if they are within ±1CR of the 
NHI assessment. However, the decision-making process for the assignment of such rating still carries 
some level of variability due to the involvement of the inspector’s judgment. Therefore, formulating an 
aggregation strategy for multiple elements to derive a single component condition rating proved very 
challenging. The issue stems from the fact that component ratings (0-9) are assigned based on the 
inspector’s overall observation of a given component, which includes a part quantitative and a part 
qualitative human aggregation of observations from the various elements that comprise that component. 
Some sources of judgment and situational variation in assigning an overall condition rating for a multi-
element component include: 

 Some of the load-carrying elements (e.g. pier caps) can control the capacity of the structure, whereas 
other elements often do not (e.g. pier walls). 

 The number of units per element could determine the criticality of a given defect to the assignment of 
a component rating. For example, if a pier cap is supported by six columns and one of the columns 
has spalling, this is a different situation when compared to a pier cap which is only supported by two 
columns, one of which has spalling. 

 The number and arrangement of units or magnitude of element size (stringer total length for single or 
multi-span bridges) could impact the criticality of a defect. 

 The severity of certain defects is subjective and will be quantified differently by each inspector. This 
often happens when there is a lack of specific quantification guidance from state DOTs. For example, 
some inspectors define early-age shrinkage cracking as minor, therefore, assigning a condition rating 
of 8-9 to a newly constructed bridge deck. While other inspectors define such cracks as significant 
enough to assign a rating of 7 to a newly constructed bridge deck.  

 Depending on the technical background of an inspector, the criticality of different defects might be 
misunderstood. For instance,10 percent section loss in a flange at a bearing is not critical to the 
bridge’s performance. However, 10 percent section loss at midspan might be critical to the load-
carrying capacity. The defect is the same but just at a different location. An inspector who has taken 
the 2-week Safety Inspection of Bridges class but does not regularly apply the theories of flexure may 
give both of these bridges similarly lower condition ratings. 
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 Depending on the combination of elements constituting a component, the criticality of the element 
for determining the overall condition of the bridge can be different from one bridge to another. For 
example, the importance of a girder in a non-redundant girder system is different than it is in a 
redundant girder system. 

 Some states and their inspectors may emphasize certain types of defects differently depending on 
geographical and environmental characteristics. For example, pitting on the top of the bottom flange 
of steel beam-ends may be common in states with harsh environments (due to the application of de-
icing chemicals) while the same deterioration might be considered severe in states where de-icing 
chemicals are used less frequently. 

Despite the above challenges, several aggregation methods were investigated to determine which one 
proved to be the most accurate. The aggregation methods were only applicable for the element-to-
component conversion profiles. The aggregation methods studied are described below: 

Case 0: No aggregation 
For this case, no aggregation was applied to the elements of a component. As such, all element data rows 
were treated as a unique component of a given bridge. Table 10 represents a portion of four data rows 
from the fact table that included four elements of a substructure component from the same bridge, which 
received an overall component rating of 5. Table 11 represents the normalized condition states where 
each row was fed into the modeling step as a separate data point. As can be seen in Table 11, each 
element is treated independently. Therefore, that element receives the associated component rating (the 
one to which that the element belongs). In the case of Table 11, as an example, the modeling table is 
composed of four independent data rows. 

Table 10. An example substructure component with multiple elements (condition states are in absolute quantity). 
Element Unit CS1 CS2 CS3 CS4 Total Component Rating 

219- Abutment LF 220 20 50 110 400 

5 
231- Pier Cap LF 10 10 5 2 27 

202- Column EA 4 4 0 0 8 

225- Pile EA 3 2 1 0 6 

Table 11. An example substructure component with multiple elements (condition states are normalized to the total 
element quantity).  

Element Unit CS1 CS2 CS3 CS4 Total Component Rating 

219- Abutment LF 55% 5% 12% 28% 100% 5 

231- Pier Cap LF 37% 37% 19% 7% 100% 5 

202- Column EA 50% 50% 0% 0% 100% 5 

225- Pile EA 50% 33% 17% 0% 100% 5 

Case I: FHWA Universal Conversion Profile (First Generation) 
For this case, the same methodology used by the current FHWA universal conversion profile was applied. 
This methodology first split the data into categories based on their unit of measure. In all cases, the 
elements belonged to the same component group (i.e., deck, superstructure, substructure, and culvert). If 
the elements had the same unit of measure, then all elements within the group were combined using a 
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weighted average. If the elements had different units of measure, then the combination of these elements 
was computed using a linear (unweighted) average.  

Table 12 represents a portion of a four-element substructure component from a sample bridge, which was 
rated as 5. As seen in the table, the condition states are already normalized, however, the total quantity is 
kept at its absolute value. For the elements with common units, the weighted average of different 
condition states was taken based on their relative total quantity ratios (i.e., based on the ratio of the 
quantity of the element in question to the total quantity of all elements with the same units). These 
calculations are shown in full for CS1 in Table 13. Once this has been completed, the different units of 
measure are combined using a straight average, the calculation for which is shown in full for CS1 in 
Table 14. The resulting outcome is a single row (or final data point) for the given bridge which is used in 
the modeling step. This is unlike Case 0 where four data points were eventually fed into the modeling 
step. 

Table 12. An example substructure component with multiple elements 
(condition states are normalized to the total element quantity).   

Element Unit CS1 CS2 CS3 CS4 Total Component Rating 

219- Abutment LF 55% 5% 12% 28% 400 

5 
231- Pier Cap LF 37% 37% 19% 7% 27 

202- Column EA 50% 50% 0% 0% 8 

225- Pile EA 50% 33% 17% 0% 6 

Table 13. Calculation of representative elements for every unit type. 
Element Unit CS1 CS2 CS3 CS4 Total Component Rating 

5 

Representative 
(LF) 

LF (55%*400+37%*27)/(400+27)
=54% 

7% 12% 27% 100% 

Representative 
(EA) 

EA (50%*8+50%*6)/(8+6) 
=50% 

43% 7% 0% 100% 

Table 14. Finalized data point to be used for modeling. 
Element Unit CS1 CS2 CS3 CS4 Total Component Rating 

Finalized n/a (54%+50%)/2=52% 25% 9.5% 13.5% 100% 5 

Case II: Linear (Unweighted) Average  
In this case, after the condition states were normalized, the unweighted average of all elements 
(regardless of the unit of measure) was used to aggregate the element data into a single row to be fed 
into the modeling step. Using the same example above, the normalized condition states in Table 11 are 
averaged and become the final data set for that bridge and element. This calculation is shown in full for 
CS1 in Table 15. 
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Table 15. Finalized data point to be used for modeling.  
Element Unit CS1 CS2 CS3 CS4 Total Component Rating 

Finalized  n/a (55%+37%+50%+50%)/4=48% 31% 12% 9% 100% 5 

Case III: Linear (Unweighted) Average of Lowest-Scored Elements 
After the condition states were normalized for all elements of a given component, the elements within 
each measurement unit type (SF, LF, EA) were ranked. Ranking was determined using a score that was 
calculated similar to the way a Health Index is commonly calculated, meaning that the normalized element 
condition states (for each element) are averaged based on 1, 2/3, 1/3, and 0 common weights, for CS1 
through CS4, respectively. Once computed, the lowest scored element from each measurement unit type 
was considered the controlling element for that measurement unit type. Once this was established for 
every measurement unit type comprising the component, the linear (unweighted) average of the 
normalized condition state quantities for the lowest ranking element from each measurement unit were 
calculated and used for modeling. Table 16 shows this scoring procedure using the data shown in 
Table 11 as the example data set.  

Table 17 then indicates the selected elements per measurement unit type that were used to calculate the 
final aggregated data row (Table 18) for model development.  

Table 16. Calculation of scoring for every element. 
Element Unit CS1 CS2 CS3 CS4 Score Component Rating 

219- Abutment LF 55% 5% 12% 28% 62 

5 
231- Pier Cap LF 37% 37% 19% 7% 68 

202- Column EA 50% 50% 0% 0% 83 

225- Pile EA 50% 33% 17% 0% 78 
 
Table 17. Calculation of representative elements for every measurement unit type.  

Element Unit CS1 CS2 CS3 CS4 Score Component Rating 

219- Abutment LF 55% 5% 12% 28% 62 

5 
       

       

225- Pile EA 50% 33% 17% 0% 78 

 
Table 18. Finalized data point to be used for modeling.  

Element Unit CS1 CS2 CS3 CS4 Total Component Rating 

Finalized  n/a (55%+50%)/2=53% 19% 14% 14% 100% 5 

Case IV: Linear (Unweighted) Average of Highest CS4 (Normalized) Elements 
Because CS4 represents the worst conditions observed at the element level, the quantity of CS4 
deterioration often is a controlling factor in an inspector’s decision-making process when assigning 
component condition ratings. In Case IV, the elements from each measurement unit type (per component) 
that had the highest percentage rated CS4 were selected as the controlling element for that measurement 
unit type. If the values of CS4 for elements (per unit type) were equal, then the element with the highest 
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CS3 value was selected. If not, this process was continued with CS2 and CS1. Once the elements with the 
highest ratios of CS4 deterioration were determined, the unweighted average of the normalized quantities 
for the selected elements from all measurement unit groups was computed. Using the data shown in 
Table 11 as the example data set, the Case IV selection procedure is shown in Table 19 where elements 
219 and 225 become the controlling element-level data for each measurement unit type. Table 20 then 
presents the unweighted average of the select elements to determine the final data set for modeling 
purposes.  

Table 19. Calculation of representative elements for every unit type. 
Element Unit CS1 CS2 CS3 CS4 Total Component Rating 

219- Abutment LF 55% 5% 12% 28% 100% 

5 

225- Pile EA 50% 33% 17% 0% 100% 
Table 20. Finalized data point to be used for modeling. 

Element Unit CS1 CS2 CS3 CS4 Total Component Rating 

Finalized - (55%+50%)/2=53% 19% 14% 14% 100% 5 

Case V: Linear (Unweighted) Average of Highest CS4 (absolute quantity) Elements 
This case was very similar to Case IV. The only difference was that instead of choosing the highest CS4 
normalized quantity value, the element with the highest absolute quantity of CS4 was selected within each 
measurement unit type. This approach gave more weight to elements having the greatest quantity of 
observed defects/deterioration. The rest of the procedure was the same as in Case IV. Assuming the data 
shown in Table 10 as the example data set, the elements with the greatest absolute quantities from each 
measurement unit group were selected for further aggregation as shown in Table 21. Table 22 then shows 
the calculated unweighted average (after normalization) of the select elements (per unit type) to 
determine the final data set for modeling purposes.  

Table 21. Calculation of representative elements for every unit type. 
Element Unit CS1 CS2 CS3 CS4 Total Component Rating 

219- Abutment LF 220 20 50 110 400 

5 

225- Pile EA 3 2 1 0 6 

Table 22. Finalized data point to be used for modeling. 
Element Unit CS1 CS2 CS3 CS4 Total Component Rating 

Finalized n/a (55%+50%)/2=53% 19% 14% 14% 100% 5 

Case VI: Highest CS4 (Normalized) Element 
This case was similar to Case IV. However, in this case, the distinction between different measurement unit 
groups was ignored. Thus, the element with the absolute highest normalized CS4 percentage was selected 
as the controlling element of a given component. If the values of CS4 for two or more elements (per 
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component) were equal, the element with the highest CS3 from this subgroup was selected and so forth 
for CS2 and CS1 until a controlling element was determined. Table 23 shows the Case VI procedure again 
using the data shown in Table 11 as the example data set (normalized condition states).  

Table 23. Finalized data point to be used for modeling. 
Element Unit CS1 CS2 CS3 CS4 Total Component Rating 

219- Abutment LF 55% 5% 12% 28% 100% 5 

Case VII: Lowest scored Element 
This case was very similar to Case III but differed in that the element with the lowest score (regardless of 
the measurement unit type) was selected as the controlling element of a given component. According to 
Table 16, the “219 – Abutment” had the lowest score among all other elements and thus was selected as 
the controlling element, as shown in Table 24. 

Table 24. Finalized data point to be used for modeling. 
Element Unit CS1 CS2 CS3 CS4 Total Component Rating 

219- Abutment LF 55% 5% 12% 28% 100% 5 

Depending on the element types that constitute a component as well as their measurement unit type, 
absolute quantity values, and relative quantity (normalized) values, the various aggregation methods 
above yielded different controlling elements. However, the controlling element, and/or pseudo controlling 
element in cases where the final step was to average condition state values from all selected elements, 
supported the need to determine a representative data row that facilitates model development and 
achieves the desired modeling effort outcomes. Excluding Case 0, when a four-element component in the 
fact table comprises four data rows, with each row corresponding to one of the four elements, these four 
data rows within the fact table are consolidated into a single data row. This consolidated row represents 
the component and is characterized by aggregated CS values (CS1-CS4). For programming purposes, the 
fact table that has undergone the cleaning step was duplicated eight times, and each duplicate was 
processed independently using a distinct aggregation technique. Subsequently, each of the resulting fact 
tables proceeded to the modeling stage. 

The final data points from each case for the example substructure have been collected and are presented 
in Table 25. In some instances, the cases yielded the same outcomes, however, this was not always the 
case. The chosen aggregation methods sought to address inherent human factors in how component 
ratings were assessed and applied in the field. More importantly, the application of different aggregation 
methods was intended to resolve the contribution of element types with different units of measure. 
Reviewing the aggregation methods discussed above, it was apparent that all methods would result in 
identical profiles for bridge components comprised of single elements. However, the aggregation 
methods yielded different profiles when bridge components were made up of multiple elements. Further 
discussion regarding this finding is provided later in the report.  

Table 25. Summary of controlling data point from each aggregation case. 
Case Element Unit CS1 CS2 CS3 CS4 Total Component 

Rating 

0 
219- Abutment LF 55% 5% 12% 28% 100% 5 

231- Pier Cap LF 37% 37% 19% 7% 100% 5 
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Case Element Unit CS1 CS2 CS3 CS4 Total Component 
Rating 

202- Column EA 50% 50% 0% 0% 100% 5 

225- Pile EA 50% 33% 17% 0% 100% 5 

I Finalized n/a 52% 25% 9.5% 13.5% 100% 5 

II Finalized n/a 48% 31% 12% 9% 100% 5 

III Finalized n/a 53% 19% 14% 14% 100% 5 

IV Finalized n/a 53% 19% 14% 14% 100% 5 

V Finalized n/a 53% 19% 14% 14% 100% 5 

VI 219- Abutment LF 55% 5% 12% 28% 100% 5 

VII 219- Abutment LF 55% 5% 12% 28% 100% 5 

Model Development (Element to Component) 

To develop convergent and accurate conversion profiles, a large population of historical observations was 
extremely desirable. Six years of both NBI component- and element-level data (2017-2022), for nearly 
146,000 NHS bridges, were processed for data analysis. Once the fact tables were passed through the 
cleaning and assembling steps, multiple aggregation methods were investigated to produce the final data 
set for conversion profile model development. To complete this effort, multiple models were developed 
for each aggregation case, and comparisons were made to investigate which approach(s) resulted in a 
higher level of accuracy. The following sections describe the process taken to develop and validate the 
conversion profile models. 

Modeling Techniques 

Several statistical modeling techniques were applied and compared against each other to investigate how 
element-level condition states can be used to predict the component-level condition ratings. It was 
important during this process to select modeling techniques that resulted in explicit equations that 
eventually could be programmed into Microsoft Excel. The intent was to deliver conversion profiles that 
were based on an equation, a table, or matrix formats, which could be easily integrated into common 
applications such as Microsoft Excel, rather than complex algorithms. Similarly, machine learning or 
evolutionary techniques that rely on “black box” approaches were avoided, however, a few of them were 
assessed to see if they resulted in better accuracy. In total, over seven different modeling approaches 
were investigated, including the translator model (which is primarily a conversion table) used by 
AASHTOWareTM Bridge Management (BrM) software, as well as the translators used by a few States. After 
a comprehensive evaluation of models and the outcomes, four modeling approaches outperformed the 
other techniques. The details of these four modeling techniques are discussed below: 

FHWA Converter 
FHWA’s first-generation MBEI data converter profile utilized a table-driven procedure that compared 
condition state quantity thresholds in the CS1 to CS4 categories to NBI condition ratings, as shown in 
Table 26. The quantities reported for each element were combined using the aggregation procedure 
described above for Case I. The resulting allocations to CS1 through CS4 were then compared to the 
values in Table 26 and the lowest resulting component rating was then selected. For example, using the 
example aggregation data presented in Table 14, the lowest NBI rating would be derived for the CS4 
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quantity of 13.5%, which yields a component rating 4. This compares to the inspector’s reported 
component rating of 5 for this bridge. 

For this study, the FHWA first-generation converter profile (the threshold table shown in Table 26) was 
used along with the various aggregation cases presented above to generate predicted ratings. The 
predicted values were then compared to the reported inspector ratings, which were taken as the “ground 
truth” value. Accuracy levels achieved by each aggregation case were reported and compared.  

Table 26. FHWA First Generation Converter Table. 

GCR 
Condition state percentages 

CS1% CS2% CS3% CS4% 

9 - - - - 

8 100 0 0 0 

7 1-20 0 0 

6 1-5 0 

5 6-20 0 

4 1-20

3 21-100

2 - - - - 

1 - - - - 

Logistic Regression (LR) 
Logistic modeling (or logit model) techniques are applicable to categorical data where the output 
(predicted condition rating) is a binary (or multi-binary) value. The binary value used here refers to the 
predicted outcome being part of a categorical group or not part of that categorical group. In a multi-
binary case, as an example, the predicted outcome or NBI rating is 9 or is not 9, is 8 or is not 8, and so on. 
As schematically shown in Figure 9, the logit model is a classification method and in its basic form uses a 
logistic function to model a binary dependent variable. The logit method is a statistical procedure to find 
the best fit for a set of independent variables (condition states here) versus the dependent variable 
(component rating) by minimizing the sum of the offsets or residuals of points from the actual response. 
Other details related to the development of the logit model are not discussed here for conciseness. The 
time for model training could rise depending on the size of training data. Although the final model can be 
programmed into a Microsoft Excel spreadsheet, the runtime for large data entries could exponentially 
increase.  
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Figure 9. Conceptual definition of a Logit Model. 

Classification Decision Tree 
A Decision Tree (DT) is a supervised machine learning algorithm that is typically used for classification 
purposes. A DT builds classification models in the form of a tree structure. It breaks down a data set into 
smaller and smaller subsets while at the same time an associated DT is incrementally developed. When 
developing a model for a distinct dataset, a DT model employs internal objective functions to minimize 
impurity and node error during the development and splitting of optimal decision trees or nodes. For the 
case in present study, it means achieving the minimum difference between the predicted CR and the 
inspector-assigned CR (as reported in NBI). Techniques like Gini’s Diversity Index, Deviance, Twoing rule 
are examples of different criteria to define impurity.  

The ultimate outcome is a tree comprising decision nodes and branch nodes. Depending on the initial 
setup defined in the model such as the maximum number of decision splits or branch nodes, the decision 
tree could be concise or extensive. A concise tree will include fewer decision branches that will require less 
computation time but might suffer from lower accuracy. In contrast, an extensive tree might be very 
complex and time-consuming but could provide higher accuracy. Figure 10 shows an example of a DT 
that was developed based on processed data. An advantage of the DT method is its ability to be defined 
by discrete programmable statements that can be easily programmed into Microsoft Excel to create the 
universal profile. Due to its simplicity, a DT model does not require long run times for converting large 
sets of element data.  
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Figure 10. Schematic of a DT. 

ML/AI Techniques 
Several Machine Learning (ML) and Artificial Intelligent (AI) techniques were investigated to evaluate if 
such techniques will result in higher accuracies. Some of these techniques include but are not limited to, 
k-nearest neighbors (KNN), Support Vector Machine (SVM), and Discriminant, among others. As noted
earlier, these techniques were not desired for this project by the FHWA because they are not convertible
to simple/programmable formulation. Nonetheless, these techniques provide insight into the possible
opportunities to achieve higher accuracy.

All the model types described above were used to develop multiple conversion profiles during the 
execution of this project and were reviewed by the FHWA. The level of performance varied from model to 
model and data set to data set. The models with consistent and reliable performance were eventually 
selected and their outcomes reported later in this report. However, the detailed results associated with all 
models are available upon request.  

Model Accuracy Quantification 

For each data aggregation technique, a distinct fact table was generated. Given that a different profile is 
generated from each dataset that is unique to an aggregation method, many models were generated and 
evaluated for accuracy. Consequently, several definitions of model accuracy were considered to aid in the 
final model selection and in reporting the ultimate accuracy results. These definitions were instrumental in 
guiding the final selection of the model, considering the multiple models created for each aggregation 
method. The accuracy quantification techniques used to evaluate and select the final conversion profile 
were as follows: 
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Where Total Accuracy ±0 through ±2 represents the percentage of predicted condition ratings that fall 
within ±0 to ±2 of the condition rating assigned by the inspector (i.e. as reported by NBI). For example, if a 
deck is rated at 7 and the model predicts it as 5, then this prediction will not be counted toward the ±0 and 
±1 accuracy calculations but will be considered for ±2 accuracy calculations.  

Three additional accuracy definitions were considered to evaluate the performance of conversion profile 
models only in the lower condition ratings where the outcomes of conversion profiles could be critical at 
defining the general condition of a bridge (Good [CR7-9], Fair [5-6], Poor [4 and below]), especially 
between ratings 4 and 5. This is important from a bridge management user perspective, if given a choice, 
the user would commonly choose higher accuracy for CR5 and CR4 than CR7 and CR6. The former 
represents the transition from a fair to poor condition, while the latter from a good to fair condition. 
Within condition and performance forecasting metrics for asset management, the number of bridges in 
poor condition or close to poor condition tend to draw the most attention and require the largest cost 
actions. There are fewer bridges in these lower CR states, and as such, the development of conversion 
profiles that are selected among other profiles (because they have highest total accuracy) are more likely 
to be influenced by the higher condition ratings because they represent the majority of the population. 
Hence, there was a need to consider revised accuracy definitions for lower condition ratings. Different 
data sampling techniques intended to address this issue were also evaluated as described later. 

Model Validation and Reporting of the Accuracy 

To gain a better understanding of the reliability and reproducibility of the final conversion profiles against 
an unknown data set as might occur when future NBI component- and element-level data is collected, the 
profiles were validated to a subset of the data set that was not used for model development. The existing 
NBI component- and element-level data sets were randomly parsed into a core (training) data set and a 
smaller blind (testing) data set. The conversion profiles were developed using the core data set and then 
checked against the blind data set to quantify profile performance.  

During multiple stages of the project, accuracy values were calculated for both the training and testing 
data sets and noted that these values were typically close (in the range of ±1%). However, the difference 
becomes larger for small population sizes (<1000). To that end, a question remained unanswered as to 
which accuracy value should be reported. The research team conducted the following analysis to provide 
context into which approach would be most appropriate.  

The data-driven models (LR, and variants of DTs utilized in this project) were trained on 80 percent of the 
entire data set and tested over the remaining 20 percent. This validation method is called “Hold-out”, a 
variant of the cross-validation technique. The hold-out method is good when a large data set is available. 
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The split between training and testing data sets was conducted randomly, therefore, the training and 
testing data sets used in the development of different models were not the same. During each split, the 
shuffling was made in a way that both training and testing data sets contained data points from each CR. 
This process, which is called stratification, was the process of rearranging the data to ensure that the 
training/testing set for each condition rating was representative of the whole.  

The review of the results indicated that the accuracy values (all types) seem more consistent in the 
presence of large data sets. That is why the difference between training/testing accuracies was previously 
shown to be minimal. Conversely, the calculated accuracy values for smaller data sets vary significantly. 
Surprisingly, it was found that every execution of the program (multiple repeats for a given scenario) 
resulted in accuracy values with ±5% variability for small data sets. Thus, it was decided to use the 80/20 
hold-out as the preferred validation on large data sets while using 100% of the data for both 
training/testing when dealing with small data sets. Utilizing the entire dataset, 100 percent of it, for both 
training and testing purposes can lead to potential problems, such as model overfitting. Nevertheless, the 
intention here was to make the most of the available data, especially for those profiles with very small 
populations. This approach was chosen to ensure that a sufficient amount of data was available to train 
the models effectively despite the challenges posed by limited sample sizes. 

Finalized Modeling Approach 

For the conversion of element-level condition states to component-level condition ratings, three sets of 
conversion profiles were developed. The first set was a universal conversion profile that was inclusive of all 
element and component types (single profile). The second set was inclusive of four individual profiles that 
were representative of each component – deck, superstructure, substructure, culvert and were inclusive of 
all materials and intended to be more accurate than the universal profile. The third set included multiple 
conversion profiles that were representative of each component refined by major material types for each 
component (multiple conversion profiles for each of the four components). 

Figure 11 schematically depicts how the bridge data set was hierarchically clustered into multiple subsets 
depending on the bridge component and material type. In essence, the figure demonstrates how each 
hierarchy level corresponds to the type of conversion profile developed for each set. Furthermore, 
Figure 11 conceptually explains the population shrinkage when the data was divided into smaller clusters. 
The size of the box is an indicator of the size of the remaining sample. As the historical data was clustered 
into different categories, the sample size shrunk exponentially.  
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Figure 11. Requested conversion profiles under each respective subset. 

During the execution of project, the effort required to study individual accuracies calculated for each 
condition rating or deploying different data sampling and modeling techniques, and aggregation 
methods resulted in a significant number of results tables. For conciseness, only the results and models 
associated with the best and finalized models (inclusive of data aggregation method, data sampling and 
modeling technique, accuracy definition, etc.) are provided in the following sections. Brief summaries of 
each selected model are provided below.  

Single- vs. Multiple- vs. All-Element Models 
As noted above, the primary reason behind the separation of multi- and single element components was 
only to determine which aggregation technique results in a highest accuracy for multi-element 
components. For evaluation, separate profiles were generated for data sets that included only single 
element components, only multi-element components, and all-element components (combination single 
and multi-element components). Comparing the profiles using the accuracy metrics it was found that on 
many occasions the all-element profiles were equal or better accuracy than the single- and multi-element 
profiles. Therefore, only the results and models associated with the all-element profiles are reported in the 
following sections. 

Aggregation Methods 
While all aggregation methods were tested under each modeling technique, only the best performing 
aggregation method is reported herein for each profile type. Case 0 was initially incorporated into the 
analysis but was subsequently excluded during the development of the final conversion profiles. This 
exclusion was due to the understanding that it would not yield a single CR for multi-element components. 

Modeling Techniques 
Seven aggregation techniques (designated as Case I-Case VII) along with all three modeling techniques 
(FHWA Converter, LR, DT) were studied during the modeling efforts. DT was observed to outperform the 
other techniques, and therefore, was selected as the primary modeling technique to develop conversion 
profile models. For comparison purposes, the other modeling techniques originally introduced (inclusive 
of AASHTOWareTM BrM, etc.) were tested but are not provided in the report.  

When generating the decision classification tree branches, the DT algorithm demonstrated a tendency 
towards maximizing the number of correct conversions in the response variable classes (i.e. condition 
ratings) that are higher population size than other classes. It was observed that the developed models 
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yielded better accuracy for the condition ratings of higher population size and lesser accuracy for the 
condition ratings of lower population size. In general, the DT algorithm is effective for balanced data sets 
(i.e. similar population of data in each CR) and does not perform well using imbalanced data sets. By 
default, the DT determines class probabilities from class frequencies in the response variable. That being 
said, there are data sampling techniques that can be applied to resolve the data imbalance issues. Several 
different techniques were investigated and tested. The two best performing techniques (highest accuracy) 
were eventually selected for use in the final model development, including: 

 Imbalanced (original or default) accuracy, where the classifier maximizes accuracy for the combined 
set of classes without regard for accuracy within each individual class (no matter the population size in 
each class). This technique is designated with “DT # Imbalanced” in the following results tables.  

 Under-sampling majority class(s), where the class(s) with a large population is randomly under-
sampled to prevent bias in the modeling. Using this technique, all condition rating classes having a 
population larger than the selected less populated class (i.e. CR3 or CR4 or CR5) could be under-
sampled. After a thorough investigation and to improve accuracy of conversions to CR4, the final 
model was undersampled for class CR4. This technique is designated with “DT # Balanced” in the 
following results tables. 

Given the promising results of DT for large data sets as well as its simplicity in terms of function 
generation for Microsoft Excel programming, further investigations were conducted to ascertain the 
multiple attributes of the DT classification technique. This included special attention to avoid the 
overfitting issue, which is a common difficulty for large data sets with lots of data variability, and the 
different approaches introduced above for handling imbalanced data.  

General Attribute Selection - In the present study, MATLAB software has been utilized for programming 
and modeling purposes. However, other software such as Python or R (Studio) could be used instead. 
Several preliminary trial-and-error iterations (over fifty) were conducted to find an optimum initial setup 
that achieved both an acceptable level of complexity and accuracy. The optimum setup occurred when 
the number of decision splits (or branch nodes) was limited to 20. The model was executed by applying 
Pruning using the “error” prune criterion technique. A standard Classification and Regression Trees (CART) 
algorithm was used to select the split predictor that maximizes the split-criterion gain over all possible 
splits of all predictors. Among multiple split criterion techniques, ‘deviance’ resulted in slightly better 
results. The remainder of the DT parameters were left at their default values in MATLAB.  

In addition, ML and AI techniques were employed against the fact table using multiple aggregation 
techniques. The example results suggested that the classification DT, which allows unlimited decision 
splits, can attain accurate predictive condition ratings 63% of the time, with a margin of error of ±0CR for 
total accuracy, when the Case 0 aggregation technique was applied to the entire dataset linked with the 
universal profile. Nevertheless, limiting the branches of the decision (decision split node) to 20 resulted in 
a decreased accuracy of 53%. In general, ML and AI yielded an approximately 10 percentage point higher 
accuracy compared to the classification DT (with limited decision splits). However, because ML and AI 
techniques could not be adapted to Microsoft Excel formats and were computationally time-consuming, 
they were not investigated further. 

Data Availability to Derive Convergent Models 
In the case of Subset 3, as depicted in Figure 11, any component comprised of multiple elements from 
different material types (as defined in Table 1) was excluded from the dataset. For example, a deck 
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component with three elements (13- prestressed concrete deck, 12- reinforced concrete deck, 38- 
reinforced concrete slab) was eliminated from the Subset 3 dataset because the elements are comprised 
of more than one material type, namely prestressed concrete and reinforced concrete. However, a deck 
component with two elements (12- reinforced concrete deck, 38- reinforced concrete slab) was retained in 
the Subset 3 dataset for development of material-level profiles because the elements are comprised of 
one material type, namely reinforced concrete.  

For the Subset 3 case presented in Figure 11, if the number of available data points for any material type 
dropped below a certain threshold, which was insufficient to develop convergent and reliable models, 
then modifications to the data sets were done. First, the material types were paired to form a similar 
family of materials e.g., pairing steel open grid deck and steel concrete filled grid deck. If appropriate 
material pairings could not be found, then the material type was dropped.  

Figure 12 shows the finalized segmentation used for Subset 3, where some material types were either 
paired or removed. Based on experience gained from multiple modeling runs, it was found that any model 
established using less than 1000 data points did not deliver reliable and convergent models with an 
acceptable level of accuracy. However, models for such cases were still developed for completeness. Such 
models are highlighted in Figure 12 with a bold red box.  

Figure 12 Seventeen conversion profiles developed under Subset 3 category. 

Final Conversion Profiles 
When seeking to achieve the highest overall accuracy during the development of a DT, the model 
gravitated toward maximizing the accuracy of correlations in the component condition ratings for which 
the component population largely resided, which were CR7 and CR6. The byproduct was far less accurate 
for the condition ratings that had a smaller population and therefore had less contribution to total 
accuracy, namely CR5 and CR4. After numerous discussions, the final models (that were developed for 
different aggregation methods as well as different modeling techniques) were chosen based on review of 
each model’s total and individual CR accuracy values and sum(CR4-5), sum(CR4-7), and Ranking Score 
quantifications as defined previously. Appendix II provides a concise step-by-step flowchart to reproduce 
the final conversion profiles should additional data become available in the future. For additional details 
necessary for the reproduction and programming of conversion profiles, the details in the following as 
well as the previous sections should be followed.  

Table 27 summarizes the finalized conversion profiles. Appendix III provides the full description of each 
conversion profile that is listed in Table 27. A universal profile was developed for Subset 1, as indicated in 
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Figure 11. For Subset 2, profiles were developed for each major component type. Finally, seventeen 
profiles were developed to address the various material compositions of each major component type as 
represented by Subset 3 in Figure 12. At the request of FHWA, two conversion profile types were 
developed for each of the above twenty-two profiles, one using DT#Imbalanced (IB), and one using 
DT#Balanced - undersampled CR4 (B) modeling techniques. For each finalized conversion profile in 
Table 27, the aggregation technique that yielded the highest accuracy for the testing dataset was 
selected. In the case of IB models, the model associated with the aggregation method that yielded the 
highest accuracy for 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 ± 0 𝐶𝐶𝐶𝐶 was selected. In cases where multiple models achieved the 
same accuracy, the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 ± 1 𝐶𝐶𝐶𝐶 became the decisive selection criterion. If the models still did 
not differentiate based on 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 ± 1 𝐶𝐶𝐶𝐶, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 ± 2 𝐶𝐶𝐶𝐶 was subsequently used to 
finalize the model selection. For the B models because they were developed to improve conversion 
accuracy of lower condition ratings as compared to the IB models, the Ranking Score was used to select 
the final models using the different aggregation methods. This approach is particularly important from the 
perspective of bridge management users, as they will commonly prioritize higher accuracy for CR5 and 
CR4 (transition from fair to poor) over accuracy for other condition ratings when making choices. In 
situations where multiple models achieved identical accuracy levels, a consistent hierarchy based on 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 ± 0 𝐶𝐶𝐶𝐶, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 ± 1 𝐶𝐶𝐶𝐶, and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 ± 2 𝐶𝐶𝐶𝐶 was employed to select the 
final model.  

To further simplify the process and reduce the number of aggregation techniques, one representative 
aggregation technique was chosen for each component, which was then used to develop the final 
conversion profiles. This selected representative aggregation technique was applied not only to create 
component conversion profiles but also to construct conversion profiles for the materials falling under the 
same component category. The selection process involved comparing the accuracy results of all models 
developed for a given component using various aggregation techniques. The model associated with the 
aggregation technique that yielded the highest accuracy was chosen as the representative method for all 
subsequent material conversion profiles. For instance, if Case IV yielded the highest Ranking Score for the 
balanced superstructure profile, Case IV was employed to develop balanced conversion profiles for all 
material types under the superstructure component. The same process was applied to create imbalanced 
conversion profiles. In the later stages of the analysis, it was observed that the representative aggregation 
technique consistently performed equally or outperformed other aggregation methods, for both balanced 
and imbalanced datasets. Therefore, as depicted in Table 27, the representative aggregation method was 
applied to both balanced and imbalanced conversion profiles. 

In Table 27, the type of validation and calculated accuracy are provided for each profile. If a large data set 
was used to develop the profile, the 80/20 hold-out method was used, therefore, two accuracies—one for 
training and one for testing—are listed. The designated 80/20 means 80% and 20% of the database was 
used for training and testing of a given profile, respectively. Therefore, the provided accuracy (e.g., 
55%/54%) denote the calculated accuracy for training and testing data sets, respectively. For small data 
sets, the final developed profile was trained using 100% of the database and used the same data to test 
and report accuracy.  

The six accuracy formulations described previously were used to evaluate the developed models and 
make final selections.  Appendix IV provides three accuracy formulations for the selected profiles, Total 
Accuracy ±0 CR, ±1 CR, and ±2 CR margin of error.  It also provides the accuracy within each condition 
rating. 
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Table 27. Summary of finalized conversion profiles. 
ID Subset Component Material Modeling Represented 

Aggregation 
Validation* Total 

Accuracy  
(±0CR)* 

1 
1 All All 

B Case V 80/20 43%/43% 

2 IB Case V 80/20 53%/53% 

3 
2 Deck All 

B Case V 80/20 43%/44% 

4 IB Case V 80/20 55%/54% 

5 
2 Superstructure All 

B Case IV 80/20 46%/46% 

6 IB Case IV 80/20 51%/51% 

7 
2 Substructure All 

B Case II 80/20 45%/46% 

8 IB Case II 80/20 56%/56% 

9 
2 Culvert All 

B Case VII 80/20 48%/44% 

10 IB Case VII 80/20 58%/58% 

11 
3 Deck Prestressed Concrete 

B Case V 100/100 67%/67% 

12 IB Case V 80/20 67%/66% 

13 
3 Deck Reinforced Concrete 

B Case V 80/20 44%/45% 

14 IB Case V 80/20 54%/54% 

15 
3 Deck Steel & Steel Concrete 

Filled Grid 
B Case V 100/100 74%/74% 

16 IB Case V 100/100 68%/68% 

17 
3 Deck Timber 

B Case V 100/100 68%/68% 

18 IB Case V 100/100 78%/78% 

19 
3 Superstructure Reinforced Concrete 

B Case IV 80/20 64%/66% 

20 IB Case IV 80/20 63%/62% 

21 
3 Superstructure RC Arches 

B Case IV 100/100 55%/55% 

22 IB Case IV 80/20 56%/54% 

23 
3 Superstructure Prestressed Concrete 

B Case IV 80/20 53%/52% 

24 IB Case IV 80/20 57%/58% 

25 
3 Superstructure Steel & Steel Trusses 

and Arches 
B Case IV 80/20 46%/46% 

26 IB Case IV 80/20 50%/50% 

27 
3 Superstructure Timber 

B Case IV 100/100 77%/77% 

28 IB Case IV 100/100 67%/67% 

29 
3 Superstructure Masonry 

B Case IV 100/100 71%/71% 

30 IB Case IV 100/100 70%/70% 

31 
3 Substructure Reinforced Concrete 

B Case II 80/20 45%/44% 

32 IB Case II 80/20 56%/56% 

33 
3 Substructure Steel 

B Case II 100/100 71%/71% 

34 IB Case II 100/100 75%/75% 

35 
3 Substructure Timber 

B Case II 100/100 71%/71% 

36 IB Case II 100/100 64%/64% 
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ID Subset Component Material Modeling Represented 
Aggregation 

Validation* Total 
Accuracy  
(±0CR)* 

37 
3 Substructure Masonry 

B Case II 100/100 69%/69% 

38 IB Case II 100/100 65%/65% 

39 
3 Substructure Other 

B Case II 100/100 64%/64% 

40 IB Case II 100/100 56%/56% 

41 
3 Culvert Reinforced Concrete 

B Case VII 80/20 46%/47% 

42 IB Case VII 80/20 58%/58% 

43 
3 Culvert Steel 

B Case VII 100/100 55%/55% 

44 IB Case VII 80/20 57%/53% 
* Training/Testing 

Model Development (Component to Element) 

Similar to the conversion profiles developed to convert element-level condition states to component-level 
condition rating, a universal conversion profile was developed to convert component-level condition 
rating to element-level condition states. This profile encompassed all major components, including the 
deck, superstructure, substructure, and culvert, regardless of their material type. Six years of NBI 
component- and element-level data (2017-2022), for nearly 146,400 NHS bridges, were processed for 
data analysis. Once the fact tables were passed through the cleaning and assembling steps, a 
comprehensive statistical analysis was conducted on the data to extract the possible correlation between 
component- and element-level databases. The following sections explain the details of the different steps 
conducted to derive the final universal profile: 

 The April 2013 FHWA Converter Technical Manual includes a procedure for synthesizing (i.e., 
estimating) element types and quantities from NBI component and geometry data. An update of the 
synthesis procedure was not within the scope of this project. The developed component to element 
condition conversion profile may be applied as a comparison to bridges with element data and known 
condition states (as represented in agency inspection data or the NBI for NHS bridges) or applied in 
software such as the National Bridge Inventory Analysis System that synthesize element types, 
quantities, and condition states using NBI design type, material type, and geometry data, and apply 
deterioration models to the synthesized elements to estimate future condition of bridges. 

 To conduct statistical analysis, the entire data set comprising over 1.4 million datapoints from 2017-
2022, was used. The fact table used for this analysis was similar to the “Case 0 – No Aggregation” case, 
where all elements exist regardless of the component or material type, i.e., multi-element components 
have each element represented as an individual data row for each CS, rather than a single aggregated 
data row for each CS. 

 During the conversion of component condition rating to element CS, all identified elements for a 
given component received the same CS1-4 percent quantity in each condition state. 

Figure 13 through Figure 19 show the distribution of the database for CR9 through CR3, respectively. Each 
figure comprises four subfigures representing the percentage of CS1 to CS4. 
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Each subfigure provides the histogram (frequency of repeat) for each CS (1-4) for a given CR. In 
developing each histogram, 100 bins with a uniform length of 1% were used. Edge(0) is the left edge of 
the first bin, i.e. [0%-1%), and edge(100) is the right edge of the last bin, [99%-100%]. The value X(i) is in 
the kth bin if edges(k) ≤ X(i) < edges(k+1). The last bin also includes the right bin edge, so that it contains 
X(i) if edges(end-1) ≤ X(i) ≤ edges(end). 

Upon review of the histograms generated for CR3 through CR6, it is apparent that each graph contains 
some datapoints with 100% CS1. While it may be expected that data points with 100% for CS1 should not 
appear in the histogram (as such data was expected to have been removed during data cleaning), this 
observation was not necessarily unreasonable. During the data cleaning stage, it was specified that only 
components rated 6 or below with all elements rated 100% in CS1 were to be removed from the fact 
tables. For instance, a component (rated at CR5 with four elements) that consisted of three elements with 
100% in CS1 and one element with 99% in CS1 successfully passed through the data cleaning filter and 
remained in the fact table. It is crucial to note that the fact table used for this analysis closely resembles 
the “Case 0 – No Aggregation” case, where all elements that have passed through the data cleaning stage 
exist, regardless of the component type, i.e., multi-element components have each element represented 
as an individual datapoint for each CS, rather than a single aggregated datapoint for each CS. 

Table 28 summarizes the statistical analysis of Figure 13 to Figure 19 by reporting the average (µ) and 
standard deviation (σ) values for each CR/CS. For better visualization, Figure 20 presents the same results 
graphically. The table provides three values of converted CS for each CR: the average, one standard 
deviation (µ-σ to µ+σ), and two standard deviations (µ-2σ to µ+2σ). The results show a consistent trend 
between the rate of CS1 decrease and CR drop, as well as between the increase in CS2, CS3, and CS4 and 
CR drop. The µ values provided in Table 28 serve as the definitive universal conversion profile for 
converting component-level condition rating into element-level condition states, under the assumption 
that all elements within multi-element components will share the same CS1-4 percent quantity in each 
condition state. 

The data presented here deviate from a normal distribution. In normal distributions, there is a 68% 
probability that the actual value will fall within one standard deviation from the mean, and a 95% 
probability that it will fall within two standard deviations. However, due to the skew observed in the data, 
these probabilities do not apply in this case. 

Figure 21 presents the final average values (µ) for data processed in the current study, as well as the 
values published in the FHWA Technical Manual (first-generation component-element converter). The 
comparison between these curves indicates that:  

 The computed average values using the 2017-2022 data outperform the values published by the 
FHWA first-generation converter, which did not rely on fully data-driven methods; and 

 Due to the consistency of the average values obtained through the current study, it is recommended 
to use the average values as the final CR-CS conversion profiles, without the need for further 
modeling. 
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Table 28. NBI condition rating to element condition state. 
Component Condition 

Rating 
Element Condition States %* 

CS1 CS2 CS3 CS4 

CR9 
µ 98.92 1.03 0.06 0 

(µ-σ,µ+σ) (91.96 to 105.87) (-5.71 to 7.76) (-1.36 to 1.47) (0 to 0) 

(µ-2σ,µ+2σ) (85.01 to 112.83) (-12.44 to 14.49) (-2.77 to 2.88) (0 to 0) 

CR8 
µ 97.28 2.55 0.17 0 

(µ-σ,µ+σ) (86.97 to 107.58) (-7.36 to 12.46) (-2.05 to 2.4) (0 to 0) 

(µ-2σ,µ+2σ) (76.67 to 117.88) (-17.27 to 22.38) (-4.28 to 4.62) (0 to 0) 

CR7 
µ 90.77 8.35 0.87 0 

(µ-σ,µ+σ) (70.34 to 111.21) (-11.02 to 27.73) (-4.56 to 6.31) (0 to 0) 

(µ-2σ,µ+2σ) (49.91 to 131.64) (-30.4 to 47.1) (-10 to 11.75) (0 to 0) 

CR6 
µ 73.2 22.31 4.44 0.05 

(µ-σ,µ+σ) (40.16 to 106.24) (-8.09 to 52.72) (-8.15 to 17.02) (-1.37 to 1.48) 

(µ-2σ,µ+2σ) (7.12 to 139.27) (-38.5 to 83.12) (-20.73 to 29.6) (-2.79 to 2.9) 

CR5 
µ 61.35 27.32 11.05 0.28 

(µ-σ,µ+σ) (24.49 to 98.21) (-4.51 to 59.15) (-9.26 to 31.36) (-2.82 to 3.39) 

(µ-2σ,µ+2σ) (-12.37 to 135.06) (-36.34 to 90.98) (-29.57 to 51.67) (-5.93 to 6.49) 

CR4 
µ 49.19 27.64 20.94 2.23 

(µ-σ,µ+σ) (10.72 to 87.67) (-3.04 to 58.31) (-6.43 to 48.31) (-7.08 to 11.54) 

(µ-2σ,µ+2σ) (-27.76 to 126.14) (-33.72 to 88.99) (-33.8 to 75.69) (-16.39 to 20.85) 

CR3 
µ 43.72 28.48 21.32 6.49 

(µ-σ,µ+σ) (4.21 to 83.24) (-3.35 to 60.3) (-6.71 to 49.34) (-11.8 to 24.78) 

(µ-2σ,µ+2σ) (-35.31 to 122.75) (-35.17 to 92.12) (-34.73 to 77.36) (-30.09 to 43.06) 
* In practice, feasible ranges would be capped at 0% minimum and 100% maximum. Values less than 0 and greater than 100 are the 
result of applying a normal distribution to the skewed data set. 
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Figure 13. The histogram distribution illustrating the CR9-rated component data.  

 

 
Figure 14. The histogram distribution illustrating the CR8-rated component data. 
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Figure 15. The histogram distribution illustrating the CR7-rated component data. 

 

 
Figure 16. The histogram distribution illustrating the CR6-rated component data. 
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Figure 17. The histogram distribution illustrating the CR5-rated component data. 

 

 
Figure 18. The histogram distribution illustrating the CR4-rated component data. 
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Figure 19. The histogram distribution illustrating the CR3-rated component data. 
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Figure 20. CR-CS conversion profiles developed based on average, one, and two 
standard deviations. 
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Figure 21. The CR-CS conversion profiles developed using the 2017-2022 data (referred as Universal Profile) as well as 
the values published by the FHWA Technical Manual (first-generation MBEI data component-element converter).  

SUMMARY 

This report presents the step-by-step procedures that have led to the development of multiple conversion 
profiles for converting element-level condition states to component-level condition ratings, and vice 
versa. The data sets utilized in this study were collected from a substantial pool of nearly 146,000 bridges 
on the NHS network. The collected NBI data comprised both component and element-level data sets, 
spanning from 2017 to 2022, and are publicly accessible on the FHWA website. Since the NBI component- 
and element-level data were separately reported and published by FHWA, the data were combined into 
an informative fact table for further model development. Rigorous data cleaning processes were 
subsequently implemented to identify and rectify any issues, including null, miscoded, unmatched, or 
otherwise unreliable data elements. Over 1.4 million data rows were retained after processing and 
cleaning of the data.  

Following the creation of the fact tables, various data sampling techniques and multi-element component 
aggregation techniques were employed, which were then utilized in the development and validation of 
conversion profiles. Multiple statistical models were explored and tested. Ultimately the Decision Trees 
(DT) model was employed as the primary modeling technique for developing the conversion profile 
models due to its promising results and its simplicity in function generation for Microsoft Excel 
programming. The final models were rigorously validated using a subset of the overall data set, which was 
kept separate during the model development process to ensure unbiased evaluation. 

Due to the primary objective of developing Microsoft Excel-compatible profiles, certain model attributes, 
such as branch numbers, were constrained. As a result, the developed models achieved total accuracy 
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ranges of 40-80%, 80-100%, and 90-100% for ±0, ±1, and ±2CR, respectively. It was further noticed that, 
without these limitations, the total accuracy ranges could potentially increase to 50-90%, 90-100%, and 
almost 100% for ±0, ±1, and ±2CR, respectively. 

In a similar manner, a set of statistical analyses was conducted to develop a universal profile capable of 
converting component-level condition ratings to element-level condition states. This profile encompassed 
all major components, including the deck, superstructure, substructure, and culvert, regardless of their 
material type. By utilizing the 2017-2022 data, the developed conversion profile outperformed the 
FHWA's first-generation converter profile. 

Developing component-to-element conversion profiles presented unique challenges, as reconstructing 
granular information from a coarse source proved to be difficult. While the developed models are 
expected to improve in accuracy with the availability of more data, the inherent theoretical limitations will 
persist. The April 2013 FHWA Converter Technical Manual included a procedure for synthesizing (i.e., 
estimating) element types and quantities from NBI component and geometry data. However, updating 
this synthesis procedure was not within the current scope of this project. Nonetheless, the component-to-
element condition conversion profile developed in this study can be applied for comparison to bridges 
with available element data and known condition states, as represented in agency inspection data or the 
NBI for NHS bridges. Furthermore, it can be applied in software applications such as the National Bridge 
Inventory Analysis System, which synthesizes element types, quantities, and condition states using NBI 
design type, material type, and geometry data, and applies element-level deterioration models to the 
synthesized elements to estimate future condition states of bridges and also converts to future 
component ratings. 

The developed conversion profiles are based on national data and, as such, were not customized for 
individual states to reflect potential differences at the state level. Such variations could be attributed to 
the number of specific bridge types, including certain material types, as well as different interpretations of 
structural defects due to geographical and environmental characteristics, and other local or agency-level 
differences. To achieve better estimation accuracies, a more customized conversion profile trained on 
state-level data could be completed. 

During the development of the conversion profiles, a limitation was encountered where the conversions 
were not achieved for all condition rating values. This was mainly due to the scarcity of available data to 
support component values of 0, 1, and 2, resulting in observed component/element combinations only 
covering values between 3 and 9. Lastly, it is crucial to recognize that data serves as the fundamental basis 
for data-driven models. As time progresses, more inspections will take place, leading to increased data 
including within the condition ratings with less data points and the component material types with smaller 
data sets as indicated in the Table 27 validation column. Consequently, the current models can be 
revisited to verify the assumptions and inputs used for model development and can be updated by 
retraining thereby ensuring their continued accuracy and relevance. 

  



 

53 
 

REFERENCES 

AASHTO. Guide for Commonly Recognized (CoRE) Structural Elements, American Association of State 
Highway and Transportation Officials, Washington, DC. 1997. 

AASHTO. Guide Manual for Bridge Element Inspection (MBEI). American Association of State Highway and 
Transportation Officials, Washington, DC. 2013. 

Al-Wazeer, A., C. Nutakor, and B. Harris. Comparison of Neural Networks Method Versus National Bridge 
Inventory Translator in Predicting Bridge Condition Ratings. Presented at 86th Annual Meeting of the 
Transportation Research Board, Washington, D.C., 2007. 

Babanajad S, Moon F, Parvardeh H, Maher A. FHWA Technical Report 2017: LTBP Deterioration Modeling 
Module”, Office of Infrastructure Research and Development, FHWA, Washington DC, in press 

Bektas, B. A., Carriquiry, A., and Smadi, O. Using Classification Trees for Predicting National Bridge 
Inventory Condition Ratings. Journal of Infrastructure Systems. Volume 19 Issue 4, 2012. 

FHWA. Component-Element Converter Technical Manual. Federal Highway Administration, U.S. 
Department of Transportation, Washington, DC. 2013. 

FHWA. Bridge Inspector's Reference Manual. Publication No. FHWA NHI 12-049. Federal Highway 
Administration, U.S. Department of Transportation, Washington, DC. 2012. 

FHWA. Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation’s Bridges. 
Federal Highway Administration, U.S. Department of Transportation, Washington, DC. 1995. 

FHWA. InfoBridge website https://infobridge.fhwa.dot.gov/Home. Federal Highway Administration, U.S. 
Department of Transportation, Washington, DC. 1995. 

FHWA. NBI Data Checks. Website 
https://www.fhwa.dot.gov/bridge/nbi/checks/nbi_data_checks_2020_final.pdf, Federal Highway 
Administration, U.S. Department of Transportation, Washington, DC. 2020. 

FHWA. Element Data Errors and Checks. Website https://www.fhwa.dot.gov/bridge/nbi/checks.pdf 

, Federal Highway Administration, U.S. Department of Transportation, Washington, DC. 2020. 

Fiorillo, G. and Nassif, H. Application of Machine Learning Techniques for the Analysis of National Bridge 
Inventory and Bridge Element Data. Transportation Research Record: Journal of the Transportation 
Research Board, Vol 2673, Issue 7, 2019. 

Hale, J. E., D. P. Hale, and S. Sharpe. Asset Management GASB 34 Compliance Phase III (Bridges). Final 
Report, ALDOT Report Number 930-553R. Aging Infrastructure Systems Center of Excellence and 
University Transportation Center for Alabama, February 1, 2007. 

Hearn, G., J. Cavallin, and D. M. Frangopol. Generation of NBI Ratings from Condition Reports for 
Commonly Recognized Elements. University of Colorado at Boulder, Colorado Department of 
Transportation, Denver, and Federal Highway Administration, 1997. 

Pontis for Windows XP/2000®, Bridge Management System, Version 4.4.2, Build 442. American 
Association of State Highway and Transportation Officials, 2005. 

https://infobridge.fhwa.dot.gov/Home
https://www.fhwa.dot.gov/bridge/nbi/checks/nbi_data_checks_2020_final.pdf
https://www.fhwa.dot.gov/bridge/nbi/checks.pdf


 

54 
 

Sobanjo, J.O., P.D. Thompson, and R. Kerr, Element-to-Component Translation of Bridge Condition 
Ratings. Transportation Research Board Annual Meeting 2008 Compendium of Papers DVD, 2008. Paper 
#08-3149. 

 

 



 

55 
 

APPENDIX I – DATA CLEANING REPRODUCTION FLOWCHART  
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APPENDIX II – CONVERSION PROFILE (ELEMENT-TO-COMPONENT) REPRODUCTION 
FLOWCHART  
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APPENDIX III – FINALIZED CONVERSION PROFILES 

The finalized conversion profiles, represented in the form of visual decision trees, are provided to facilitate 
the conversion of element-level condition states to component-level condition ratings. In the following 
decision trees, x1, x2, x3, and x4 correspond to CS1 through CS4 percentages, respectively. It is important 
to emphasize that the threshold values at the tree nodes should not be rounded. The outcome at the end 
of each branch determines the NBI component condition rating. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

58 
 

ID#1 (Universal - Balanced) 
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ID#2 (Universal - Imbalanced) 
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ID#3 (Component - Deck - Balanced) 
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ID#4 (Component - Deck - Imbalanced) 
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ID#5 (Component - Superstructure - Balanced) 
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ID#6 (Component - Superstructure - Imbalanced) 
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ID#7 (Component - Substructure - Balanced) 
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ID#8 (Component - Substructure - Imbalanced) 
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ID#9 (Component - Culvert - Balanced) 
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ID#10 (Component - Culvert - Imbalanced) 
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ID#11 (Deck – Prestressed Concrete - Balanced) 
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ID#12 (Deck – Prestressed Concrete - Imbalanced) 
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ID#13 (Deck – Reinforced Concrete - Balanced) 
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ID#14 (Deck – Reinforced Concrete - Imbalanced) 
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ID#15 (Deck – Steel - Balanced) 
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ID#16 (Deck – Steel - Imbalanced) 
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ID#17 (Deck – Timber - Balanced) 
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ID#18 (Deck – Timber - Imbalanced)  
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ID#19 (Superstructure – Reinforced Concrete - Balanced) 
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ID#20 (Superstructure – Reinforced Concrete - Imbalanced) 
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ID#21 (Superstructure – RC Arches - Balanced) 
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ID#22 (Superstructure – RC Arches - Imbalanced) 
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ID#23 (Superstructure – Prestressed Concrete - Balanced) 
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ID#24 (Superstructure – Prestressed Concrete - Imbalanced) 
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ID#25 (Superstructure – Steel - Balanced) 
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ID#26 (Superstructure – Steel - Imbalanced) 
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ID#27 (Superstructure – Timber - Balanced) 
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ID#28 (Superstructure – Timber - Imbalanced) 
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ID#29 (Superstructure – Masonry - Balanced) 
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ID#30 (Superstructure – Masonry - Imbalanced) 
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ID#31 (Substructure – Reinforced Concrete - Balanced) 
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ID#32 (Substructure – Reinforced Concrete - Imbalanced) 
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ID#33 (Substructure – Steel - Balanced) 
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ID#34 (Substructure – Steel - Imbalanced) 
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ID#35 (Substructure – Timber - Balanced) 
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ID#36 (Substructure – Timber - Imbalanced) 
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ID#37 (Substructure – Masonry - Balanced) 

 



 

95 
 

ID#38 (Substructure – Masonry - Imbalanced) 
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ID#39 (Substructure – Other - Balanced) 
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ID#40 (Substructure – Other - Imbalanced) 
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ID#41 (Culvert – Reinforced Concrete - Balanced) 
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ID#42 (Culvert – Reinforced Concrete - Imbalanced) 
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ID#43 (Culvert – Steel - Balanced) 
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ID#44 (Culvert – Steel - Imbalanced) 
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APPENDIX IV – ACCURACY FOR FINALIZED CONVERSION PROFILES 

Total accuracies and individual condition rating accuracies for margin of errors ±0 CR, ±1 CR, and ±2 CR 
for the finalized models summarized in Table 27.  

 

 

Table 29. Detailed Accuracy Percentages for the Model ID#1 (Universal - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 61% 8% 69% 33% 15% 77% 43% 

±1 74% 68% 89% 88% 77% 93% 85% 83% 

±2 78% 96% 98% 100% 99% 99% 98% 98% 

Testing 

±0 0% 60% 8% 69% 33% 15% 77% 43% 

±1 75% 67% 88% 87% 75% 94% 85% 83% 

±2 82% 96% 98% 100% 99% 100% 98% 98% 

 

 

 

Table 30. Detailed Accuracy Percentages for the Model ID#2 (Universal - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 9% 28% 55% 79% 0% 0% 53% 

±1 26% 63% 85% 100% 99% 95% 0% 94% 

±2 72% 95% 100% 100% 100% 100% 99% 100% 

Testing 

±0 0% 9% 28% 55% 79% 0% 0% 53% 

±1 22% 62% 85% 100% 99% 95% 0% 94% 

±2 71% 94% 100% 100% 100% 100% 99% 100% 
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Table 31. Detailed Accuracy Percentages for the Model ID#3 (Component - Deck - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 73% 43% 27% 36% 8% 78% 43% 

±1 81% 92% 88% 80% 51% 95% 81% 81% 

±2 93% 96% 99% 99% 96% 97% 97% 97% 

Testing 

±0 0% 76% 44% 27% 35% 10% 78% 44% 

±1 89% 94% 89% 79% 49% 95% 80% 81% 

±2 97% 97% 99% 99% 96% 97% 98% 97% 

 

 

Table 32. Detailed Accuracy Percentages for the Model ID#4 (Component - Deck - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 0% 35% 52% 77% 0% 0% 55% 

±1 0% 67% 87% 100% 98% 93% 0% 94% 

±2 78% 95% 100% 100% 100% 99% 98% 100% 

Testing 

±0 0% 0% 35% 52% 76% 0% 0% 54% 

±1 0% 70% 87% 100% 98% 92% 0% 94% 

±2 82% 96% 100% 100% 100% 99% 98% 100% 

 

 
Table 33. Detailed Accuracy Percentages for the Model ID#5 (Component - Superstructure - Balanced). 

Margin of  

Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 71% 58% 24% 26% 11% 93% 46% 

±1 77% 92% 91% 82% 34% 93% 97% 81% 

±2 93% 97% 98% 100% 99% 97% 99% 98% 

Testing 

±0 0% 71% 60% 22% 26% 11% 92% 46% 

±1 76% 92% 90% 82% 34% 93% 96% 81% 

±2 89% 97% 97% 100% 99% 95% 99% 98% 
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Table 34. Detailed Accuracy Percentages for the Model ID#6 (Component - Superstructure - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 12% 20% 57% 84% 0% 0% 51% 

±1 20% 56% 85% 100% 100% 97% 0% 94% 

±2 66% 95% 100% 100% 100% 100% 99% 100% 

Testing 

±0 0% 11% 20% 57% 84% 0% 0% 51% 

±1 18% 59% 86% 100% 100% 97% 0% 94% 

±2 64% 96% 100% 100% 100% 100% 99% 100% 

 

 

Table 35. Detailed Accuracy Percentages for the Model ID#7 (Component - Substructure - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 68% 16% 58% 37% 22% 73% 45% 

±1 84% 78% 91% 86% 77% 93% 88% 86% 

±2 89% 96% 99% 100% 98% 100% 99% 99% 

Testing 

±0 0% 71% 18% 58% 34% 22% 77% 46% 

±1 82% 81% 92% 87% 79% 92% 92% 87% 

±2 94% 95% 99% 100% 99% 99% 99% 99% 

 

 

Table 36. Detailed Accuracy Percentages for the Model ID#8 (Component - Substructure - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 0% 33% 46% 87% 0% 0% 56% 

±1 0% 65% 82% 100% 99% 98% 0% 95% 

±2 80% 93% 100% 100% 100% 100% 99% 100% 

Testing 

±0 0% 0% 33% 46% 87% 0% 0% 56% 

±1 0% 66% 82% 100% 99% 98% 0% 95% 

±2 82% 93% 100% 100% 100% 100% 99% 100% 

 



 

105 
 

Table 37. Detailed Accuracy Percentages for the Model ID#9 (Component - Culvert - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 33% 64% 32% 28% 55% 82% 0% 48% 

±1 80% 84% 75% 86% 89% 93% 96% 86% 

±2 87% 93% 99% 100% 98% 99% 100% 98% 

Testing 

±0 29% 59% 23% 24% 55% 79% 0% 44% 

±1 76% 76% 71% 79% 90% 91% 100% 83% 

±2 76% 91% 99% 100% 99% 99% 100% 97% 

 

 

Table 38. Detailed Accuracy Percentages for the Model ID#10 (Component - Culvert - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 6% 6% 75% 67% 0% 0% 58% 

±1 29% 25% 90% 100% 100% 92% 0% 97% 

±2 36% 98% 100% 100% 100% 100% 99% 100% 

Testing 

±0 0% 9% 6% 75% 66% 0% 0% 58% 

±1 18% 32% 89% 100% 100% 93% 0% 97% 

±2 29% 97% 100% 100% 100% 100% 97% 100% 

 

 

Table 39. Detailed Accuracy Percentages for the Model ID#11 (Deck – Prestressed Concrete - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 86% 74% 85% 41% 85% 15% 96% 67% 

±1 86% 89% 93% 89% 85% 89% 96% 90% 

±2 100% 96% 100% 96% 100% 93% 100% 98% 

Testing 

±0 86% 74% 85% 41% 85% 15% 96% 67% 

±1 86% 89% 93% 89% 85% 89% 96% 90% 

±2 100% 96% 100% 96% 100% 93% 100% 98% 
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Table 40. Detailed Accuracy Percentages for the Model ID#12 (Deck – Prestressed Concrete - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 17% 36% 35% 12% 99% 0% 3% 67% 

±1 17% 41% 48% 99% 100% 98% 3% 94% 

±2 100% 45% 100% 100% 100% 100% 100% 100% 

Testing 

±0 0% 0% 19% 16% 99% 0% 0% 66% 

±1 0% 50% 31% 98% 100% 99% 0% 94% 

±2 100% 50% 100% 100% 100% 99% 100% 100% 

 

 

Table 41. Detailed Accuracy Percentages for the Model ID#13 (Deck – Reinforced Concrete - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 79% 16% 46% 35% 21% 74% 44% 

±1 86% 88% 88% 74% 69% 96% 87% 84% 

±2 91% 96% 98% 100% 92% 99% 98% 97% 

Testing 

±0 0% 80% 17% 48% 35% 19% 74% 45% 

±1 85% 90% 87% 78% 67% 95% 87% 84% 

±2 90% 97% 97% 100% 92% 99% 97% 97% 

 

 

Table 42. Detailed Accuracy Percentages for the Model ID#14 (Deck – Reinforced Concrete - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 0% 35% 53% 76% 0% 0% 54% 

±1 0% 67% 87% 100% 98% 92% 0% 94% 

±2 74% 96% 100% 100% 100% 99% 98% 100% 

Testing 

±0 0% 0% 35% 52% 76% 0% 0% 54% 

±1 0% 71% 86% 100% 98% 92% 0% 94% 

±2 72% 95% 100% 100% 100% 99% 98% 100% 
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Table 43. Detailed Accuracy Percentages for the Model ID#15 (Deck – Steel - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 94% 100% 47% 65% 71% 67% 74% 

±1 0% 100% 100% 88% 100% 88% 83% 93% 

±2 100% 100% 100% 88% 100% 100% 100% 98% 

Testing 

±0 0% 94% 100% 47% 65% 71% 67% 74% 

±1 0% 100% 100% 88% 100% 88% 83% 93% 

±2 100% 100% 100% 88% 100% 100% 100% 98% 

 

 

Table 44. Detailed Accuracy Percentages for the Model ID#16 (Deck – Steel - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 88% 50% 93% 69% 0% 0% 68% 

±1 0% 88% 93% 100% 100% 78% 0% 95% 

±2 0% 100% 100% 100% 100% 94% 50% 98% 

Testing 

±0 0% 88% 50% 93% 69% 0% 0% 68% 

±1 0% 88% 93% 100% 100% 78% 0% 95% 

±2 0% 100% 100% 100% 100% 94% 50% 98% 

 

 

Table 45. Detailed Accuracy Percentages for the Model ID#17 (Deck – Timber - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 100% 80% 100% 40% 20% 100% 0% 68% 

±1 100% 100% 100% 100% 100% 100% 100% 100% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 

Testing 

±0 100% 80% 100% 40% 20% 100% 0% 68% 

±1 100% 100% 100% 100% 100% 100% 100% 100% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 
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Table 46. Detailed Accuracy Percentages for the Model ID#18 (Deck – Timber – Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 100% 80% 35% 73% 96% 0% 0% 78% 

±1 100% 80% 100% 100% 100% 100% 0% 99% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 

Testing 

±0 100% 80% 35% 73% 96% 0% 0% 78% 

±1 100% 80% 100% 100% 100% 100% 0% 99% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 

 

 

Table 47. Detailed Accuracy Percentages for the Model ID#19 (Superstructure – Reinforced Concrete - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 30% 78% 76% 34% 89% 20% 0% 64% 

±1 91% 81% 99% 84% 94% 99% 0% 90% 

±2 91% 96% 100% 99% 95% 99% 90% 98% 

Testing 

±0 43% 80% 82% 38% 86% 17% 0% 66% 

±1 93% 83% 100% 86% 91% 98% 20% 90% 

±2 93% 100% 100% 100% 94% 98% 100% 98% 

 

 

Table 48. Detailed Accuracy Percentages for the Model ID#20 (Superstructure – Reinforced Concrete - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 28% 32% 51% 87% 0% 0% 63% 

±1 18% 72% 88% 100% 99% 99% 0% 96% 

±2 82% 96% 100% 100% 100% 99% 90% 100% 

Testing 

±0 0% 22% 29% 53% 85% 0% 0% 62% 

±1 14% 69% 89% 99% 99% 100% 0% 96% 

±2 50% 98% 100% 100% 100% 100% 100% 100% 
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Table 49. Detailed Accuracy Percentages for the Model ID#21 (Superstructure – RC Arches - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 88% 41% 51% 55% 71% 3% 55% 

±1 45% 93% 92% 89% 99% 81% 84% 90% 

±2 100% 95% 100% 100% 100% 94% 88% 97% 

Testing 

±0 0% 88% 41% 51% 55% 71% 3% 55% 

±1 45% 93% 92% 89% 99% 81% 84% 90% 

±2 100% 95% 100% 100% 100% 94% 88% 97% 

 

 

Table 50. Detailed Accuracy Percentages for the Model ID#22 (Superstructure – RC Arches - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 67% 30% 49% 71% 58% 0% 0% 56% 

±1 67% 75% 98% 100% 97% 74% 0% 94% 

±2 100% 100% 100% 100% 100% 100% 88% 100% 

Testing 

±0 0% 45% 41% 71% 60% 0% 0% 54% 

±1 0% 75% 100% 100% 94% 92% 0% 95% 

±2 100% 100% 100% 100% 100% 100% 86% 100% 

 

 

Table 51. Detailed Accuracy Percentages for the Model ID#23 (Superstructure – Prestressed Concrete - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 82% 86% 6% 41% 15% 93% 53% 

±1 92% 96% 99% 70% 54% 96% 97% 85% 

±2 98% 96% 99% 100% 95% 97% 99% 98% 

Testing 

±0 0% 80% 87% 1% 39% 18% 94% 52% 

±1 92% 90% 100% 73% 52% 96% 96% 85% 

±2 100% 92% 100% 100% 95% 97% 100% 97% 
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Table 52. Detailed Accuracy Percentages for the Model ID#24 (Superstructure – Prestressed Concrete - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 26% 26% 28% 55% 84% 0% 57% 

±1 71% 65% 69% 100% 99% 99% 92% 98% 

±2 90% 89% 100% 100% 100% 100% 100% 100% 

Testing 

±0 0% 23% 27% 28% 55% 85% 0% 58% 

±1 83% 59% 69% 100% 99% 99% 92% 98% 

±2 100% 91% 100% 100% 100% 100% 100% 100% 

 

 

Table 53. Detailed Accuracy Percentages for the Model ID#25 (Superstructure – Steel - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 62% 47% 40% 43% 0% 92% 46% 

±1 70% 84% 89% 94% 61% 98% 92% 86% 

±2 87% 97% 100% 100% 99% 100% 98% 99% 

Testing 

±0 0% 61% 47% 35% 46% 0% 94% 46% 

±1 71% 86% 92% 91% 61% 98% 94% 86% 

±2 87% 97% 100% 100% 100% 100% 98% 99% 

 

 

Table 54. Detailed Accuracy Percentages for the Model ID#26 (Superstructure – Steel - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 8% 26% 59% 79% 0% 0% 50% 

±1 18% 62% 88% 100% 100% 95% 0% 93% 

±2 67% 96% 100% 100% 100% 100% 99% 100% 

Testing 

±0 0% 9% 26% 58% 79% 0% 0% 50% 

±1 10% 59% 88% 100% 100% 95% 0% 93% 

±2 61% 96% 100% 100% 100% 100% 98% 100% 
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Table 55. Detailed Accuracy Percentages for the Model ID#27 (Superstructure – Timber - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 100% 88% 70% 76% 91% 27% 0% 77% 

±1 100% 100% 91% 85% 100% 82% 0% 93% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 

Testing 

±0 100% 88% 70% 76% 91% 27% 0% 77% 

±1 100% 100% 91% 85% 100% 82% 0% 93% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 

 

 

Table 56. Detailed Accuracy Percentages for the Model ID#28 (Superstructure – Timber - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 100% 58% 77% 59% 78% 27% 0% 67% 

±1 100% 82% 96% 100% 88% 73% 0% 93% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 

Testing 

±0 100% 58% 77% 59% 78% 27% 0% 67% 

±1 100% 82% 96% 100% 88% 73% 0% 93% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 

 

 

Table 57. Detailed Accuracy Percentages for the Model ID#29 (Superstructure – Masonry - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 95% 62% 81% 62% 0% 0% 71% 

±1 100% 95% 100% 90% 67% 100% 0% 88% 

±2 100% 100% 100% 100% 71% 100% 100% 93% 

Testing 

±0 0% 95% 62% 81% 62% 0% 0% 71% 

±1 100% 95% 100% 90% 67% 100% 0% 88% 

±2 100% 100% 100% 100% 71% 100% 100% 93% 
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Table 58. Detailed Accuracy Percentages for the Model ID#30 (Superstructure – Masonry - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 14% 81% 82% 80% 0% 0% 70% 

±1 50% 76% 93% 98% 96% 100% 0% 92% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 

Testing 

±0 0% 14% 81% 82% 80% 0% 0% 70% 

±1 50% 76% 93% 98% 96% 100% 0% 92% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 

 

 

Table 59. Detailed Accuracy Percentages for the Model ID#31 (Substructure – Reinforced Concrete - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 71% 21% 36% 48% 24% 75% 45% 

±1 84% 84% 82% 84% 76% 97% 91% 86% 

±2 94% 93% 99% 100% 98% 99% 100% 98% 

Testing 

±0 0% 72% 20% 35% 43% 23% 74% 44% 

±1 85% 85% 82% 88% 75% 98% 89% 86% 

±2 89% 94% 99% 100% 98% 100% 100% 98% 

 

 

Table 60. Detailed Accuracy Percentages for the Model ID#32 (Substructure – Reinforced Concrete - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 0% 33% 46% 87% 0% 0% 56% 

±1 0% 64% 82% 100% 99% 98% 0% 95% 

±2 79% 93% 100% 100% 100% 100% 99% 100% 

Testing 

±0 0% 0% 33% 46% 88% 0% 0% 56% 

±1 0% 67% 82% 100% 99% 98% 0% 95% 

±2 83% 94% 100% 100% 100% 100% 99% 100% 
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Table 61. Detailed Accuracy Percentages for the Model ID#33 (Substructure – Steel - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 73% 100% 82% 100% 0% 0% 71% 

±1 0% 100% 100% 100% 100% 100% 0% 96% 

±2 0% 100% 100% 100% 100% 100% 100% 98% 

Testing 

±0 0% 73% 100% 82% 100% 0% 0% 71% 

±1 0% 100% 100% 100% 100% 100% 0% 96% 

±2 0% 100% 100% 100% 100% 100% 100% 98% 

 

 

Table 62. Detailed Accuracy Percentages for the Model ID#34 (Substructure – Steel - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 73% 87% 77% 77% 0% 0% 75% 

±1 100% 100% 91% 100% 100% 89% 0% 96% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 

Testing 

±0 0% 73% 87% 77% 77% 0% 0% 75% 

±1 100% 100% 91% 100% 100% 89% 0% 96% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 

 

 

Table 63. Detailed Accuracy Percentages for the Model ID#35 (Substructure – Timber - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 100% 76% 65% 89% 44% 40% 0% 71% 

±1 100% 96% 98% 94% 82% 100% 0% 94% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 

Testing 

±0 100% 76% 65% 89% 44% 40% 0% 71% 

±1 100% 96% 98% 94% 82% 100% 0% 94% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 
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Table 64. Detailed Accuracy Percentages for the Model ID#36 (Substructure – Timber - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 100% 59% 56% 80% 29% 40% 0% 64% 

±1 100% 91% 99% 99% 88% 100% 0% 97% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 

Testing 

±0 100% 59% 56% 80% 29% 40% 0% 64% 

±1 100% 91% 99% 99% 88% 100% 0% 97% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 

 

 

Table 65. Detailed Accuracy Percentages for the Model ID#37 (Substructure – Masonry - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 83% 74% 80% 61% 9% 0% 69% 

±1 100% 89% 100% 87% 70% 100% 0% 86% 

±2 100% 100% 100% 100% 89% 100% 100% 97% 

Testing 

±0 0% 83% 74% 80% 61% 9% 0% 69% 

±1 100% 89% 100% 87% 70% 100% 0% 86% 

±2 100% 100% 100% 100% 89% 100% 100% 97% 

 

 

Table 66. Detailed Accuracy Percentages for the Model ID#38 (Substructure – Masonry - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 100% 46% 64% 78% 57% 0% 67% 65% 

±1 100% 52% 99% 98% 86% 100% 67% 90% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 

Testing 

±0 100% 46% 64% 78% 57% 0% 67% 65% 

±1 100% 52% 99% 98% 86% 100% 67% 90% 

±2 100% 100% 100% 100% 100% 100% 100% 100% 
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Table 67. Detailed Accuracy Percentages for the Model ID#39 (Substructure – Other - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 87% 70% 61% 74% 0% 96% 64% 

±1 100% 96% 87% 83% 78% 96% 96% 89% 

±2 100% 100% 100% 100% 87% 100% 100% 98% 

Testing 

±0 0% 87% 70% 61% 74% 0% 96% 64% 

±1 100% 96% 87% 83% 78% 96% 96% 89% 

±2 100% 100% 100% 100% 87% 100% 100% 98% 

 

 

Table 68. Detailed Accuracy Percentages for the Model ID#40 (Substructure – Other - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 35% 73% 59% 65% 0% 96% 56% 

±1 100% 70% 91% 97% 77% 99% 96% 88% 

±2 100% 100% 100% 100% 98% 100% 100% 99% 

Testing 

±0 0% 35% 73% 59% 65% 0% 96% 56% 

±1 100% 70% 91% 97% 77% 99% 96% 88% 

±2 100% 100% 100% 100% 98% 100% 100% 99% 

 

 

Table 69. Detailed Accuracy Percentages for the Model ID#41 (Culvert – Reinforced Concrete - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 5% 53% 64% 30% 21% 87% 0% 46% 

±1 20% 86% 97% 82% 66% 92% 97% 85% 

±2 70% 96% 99% 100% 99% 96% 99% 98% 

Testing 

±0 0% 60% 67% 26% 19% 89% 0% 47% 

±1 40% 89% 96% 82% 66% 94% 97% 86% 

±2 80% 96% 100% 100% 99% 96% 98% 98% 
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Table 70. Detailed Accuracy Percentages for the Model ID#42 (Culvert – Reinforced Concrete - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 0% 3% 7% 68% 73% 0% 0% 58% 

±1 20% 31% 86% 100% 100% 94% 0% 97% 

±2 35% 92% 100% 100% 100% 100% 99% 100% 

Testing 

±0 0% 4% 7% 68% 71% 0% 0% 58% 

±1 0% 26% 85% 100% 100% 94% 0% 97% 

±2 20% 98% 100% 100% 100% 100% 100% 100% 

 

 

Table 71. Detailed Accuracy Percentages for the Model ID#43 (Culvert – Steel - Balanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 52% 64% 50% 53% 45% 69% 0% 55% 

±1 97% 99% 100% 90% 91% 87% 100% 94% 

±2 98% 99% 100% 100% 96% 99% 100% 99% 

Testing 

±0 52% 64% 50% 53% 45% 69% 0% 55% 

±1 97% 99% 100% 90% 91% 87% 100% 94% 

±2 98% 99% 100% 100% 96% 99% 100% 99% 

 

 

Table 72. Detailed Accuracy Percentages for the Model ID#44 (Culvert – Steel - Imbalanced). 

Margin of  
Error 

Individual Condition Rating 
Total (%) 

CR3 CR4 CR5 CR6 CR7 CR8 CR9 

Training 

±0 76% 8% 7% 80% 74% 0% 0% 57% 

±1 76% 26% 90% 100% 100% 91% 0% 93% 

±2 82% 100% 100% 100% 100% 100% 100% 100% 

Testing 

±0 83% 3% 1% 72% 73% 0% 0% 53% 

±1 83% 16% 86% 99% 100% 87% 0% 91% 

±2 83% 97% 100% 99% 100% 100% 100% 99% 
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