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Foreword

This manual provides technical guidance on using refined methods of analysis for design and evaluation of
highway bridges, to supplement the provisions and commentary of the AASHTO specifications. The
application of refined methods is needed when a bridge design falls outside of the limits for the approximate
methods in the AASHTO specifications or when refined methods can provide a more rigorous treatment to
appropriately account for unique details and/or behaviors. Refined methods can also be used to achieve a
more effective design or a more accurate load rating. To generate confidence, this manual includes seven case
study analysis examples and provides trusted results that can be used by software providers and engineers to
verify their modeling techniques.

The hard and competent work of Modjeski and Masters, Inc. in producing this manual is gratefully
acknowledged. In addition, the quality of the final product benefitted from key contributions of reviewers
including Brandon Chavel (National Steel Bridge Alliance), Duncan Paterson (HDR), Don White (Georgia
Tech Univ.), Toorak Zokaie (Caltrans), and Sue Hida (Caltrans).

Joseph L. Hartmann, Ph.D., P.E.
Director, Office of Bridges and Structures

Notice

This document is disseminated under the sponsorship of the U.S. Department of Transportation (USDQOT) in
the interest of information exchange under Task 2 of the FHWA Cooperative Agreement DTFH61-11-H-
00027. The U.S. Government assumes no liability for the use of the information contained in this document.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names
appear in this report only because they are considered essential to the objective of the document. They are
included for informational purposes only and are not intended to reflect a preference, approval, or
endorsement of any one product or entity.

Quality Assurance Statement

The Federal Highway Administration (FHWA) provides high-quality information to serve Government,
industry, and the public in a manner that promotes public understanding. Standards and policies are used to
ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically
reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.
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SI* (MODERN METRIC) CONVERSION FACTORS

APPROXIMATE CONVERSIONS TO Sl UNITS
Symbol When You Know Multiply By To Find Symbol
LENGTH
in inches 254 millimeters mm
ft feet 0.305 meters m
yd yards 0914 meters m
mi miles 1.61 kilometers km
) AREA "
in® square inches 645.2 square millimeters mm-®
ft* square feet 0.093 square meters B
yd? square yard 0.836 square meters m?
ac_ acres 0.405 hectares ha _
mi~ square miles 2.59 square kilometers km=
VOLUME
fl oz fluid ounces 29 57 milliliters mL
gal gallons 3.785 liters L
ft* cubic feet 0.028 cubic meters m*
yd® cubic yards 0.765 cubic meters m*
NOTE: volumes greater than 1000 L shall be shown in m*
MASS
0z ounces 28.35 grams g
Ib pounds 0.454 kilograms kg
T short tons (2000 Ib) 0.907 megagrams (or "metric ton") Mg (or "t")
TEMPERATURE (exact degrees)
°F Fahrenheit 5(F-32)/9 Celsius °C
or (F-32)11.8
ILLUMINATION
fc foot-candles 10.76 lux [x
fl foot-Lamberts 3.426 candela/m? cd/m?
FORCE and PRESSURE or STRESS
Ibf poundforce 4.45 newtons N
Ibffin® poundforce per square inch 6.89 kilopascals kPa
APPROXIMATE CONVERSIONS FROM SI UNITS
Symbol When You Know Multiply By To Find Symbol
LENGTH
mm millimeters 0.039 inches in
m meters 3.28 feet ft
m meters 1.09 yards yd
km kilometers 0.621 miles mi
) AREA "
mm~ square millimeters 0.0016 square inches in®
m- sguare meters 10.764 square feet ft™
m* sguare meters 1.195 square yards yd*©
ha hectares 247 acres ac_
km~ square kilometers 0.386 square miles mi®
VOLUME
mL milliliters 0.034 fluid ounces fl oz
L liters 0.264 gallons gal
m* cubic meters 35.314 cubic feet ft®
m* cubic meters 1.307 cubic yards yd?®
MASS
g grams 0.035 ounces 0z
kg kilograms 2.202 pounds Ib
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 Ib) T
TEMPERATURE (exact degrees)
°C Celsius 1.8C+32 Fahrenheit °F
ILLUMINATION
x lux . 0.0929 foot-candles fc
cd/m*® candela/m” 0.2919 foot-Lamberts fl
FORCE and PRESSURE or STRESS
N newtons 0.225 poundforce Ibf
kPa kilopascals 0.145 poundforce per square inch Ibf/in“
*Sl is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.
(Revised March 2003)
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CHAPTER 1. PREFACE
1.1 Background

Over the last few decades significant advances have occurred in the way that bridge engineering
analysis can be carried out. Engineering practitioners of today, with the aid of ever-advancing
computer technology, are able to solve engineering problems of great complexity, and produce
designs/evaluations which are more refined and more reliable than in the past. However, our
nation’s governing bridge design specifications and the profession as a whole have not yet fully
exploited the capabilities of this new generation of engineering design professionals and
analytical tools.

The generic term “refined analysis” is often used to describe a more detailed, sophisticated
structural modeling approach, which typically involves computerized finite element analysis
(FEA). The ability to perform FEA is within the skill set of most engineers today, and software
tools are widely available to most engineering firms. However, ““refined analysis™ is largely
undefined in the design specifications, and is employed loosely and sometimes ambiguously in
the specification provisions. In addition, there is limited guidance in the literature on the proper
application of such analytical techniques.

In 2009, an international technology scan entitled “Assuring Bridge Safety and Serviceability in
Europe” was sponsored by Federal Highway Administration (FHWA), American Association of
State Highway and Transportation Officials (AASHTO), and National Cooperative Highway
Research Program (NCHRP). The scan team determined that U.S. engineers need advanced
tools and protocols to better assess and assure safety and serviceability of bridges (Hida et al,
2010). The team recommended increased use of refined analysis for bridge design and
evaluation, and encouraged the use of refined analysis to avoid unnecessary posting,
rehabilitation, or replacement. Unfortunately, practical implementation of these
recommendations has been limited.

Many bridge engineers appear to favor a general philosophy of keeping analyses as simple as
possible to minimize errors or to remain true to the accepted, proven engineering practices, and
consequently have avoided embracing regular use of refined analysis methods. However, this
approach, while comfortable, comes at a cost to our nation and may not foster the most effective
use of limited resources. The current AASHTO LRFD Bridge Design Specifications feature a
reliability-based approach to bridge design, and include formulas for various aspects of load
distribution and limit state design with conservatism built in to envelope the limits of
applicability and consider all the relevant parameters. Conservatism always adds unnecessary
cost, which may have serious implications for owner-agencies with limited budgets.

At the same time, the perceived complexity of the AASHTO provisions encourages designers to
focus on developing and using complex automated calculation tools to execute the necessary
code checks rather than performing meaningful structural modeling to better understand behavior
and address the limit states that are being evaluated. This often hides the controlling factors and
hinders the development of new bridge innovations in general.

A properly and efficiently executed refined analysis can provide substantially better information
about the state of stress in a bridge and allow for more cost-effective and reliable design.



However, if approached improperly, a refined analysis can involve excessive engineering effort
and increased possibility for error. Refined analysis models are often more sensitive to the input
parameters and the mathematical assumptions which are employed by the software, and so must
be used with care. The engineer must understand the assumptions to ensure correct application.
Furthermore, the results of refined analyses can be misleading, making it all the more important
that the engineer verify the results by independent calculations. The complexity of the model
may make this difficult, so special procedures must be employed to verify accuracy.

The solution to these concerns is to provide standard modeling guidelines and benchmark
solutions to guide engineers and provide a consistent set of results for verification, which is the
main goal of this manual.

Note that in everyday usage, verify and validate have very similar meanings. However, when it
comes to refined analysis, they have different meanings. Verification refers to making sure the
analysis is performing correctly, that it is giving the correct results to the input given. Validation
refers to making sure that the input is correct, and the results reflect the behavior of the actual
structure being modeled.

This manual was developed to provide guidance to bridge engineers regarding the use of finite
elements as a refined analysis method for designing or evaluating typical concrete deck slab on
girder highway bridges. Complex structure types, such as cable stayed, suspension, or arch
bridges are not specifically addressed. The AASHTO LRFD Bridge Design Specifications
(AASHTO LRFD) (AASHTO, 2014) allow for many different types of analysis, but generally
only provide detailed guidance on the application of approximate methods, such as distribution
factors for right straight multi-girder bridges, leaving the details of refined analysis up to the
bridge design engineer. When a structure falls outside the limits of applicability of an
approximate method, AASHTO LRFD essentially requires refined analysis without providing
much guidance as to how it should be carried out.

1.2 What is Refined Analysis?

Refined analysis often means different things. A definition of refined analysis is needed to
explain more clearly what this manual addresses. Perhaps a good way to define what something
is, is to start with what it is not. By noting where the AASHTO LRFD states “in lieu of a refined
analysis...,” an idea of what is not considered refined analysis can be developed. This would
include:

Line girder analysis using distribution factors

Single step moment magnification procedure for compression elements
Curved spine beam analyses

Strut and tie models of concrete elements

Strip method of deck analysis and design

Cross-sectional frame analysis for box girders

V-load for curved I-girder bridges

M/R method for curved bridges

Equations for effective flange width of composite decks



Having listed some of what refined analysis is not, a definition of what refined analysis might
include can begin to be constructed. A refined analysis might:

Account for shear lag in deck and planar elements

Account for the distortion of a cross-section

Explicitly model cross-frames

Explicitly model the deck as a plate (rather than a grid) in two dimensions
Distribute load to girder lines based on interconnecting stiffness

Assess capacity through the use of plastic hinges, such as by pushover analysis.

Refined analyses are more sophisticated, and when correctly applied, generally more accurate
than the current approximate methods contained in the AASHTO Specifications.

1.3  Why use a Refined Analysis?

In some cases refined analysis is required to complete the design according to AASHTO LRFD.
These are instances for which the specification approximate methods do not apply.
Furthermore, there are reasons why using a refined analysis might be advantageous, including
but not limited to:

e Capturing behavior not adequately accounted for by approximate methods and/or outside
the limits of the Specifications. Even within the limits of applicability, approximate
methods can give erroneous indications of a structure’s true behavior.

e Obtaining more accurate, and less conservative, demands for existing structures,
especially when approximate methods result in conservative demands which in turn
result in extensive repair or replacement of structures.

The potential payoff for widespread implementation of refined analysis in the bridge engineering
industry is considered broad, but difficult to quantify. This Manual promotes a fundamental
change in the practice of bridge engineering and attempts to move our industry past the use of
simplistic design specifications to achieve more optimal solutions. It can be said that if merely
one bridge is saved from replacement by the application of refined analysis in an evaluation, then
any additional engineering effort is justified. If only five percent material savings could be
realized in every new design across the nation, then potential savings in taxpayer money would
easily be in the tens of millions of dollars every year.

Practitioners indicate that refined analysis of most bridge structures can be done for only a small
premium over conventional, simplified techniques with currently available computer technology.
The practice of bridge engineering in the future is expected to take a more holistic approach,
where the design, fabrication, construction, inspection, and management will be much more
integrated by digital information exchange. Refined analysis is expected to become routine as
software vendors develop “translator” and “wizard” tools to communicate with database records
and generate detailed structural models for engineering analysis. This Manual is seen as an
essential component to defining proper criteria for software vendors to follow and for engineers
to demand from their tools.

Refined analysis in bridge engineering has the potential to provide the following benefits in the
engineering design and evaluation of our nation’s infrastructure:



Improved structural safety by more rigorous assessment of limit states

Increased economy by going beyond use of approximate, conservative design formulae
Increased safety and economy by accurate modeling of system or local behavior
Improved safety evaluation by full consideration of condition data such as section losses
or as-built geometry

e Increased sustainability by more frequent salvaging of existing infrastructure

e Accelerated innovation development as industry gains deeper understanding of bridge
behavior

Note that while a general theme of the reasons for refined analyses is greater design economy,
there are also cases where refined analysis does not result in savings, but an improved, more
uniform level of safety, by providing deeper insight into actual structural load paths. An
example would be where an element carries a greater percentage of total load than adjacent
similar elements, and designing them all for an average load would lead to a higher probability
of progressive failure.

1.4 Evolution of Structural Analysis Methods

Structural mechanics has its roots in the mid-nineteenth century. Over the next several decades
numerous “classical methods” of structural analysis were developed, including Castigliano’s 1%
and 2" theorems, slope-deflection, three moment equation, conjugate beam, moment area,
virtual work, moment distribution, and many others. In general, a linear analysis technique
needs to satisfy equilibrium, compatibility, and the stress-strain relationship of the component
material(s). Some classical methods solve specific geometrical problems, while others have
more general application.

Matrix algebra also has its roots in the same time period in the mid-nineteenth century. But it
wasn’t until about 1930 that the aerospace industry started to develop modern matrix methods of
structural analysis (Felippa, 2001). There are essentially two matrix analysis techniques, the
compatibility, or flexibility method, where the unknowns are forces, and the equilibrium, or
stiffness method, where the unknowns are displacements. For about the next 30 years matrix
methods were simply another tool for performing structural analyses, along with the numerous
classical methods, due to the limitations of the “human computers” and the calculating devices
such as the slide rule or mechanical calculators available to them. The required solution of
simultaneous equations, often by matrix inversion calculations for structures involving more than
a handful of members, quickly became unwieldy. The flexibility method, which required
selection of appropriate redundant force patterns, was embraced by the aerospace industry, as the
selection of redundants for the lattice skeleton of aircraft was well understood, resulting in
simpler solutions to the problems they faced.

In 1951, the first electronic commercial computers, the UNIVACL, were manufactured.
Although much too expensive for the average consultant design office, early computers
represented a gigantic leap forward in calculating power. Throughout the 1950s what were
eventually referred to as “mainframe” computers continued to be developed. In the late 50s, the
FORTRAN programming language was developed making it much easier to program the
computers to solve scientific and engineering problems. Then, in 1959, M. J. Turner, head of the
Structural Dynamics Unit at Boeing and an expert in aeroelasticity, presented the first paper on



the Direct Stiffness Method (DSM) (Felippa, 2001). R. W. Clough coined the term Finite
Element Method in a paper authored in 1960 (Clough, 1960) which eventually replaced DSM by
about 1965 as the terminology for the analysis method.

For the DSM, element stiffness matrices are generated in local reference systems, then
transformed to a global reference system and directly assembled together to create the overall
structure stiffness matrix. The assembly method is insensitive to element type and works no
matter how many nodes comprise an element. This allows the programs to easily accommodate
essentially unlimited additions of new types of elements as they are developed. The analysis
method is linear elastic and small deflection, since the matrices are assembled based on initial
geometry and elastic properties and remain unchanged throughout the analysis, but nonlinear
problems could be solved iteratively using a series of linear steps by revising the stiffness matrix
at the beginning of each step.

The DSM was perfectly suited for solving general boundary value problems using digital
computers. But general purpose direct stiffness finite element programs did not develop
overnight. Even though computers were becoming more powerful and were being acquired by
more design offices, early computerization consisted mainly of custom automating the classical
methods that were in use at the time, which generally limited the solutions to specific problems
or geometries. Not to mention that the aerospace industry still was invested in the flexibility
method. By about 1970, however, the DSM had carried the day, and become the standard solver
technique for what we know today as general purpose finite element programs.

One of the first matrix structural analysis packages available to bridge design engineers was
“STRESS,” for STRuctural Engineering System Solver, developed by S. J. Fenves and others at
M.I.T. and supported on the IBM 1130, a powerful and relatively inexpensive computer
marketed in the mid 1960s. This line element software enabled engineers to solve systems of
two- and three-dimensional truss and beam elements. The key difference between this software
and the custom written programs of the time was that this program could solve problems of any
geometrical configuration. Using this program bridge designers were able to analyze multi-
girder bridges using grillages or space frames to arrive at a system solution rather than rely on
approximate distribution factors.

Programs such as STRESS, written to solve static first-order problems, soon were used by
creative engineers as a calculation engine to compute trial and error deflections necessary to use
iterative methods such as the Newmark process for calculating frequencies, mode shapes,
buckling loads, and second order deflected shapes of relatively complex structures. Engineers
used their understanding of structural theory and structural behavior to overcome the hardware
and software limitations of the time. This continues today, for instance an equivalent Saint-
Venant torsional constant can be used to account for warping, an effective modular ratio can be
used to adjust section properties to account for concrete creep under sustained loads, or an
effective stiffness is used to approximate cross frame behavior with a single element.

In the 1970s general purpose finite element programs started to become more widely available to
design engineers in the form of programs such as NASTRAN, SAP, and STRUDL. These
packages added enormous analytic capabilities to the engineer’s tool kits. Element libraries
contained not only beam and truss elements, but plate bending elements, shell elements, and
plane-stress and plane-strain triangles and quadrilaterals as well as three-dimensional brick
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elements. This enabled engineers to solve continuum-type three-dimensional problems with
relative ease.

Over the last 40+ years there have been many advances in the capabilities of finite element
analysis (FEA) programs including:

e Improvements in pre-processing
o0 Graphical user interfaces (GUIs)
0 Large element libraries
0 Model generation wizards/automatic model generation
e Improvements in solver capabilities
0 Multiple solver choices depending on model/elements
0 Matrix optimization
0 Non-linear iterative capabilities
e Improvements in post-processing
0 Report generation
0 Stress visualizations
0 Animations

It should be noted that most of these advances are essentially “bells and whistles” for improving
speed and user-friendliness. The DSM of the 1970s continues to be the standard solver
technique in use today. The main advantage of the programs of today over those of yesterday is
the increase in computing capacity. Structures can be modeled and analyzed today in a day that
would have taken weeks to run 40 years ago, if they could have been analyzed at all.
Furthermore, it is expected that structures which engineers would never attempt to model today,
will be easily modeled and analyzed in the future.

1.5 State of Practice

The standard method of analysis for typical multi-girder bridges in the United States has for
years been a line girder analysis with the use of distribution factors. In this type of approximate
analysis, each girder is analyzed as a stand-alone component. Assumptions are made regarding
the distribution of dead loads among the girders, while distribution factors account for the
transverse distribution of live loads. If the bridge is continuous, or otherwise indeterminate, an
analysis program is usually used to determine the shears and moments in the girders based on the
distributed loads applied.

There are many advantages to this approach to bridge analysis, among them ease of use and
repeatability of results. However, there are some disadvantages, not the least of which is the
limited range of applicability. The method begins to break down when the bridge becomes
skewed and/or curved. In these cases, the cross-frames between girders become part of the
primary load resisting system, and accounting for them in the analysis requires additional
approximate calculations such as the V-load method, or M/R method for curved bridges. The
accuracy of these approximations degrades as the degree of skew and/or curvature increases.

Also, even for straight non-skewed structures, use of AASHTO LRFD distribution factors tends
to introduce a degree of conservatism that usually results in more total design live load than lanes
on the bridge, and the use of more material in the design than necessary. Using refined analysis



to distribute the live load more accurately has the potential to provide more economical new
bridges and/or improved load ratings for existing bridges.

The trend in refined analysis has been a decreasing additional cost in time and effort versus
traditional approximate methods. Developments in available software continue to decrease the
differential analysis cost such that this will not be a significant factor in the decision of which
method to use in the very near future, if in fact it has not already occurred for some classes of
structures.

In the United States, certain bridge types have been designed using refined methods of analysis
for at least 40 years. In fact, approximately in 1988, when the framework for the AASHTO
LRFD was developed, the development team proposed to the Panel guiding the work that
distribution factors not be part of the Specifications, but rather that the requirement would be a
two- or three-dimensional refined analysis. At the time this suggestion was roundly rejected as
beyond the capability of most practicing engineers. Now many more practicing engineers have
had some education and/or experience with the refined methods of analysis, computer programs
to perform such analyses are more widely available, and the computing power required to run
them is easily affordable. Currently, for most cases of design of concrete deck slab on girder
highway bridges, a 2-D plate on eccentric beam (PEB) would be the recommended refined
analysis procedure (for more on PEB see Sections 2.4.3.2 and 3.5.2).

Modeling issues, in particular boundary conditions and loading, are sources of problems in the
application of refined methods such as FEA, not to mention that different acceptable models can
yield somewhat different results. It is not the purpose of this manual to legislate the use of
models for particular types of bridges, but to direct the engineer in developing reasonable models
which will produce more consistency in the application of these refined methods. This is
particularly true for bridges with complex geometry such as curved and skewed bridges in which
the quantification of the forces and distortions in some of the members cannot be accurately
predicted with the approximate methods for load distribution in Section 4 of the AASHTO
LRFD. This is why references are made at various places within the specification as to when
refined methods are particularly appropriate.

1.6 Scope of Manual

The approach presented by this manual is to relate refined analysis techniques to those currently
addressed in the AASHTO LRFD, to highlight what an engineer needs to consider when moving
to a refined analysis, and to ground the process in basic engineering fundamentals and practical,
experience-based guidelines. Guidance on the applicability of one-, two-, and three-dimensional
analysis are provided. References to specific proprietary software packages are avoided if
possible.

Also addressed are some of the unique issues of analyzing existing structures, such as the need to
know the construction method and sequence in order to properly account for the distribution of
dead load and locked-in stresses. For example:

e A girder bridge erected as simply supported for dead load but made continuous for live
load.



e Segmental concrete girders erected by the cantilever method acting like cantilevers for
dead load but continuous girders for live load.

It is not the aim of this manual to cover material that can be found in other existing publications.
A partial list of publications that supplement/extend the information presented here are:

e NCHRP Report 725 — Guidelines for Analysis Methods and Construction Engineering of
Curved and Skewed Steel Girder Bridges

e NCHRP Report 620 — Development of Design Specifications and Commentary for
Horizontally Curved Concrete Box-Girder Bridges

e AASHTO/NSBA Steel Bridge Collaboration — G 13.1 Guidelines for Steel Girder Bridge
Analysis, 2" Edition

e FHWA Orthotropic Deck Design Manual

e NHI Course No. 130095 — Analysis and Design of Skewed and Curved Steel Bridges
with LRFD — Reference Manual

e NSBA Skewed and Curved Steel I-Girder Bridge Fit (Chavel et al., 2016)

e FHWA Post-Tensioned Box Girder Design Manual (Corven, J., in development)

Throughout the following chapters, references to the seven examples developed as part of this
manual are included. These examples are provided in Chapter 9. The seven examples include
four general bridge analysis examples:

(1) Example 1 - a straight, three-span, composite precast concrete I-girder concrete deck slab
bridge with square supports, simply supported for dead load made continuous for live
load,;

(2) Example 2 - a straight, three-span continuous, composite steel I-girder concrete deck slab
bridge with square supports;

(3) Example 3 - a curved, three-span continuous, composite steel I-girder concrete deck slab
bridge with skewed supports; and

(4) Example 4 - a curved, three-span continuous, concrete box girder spine beam.

Also provided are three more specifically targeted examples on more advanced topics:

(5) Example 5 - a dynamic linear multimode response spectra analysis of the curved multi-
girder steel bridge from Example 3 including soil structure interaction, pushover, and
dynamic deflections;

(6) Example 6 - a stability analysis of a tall concrete pier incorporating geometric
nonlinearity and utilizing cracked/uncracked section properties where appropriate;

(7) Example 7 - a staged, construction analysis of a four span 660’ long continuous concrete
box girder bridge with external tendons, focusing on global design forces including
concrete creep and shrinkage.

Multiple methods are used in the examples in order to compare the results of increasing
refinement in the analyses.



1.7 Summary

To support advancement in the practice of bridge engineering in the U.S., this Manual provides
guidelines and examples for the proper use of refined analysis in bridge engineering. The
expected outcome is a move toward widespread use of more refined, modern analytical
techniques to improve economy, safety and performance of our nation’s infrastructure now and
in the future. Some engineers may be uncomfortable moving away from the predictable and
conservative load distribution factor method of design to refined methods that result in
potentially lower and more variable design force effects. However, as long as the refined model
is representative of the designed structure, the target Reliability Index of the AASHTO LRFD
Design Specification will still be obtained. In other words, the design will still satisfy the intent
of the Specifications, meeting all limit states and achieving constructability, safety, and
serviceability, through use of a more efficient design with less conservatism.

To achieve this goal, this manual strives to provide sound technical guidance, but to not overly
constrain designers. Often there is more than one valid path to correct results, while there are
certainly also potential pitfalls leading to incorrect results. The intent of this manual is to
educate engineers, making them more aware of both the pitfalls and valid paths, without
prescribing an overly restrictive approach to refined analysis.

This manual provides guidance on the following topics:

e Reviewing the basics of the finite element method.

e Choosing the appropriate level of refinement, i.e. 1D, 2D, or 3D model for the problem at
hand.

e Assembling the chosen model(s), including element types, meshing, and boundary
conditions.

e Loading the model(s) in accordance with the AASHTO LRFD Specifications.

o Verification/Validation of both the model and loading.

e Extraction of usable results.

Preventing misuse of the FEA method, while maximizing flexibility so designers can choose the
most appropriate implementation for the structure and client at hand, is the goal. The manual is
written such that a bridge engineer who has just received licensing as a professional engineer,
and is familiar with the general aspects of bridge design and analysis, but who may not have had
much exposure to the finite element analysis method as applied to bridges, can utilize it to
perform routine bridge analyses. Important concepts are highlighted using italics. Some
advanced topics are also provided for more experienced engineers to help in performing more
sophisticated refined analyses.
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CHAPTER 2. REFINED METHODS OF ANALYSIS
2.1 Methods of Analysis Permitted by AASHTO LRFD

Article 4.4 of the AASHTO LRFD establishes the most basic requirements for any analysis
applied to bridges or any other structures as meeting the requirements of equilibrium,
compatibility, and appropriate material constitutive relationships. Along with FEA, Article 4.4
of the AASHTO LRFD lists the following acceptable analysis methods but does not preclude the
possibility of others:

e C(lassical force and displacement methods as might be utilized in pier analysis,
development of influence lines and other cases where methods such as virtual work,
moment distribution or slope deflection still occasionally yield efficient solution
methods.

¢ Finite difference method, which is a numerical means of evaluating a differential
equation for either a boundary value problem or a time-dependent problem. This has
been largely supplanted by the finite element method, but can occasionally still be used
efficiently as an independent check.

e Folded plate method using the theory of elasticity. Several solution methods have been
developed. One method, developed by Goldberg and Leve, combines the equations of
classical plate theory for loads normal to the plane of the plates with the elasticity
equations defining the plane stress problem for loads in the plane of the plates. While
hand calculation is tedious, Scordelis (Scordelis, 1960) adapted the method to a matrix
method amenable to computer solution.

¢ Finite strip method, which is a semi-analytical finite element method suitable for
problems whose properties are uniform in one or more directions, allowing for a
discretization into strips. The solution is approximated by using a continuous harmonic
function series which satisfies the boundary conditions in one direction, and piecewise
polynomial interpolation in the other directions. Useful for solving plate, folded plate,
shell, and bridge deck proble

e (rillage analogy method involving models built of line elements interconnected in a
manner to be relatively faithful to the structure geometry. These are also often called
“grid methods.” They have been implemented both using grid-specific software and
using beam elements to develop the grid in a finite element analysis.

e Series or harmonic methods are applicable primarily to the solution of dynamic issues
and have had historic application to stability and suspension bridge analysis. These
methods are also largely supplanted by finite element analysis but still form the basis of
many textbook or handbook solutions to certain types of problems which have continued
value as a means of checking computer-oriented solutions.

e Methods based on the formation of plastic hinges which, while lacking continuity,
replace that virtue with a mechanism which permits relative rotations at the hinges to be
determined so that external work can be estimated. Pushover analyses, or capacity
protection as a seismic design strategy, are applications of methods using plastic hinges.
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¢ Yield line theory extends the formation of plastic hinges to continuum-type problems
where the inelastic rotation is idealized along lines much like a piano hinge. The design
methods permitted for a test specimen of a railing system are based on a yield line
approach.

In addition to the applications identified above, other analysis methods, such as Fiber Element
Modeling, a nonlinear section modeling method, have been utilized by bridge designers as well
as researchers developing provisions for the AASHTO LRFD.

Despite the existence of these other methods, the finite element method has become the method of
choice for most refined analyses of bridge structures. Reasons for this include flexibility of
application, ease of use, and continuing increase in the computing power available to bridge
designers. As such, when this manual refers to “refined analysis” it typically means the finite
element method. The continued listing of these other methods provides continuity with past
research, and also provides independent techniques to verify refined analyses, even though most
current work is performed with finite element analysis.

Article 4.4 also establishes that it is the responsibility of the designer to properly implement the
analysis method and correctly interpret the results, no matter what method is used.

2.2 Refined Methods of Analysis Referenced in AASHTO LRFD and AASHTO MBE

There are many references to refined analyses in the AASHTO LRFD (AASHTO, 2014) and the
AASHTO Manual for Bridge Evaluation (AASHTO MBE) (AASHTO, 2011). See Appendix
2A for a compilation of references to refined analysis found in the 7" Edition of AASHTO
LRFD and Appendix 2B for a compilation of references to refined analysis found in the 2nd
Edition of AASHTO MBE.

As mentioned in Section 2.1, Article 4.4 of the AASHTO LRFD lists some, but by no means all,
of the refined analysis methods available. Articles 4.5 and 4.6 contain recommendations on
modeling and analysis using refined methods and in addition to this manual should be the
starting place for an analyst contemplating performing a refined analysis. Guidance is provided
on when to perform a refined analysis and what level of refinement is necessary in given
situations. Article 4.6.3 is specifically about refined methods of analysis and much of the
information specific to FEA in the AASHTO LRFD can be found there. Other references to
refined analyses throughout the AASHTO LRFD are more generic.

A significant number of references to refined analyses are along the lines of “in lieu of a more
refined analysis, the following can be used,” implying that a refined analysis should be
considered if more accuracy is required, but the given simplified method is usually sufficient for
routine bridge design. In AASHTO LRFD Sections 5 and 6, the sections devoted to design of
concrete and steel respectively, refined analyses are often recommended for the design of
specific elements in specific situations.

There are relatively fewer references to refined analyses in the AASHTO MBE. Most of the
references to refined analyses in the AASHTO MBE recommend when such an analysis should
be performed, but do not give any further guidance or recommend a specific refined method.
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2.3 Essentials of Finite Element Analyses
2.3.1 General Capabilities of Modern Finite Element Software

FEA software ranges from basic inexpensive software that can model linear elastic behavior of
frame structures composed of beam elements, to expensive software that can model nonlinear
inelastic behavior of complex structures and can utilize large libraries of specialty elements.
Over time, the capabilities of FEA software have increased, while the licensing costs have
decreased. Though some of the improved capability is related to the solvers, i.e. iterative
nonlinear solvers, much of the improvement has been in the ease of use and the tailoring of the
software for bridge design. FEA programs have also benefitted from advances in computer
processing speed and memory.

Utilizing high-end FEA programs, such as those employed in aerospace design, is not cost
effective for most routine bridge designs, since typical bridge designs do not require the
advanced capabilities of those programs. Additionally, while powerful, high-end programs tend
to be more general purpose, and not tailored to producing bridge models.

The bridge design industry generally uses midlevel FEA software for typical bridge design tasks.
These are programs with point, line, surface, and volume elements. Although mostly used for
linear elastic analyses, the programs usually have some material and geometric nonlinear
capabilities. The more advanced of the midlevel programs have modules tailored for bridge
design, making bridge model creation, loading, and analysis easier.

Model generation currently can be performed through graphical interfaces, with the resulting
models viewed graphically on a monitor, rather than the text input and output files of the past.
Text files, however, still have their place, and can often be utilized to quickly generate new
models, change current model properties, or to check model inputs.

There are many different solvers with various exotic sounding names used in FEA programs.
Sometimes a single program will use different solvers for different size models, models utilizing
certain elements, or models requiring iterative solutions. They are all essentially variations on
the Direct Stiffness Method, however. The different solvers handle solution of the N stiffness
equations, to facilitate solving certain classes of models more efficiently. For instance, a small
model where N is relatively small may invert the full NxN stiffness matrix during solution
without performing any optimization, while a large model may employ optimization techniques
(referred to as sparse solvers) that take advantage of the large number of zeros in the stiffness
matrix that can be ignored, such that the equations are solved more efficiently.

Some of the tools available in current software packages include model creation wizards,
geometry based modeling, section property databases and generators, automatic meshing, bridge
live loading generators, and specification checkers. In short, it is becoming easier than ever to
generate and run complex bridge models. More complex models, however, mean more potential
for errors which can be more difficult to find.

Bridge Information Modeling (BrIM) systems are expected to be the next step in the evolution of
structural bridge models. BrIM is defined as the process of documenting all bridge information,

such as materials, geometry, foundations, traffic, and other data, from project conception through
the entire life cycle of the structure using a data centric 3D model. Full 3D bridge models can be
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used for more than just structural analysis and design. The models will be part of the database of
information about the bridge and can be used to aid in other tasks downstream of design, such as
fabrication, construction, and operation.

2.3.2 Gauss Points, Shape Functions and Degrees of Freedom

The finite element method is a numerical matrix solution technique for finding approximate
solutions to boundary value problems. The method entails using a series of elements to
approximate a continuum. Individual elements use polynomial functions called shape functions
to describe the deflected shape between the element connections, or nodes. For a given level of
meshing, the more accurately the shape functions approximate the actual deflected shape, the
better the agreement with the actual behavior.

Integration is used to calculate the element stiffnesses as well as for element state determination
(e.g., recovery of element internal stresses and nodal forces for a given set of element
displacements). The integration proceeds by evaluating the function at specific points, applying
an appropriate weighting factor, and summing results. Gauss numerical integration, or Gaussian
Quadrature, is the most commonly used technique in generating element matrices. This
technique minimizes internal integration points and locates them so as to minimize integration
error when the integrand is a general polynomial. Systematically combining all of the individual
elements into a global system of equations leads to the solution of the overall model. Often finite
element programs provide output at the gauss points of elements as well as the nodes. For
further information on the finite element method, see texts such as (Bathe, 1976) and
(Zienkiewicz, 2005).

Displacements of a point, or node, can be characterized with up to six quantities in Cartesian
coordinates: translation and rotation for each of the three axes, as illustrated in Figure 1. The
possible movements of a node due to the structure loading are referred to as degrees of freedom
(DOF). The DOF of a model corresponds to the sum of all the DOF at all the nodes in the
model, although not all finite elements incorporate all six DOF at the nodes in their formulations.
For instance, members modeled using truss elements that do not incorporate rotational degrees of
freedom can have incompatible rotations at connecting nodes. Another example would be two
dimensional planar elements that do not incorporate out-of-plane DOF. Generally the more DOF
in a model, the more computational effort is required to solve the equations. For example a truss
modeled as pin-connected using two force bar elements will require less computational effort
than the same truss modeled using beam elements with full fixity at the joints.
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Figure 1. Illustration. Six degrees of freedom (DOF) at a point, or node.
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One way to minimize the DOF is to minimize the number of nodes in the model. Conversely, as
the number of nodes and corresponding DOF increase, generally so does the accuracy of the
solution. Figure 2 schematically illustrates the relationship between increasing DOF, increasing
accuracy, and computational effort. Note that there is a diminishing rate of increased accuracy,
and increasing the DOF beyond a certain point results in very little increase in accuracy, but the
computational effort continues to increase. There is no absolute criteria for determining the
optimum number of DOF for any given problem.
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Figure 2. Graph. Schematic illustration of the relationship between DOF, accuracy, and
computational effort.

As mentioned previously, different finite elements also incorporate different DOF in their shape
functions. Choosing the element that captures the significant DOF of the problem to be solved is
also important, since choosing an element that does not have sufficient DOF will result in a less
accurate solution, while choosing an element with extra DOF will require more solution time.
For instance, choosing a plate element to model a composite deck will result in errors, since plate
elements do not support a membrane DOF and therefore will not carry axial forces in-plane.

Note that erring on the side of extra DOF is preferable to not enough, as long as inappropriate
restraint is not being provided, since current computer processor speeds can often render the
extra solution time inconsequential, and taking extra solver time is better than getting inaccurate
solutions. Generating more output data may increase the time required to interpret the results,
however.

Different elements with the same DOF can also have different internal formulations such that
behavior and results are different. For instance Timoshenko beam elements are formulated to
include shear deformation, while Bernoulli beam elements do not (for more on this see Section
2.3.4.2.2).

15



A certain amount of experience and good judgment is required to optimize the DOF such that
computational effort is minimized while the desired accuracy is achieved.

2.3.3 Typical Input and Output

As mentioned previously, input can usually be performed using a graphical user interface. For
large models it may be easier to generate all or many elements of the model using spreadsheet
generated text files. Changing element geometrical properties and/or loadings in a large model is
also often easier using spreadsheet generated text files. Many FEA software packages have
features that aid in the creation of models, and specifically aid in the creation of bridge models.

Input begins with geometrical discretization and assigning model attributes. The first step is to
define node locations, choose the type of elements to be used, and generate a mesh that reflects
the geometry of the structure being modeled. Paying attention to element connectivity and DOF
is important, including constraints such as rigid links in order to construct a stable model and
avoid mechanisms. Next, geometrical properties of the elements, i.e. area, moments of inertia,
etc. are assigned. Many programs make this easier with libraries of common rolled shapes and
section property calculators.

Material properties can then be assigned to the elements. Young’s modulus and Poisson’s ratio,
from which the shear modulus can be calculated, are sufficient for many analyses employing
only isotropic materials. Anisotropic materials require additional parameters. Mass density or
unit weight, depending on the software, is required if dead loads are to be automatically
generated. Getting the mass correct is particularly important if a dynamic analysis is being
performed. The coefficient of thermal expansion is required if thermal analyses are to be
performed or expansion/contraction capabilities are to be utilized, for instance when using
thermal expansion/contraction as a surrogate for explicit lengthening/shortening when
cambering. For higher order analyses, such as those with steel yielding, concrete cracking, or
soil non-linearity, more material parameters are required. Again, many programs make this
easier with libraries of commonly used materials, and default values for common material
behaviors. Getting the relative member stiffnesses correct in a refined analysis model is key to
getting a representative distribution of force effects.

Next, stable boundary conditions need to be applied. Boundary conditions are restraints that
prevent movement in specified directions at specified points. In order to be stable, sufficient
boundary conditions must be present to prevent rigid body motion of the model in any of the
three translational or three rotational directions. In the past, most programs would fail to run if
one attempted to solve an unstable structure. Some current solvers will give (incorrect) results
for an unstable structure. Often this is easily recognized due to obviously wrong forces or
deflections.

Finally, loadings can be applied. Current programs are very flexible with regard to loadings.
Point, distributed, area, thermal, and displacement loadings among others can be applied to the
model. Care should be taken when assigning loads between nodes to ensure that the nodal loads
generated by the program are approximately statically equivalent to the actual loads being
applied.

16



Once the model has been assembled and the program run, various outputs are generated. Load
cases can often be combined and factored within the programs if desired. Note that factored
combinations are only appropriate in cases where superposition is valid, such as linear elastic
analyses, and not for nonlinear results. Usually all of the outputs can be viewed graphically as
well. It is suggested that the deflected shape and reactions be examined initially. Often errors
can be easily identified when the model deflects or reactions are distributed in unexpected ways.
Other typically utilized outputs are forces and/or stresses. These can usually be viewed as graphs
or contours, or exported in the form of tables for further post-processing. Note that outputs are
not always in a form that can be directly utilized for AASHTO LRFD (see Chapter 8 for more on
utilizing analysis results).

2.3.4 Typical Element Families and Usage

There are four typical element families used in bridge design: Point, line, surface, and volume.
There are many elements with different formulations, different capabilities, and different DOF
within each family of elements. They range from specialty elements with very specific
application, to more generic elements with more general application. Constraints and rigid links
are arguably a fifth class of elements. Constraints and rigid links can provide appropriate
connectivity within a model, such as composite action. It is the user’s responsibility to make
sure the elements comprising a model are compatible and have the appropriate DOF and
capabilities for the problem at hand.

2.3.4.1 Point Elements, Constraints, and Rigid Links

Point elements are zero, or near zero, length elements which interconnect other elements in a
model, usually at coincident nodes. Point elements are often used between elements to release
certain degrees of freedom. Point elements can also be used to provide linear or nonlinear
support conditions, to add a point mass for dynamic analyses, or to connect multiple nodes by
springs with translational and rotational stiffness. Some FEA packages have interface point
elements that can be used for instance as tension only, or contact elements, or in between layers
of composite materials.

Point elements are not typically used in models for routine slab-on-girder bridge design, but may
be utilized to model bearings using releases or spring stiffnesses between superstructures and
substructures within a model.

Constraints and rigid links are methods of constraining or releasing the movement of geometric
or nodal freedoms within a model. They can be used to set up a relationship between nodal
freedoms, maintaining defined compatibilities. Often, they are preferable to using stiff elements
when connecting nodes rigidly, as overly stiff elements can result in solver errors due to an ill-
conditioned stiffness matrix. They also allow the flexibility of constraining any combination of
the six DOF at a node.

2.3.4.2 Line Elements

Line elements are used to model bars, beams, cables or other structural elements where the

length of the element is generally much greater than the depth and the width. For line elements,
transverse through-thickness normal stresses are negligible, with normal stresses generated only
along the longitudinal axis of the element. Line elements are attractive for use in bridge design,
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as the forces typically used for bridge component design; axial forces, bending moments, and
shear forces, are directly output.

2.3.4.2.1 Bar or Truss Elements

Bar or truss elements are two-force members capable of resisting deformation only in the
longitudinal member direction (see Figure 3). This resistance is associated with axial force in the
member. This type of element is used where members are subjected to primarily axial forces,
such as trusses or cross-frames. In some programs, bar elements are a special case of a beam
element, with all rotational degrees of freedom released. Some programs allow tension only or

compression only bar elements.
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Figure 3. Illustration. Bar or truss element.

2.3.4.2.2 Beam Elements

Depending on the element formulation, beam elements can have stiffness and transmit loads
corresponding to all six DOF at each node as illustrated in Figure 4. Beam elements are
therefore capable of modeling components that resist not only axial forces but also biaxial shear,
biaxial moment, and torsion. Most programs allow the release of individual DOF such that
elements with any combination up to six DOF at each node are possible. Beam section
properties can also be manipulated to effectively release DOF. There are two formulations of
beam elements, Euler-Bernoulli beam elements and Timoshenko beam elements. The

formulations for these two types of elements can be found in various texts, including (Hughes,
2012).
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Figure 4. Illustration. Beam element.
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Euler-Bernoulli beam elements are typically used when capturing deformation due to shear is not
required. Shear deformation is generally negligible in cases where the span to depth ratio of the
beam is greater than about 8. For most cases, modeling bridge girders using this type of beam
element will produce satisfactory results.

Timoshenko beam elements are capable of capturing shear deformation. This element should be
used when shear deformations are not negligible. An effective shear area must be provided in
the section properties in order to formulate the Timoshenko beam element shear stiffness matrix.
The effective shear area corresponds to the area for which the strain energy from a uniform shear
stress equals the strain energy that would be present in the non-uniform shear stress of the beam
shape being analyzed.

The effective shear area of a section depends on the shape of the section, but is always smaller
than the cross-sectional area in a given plane, such as the approximation using the area of the
web rather than the total cross-sectional area as the effective shear area for wide flange beams
loaded about the strong axis. Effective shear areas of common shapes such as those listed in
Table 1 are often provided in FEA program manuals, but can also be found in some reference
books. A general treatment for calculating the effective shear area is found in (Meek, 1971), or a
section property calculator can be utilized to find the effective shear area of a given shape.

Table 1. Effective shear areas of common shapes.

Description Effective Shear Area

Solid Rectangular Section — dimensions b x d 5/6 bd
Thin-walled Hollow Rectangular Section 2tD

Solid Circular Section 0.9 nR?
Thin-Walled Hollow Circular Section Rt (=A/2)
I-beam (along web direction) Aweb

I-beam (along flange direction) Aflanges

No Shear Deformation 1000A*

Note: In some programs a value of zero for the shear area results in shear deformations being neglected. Consult the
software user manual for more information.

Although using Euler-Bernoulli beam elements for girders is generally sufficient, using
Timoshenko beam elements will generally provide more accurate results, with little increase in
computational effort, no difference in the mesh, and no increase in the amount of output data.
Timoshenko beam elements should always be used when shear deformations are not negligible,
such as when modeling short deep members or when large concentrated loads are applied close
to a support. In general, a reasonable shear area must be assigned to Timoshenko beam elements
to achieve valid results, although in some programs assigning a value of zero to the shear area
results in shear deformations being neglected.

Most current finite element beam element formulations include only the Saint-Venant torsion
while ignoring the warping torsion because the available six degrees of freedom can only
accommodate planar behavior. Some programs may include beam element formulations which
include a seventh degree of freedom to allow inclusion of warping torsional stiffness directly.
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2.3.4.3 Surface Elements

Surface elements such as plates and shells are used to model situations where the thickness is
generally much less than the dimensions of the other two orthogonal directions. The main
difference between plates and shells is that shells include axial membrane stresses in the plane of
the elements, as well as the bending and shear stresses carried by plate elements. Figures 5 and 6
show a plate and a shell element respectively. The shell element includes the membrane forces
indicated by ox,m and Gy,m.
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Figure 5. Illustration. Plate element. Figure 6. Illustration. Shell element.

Surface elements are generally modeled as triangles or quadrilaterals as illustrated in Figure 7.
Quadrilaterals are typically used for the regular shaped areas in finite element analysis of bridges
though triangles may be used, especially for transition meshes and irregular shapes. Usually
some minimal out-of-flatness is tolerable, as is having curved edges when a midside node is
present. For more information on out-of-flatness for surface elements, see (Cook, 2002).

3 noded triangle 6 noded triangle 4 noded quadrilateral 8 noded quadrilateral
Figure 7. Illustration. Typical surface element geometries.

Finite element software sometimes offers the choice between Kirchhoff-Love formulation plates
or shells and Mindlin-Reissner plates or shells. The difference between Kirchhoff-Love and
Mindlin-Reissner surface elements is similar to the difference between Euler-Bernoulli and
Timoshenko beam elements as described in Section 2.3.4.2.2. Mindlin-Reissner elements
include through thickness shear deformations, while Kirchhoff-Love elements do not.

The Mindlin-Reissner shell formulation is recommended in general because it tends to be more
accurate, even for thin shell bending problems in which shear deformation is negligible. As with
beam elements, including shear deformations will almost always provide more accurate results if
modeled correctly, with little increase in computational effort, no difference in the mesh, and no
increase in the amount of output data. When the mesh is coarse, and shear deformation is
negligible, Mindlin-Reissner elements tend to be slightly stiffer than Kirchhoff-Love elements.
When the mesh is sufficiently fine, the Mindlin-Reissner elements tend to be more flexible than
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Kirchhoff-Love elements due to the additional shear deformation. The accuracy of the Mindlin-
Reissner formulation deteriorates when there is mesh distortion and large aspect ratios, and
therefore Kirchhoff-Love elements should be used in such cases when shear deformation is
known to be small.

Depending on the formulation, shell elements may only resist five of the six degrees of freedom
at their nodes, with the in-plane rotation, often referred to as the “drilling” DOF, unconstrained.
Sometimes this can cause numerical instabilities resulting in errors.

A second phenomenon that can affect several element types, but may be more prevalent in shell
formulations, is known as “shear locking” or “parasitic shear.” The problem manifests itself
when shear strains become vanishingly small compared to bending strains, such as in cases of
pure bending, and results in overly stiff behavior of the elements. Many finite element programs
have implemented improved element formulations in order to minimize this effect. While
problems due to “shear locking” are expected to be rare, the analyst should be aware of the
effect, and be able to adjust the number or type of elements accordingly.

“Membrane locking” is another phenomenon can occur in curved shell and beam elements. It is
characterized by spurious membrane strains in beam and shell elements in a state of pure
bending. The effect can be avoided by use of flat shell elements and the spurious effect
decreases quickly in curved shell elements with mesh refinement.

2.3.4.4 Volume Elements

Volume elements, also referred to as solid or brick elements, are used to model general three-
dimensional behavior at the element level of an analysis, such as when through thickness normal
stresses along all three axes are important. Because the mesh size of volume elements is driven
by the thickness of components due to aspect ratio considerations, modeling girders or bridge
deck slabs with volume elements can result in fine meshes with high numbers of degrees of
freedom resulting in potentially long solution times.

The nodes of volume elements typically only have stiffness and transmit forces corresponding to
the three translational degrees of freedom, no rotational constraint is provided. Care needs to be
taken when mixing elements with rotational degrees of freedom such as beams with volume
elements. Volume elements can take various shapes. Some of the common ones are illustrated
in Figure 8. As with surface elements, some minimal out-of-flatness of surfaces can often be
tolerated, and curved sides are possible when midside nodes are present.
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4 noded tetrahedron 6 noded pentahedron 8 noded hexahedron
10 noded tetrahedron 15 noded pentahedron 20 noded hexahedron

Figure 8. Illustration. Typical shapes for volume elements.

Historically, volume elements have been used for localized analyses, such as stress
concentrations in a welded steel connection or stresses in disturbed (D) regions of concrete
bridges, and rarely used in routine bridge design due to the high computational effort and
difficulty in extracting useful specification design forces. Line and surface elements are usually
capable of approximating the behavior of bridge components sufficiently for design purposes
when stresses in the through thickness direction are not required. With increases in computing
power and advances in software, use of volume elements for routine design may become more
common in the future.

2.3.5 Boundary Conditions

Boundary conditions refer to the supports and restraints applied to models. As mentioned
previously, the boundary conditions should result in a stable model, such that unrestrained rigid
body displacements are prevented. Restraints are commonly located at bearings if the
substructure of the bridge is not part of the model, but they also can be located at the foundation
or the interface between the foundation and the rock or soil in more detailed models.

The most commonly used boundary conditions are idealized supports giving full fixity to either
translation or rotation. Actual supports are never fully fixed or fully pinned, but approximating
them as such is often sufficient. More advanced analyses can utilize friction or non-linear
behavior such as compression only or tension only supports if program capabilities permit.
Modeling the supports incorrectly, such as misalignment of the orientation of fixity, can have a
major influence on solution results even if the difference in the supports appears minor. This
can be particularly true when the structural geometry near the supports is complex, for instance
at bearings of curved or skewed bridges (see Section 6.5).

Partially restrained supports modeled with springs can be used as well, as long as the support
stiffness is approximately known. Simple “diagonal” springs, so called because only the
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diagonal of the stiffness matrix is populated, are used when the stiffnesses of the various degrees
of freedom are independent. For more complex cases, some programs have user programmable
springs that permit cross-coupling of stiffnesses for cases when the degrees of freedom are not
independent. This is often necessary when including the foundation stiffness in a model as a
spring stiffness at the base of piers or abutments. An accurate representation of the foundation
stiffness will have coupling between the DOF, and require a full 6x6 stiffness matrix. If the
support stiffness is not known, bounding the problem by running analyses first with an
unrestrained (or flexible) support and then with a fixed support can sometimes be employed to
envelope the solution.

More information on typical bridge design boundary conditions can be found in Section 3.7.
2.3.6 Submodeling

Submodeling, also known as substructuring (not to be confused with the substructure of a
bridge), refers to the FEA technique of creating a finer mesh model of a particular portion of a
finite element model where more accurate results are desired. A larger coarse model is used to
find the global forces and/or displacements at the boundaries of the refined area. These global
forces/displacements are then applied to the finer submodel to determine the local effects in that
particular area.

An example of submodeling is illustrated in Figure 9 where the connection of a floorbeam to the
tie girder of a tied arch is examined in much greater detail. At the bridge level, a coarse line
element model is appropriate. A more detailed shell element model (A) can be used to represent
a portion of the tie girder and the end of a floorbeam. Further submodeling of the top and bottom
halves of the tie girder floorbeam connection using shell elements can be modeled as in (B) and
(C). Finally, solid element modeling of the corner details can be used for example to determine
fatigue stresses (D), (E), (F), and (G).
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l Figure 9. Illustration. Example of increasing levels of submodeling.
This technique results in a much more efficient computational effort than using a fine mesh for

the entire structure. Close attention needs to be paid to the boundary conditions and
loading/displacements of the submodel, in order to achieve valid results. Submodeling is not
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typically employed in routine bridge design, but may be appropriate in certain cases such as
forensic or detailed fatigue analyses.

24 Definitions, Comparison and Applicability of One-, Two-, and Three-Dimensional
Analysis

2.4.1 Definitions

An analysis will often be described as a 1D, 2D, or 3D analysis (where the D refers to
dimensions), as a way of describing the level of refinement of the analysis. In order to avoid
confusion, a definition of what constitutes each of these analyses is needed. It is also important
to distinguish between system and member dimensions. The number of dimensions used to
classify the analysis does not necessarily correspond to the type of elements used in the analysis;
i.e. a 2D analysis may require three dimensional elements in the analysis program. Conversely, a
truss bridge might be analyzed as a 3D assemblage, but still be constructed of two force truss
elements.

For the purposes of this manual, a 1D analysis is one in which the resultant quantities (moments,
shears, axial loads, deflections, etc.) are a function of only one spatial dimension. For a curving
structure, that dimension may be measured along the curved axis; i.e. the reference dimension
does not have to be straight. Examples of a 1D analysis include a line girder analysis of a
straight bridge or a spine beam model of a curved concrete box structure.

Similarly, 2D analysis results are a function of two spatial coordinates. Examples would include
a grid (also sometimes referred to as grillage) analysis (see Section 3.5.1), or a plate with
eccentric beam (PEB) analysis (see Section 3.5.2).

A 3D analysis requires three coordinates to define results. Generally in a 3D concrete slab on
beam bridge model, the girders and the cross-frames/diaphragms are modeled with explicit
depth. Note that for a 3D analysis, there are still many variations possible, with a wide range of
refinements available. A girder bridge modeled with plate elements for girder webs, but with
beam elements representing the flanges would be a 3D analysis, as would one with solid
elements used for the flanges and webs of the girders. Both are 3D analyses, but there is a very
large difference in refinement between them.

Figure 10 illustrates a general progression in the level of refinement of an analysis for a
continuous plate girder bridge.

Note that it is usually not necessary to model the cross-slope, superelevation, and/or vertical
curve in a typical beam girder bridge analysis. In some cases it may make sense to include these
variations, such as when net axial forces are present or when modeling variable depth transverse
members that follow the cross-slope in a 3D analysis.
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Figure 10. Illustration. General progression from a 1D model to a 3D model.

2.4.2 One-Dimensional Analysis

One-dimensional analysis replaces the structure with a single series of line elements that follow
the geometry of the structure as seen in plan view. One-dimensional analyses are typically linear
elastic, small deflection, and consist of a single material transformed section. Varying section
properties can be handled with stepped section properties in the models, or by explicitly varying
the section properties along the length in more advanced programs.

A design based on the distribution factors in Section 4 of the AASHTO LRFD usually represents
the structure as a single beam and is, therefore, a type of one-dimensional analysis. Figure 11
shows the plan and typical cross-sections of the steel girder three span continuous bridge that is
analyzed in Example 2 (see Chapter 9). Figure 12 illustrates a single representative girder
model. In order to utilize the approximate distribution factors, the bridge must satisfy the
limitations listed in the AASHTO LRFD. In general, the distribution factors are applicable to
straight parallel multi-girder right bridges, although skews up to 60° can be accommodated with
the correction factors in Articles 4.6.2.2.2¢ and 4.6.2.2.3c. Note that the skew angle is defined in
AASHTO as the angle between the centerline of a support and a line normal to the roadway
centerline. Minimal skews and curvatures can be approximated as straight for one-dimensional
analyses.
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bridge for Example 2.

Figure 12. Illustration. 1D model of three-span continuous steel girder bridge for Example
2.
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Structures which have large torsional rigidity and for which the Saint-Venant response is
dominant, such as single box girders, can also be efficiently modeled as a single series of line
elements. Figures 13 through 15 from Example 4 illustrate a one-dimensional spine beam
model. According to Article 4.6.1.1 of AASHTO LRFD, if the span length of a bridge
superstructure with torsionally stiff closed cross-sections exceeds 2.5 times its width, the
superstructure may be idealized as a single-spine beam. This restriction does not apply to cast-
in-place multicell concrete box girders, so smaller aspect ratios are permitted. Article 4.6.1.2.2
extends the limitation of Article 4.6.1.1 to curved torsionally stiff single steel box girder systems.
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Figure 15. Illustration. 1D spine beam model.

In regard to skew, Chapter 12 of the PCI Bridge Design Manual (PCI, 2011) states that skew
angles greater than 20° result in significant bending moment and shear effects in the exterior
beams of concrete girder bridges. It goes on to warn that seismic effects can also be significantly
altered by skew. The skew correction factors in the PCI Manual mirror those in AASHTO
LRFD, however.

In NCHRP Report 725, White et al. (White et al., 2012) define a skew index for steel multi-
girder bridges, based on span aspect ratio and skew angle, as Equation (1).

w, tan g

v ok )
where:

Is = skew index

wg = width of bridge between fascia girders

Ls = span length at the bridge centerline

0= skew angle (measured from transverse axis)

In continuous span bridges, the index is determined for each span. In spans with unequal skews
at the bearing lines, 6 is taken as the larger skew angle.

For straight steel girder bridges, a skew index of about 0.30 differentiates bridges in which skew
effects of flange lateral bending, cross-frame forces, and girder layovers are important from
those where skew effects are less significant. When the skew index exceeds a second limit of
0.65, the vertical displacements and major axis bending moments are affected more significantly
by the skew.

For curved structures, Articles 4.6.2.2.4 and C4.6.2.2.4 of AASHTO LRFD permits the use of
the V-load and M/R approximate methods for steel I-girder and box girder bridges, respectively.
This provides a method of extending one-dimensional line girder results to the analysis of curved
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multi-girder bridges. Many limitations are listed and minimal guidance is provided on
applicability. It is left to the Engineer to determine when their use is appropriate.

According to Article 12.4.2.1 in the PCI Bridge Design Manual, bending moments in curved
concrete beams from longitudinal flexure are virtually the same as those for a straight beam of
span equal to the arc length between supports and therefore straight beam analysis can be used
for preliminary design. The same cannot be said for torsional moments, which are related to the
flexural moment divided by the radius of curvature, or M/R. Article 4.6.1.2.4b of AASHTO
LRFD contains a similar provision regarding multi-girder steel superstructures, but places
additional restrictions on use, presumably since it is not limited to preliminary design.

1D analyses can be an efficient choice when designing essentially straight, right, regular multi-
girder bridges or torsionally stiff box girder spine beam bridges, where lateral and torsional
responses are not critical. 1D analyses are not appropriate in cases with:

e large cross-frame or diaphragm forces such as from load distribution in multi-girder
bridges with large skew and/or curvature,

e geometrical sources of stiffness such as force couples from flange lateral bracing or
multiple bearings under box girders,

e significant lateral effects in multi-girder bridges.

For guidance on modeling one-dimensional analyses, see Section 3.4.
2.4.3 Two-Dimensional Analysis

Often referred to as grid methods, two-dimensional analysis methods consist at minimum of an
interconnected series of beam elements that represent the major flexural members of a bridge
superstructure and sometimes include the substructure. The deck slab can be either distributed
and included with beam properties or explicitly modeled with shell elements. 2D analyses can
be used simply to determine girder distribution factors with one-dimensional methods used to
complete the design, or utilized to determine both dead load and live load envelopes for
subsequent factoring and limit states checks.

Because 2D models explicitly account for live load distribution based on geometry and element
stiffnesses, loads are more accurately distributed, and resulting designs are potentially less
conservative than those based on the approximate distribution factors in a 1D design. Skew
factors also do not need to be applied, as skew effects are explicitly modeled. See Examples 1
and 2 in Chapter 9 for a comparison of 1D versus 2D design.

2.4.3.1 Basic Grid Analysis

Early grid analyses used networks of line elements in a single plane, as illustrated in Figure 16.
Approximate girder distribution factor methods could be replaced with a method to explicitly
distribute loads based on actual longitudinal and transverse member stiffnesses. The transverse
member stiffnesses in the grid often require the use of an effective stiffness value, for instance
when modeling steel cross-frames, since vertical geometry is not modeled.
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Figure 16. Illustration. 2D grid model of three-span continuous steel girder bridge for
Example 2.

A grid requires the development of member properties that proportionally assign the material in
the bridge to the mesh of line elements. By approximating the deck properties into line elements,
the grid analysis does not fully model the membrane stiffness of the deck, but the outputs of
shear, moment, and axial force are compatible with AASHTO design equations. For guidance
on modeling basic grid analyses, see Section 3.5.1.

Even though basic grid analysis is a step up in rigor from a 1D analysis, it still suffers from many
of the same limitations. In some cases, a grid analysis may be acceptable for member design, but
not for calculating camber and deflections at intermediate construction stages. Basic grid
analyses are not appropriate in cases with:

e Large second-order effects, such as compression flange lateral bending stresses,

e Geometrical sources of stiffness such as force couples from flange lateral bracing (pseudo
box) or multiple bearings under box girders,

e Significant lateral effects in multi-girder bridges,

e Significant torsional effects in open section girders,

e  When other than no load fit is used with steel cross frames,

e When large shear membrane forces are present in the plane of analysis.

However, improved grid analysis techniques have been developed to overcome many of these
limitations.

2.4.3.2 Improved Grid Analysis

Over the years, both program enhancements and modeling techniques, not to mention increased
computing power, have resulted in improvements to the basic grid analysis. The plate with
eccentric beam (PEB) model is now commonly used to model multi-girder bridges. This model
combines a line element girder and cross-frame/diaphragm grid with a shell element deck
including the geometric offset of the deck from the girder centroids. A typical PEB model is
illustrated in Figure 17.
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Figure 17. Illustration. 2D PEB model of three-span continuous steel girder bridge for
Example 2, with internally offset girders and cross-frames bolded.

Improved grid models are still typically linear elastic and small deflection, but no longer require
a single material transformed section. Models can use actual gross section material properties,
and explicitly assign separate material properties to the girders and the deck. Varying section
properties in the girders are still usually handled with stepped section properties in the models.

Some programs now have beam elements with definable offsets such that the deck and girders
can be modeled in a single plane, with the offsets providing the geometrical eccentricity,
although rigid links are also effective when the offsets need to be modeled explicitly.
Timoshenko beam elements that include shear deformations allow for improved cross-frame
stiffness approximations, and in some programs, “exact” cross-frame stiffness properties can be
programmed into user defined elements.

Techniques have been developed to calculate effective torsional constants in order to account for
warping stiffness in thin-walled open sections (see Section 3.5.4.1). Use of such techniques
allows calculation of camber and deflections during construction of thin-walled open section
multi-girder steel bridges.

One of the biggest advantages of PEB models is that they can explicitly model the behavior of
structures with large skew or curvature. A PEB analysis requires less compromise and fewer
assumptions in defining the elements of the mesh, and does model the membrane stiffness of the
deck. Modeling the deck as a continuum explicitly captures accurate transverse load distribution
and torsional behavior more easily than a basic grid analysis, where the transverse load
distribution is concentrated at the transverse grid members and the torsional behavior must be
distributed among multiple grid members. Also eliminated is the requirement of assigning an
“effective width” of deck to each girder in order to calculate effective composite stiffness.
Separating the deck from the girders for a composite structure does require the design force
outputs to be aggregated in order to utilize the component based AASHTO LRFD.
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Although modeling the deck and girders separately makes extracting design forces a little more
difficult, improved grid analysis is accurate enough to use for design of most multi-girder
bridges. The improved analysis is not appropriate in cases with:

e Large second-order effects,

e Geometrical sources of stiffness such as force couples from flange lateral bracing (pseudo
box) or multiple bearings under box girders,

e Thermal gradient analyses.

For guidance on modeling PEB analyses, see Section 3.5.2.
2.4.4 Three-Dimensional Analysis

As computing power has increased, the ability to run analyses incorporating larger numbers of
elements has increased as well. This permits more explicit modeling of the members of multi-
girder bridge structures. Now not only can the concrete deck be modeled explicitly, but instead
of using a single line element to model a girder, the web and flanges of a girder can be explicitly
modeled at very accurate geometries. Cross-frames can also be explicitly modeled with multiple
elements instead of single lines of elements with effective stiffnesses. Individual material
properties can be assigned. By modeling thin-walled open sections with multiple elements, both
warping and Saint-Venant torsional stiffnesses can be explicitly accounted for, and
corresponding stresses can be output. Section properties are explicitly modeled, so no stepwise
approximations need be used.

By using a 3D model and explicitly modeling the elements of a bridge, geometrical effects are
accounted for, and reflected automatically in the results. While small deflection analyses are
typical, geometric nonlinearity can be analyzed either within the program, or by running iterative
analyses. Linear elastic material properties are also typical, although many programs can now
automatically iteratively solve nonlinear material problems. If desired, second-order effects such
as web buckling can be determined at a subcomponent level. A typical 3D model is illustrated in
Figure 18. For guidance on modeling 3D analyses, see Section 3.6.
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Figure 18. Illustration. 3D model of three-span continuous steel girder bridge for Example
2.

So why not use 3D analysis for every design? At present, it is not always the most efficient
solution. Although the effort involved in constructing and running a 3D analysis is not much
greater than for 1D or 2D analyses, to then proceed to produce a design from the output is more
of a challenge. One of the main hurdles is that AASHTO LRFD is a limit states design
specification, and often nonlinear behavior such as steel yielding and concrete cracking is
permitted at strength limit states. AASHTO LRFD is also mostly a component design
specification, and extracting compatible design forces from a 3D analysis is still cumbersome for
most programs. In many practical cases the improved accuracy is insignificant and not worth the
additional effort. See comparisons of examples in Chapter 9 of this manual. For most typical
concrete slab on girder bridges, a PEB analysis is still the recommended approach.

3D modeling should be used when more “exact” behavior is desired, and for submodels, such as:

e Local analyses such as details and points of interconnection in the structure where stress
concentrations are apt to be present.

e  Warping torsional stiffness needs to be considered.

e Complex dynamic analyses, when modeling the stiffness and/or the distribution of mass
more accurately is required.

e Complex stability analyses, both global and local.

e (Cases where flange lateral bending is significant.

e Staged construction/fit-up analyses.

Eventually, it is expected that the FEA programs and/or the AASHTO Design Specifications will
evolve to the point where a 3D analysis and design will require negligible additional effort over a
1D or 2D method. At that time, the grid analysis will probably be relegated to one of the
checking methods. Until that time, however, 3D analysis can still be an important tool, whether
for new designs, ratings, or forensic investigations.
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2.5 Refined Methods of Analysis and Reliability

Two issues arise regarding refined analysis and reliability: the impact of using refined analysis
instead of distribution factors on the calibration of the AASHTO LRFD Specifications, and the
effect on achieved reliability for a bridge designed using refined analysis. The AASHTO LRFD
Specification live load and resistance models were calibrated to achieve a target reliability
utilizing the calculated distribution factors in the specification. If a refined analysis such as 3D
finite element analysis (FEA) or plate and eccentric beam (PEB) grillage analysis is used
resulting in different load effects and different size design sections, a different reliability will be
realized. The following sections explore the effects of refined analyses on the design reliability
indices, and what, if anything, should be done about it.

2.5.1 Evaluation of the LRFD Reliability Index

In the case of the resistance, R, and the load effect, Q, both being normal random variables and
satisfying certain limits on the sizes of their coefficients of variation, COV'’s, the reliability
index, B, can be calculated using Equation (2):

(O3 +0, @

where: R =mean or expected value of the resistance

R
é = mean or expected value of the load
o, = standard deviation of the resistance

oy = standard deviation of the load

This equation is a simple expression for the reliability index and can be used to make qualitative
assessments of the effect of varying the method of analysis of live load. The actual calibration
equations used in the development of AASHTO LRFD, based on the Rackwitz and Fiessler
(1978) procedure, were more complex, more general and subject to fewer limitations than the
equation presented here. They are treated further in Nowak (1999) and Kulicki et al. (2007).

The quantitative assessment of the effect of varying the method of analysis of live load presented
here was developed using the same process used in the development of AASHTO LRFD. It is
worth noting that modern calibration calculations usually use the Monte-Carlo method. A
comparison showed that the Monte-Carlo method applied to the full set of bridges used in the
LRFD calibration gave virtually identical reliability indices determined during the original
calibration of AASHTO LRFD (Kulicki et al., 2007).

In specification calibration it is common to assume that the provided resistance of sample bridges
exactly satisfies the code requirements. Using this assumption enables the sum of the specified
factored loads to be used instead of calculating the resistance of sample bridges. The loads
represented by Q in the reliability equation are statistically projected based on nominal loads,
biases and coefficients of variation. The live load is based on extrapolating measured data to the
design life which is 75 years in the case of AASHTO LRFD. Another assumption inherent in the
calibration is that the analysis doesn’t introduce any shifts in the bias factors, or otherwise affect
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the load and resistance distributions, i.e., it’s a perfect mapping from load (probabilistic and
notional) to force effects.

2.5.2 Effect of Refined Analysis on Calibration

Several cases are presented to illustrate the effect of changing the method of analysis used in
AASHTO LRFD on the calibration. The qualitative difference in the reliability index is deduced
from the reliability equation and a quantitative assessment is illustrated for a representative
sample of bridges from the original LRFD calibration.

Case 1 — Design by Simplified Methods: Design with 7% Edition of AASHTO LRFD. This is
the base case. Quantitative results are shown in Table 2 for comparison to the remaining cases.

Case 2 — Design by Refined Analysis: Design with simulated refined analysis results assumed to
be 80 percent of the values from AASHTO LRFD girder distribution factors for both load and
resistance. This illustrates assuming that the refined analysis yielded 80 percent of the live load
moment that the distribution factors yield. In terms of calibration, analysis is a mapping of both
the probabilistic load model (load), as well as the notional loading (resulting in a provided
resistance), to design effects such as moment and shear. For this case, the assumption is that the
refined analysis is used to calculate the effects of the probabilistic load model and the notional
load model.

These changes would affect both R and Q in a similar way in the reliability equation so the
differences compared to the base case would be expected to be small. This is confirmed in
Table 2 by comparing the reliability indices for Case 1 and Case 2. There are slight differences
because the factored HL93 loading, while trend-wise similar to the projected live load, is not
identical to it. Additionally, there are statistical factors applied to the projected live load.

Case 3 — Evaluation by Refined Analysis for Load Effects: Design (provided resistance) based
on the AASHTO LRFD including the use of the current specification supplied distribution
factors but the projected live load on the load side was based on simulated refined analysis
assumed to yield 80 percent of results from AASHTO LRFD girder distribution factors. This
simulates an AASHTO LRFD design evaluated by refined analysis of HL93 loading.
Considering the reliability equation it would be expected that since Q is decreased by use of the
reduced distribution factors, the reliability indices in the case should be higher than Case 1. This
is confirmed in Table 2.

Table 2. Comparison of reliability indices.

Bridge Properties Reliability Index
Girder Type Span (ft) | Spacing (ft) Case 1 Case 2 Case 3
Prestressed Concrete 60 8 3.76 3.76 4.96
Prestressed Concrete 60 12 3.75 3.75 4.94
Prestressed Concrete 120 8 3.64 3.55 4.26
Prestressed Concrete 120 12 3.64 3.56 4.27
Composite steel 60 8 3.71 3.70 4.74
Composite steel 60 12 3.71 3.69 4.69
Composite steel 120 8 3.58 3.51 4.12
Composite steel 120 12 3.55 3.47 4.05
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The results are as would be expected:
e Since the analytical method used in calibration shows up on both sides of the calibration
equation in Case 2, it has little impact on the results compared to the base case;
e When more conservatism than used in calibration is present in the design, either through
live load distribution factors as assumed in Case 3, or through design resistance, the
Reliability Index increases compared to the base case.

2.5.3 Effect of Refined Analysis on Achieved Reliability

The question that may be most relevant to the use of refined analysis in bridge design is: How
does the use of refined analysis during the design phase of a bridge impact the safety of the
constructed bridge? Clearly, if the method of analysis used results in less material in the
structural members, and thus lower resistance, there has been a change in the level of reliability
provided. In order to explore this issue, the difference between the target reliability index, and
the achieved reliability for any particular bridge can be evaluated.

The AASHTO LRFD Specifications are intended to address the design of a broad range of
bridge components. Some, such as a simply supported girder in a two-girder cross-section, are
statically determinate in both the longitudinal and transverse directions, and thus the load effects
can be easily determined through simple statics. Others, such as a continuous girder in a multi-
girder cross-section, are statically indeterminate in both the longitudinal and transverse
directions. In the first instance, any analysis method should produce a result that is essentially
identical and result in the target reliability. For the second example, the use of approximations
and simplifications can introduce differences between calculated and actual load effects. The
framers of the specifications were very careful to ensure that what differences do develop result
in conservative estimates of design effects when using these approximate methods, such as the
distribution factor method. As a result, the use of approximate methods will generally cause the
achieved reliability index of a structure to be higher than the target value.

Referring to Case 3 above, if an approximate analysis results in a resistance being 25 percent
higher than required to achieve a target reliability index of 3.5, the achieved reliability index can
range from about 4.0 to almost 5.0. There are many instances in the AASHTO LRFD
Specifications, and the Standard Specifications before them, where an approximate method is
given in lieu of a more refined one, with the understanding that the approximate method will
produce more conservative results. This occurs both in terms of analysis of load effects as well
as determination of resistances. When a designer chooses to use an approximate method, the
design force effects will tend to be conservative, resulting in larger design forces. It should come
as no surprise that the design will have an increased resistance, and therefore a higher
reliability, due to the higher ratio of resistance to actual demand.

It is important at this point to consider the degree of conservatism that may or may not be present
in the distribution factor method. The examples contained in this manual do show that a
relatively significant amount of savings is available when more refined analysis methods are
used, but previous studies have indicated smaller differences (Zokaie, 2000). LRFD distribution
factors tend to be more conservative resulting in greater differences with refined analysis
distribution when the lever rule is used or at the limits of applicability of the LRFD distribution
factors (Yousif, 2007). In any event, for structures that have less indeterminacy, the achieved
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reliability index has always been closer to the minimum target level, and that has been deemed
acceptable, and there has not been any indication that the level of achieved reliability has
resulted in problems.

The replacement of an approximate method during the design process with a presumably more
accurate refined method can thus be thought of as moving the achieved reliability of the structure
toward the target minimum reliability index from a higher value. A question can be raised
regarding whether this is beneficial overall. The target strength reliability index of 3.5 was set
based on successful past design practice. It could be argued that the effects of the approximate
method of analysis (distribution factor and line girder analysis) were inherent in setting the
target level, and thus any reduction in the conservatism of those methods would result in
unacceptably low values of the reliability index. However, as noted above, the level of reliability
would be approaching that of simpler structures for which the calculation of load effects are
more straightforward, and these have historically performed well.

The discussion thus far has been regarding the use of refined analysis in determining the load
effects on a structure. The same arguments also apply for the case when refined methods are
used to determine the resistance of a structure or component.

In summary, the effect of utilizing refined analysis in the design of a bridge does reduce the
achieved reliability, however the target value of 3.5 is approached from above, resulting in a
structure with an acceptable level of reliability. Assuming the analysis is performed correctly, a
reduction in reliability should not be a reason to avoid using refined methods.
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CHAPTER 3. GENERAL GIRDER BRIDGE MODELING
3.1 Introduction

Finite element modeling and analysis of a bridge can provide fast, accurate, easily modified
results, but also can become a time and resource intensive process. The following assumptions
commonly made in routine bridge engineering analysis are not necessary to perform a finite
element analysis, but often are employed to make the design process more efficient:

e Isotropic, linear elastic materials
o Properties are the same in all directions
o Stress and strain are related by a constant, the modulus of elasticity, E, no
material nonlinearities
e Plane sections remain plane and section properties remain constant
o Shear deformations are small enough to be neglected
o Torsional warping is small enough to be neglected
o Sections do not change due to cracking or yielding during analysis
¢ Boundary conditions are considered either fully restrained or fully unrestrained
o Each of the 6 degrees of freedom are generally either unyielding or free to move,
although in some cases partial restraint and/or prescribed displacements may be
utilized
o Restraints applied at bearing locations and joints between members
e Loads remain constant in direction and magnitude
o Second-order effects are small enough to be neglected or
o Second-order effects are accounted for using correction factors — no geometric
nonlinearities
e Superposition of loads is valid since material or geometric nonlinearities are negligible,
effects are load path independent.
o Load effects can be factored
o Load effects can be added
e Bridge live loadings can be approximated with concentrated point and distributed loads

Not adhering to the above assumptions can result in a more accurate analysis, but at a cost of
more effort, especially when the analysis becomes nonlinear. Linear analyses, when
extrapolation and superposition are valid, allow a number of loadcases to be checked based on a
handful of analyses. A nonlinear analysis, where extrapolation and superposition are not valid,
can only evaluate a single loadcase. The analyst must determine when the increased accuracy is
worth the increased effort. The optimal model is the one that provides the desired accuracy, with
the minimal amount of refinement. A certain amount of accuracy is required to avoid
compromise of the design reliability index, . With refinement, comes increased effort and
chance for error in the analysis. Good judgment is required not only when balancing accuracy of
results versus computational effort, but when assessing whether the results obtained are
reasonably accurate.

The following sections will provide generalized guidelines to use when modeling slab-girder

bridges to determine bending moments, shears, and displacements for use in conjunction with
the AASHTO LRFD.
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3.2 Mesh Generation

The mesh, the nodes and elements connecting them, of a finite element model is arguably its most
important aspect. It should go without saying that the mesh should allow the geometrical aspects
and stiffness of the structure to be modeled. Keep in mind, however, that the model is a
numerical representation. While it generally may “look™ like the structure being modeled, the
important aspect is that it “behaves” like the structure being modeled. This means getting the
stiffness and load effects of the model correct, and it may include elements superimposed on
each other, or placed where they would “interfere” with each other in the actual structure.

In general, nodes should be located as close to the centroids of elements being modeled as
possible, although some programs allow eccentricities to be used to place element centroids at
the correct location. Meshing models consisting only of line elements is fairly simple with nodes
along element centroids, at intersections with other elements, and at boundaries. Meshing
models with plate or shell elements should place nodes at the mid-plane of the elements in a
regular rectangular grid if possible. Meshes should be kept as simple and regular as practicable.

Proper meshing can result in efficiencies in both solving and interpreting results of a model. As
mentioned in Section 2.3.2, the number of nodes and corresponding degrees of freedom (DOF),
have a direct effect on computation effort. The mesh should have sufficient nodes and elements
to provide sufficient accuracy without extra computational effort. Advice on number of elements
in models to try to achieve this goal is given in the following sections. Secondary considerations
which would lead the analyst to control mesh generation include:

e Locating nodes where loads are to be applied,

e Locating nodes where output is desired,

e Locating nodes to facilitate interfacing with adjacent elements, such as diaphragms in
concrete bridges, or stiffeners and cross-frames in steel bridges.

e Locating nodes where it is anticipated that a later iteration of the model will require a
node, or

e Orienting the mesh in order to obtain stresses in a specific direction.

In general, meshing of line elements is less critical than meshing of surface or volume elements,
due to the number of DOF involved. The mesh can be generated either manually by the user or
automatically by the finite element program or a combination of the two.

3.2.1 Manual

Manually generating the mesh can be a long, tedious process depending on the size and
complexity of the model. In this method, the engineer manually generates every node and every
element. Although potentially time-consuming and error prone, manual generation ensures that
the mesh is exactly the way it is intended, as every node and element is individually generated.
The process can be expedited by using spreadsheet generated text input files. Use of this method
has decreased for complex models due to improvements in automatic meshing features.
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3.2.2 Automatic

Many finite element programs are capable of automatically generating nodes and elements.
Automatic meshing has the potential of increasing the economy of the analysis as the time-
consuming process of generating many of the nodes and elements is done by the software.
Automatic meshing is particularly suited for generating large areas, especially large irregularly
shaped areas of plate or shell elements. Two methods of automatic meshing exist, free meshing
and mapped meshing.

3.2.2.1 Free Mesh

Free meshes have no restrictions on element shape (i.e., both triangles and quadrilaterals may
appear in the mesh) and the elements do not necessarily appear to be in any particular
recognizable pattern. A free mesh can be applied to regularly and irregularly shaped surfaces.
Figure is an example of a free mesh; all of the elements happen to be quadrilaterals but no
pattern is visible in the elements.

Figure 19. Illustration. Example of a free mesh.

3.2.2.2 Mapped Mesh

A mapped mesh uses only one element shape (i.e., all triangles or all quadrilaterals) and the
elements appear to follow a pattern. If a mapped mesh is desired, developing surfaces with
regular shapes will aid in the meshing of the surface. Figure 20 is an example of a mapped
mesh; all elements are quadrilaterals and are in obvious rows of elements. To use a mapped
mesh, it may be necessary to define the number of elements along each edge of the surface.
Mapped meshes are commonly used for bridges due to the regularly shaped surfaces of girder
webs and concrete decks.
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Figure 20. Illustration. Example of a mapped mesh.

3.2.3 Semi-Automatic

Semi-automatic refers to a combination of manual generation, possibly by text input, combined
with automatic local mesh refinement. This combines the ease and speed of automatic
generation with the control of manual generation.

3.2.4 Transition Meshes

Often refined models are used when stresses are desired at localized regions of a large bridge.
Rather than modeling the entire structure with a fine mesh for such localized results, the mesh
can be transitioned into a much coarser mesh away from the area of interest. This can greatly
decrease solution times for the model while maintaining accuracy. Figure 21 illustrates some
examples of transition meshes.

Another method of transitioning is to use multi-point constraints to enforce compatibility
between a denser and coarser mesh across a common edge or surface boundary. An example of
this would be transitioning from a shell element mesh to a line element mesh of a wide flange
beam. Constraints can be used to enforce compatibility between the single node at the end of the
line element and the multiple nodes at the end of the shell element mesh.

For advanced users, some programs may have additional methods of transitioning between
meshes. Program literature should be consulted and models verified when using program
specific techniques.
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Figure 21. Illustration. Examples of transition meshes.

3.3 Material Properties

The two most commonly used materials in bridge construction, steel and concrete, are typically
assumed to be isotropic materials for the purposes of analysis. An isotropic material is
considered to have the same material properties (Young’s Modulus, Poisson’s ratio, etc.) in all
directions. Although reinforced concrete in reality is orthotropic, differences that arise in load
effects from ignoring the reinforcing and assuming isotropic gross section properties can be
safely neglected in most analyses.

Anisotropic materials have different material properties depending on the orientation of the
material. Wood or fiber reinforced composites are examples of anisotropic materials. For an
anisotropic material it is important that the material properties are oriented along the appropriate
member axes. Anisotropic materials are not considered herein.

For typical design, only linear-elastic material behavior is required, but many programs also have
non-linear and inelastic material property capabilities for modeling such things as yielding of
steel or creep in concrete.

3.4 One-Dimensional Analysis

For bridges that satisfy the AASHTO LRFD limitations, one dimensional analyses are fairly
simple to create. Typically there are two types of bridges where a one-dimensional analysis may
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be appropriate; multi-girder bridges where a single representative girder is analyzed, and
bridges that have a torsionally stiff cross-section and can be analyzed as a single spine beam. In
spine beam analyses, beam elements located at the centroid of the section are used to follow the
geometry of the girder or bridge cross-section as seen in plan. An effective girder section is
normally utilized for a one dimensional analysis with the deck area contribution transformed into
an equivalent area of girder material using short term or long term modular ratios as appropriate.
Multiple models can be used for various stages of construction.

Multi-girder structures modeled as a single representative girder are typically analyzed using a
single lane of traffic loading, applying appropriate approximate distribution and multiple
presence factors to the load effects to achieve a conservative design. AASHTO LRFD Article
4.6.2.2 contains equations for distribution for most common design cases, which are generally
based on girder spacing, aspect ratio of girder spacing to length of span, and ratio of longitudinal
stiffness to transverse stiffness. Additional correction factors contained in AASHTO LRFD
Article 4.6.2.2 can be applied to account for skew.

In most cases using distribution and multiple presence factors assumes the same loading in all
lanes. For cases where special loads such as permit or legal loads are mixed with regular traffic,
force effects can be determined using the proportional distribution method described in
AASHTO LRFD Article 4.6.2.2.5.

Straight girders can be analyzed with any continuous beam analysis program, as well as general
purpose finite element programs. The suggested minimum number of elements per span is eight.
Often getting results at the tenth points is required, so using at least ten elements per span is
recommended. Loads are applied to the model at nodal locations, so using more elements will
result in more accurate results, at little additional expense, but the increased accuracy is generally
negligible. As always, engineering judgment is required.

As stated earlier in Section 2.4.2, according to Article 12.4.2.1 in the PCI Bridge Design Manual,
bending moments in curved concrete beams from longitudinal flexure are virtually the same as
those for a straight beam of span equal to the arc length between supports and therefore straight
beam analysis can be used for preliminary design. Similarly per AASHTO LRFD Article
4.6.1.2.4b-1, curved steel multi-girder bridges that rely on transfer of load between girders to
resist torsion can be analyzed as straight for major axis bending and shear with a span length
equal to the arc length if the following conditions are met:

For I-girders:

e Girders are concentric

¢ Bearing lines are not skewed more than 10 degrees from radial

e The stiffness of the girders is similar — This requirement is to ensure that there is
relatively equal sharing of loads among girders, but AASHTO provides little guidance on
what the difference can be. If there is suspicion that girders are not similar enough, a
simple curved girder refined model can be used to check load distribution. When in
doubt, use a curved girder model rather than the straight approximation described here.

e For all spans, the arc span divided by the girder radius in feet is less than 0.06 radians,
where the arc span Las, is taken as:
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o Arc length of the girder for simple spans
o 0.9 times the arc length for end spans of continuous members
o 0.8 times the arc length for interior spans of continuous members

For box girders:

Girders are concentric
Bearing lines are not skewed
The girder depth is less than the width of the box at mid-depth
For all spans, the arc span divided by the girder radius in feet is less than 0.3 radians,
where the arc span Las, is taken as:
o Arc length of the girder for simple spans
o 0.9 times the arc length for end spans of continuous members
o 0.8 times the arc length for interior spans of continuous members

The AASHTO LRFD gives some guidance on modeling curved spine beams. Multiple straight
elements can be used to approximate the curvature of curved structures in plan. AASHTO
LRFD Article 4.6.1.2.2 applies to horizontally curved torsionally stiff single girder
superstructures except concrete box girders.

For concrete box girders, Article 4.6.1.2.3 of the AASHTO LRFD states that horizontally curved
concrete box girders may be designed with straight segments, for central angles (see Figure 22)
up to 12 degrees within one span, unless concerns about other force effects dictate otherwise. It
also states that horizontally curved nonsegmental concrete box girder bridge superstructures may
be analyzed and designed for global force effects as single-spine beams with straight segments,
for central angles up to 34 degrees within one span.

Pier

Centerline Pier

of Bridge

Abutment Abutment

Center of
Curve

Figure 22. Illustration. Definition of central angle (adapted from AASHTO, 2014).

Article 4.6.1.2.3 of AASHTO LRFD also states that horizontally curved segmental concrete box
girder superstructures meeting the requirements of AASHTO LRFD Article 4.6.1.1, and whose
central angle within one span is between 12 degrees and 34 degrees may be analyzed as a single-
spine beam comprised of straight segments provided no segment has a central angle greater than
3.5 degrees as shown in Figure 23. For both segmental and non-segmental box girder bridges
with central angles exceeding 34 degrees within any one span, or for bridges with a maximum
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central angle in excess of 12 degrees with unusual plan geometry, the bridge should be analyzed
using 6 degrees of freedom in a proven three-dimensional analysis method.
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Figure 23. Illustration. Three-dimensional spine model of curved concrete box girder
bridge (adapted from AASHTO, 2014).

Section 9.4 shows an example of the analysis of a cast-in-place concrete box girder spine beam.
The example problem reproduces the results of an example problem in NCHRP Report 620 (Nutt
et al., 2008). For more detailed information, see NCHRP Report 620.

3.5 Two-Dimensional Analysis
3.5.1 Basic Grid Analysis

Performing a grid analysis consists of concentrating the longitudinal and transverse stiffness
properties of the bridge structure into a network of line elements in a plane. Grid analyses can
be used to model slab and voided slab bridges, but this manual will concentrate on grid models
for slab-on-girder bridges. Any slab-on-girder bridge with any support conditions, skew or
curved, can be analyzed. For more information on grid analysis see (Hambly, 1976), and
(O’Brien and Keogh, 1999).

There are essentially four steps in grid analysis:

e Idealize the structure into an appropriate equivalent grid of line elements.

e Calculate and assign section properties to achieve equivalent approximate longitudinal
and transverse structure stiffness.

e Apply loads.

e Analyze and extract distribution factors or design force effects.

Multiple grid models can be utilized to analyze bridges for different stages of construction.
3.5.1.1 Elements and Geometry

Beam elements are used to model the network of longitudinal and transverse lines in the planar
grid. At minimum the number and location of longitudinal grid lines should be coincident with
the number and location of longitudinal girders, as illustrated in Figure 24. Additional
longitudinal lines can be added between widely spaced girder lines to improve live load
placement accuracy, and is recommended to account for the full area of deck if the effective

46



width of deck used in calculating section properties is significantly less than the actual spacing of
girders, as shown in Figure 25.

Figure 24. Illustration. Grid model with element at longitudinal girder lines.
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Figure 25. Illustration. Grid model with additional elements between longitudinal girder
lines.
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Edge lines can be provided at or near the edge of the deck when integral barriers or edge
stiffening is present, as illustrated in Figure 26. For bridges with sidewalks, longitudinal lines
should be provided at the center of the sidewalks, although the contribution of the sidewalk to
the stiffness of the bridge may or may not be neglected, depending on the analysis.

I—
L 1 1 J

Figure 26. Illustration. Grid model with additional stiffening elements along the edge of
deck.
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Curved structures can be modeled either with curved elements or approximated with a series of
straight elements between transverse lines, as shown in Figure 27. When using straight elements
to approximate a curved beam the maximum recommended central angle for the elements is 3.5
degrees, similar to spine beams as illustrated in Figure 23.

Figure 27. lllustration. Curved grid model.

At minimum, transverse lines should be provided at all cross-frame/diaphragm locations,
including at supports. As with the longitudinal elements, when the effective width of deck
included with the cross-frames/diaphragms does not encompass the full length of deck,
additional lines can be added between cross-frames/diaphragms in order to account for the full
area of deck slab. Additional transverse lines may also be required at intersections of straight
elements approximating a curved structure. If no cross-frames/diaphragms are present, the
transverse line spacing is somewhat arbitrary, but recommendations in the literature range from
1/4 to 1/9 of the effective span length.

Recommended spacing of transverse grid lines ranges from the longitudinal girder spacing for
small aspect ratio bridges (short/wide) to twice the longitudinal girder spacing for large aspect
ratio bridges (long/narrow). The recommended number of transverse lines per span is preferably
odd (even number of spacings), with a minimum of seven (Wong, 2010). Often it is convenient
to place nodes at the tenth points of each span, as forces and deflections are often required at
those locations. Transverse lines preferably should run full width of the grid, but adjustments
can be made for staggered cross-frames.

The orientation of transverse lines preferably should be normal to the longitudinal lines of the
grid. For skewed bridges when the angle of skew is less than 20 degrees, transverse lines should
be parallel to supports, although transverse section properties can be calculated as if lines run
orthogonal to longitudinal girders, see Figure 28(a). For skews greater than 20 degrees, the
transverse lines should run parallel to the supports for small aspect ratio bridges, and orthogonal
to the span for large aspect ratio bridges, as shown in Figures 28(b) and (c¢) (Wong, 2010).
Transverse lines do not need to be equally spaced, but regular spacing contributes to simpler
analyses.
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Figure 28. Illustration. Orientation of transverse grid lines.

Supports should be placed at the locations of bearings. Support conditions can be very
important, especially for highly skewed bridges, as small reactions and potential uplift can occur
at acute corners, and large reactions at obtuse corners can result in having to design for large
shear forces. While it is conservative to design for these large forces, modeling supports with
spring stiffnesses approximating the actual bearing stiffness rather than using unyielding
supports will distribute the load more realistically and can reduce the extreme reactions (see
Section 3.7.2). Reactions may also be reduced by adjusting cross-frame geometry (see Section
3.5.3).

3.5.1.2 Section Properties

Longitudinal section properties are calculated about the centroid of the composite transformed
section. Note that even though the centroids of all longitudinal lines may not lie in the same
plane, they are still modeled as such. Section properties are generally based on the gross
uncracked concrete properties for girders and decks, although the effective width of deck based
on AASHTO LRFD Article 4.6.2.6 or a rational analysis should be used. In some regions, such
as over interior supports of a composite concrete deck steel girder bridge, cracked section
properties can be used, although it is generally not necessary. If using cracked section properties
over an interior support, the properties should extend approximately 15 percent of the length into
each span.

Because the longitudinal properties are represented in the longitudinal lines and the transverse
properties in the transverse lines, basic grid models can easily accommodate orthotropic
properties if desired. When dissimilar materials are used, a transformed area using modular
ratios based on short term or long-term properties may also be appropriate.

Torsional stiffness is important in a grid analysis, as the model geometry does not provide the
appropriate stiffness utilizing moment couples separated by structure width/depth, especially for
the contributory width of deck in each element. The torsional stiffness of each longitudinal line
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is equal to the sum of the torsional stiffnesses of each girder and contributory width of deck. The
girder torsional stiffness can be calculated using the equations of AASHTO LRFD Article
C4.6.2.2.1 (also see Section 3.5.4 of this manual). The contribution of a width, b, of deck
thickness, d, to the torsional stiffness is half that of the typical theoretical value for a thin-walled
beam element, i.e. ] = bd*/6 (Hambly, 1976). The reason is because the slab includes only the
contributions of shear flow at the top and bottom faces, while for a discrete element the shear
flows at the ends are included as well. Note that the modular ratio needs to be applied when
mixing dissimilar materials.

Transverse section properties are calculated similarly to the longitudinal properties. If no cross-
frames/diaphragms are present, the contributory width of concrete deck slab is used to calculate
moment of inertia and torsional constant. When a cross-frame/diaphragm is present, an estimate
of the effective width of deck slab acting with the cross-member needs to be made. A reasonable
estimate is that the effective width is 0.3 of the distance between longitudinal members (Hambly,
1976), with any remaining portion of deck represented in additional cross-members. For a
diaphragm, such as the typical concrete diaphragms from Example 1 shown in Figure 29,
calculating the section properties is straightforward, similar to a longitudinal member. For cross-
frames, such as the typical steel cross-frames from Example 2 illustrated in Figure 30, the
stiffness of the multi-member cross-frame must be approximated by a single line element.
Several methods of approximating the stiffness are detailed in Section 3.5.3 of this manual.
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Figure 30. Illustration. Typical steel cross-frames.

3.5.1.3 Loading and Results

A grid model is generally loaded with vertical loads only which can be placed at the nodes or
along the elements. Dead loads should be distributed to grid elements based on tributary
distances, with care being taken to not double count by assigning the same load to both
longitudinal and transverse members. Live loads that fall in between grid elements can be
distributed to the nodes. Ideally a statically equivalent loading should be applied, but in
practice, distributing vertical loads to adjacent nodes based on ratios of geometric distance is
usually sufficient, although shear forces near supports may be underestimated due to the
distribution of the nodal load directly to the support. Some programs can automatically
distribute live loads to the grid, greatly reducing the modeling effort required. See Chapter 7 of
this manual for more information on loading.

Once the analysis has been performed, design loads must be extracted. Due to the torsional
resistance of the transverse members, there will be “steps” in the moment diagrams of the
longitudinal girders. If the node is a location of a transverse cross-frame/diaphragm, use the
actual output moment values. If the node is a location where the transverse member only
represents the slab, average the girder bending moments on either side of the node (Hambly,
1976).

Shortcomings of the basic grid analysis include (Hambly, 1976):

e Transfer of shear between longitudinal girders through the deck cannot be effectively
modeled. Some effects of this are:

o Shear forces in the deck slab are underestimated.

o Load distribution and resulting axial forces in the girders are incorrect as
longitudinal inter-beam shear and axial forces which would result in couples
reducing the moment in loaded beams and increasing moments elsewhere cannot
be transferred.
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e Warping torsion not modeled.
e 3D cross-frame behavior is approximated with single line elements.

3.5.2 Plate with Eccentric Beam

A PEB analysis is a refinement of the basic grid analysis that explicitly models the deck slab and
girders separately. The depth of the structure is accounted for by locating the deck slab “plate”
and the longitudinal girder “beams” at their respective centroids, such that the girders are
“eccentric” to the deck plate as illustrated in Figure 31.

Figure 31. Illustration. Portion of typical concrete slab on girder bridge and PEB model
with explicit shear connection elements (diaphragms not shown for clarity).

The PEB analysis eliminates some of the shortcomings of the basic grid analysis and improves
the stiffness properties of the model. The presence of a continuous deck in a PEB analysis
enforces compatibility between girders and allows the transfer of longitudinal shear forces
between girders. Explicitly modeling the deck also means that composite behavior no longer
needs to be approximated using effective widths and modular ratios. Given an appropriate mesh
size it will be automatically modeled using the material properties and geometry of the deck and
girders. Modeling the deck explicitly does make it harder to assign orthotropic properties such
as cracked section properties in one direction to the deck if so desired. For long term loads an
effective modular ratio factor may still need to be accounted for in the model as well.

For routine design of most typical concrete slab on beam bridges when accuracy beyond the
approximate distribution factor approach is desired, the PEB is the recommended refined
analysis model. The PEB may also be appropriate in cases where a structure exceeds the limits
of applicability of the approximate distribution factors.

3.5.2.1 Elements and Geometry

The PEB model locates beam elements along the centroids of longitudinal girder lines. Beam
elements are also used to connect the longitudinal elements transversely at cross-
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frame/diaphragm locations, if present. Shell elements are used to model the concrete deck over
the entire length edge to edge. Volume elements could also be used, but would result in an
inefficient solution due to the large increase in DOF and minimal increase in accuracy involved.

Although the deck and the girders/cross-members are modeled eccentric to each other in the PEB
model, depending on the software being used, and the connectivity of the deck, lines may be in
the same plane, or in different planes. If the software supports element eccentricities, the
eccentricity can be defined in the element properties and all lines can be in the same plane. If
element eccentricities are to be explicitly modeled, elements or links can be used to connect the
deck and the girders/cross-members, and the deck lines and the girders/cross-member lines can
be located in different planes.

The number of elements used to model the girders and the deck are interrelated, as the two are
connected at nodal locations. At a minimum, nodes should be located at the tenth points of each
span, as forces and deflections are often required at those locations. The number of elements
used along the length of the bridge for the deck slab should be the same as that for the
longitudinal girder elements where composite action is to be modeled. The number of
longitudinal elements should be such that a reasonable aspect ratio is obtained. Up to 5 to 1 is
usually acceptable, although approaching 1 to 1 is best. At minimum there should be two shell
elements between each line of girders in order to capture shear lag behavior.

A deck on a skewed bridge can be oriented as a skewed mesh or an orthogonal mesh (see Figures
32 and 33). Typically element orientation is not critical as the shell elements are isotropic in-
plane. For simplicity the deck elements are usually oriented in the same direction as the cross-
frames or diaphragms. The node locations of the mesh must be compatible with the node
locations of other elements of the model. Quadrilateral elements will provide good results until
they become highly skewed, e.g. corners more acute than 45°, at which point triangular elements
become more appropriate.
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Figure 32. Illustration. Orthogonal mesh. Figure 33. Illustration. Skewed mesh.

When full composite action is to be modeled, the girder elements should be rigidly connected to
the deck slab elements. If the deck slab is modeled at the same elevation as the girders and an
offset used to achieve the correct location, composite action will be automatically achieved
through the use of common nodes. Otherwise the composite behavior can be accomplished by
using rigid link constraints or stiff beam elements, with one element per location of
corresponding nodes connecting the girder elements and the slab elements. Care should be taken
when using stiff beam elements, as overly stiff elements can introduce calculation errors in some
cases. For non-composite girders, link elements with little shear resistance can be used.
Elements with no shear resistance can be used if steps such as providing shear resistance at a
single point are also taken to avoid a mechanism, i.e. zero resistance in a given direction.
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While the vertical eccentricity of the girders and deck is explicitly considered, the vertical
eccentricity of the support conditions may or may not be explicitly modeled. For vertical
loadings, modeling the vertical eccentricity of the supports is typically not important (see Section
3.7.2).

3.5.2.2 Section Properties

Girder section properties are calculated about the centroid of the longitudinal girders. Section
properties are generally based on the gross uncracked properties for concrete girders. In some
regions, such as over interior supports, cracked or effective section properties can be used if a
reduced stiffness is more realistic. Deck section and stiffness properties are calculated by the
program based on geometry and material properties with no need for transformed properties.

Transverse member properties are calculated about the centroid of diaphragms, even though the
transverse member connects the centroids of the longitudinal members. For cross-frames, the
stiffness of the multi-member cross-frame must be approximated by a single line element. As
mentioned previously, several methods of approximating the stiffness are detailed in Section
3.5.3 of this manual. As with the longitudinal members, deck section and stiffness properties are
calculated by the program based on geometry and material properties.

Torsional stiffness is important in a PEB analysis, although not quite as important as in a grid
analysis, as the model geometry provides the appropriate stiffness contribution of the deck
automatically. The girder and diaphragm torsional stiffnesses can be calculated using the
equations of AASHTO LRFD Article C4.6.2.2.1 (also see Section 3.5.4 of this manual).

3.5.2.3 Loading and Results

A PEB model can be loaded with both vertical and horizontal loads, although boundary
conditions should be modeled at their correct elevation if horizontal loads are to be applied.
Dead loads can be assigned automatically based on cross-sectional areas, or using concentrated,
line, or area loadings. Live loads that fall in between nodes of shell elements can be distributed
to the nodes, either automatically or manually. As previously mentioned, ideally a statically
equivalent loading should be applied, but in practice, distributing vertical loads to adjacent nodes
based on ratios of geometric distance is usually sufficient, although shear forces near supports
may be underestimated due to distribution of nodal load directly to the support. See Chapter 7
for more information on loading.

Once the analysis has been performed, load effects must be extracted. In a PEB analysis,
composite forces in the discretized girder and deck elements must be summed back to the shears,
moments, and axial forces for each composite member of the bridge as recognized by the
AASHTO LRFD. Integrating stresses over the contributory deck width to determine forces, and
summing force outputs of the deck and girders, may be required to calculate the design load
resultants, or the demands on a given component, in order to compare to AASHTO LRFD limit
states. For more information see Chapter 8 of this manual.

As with the basic grid, if the transverse members have torsional resistance, there will be “steps”
in the moment diagrams of the longitudinal girders.
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Shortcomings of the PEB analysis include:

e Warping torsion not modeled, although approximations can be made.
e 3D cross-frame behavior is approximated with single line elements.

3.5.3 Diaphragm / Cross-frame Stiffness

Steel or concrete diaphragms can be modeled simply by using beam elements representative of
the entire diaphragm cross-section. An element formulation that includes shear deformation is
recommended, especially for short deep members. Depending on the element formulation, one
element may be sufficient to capture the forces in the diaphragm, with more elements required to
capture the deflected shape.

Steel truss-type cross-frames are open web members consisting of a bottom chord, one or more
(often two) diagonals, and possibly a top chord. In a grid or PEB analysis, the entire cross-
frame is represented by a single member. While this single member should approximate the
behavior of the actual cross-frame as closely as possible, accurately modeling the stiffness is
more important for curved or skewed bridge geometries than for straight square bridges.

Cross-frames in skewed bridges can act as alternative load paths and distribute vertical loads
transversely. Depending on the skew and the width-to-span ratio, the effects of the transverse
load distribution due to this “nuisance stiffness” can be quite severe (Coletti, 2011). Orienting
the cross-frame on the skew, or staggering cross-frames in adjacent bays can help mitigate this
problem (Krupicka, 1993).

NCHRP Report 725 details various methods for calculating equivalent section properties in order
to represent cross-frames with a single member (White et al., 2012). The methods include:

e Assume cross-frame is loaded predominantly in flexure and calculate an equivalent
moment of inertia,

e Assume cross-frame is loaded predominantly in shear and calculate an equivalent
moment of inertia,

e Assume cross-frame has both significant flexural and significant shear deformations and
approximate both the moment of inertia and an effective shear area, and

e (alculate the exact equivalent stiffness and define the entire stiffness matrix of a user
programmable element.

The flexural stiffness method models the cross-frame as a propped cantilever subject to a
moment at the propped end to determine the cross-frame stiffness properties. The moment is
modeled by a unit force couple as shown in Figure 34. The model utilizes truss elements for the
cross-frame members. The left side of the cross-frame is restrained both vertically and
horizontally at the top and bottom, while on the right side the nodes are only restrained
vertically.
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Figure 34. Illustration. Intermediate cross-frame model - flexural stiffness.

The rotation, 0, is calculated using the sum of the horizontal deflections (from the analysis
model) divided by the height of the cross-frame; this is equal to (A1+Az)/depth for small
deflections. The effective bending stiffness of a single element Iy is determined using Equation
(1):
ML
* "m0 M

where: Ib = equivalent moment of inertia
M = moment due to unit force couple = 1xdepth
L = length between girders
E = steel modulus of elasticity
0 = rotation due to unit force couple = (Ai1+Az2)/depth

The shear stiffness method models the cross-frame as a cantilever fixed at one end and free to
deflect vertically but not rotate at the other end to determine the cross-frame stiffness properties.
A unit load is applied to the end that is free to deflect as shown in Figure 35. The model utilizes
truss elements for the cross-frame members. The left side of the cross-frame is restrained both
vertically and horizontally at the top and bottom, while on the right side the nodes are only
restrained horizontally.
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Figure 35. Illustration. Intermediate cross-frame model - shear stiffness.

The effective bending stiffness of a single element Is is determined using Equation (2):

P LH

=
12EA @)

where: [s = equivalent moment of inertia
P = unit force
L = length between girders
E = steel modulus of elasticity
A = vertical deflection

For programs where beam elements incorporating shear deformations (Timoshenko formulation)
are available, a second independent variable, the shear area, can be used to more accurately
model the cross-frame. The following method can be used to determine an effective bending
stiffness and an effective shear area.

The effective bending stiffness based on an effective moment of inertia is determined by
modeling the cross-frame as a cantilever, similar to Figure 34 but with no restraints on the free
end, and subjecting it to a force couple as illustrated in Figure 36.
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Figure 36. Illustration. Intermediate cross-frame model - flexural stiffness.

The rotation, 6, is calculated using the sum of the horizontal deflections (from the analysis
model) divided by the height of the cross-frame; this is equal to (A1+A2)/depth. In the shear-
deformable beam approach leq is determined using Equation (3):

I ML

where: leq = equivalent moment of inertia
M = moment due to unit force couple = 1xdepth
L = length between girders
E = steel modulus of elasticity
0 = rotation due to unit force couple = (Ai+Az2)/depth

The equivalent shear area is determined by modeling the cross-frame as a cantilever, similarly to
Figure 35 but with no restraints on the free end, and subjecting it to a unit vertical shear at the
free end, as illustrated in Figure 37.
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Figure 37. Illustration. Intermediate cross-frame model - shear stiffness.

The equivalent shear area is then calculated using Equation (4):

VL
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where: Aeq = equivalent area
A = deflection due to unit force
V = unit force
L = length between girders
E = steel modulus of elasticity
leq = equivalent moment of inertia
G = shear modulus of elasticity = E/[2X(14+V)]
v = Poisson’s ratio

Connection stiffness and second-order stiffness softening can also be taken into account per
AASHTO LRFD Article C4.6.3.3.4 (Wang et al., 2012). In lieu of a more accurate analysis, the
equivalent stiffness (AE)eq of equal leg single angles, unequal leg single angles connected to the
long leg, and flange connected tee-section members may be taken as 0.65AE in whichever
effective beam analysis is chosen.

The choice of which equivalent element to use depends on the elements available, the cross-
frame geometry, and level of accuracy required. Using the bending stiffness or the shear
stiffness method is common if the program being used only has Euler-Bernoulli beam elements,
and bending stiffness EI is the only adjustable variable. Generally, the flexural method should
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be used when the cross-frame is relatively long and shallow and dominated by bending behavior,
and the shear method should be used when the cross-frame is relatively short and deep and
dominated by shear behavior. It is ultimately up to the judgment of the engineer, who best
understands the type of deformation occurring at the cross-frame, to choose the most appropriate
model for that specific behavior.

When available, the shear deformable (Timoshenko) beam approach utilizing both leq and Aeq is
recommended for modeling cross-frame stiffness for routine bridge design. If an “exact”
element is required, the procedure to define the entire element stiffness matrix of a user defined
element is detailed in NCHRP Report 725 (White et al., 2012). The additional effort required for
the use of an “exact” element is rarely justified, but for bridges with high skews or curvature,
calculating accurate forces in cross-frames is important. In order to determine the forces in the
multiple cross-frame members based on the forces in an equivalent single member, see Section
8.2.5.

3.5.4 Handling Torsional Stiffness in 2D Models

The method by which torsion is handled in 2D finite element models is important because of the
two sources of torsional stiffness, Saint-Venant and warping. Saint-Venant torsion theory
assumes the following:

Torsion is constant

Each cross-section rotates as a rigid body (no distortion of cross-section shape)

Rate of twist is constant

Cross-sections are free to warp, i.e. displace, in the longitudinal direction but the warping
is the same for all cross-sections

With Saint-Venant torsion, only shear stresses are produced. Warping torsional restraint occurs
when the cross-sections are not free to warp in the longitudinal direction, and normal stresses
develop.

Although influenced by boundary conditions, loading, and length, generally stocky sections such
as concrete [-girder and closed sections such as thin wall box girders resist torsion mainly by
Saint-Venant torsion, while thin wall open sections such as wide flange beams resist torsion
mainly by warping restraint. Historically, thin walled open sections have been steel, but as
concrete sections continue to become more slender, the contribution of warping rigidity may
need to be checked. The concrete deck generally resists torsion by Saint-Venant stiffness as
well, and the contribution of the deck to torsional stiffness is described in Section 3.5.1.2 of this
manual.

In most FEA programs line beam elements only model Saint-Venant torsional stiffness (GJ), they
do not capture warping torsional stiffness (ECyw). In order to capture the warping behavior a line
beam element would have to be higher order and the program would need to accommodate a
warping DOF in additional to the nodal displacement and nodal rotation DOF.

If torsional stiffness is important in a line element model having open sections or other sections
where warping stiffness is significant, either an effective torsion constant that incorporates both
the warping stiffness and the Saint-Venant stiffness should be utilized, or the sections can be
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discretized further to capture the correct behavior. One method of determining an effective
torsion constant is discussed in Section 3.5.4.1. For wide flange beams discretely modeling the
flanges and web with multiple elements, rather than using a single line element, would capture
the warping behavior. Discrete modeling would require the model to incorporate more DOF,
resulting in a greater computational effort, not to mention more output data to reduce.

Modeling torsional stiffness is more important when significant torsional loads are present, such
as in curved and/or skewed bridges.

3.5.4.1 Thin-walled Open Section Girder Grid Systems

In many cases neglecting the contribution of the warping torsional stiffness of thin-walled open
sections in longitudinal girders in an FEA grid model results in negligible error when
determining design force effects. Exceptions to this are for skewed or curved bridges when a
stability analysis or deflection analysis is being performed on the non-composite structure. In
these cases, including the warping torsional stiffness can result in a significant improvement of
the accuracy of the model. Discretely modeling the entire cross-section with shell elements is
one method to capture the warping behavior, but it also results in a much more complicated
model, with an accompanying increase in computational effort.

Alternatively, in NCHRP Report 725 White et al. (White et al., 2012), determined that an
equivalent torsion constant, Jeq, could be used in place of the actual Saint-Venant torsion
constant J, for line elements in 2D grid models to obtain results that approximated the results of
more sophisticated 3D models. The equivalent torsion constant was based on equating the
stiffness GJeg/Ly with the analytical torsional stiffness associated with assuming warping free
conditions at simply supported ends and warping fixity at intermediate cross-frame locations in a
bridge girder.

The assumption of warping fixity at cross-frame locations is certainly an approximation, but it
leads to reasonably accurate characterization of the girder torsional stiffness pertaining to the
overall deformations of the bridge as long as:

e There are at least 2 I-girders connected together, and

e They are connected by enough cross-frames such that the connectivity index /c is less
than 20, where Ic = 15000 / [R(ne+1)m], where R is the minimum radius of curvature at
the centerline of the bridge cross-section in feet throughout the length of the bridge, ncsis
the number of intermediate cross-frames in the span, and m is a constant taken equal to 1
for simple-span bridges and 2 for continuous-span bridges. In bridges with multiple
spans, /c is taken as the largest value obtained from any of the spans.

The equation for Je; given an unbraced length L» between intermediate cross-frames with
assumed warping fixity at each end is given by Equation (5).

sinh(pLy) [cosh(pL,) — 1]° :
pLy pLysinh(pLy)

] eq — |1
6))
Similarly, the equation for Je; for the end panel between the bearing and the first cross-frame
with warping fixity at one end and warping free boundary at the other end is given by Equation
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(6).
sinh(pLy) :

~ plLy,cosh(pL,)

jeq =]J|1
(6)

where p? = GJ/ECw

For more information, see NCHRP Report 725. In lieu of a more precise analysis, J and Cw may
be calculated using the following equations.

Article C4.6.2.2.1 of AASHTO LRFD gives an approximate formula (Equation (7)) for
calculating J for thin-walled open section beams:

1 ;
J=3) bt

where: b = width of plate elements (in.)
t = thickness of plate elements (in.)

Article C6.9.4.1.3 of AASHTO LRFD gives an approximate formula (Equation (8)) for
calculating Cy for singly symmetric steel I-beams:

p _ trh® [ bib;
Y12 (B3 + b))

®

where: b;, b2 = individual flange widths (in.)
h = distance between flange centroids (in.)
tr= flange thickness (in.) Use an average thickness if the flange thicknesses differ.

Alternately, Cw can be calculated using Equation (9):

. hz‘;\'l
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where: /1 = distance between flange centroids (in.)
I, I, = moments of inertia of the flanges about a vertical axis in the plane of the web
(in*).

An alternate, approximate, method for calculating an equivalent torsional stiffness of an I-section
is to ignore the web and idealize the flanges of the I-shape as beams, not necessarily the same
size, spanning laterally the length Ly between cross-frames (see Figure 38). Assuming the girder
is restrained from warping at internal cross-frames and is unrestrained from warping at its ends
results in the idealized beams having fixed-fixed against rotation but free to deflect end
conditions for an internal length of girder and fixed-free end conditions for an end length of
girder.
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Apply a unit load at one end of each flange, equal but in opposite directions, and allow the
flanges to displace laterally. Rotation is restrained in the internal case. The applied torque will
be the unit load multiplied by the distance between the flanges, T=1*h, and assuming small
displacements the rotation will be a sum of the two displacements divided by the distance
between flanges. Dividing the torque by the rotation gives the torsional stiffness of the system.
Equate that to GJadditional/Lb, and solve for Jadditionat Where Jadditional 1s the approximate contribution
of warping to the torsional stiffness. The total equivalent torsional stiffness Jeq will be the
calculated Saint-Venant stiftness J plus Judditiona.

I I 1 -

-ﬁ
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|

Figure 38. Illustration. Calculating equivalent Saint-Venant torsion stiffness for I-sections.

For the general case the equation is:

), _ }, + Lb h*
47 7 26(48 +4y) (10)
where: Ly = Length between cross-frames (in)
h = Distance between flange centroids (in)
G = Shear modulus of elasticity = E/[2x(1+V)] (ksi)
E = Modulus of elasticity (ksi)
v = Poisson’s ratio
A1, Ay = Deflection of top and bottom flanges, respectively (in)
For an internal panel with equal size flanges, the equation will be:
[ 6EIRh*
eq — 2
GLj an
For an end panel and with equal flanges the equation would be:
B P 3EIR*
eq — 2
2GI2 12)

where: I = Moment of inertia of a flange about a vertical axis (in*)

For relatively large cross-frame spacing, the results of this approximate method can produce
equivalent torsional stiffnesses on the order of about 10 percent smaller compared to the
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equations in NCHRP Report 725. However, this method provides a much better feel to the
engineer about how the structure is behaving.

3.5.4.2 Stocky Open Section and Closed Section Girder Grid Systems

For stocky open sections and closed section grid models, warping stiffness can generally be
neglected, as Saint-Venant torsional stiffness dominates. In FEA grid models utilizing line
elements, the torsional stiffness is explicitly defined, and simply requires the correct Saint-
Venant torsional inertia, J, to be utilized. In lieu of a more precise analysis, Article C4.6.2.2.1 of
AASHTO LRFD gives approximate formulae for calculating J for open stocky sections and
closed thin-walled shapes:

A‘i
/= %001
Stocky open sections: P 13)
442
Closed thin-walled shapes: t (14)

where: 4 = area of cross-section (in.?)
I, = polar moment of inertia (in.*)
o = area enclosed by centerlines of elements (in.?)
s = length of a side element (in.)
t = thickness of plate elements (in.)

3.5.4.3 Quasi-Closed Sections

When designing steel tub girders, top flange lateral bracing is required to help provide lateral and
torsional stability until the composite slab is in place. While not strictly a closed section, the
torsional stiffness of tub girders with top lateral bracing can be thought of as effectively a closed
section. Depending on bracing configuration, the following equations convert the truss bracing
into an equivalent plate thickness, which can then be used to calculate the effective J using the
closed thin-walled shape equation above (FHWA, 2012B):

o 2.60sw
4Ly (s3 (2 )
. A, t (?) A,
Warren Type: (15
- 2.60sw
S Ve 2)
| i+ (5) &
Pratt Type: (16)
- 2.60s5w
eq 13 .3 2
7+ (5) (D)
X- Type: d t (17)
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where: teq = equivalent plate thickness
s = spacing between struts
w = width between flanges
L4 = diagonal length
Ad = area of diagonal
Ac=Ar+ Avw/4
Ar = area of one top flange
Aw = area of one web
As = area of strut

3.5.5 Modeling Composite Construction

Composite construction can be modeled in different ways, depending on the behavior the
designer wishes to capture. Up to three different models may be required in order to model the
differing stiffnesses of the girder only, long term composite, and short term composite sections
for AASHTO LRFD Strength load case design. For concrete construction, creep calculations
depend on the time the deck becomes composite. Models can also differ depending on the
direction of loading. As long as the stiffness is correct in the plane being loaded, for example the
vertical stiffness is correct for a model subjected to gravity loads only, the model should give
accurate results. Linear elastic models are typically used to determine design forces, even
though nonlinear plastic capacities can be utilized in design.

With regard to the properties of concrete decks, per Articles 4.5.2.2 and C6.10.1.5 of AASHTO
LRFD, generally the deck is assumed to be uncracked and active over the entire length of the
bridge, including tensile portions, when modeling the distribution of loads in a bridge, but the
tensile strength is ignored when designing the members for those loads. In some cases a cracked
concrete or effective concrete stiffness in the model may be appropriate, such as in the case of an
existing bridge analysis where inspection indicates extensive transverse cracking in the deck
above interior supports.

Extracting the load effects required for design is also a consideration. Because AASHTO LRFD
treats composite girders as a unit at the component level, forces on the composite section are
required. The more discretely the elements are modeled, the more accurate the results, but the
more difficult it can be to extract the cross-section design forces.

The simplest model is the beam element model with composite section properties included in the
section properties, either a single beam in 1D or a grid in 2D. These are good choices for
straight bridges with predominately gravity loading. It is the easiest for design because the
differing stiffnesses of the various design models are simply reflected in the beam element
section properties, and design moments and shears for the members can be directly obtained. In
order to calculate the section properties an effective width of deck must be assumed, usually
based on the design effective width. The concrete deck is usually transformed to the material of
the girders using modular ratios. Note that stresses in a transformed section cannot be directly
obtained from the transformed section itself; they must be calculated using the modular ratio.

The PEB model consists of beam elements for girder sections and shell elements for the deck

slab. The slab and the beams are modeled in their geometrically correct positions, while still

being compositely connected along their entire length. This model can provide more accurate
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design forces as the effective width of concrete does not need to be assumed, since the stiffness
of the deck slab determines the force carried by the concrete. The stiffness of the deck for the
various models can be adjusted using an effective thickness or an effective modulus of elasticity
(recommended) for the concrete deck slab. Obtaining the design forces can be more challenging,
since the forces in the girder and the concrete deck slab must be combined to find the design
moments and shears for the composite member. For more information on extracting force
effects for a composite member see Section 8.2.

3.6 THREE-DIMENSIONAL ANALYSIS
3.6.1 Element Types and Usage

There are many types of elements that can be used in a 3D finite element model. The types of
elements and where they may be used in the modeling of a slab-girder bridge are described in the
following sections. Keep in mind that when mixing multiple element types, compatible element
DOF need to be ensured at common nodes. For instance, connecting a beam element with
rotational stiffness to a solid element with only translational stiffness will not result in moments
being transferred across the joint.

3.6.1.1 Bar (Truss) Elements

Two force truss elements are the simplest members available. For a slab-girder bridge, this type
of element is typically used for steel cross-frame diagonals.

3.6.1.2 Beam Elements

Beam elements are typically used for steel cross-frame top and bottom chords, girder flanges,
diaphragm flanges, diaphragms (if the web is not modeled using shell elements), and when
modeled, longitudinal and transverse stiffeners. Depending on how the concrete slab is modeled,
beam elements may also be used as shear connectors.

3.6.1.3 Surface (Shell) Elements

Bridge components where surface elements are typically used include: concrete deck slabs,
girder flanges and webs, especially for box members, and plate diaphragms. Surface elements
may also be used for stiffeners and diaphragms. Note that generally bridge components carry
membrane forces, so shell elements rather than plate elements are usually more appropriate.
Also, note that other than cases where stress output is desired, I-section flanges, stiffeners, and
cross-frames can typically be modeled sufficiently and more easily using beam elements.
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3.6.1.4 Volume Elements

Volume, also known as brick or solid, elements have the advantage of being able to model
explicitly three-dimensional geometry, and capture a full three-dimensional stress field. Volume
elements are rarely used in routine bridge design, even in 3D analyses, due to the large number
of DOF associated with modeling large flat relatively thin surfaces with volume elements and the
resulting high computational effort, and the difficulty in extracting useful design forces.

3.6.1.5 Constraints and Rigid Links

Constraints such as rigid links can be used to rigidly connect elements whose nodes are not
coincident. Some examples of uses for rigid links include modeling composite action between
girders and deck slabs, modeling the offset between the centroid and the surface of an element
where a second element connects, and modeling elements that are very rigid compared to
surrounding elements, such as integral concrete bent caps.

3.6.1.6 Spring and Point Elements

Spring and point elements can be used at interfaces or boundary conditions, such as where
bearings are present, or to model substructure/foundation stiffnesses.

3.6.2 Geometry

The advantage of a 3D finite element model over line girder, grid, and Plate and Eccentric Beam
(PEB) analyses is that interaction between girders, cross-frame behavior, and distribution of live
load can be explicitly modeled. This can be important as the degree of geometric complexity
increases, for instance as with highly skewed or curved bridges. Increased accuracy is obtained
by a combination of correct geometry and correct stiffnesses, including placing the deck slab at
the correct elevation, modeling diaphragms and/or cross-frames at actual locations, distributing
loads via element stiffness, and by modeling bearings i.e. boundary conditions correctly. The
increase in modeling accuracy leads to an increase in accuracy for dead and live load force
effects to be used in the design.

3.6.2.1 Girder Location

Girders should be spaced at their proposed center-to-center distance, often determined during a
previous preliminary design phase, or in the case of an existing bridge, at the actual center-to-
center distance measured in the field.

Girder flanges are typically modeled at the elevation associated with the centroid of each flange.
The girder web is typically modeled at the girder centerline. The web depth used in the model
can either be the actual web depth or the distance between flange centroids. [t is recommended
to use the distance between flange centroids such that the flanges are at the correct location; if
the flanges are not at the proper location, the underestimated stiffness can be important,
especially for shallow girders, defined as less than 50" deep (Grubb et al., 2011).

Figure 39 shows the top flange-web intersection of a steel girder to be constructed while Figure
40 shows how this intersection could be modeled in a 3D finite element model. The additional
area due to extending the web to the flange centroid is typically not significant and can be
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considered as representative of the flange-web weld in welded plate girders or the fillet of rolled
shapes, which are not typically included in a 3D model.

Figure 39. Illustration. Actual Flange-web  Figure 40. Illustration. Modeled flange-web
intersection. intersection.

The approach described above works best when constant thickness flanges are used for the entire
length of the girder. If the girder has a constant web depth but varying flange plate thicknesses,
the distance between flange centroids will vary, requiring the model to have a step in the depth at
the flange thickness transition (see Figure 41). This step, depending on how it is modeled, can
result in a transition zone with poor aspect ratios and/or stress concentrations in the web shell
elements (see Figure 42(a)). The simplest way to account for the transition is to keep the web
depth a constant average and use an abrupt flange thickness transition as illustrated in Figure
42(b). This is typically sufficient and the generally recommended way to model a flange depth
transition. Alternately, a constant average web depth can be use along with a transition section,
tapering from the smaller flange depth at the transition, to the deeper flange depth a short
distance away as illustrated in Figure 42(c). The distance should be chosen to be consistent with
the web mesh. The most accurate solution is dependent upon the analysis software being used;
some analysis software allows the element cross-section to be offset from its defined mesh axis
line. This allows the flanges to be shifted to their correct locations while maintaining the correct
web depth which is typically constant, as illustrated in Figure 42(d).

()

Flange
thickness
transition

Figure 41. Illustration. Flange thickness transition.
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Figure 42. Illustration. Flange thickness transition modeling.

In Figure 43 three different ways of modeling the web of a concrete I-section are shown. In
Figure 43(a), the web is assumed to only be the rectangular portion of the girder. In Figure
43(b), the web is assumed to extend from the centroid of the top flange to the centroid of the
bottom flange, with the fillets included in the flanges. Figure 43(c) assumes the web extends
from the top of the top flange to the bottom of the bottom flange.

Modeling the web as illustrated in Figure 43(c) is recommended, with nodes placed at the
locations of the centroids of the remaining area of the top and bottom flanges such that the
flanges are at their correct positions. Modeling the full depth of the web also allows diaphragms
to be modeled full depth and the support to be placed at the approximately correct elevation.

Modeling as in Figure 43(b) would be the second choice, but requires iteratively solving for the
centroid of the remaining area of the flanges and the end of the web in order to be as accurate as
possible. Modeling as in Figure 43(a) is not recommended as it has to account for a
discontinuity between the top and bottom of the web and centroids of the flanges.

No matter which method is chosen, care should be taken to avoid “double counting” any portion
of the cross-sectional area.
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Figure 43. Illustration. Modeling web depth.

3.6.2.2 Concrete Slab Location

The concrete slab is modeled such that the centroidal elevation is at the correct location. This
can be achieved by either: modeling the mid-thickness of the slab at the correct elevation and
connecting the flange to the slab by various methods such as rigid links, or by modeling the slab
at the same elevation as the girder top flange and using an offset to achieve the correct location,
as some FEA programs allow.

3.6.2.3 Cross-Frame/Diaphragm Locations

Cross-frames and diaphragms are members that span between longitudinal girders. Cross-frames
are open web truss configurations of steel members, often X or K configurations, while
diaphragms are solid web members, either full or partial girder depth. In straight non-skewed
bridges, cross-frames and diaphragms may only function as bracing prior to the composite deck
being cast. In curved and skewed bridges, cross-frames and diaphragms also function as primary
structural members, distributing loads transversely between girders. [t is recommended that
cross-frames/diaphragms only be modeled when they are being counted on to redistribute load,
otherwise it is recommended that they be conservatively omitted from the model.

Since a 3D finite element model explicitly models the girder depth, the cross-frames/diaphragms
can also be modeled explicitly. For simplicity, full depth steel cross-frame members can be
connected at nodes along the top and bottom of the girder webs, which although not necessarily
precisely correct, is acceptable for typical design of straight non-skewed bridges as long as the
cross-frame stiffness is adjusted if necessary to account for the greater modeled depth. The
designer may need to adjust any force results from the model to account for the changed
geometry. When the connection plates/stiffeners are also explicitly modeled, it is possible to
place the cross-frame/diaphram members at their exact geometrical location. [t is recommended
that connection plates/stiffeners be typically included in 3D models, and nodes located along the
depth in order to place the cross-frames/diaphragms at the correct geometry, especially for
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partial depth cross-frame/diaphragms. 1f for whatever reason the cross-frames/diaphragms are
not located at their correct geometry, it is up to the analyst to ensure that the member stiffnesses
are such that results are acceptable.

If connection eccentricities, connection stiffness, and second-order amplification of the
corresponding steel cross-frame member transverse deflections are not explicitly modeled, they
can be taken into account using an effective area (Wang et al., 2012). In lieu of a more accurate
analysis, the equivalent stiffness (AE)eq of equal leg single angles, unequal leg single angles
connected to the long leg, and flange connected tee-section members may be taken as 0.65AF.

3.6.2.4 Bearing/Support Location

Idealized supports in the 3D finite element model are typically located at a node at the web-
flange intersection where the bearing stiffener (or diaphragm in the case of tub girders) is
located. This point support is generally sufficient for typical designs. When local stresses are
required, modeling a more accurate bearing area on the flange would be more appropriate.

3.6.3 Number of Elements

The number of elements required varies depending upon the type of analysis being performed,
the elements being used, and the desired accuracy. Analysis of the gross structure to determine
bending moments, shears, and displacements for routine design purposes requires fewer elements
than when examining specific details such as localized stresses in coped webs of steel beams or
dapped ends of concrete beams. The focus of this manual is on the gross structure; details
regarding analysis of localized areas can be found elsewhere. The number of elements required
also varies depending on the behavior of the member.

As discussed previously in Section 2.3.2, for a given element formulation, the number of
elements required is a balance between accuracy and efficiency. Using many elements provides
more accurate results but also requires more time to construct, analyze, and process the model.
Using few elements results in a very quick analysis but the accuracy of the results may be
compromised. Varying the mesh size over a given model can also achieve efficiency. A fine
mesh can be used in an area of interest where more accurate results are required transitioning to a
coarser mesh elsewhere in the model.

The guidelines provided below should aid in arriving at a reasonably accurate solution without
being time and resource intensive. Running a few sensitivity analyses early in the design process
can also help in developing an efficient model, and in general should always be performed when
conducting a refined analysis. As a rule of thumb, if increasing the number of elements results in
a difference of less than five percent, the coarser mesh is sufficient.

One thing to keep in mind is that elements must connect at nodes. This should be considered
when defining the model geometry, to ensure that nodes are located where they are needed or
may be needed in future analysis models. Examples are nodes located where concentrated loads
are to be applied, or along line or shell element girders where shell deck elements connect in
order to achieve acceptable aspect ratios, or along shell element girders where cross-frames or
stiffeners may need to be explicitly modeled.
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Another consideration to keep in mind is the compatibility of the mesh at the interface between
different element types. Make sure the degrees of freedom of the elements being connected are
compatible. “Floating’ nodes or nodes that are not connected to other elements should
generally be avoided at interfaces as displacement incompatibilities such as gaps or elements
occupying the same space can result.

3.6.3.1 Element Aspect Ratio and Geometric Distortion

The aspect ratio of an element is the ratio of the longest side to the shortest side. Figures 44 and
45 show single surface elements with aspect ratios of 1:1 and 5:1 respectively. In an ideal
situation, all elements would have an aspect ratio of 1:1, but for irregular shapes this is
impossible to achieve, not to mention the aspect ratio also affects the number of elements and
consequently degrees of freedom in a model. In addition to the aspect ratio, the angle between
adjacent edges of an element should ideally be as close to uniform as possible. For instance a
quadrilateral element would ideally have 90° angles in each corner.

It is generally believed that an aspect ratio of up to 5:1 will provide accurate results in most
cases, and Article 4.6.3.3.1 of AASHTO LRFD sets 5:1 as the maximum limit. A recommended
rule of thumb is that the interior angles of elements should be equal to the ideal angle plus or
minus 60 percent. Depending on the element formulation, the application, and the solver being
used, larger aspect ratios and geometric distortion may be acceptable, but as always, the results
should be verified. Note that the aspect ratio/geometric distortion is more important for elements
in a varying stress field, and for elements in close proximity to an area for which numerical
results are desired. For more on mesh refinement see (Bathe, 2006)

Figure 44. llustration.

Aspect ratio = 1:1. Figure 45. Illustration. Aspect ratio = 5:1.

3.6.3.2 Girder Flanges

The number of elements along the girder length for the flange should be equal to the number of
elements along the length of the web such that the nodes align and interconnect. AASHTO
Article C4.6.3.3.1 recommends a minimum of 5, and preferably at least nine nodes per beam
span. The locations of cross-frames or diaphragms also affect the spacing and placement of
nodes.

Depending on the type of element used, the number of elements required for the flange width
will vary. If the flanges are modeled using beam elements, the beam element will have the
geometric properties of the entire flange area/plate. Modeling the flanges using beam elements is
recommended for I-shaped girders. If shell elements are used, at least two elements are needed
to define the flange width for I-girders, one on each side of the web centerline. For box girders,
at least two elements are needed and four are recommended to capture shear lag effects.
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Consideration of the element aspect ratios of both the flanges and the web should be included in
determining the number of shell elements required.

3.6.3.3 Girder Webs

Available literature indicates that the number of shell elements required to model the girder web
depth can be anywhere from one to twelve elements. The number of elements required depends
on the behavior the designer wishes to capture. One element may not be able to accurately
capture the desired behavior while twelve elements will result in a significant increase in the
analysis time with limited increase in accuracy.

To capture the parabolic shear behavior in a typical bridge design, it is recommended to use at
least four elements throughout the depth of the web, but this number can be reduced if capturing
the parabolic shear behavior is unimportant. The number of web shell elements along the length
of the girder often depends on the number of elements in the flanges. Locations of longitudinal
and vertical stiffeners may be a consideration in the location and number of elements in the web.

The number of web elements can also be influenced by the element aspect ratio in both the web
and the flanges. As mentioned previously, the ideal aspect ratio of 1:1 will often result in many
elements. This ratio can typically be increased up to 5:1 with little loss of accuracy. Depending
on the element formulation, the application, and the solver being used, differing aspect ratios and
corresponding numbers of elements may be appropriate.

3.6.3.4 Cross-Frames and Diaphragms
3.6.3.4.1 Cross-Frames

Cross-frame diagonals are typically modeled using bar (truss) elements. Only one element is
necessary for each diagonal as only axial force is considered.

Cross-frame top and bottom chords are typically modeled using beam elements but may also be
modeled using shell elements when local stresses are being investigated. If shell elements are
used, one element per angle leg or two elements for a WT-shape flange and one element for the
WT-shape stem are reasonable. For shell elements, the number of elements along the length of
the chord member should provide a reasonable element aspect ratio. If beam elements are used,
depending on element formulation, one element may be sufficient to capture the behavior of the
chord member. If the top chord is composite with the deck, the number of elements should be
consistent with the number of deck elements.
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3.6.3.4.2 Diaphragms

Diaphragms for 3D models, similarly to girders, can be defined using shell elements for the web
and beam elements for the flanges for steel diaphragms. Four elements are recommended for
full depth of diaphragms, with a minimum of two elements in partial depth diaphragms, keeping
in mind that the number of elements used in the web should provide a reasonable aspect ratio,
and should be compatible with the girder webs. The number of elements for the flanges should
be consistent with the number used along the length of the web and the concrete deck slab if
composite.

It is recommended that the shell elements of full depth rectangular section solid diaphragms in
concrete bridges also be modeled with four elements. The number of elements should be
compatible with the depth of the connected girders, and the number of elements along the length
should be compatible with the number of deck elements. As always, the aspect ratio should be
kept within reasonable limits.

3.6.3.5 Deck Slabs

The deck slab for a 3D model is modeled similarly to the deck slab in a PEB model, see Section
3.5.2.1. The main difference is that the centroid of the deck slab is attached to the girder flange
elements in the 3D model rather than the respective centroids of the deck and the girder line
elements being attached as in the PEB.

3.6.3.6 Stiffeners

Transverse stiffeners are rarely modeled in routine bridge design. If modeling stiffeners is
required, transverse stiffeners can typically be modeled with beam elements extending from the
top flange to the bottom flange. Longitudinal stiffeners can also be modeled using beam
elements. The number of elements along the length of the stiffeners should match the number of
elements along the web where the stiffener is located. If local stresses are required, or cross-
frame/diaphragm connection locations need to be modeled explicitly, shell elements can be used
to model stiffeners.

3.6.4 Interpreting Analysis Results

When using refined analysis techniques, especially as models become more complex, behavior is
captured that historically has been ignored or overlooked. Forces and displacements arising
from these behaviors are usually not significant to the design of the structure, but can cause
confusion when the engineer’s frame of reference is a line girder analysis.

It is important to note that these behaviors are typically not spurious, but represent actual
conditions of the structure. And while sometimes these effects can be accounted for through
conservative assumptions, they should not be disregarded just because they do not appear when
using simplified analysis techniques. Recognizing the associated forces is essential in providing
load paths and satisfying static equilibrium associated with the model behavior.

As an example, in three-dimensional analysis of a multi-girder bridge when truck loads are
placed such that the rotations of the girders at a fixed pier vary significantly across the bridge
width, longitudinal forces can develop at the bearings. This occurs due to the vertical distance
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between the bearing and the neutral axis, such that rotations induce a longitudinal displacement
at the bearings. If the rotations are different for different girders, there will be differences in the
longitudinal displacements, which will induce varying longitudinal loads.

Similarly, when parapet weights are applied at their physical locations, diaphragms will tend to
act as points of support along the fascia girders. The force effects generated in three-dimensional
analysis will be quite different than if one were to assume equal load sharing and a uniform
distribution along each girder. The loads generated are typically small, and the simplifying
assumption will result in an adequate design, but the behavior from a three-dimensional model
will be significantly different than expected if the engineer is unfamiliar with this behavior.

Another effect that often arises in shell element models is localized stress concentrations. These
can be actual stress concentrations due to geometric discontinuities in the bridge, or they may be
artifacts of the analysis model, for instance where a line element is assumed to be attached at a
single node of a shell element rather than distributed over an area. Other conditions that may
result in stress concentrations include but are not limited to:

Re-entrant corners

Steel connections/splices
Bearings on concrete
Applied concentrated loads
Point interfaces

Dealing with these stress concentrations is up to the judgment of analyst, but in many cases they
can be safely ignored, particularly when good detailing practices have been followed.

3.7 Boundary Conditions

As stated earlier in Section 2.3.5, boundary conditions are restraints usually applied at the
bearings of bridge members, or the foundations of substructures, in global coordinates such that
the model is only allowed to deform in the prescribed manner at the given restraints when load is
applied. The boundary conditions should replicate the behavior of the bearings, abutments,
piers, or foundation as required.

The boundary conditions can reflect, among other considerations:

The amount of tolerance to movement in restrained directions in a typical bearing,
Whether there is accommodation of transverse temperature expansion,

The longitudinal displacement of bearings due to girder rotation,

Potential support settlement,

Substructure stiffness,

Soil-structure interaction, if present.

When unable to approximate the behavior of the substructure or foundation with idealized
boundary conditions, other techniques can be utilized, with appropriate restraints or interface
elements to model the connectivity at the bearings or foundation.

3.7.1 Idealized Boundary Conditions
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Modeling and analysis used in design generally assume idealized boundary conditions which are
usually not possible to achieve in actual construction. These idealized boundary conditions
usually consist of preventing some combination of translations and/or rotations along the three
orthogonal axes. In many cases, using idealized boundary conditions provides a sufficient
approximation of actual boundary conditions. The following is a list of idealized boundary
conditions that typically also assume that the supports are rigid in the vertical direction:

e Pinned — A “pinned” boundary condition is used when the girder is allowed to rotate
about an axis transverse to the support. Translation is not allowed in any of the
orthogonal directions. Depending on the type of bearing used, rotation about the
longitudinal axis and the vertical axis of the bridge may be permitted. Note that when a
girder is described as having a “fixed” end with respect to expansion, a “pinned” support
is usually intended.

e Fixed — A “fixed” boundary condition is applied when the girder is not allowed to
translate or rotate about any axis.

e Unrestrained — An “unrestrained” boundary condition is applied when the girder end is
allowed to translate and rotate in the longitudinal and transverse directions.

¢ Guided Expansion — A “guided expansion” boundary condition is used when the girder is
allowed to rotate about an axis transverse to the guide, and translate along an axis
longitudinal to the guide, but is fixed against transverse translation. Depending on the
type of bearing used, rotation about the longitudinal and vertical axes may be permitted.
Guided expansion is usually intended when an “expansion” bearing is specified.

1t is critical to ensure that the movements permitted at the boundary conditions used in the
analysis sufficiently match those in the actual bridge; discrepancies between the actual and
modeled supports can significantly impact forces in girders or substructures. For instance, in
curved structures, the direction of thermal movement is not necessarily parallel to the
longitudinal axis of the bridge. If expansion bearings in a continuous segment are not oriented
along rays from a single point, thermal forces will result, and should be designed for. Care
should also be exercised when fully restraining bearings transversely, which in some cases can
lead to overestimation of lateral forces.

3.7.2 Idealized Versus Actual Boundary Conditions

Because of real world considerations such as friction and limited stiffnesses of connected
elements, actual boundary conditions usually lie somewhere between the fully pinned, fully
fixed, or fully unrestrained idealized conditions described in Section 3.7.1. Geometrically,
supports such as bearings are generally not located at the centroids of girders, although often
they are modeled as such. For vertical bearing reactions of straight unskewed bridges, assuming
substructures and foundations are unyielding is adequate for typical superstructure analyses.

Sometimes it may be necessary to model the boundary conditions more accurately. For instance
modeling supports with spring stiffnesses approximating the actual bearing stiffness rather than
using unyielding supports can result in more realistic distribution of reaction forces, especially
in significantly skewed or curved bridges. In bridges with significant horizontal curvature and/or
skew, it is generally a bad idea to model the horizontal bearing conditions as rigid. The resulting
horizontal force effects can be unreasonably large. Even if the bearing stiffness is unknown,
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modeling the stiffness as an extremely large finite value, instead of an infinite (unyielding) value
can often result in much better force effect estimations.

When the effect of substructure stiffnesses on bearing reactions is significant, it is recommended
that that piers and abutments be modeled explicity. Beam elements are typically sufficient to
model such elements with little additional computing effort.

Including foundation stiffnesses such as soil-structure interaction can range from simple to
complicated. Foundation stiffnesses can be computed and input into the superstructure model as
spring stiffnesses. Simple diagonal springs can be used when each degree of freedom is modeled
as fully independent. More advanced analyses can utilize a fully coupled 6x6 spring stiffness
matrix including off diagonal terms, obtained from an independent foundation analysis program
(for more information see Section 5.2).

3.7.3 Bearings

When only the superstructure is being modeled, boundary conditions are usually modeled at the
locations of bearings. In these cases, bearings are modeled as described in Sections 3.7.1 and
3.7.2. When substructures are modeled along with superstructures, bearings should be modeled
as interface elements between the superstructure and the substructure.

There are multiple methods of modeling such interface elements, from simple truss elements to
model transmission of vertical forces only, to advanced nonlinear elements that can model lift-
off or stick-slip friction (see Section 5.3.1.3). In most cases, a zero length six degree of freedom
spring interface element is recommended. Assignments of low or zero stiffness are made in
directions of permitted movement. Assignments of high stiffness, usually about three orders of
magnitude larger than adjacent elements is appropriate, in directions where movement is
restrained.

As stated previously for boundary conditions, it is critical to ensure that the movements
permitted by interface elements used in the analysis sufficiently match those in the actual
bearings. Care should be taken especially when interfaces are modeled as fully rigid, particularly
in the transverse direction.

3.8 Service Versus Strength Limit States Models

In AASHTO LRFD, a distinction is made between service limit states and strength limit states,
with different load factors and different resistances employed. Exceeding a service limit state
may result in maintenance issues, vibration, or some minor damage to the structure, while
exceeding a strength limit state would result in failure of the structure or a component of the
structure. From a probabilistic standpoint, a limited number of the former may be acceptable,
while the latter should have a vanishingly small probability.

This distinction carries over into modeling. In many cases, different models should be utilized
for service and strength limit states. For instance, there are elements on a bridge that are deemed
non-structural, or non-load carrying, yet definitely add stiffness and carry loads in service.
Examples would be concrete parapets and integral wearing surfaces. For strength limit state
analyses, these typically would not be modeled, and their weight would be applied with line or
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area loads. For service limit state analyses, such as deflection or fatigue, these elements would
be modeled and their stiffnesses included in the analysis. Additionally, service limit state
analyses almost always utilize linear elastic models. While linear elastic models are often
sufficient for strength limit state analyses, sometimes more advanced models are required to
investigate nonlinear/inelastic behavior such as concrete cracking, steel yielding, or stability at
the strength limit state.

3.9 Construction Sequence / Staged Loading

Often in bridge design the entire structure is initially assumed to be constructed in a minimum of
steps, with no regard to sequence. Girders are modeled complete end-to-end of the bridge. Wet
deck concrete weight is applied abutment to abutment in a single step as well. Then
superimposed loads are placed on the full composite structure. This is not how bridges are
actually constructed.

There are many different ways that a bridge can be constructed, each with a unique loading
sequence. It may be the case that the most critical load case occurs at some point during
construction, for example stability of a composite girder bridge prior to the concrete deck
hardening. For this reason, a construction sequence analysis should be performed to make sure
the bridge will not exceed any limit state at any point during construction, as well as reaching
the desired stress state in the final condition. The construction analysis required depends on the
contract language and delivery type. Often only the proposed construction sequence on the
contract plans needs be checked sufficiently to demonstrate that the bridge is constructible.
Contractors wishing to deviate from the proposed sequence would provide their own analysis
demonstrating adequacy.

Although permanent bridge dead loads are well defined for a constructability analysis, temporary
construction loadings are not well defined by AASHTO LRFD, making constructability checks
more difficult. One of the reasons is that construction loadings are so variable and bridge
specific, depending not only on the type of bridge, but also the method of erection. The designer
should make every effort to ensure that the loadings of the constructability analysis are consistent
with the assumed method of construction.

Historically, in order to perform a constructability check of a relatively complex bridge, a
“deconstruction” analysis was performed. The bridge was modeled in its final condition and
then a series of analyses were run removing single or groups of elements. Temporary supports
or bracing could also be added and/or removed in the models as necessary. This process not only
permitted a check of the stresses at each step of construction, but also allowed for calculation of
elevations and camber such that the bridge ended up in the correct final position, since that is
where it “started.”

Another common series of analyses are the deck pour sequence. Typically, the deck is not
poured all at once. Due to the large volume of concrete required, it is cast in stages. Therefore,
the first pour is partially hardened and composite for loads from the second pour. The first and
second pours are partially hardened and composite for loads from the third pour. And so on until
the entire deck is cast. The modulus of the deck concrete can be adjusted for each pour in each
analysis if desired to reflect the time of curing. Running multiple analyses with maximum and
minimum properties, for instance regarding composite action, can also be useful in bounding the
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response. Again, not only can stresses be checked at each stage, but by summing the deflections
of the entire sequence, required camber due to the deck weight can be calculated.

A similar sequential redecking analysis may also be prudent during the initial design of a bridge.
During a redecking, keeping a portion of the bridge open to traffic may be necessary/desireable.
A sequence that permits a staged redecking of a bridge while maintaining a given level of both
construction and traffic loading should be performed during design on bridges where redecking
at some point is considered likely.

Cantilever construction also requires a series of analyses. Temporary fixity must be applied at
the pier, and an analysis run for each segment of bridge added to the structure. The pier needs to
be checked at each stage to ensure that the load does not become too unbalanced. Displacements
determined at each analysis stage can be used to ensure that the final condition matches the
desired profile grade.

Bridge girders are sometimes initially simply supported for dead loads, and then made
continuous for live loads. Multiple models reflecting the correct connectivity for the loading
would be required. Deflections from the simply supported models would be used for
determining camber.

Many current software packages have simplified the construction sequence/staged loading
process. No longer do separate models need to be analyzed and processed individually. Solving
sequentially and “adding”/“subtracting” elements in various load steps, a single model can be
utilized for the entire sequence.

For slab-on-girder bridges, the contract plans require camber diagrams or tables for each girder,
so that the desired profile grade is achieved under dead loads. In order to calculate the camber, it
is necessary to correctly model all sources of stiffness such that deflections are determined with
sufficient accuracy. Note there is no such thing as a “conservative” calculation of displacements,
since achieving the profile grade within tolerance is the goal. This is particularly important in
curved or skewed bridges since transverse load distribution and torsional behavior are significant
contributors. Such model(s) may or may not be the same model(s) used for performing strength
design.

For steel girder erection, fit-up of the cross-frames can affect not only the final geometry of the
bridge, but can contribute to locked-in stresses as well. There are three possible fit-up
conditions: No load fit (NLF) where the girder webs are vertical and cross-frames are unstressed
in the unloaded geometry, steel dead load fit (SDLF) where the girder webs are vertical and the
cross-frames are unstressed under steel only load, or total dead load fit (TDLF), where the webs
are vertical and the cross-frames unstressed under the full dead load of the bridge.

NLF is the easiest to design and often to construct, but can result in out-of-plumb girders and
locked-in forces in curved and skewed bridges. SDLF and TDLF can diminish or eliminate the
out-of-plumbness and locked-in forces, but may require the cross-frames to be force-fit initially,
in order that they are unstressed at the appropriate displacement. Choosing the appropriate fit-up
is important, as it be the difference between erection being simple and easy, and difficult or
impossible for the contractor.
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Per AASHTO, the designer is responsible for the fit-up method specified for construction. In
some cases a more refined analysis may be warranted, especially for curved or highly skewed
bridges. If a refined analysis of the bridge has been done, modeling the installation of the cross-
frames for the desired fit condition is often the simplest and most accurate method of obtaining
cross-frame forces. For more information on cross-frame fit-up see G 13.1 Guidelines for Steel
Girder Bridge Analysis (AASHTO/NSBA, 2011), NCHRP Report 725 (White et al., 2012),
NCHRP 20-07/Task 355 (White et al., 2015), and Skewed and Curved Steel I-Girder Bridge Fit
(Beckman et al., 2016, Chavel et al., 2016).
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CHAPTER 4. CONCRETE/STEEL GIRDER BRIDGE MODELING
4.1 Concrete Bridges

The following sections provide material specific guidelines to use when modeling concrete girder
bridges. Some guidance is also given on using the results to design in accordance with AASHTO
LRFD.

4.1.1 Modeling Guidelines
4.1.1.1 Concrete Material Models

For most routine concrete bridge design, linear elastic concrete material properties should be
utilized. Typically, the minimum properties that need to be assigned to a linear elastic material
model are modulus of elasticity and Poisson’s ratio. AASHTO LRFD Article 5.4.2.4 provides a
formula for the modulus of elasticity based on unit weight and f’c. AASHTO LRFD Article
5.4.2.5 assigns a value of 0.2 for Poisson’s ratio unless determined by physical testing.
Computer programs will often have a material library and simply choosing the concrete material
corresponding to the design f’c is all that is necessary for AASHTO properties.

For more advanced analyses, more sophisticated material models may be required with
additional concrete material characteristics. Material characteristics related to creep and
shrinkage or concrete cracking are examples of more sophisticated material models. AASHTO
LRFD Article 5.4 should serve as a starting point in defining some of these material properties
but program documentation and research literature can also be helpful in choosing appropriate
values for the material variables. For more guidance on advanced material models, see Section
5.1.2.1.

4.1.1.2 Concrete Beam Element Moment of Inertia

The flexural stiffness of a concrete member can vary with the applied load. When modeling
concrete members with beam elements, the various stiffness options are best handled by using a
constant modulus of elasticity and adjusting the beam element moment of inertia. Up until the
cracking moment is reached, the flexural stiffness is best modeled by the use of the gross
moment of inertia based on the full concrete cross-section.

At the point where the reinforcement has reached first yield, the stiffness is best modeled by the
cracked moment of inertia, which is calculated by ignoring all concrete on the tension side of the
neutral axis and transforming the area of steel on the tension side, all determined at the ultimate
moment state.

For analyses where the cracking moment is exceeded, but the steel has not yielded, such as
determining live load deflections, an effective moment of inertia is appropriate. This is because
cracks occur at discrete locations, and the stiffness is greater than the cracked stiffness in
between the cracks. AASHTO LRFD Article 5.7.3.6.2 provides a method for calculating an
effective moment of inertia for determining deflections and camber of flexural members.
AASHTO LRFD Article 5.7.4.3 provides a method for calculating an effective stiffness for
evaluating slenderness effects in compression members with certain slenderness ratios. ACI 318
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provides a more accurate method for calculating the effective stiffness for evaluating slenderness
effects.

The gross and the ultimate cracked moments of inertia are two bounds to the stiffness of a
concrete element that are dependent on the force effects, which are initially unknown. It should
be noted that axial force effects will also affect the values for the cracking and yield moment,
and hence the stiffness of the element, adding additional complications.

Figure 46 shows the moment-curvature relationship for a circular reinforced concrete column.
The moment-curvature relationship is developed in Example 5 using Mander’s model for
confined and unconfined concrete (Mander,1988), and the steel model developed by Raynor et
al. (Raynor, 2002). The unconfined and confined concrete models and steel models are
discussed further in Section 5.3.2.1. The moment-curvature relationship shown below is used to
define the plastic hinge behavior of one of the columns in Example 5; behavior of plastic hinges
is also discussed further in Section 5.3.2.1.

Moment - Curvature for Example 5 Column 1
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Figure 46. Graph. Example of the moment-curvature relationship for a given axial force.

Determining which stiffness to use will depend on the type of analysis being performed. The
additional accuracy of the resulting force effects, gained through use of an iterative adjustment of
the stiffness along the length of the concrete members based on those same force effects, is
usually not worth the additional effort. As such, a constant value of the moment of inertia is
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typically appropriate. For strength limit state dead and live load analyses of bridge structures, it
is recommended that the gross concrete stiffness be used throughout the model.

For seismic analyses, where plastic hinging and significant nonlinear material behavior is
expected, additional consideration is required. If a displacement based design method is being
utilized, a lower stiffness is typically conservative. In these cases, effective or even cracked
stiffness values should be used. For force based methods, it may be more conservative to use
gross section properties.

Several publications provide charts relating effective stiffness to gross stiffness as a function of
reinforcement ratio and axial load. Two common sources for these are the AASHTO Guide
Specifications for LRFD Seismic Bridge Design, and the FHWA Seismic Retrofitting Manual
for Highway Structures. These provide reasonable estimates of the reduced stiffness of concrete
members and are very easy to implement.

If stresses are being determined directly from the refined analysis, using the appropriate stiffness
is even more important. A further variation in flexural stiffness that can be used is to account for
creep behavior with a reduced effective modulus of concrete. An example of this approach is the
use of the effective 2n modular ratio for permanent loads and prestress at the service limit state
in concrete girders, and the effective 3n modular ratio for permanent loads at all limit states on
composite concrete-steel girders. If the model is being used only to determine load effects
(moments and shears), the effective section properties can be used to calculate stresses during
design.

4.1.1.3 Modeling Non-Prismatic Cross-Sections

For girders with variable cross-sections, it is necessary to accommodate the variation in girder
centroid. For models using beam elements, the location of the line(s) used to define the beam
element should be located at the centroid of the typical section. At locations where the cross-
section varies from the typical section, eccentricities will need to be applied such that the
geometry aligns (see Figure 345 in Section 9.6.2.3 for an example). When shell elements are
used, the cross-section should be divided into regions of constant thickness and regions of
varying thickness as shown in Figure 398 of Section 9.7.2.1.1. Where the thickness varies, an
average thickness should be determined; eccentricities may be needed to align the surfaces
appropriately.

4.1.1.4 Shear Lag Effects

Shear lag refers to the effect of in-plane shear stiffness and how it alters the normal stress
distribution from that predicted by simple beam theory. For example, in a box girder, the axial
stresses due to bending will tend to be larger in the flange at the connection to the web. The
stresses will tend to decrease toward the middle of the flange between the webs and toward the
flange tips of overhangs due to in-plane shear deformations. Thus, these areas “lag” behind in
stresses due to shear. Figure 48 shows the axial stress distribution in the top flange of the
concrete box girder (shown in Figure 47) both with and without accounting for shear lag. The
effect is largest when the moment is changing rapidly along the length of a member, which is
another way of saying when the shear forces are large. The more points of connection among the
elements of a cross-section, the smaller the shear lag effect.
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To accurately capture shear lag effects, shell or solid elements are required to model the cross-
section. There are ways of modifying a grillage model to capture shear lag, but it is rarely worth
the effort when higher order elements are available.
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4.1.1.5 Modeling Diaphragms in Concrete Box Girders

The internal diaphragms are present over a small percentage of the overall member length;
therefore, it is not necessary to account for the stiffness of the internal diaphragms in a beam
element model. The weight of the internal diaphragms can be accounted for using applied loads.

When a shell element model is used, including the diaphragms in the model avoids fictitious
large stresses at the supports if a single point (or a pair of points) is used to model the bearings.
Explicitly modeling the support diaphragm also provides a location for the tendons to be
anchored for explicitly modeled prestressing tendons. Modeling the diaphragms in the shell
element model can be done using either shell elements or solid elements. The advantage of shell
elements is that the analysis remains less complex but the disadvantage is that shell elements are
typically used where the thickness of the component is significantly less than the other
dimensions which is not always the case with the internal concrete diaphragms. Using solid
elements allows for the actual diaphragm geometry to be modeled but the analysis becomes
increasingly complex.

In Example 7 of Chapter 9, the continuity tendons cross over the interior supports and are
anchored in the adjacent span. In this example, a diaphragm was placed at each tendon
anchorage location and inflection point resulting in a series of diaphragms. Figure 49 shows an
elevation view of the tendons crossing over an interior pier used in Example 7. The dashed lines
in Figure 49 represent the diaphragms that were included in the shell element model to anchor
the different tendons. The shell elements used to model the pier diaphragm are given a thickness
equal to the diaphragm thickness shown on the plans. Anchorage diaphragms are defined at the
points where the tendon changes direction and points where the tendons are anchored; these
diaphragms are used to connect the tendons to the box girder. The anchorage diaphragm
thickness is sufficient to minimize the deflection under the tendon loads; elastic material
properties with no self-weight are used as the pier diaphragm accounts for the weight.

87



/- SPAN 2 TENDON

_CPAN CNT
ANCHORAGE - ¢ PIER RN
; f NP RALE
N
|
| 0= ||
L lr il :
=1 e
= I ———
= - |
y " :
| . , L TEMPORARY
-] PT (TP
|
| -
= ‘ L T
T | i
— ‘7
‘ .
‘ C
‘ C
‘ n
|
N
, . .
1 o Pier Diaphragm
| N |
n
N
[
< l <
<« - —< <+« «—<— Anchorage

Figure 49. Illustration. Tendons crossing over at pier. Diaphragms

4.1.1.6 Boundary Condition Considerations

The boundary conditions for concrete bridges may vary depending on the type of construction.
For concrete girders set on bearings, the superstructure and substructure can be designed
separately. For concrete girders that are integral with the substructure, typical of cast-in-place
concrete construction, appropriate modeling of the substructure and foundation stiffness is
necessary to accurately predict the superstructure force effects. See Section 4.3 for more
information about modeling substructure and foundation components.

4.1.2 Time-Dependent Non-Linear Effects

Concrete undergoes changes in strain with time due to two processes: shrinkage and creep.

Creep and shrinkage result in volumetric changes to concrete elements and both are very hard to
predict accurately. Of particular note is a sentence in the commentary of the AASHTO LRFD,
Article C5.4.2.3.1: “Without specific physical tests or prior experience with the materials, the use
of the empirical methods referenced in these Specifications cannot be expected to yield results
with errors less than £50 percent.”

Shrinkage is a volumetric change caused for the most part by loss of adsorbed water during the
curing process and is independent of applied load. It is affected by the ratio of the surface area to
the volume of the concrete element, the relative humidity of the air around the element, stiffness
of the aggregate, and the water-to-cement ratio, among other factors. Several equations have
been developed to model the development of shrinkage with time. AASHTO LRFD Article
5.4.2.3.3 provides one example of the equations used to calculate the volumetric change due to
shrinkage; the equations from the CEB-FIP model code and ACI 209 may also be used.
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Similar to shrinkage, creep is a volumetric change in a concrete element over time but is
dependent on the applied stress. Load applied to a concrete element will result in an initial
elastic deformation plus an additional creep deformation that increases with time. The creep
deformation is a function of the total duration of the applied load as well as the age of the
concrete at the time of loading. If the load is then removed, the structure will experience creep
recovery, i.e. it will creep back towards its initial undeformed condition. If the load was applied
for a significant time duration and then removed, there will be a permanent deformation to the
structure that will never fully be recovered. Figure 50 (a) and (b) show the time history for a
member under a compression load, illustrating both creep and creep recovery. The same factors
that influence the amount of shrinkage also influence creep deformations. AASHTO LRFD
Article 5.4.2.3.2 presents equations to estimate the amount of creep, but also allows the use of
CEB-FIP and ACI 209 formulations.
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Figure 50. Graphs. Compound figure showing subfigures showing stress vs. time and strain
vs. time for the effect of creep.

Figure 51(a) shows the amount of creep deformation for four identical columns loaded at four
different ages: 1 day, 7 days, 28 days, and 120 days. Both columns are four-foot in diameter, 4
ksi concrete compressive strength is used, and the bases are assumed to be fixed (see Figure
51(b)). A load of 500 kips is applied at the top of the column. Figure 51(a) shows that the age at
time of loading has a significant effect on the amount of creep deformation and the rate at which
the creep deformation plateaus. The creep deformation for the column loaded at 7 days is
approximately 75 percent of that for the column loaded at one day. Loading applied at 28 days
results in approximately 60 percent of the creep deformation while loading at 120 days results in
about 50 percent of the creep deformation.
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Figure 51. Graph. Creep deformation vs. age at loading.

An additional effect of creep is the reduction of loads induced by other deformations of the
structure. For example, in a bridge with integral piers, the shortening of the superstructure due to
shrinkage will induce moments in the piers, but these will be relieved by the creep of the pier
concrete such that the final forces that must be considered in the design will be significantly
reduced.

Several analysis programs of varying complexity include the ability to model shrinkage and
creep of concrete structures using nonlinear material properties. Care should be taken when
taking advantage of program features to understand what the program is doing, whether it is
modeling creep behavior, or performing a calculation of post-tensioning losses due to creep. For
the analyst, the key points to consider when deciding whether to include these effects in an
analysis are:

Concrete structures that experience a change in the statical system after loads are applied
will generally be more susceptible to the effects of creep in that the load effects will vary
over time due to creep. The statical system refers to how the bridge is supported at
various construction stages. For example, a bridge constructed by the balanced cantilever
method is transformed into a continuous girder when the midspan closure pour is made,
and hence is susceptible to creep effects.

The actual creep experienced by a structure may be significantly different from that
calculated during the design phase. The effects of variation in creep on the structure
should be investigated by bounding the creep calculations and ensuring the structure can
accommodate a range of creep magnitudes.

Usually the designer is concerned with two stages in a structure’s life: during/just after
construction and after all long term effects have occurred. A typical value of 10,000 days
(30 years) is used as a ‘reasonable’ end time when no further additional effects from
creep are expected. For the four-foot diameter column described above, loaded at 120
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days, the effect of applied load on creep deformation is shown in Figure 52 below. As
the applied load increases, the creep deformation also increases.
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Figure 52. Graph. Creep deformation vs. time for different applied loadings.

e A very useful simple check on the results of a creep analysis is to calculate the effective
creep coefficient. This is the ratio of the creep deformations to the initial elastic
deformation, and is generally between 0.5 and 4.0, with a value of 2.0 being common. If
a refined analysis including creep effects results in ratios beyond this range, or even at the
outer limits of the range, a careful review of the inputs and results is in order. See
Section 9.7 for an example of creep modeling and Section 6.3.2 for an example of
verification of creep.

e The default creep model in a specific analysis program may work better for some types of
elements than others; i.e. beam elements rather than shell elements. Depending on the
program, the input for the nonlinear material property may automatically be calculated
for certain types of elements while the designer must calculate the values for other types
of elements.

The compressive strength, and hence the modulus of elasticity, of concrete also varies with time.
However, the increase of strength is relatively rapid, and unless the analysis includes
construction staging where load is applied to very recently cast concrete, the variations in
compressive strength and modulus of elasticity are typically ignored and constant values are
assumed.

4.1.3 Prestressing and Post-Tensioning

Including the effects of prestressing and post-tensioning in an analysis model is not necessarily
straight forward especially when the tendon layout is complex. It is important to note that unlike
typical hand analysis for prestressing, primary and secondary prestressing forces are not
calculated separately; rather the prestressing is applied to the model, and the software solves for
the total effect. Primary moments are due to tendon eccentricity, i.e. Pxe. Secondary moments
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develop due to supports of indeterminate structures constraining free movement under
prestressing. If desired, the primary prestressing effects can be solved for separately (perhaps by
hand), and subtracted out to determine secondary effects. However, with refined analyses there
is usually little reason to do this, especially if creep is included in the model behavior. Several
methods for incorporating prestressing into an analysis model are presented in the following
sections.

4.1.3.1 Equivalent Load Method

The equivalent load method is an approach in which the prestressing/post-tensioning force is
represented by external loads that produce load effects equivalent to the prestressing. In this
method, since the strand layout and jacking force is already known, this information is used to
determine equivalent loads that can be applied to the structure in the analysis model, and will
have the same effect as the tendons without having to model the individual tendons. A key point
to remember is that the loads used to model the prestressing force must be self-equilibrating,
meaning that there should be no net reactions when looking at the whole structure.

The following notation applies to all figures in Section 4.1.3.1:
c.g.c = center of gravity of concrete (ft)
c.g.s = center of gravity of strands (ft)

P = effective prestressing force (kips)
e = eccentricity between c.g.c and c.g.s (ft)
L = distance between bearing centerlines (ft)

The equivalent load method can be used for analysis of beam lines (1D analysis) as shown in the
following sections. Additionally, the equivalent load method can be used in grid/PEB (2D)
analyses as well as 3D analysis. In certain cases where the designer is looking at localized
effects, such as bursting stresses in anchorage zones, the equivalent load method should not be
used.

The advantages of this method include its theoretical simplicity and relative ease of verifying the
correct prestressing is applied. Drawbacks include the inability to determine changes in prestress
force due to applied loads, and the need to account for prestress losses independently.

4.1.3.1.1 Straight Strands

The simplest strand layout is one where the strands are placed parallel to the center of gravity of
concrete. The strands are often placed eccentrically in order to efficiently utilize the
compressive strength of the concrete and the tensile strength of the strands, to counteract the
applied loading.

Figure 53 shows a beam with straight strands placed eccentrically. To analyze this beam using
the equivalent load method, the effect of the prestressing is incorporated by applying an axial
load, equal to P, at the centroid of the beam section and end moments, M =P x e, at the beam
ends as shown in Figure 54. Note that the moments due to eccentricity are only applied at the
ends.
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Figure 53. Illustration. Straight strands.
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Figure 54. Illustration. Simplified model for straight strands.

4.1.3.1.2 Harped Strands

Harped strands are those that are kinked, typically at one or two hold down points, along the
beam as shown in Figure 55. At each hold down point, there is an upward force due to the angle
of the strand changing. In Figure 55, the hold down point at midspan must resist the total
vertical component of the prestressing force, P. In Figure 55(b), each hold down point resists
one-half of the total vertical component of the prestressing force, P, since the hold down points
are symmetric.

Figure 56 shows how the effects of the prestressing force are applied using the equivalent load
method; the axial load is applied concentrically to the beam element and a point load is applied
at each hold down point in an upward direction. Figures 55 and 56 show the general case in
which the center of gravity of strands does not coincide with the center of gravity of concrete;
therefore, an end moment, M = P X e, is also applied.
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Figure 55. Illustrations. Compound illustration showing beams with harped strands and
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Figure 56. Illustrations. Compound illustration showing simplified beam models for beams
with harped strands and varying number of harp points.

4.1.3.1.3 Draped Strands

Draped strands are similar to harped strands except they form a continuous arc as shown in
Figure 57. The vertical effect of the prestressing force from draped strands is a uniformly
distributed load equal to wbv, which is approximated by Equation (20) (Lin and Burns, 1981).
Figure 58 shows how the effects of the prestressing force are applied using the equivalent load
method; the axial force is applied concentrically to the beam and the prestressing force is
calculated using Equation (20) and applied to the beam as a uniformly distributed load. Figures
57 and 58 show the general case where the center of gravity of strand and center of gravity of
concrete are not aligned; as shown in Figure 58, an end moment, M =P x ey, is applied at the
beam ends.

__8P(e—e)
L? (20)

Wp
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Figure 57. Illustration. Beam with draped strands.
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Figure 58. Illustration. Simplified model for beam with draped strands.

4.1.3.1.4 General Strand Configurations

The cases described above are shown for simple spans but the equivalent load method can also
be used for other span configurations. The concept can be extended for beams with multiple
spans, varying span lengths, and with varying strand profiles. The equivalent loads are
calculated for each parabolic segment using Equations (21) and (22) for each harp point and
applied to the analysis model. Figure 59 illustrates a general scenario with the equivalent loads.
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4.1.3.1.5 Non-Prismatic Cross-Sections

The previous sections assumed that the beam cross-section is constant along the length of the
beam. This is often the case for simple span beams but may not be the case for continuous spans
where it may be necessary to increase the section depth to carry the negative moment near the
interior support(s). The determination of the equivalent loads for a non-prismatic cross-section is
similar to the method for prismatic cross-sections. Equivalent loads are dependent on the tendon
profile not the cross-section properties of the concrete member.

4.1.3.1.6 Prestress Losses

When determining the correct prestressing forces to be used in the equivalent load method,
losses need to be accounted for. Creep, shrinkage, elastic shortening, strand relaxation,
anchorage set, and (curvature) friction and wobble (additional friction due to deviation of ducts
from specified profile) reduce the force in the strands. The losses due to creep, shrinkage, elastic
shortening, and strand relaxation, are typically assumed to be constant over the girder length and
their effects are incorporated by reducing the equivalent loads by the ratio of the final force to
the initial force. If the concrete material property considers losses due to creep and shrinkage,
these do not need to be calculated and included in the equivalent loads.

For post-tensioned construction, the losses that vary along the length of a member such as
friction and wobble need to be addressed. The number of locations along the beam where these
losses need to be determined depends upon the tendon profile. For a parabolic profile, Aalami
(2001) recommends that the tendon be divided into 20 segments per span. For a harped profile,
the number of locations is reduced as the tendon is not constantly changing direction. For an
example of prestress loss calculations, see Example 7 in Chapter 9.

Many software packages include utilities that are capable of calculating the prestress loss for a
given tendon layout and material or allow the user to input losses calculated separately. The
equivalent loads may include the effect of creep, shrinkage, elastic shortening, strand relaxation
and anchorage set in addition to the effect of friction and wobble. These software packages are
also typically capable of performing time-step analyses to account for loading in different stages.
It is important to note that if an analysis includes deformations due to creep behavior and the
equivalent load method of modeling prestressing is being used, prestress losses due to creep and
shrinkage must be calculated separately in order to reduce the equivalent loads accordingly.

4.1.3.1.7 Actual Tendon Layout vs. Idealized Tendon Layout

As shown in the previous sections, the ideal strand layout for continuous spans is typically two
parabolas intersecting. While ideal, this layout is very difficult to physically create and the
strands would have to be bent sharply at the intersection. Instead of a sharp intersection (see
Figure 60), the strand layout is typically a series of parabolic segments that form a smooth curve
as shown in Figure 61. The intersection point (P.I.) should be near an inflection point and lie on
a line, as shown by the dash-double dot line in Figure 61, connecting two known points along the
strand layout.
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Figure 60. Illustration. Idealized strand layout in continuous beam.
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Figure 61. Illustration.

Actual strand layout in continuous beam.

The equivalent loads for the actual strand layout are calculated using Equation (23) for each
segment (1), (2), and (3) where ¢ is the vertical variation in the strand location for each parabolic
segment and € is the length of each parabolic segment, not the length of the span. For segment

(D), s the distance from A to the low

point or L/2. For segment (2), € is the distance from the

low point to the point of intersection, or 0.4L for the case shown. For segment (3), € is the

distance from the point of intersection

to the high point over the support, or 0.1L for the case

shown. The equivalent loads are given in Table 3 and shown on a simple 1D beam model as

Figure 62.
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Table 3. Equivalent loads for actual tendon layout.
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Figure 62. Illustration. Simplified beam model for actual strand layout.

4.1.3.1.8 External/Unbonded Tendons

External tendons are placed outside of the concrete member cross-section. External tendons tend
to be run in the voids of concrete box girders. In general, all external tendons are unbonded.
Unbonded tendons are tendons running through ducts within the concrete but the ducts are not
filled with grout. External/unbonded tendons are connected to the concrete member at discrete
points along the tendons. The physical ramification of being unbonded is that strain
compatibility is no longer valid. The strain in the tendons tends to be uniform between
connection points.

Modeling of girders with external/unbonded tendons using the equivalent load method is similar
to that of bonded straight or harped tendons, with equivalent loads applied at anchorage and
deviator locations as well as inflection points. The equivalent load method, because it does not
account for changes in prestress force due to deformations of the section, does not distinguish
between bonded and unbonded tendons.

4.1.3.2 Including Tendons in Analysis Model

Another method for including the effects of prestressing and post-tensioning is to explicitly
include the tendon in the analysis model. In this method, bar or beam elements are defined along
the path of the tendon, and the chosen element is assigned the material and geometric properties
of the tendon. Important factors to consider include:

e (Curved tendon layouts may have to be approximated with straight segments depending
on software. If straight segments are necessary, the curve must be divided up into small
enough segments to accurately represent the tendon. Specific guidance on the number of
segments is not available but a central angle of 3.5°, similar to that used for the element
length in modeling curved spine beam models, may be considered appropriate;

e The location of the tendons may control the mesh of the concrete girder; if the tendon
layout changes, the entire model may need to be remeshed;

e The bond between the concrete and steel will be considered a perfect bond unless bond
behavior is considered in the model; and

e Possibly having to account for the variation in load in the tendon due to losses along the
tendon length.
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The force in the strands can be applied using several different approaches. These approaches
include the use of equivalent (fictitious) temperature changes or initial strains which correspond
to the tendon tensile force. To induce compression in the concrete adjacent to the tendon, a
negative temperature change can be applied to the element(s) representing the tendon. The
decrease in temperature causes the tendon to contract but since the tendon is restrained, the
temperature change causes stresses to be applied to the cross-section. The temperature change
necessary to reach a given force in the tendon can be calculated using Equation (24).

P
aEA,,

AT =
24)

where: P = required force in tendons (kips)
a = coefficient of thermal expansion (in/°F)
E = modulus of elasticity of prestressing steel (ksi)
Aps = area of tendon (in?)

The effect of elastic shortening of the concrete is not included in Equation (24), therefore an
iterative approach may be required to achieve the desired prestress with elastic shortening. This
can be done using a spreadsheet to calculate the required temperature change based on the
desired force, initial estimate of the temperature change, and the tendon force from the model as
shown by Equation (25). Alternatively, since the tendon force is linearly related to the
temperature change, a load factor equal to the ratio of the required tendon force divided by the
tendon force from the model can be calculated and then applied to the temperature change. The
load factor will likely vary for each segment of the tendon.

ATy = AT, Freq
5 Muodel (25)
where: ATN = new value for AT
ATo = old value for AT
Preq = desired force in tendons
Pmodet = force in tendons due to ATo

The prestress losses described in Section 4.1.3.1.6 must still be considered when the tendon is
explicitly included in the analysis model. If the concrete material model used has the capability
of considering creep and shrinkage effects, and the model built can capture the interaction
between the tendon element and the surrounding concrete element, then creep and shrinkage
losses could be automatically calculated. If the concrete model does not account for creep and
shrinkage, these losses must be accounted for separately. Additionally, strand relaxation must be
considered in the analysis either automatically by the program or calculated according to
AASHTO LRFD and incorporated into the analysis. These losses are typically uniform along
the length of the beam; therefore, an effective value of P, that accounts for these losses, can be
used in Equation (24) or to calculate an initial strain value. The friction and wobble losses as
well as anchorage seating losses can be included in a similar manner except that the value of P
will vary along the length of the beam. Since the value of P varies along the length, the
temperature change or initial strain will also vary along the length.

99



In a typical pre-tensioned analysis, or after grouting in a post-tensioned analysis, it is acceptable
to assume that the concrete and steel tendons are perfectly bonded together. If the bond behavior
is to be considered, one of several different methods, as described below, may be used. One
method is to use springs to represent the bond between materials. Another method is to use a
bond-link element where the element has six (three displacement and three rotational) degrees of
freedom at each node to connect the concrete and steel elements; slip is assumed to act only
along the longitudinal axis of the reinforcement. Bond-link elements can model full, partial, or
no bond between the concrete and the reinforcement. Interface or contact elements may also be
used to prevent one component from penetrating another component. They can also capture slip
when the stress between the two components becomes greater than the limit strength. In
situations where the line defining the tendon is the same line as the edge of the concrete
elements, a perfect bond would be assumed if one of the other methods isn’t used.

For a post-tensioned girder, the behavior of the tendons relative to the girders/ducts varies
depending on the stage of construction. Prior to stressing, the tendons are independent of the
girder and it is not necessary to include them in the model. During stressing, the tendons may be
assumed to be frictionless allowing the tendon to slip freely or the tendons may be assumed to
experience friction due to the curvature of the ducts. Once the tendons have been grouted, the
bond between the tendon and the duct can be assumed to be perfect and no slip will occur. The
behavior of the tendon during these different stages can be modeled using the bond-link or
interface/contact elements described above. The bond between steel and concrete can be defined
using the Coulomb friction law. Modeling the changing conditions of the tendons and the bond
between steel and concrete is typically beyond that required for determining force effects used to
design a bridge.

Accounting for the variation in the tendon force due to losses is dependent on how the software
accommodates the losses. If the losses are calculated by the software along the length of the
tendon, then this would not be an issue. However, if the software does not calculate losses, and
they need to be calculated by hand and applied along the length, it could become complicated.
The tendon forces would have to be calculated for each stage of construction and applied to the
appropriate model.

In the case where explicitly modeled tendons are used to represent both the temporary and
permanent post-tensioning, the designer must investigate whether the elements representing the
temporary PT carry compression forces when the permanent post-tensioning is stressed. The
temporary PT is typically not able to carry any compression force and once the tension force was
removed would become loose. If this is the case, those particular elements would need to either
be removed at the stage where the permanent PT is applied or set such that they don’t contribute
to the stiffness. One alternative may be to use an element that is capable of carrying tension
only.

When explicitly modeling tendons, ideally bar (axial load only) elements would be used to
represent the tendons. If it is desired to utilize available slicing functions within an analysis
package to determine shears and moments from a shell element, it may be necessary to use beam
elements with moment releases at each end instead of bar elements. Additionally, when using
the slicing functions, it may be necessary to have the elements representing the tendons turned
off or become invisible such that they don’t counteract the force in the concrete member.
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4.1.3.3 Other Approaches

A third method to include the effects of prestressing and/or post-tensioning is to use a smeared or
embedment approach where the steel is distributed throughout the concrete and is not defined
using the edge of a concrete element but goes through the element. The reinforcement
contribution is determined numerically. The prestressing force is applied to the concrete beam
either uniformly along the length or variably along the length if the tendon stress varies. The
embedment approach typically considers that there is perfect bond between the steel and
concrete. There are methods to incorporate bond-slip behavior between materials while using
the embedment approach; these methods typically involve adding extra nodes along the length of
the reinforcement and the nodes are used to define the bond behavior. In the smeared approach,
the reinforcement is typically considered to be uniformly distributed while in the embedment
approach this is not the case. In this approach, the tendon relaxation is accounted for in the
prestressing loads when they are calculated by hand. If the analysis program calculates the
prestressing loads, the tendon relaxation may already be included. Use of the smeared or
embedment approaches are program dependent. Consult program user literature for more
guidance.

4.1.4 Analysis Issues vs. Design Issues
4.1.4.1 Vertical Component of Prestressing

In harped or draped prestressing strand profiles, a vertical prestressing force, Vp, develops due to
the vertical location in the tendon changing and typically opposes the shear forces due to gravity
loads. Vj will appear in the analysis results but is also present in the AASHTO LRFD shear
capacity equations. Therefore, the designer must decide whether they are going to use Vj on the
capacity side of the equation or if V;, will be included on the load side of the equation. It should
not be included on both sides of the equation, but should be included on the side which results in
a more conservative design. It is noted the load factor and resistance factor are not equal.

4.1.4.2 Strategies for Thermal Force Effects

Thermal force effects are typically determined using either uniform temperature changes or
temperature gradients; methods for determining thermal loads are described in Section 7.3.8 of
this manual. Thermal force effects may be large and control the design of certain bridge
components. The difficulty in designing for thermal force effects is that the design changes
necessary to reduce these loads are not straightforward and are counterintuitive; when demands
are high, increasing the section dimensions is the typical solution but for thermal loads doing so
may result in even larger demands.

4.1.4.3 Web Shear Distribution

Classical analytical techniques are available that can be used to determine shear flow in multi-
cell boxes. These techniques utilize shear and torsion results from a spine beam model. Using
the shear and torsion results, the shear stresses in each web can be calculated and integrated over
the web to determine the shear force in each web. Alternatively, a simple shell element model
can be created and the shear and torsion forces from a spine beam model applied. The shear
stresses in the shell elements can be summed to determine the shear force in each web.
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Depending on the analysis package, modelling the entire structure using shell elements may be
the most straightforward way to determine the shear in each web.

4.2 Steel Bridges

The following sections provide material specific guidelines to use when modeling slab on steel

girder bridges. Guidance is also given on using the results to design in accordance with
AASHTO LRFD.

4.2.1 Proper Modeling of Geometry and Stiffness

As steel girder bridge models become more complex, modeling the geometry correctly becomes
more critical. Although getting the geometry 100 percent “exactly” correct is more trouble than
it is worth, efforts should be made to include all forces due to eccentricities that are present,
while minimizing spurious forces due to eccentricities introduced by modeling approximations.
Running parametric analyses with simplified models can be helpful in determining if
contemplated approximations significantly affect results. Experience and judgment are also
invaluable in determining which modeling approximations result in negligible differences.

Depending on the design objective, correctly modeling the stiffnesses of both the main and
secondary elements can be extremely important, such as when deflected geometry is required.
Steel girders tend to be relatively flexible, especially open section steel girders, prior to cross-
frames being installed and/or the deck hardening. Modeling the initial geometry and the
construction sequence correctly can be critical, particularly with curved and skewed girders.

Modeling cross-frame geometry and stiffness correctly can be a challenge, due to the inherent
eccentricities associated with typical single angle cross-frame connections. In straight non-
skewed bridges, where cross-frames and diaphragms only function as bracing prior to the
composite deck being cast, the modeled stiffness should be less than or equal to the actual
stiffness to avoid overestimating the load distribution among girders. In many cases omitting the
cross-frame/diaphragms from the analysis is conservative. In a 3D analysis when the cross-
frames/diaphragms are being counted on to distribute loads to adjacent girders, such as when
maximizing a rating, they always should be included.

In curved and skewed bridges, cross-frames and diaphragms also function as primary structural
members, distributing loads transversely between girders. When analyzing cross-frames and
diaphragms for curved and/or skewed bridges, the modeled stiffness should be less than or equal
to the actual stiffness when calculating girder load effects, and greater than or equal to the
actual stiffness when calculating cross-frame/diaphragm load effects. For guidance on modeling
cross-frame geometry and stiffness see Sections 3.5.3, 3.6.2.3, and 3.6.3.4.

When modeling open section curved steel girders with line elements, accounting for the warping
torsional stiffness is important. This can be accomplished using an effective Saint-Venant
torsional stiffness constant. See Section 3.5.4 for guidance.

For highly skewed and curved bridges, design of initial fit-up of the structural steel can be
crucial. Differential cambering such that the girders are at the correct final elevation can lead to
force fitting of cross-frames during construction and/or locked-in forces in the final condition in
cross-frames. See Section 3.9 for guidance on the construction fit-up of steel girders.
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For most routine designs of typical steel girder bridges, second-order effects are negligible and
are ignored. In rare cases, such as bridges with tall slender piers, second-order effects can be
significant. When the design parameters fall outside the second-order approximations of the
AASHTO Specification, a nonlinear analysis may be appropriate. See Section 5.3.1.2 for
guidance on performing geometric nonlinear analyses.

4.2.2 Fatigue

Refined analysis has long been used for fatigue evaluations in order to provide better insight into
structure behavior and to validate approaches used to address fatigue issues either during initial
design, or more commonly during development of a fatigue retrofit. It is arguably the best
method to evaluate one class of fatigue behavior, distortion induced fatigue.

Fatigue is defined in AASHTO LRFD as the initiation and/or propagation of cracks due to a
repeated variation of normal stress with a tensile component, typically referred to as the live load
stress range. Designing for fatigue is analogous to a Service Limit State since fatigue fractures
occur due to repeated applications of stress that are lower than the nominal capacity of a section,
and are commonly insensitive to permanent (dead load) stress magnitude.

An important aspect of fatigue with regard to finite element modeling is that it usually is only an
issue at a location of stress concentration, rarely in base metal in the middle of flanges or webs.
In steel bridges stress concentrations typically are located at regions of geometric discontinuity
which occur mostly at welded attachments, but base metal is also susceptible, for instance at
copes or cutouts.

The AASHTO LRFD distinguishes between two types of fatigue:

e Load induced fatigue defined as fatigue effects due to in-plane stresses for which
components and details are explicitly designed.

e Distortion induced fatigue defined as fatigue effects due to secondary stresses not
normally quantified in the typical analysis and design of a bridge.

The distinction between these two types of fatigue is arbitrary, and only a convention for design
purposes. At the material level the mechanism for forming and growing cracks is the same. In
general fatigue evaluations consist of comparing a measured or calculated stress range against an
allowable stress range. There are various approaches to this task, ranging from very simple to
extremely complex.

4.2.2.1 Load Induced Fatigue

Designing for AASHTO load induced fatigue requires calculation of the nominal stress range
due to fatigue loading, choice of the appropriate detail category, and check of the corresponding
allowable stress range. Categories for various details can be found in Table 6.6.1.2.3-1 of
AASHTO LRFD. The “detail category” is based on full scale laboratory testing and accounts for
several parameters that are highly variable and difficult to quantify in practice (for example,
local stress concentrations and initial discontinuity size). The AASHTO fatigue resistance can
be determined according to Article 6.6.1.2.5 of AASHTO LRFD and the curves are illustrated in
Figure 63.
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The nominal stress range is determined in the same manner as that used in strength design and is
readily calculated using member properties and simple mechanics principles for most common
bridge components. Force effects for calculating the nominal stress range need not be determined
by a finite element analysis, but a 1D, 2D or 3D analysis would all suffice to determine the axial
and bending forces needed to calculate the nominal stress, if not the nominal stress directly, for
any given member detail.

A common application for refined analysis in relation to fatigue evaluations is to provide a less
conservative estimate of the applied live load stress range at a given detail. When compared to
field measured data, stress ranges calculated using approximate methods such as distribution
factors often have been found to be significantly conservative. This should come as no surprise,
as distribution factors were developed to be conservative for strength design. Refined analyses
can provide a better estimate of live load distribution and resulting nominal stress ranges,
particularly when non-structural sources of stiffness such as barriers and wearing course are
included. The use of refined analysis to develop more accurate stress ranges when evaluating
fatigue details can provide substantial benefits to the designer and owner, especially when
correlated to field measurements.
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Figure 63. Graph. AASHTO fatigue resistance curves including horizontal constant
amplitude fatigue limit (CAFL).

4.2.2.2 Distortion Induced Fatigue

Distortion induced fatigue, on the other hand, can occur at just about any location where
differential displacements exist and are not definable to a given detail and/or a nominal stress
range. For example, a common location for distortion induced fatigue is the web near the flange
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at the location of a stiffener connection plate that is not attached to the flange, referred to as the
web gap and illustrated in Figure 64. Differential deflections in adjacent girders can result in
stresses due to distortion in the web gap. The stiff cross-frame distorts under load pulling the
flexible web out of plane, while the stiff deck restrains the top flange, thus the web gap provides
a small point of high flexibility.

Since such stresses are not easily calculated or quantified in typical bridge design, AASHTO
LRFD deals with distortion induced fatigue by stipulating “proper” detailing practices in Article
6.6.1.3. AASHTO LRFD Article 6.6.1.3.1 indicates that connection plates in straight bridges
should be welded or bolted to both the compression and tension flanges, and in the absence of
better information, designed to resist a “rule of thumb” minimum 20 kip lateral load. Following
these good detailing practices is generally effective in preventing distortion induced fatigue in
typical straight new designs without requiring additional stress analysis.

istortion

Figure 64. Illustration. Distortion at web gap between flange and stiffener connection plate.

While the LRFD Specification design methods should be used when possible, there are analysis
cases when the specification provisions are not applicable, such as when a detail does not
correspond to any of the detail categories, or when the geometry of a detail does not have a well-
defined easily determined nominal stress, such as the previously mentioned web gap in an
existing bridge. In situations such as these, where a localized fatigue evaluation is required, one
must either perform full scale testing or perform a refined analysis.

The refined analysis approach as defined herein is similar to methods developed by the American
Petroleum Institute (API) and American Welding Society (AWS) and is well documented in
publications available from the International Institute of Welding (ITW) (ITW, 2008). It is
consistent with the Level 3 analysis method described in the Manual for Design, Construction,
and Maintenance of Orthotropic Steel Deck Bridges (FHWA, 2012A), which provides
comprehensive information on fatigue analysis of orthotropic deck details. It is used extensively
for the fatigue evaluation of tubular structures and plate-type structures with complex geometries
by various industries, where there is no clearly defined nominal stress due to complicated
geometric effects. It is appropriate for use in cases where a crack initiates at the toe of a weld, or
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at a free edge of a plate such as a hole or cut-out. It is not appropriate for cases where the crack

initiates at the root of a weld, or in a uniform stress field such as a full penetration weld
connecting flange plates.

4.2.2.3 Local Structural Stress Approach

The local structural stress (LSS) approach, a version of the “hot spot” method, attempts to
quantify the maximum structural stress in the vicinity of the detail using a refined analysis rather
than addressing it through classification. The maximum structural stress is dependent on the
global dimensional and loading parameters of the component excluding effects due to the local
weld profile itself. The non-linear peak stress caused by the local discontinuity, i.e. the weld toe,

is excluded from the structural stress. Examples of structural discontinuities and details together
with the structural stress distribution are illustrated in Figure 65.
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Figure 65. Illustration. Structural details and structural stress (adapted from ITW, 2008).

The LSS method is based on the assessment of the surface stress precisely at the weld toe of the
detail under investigation. Shell or solid element FE models can be utilized. Due to the sharp
point of discontinuity at the weld toe, the stress gradients become steep and sensitive to the mesh
size of an FE model used in analysis. In order to avoid errors due to the stress gradient, the
structural stress on the surface at the weld toe is extrapolated from reference points on the surface of
the plate as illustrated in Figure 66. The number and location of the reference points can vary
depending on which design codes or research recommendations are used. The recommendations

here are consistent with those in the orthotropic deck design manual (FHWA, 2012A) based on the
guidance provided by IIW (ITW, 2008).
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Figure 66. Illustration. Example of determination of structural stress by extrapolation
(adapted from ITW, 2008).

IIW differentiates between two types of LSS according to their location on the plate and their
orientation with respect to the weld toe as illustrated in Figure 67. Type (a) is located on a plate
surface, and type (b) on a plate edge. In most cases the recommended stress to consider is that
perpendicular to the toe, the exception being to use the principal stress if it is less than 60°
inclined to the line perpendicular to the toe.
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Figure 67. Illustration. Types of LSS (adapted from IIW, 2008)

For a shell element model, where the elements are located at the centroid of the component as
illustrated on the left in Figure 68, 8-noded elements are recommended especially in regions of
steep gradients. In most cases the welds need not be modeled, the exception being when there is
eccentricity leading to local bending at the weld. If the weld is not modelled, extrapolation to the
structural intersection point is recommended in order to avoid stress underestimation due to the
missing stiffness of the weld.

For more complex cases, isoparametric 20-node solid elements with mid-side nodes at the edges
are recommended. Although a multi-layer arrangement of solid elements can be used, one
element is usually sufficient to model the thickness of a plate. Modeling of the weld profile is
recommended for solid element models as illustrated in Figure 68 on the right.
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Figure 68. Illustration. Shell element and solid element models (adapted from ITW, 2008).

Typical extrapolation paths are shown by the arrows in Figure 68. Element sizes are important
when using extrapolation, since nodes must be located at the reference points in order to obtain
the stresses needed for extrapolation. The width a solid element or two shell elements in front of
an attachment should not exceed the attachment width 'w' as illustrated in Figure 68 on the right.
Figure 69 illustrates and Table 4 lists the [TW recommended locations of extrapolation points for
relatively fine and coarse meshes for type a) and type b) locations.

Relatively fine mesh Relatively coarse mesh
(as shown or finer) (fixed element sizes)
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Figure 69. Illustration. Extrapolation reference points for various meshes (adapted from
1TW, 2008).
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Table 4. Recommended meshing and extrapolation (see also Figure 69) (II'W, 2008).

Type of model and|Relatively Coarse Models Relatively Fine Models
weld toe Type (a) Type (b) Type (a) Type (b)
Shells txt 10 x 10 mm <04txtor [<4x4mm
Element max t x w/2* [(0.4x 0.4 in) <04txw/2 [(<£0.16x0.16 in)
Size SolidstXt 10 x 10 mm <04txtor [<4x4mm
max t X w (0.4x 0.4 in) <04txw/2 [(<£0.16x0.16 in)
05tand 1.5t [5and 15 mm 0.4 tand 1.0t 4,8, and 12 mm
Shells |mid-side (0.2and 0.6 in) | . (0.16, 0.32, and 0.48 in)
) i S . nodal points .
Extrapolation points mid-side points nodal points
Points 5and 15 mm 4,8, and 12 mm
Solids |2 Land 1.3t 5 nd 0.6 in) |24 a4 1O 6 160,32, and 0.48 in)
surface center nodal points !
surface center nodal points

* w = longitudinal attachment thickness + 2 weld leg lengths
** surface center at transverse welds, if the weld below the plate is not modeled

The guidance provided is intended for modeling of the local region in the vicinity of the specific
location of interest. For the remainder of the model using a similar mesh refinement would be
inefficient. Two approaches are possible to improve efficiency of the model:

e Submodeling as described in Section 2.3.6 of this manual; and
e Use a significantly coarser global model away from the region of interest.

While both of these methods are acceptable, if a refined global model is being utilized anyway, it
is recommended that it be locally refined, as local boundary stiffnesses will be automatically
satisfied. For a submodel, the local boundary stiffnesses will need to be approximated.

The LSS resistance model is based on calibration between refined stress analysis and test data.
Eurocode LSS category resistance curves are either the 90 or 100 N/mm? curve depending on the
detail, labeled according to the allowable stress range at 2,000,000 cycles. The corresponding
AASHTO curve is the Category C curve, which envelopes the European curves, and is
recommended as the baseline curve for the LSS method (see Figure 70). Recall that
misalignment and the corresponding local bending stresses are not accounted for when using the
LSS method, they must be modeled explicitly.
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Figure 70. Graph. Comparison of LSS baseline curves.

Weld root fatigue cracking is not directly addressed by the LSS method. However, AASHTO
LRFD Equation 6.6.1.2.5-4 (Equation (26)) can be used to check whether root cracking is an
issue. The geometrical parameters of the weld as illustrated in Figure 71 are used to reduce the

Category C stress range curve if necessary:

0.65 — 0.59 (i—“) +0.72 (?)

@F), = (AF); t;“'f"” = | < (@R
£]
(26)
where: (AF) n”c = Nominal fatigue resistance for Detail Category C.

2a = Length of the non-welded root face in the direction of the thickness of the
loaded plate (in). For fillet welded connections (2a/ty) shall be taken equal to 1.0.
tp = Thickness of loaded plate (in).

w = Leg size of the reinforcement or contour fillet, if any, in the direction of the
thickness of the loaded plate (in).
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Figure 71. Illustration. Dimensions for root fatigue stress range resistance reduction
(adapted from AASHTO, 2014).

Note that Category C fatigue resistance of the toe of the weld can be made to control the design
by adjusting the plate and weld parameters if desired.

4.2.2.4 Modeling Cut-Outs

A sufficiently refined mesh must be used to determine the stress range in base metal tangent to a
cut-out, such as the one illustrated in Figure 72. To be more consistent with both potential
laboratory tests and other refined analyses, finite element results should be evaluated a small
distance from the edge of the mesh. A 6 mm (1/4 inch) offset, similar to that proposed for
orthotropic plate analysis, is recommended. Use of this offset value will place a node at this
location and drive the mesh size at the edge of the cut-out, although the mesh can be transitioned
to a larger size away from the area of interest. As long as the edge preparation of the cut-out is
consistent with the requirements prescribed for Category A as contained in AASHTO LRFD, the
S-N curve for Category A can be used to assess the stress range.
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Figure 72. Illustration. Typical orthotropic ribs, with and without cut-out (adapted from
FHWA, 2012)

4.2.2.5 Distortion Induced Fatigue Stress Range Reduction

Keep in mind that stress ranges calculated using refined analyses are very sensitive to the
stiffnesses of various aspects of the models. When possible, models should be calibrated to
measured values on a full-scale test specimen or actual bridge member. In the absence of such
calibration, evaluation of the accuracy of the model is up to the judgment of the analyst. For
retrofit cases, even if the absolute value of the stress range is not known with great accuracy, the
relative performance of alternative stress range reduction strategies can be assessed.

When a refined model indicates that the stress range at a specific fatigue prone detail is greater
than allowable, parametric analyses can be performed to determine what needs to be done to
reduce the stress range. Depending on the situation, the allowable stress range may correspond
to a finite life or an infinite life case. New designs typically aim for infinite life, while for
existing bridges calculating a remaining finite life is often sufficient. Note that the AASHTO
loadings for these two cases differ. There are two design approaches that can reduce stresses,
the strength approach and the flexibility approach. The strength approach increases the amount
of material and/or provides a more direct load path resulting in a lower stress range. The
flexibility approach removes material making the detail less stiff such that alternate more
desirable load paths are utilized resulting in a lower stress range.

An example would be the distortion induced stress in the web gap illustrated in Figure 64. Ifa
strength solution is explored, the model would examine the effect of attaching the stiffener
connection plate to the flange of the girder. If a flexibility solution is explored, the model might
investigate increasing the depth of the gap until the stress range decreased to an acceptable value.
The Manual for Repair and Retrofit of Fatigue Cracks in Steel Bridges (FHWA, 2013) provides
many approaches for addressing fatigue issues in bridges.
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4.2.3 Bolted/Riveted Steel Connections

Connections are one of the most expensive features of steel structures. Additionally, connections
can be difficult to retrofit or repair. Therefore, any method that results in reductions in size or
complexity of connections, or results in an increased rating capacity, will potentially result in
large savings. Simplified methods exist to perform conservative steel connection designs using
hand calculations, and should typically be used for routine designs. Such methods usually
require that equilibrium is satisfied using linear approximations, and that compatibility will be
satisfied through contained plastic flow in the steel plates, if necessary.

Up through the 7" Edition of AASHTO LRFD, the most common hand calculation method for
eccentric loading has been the Elastic (or Vector) Method which is considered to be lower bound
conservative. The Elastic Method assumes equilibrium about the centroid of the bolt pattern and
ignores compatibility of deformations. Concentric force effects are equally distributed to bolts in
the Elastic Method, while force effects due to moments are distributed linearly with the distance
from the centroid perpendicular to the radius. Stiffness effects such as loading the first row of
bolts more heavily are addressed implicitly in the specification by reducing bolt capacity, and
ductility of connectors/connected material is assumed to redistribute forces more evenly.

A more accurate, less conservative method is the Ultimate Method (Crawford and Kulak, 1971)
which assumes that:

e The connected plate under eccentric load rotates about an instantaneous center of rotation

e The deformation which occurs at each fastener varies linearly with its distance from the
center of rotation and acts in a direction perpendicular to the radius from the fastener to
the instantaneous center of rotation.

e The ultimate strength of the group is reached when the ultimate strength of the fastener
furthest from the center of rotation is reached.

The main differences from the Elastic Method are that the center of rotation is no longer
assumed to be at the centroid of the bolt group, and although the deformation still varies linearly
with the distance from the center of rotation, the force/deformation relationship, or stiffness, can
be but need not be linear. The main drawback of the Ultimate Method is that it is iterative,
approaching the “exact” solution from an upper bound. An instantaneous center must be
assumed, and then equilibrium checked.

The Ultimate Method can be easily performed using a refined analysis, without iterations if a
linear bolt force/deformation relationship is used, such as the initial slope of the curves in Figure
73. Not only will the center of rotation be automatically utilized, the deformations of the
connected material and unequal force distribution will be explicitly accounted for based on the
stiffnesses of the connected materials. When the bolt force-deformation relationship is modeled
as linear, the ultimate method produces the same result as the classical elastic method.

Refined connection analyses can range from simple linear elastic to advanced material and
geometric nonlinear depending on the situation. Also note that although most bolted bridge
connections are designed as “slip-critical,” with bolt pretension resulting in friction between steel
plies, connection design rarely incorporates this friction directly. It is assumed that the friction is
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overcome when a prescribed force is distributed to the most highly stressed bolt in the
connection.
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Figure 73. Graph. Shear force-displacement relationship for common connectors (Ocel,
2013).

As described in Article C6.13.2.7 of AASHTO LRFD, the equations for bolt resistance in
AASHTO LRFD Article 6.13.2.7 include a 20 percent reduction to account for the unequal
distribution of forces due to deformations of the connected material, so if the bolt resistance for a
refined analysis is being calculated by AASHTO LRFD, consideration can be given to increasing
the resistance by 20 percent. Note that in a refined analysis, stress concentrations may develop
in the main material of the model, but as mentioned previously, it is assumed that ductility will
distribute the forces more evenly, so localized stress concentrations can generally be ignored.

4.2.3.1 Modeling Bolted Splice Connections

To model splice connections, shell elements are used to model the splice plates and a limited
length of the member flange and web plates at the connection. Main member shell elements
should ideally extend two to three times the largest dimension of the member beyond the splice.
Beyond this length, beam elements can be used to model the remainder of the member. At the
intersection of the shell and beam elements, constraints, rigid links, or rigid elements can be used
to ensure compatibility.

There should be a node located at the center of each connector (rivet or bolt) in each connected
shell mesh, and ideally a spring element should be used to connect the nodes, although beam
elements can be used as well. The spring (or beam) stiffness should model the shear load-
displacement characteristics of the connectors, based on the material and diameters of the bolts
or rivets. Examples of the full shear load-displacement relationships for common connectors are
illustrated in Figure 73. While non-linear examples are shown, and can be used when the
appropriate spring elements are available, linear approximations are sufficient for cases when the
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connection plate or the main members rather than the connectors controls the capacity. The axial
stiffness assigned to the connectors should be essentially rigid, generally three orders of
magnitude stiffer than the shear load-displacement is sufficient.

A maximum mesh size of the splice plates, and the members within the splice, generally in the
range of 3-4 inches, is driven by the spacing of the connectors, as each connector requires a
node. The splice plate and the member within the splice mesh size should be fairly uniform.
Member shell element mesh sizes can increase as distance from the splice increases, but may be
limited by other features such as perforations.

For linear material analyses, only the modulus of elasticity of steel is required for the main
material. If material nonlinear analyses are desired, depending on the software, the full stress-
strain relationship can be utilized to define the material as illustrated in Figure 74. Often using a
bilinear approximate curve with minimal strain hardening is both simpler and conservative,
while avoiding issues with convergence and excessive localization of plastic strain.
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Figure 74. Graph. Typical full stress-strain relationship for Grades 50 and 100 steel (Ocel,
2013).

Although the model boundary conditions can represent the actual structure, it is only necessary
to ensure that the supports are sufficiently distant from the connection that the reactions do not
influence the stress field in the connection portion of the model, and that the bending moment,
shear, and axial force are representative of the design forces over the length of the splice.

4.2.3.2 Modeling Gusset Plate Connections

Due to the failure of the gusset connection on the [-35W truss bridge in Minnesota, gusset
connections in existing trusses have recently come under increased scrutiny. When conservative
simplified hand procedures for designing and rating gusset plates (FHWA, 2009) indicate
insufficient capacity, less conservative more accurate refined analyses can be utilized to verify
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capacity and avoid costly retrofits. Many of the previous recommendations for splices are based
on analysis models developed by the FHWA for gusset plate design and rating and which were
calibrated with full scale experiments (Ocel, 2013), and similar techniques can be applied to
other bolted connections, for both linear and non-linear analyses. Typical models could include:

e A 3D shell element model in the vicinity of the connection is constructed
e Nonlinear material properties

e Nonlinear geometric properties

e Nominal out-of-straightness is included

Figure 75 shows a typical riveted gusset plate connection with five members framing in, two
chords, two diagonals and a vertical.

R ]

Figure 75. Photo. Example of a typical truss gusset plate connection.

To model gusset connections such as these, shell elements are used to model the gusset plates,
splice plates, and a limited length of the member cross-section framing in to the connection.
Lacing can either be modeled with shell or beam elements. NCHRP 12-84 (Ocel, 2013)
recommends that the shell element portion of the members should extend a minimum of 200
inches beyond the edge of the gusset plate, but two to three times the largest dimension of the
member should be sufficient. As with the previously mentioned splices, beyond this length,
beam elements can be used to model the remainder of the member with multi-point constraints
enforcing compatibility at the intersection of the beam element representation of the member
with the shell element portion of the model. At all beam intersections other than at the gusset
plate, pinned joints can be used. For simplicity, gusset submodels should include the truss panels
on each side of the joint, as illustrated in Figure 76, to sufficiently represent the equilibrium and
compatibility conditions at the joint.

All joints that are braced laterally should be restrained from moving out-of-plane. The statically
determinate nature of trusses means that the free body of the joint and the truss panels can be
modeled as simply supported in-plane. In Figure 76 the supports are located at Ul and U3, but
due to the statically determinate nature of the model, any two joints other than the joint under
consideration can be used as long as the correct loadings can be applied.
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In geometric nonlinear analyses, to facilitate buckling geometric imperfections should be
incorporated not only on the gusset plates but also on the diagonal compression member. If the
out-of straightness has not been measured, the shape of this initial out-of straightness can be
determined by a separate linear elastic analysis of the joint model by applying pressure loads on
the gusset plates and out-of-plane displacements to the end of the compression diagonal at the
gusset (Ocel, 2013). The out-of-straightness generated typically looks like the first mode
buckling behavior of the gusset plate which would represent the lower bound of the resistance in
a buckling analysis.
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Figure 76. Illustration. Examples of typical truss gusset plate connections (Ocel, 2013).

After the deformed shape is obtained, the deformations are scaled such that the maximum
magnitude of the out-of-straightness of gusset plates equals Lmax/150 and the out-of-plumbness
of a diagonal member equals 0.10*Lgap where Lmax is the maximum length of free edges adjacent
to the compression diagonal and Lgap is the smallest length of the gap between the compression
diagonal and the adjacent members. There is little guidance on the limits of out-of-straightness
permitted in gusset plate design, so the limits are somewhat arbitrary, but previous research has
found that once the modeled gusset out-of-straightness exceeds approximately 0.06 inches, the
effect of additional deformation on the buckling resistance is relatively small (Ocel, 2013). Once
a model is constructed, parametric studies can be performed to confirm the effect of initial
imperfections, if desired.

Loading is applied in the plane of the truss to the appropriate nodes such that the connection is in
equilibrium under the desired loading. When the analysis is non-linear, superposition does not
apply and load effects cannot be factored and/or added. The factored dead load should be
applied first and then the live load should be increased proportionately until maximum capacity
is achieved. When performing a rating, the factor by which the live load is increased is equal to
the rating factor.
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A 3D shell model utilizing non-linear material properties, non-linear geometric properties, and
initial out-of-straightness can identify the following failure modes of a gusset plate connection:

e Buckling
e Shear yielding
e Chord splice failure

Since bolt holes are not typically modeled, net section and block shear failures cannot be
identified, but these modes are easily checked with LRFD Specification provisions. For more
guidance on nonlinear analyses, see Section 5.3.

4.3 Substructure and Foundation Modeling

Modeling of the substructures in the same analysis model as the superstructure can be done for
any model, but it is only required when the interaction between them affects the overall behavior.
For non-integral bridge superstructures, the behavior of the superstructure is often independent
of the behavior of the substructure, and therefore the substructure need not be included in the
superstructure model. In that case, the support conditions for the superstructure can be applied at
the locations of the bearings and the substructures are then analyzed separately using the
appropriate bearing reaction forces found from the superstructure analysis. Live loadings to
determine substructure extreme force effects can sometimes be a challenge.

For guidance on modeling of bearings see Section 3.7.3. Additional guidance on the application
of live load to substructures can be found in Section 7.3.9. Cases where the effects of the
substructures on the superstructure need to be accounted for include bridge structures with
integral bent caps, integral abutment bridges, seismic analyses, and continuous bridges with
variable substructure stiffnesses.

4.3.1 Integral Construction

With an integral bent cap connection between the superstructure and substructure, the system
behaves like a frame. Figure 77 exaggerates the range of behaviors caused by the relationship
between the bending stiffnesses of the superstructure and substructures. In Figure 77(a), the
columns of the substructure are relatively tall and slender such that the response of the
superstructure to the applied loads is similar to a continuous beam with vertical supports placed
at the bearing locations (i.e. little to no moment restraint from the substructures). In Figure
77(b), the substructure columns are much stiffer, which results in the superstructure response
being similar to that of a fixed ended beam.

Load ;
L B' i .-| Lﬁd
;i (N . r = | '
' ‘ ' e ] ] | ] i
(a) Flexible integral substructure (b) Rigid integral substructure

Figure 77. Illustration. Behavior of integral substructures.
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For cases such as integral abutment bridges (Figure 78), the behavior of the soil impacts the
behavior of the substructure and superstructure. In lieu of performing an analysis which
accounts for the soil-structure interaction, the design force effects due to dead and live loads for
the superstructure beams can be fully bounded as shown in Figure 78(a). The superstructure is
assumed to be simply supported to determine the positive moments (Figure 78(b)), and then
fixed boundary are assumed at the base of the abutments or at the ends of the beams to determine
the negative moment values to use for design (Figure 78(c)). The force effects arising from
temperature loadings and their interaction with the effects due to other load types should be
investigated by accounting for the effects of soil-structure interaction. Refer to Section 5.2 for
more information on modeling soil-structure interaction.
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Figure 78. Illustration. Developing superstructure force effects for an integral abutment
bridge by bounding the solution.

4.3.2 Continuous Construction

For continuous superstructures, the behavior of the substructures in the vertical and lateral
directions should be examined to determine if their effects should be included in the analysis. If
the substructures can be considered sufficiently rigid in the vertical direction then it is acceptable
to use vertically rigid supports for the bearings under the superstructure. When there are
substructures that are vertically flexible then the substructure stiffness should be accounted for.

There are no set rules regarding what constitutes being “sufficiently rigid,” however it is
apparent that substructures types such as a typical concrete hammerhead pier can be considered
to provide a rigid vertical support. On the other hand, a wide steel beam straddle bent would
likely have sufficient flexibility to cause a shift in moments from those determined by assuming
the vertical supports are rigid. The vertical stiffness at each beam in the cross-section at the
straddle bent will vary as well, since the vertical stiffness at beams near the mid-span of the
straddle bent will be less than for those near the columns. When in doubt, often a simple beam
element frame model will give insight into the rigidity of the substructure.

Additionally, at locations where longitudinal forces are transferred from the superstructure into
the substructure, the longitudinal stiffness of the substructures may impact the superstructure
design forces, and therefore should be considered in the analysis model. An example of this
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would be a continuous deck system on tall piers as depicted in Figure 79. In this arrangement, at
the fixed bearings the flexibility of the piers in the longitudinal directions are used to
accommodate the thermal movements and the flexibility of these piers will affect the moments in
the adjacent spans.

\H;f I3 F

Figure 79. Illustration. Continuous span arrangements with fixed bearings at tall, slender
piers

4.3.3 Overall Interaction

While substructures do not typically need to be modeled in cases other than these, they can be
added to any analysis model to simplify the determination of the substructure force effects. The
most straightforward way to account for the influence of the substructure on the superstructure is
to explicitly include both in the same analysis model. When substructures are explicitly
modeled, it must be ensured that the bearings are modeled to achieve the appropriate behavior
(e.g. fixed vs. expansion vs. guided expansion), and that components are modeled at their correct
spatial locations. For more on the modeling of bearings, see Section 3.7.3.

To simplify the extraction of the required output, typically the substructure will be modeled
using beam line elements. Even substructure types such as wall piers can be modeled using
beam elements if shear deformations are accounted for in the element formulation and
appropriate geometric properties are assigned. To connect superstructure members to the
substructure at the correct elevations and transverse locations, rigid links or constraints can be
used. Figure 80 demonstrates the modeling of a two-span continuous superstructure and
substructures, utilizing beams elements, rigid links, and elements for the bearings.

120



Steel beam \
Concrete column

fe=—  Bearing
H properties
o assigned
1 f L - @
. ARigid Steel cross-beam

& J;\ﬁn]@oncrete wall pier

(a) Line element model (b) Line element model with fleshed

member cross-sections

Figure 80. Illustration. Example of modeling the substructure with the superstructure,
including bearings and rigid links to achieve correct locations of superstructure beams
(deck not shown).

The appropriate boundary conditions are placed at the bottom of the modeled substructure
components, typically at the top of the footing. For situations where the foundation-soil
interaction is not required, fixed or free support conditions can be assigned as needed. Typically,
all translational directions would be restrained, and moment restraints would be assigned based
on the type/size of the foundation present. Narrow footings would dictate the use of moment
releases about an axis perpendicular to the short direction, while moments can likely be
considered to be restrained about an axis perpendicular to the wide direction. Ifit is unclear
whether the support conditions should be considered fixed or free, then the solution should either
be bounded or a soil-structure interaction analysis, as described in Section 5.2 should be used to
quantify the level of fixity.

Further information regarding modeling and analysis of substructures can be found in Section
3.14.3 of G.13.1 Guidelines for Steel Girder Bridge Analysis (AASHTO/NSBA, 2014).
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CHAPTER 5. MODELING ADVANCED TOPICS
5.1 Introduction

The following sections provide guidance for performing advanced analyses including soil-
structure interaction, nonlinear, and dynamic analyses for use in conjunction with, or in addition
to, AASHTO LRFD.

5.2 Soil-Structure Interaction
5.2.1 General Information

In most circumstances, the effects of soil-structure interaction (SSI) do not have a significant
impact on the behavior of the superstructure and substructure of bridges, and therefore they do
not need to be considered for typical bridge analysis problems. Situations where effects of SSI
likely do need to be accounted for include:

Seismic analysis

Refined analysis of integral abutment bridges

Design or evaluation of shallow foundations supported by relatively soft soil
Design or evaluation of deep foundations

Note that an in-depth discussion of seismic analyses is beyond the scope of this document, and
details on SSI for seismic analysis can be found in (NHI, 2011) and (FHWA, 2006).
Additionally, it should be noted that much of the published literature regarding SSI is in regards
to seismic analyses, however the methods discussed in these sources are typically applicable to
non-seismic load cases, with adjustments or simplifications made to the procedures as necessary.

The actual behavior of soil under loading is often nonlinear. Before selecting a method to use to
account for SSI, the degree of nonlinear behavior of the foundation for the specific structure and
load levels under investigation should be estimated. From this finding, a decision on the type of
SSI analysis to utilize can then be made. For instance, examine Figure below, where a generic
nonlinear load-response curve (for instance pile lateral load vs. lateral displacement) is shown
with equivalent linear stiffnesses indicated for several points along the curve.
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Figure 81. Graphs. Nonlinear behavior — essentially linear vs. mildly nonlinear vs.
significantly nonlinear.
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The response up to Point 1 is essentially linear, and therefore Keq1 can be utilized for any load
level up to this point. Linear methods described in subsequent sections would be suitable to
model this behavior. Past Point 1, the response becomes nonlinear, however Keqz is not
significantly different than Keq1, indicating mildly nonlinear behavior which can likely be
approximated using one of the iterative methods described. Moving past Point 2 towards Point
3, the difference between Keqs and Keq1 becomes much greater, indicating significant nonlinear
response is occurring. For loads on this part of the curve, it may be difficult to converge on the
correct stiffnesses when using one of the iterative methods. In this case, the nonlinear methods
which are presented may be more suitable.

As for how the SSI can be accounted for in the analysis, there are two general types of
methodologies: substructuring methods and direct methods. In substructuring methods, the
behavior of the SSI is investigated outside of the analysis model which is used for the rest of the
bridge. The effects of the SSI are then determined and input as boundary conditions in the
bridge analysis model. On the other hand, direct methods involve modeling the interaction
between the structure and the soil in the same model as the rest of the bridge.

Lastly, it must be kept in mind that analysis results are only as good as the properties input,
therefore using inaccurate values can defeat the purpose of performing a refined analysis.
Because subsurface properties can be so variable, consultation with geotechnical engineers is
recommended when determining subsurface properties to utilize in an analysis considering SSI.
Even when subsurface conditions are well documented, behavior can be difficult to precisely
model. For most of the methods described below, it may often be prudent to run parametric
studies using a range of properties to obtain a bounded solution. At the very least, the engineer
should be aware of the effect of the various input parameters on the results, and therefore a
sensitivity analysis is highly encouraged.

5.2.2 Shallow Foundations

Typically these types of foundations rest on bedrock or competent soil and therefore undergo
only small displacements, under which soil behaves essentially in a linear manner with minimal
cross-coupling between the translational and rotational degrees of freedom (DOF). Use of fixed
boundary conditions for the 3 translational DOF and for rotation about the vertical axis is
common. The decision regarding the use of fixed or free restraint for the other 2 rotational DOF
is often based on the footing dimensions. Wide footing widths often provide sufficient restraint
against rotation such that a fixed condition is appropriate. On the other hand, a footing width
which is relatively narrow likely warrants assuming there is no rotational restraint about the axis
perpendicular to the narrow dimension.

If SSI for a shallow foundation needs to be accounted for, a rigid plate method, such as the one
described in Section 9.5 of (NHI, 2011) or Section 6.2.2.1 of (FHWA, 2006) can be used to
determine the stiffness values for each of the degrees of freedom. In this method, the foundation
is assumed to be a rigid plate embedded in an elastic medium (soil), and the stiffness coefficients
are developed using equations involving the soil stiffness, the foundation dimensions and the
embedment depth of the footing in the soil. While not typically required, more in depth methods
may need to be utilized if the shallow foundation geometry, soil properties, or loading are such
that the rigid plate method is not applicable (for instance, if the footing is relatively flexible such
that its stiffness may influence the overall behavior). These types of methods would involve
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modeling the footing and then accounting for the effect of the soil using either Winkler springs,
as shown in Figure 82, or by modeling a portion of the soil continuum using finite elements, as
shown in Figure 83.
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Vertical Spring
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Figure 82. lllustration. Winkler spring model for SSI of a shallow foundation (adapted
from FHWA, 2006).
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Figure 83. Illustration. 2D plane strain model of a slab on grade.

Winkler springs idealize the soil supporting the foundation as a system of independent, closely
spaced, discrete springs, analogous to a beam on elastic foundation analysis. The stiffness
properties input can be either elastic, elasto-plastic, or fully nonlinear, although if elastic
properties are used then it must be ensured that the soil is behaving primarily in its linear-elastic
range. In the soil continuum approach, 2D or 3D elements are used to represent a region of soil
in the vicinity of the structure. The modeling of the interface between the soil and structure can
be adjusted as needed to capture the behaviors which occur. For instance, if there is no uplift
between the structure and soil, then the two portions of the model can be directly connected.
However, if uplift occurs then the connection between soil and structure may need to be modeled
with interface or joint elements to permit the separation to occur. Additionally, some study must
be undertaken to ensure that a large enough region of soil is modeled such that the boundary
conditions applied at the edges of the modeled soil do not significantly influence the results near
the structure.

Both of these types of methods could be implemented by either adding the footing and soil
effects in the bridge analysis model (a direct approach), or by creating a separate model to
determine elastic or elasto-plastic spring stiffnesses to use as boundary conditions in the bridge
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model (a substructuring approach). Developing spring stiffnesses using a substructuring
approach is discussed in greater detail in Section 5.2.3.2 in reference to deep foundations, and
the methodology can be equally applied to shallow foundations.

5.2.3 Deep Foundations

Methods for including SSI in an analysis of a bridge with deep foundations can be broadly
categorized into one of four methods: depth to fixity method, substructuring-iterative method,
direct iterative method, and direct nonlinear method. The iterative methods mimic a nonlinear
analysis by performing iterations of linear analyses, changing the stiffnesses based on the
determined displacements. In the substructuring method, the complexity of the overall analysis
effort is reduced by using separate analysis models (and often separate analysis programs) for
global structure analysis and for the SSI analysis. The direct nonlinear method is the most
refined methodology, and is necessary for circumstances where the nonlinear behavior is
prevalent and the use of iterative methods would be unwieldly.

5.2.3.1 Depth to Fixity Method

The depth to fixity method requires the use of either empirical formulas/charts or a foundation
program such as COMG624, LPILE, or FB-MultiPier to determine an effective length of the piles.
This effective length represents the depth to fixity for a simplified analysis where the piles are
modeled in the FEA model as beam-columns, using fixed supports at the bottom nodes and no
support along their length. This is shown in Figure 84. Depending on the goals of the analysis,
the depth to fixity can be selected to either provide the correct peak pile moments (useful for
design/evaluation of the piles), or the correct substructure stiffness (which will generate the
correct force effects in the rest of the bridge structure).

Depending on the detailing of the pile connection to the pile cap, fixed or pinned boundary
conditions are used to connect the top of the pile to the rest of the analysis model. Typically, an
embedment into the pile cap of 2-3 times the pile diameter provides sufficient rigidity that a
fixed condition can be assumed. Otherwise a pinned connection should be assumed, or the
solution should be bounded, examining force effects and displacements using both assumptions.
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Figure 84. lllustration. Pile lateral deformations and depth to fixity model.

126



Empirical formulas/charts should only be used to determine the depth to fixity for preliminary
studies, since the behavior/interaction of the soil and structure is grossly oversimplified and the
possibility exists of generating unconservative results. When using a foundation program to
determine the depth to fixity, the resulting analysis can be considered as being more refined,
however if undertaking that level of effort, then one of the substructuring or direct approaches
described below is likely a better option.

5.2.3.2 Substructuring-Iterative Method

In the substructuring-iterative method, the stiffness of the foundation and soil is represented by a
support stiffness matrix in the bridge analysis model. An example of this methodology is
provided in Example 5, where a seismic response spectrum analysis is performed. A separate
model of the foundation and soil, often developed using specialized software, is used to
determine the values of the stiffness matrix. The two models are thus coupled together at a
single point, as depicted in Figure 85. If the behavior of the soil for the loading under
consideration is nonlinear, then iterations between the foundation program and the global FEA
model are required to arrive at the correct stiffness values, as described at the end of this section.
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substructure and superstructure. model for SSI.

Figure 85. llustration. Compound figure showing two models coupled at a point to account
for SSI effects.

In certain circumstances there can be significant coupling between the six degrees of freedom, a
typical example being footings with battered piles. In these cases, when condensing the SSI
effects to a single node in the analysis model, the six terms (one for each DOF — Ax, Ay, Az, 0x,
Oy, 6z) which are typically input for the support stiffnesses may not be sufficient to capture the
full behavior. To account for the coupling effects, the full 6 x 6 matrix of stiffness values, with
off-diagonal terms, should be developed and input into the analysis model of the bridge. Since
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FEA programs each have their own methodology, refer to the program’s user manual for more
information regarding the input of coupled stiffnesses. It is recommended that test cases with
simple models be run to ensure the behavior obtained from the coupling element is as expected.

There are three methods typically used to develop a SSI stiffness matrix for use in the FEA
program: 1) hand calculate the stiffness of a single deep foundation element, 2) model a single
foundation element in specialized software to develop the stiffness of that component, or 3)
model the entire foundation in the specialized software. For methods 1 and 2, the total stiffness
of the foundation is found by summing the effects of each deep foundation element, while also
accounting for any group effects which reduce the total stiffness.

Section 10.6 of (NHI, 2011) or Section 6.2.2.2 of (FHWA, 2006) provide methods for hand
calculating the effects of the interaction between soil and piles, but it is more typical to use
specialized foundation programs to determine the stiffness values for use in the
superstructure/substructure analysis model. Examples of foundation programs include FB-
MultiPier, COM624, LPILE, or GROUP (all of which utilize beam on elastic foundation/p-y
curve methods) or those similar to DFSAP (which utilizes a strain wedge model, where the pile
is assumed to be supported continuously by a wedge of soil).

The foundation analysis programs mentioned above can model deep foundations (or just portions
of deep foundations) and have a wide variety of soil models available to represent the site
specific soil conditions. The remainder of this section will focus on a discussion of modeling
SSI for pile supported foundations using p-y analysis. In a p-y analysis, Winkler springs are
placed along the length of the pile to represent the stiffness of the soil.

The curves which relate the soil pressure to pile lateral displacements are referred to as p-y
curves, so named for the axes of the plot of load vs. displacement. Example p-y curves are
shown in Figure 86 for various depths along the length of a pile, with the p-y curves changing
with depth due to the variances in soil type and soil pressure from above. Generally the p-y
curves will show increasing stiffness with increased depth, although varying soil conditions
along the length of the pile may result in this not being the case.
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Figure 86. Graph. Example p-y curves at varying depths along the pile.
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There are also curves for axial and torsional responses, typically referred to as t-z curves for
vertical skin friction, Q-z curves for vertical end bearing, and T-® curves for torsional effects.
For the most part these curves were originally developed from test data and adjusted based on
factors such as pile diameter, depth along the pile, ultimate soil resistance, internal friction angle,
and load type (static vs. cyclic).

In typical foundation programs, selecting a soil model and inputting the relevant properties (such
as unit weight, friction angle, etc.) results in the generation of the nonlinear response curves for
p-y, t-z, Q-z, and T-® effects for each pile node. For more information regarding the nonlinear
curves used to model the behavior of soil, refer to the foundation program’s user manual. When
the properties of the soil present are not constant throughout the depth, the soil should be broken
up into layers, with each soil layer defined separately in the program. If it is expected that the
pile cap will always be embedded in soil, then the effect of the embedded pile cap on the lateral
stiffness may be considered.

Along with soil properties, structural dimensions and material properties for the piles need to be
input. An assumption regarding the behavior of the connection between the top of the pile and
the pile cap should be made based on the detailing present, as described in 5.2.3.1.

Either a single pile or a group of piles can be modeled and analyzed. If a single pile is modeled,
then the stiffness matrix for the group will need to be developed from the results. For more
information on this procedure, refer to (NHI, 2011) and (FHWA, 2006). Regardless of whether a
single pile or the full group of piles is modeled, accounting for the group effects (P-multipliers)
based on the spacing between piles is required.

There are several types of SSI stiffness matrices which can be developed when utilizing
foundation programs and p-y analysis. The selection of which type is most appropriate to use is
dependent on the load levels under investigation and whether or not coupling between DOF
needs to be considered.

At load levels which the behavior is expected to be relatively linear, an equivalent linear stiffness
matrix can be developed using superposition. In the foundation program, relatively small unit
loads or displacements (such that all responses are in the approximately linear elastic range of
the p-y and other curves) are applied at the top of the piles in each DOF separately, with the
other DOF restrained for each case. The stiffness coefficients along the diagonal of the matrix
can then be determined by dividing the applied or induced force effects by the displacement. If
there is coupling between DOF while in the linear elastic range of the soil, then off-diagonal
terms can be determined by dividing the restraining force by the displacement, resulting in an
equivalent linear coupled stiffness matrix.

The 6 x 6 matrix including the cross-coupling terms for lateral displacement and rotation is
shown in Figure 87. A table depicting the calculation of stiffness terms is shown in Figure 88.
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where:

Kijj = stiffness terms

X,y = horizontal directions

z = vertical direction

Ai = displacement in i direction
0; = rotation about i axis

P; = applied force

M = applied moment

PR = restraining force

MR = restraining moment
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Figure 87. Equation. 6 x 6 SSI stiffness matrix.
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Figure 88. lllustration. Example calculation of stiffness terms for 6 x 6 SSI stiffness matrix.

Note that the matrix should be symmetric, i.e. Kis = Ks1 and K2a = K42. Furthermore, care must
be taken to ensure the off-diagonal terms have the proper sign. With the typical right-hand-rule
sign convention, displacement in the x direction will result in a -Mry value, and the rotation 0y
will result in a -Prxvalue. Therefore, the stiffness terms Kis and Ksi should be negative.

Whether or not the off-diagonal terms are significant for the case being investigated can be
determined by running test cases, which may include determining how much the coupling effect
changes as the applied loads used to determine the stiffness coefficients are changed, and/or
examining how much the global model FEA results change from inclusion or exclusion of the
off-diagonal terms.

Care needs to also be taken to ensure that the assumptions in the modeling of the foundation
match the behavior under the applied loadings. The superposition method should not be used for
cases where nonlinear soil behavior is encountered. In this case, a separate coupled stiffness
matrix should be developed for every load case that is being investigated. At the least, the load
cases should be broken up into groups with similar magnitudes of loading so that separate sets of
stiffnesses can be determined for each group. The coupled stiffness matrices can be developed
by applying all of the loads for the load case under consideration simultaneously in the
foundation analysis program. The six diagonal terms of the stiffness matrix can then be
developed by dividing the applied force by the calculated displacement or rotation. These six
diagonal terms will include the cross-coupling effects (i.e. the off-diagonal terms are not
needed), which may simplify the input of stiffnesses into the analysis model of the
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superstructure. Alternatively, some foundation programs will determine and directly output a 6 x
6 stiffness matrix with off-diagonal terms based on the input loads.

Regardless of the type of stiffness matrix that is used, the point at which the stiffness matrix was
extracted or developed from the soil-foundation model needs to be consistent with the location
where the stiffness matrix is input in the superstructure/substructure model. Additionally, it must
be ensured that consistent units and sign conventions are maintained when using the output from
one program for development of inputs into another program.

Figure 89 depicts a graphical representation of some of the inputs for a foundation program,
which include the pile type, length, and layout, the pile cap and water table elevations, and the
soil properties, including unit weight, friction angle, and others as required by the program. In
Figure 89(a), the pile cap can be seen to be embedded in the top soil layer, and the piles extend
down through various cohesionless soil layers (Layers 1, 2, and 4) and a cohesive soil layer
(Layer 3) until they reach the rock layer (Layer 5). In Figure 89(b), the pile cap, piles, and nodal
locations are shown.
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(a) Soil layers. (b) Pile cap and piles.

Figure 89. Illustration. Model developed from inputs into a foundation program.

Figure 90 depicts one manner in which the 6 x 6 stiffness matrix representing the SSI can be
input into the superstructure/substructure model. For the program which was utilized to develop
the figure, the 6 x 6 stiffness matrix is assigned to the element connecting the fixed support node
(fixed in all 6 DOF at the bottom node) to the independent geometrically coincident node at the
base of the column. For this example, the stiffness matrix was extracted from the foundation
program at the top of the pile cap/bottom of the column. Had the stiffness matrix been extracted
from another location in the substructure, rigid links or constraints would need to be used to
connect the base of the column to the location of the extracted stiffness matrix.
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Figure 90. Illustration. Inputting 6 x 6 SSI stiffness matrix into superstructure /
substructure model. (Note: The example reflects a specific program. Other programs
might require a different methodology.)

To iterate and determine the correct stiffness values, a procedure as outlined below would be
utilized:

Estimate demands on foundation

Apply demands to foundation model

Run foundation model and determine stiffnesses

Apply stiffnesses in global FEA model

Run global FEA model and determine foundation demands

Repeat steps 1-5 until convergence is achieved (change in results < roughly 10 percent)

oo wdE

Alternatively, the procedure could start at Step 4 by estimating the stiffness values to use in the
global FEA model during the first iteration. Unlike in a seismic analysis, where the loads will
depend on the stiffness developed from the foundation’s interaction with the soil, for non-seismic
analyses the changes in input stiffnesses are not likely to have as dramatic of an impact, and
therefore convergence should be achieved quite quickly. However, if this is not the case, then a
nonlinear procedure may be more practical, especially if there are many load cases to investigate.

5.2.3.3 Direct Iterative Method

Direct iterative methods involve modeling the foundation elements in the same model as the rest
of the bridge structure and utilizing linear springs to model the effects of the soil. Similar to the
substructuring iterative method, to correctly capture the nonlinear effects of the soil behavior,
iterations are required to obtain the correct support stiffnesses to assign in the model. While
initially requiring more effort than the substructing iterative method, due to having to input the
varying spring stiffnesses along the length of the deep foundation elements, this method does not
require the continual transfer of information from one model to another while performing the
iterations required. This is advantageous when many load cases need to be examined. An
example model for an integral abutment bridge is shown in Figure 91.
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Figure 91. Hlustration. Compound figure example of directly modeling the SSI with the
bridge superstructure.

For the structure in Figure 91, the abutment piles are founded on hard rock, and fixed boundary
conditions are used at the bottom nodes in the model. Alternatively, springs representing the end
bearing behavior, with an equivalent stiffness determined using Q-z curves, could be applied to
the bottom nodes if appropriate. All pile nodes other than those at the bottom of the piles have
spring stiffnesses assigned in the transverse and longitudinal directions. The stiffness values
assigned along the length of the piles vary due to their depth below the top of soil, the soil type
present at each node, and due to the displacements found for the load case under consideration.
Care must be taken to ensure that the correct stiffness values are assigned based on the tributary
length of pile associated with each node. For this example, the detailing at the pile cap is such
that fixity is expected, resulting in the connection between the pile and the pile cap being defined
as fixed. If piles are only minimally embedded in the cap, then hinges should be placed at the
tops of piles.

When modeling friction piles, vertical support stiffnesses determined using t-z curves are
assigned to the pile nodes to represent the skin friction behavior. Torsional SSI (represented by
T-® curves) is not typically influential in these types of analyses and is therefore usually
neglected.

Typically a separate foundation program is used to develop the spring stiffness values for use in
the global FEA model. Using a foundation program such as those mentioned previously, p-y
curves can be developed for nodes at each depth in the FEA model. The p-y curves used to
develop the stiffness values should include the group effects (P-multipliers). An initial estimate
of the expected displacements can be made for each load case under consideration using the
foundation program, and then the spring stiffnesses for use in the global FEA model can be
developed using these displacements and the p-y curves. Once convergence is achieved
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(changes in response values < roughly 10 percent), the results from the FEA model and the
foundation program should be compared to ensure similar behaviors are occurring. Small
differences may be present due to differences in assumptions in the FEA and foundation
programs. An example comparison is shown in Figure 92, where good agreement between the
pile lateral displacement (Figure 92(a)) and pile moments is observed (Figure 92(b)).

Pile Deflected Shape, 1.71" Lateral Displacement and Moment, 1.71" Lateral Displacement and
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(a) Elevation vs. displacement (b) Elevation vs. moment

Figure 92. Graphs. Example of comparing pile results of the foundation program used to
develop the support spring stiffness values for the FEA model and the results of the FEA
model.

Further refinements can be made to the main FEA model and foundation model described above
to examine the influence of other potentially key design variables, such as the backwall soil
pressure, use of pre-augered holes with selected fill material, or the pile to pile cap fixity.

5.2.3.4 Direct Nonlinear Method

This method is similar to the direct iterative method as described in the preceding section, except
that the nonlinear soil effects are accounted for directly by using nonlinear support spring
elements and performing a nonlinear analysis. Nonlinear analyses are discussed further in
Section 5.3. An example of the use of nonlinear elements to model the desired behavior is
shown below in Figure 93. Note that the mesh and the nodes are essentially identical to what
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one would use in a direct iterative analysis. The only difference is that nonlinear spring elements
with nonlinear stiffness properties are used between pile nodes and fixed support nodes.
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Figure 93. lllustration. Use of joint elements to model nonlinear soil support conditions.

Each soil element needs to be assigned the appropriate p-y curve in the lateral directions, and
potentially a t-z curve in the vertical direction to account for skin friction, based on its location
along the length of the pile and the soil type/condition. As described in Section 5.2.3, these
curves may be developed using a foundation program. Care must be taken to ensure that the
supports are close enough together to be able to mimic the continuous support provided by the
soil. If necessary, a sensitivity study should be undertaken. As with the iterative method, the
results from the FEA should be confirmed by checking against the results from a foundation
program.

5.2.4 Summary

In summary, analysis methods for shallow and deep foundations were presented to account for
soil structure interaction. The methods for each foundation type were presented in order of their
complexity. The following points below are emphasized and should be noted when deciding on
a methodology to use.

For all SSI investigations:

e Initial simplified analyses and/or sensitivity analyses are helpful in gaining an
understanding of the behavior and determining the amount of non-linearity to expect.
This in turn helps with selection of an appropriate SSI analysis methodology, if one is
required. In addition, sensitivity analyses can be used to examine which soil parameters
most significantly affect the soil-structure interaction response.

e Increases in complexity do not always result in improved accuracy, as the output can only
be as good as the input, and assumptions often have to be made when interpreting soil
data. Consultation with geotechnical engineers to assist with developing soil properties
for use in the analysis is recommended.
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For shallow foundations:

e SSI typically does not need to be accounted for, since the use of fixed boundary
conditions for vertical and horizontal degrees of freedom and either fixed or free
boundary conditions freedom (dependent on the dimensions of the footing) for rotational
degrees is sufficient to model the behavior of the structure.

e Insituations where SSI does need to be accounted for, often the rigid plate method, as
described in Section 6.2.2 of (FHWA, 2006), is appropriate.

For deep foundations:

e The depth to fixity method (Section 5.2.1) provides a simple way to account for the
effects of deep foundations. While easy to implement and useful in estimating the effects
of SSI on the superstructure and substructure of bridges, the simplifications involved in
this method potentially result in significant aspects of the actual soil-structure interaction
behavior being neglected. In some circumstances this can produce unconservative
results.

e With similar inputs, the other three methods presented in Sections 5.2.2 through 5.2.4
should produce similar results, although with different levels of effort required.

0 Use of the substructuring-iterative method or direct iterative method is
recommended when non-linear behavior of the soil is not expected to play a
significant role in the behavior of the structure.

o0 When significant amounts of soil non-linearity are present or expected, and its
effect needs to be accounted for, use of the direct non-linear method is
recommended. Note that when used in this circumstance, the amount of effort
required may actually be less than if an iterative approach were used. This is due
to the large number of analysis iterations which may be required to converge on
the correct equivalent elastic stiffnesses and structural response if the response is
significantly nonlinear.

5.3 Nonlinear Analyses

For the majority of analyses required in bridge engineering, especially for design of typical slab
on girder bridges, a linear elastic analysis is all that is needed. Nonlinear behavior is typically
either ignored as insignificant or conservatively accounted for by AASHTO LRFD. Examples
where AASHTO LRFD takes nonlinearity into account would be the Whitney stress block for
concrete beam capacity or the single step moment magnification equations for column
compression. For most bridge designs, little economic advantage can be gained from any
material savings that might be achieved by using a more complex nonlinear analysis over a linear
analysis. In some cases economies can be realized, for example by confirming the capacity of an
existing structural member or system, such that repair or replacement is not required and
resources can be directed elsewhere. Care should be exercised when such an analysis is
performed, making sure that all Specification considerations are accounted for.

Often nonlinear behavior is associated with complex longer span structures such as suspension
bridges and slender arches. Other common bridge design situations where nonlinear analyses
may be called for include seismic demands, stability and redundancy evaluations, or forensic
studies. In general, nonlinear analyses are recommended when one or more of the assumptions
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used in linear analyses (See Section 3.1) are no longer sufficient to accurately depict the
structural behavior. As a result, the response deviates from a linear load-dependent relationship
and the analysis solution(s) can no longer be extrapolated or superposed. Additionally, if the
material relationship enters the inelastic range, the structure behavior becomes load history
dependent. Typical factors that contribute to the nonlinear response of a bridge include:

e Stresses exceeding the linear limits of inelastic materials, e.g., yielding of metals,
crushing of concrete under compression, cracking of concrete under tension

e Nonlinear-elastic material behavior, e.g. hyperelastic materials such as elastomers,
commonly used for bearings

e Time-dependent behavior, e.g., creep and shrinkage of concrete

e Large changes in initial geometry, e.g., buckling, cable behavior

e Changing boundary conditions, e.g., friction, lift-off from supports, restrainers

Seismic design is the area where most of the literature/guidelines on nonlinear analyses has been
focusing (FHWA, 2014), (Aviram et al., 2008), (FHWA, 2006), (Akkari and Duan, 2000).
Although seismic applications are also assessed here, the main focus of this section is to identify
additional practical situations in bridge design where a nonlinear analysis might be required.
Guidance is provided regarding the assumptions and common modeling techniques needed to
perform an efficient analysis with reasonable accuracy. Some simplifications and intrinsic
limitations of typically available software are also discussed.

When constructing a nonlinear model, it is strongly recommended that a linear model be initially
constructed and run, to ensure there are no problems with geometry, mesh refinement, and
connectivity. Once the functioning linear model is constructed, nonlinear behavior can be
introduced as required. By gradually adding complexity and checking the model at intermediate
steps, sources of error can be narrowed down more easily when troubleshooting problems.
Cross-slope, superelevation, and the vertical curve only need be modeled if the eccentricity
caused by the geometric variations affect the nonlinear results.

5.3.1 Modeling Levels

When a nonlinear analysis is needed, a finite element analysis is typically the easiest and most
efficient method, able to address any geometry and most sources of non-linearity. There are
different modeling or analysis approaches that can be followed depending on the desired level of
accuracy of the results, which is basically defined by the element type and analysis capabilities
of the software, and the specific structural problem to be assessed. Table 5 shows some of the
typical modeling levels that can be followed to address a common structural problem involving
nonlinear behavior. For nonlinear analyses in general, it is recommended to start with a simple
modeling approach and increase the complexity gradually.
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Table 5. Examples of different modeling levels for nonlinear analyses.

Modeling

Problem Level

Description Visualization

Line element with an M
end spring (joint)
including a bilinear
moment-rotation
relationship (2D or

3D). @/

Nonlinear line
elements with cross
section discretization
to incorporate the
stress-strain
relationships of steel

and concrete (2D or . _' >
3D). A-A

Basic

av)

» Q

Intermediate
Plastic hinge

at base of
concrete
column

Concrete solid
elements with
embedded
reinforcement line
elements, compatible
with nonlinear
material definitions
(3D).

Advanced

Since programs differ in their nonlinear options for analyses, material, and element formulations,
it is recommended that program literature be consulted to identify which materials/elements have
nonlinear capabilities and their limitations, and how they can be activated during the analysis.
Often the manuals include step-by-step practical examples that provide helpful guidance,
especially for users without previous experience with nonlinear modeling. Performing tests of
the software with easily verified simplified theoretical problems is also recommended.
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5.3.2 Sources of Nonlinearities

Sources of nonlinearity are generally classified into three categories: material, geometric and
boundary condition (also included in this category is tension/compression only situations). A
structure can experience one or a combination of these effects simultaneously. In a program, the
definition of nonlinearities is also dependent on the element formulation, which is chosen
according to the desired response and level of complexity of the model, as discussed in 5.3.1.

5.3.2.1 Material Nonlinearity

In structural analysis, the material mechanical properties are defined by the relationship between
stress and strain. When this relationship is linear, the stress is directly proportional to the strain,
and the stiffness or Modulus of Elasticity (E) is a constant. For nonlinear problems, the stiffness
varies with the degree of deformation and/or damage experienced by the structure. Programs
often add advanced features to the linear definitions of typical materials to incorporate nonlinear
behavior into certain robust elements (e.g. plasticity for fiber-based elements). Software
packages also have pre-defined nonlinear material models with parameters that the user can
easily adjust for particular applications (e.g. CEB/FIP Model Code 90 for creep in concrete).
Non-linear behavior may also be included directly in the element formulation without the need of
defining a separate material (e.g. specialized joints).

Ideally, the properties utilized in a nonlinear material analysis should be based on test results of
the actual materials being used in the structure. Often this is not possible, and reliance on typical
presumed representative/conservative values from the literature must be relied upon. Itis up to
the analyst to ensure that the material properties used in the analysis accurately reflect those in
the actual structure.

The following presents a further discussion of these common approaches used to address
material nonlinearity in a refined analysis.

5.3.2.1.1 Stress-Strain Relationships

A nonlinear stress-strain curve based on material properties can be defined based on
recommendations in the design specifications or information from uniaxial tension/compression
tests and can be utilized when the object (e.g. structure, member) is modeled as a continuum (e.g.
plane-strain problems), or when the element formulation itself is able to accommodate the
continuum behavior of the material (e.g. fiber-based elements).

The fiber-based approach is a technique for addressing material nonlinear behavior in a line (e.g.
beam) or surface (e.g. shell) element. In this approach, the element cross section is divided
internally into multiple sub elements (fibers for line elements or layers for surface elements, see
Figure 94), each one having an independent stress-strain behavior according to the nonlinear
definition of the material but complying with the strain compatibility of the element cross section
assuming that plane sections remain plane after loading effects. Most programs do not include
shear behavior in the stress-strain response of the fiber deformations and assume that shear
stresses remain linear. The fiber forces are summed up to get the cross section internal forces
(i.e. axial force and moment) used in design.
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Figure 94. Illustration. Fiber-based modeling approach for line and surface elements.

Examples of typical materials used in bridge construction with nonlinear characteristics are:

Steel: The stress-strain relationship of steel is typical of a ductile material characterized
by similar behavior under tensile or compression stresses. It has a constant modulus of
elasticity of about 29,000 ksi below the elastic limit, and the yield strength and strain
hardening varies according to the chemical composition, heat treatment and forming
processes as illustrated in Figure 95 for different structural steels. The typical stress-
strain relationship of reinforcing steel is illustrated in Figure 96. With the use of stainless
steel increasing in bridges, it should be noted that the stress-strain behavior of stainless
steel differs from that of carbon steel. As illustrated in Figure 97, carbon steel exhibits
linear elastic behavior up to the yield stress and a plateau before strain hardening, while
stainless steel has a more rounded response with no well-defined yield stress. Stainless
steel “yield” strength is generally defined by the 0.2 percent strain offset. In the absence
of specific test information, the values shown in Table 6 are recommended for seismic
design (FHWA 2014, Raynor et al. 2002). Figure 98 shows the stress-strain curves for
prestressing strands according to (AASHTO, 2011).

For metals, ductile behavior is based on plasticity theory characterized mainly by
negligible volumetric change when the elastic limit of the stress-strain curve is exceeded
(i.e. incompressible material). Yielding in ductile materials is often defined in terms of
the Maximum Distortional Energy theory commonly referred to as the von Mises
Criterion. In this theory, yielding in a multiaxial stress state occurs when the energy of
distortion reaches the corresponding value from a uniaxial tension test. Another common
and more conservative failure criterion is Tresca, which is based on the maximum Shear
Stress instead of the Distortional Energy.

In most practical cases, modeling the steel as a bilinear material is sufficient, but it is
recommended that some nominal post-yield stiffness be included to aid in convergence
and avoid multiple equilibrium positions for a given load. A kinematic hardening rule is
recommended for ductile materials under small strains and reversal loading, while
isotropic hardening is applicable for monotonic loads or larger strain problems (see
Figure 99). For problems that require addressing post-ultimate behavior, some programs
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allow the definition of the full stress-strain curve of the steel, including the unloading
portion. In such cases, the user manual should be consulted to define the solution
strategy and avoid numerical issues (See Section 5.3.3 for further details regarding the
numerical solution).

1h
Atid
100 AT09, A%E2
ABINE
s
o ASTD  ASES ASINEY  ASS
(ksi)
S0 AL
25T
] 1 1 1 -
5 10 15 20

g(%)

Figure 95. llustration. Representative stress-strain behavior of various typical structural
steels (adapted from AASHTO, 2011).
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Figure 96. Illustration. Typical tensile stress-strain relationship of reinforcing steel
(adapted from AASHTO, 2011).
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Figure 97. lllustration. Typical tensile stress-strain relationship of stainless compared to
carbon steel (adapted from BSSA, 2018).

Table 6. Recommended Values for Parameters of the Stress-Strain Relationship of

Reinforcing Steel (FHWA, 2014).

Property Notation | Bar Size | ASTM A706 | ASTM A615 Grade 60
Specmed.mmlmum yield f 43 - #18 60 60
stress (Ksi)

Expected yield stress (ksi) fye #3 - #18 68 68

(Elé[i))ected tensile strength fue 43 - #18 95 95
Expected yield strain fye #3 - #18 0.0023 0.0023
#3 - #8 0.0150 0.0150
#9 0.0125 0.0125

. : #10 &

Onset of strain hardening Esh #11 0.0115 0.0115
#14 0.0075 0.0075
#18 0.0050 0.0050
Reduced ultimate tensile R #4 - #10 0.090 0.060
strain > #11 - #19 0.060 0.040
Ultimate tensile strain Esu #4 - #10 0.120 0.0%
#11 - #19 0.090 0.060
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Figure 98. Illustration. Typical tensile stress-strain relationship of prestressing strand
(adapted from AASHTO, 2011).
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Concrete: Concrete is a complex material that responds differently under tensile and
compressive stresses. A typical inelastic concrete stress-strain curve is illustrated in
Figure 100. Although the linear elastic portion of the curve is limited, using line
elements with linear elastic concrete material properties and an effective member
moment of inertia to approximate the tangent stiffness, is sufficient for most analyses.
When the stiffness varies too much to “linearize” using a tangent modulus, a nonlinear
material approach is recommended.

Most advanced software packages handle concrete behavior with a plasticity-based
stress-strain relationship that covers a tension softening zone, to account for cracking
including reinforcement effects, and a compressive crushing capacity in terms of the
maximum strength, ocu. Failure criteria in these advanced models are often defined as a
function of damage variables that represent the loss or degradation of stiffness in the
material.

Several nonlinear material models have been proposed to describe the response of
concrete. For seismic evaluation of frame structures, the constitutive relationship
developed by Mander et al. (1988a, 1988b) has gained recognition due to its capability to
directly address confined and unconfined conditions in columns. The differing behavior
of confined versus unconfined concrete is illustrated in Figure 101. Additional guidance
on Mander’s concrete material models is provided in Mander et al. (1998) and Priestley
et al. (1996).

Care should be exercised when taking advantage of the advanced parameters of complex
concrete material models. Material variables that are unfamiliar to the typical design
engineer, such as dilatancy, may be utilized in the models. In these cases, programs
usually set default values for the parameters that describe the inelastic behavior of a
typical concrete, and their range limits and assumptions for applicability are generally
included in the documentation of the program. It is recommended to work with these
default values unless a very particular problem is assessed. As previously recommended,
consulting the program user manual and verifying behavior in simple models prior to
attempting to analyze more complex models is always a good practice.
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Soil: This is another example of a material with complex behavior. In structural
analysis, it is often assumed that the structures are rigidly supported at the foundation
level and that the stiffnesses of the underlying soil and foundation do not significantly
affect the superstructure response. However, for certain structural evaluations that
require accuracy in the estimation of the responses (especially displacements), the
analysis needs to include the effects of the soil-structure interaction, as discussed in
Section 5.2. The soil effects can be introduced into the model using several techniques
ranging from simplified nonlinear joints to continuum elements with complex nonlinear
models. The selection depends on the structure to be modeled and the target responses
(e.g., a 3D bridge with foundation springs vs. a 2D culvert with surrounding continuum
soil).

5.3.2.1.2 Nonlinear Joints

Use of nonlinear joints is a simplified techniqgue commonly used in structural modeling to
introduce material nonlinearity into models with simplified line or surface elements. The
nonlinear behavior of the joints is directly defined in terms of an internal force-effect
relationship, e.g. moment/rotation or force/deformation. The discrete location of the joints is
explicitly defined (or modeled) by the user which requires insight into the problem. Typical
applications include: indeterminate structure mechanism analyses (i.e. plastic hinges), partially
restrained connections, bearings, and soil-structure interaction. Further description of some of
these applications are presented next.

Plastic Hinges: Historically, plastic hinges have been used in piecewise linear analyses to
calculate the mechanism load for indeterminate structures in plastic design. A mechanism
analysis to find ultimate capacity can be easily run using joint elements with the simplest
and most conservative relationship of an elastic-perfectly plastic curve, neglecting strain
hardening, as illustrated in Figure 102 for a moment-curvature relationship. Although the
implementation of this approach is relatively straightforward, the discrete joints need to
be located at the positions where hinging action is expected to occur in the structure. It is
recommended that an initial linear analysis be performed to identify the critical locations
where the maximum stresses are exhibited, particularly when these locations are not
evident.

Current implementations of these types of joints can be more sophisticated, with the post-
yield, ultimate and failure behavior directly included in the nonlinear function of the
joint. This permits analysis of not only the mechanism load, but the displacement
capacity and post-ultimate behavior as well, including softening due to hysteresis in some
cases. Performing such analyses requires knowledge of the member properties, such that
the discrete hinge behavior can be programmed to approximate the behavior of the
member. Values that might be utilized include yield capacity, ultimate capacity, residual
capacity, and rotation limit (beyond which capacity equals zero).

Since rotations are the most common source of inelastic behavior in frame structures, a
plastic hinge is usually defined as a discrete nonlinear rotational spring at a particular
cross section along a column or beam. In addition to uncoupled moment, torsion, axial
force and shear hinges may also be available. Coupled axial force moment hinges which
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yield based on the interaction of axial force and/or bi-axial bending moments at the hinge
location may also be available. Coupled hinges are appropriate when significant axial
force as well as bending is present, typically in columns.

Member bending deformation is generally expressed as a function of moment and
curvature. When curvature is used as the independent variable of the nonlinear curve, a
definition of the hinge length (i.e. spread of plasticity) is required over which the
curvature is integrated to get the corresponding member rotations and deflections. Using
a zero-length hinge can be thought of as a simplification of the cross-sectional fiber
analysis described at the beginning of this section. That is, if the integrated moment
across the section is expressed as a function of the corresponding linear strain slope (i.e.
curvature) from a fiber-based approach, the resultant graph could be utilized in a more
simplified model using a nonlinear joint.

A similar situation applies when the axial force (or shear) is defined in terms of strains.
For steel sections, hinge rotation capacity is typically controlled by the local stability of
the cross-section. Characteristic length of plastic hinges for compact steel sections can be
taken as the smaller of 1/8 of the clear height of a column or 1.5 times the member depth.
For concrete sections, these lengths are dependent on the dimensions and reinforcing.
Guidelines for choosing characteristic length for concrete members are provided in
FEMA 356 - Prestandard and Commentary for the Seismic Rehabilitation of Buildings
(ASCE, 2000) and for concrete and steel members in AASHTO Guide Specifications for
LRFD Seismic Bridge Design, 2" Edition (AASHTO, 2011).

For programs that allow the definition of coupled internal forces for nonlinear joints, the
most common case is the axial force-biaxial moment interaction. The interaction
equations can be developed for the particular section using the fiber-based approach that
accounts for the stress-strain curves of the materials combined with the equilibrium and
strain compatibility equations. For practical applications, common approximate methods
included in AASHTO LRFD such as Bresler’s Reciprocal Load Equation for concrete
members, or the Load Contour Method for steel sections, can be used to create the
yielding surfaces.
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Figure 102. Illustration. Idealized elastic plastic moment curvature curve.

Elastomeric bearings: Although most nonlinear material behavior is also inelastic, there
may be rare cases when an elastic nonlinear material is needed for an analysis. Rubber,
an elastomer, is in a class of materials known as hyperelastic. These materials are
characterized by the elastic nonlinear behavior illustrated in Figure 103.

The most common application of this material in bridges is elastomeric bearings and
seismic isolators. Often the nonlinear elastic behavior of the bearings can be sufficiently
approximated by linear elastic behavior in the range that the materials see under typical
bridge loadings. When more accurate behavior is required outside of that range, usually
under seismic demands, it is recommended to model the global behavior of the
connection with joint elements instead of explicitly modeling the bearing itself. In that
case, a bilinear force-displacement relationship, as shown in Figure 104, is suggested by
the guidelines for Seismic Isolation Design (AASHTO, 2010) to represent the bearing
behavior. Those Specifications also recommend performing refined nonlinear analyses
for very flexible structures (Effective Periods > 3s) and when the damping ratio of the
isolation system exceeds 30 percent.

149



Tension ’."'
I-’*
s
-—"

N
".'"

{: *
Compressionf |  -.—--.- Hyperelastic material
Linear material

i

!
]
i
I

Figure 103. lllustration. Example of nonlinear elastic material behavior.
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5.3.2.1.3 Time-Dependent Effects

Material time-dependent effects such as creep, shrinkage, aging of concrete, and relaxation of
steel can also be assessed with nonlinear analyses. Programs that can model these effects will
generally include specialized materials specifically for that purpose. Modeling of these effects is
discussed in Section 4.1.2.
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5.3.2.2 Geometric Nonlinearity

A geometric nonlinear analysis considers the equilibrium of the structure and its components in
their deformed or deflected geometry. This is required when the applied loads and/or generated
displacements are large enough to induce additional internal forces as a result of the
eccentricities between the final and original geometry of the structure (also known as second
order effects). Most structures with typical loading scenarios do not require this type of
advanced analysis, since the resultant displacements are so small that the secondary effects are
negligible or can be conservatively accounted for by the approximate moment amplification
factors recommended by the specifications. However, a refined analysis may be preferred in
order to get more accurate estimates of the demands, or may be required when large
displacements fall outside the range limits of the approximate methods in the specifications.

A small-strain deformation theory is usually sufficient to characterize most of the structural
situations in bridges where geometric nonlinearities are exhibited. Although large displacements
and rotations may be experienced by slender members (e.g. cables, arches, thin plates), the
strains continue to be within the small range (<5 percent). Large strains are found in very few
cases and are often related to material nonlinearities, such as in rubber members or metal
forming. It is very rare that a large strain analysis would be required in bridge engineering
practice.

5.3.2.2.1 Main Aspects of Geometric Nonlinear Analyses for Bridges

When a member in a structure experiences large compressive forces (e.g. columns, piers) and is
also subject to transverse displacements caused by either lateral (with respect to the member) or
eccentric loads, fabrication imperfections, or even construction tolerances, a detrimental
softening effect occurs in the force-displacement relationship, due to the eccentricity between the
actual position of the applied loads and the deformed geometry. This is illustrated in Figure 105.
This softening effect can be accounted for by using a geometric term in the stiffness matrix of
the analysis, which is a function of the axial load of the element. An analog situation is observed
in tensile members (e.g. cables, arch ties) which exhibit a beneficial stiffening effect with
increasing tensile force. In an analysis using the geometric stiffness matrix formulation, a set of
loads is applied to the model, the program determines the geometric stiffness matrix based on
those applied loads, combines it with the normal stiffness matrix, and solves for the
displacements.

With this formulation, it is possible to solve for the bifurcation (buckling) load by the use of a
eigenvalue solution, which determines the factor on the geometric stiffness matrix resulting in a
zero stiffness in the structure. This is termed an eigenvalue buckling analysis, and is very useful
in finding bifurcation loads. As above, a set of loads is applied to the model, resulting in the
calculation of the geometric stiffness matrix. An eigenvalue solution is then applied to
determine the factor on the applied loading that will result in an instability. The eigenvalue is the
factor applied to the loading to find the buckling load, and the eigenvector is the buckled shape.

These analyses are relatively easy to perform, and normally are sufficient when investigating a
buckling behavior. However, they do have limitations that need to be understood. Because an
eigenvalue solution is essentially a linear problem, other sources of nonlinear behavior such as
material and boundary conditions, are not accounted for. Additionally, these solutions work best
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when the behavior is closest to a sharp bifurcation. Problems where large displacements occur
prior to reaching the buckling load are not good candidates for this type of analysis. The classic
example is a snap-through buckling of a shallow arch. In this instance, the flat arch is very
sensitive to small displacements, and an eigenvalue solution will not correctly capture the
structural behavior.

The alternative to an eigenvalue buckling analysis is an iterative large displacement analysis
which tracks the load-deflection behavior of the structure by updating the stiffness matrix at each
load increment. This type of analysis is able to include all sources of nonlinearity, and model
even the most complex structural behavior. However, it is generally time intensive, and requires
post-processing in order to obtain the results of interest.
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Figure 105. Illustration. Stiffness softening effect due to initial eccentricities in a
compressive member.

In practice, the treatment of geometrically nonlinear behavior has been classified in the building
field differently if it involves the relative lateral displacement of floors of a building, as opposed
to localized displacements of a column between floors. In terms of general structural behavior,
this can cause significant confusion, as the effect described is the same: additional moment due
to the deflections. The two terms will be discussed herein, as several software packages utilize
this terminology.
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If the structural compressive member is subject to a relative end lateral displacement (A)
produced by the global deformation of the structural system, additional overturning moments are
generated along the member. This global behavior is commonly referred to as “P- A,” as
illustrated in Figure 106 for a cantilever short column under axial (P) and lateral (H) loads. The
more the column deforms laterally as a result of the horizontal force, the larger the moment is at
the base due to the additional bending produced by the vertical load. This behavior is typical of
columns in unbraced frames, including single column bents, where the lateral displacement is
either unrestrained or just partially restrained due to the coupled lateral stiffness action of other
members such as the deck system.

To account for P-A effects in a refined model with line elements (e.g. beams, frames), at least
one element needs to be defined between locations where the lateral displacements are expected
to be significant, for example, at lateral concentrated forces or where important inertial force
effects are developed (i.e. large tributary mass). The common practice of defining one element
per level is usually enough to capture the global P-A effects from a frame structure. Examples of
loading sources inducing lateral movements, A, in bridges include: earthquakes, wind,
temperature and centrifugal effects.
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Figure 106. Illustration. Global and local P-Delta effect.

An application of the P-A concept is found in stability evaluations. For steel frame buildings,
AISC uses the concept of “notional loads” to incorporate the initial out-of-straightness “A”
effects in the structure under gravity load combinations (Griffis, L. and White, D., 2013). These
are small lateral loads, proportional to the gravity loads in the load combination, such that the
resultant deformed profile represents an initial global imperfect geometry from which second-
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order effects are calculated. In modeling bridges, a similar method could be utilized if the
notional loads that result in the appropriate deformed geometry are determined. In the absence
of such notional loads, initial out-of-straightness can be modeled directly, based on maximum
permissible fabrication and erection tolerances (see Section 5.3.2.2.2).

A compressive member can also experience local deflections (8) along its length, as illustrated in
Figure 106, which are a function of the internal moments along the length of the member.
Compression members that are subject to lateral deformations, A, often develop internal
moments, and thus need to account for the P-8 effects as well. This can either be handled
separately, by the amplification of the internal moments using a moment magnification equation,
or directly in the analysis through consideration of geometrically nonlinear effects. For such an
analysis, including additional nodes along the length of the member is usually sufficient. A mesh
refinement study is always recommended to ensure that the local effects along the member are
accounted for within satisfactory tolerances (e.g. force changes of less than 5 percent between
two mesh refinement levels). Running benchmark analyses as described in Section 6.2 can
provide a feel for needed mesh refinement.

For the analysis of classic suspension bridges, the very large tension force in the cables acts to
stiffen the bridge, leading to lower deflections and reduced bending demands of the stiffening
truss or girder. Each different loading case on a bridge will result in a different value for the
tension force in the cable, and thus requires its own nonlinear solution. In practice, many
suspension bridges are so dead load dominated, that the variation in cable force due to live load
is relatively small. For these cases, the stiffness can be considered constant based on the dead
load tension only, and typical live load optimization methods that assume linear behavior can be
applied. The stiffness is thus considered “linearized” about the dead load state. This is also the
method typically used to find modal frequencies and shapes for these bridges.

For the analysis of cable stayed bridges, there are two main sources of geometrically nonlinear
behavior: cable sag and deck compression. In the case of cable sag, the effect of gravity pulling
down on the cable tends to decrease the stiffness. In cables with small sag values (<1/600,
Podolny and Scalzi, 1986), the flexibility introduced by the cable weight can be neglected. These
are typically cables oriented mostly vertically, or relatively short cables. In other cases, i.e long,
more horizontally oriented cables, AASHTO LRFD recommends a modified modulus of
elasticity, Emop (Egns. 4.6.3.7-1 and -2), to account for this effect. These are known as the Ernst
equations. When the force in a cable does not vary significantly, the use of this modified
modulus along with a single element modeling the cable length is typically adequate. A single
value for the cable stiffness is used for multiple loadings. However, if the load on the cable, and
therefore the sag, changes significantly, then other methods should be used.

Some programs include specialized nonlinear cable elements that account for the sag and
tension-stiffening effect of the cable. For cases where the tension in the cables is reduced and
sag becomes significant, e.g. sag > L/600 (Podolny & Scalzi 1986), a large-displacement
analysis with multiple nonlinear elements per cable could be more effective. Experience has
indicated that in these situations, a minimum of four elements per cable are sufficient when
regular nonlinear beam elements are used in lieu of a specialized cable formulation, which
would only require one element.
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Even though very large compressive loads develop in the deck of a cable stayed bridge, the
stiffness provided by the stays typically limits the magnitude of the compression induced loss of
bending stiffness in the deck. For most analyses of the final configuration of typical cable stayed
bridges, consideration of this nonlinear behavior is not required. However, for analyzing more
extreme conditions, such as loss of a cable, or behavior of the bridge during erection, this
nonlinear behavior may become significant.

5.3.2.2.2 Requirements for an Advanced Geometric Nonlinear Analysis

A more advanced geometric nonlinear approach is recommended for members prone to exhibit
large displacements and rotations under loads. This includes very slender compressive members
and some cable structures. A large-displacement analysis is also recommended when a post-
failure analysis needs to be conducted to identify alternative loading paths in the structure, such
as in a redundancy analysis for a fracture critical member. Since this local behavior depends on
a highly deformed geometry, there needs to be a sufficiently refined mesh (number of elements)
in areas of significant deformation to accurately capture the corresponding change in geometry
and to keep the incremental rotations small within the elements, which is a requirement in some
nonlinear geometric formulations, e.g. within force increments of an Updated Lagrangian
formulation. In any case, the user must verify that the elements in the model not only support
nonlinear geometric capabilities but also large-displacement behavior.

Arches without a tie member (e.g. true arches) are a clear example of where the global vertical
in-plane P-3 effects are significant. Although bending amplification due to live loads in these
arches is addressed in AASHTO LRFD, a refined approach may be recommended to account for
the stiffness of the deck. This could represent economical savings in the design of a new arch or
increase the capacity for the rating of an existing structure.

For suspension bridges, AASHTO LRFD requires use of a large-displacement analysis due to the
large change in geometry of the main cable as the live loads are applied to the structure. One
element (cable or nonlinear beam) is generally sufficient to model the main cable between
hangers and the hangers themselves.

When investigating buckling behavior, performing at least one large-displacement analysis for a
load combination of interest related with unstable postbuckling behavior is recommended, which
may not necessarily be controlling for design. For example, in a deck arch, the controlling
buckling mode typically corresponds to an asymmetric loading condition, but for the out-of-
plane mode, a full deck loading becomes more critical. The resultant critical loads are compared
with the forces from a linear eigenbuckling analysis to identify if initial deformations affect the
stability of the member. For specific buckling modes that involve sudden changes in geometry,
such as snap-through of shallow arches, a large-displacement analysis is required with a
displacement-control method defined for the solution. For more guidance on stability, see
Section 8.2.10.

In general, a large-displacement analysis requires more computational effort to get a solution
when compared to a small-deflection analysis due to the need to capture higher deformations
with smaller load increments. This is only accomplished by defining smaller force (or
displacement) increments and tighter solution tolerances. It is important to remember that when
performing a nonlinear analysis for a particular loading combination, all loads need to be
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simultaneously applied in the proportion dictated by the combination since superposition is not
valid.

5.3.2.2.3 Inelastic Behavior

For most slender members that undergo geometric nonlinearity, the strains are so small that
nonlinear material properties are typically not required. However, at the strength limit level of
intermediate members (i.e. not slender, not short), inelastic material behavior often occurs
accompanied by second order effects. If both nonlinearities are considered in the model, the
displacements will be more pronounced resulting in larger moments.

Steel beam-column members are particularly susceptible to experience both inelastic and second
order effects due to their capacity to sustain large forces with relatively small cross sections.
However, since the nominal compressive resistance equations for steel members included in
AASHTO LRFD already account for the effects from residual stresses during the rolling process
and an initial out-of-straightness of the member of L/1500 (5), the material inelasticity and initial
geometric imperfections should not be included in the structural analysis for design purposes.
What needs to be considered for design is the additional geometric P-A, or P-o effects when & is
significant (e.g. arches under live load). There are basically two ways to account for these
second order effects in steel members, as mentioned previously:

e Apply the code amplification factors to the first-order elastic moments, or
e Use directly the second-order moments from a geometric nonlinear (but elastic) analysis.

Additionally, the compression-flexure interaction equations for steel members have been
calibrated to give a close but conservative estimate of the capacity of the member when the
amplification factors are used. For a complete discussion about how AASHTO LRFD handles
the axial-flexure loading interaction in steel beam-column members, the reader is referred to
White (2015).

For concrete beam-column members, the need to account for the interaction of inelastic and
geometric nonlinear effects is less frequent due to the lower levels of slenderness exhibited by
these members. AASHTO LRFD recommends an effective reduced stiffness (Eqns. 5.7.4.3-1
and -2) to compute the buckling load utilized in the amplification factor equations. Initial
unintended eccentricities are accounted for with a reduction factor (0.8 or 0.85 for tie or spiral
transverse reinforcement) applied to the nominal axial resistance of the concrete beam-column
member.

For forensic studies or performance-based evaluations (e.g. displacement-controlled seismic
analyses), where the objective is to replicate a failure mode, all sources of nonlinearity should be
included in the analysis in order to get a reliable approximation of the behavior of the structure.
Some stability methods (e.g. Direct Analysis Method by AISC) specify stiffness reduction
factors instead of completely modeling the material inelasticity to account for additional
deformations (see Appendix 1 of AISC, 2016). The Direct Analysis Method works well
modeling progressive plastic hinge formation.
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5.3.2.3 Boundary Condition and Tension/Compression Only Nonlinearity

Boundary condition and tension/compression only nonlinearities are easy to identify physically
but may be difficult to implement in a model. These nonlinearities can be present within the
structure or only at supports. Some of the common situations that fall within this category are:

Lift-off at bearings

Opening and closing of expansion joints

Pounding of adjacent structures

Behavior of seismic isolation bearings

Friction between sliding surfaces, including stick-slip
Behavior of cable restrainers

Behavior of tension only members such as bracing or counters

For less advanced programs, some of these effects can be modeled using multiple linear elastic
analyses, such as removing supports with negative reactions and rerunning to model lift-off at
bearings. Using such techniques can become onerous when moving loads are considered,
however.

More advanced programs usually handle this nonlinearity by adding fictitious elements such as
joints or spring lines/surfaces between the boundaries that undergo or are prone to have contact.
The behavior of these elements is characterized by a nonlinear curve where gaps and changes of
stiffness at a determined level of displacement can be defined, as described in Section 5.3.2.1b.
Some programs have specific elements for some of these situations, such as tension only or
compression only elements. Consult the program user guide to determine capabilities.

5.3.3 Aspects of the Numerical Solution

Nonlinear static analyses typically require an iterative solution technique (e.g. standard or
modified Newton-Raphson) which converges on the correct answer. The “correct” answer is the
one that satisfies the conditions of equilibrium, compatibility, and material stress-strain
relationships. Software typically applies convergence criteria to determine when to stop
iterating, when the answer is within predefined numerical tolerances that result in insignificant
changes between iterations. The degree of convergence is important, as the final state of the
model for a given increment is used as the starting point for the next increment.

5.3.3.1 Incremental Methods

The first step in performing an iterative analysis is choosing a reasonable load/displacement
increment. Smaller increments can lead to faster convergence, while larger increments can
reduce overall computation time. Increments can be varied, such as large increments used
initially, and then smaller increments later for more nonlinear portions of the analysis. Small
increments can sometimes be used to traverse a particularly difficult to converge portion of an
analysis. Some programs can adjust increments automatically, based on convergence in the
previous step.

The default iterative solution procedures in FEA programs typically iterate at a constant applied
load level, that is, the load level is incremented and the program seeks a displacement solution at
each new level. This means that for a constant force increment a unique displacement solution is
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assumed to be found (see Figure 107). Convergence difficulties arise when this approach is used
to solve limit load problems, where the load-displacement curve exhibits local maximums or
minimums. This can occur due to the model reaching its limit of resistance due to a combination
of material and/or geometric nonlinearity. “Snap-through” buckling of shallow structures is one
class of problem of this nature. In these cases, it is recommended that an arc-length solution
procedure be employed, and some programs will automatically switch to such a solution
procedure under such scenarios. Arc length methods provide an additional constraint on the
solution process that allows the applied load to vary during the iterations, thus allowing the
navigation of limit loads in the solution (see Figure 108). Displacement-control methods are one
class of arc length methods.
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Figure 107. Graph. Iterative method of converging on incremental solution using a
constant load level.
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Figure 108. Graph. Iterative method of converging on incremental solution using arc-
length.

One of the most common problems with nonlinear solutions is nonconverging increments. In
addition to the aforementioned zero stiffness issue, other numerical issues such as small or zero
load increments can also result in nonconvergence. There are several strategies that can be
effective in getting a troublesome model to converge on a solution, including:

e Use of imposed displacements rather than loads.

e Reducing the increment at the portion of the solution where the model is having trouble
converging.

e Slightly adjusting stiffness properties to avoid horizontal portions of load-deflection
curve solutions, such as providing for some nominal strain hardening in steel properties.

e Adjusting program solution technique, and/or convergence criteria (usually defined in
terms of allowable residual forces, displacements, and/or work compared to the “exact”
equilibrium solution).

For user adjustable convergence criteria, a program user manual will often provide advice on the
range recommended for a given criteria, from “tight” to “loose.” Assigning “tight” criteria will
result in a more accurate answer, but may require more iterations and smaller increments to
achieve convergence. “Loose” criteria achieve convergence more quickly for a given increment,
but the answer may not be as accurate, and may make it more difficult to converge the following
increment. There can be a large number of user adjustable variables in an iterative solution
technique and associated convergence criteria.

It can take significant time and effort on the engineer’s part to coax a program into convergence
to the correct solution of a nonlinear problem, especially when several different types of
nonlinear behavior are present. A thorough understanding of the software’s particular solution
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methodology is recommended, and even then substantial time may be required with various tries
with different solution parameters to obtain convergence in some problems. If the program
provides for it, examining the results, such as the deflected shape, for the unconverged analysis
increment can often provide clues as to how to address the problem. It is also useful to perform
an eigenvalue analysis and look for odd modal shapes that can reveal the location of the issue.

Some programs may only be able to solve problems with positive slope of the load deflection
curve, or increasing loading. For programs such as these, identifying the point at which the
program cannot converge on a solution can be sufficient in determining a maximum load for
which the model is stable. Other programs may be able to solve for decreasing load portions,
and provide unloading curves such as post-buckling behavior as well.

Not all physical behaviors resulting in nonlinear responses need be assessed using an iterative
analysis. Some computer programs have the capability to “linearize” certain problems by
applying either numerical techniques or simplifying assumptions that allow obtaining a more
efficient solution. In frame analysis problems for example, a classic simplified geometric
nonlinear problem occurs when the axial forces in the structural members do not change
significantly during loading, such as gravity forces in robust piers or bents under lateral forces
with small displacements. In that case, the contribution to the geometric stiffness matrix, Kg,
from the stiffness terms associated with the lateral loads are negligible, and only the terms
corresponding to the axial forces are used to create Kg without the need of iterations (Wilson,
2002). Therefore, in similar situations, it is convenient to run a concatenated analysis where the
initial step corresponds to the “Gravity + Notional” Loads including the nonlinear geometric
effects followed by the transient lateral loads which are analyzed linearly with the modified
stiffness.

5.3.3.2 Numerical Solvers

There are two basic types of solvers in FEA software: direct and iterative. It should be noted that
an iterative analysis should not be confused with an iterative solver as discussed next.

Direct solvers are based on the Gaussian elimination method, where for each load case, X
equations are used to solve for X unknowns, where X corresponds to the number of degrees of
freedom. Although they are stable and applicable to any type of analysis, these solvers become
computationally expensive when dealing with complex models with large numbers of DOF.
However, several optimization methods have been developed to reduce the computational time
of the solution. A direct solver is generally recommended for most practical structural problems,
especially those dealing with nonlinear behavior.

Conversely, iterative solvers find an approximate solution using an iterative process that
minimizes errors through a convergence criterion, requiring less computational storage. Care
must be taken when using iterative solvers with less than favorably conditioned models because
the solution provided may diverge from the real behavior of the structure. The key to a good
iterative solver is a good preconditioner that results in a better conditioned problem. The
problem typically should be positive definite resulting in a unique solution. Iterative solvers are
generally recommended for linear analyses of very large well-conditioned models. For more on
the specifics of iterative solvers consult the documentation of the program being utilized.

160



5.3.4 General Recommendations for Nonlinear Analyses

e Elements: Nonlinear analyses often utilize specialized elements different than the typical
ones used in linear elastic analyses. Elements with nonlinear material or large-deflection
capabilities may need to be used depending on the problem to be modeled.

e Mesh: Although the mesh refinement is a key aspect in the accuracy of any finite-
element analysis, it is essential in the evaluation of nonlinear behaviors where large
displacements or rotations are exhibited along the members (e.g. P- behavior).

e Materials: Start with linear material models, especially when other nonlinearities are
included in the analysis, to have as a baseline for comparisons when the nonlinear
materials are introduced. For the nonlinear materials, verify in the program manual the
ranges where the input parameters are valid and vary them accordingly.

e Increments: Use smaller increments and/or a displacement-based approach if
convergence issues arise during the analysis.

e Convergence: Adjust the convergence criteria limits following the program manual
recommendations to prevent loss of accuracy in the results.

e Solver: Use a direct solver for nonlinear analysis.

5.4 Dynamic Analyses

Per Article 4.7 of AASHTO LRFD, dynamic analysis may be required to investigate wind or
vehicle induced vibrations, the effects of seismic loads, or the effects of blast loads. Dynamic
analyses may also be appropriate for investigating vehicle impact or behavior of structures
subject to vessel or vehicle collisions. Of these types of problems, seismic analyses are
encountered most frequently and therefore will be a focus in many of the following discussions.
Additionally, Example 5 describes a multi-mode response spectrum seismic analysis. Although
seismic loads tend to be longer duration than the pulse loads of other dynamic effects, much of
the information provided in reference to seismic analysis is also applicable to other types of
dynamic analysis problems.

Dynamic analyses can be broken into two broad categories: modal analyses and direct
integration analyses. For modal analyses, the behavior of the structure is determined by adding
together the response of the structure’s individual vibration modes. This can be done in the
frequency domain, as with a response spectrum analysis, or in the time domain, with a modal
time history analysis. For this approach, the frequencies and mode shapes of the structure must
first be found through an eigenvalue analysis, and then combined to determine the structure’s
response.

The direct integration approach, also called a time-stepping analysis, solves the global dynamic
equations of motion at each time step. This method is able to account for numerous sources of
nonlinearity, and is most commonly used for nonlinear time history analyses.

5.4.1 General Information

The equations for static and dynamic equilibrium may be written generally as Equations (27) and
(28), respectively.

Static: [Kl{u} = {P} (27)
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Dynamic: [M]{E(6)} + [CT{u(D)} + [K]{u(D)} = {P(D)} (28)

where: M = mass matrix;
C = damping matrix;
K = stiffness matrix;
P = vector of loads;
U, u ; and u, = vectors of acceleration, velocity, and displacement, respectively; and
(t) indicates that the vectors are a function of time.

The dynamic equation above indicates that the characteristics of the load, mass, stiffness, and
damping of the structure all influence how significant the dynamic effects are to the overall
response of a structure. For some transient loads such as live load and wind load, adjustment
factors to account for the dynamic portion of a structure’s response have been developed, and
therefore a static analysis is sufficient to determine the response of the structure and member
force effects. However, for cases involving these or other loading types where the interaction
between the loads, mass, damping, and stiffness characteristics of the structure result in complex
dynamic behaviors, a full dynamic analysis is warranted.

To determine the dynamic structural response, the equations for dynamic equilibrium are solved
using modal analysis, step-by-step direct integration, or sometimes a combination of the two.
These will be discussed further in subsequent sections when examining two types of dynamic
analysis: response spectrum analysis and time-history analysis.

5.4.2 Modeling for Dynamic Analyses

To carry out a dynamic analysis the mass, damping, and stiffness of the structure all need to be
modeled, unlike a linear static analysis which only requires the correct modeling of the stiffness
of the structure. The following sections discuss the modeling of each of these parameters as well
as the issue of model size as it relates to solving dynamic analyses and post-processing results.

5.4.2.1 Modeling Mass

Finite element analysis uses one of two methods, or sometimes a combination of the two, to
develop the mass matrix for the structure. In the lumped mass formulation, the mass matrix is
formed by assuming that all of the mass is located at the nodes, and the resulting mass matrix is
diagonal. Conversely, a consistent mass matrix is developed by assuming that mass is
distributed throughout the elements, resulting in a symmetric matrix with off diagonal terms.

The method implemented is dependent on the software and the element type being used, and can
have an effect on the results. Therefore, the engineer should be aware of the formulation being
used in their software, and the influence it may have. For instance, if a lumped mass matrix is
utilized, it is populated only along the diagonal and is easily inverted, resulting in computational
advantages. However, additional elements may be required to better distribute the mass in the
model and more accurately capture the dynamic behavior, which increases the computational
effort. In general, use of consistent mass matrices tends to bound the structure’s natural
frequencies from above, while the opposite is typically true for lumped mass matrices. Use of
consistent mass matrices is more accurate for flexural type problems, while lumped mass
matrices are more accurate for wave propagation problems, such as analysis of blast or impact
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loadings (Cook, 2002). This is due to the lumped masses resulting in fewer spurious oscillations,
and also has the added benefit of being less computationally intensive than use of a non-diagonal
consistent mass matrix.

In a static analysis, a combination of applied loadings and gravity (body force) can be used to
represent the dead load of the structure. Typically the weight of the modeled components are
accounted for by assigning proper material mass densities and specifying the gravitational
acceleration, while the weight of non-modeled components (i.e. components which are typically
considered to not contribute to the stiffness of the structure, such as wearing surfaces, barriers,
and utilities) are accounted for by applying point, line or surface loads.

For dynamic analyses, the use of loads to account for mass is not appropriate. Instead, all mass
must be explicitly defined such that when gravity is assigned, the full weight of the structure,
with the correct distribution of weight, is present. Therefore, the mass of components which are
not explicitly modeled needs to be included. Additionally, it should be ensured that elements
used in the model which are not a part of the actual structure (such as rigid links between
members) are assigned a negligible mass density.

In finite element programs there are typically several ways to account for the mass of
components which are not modeled. Two methods are outlined below and examples are given
for the 3D deck truss model shown in Figure 1009.

(1) Use point, line, or area masses.
Example: Assign a point mass at each joint to represent the mass of the gusset
plates

(2) Develop an equivalent mass density which accounts for the non-structural
components to assign to a nearby modeled structural component.

Example: Assign an equivalent mass density to the deck which accounts for the
mass of the wearing surface:

Peq = (t:iec.fc Peonc. T tws‘ﬁws)/tdeck

where: peq = equivalent mass density;
tdeck = deck thickness;
Pconc = concrete mass density;
tws = wearing surface thickness; and
Pws = wearing surface mass density.
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Figure 109. lllustration. 3D deck truss model with non-structural masses modeled.

Regardless of the methodology used, the total weight of the structure should always be verified.
Checking the weight versus a previous version of the analysis model which utilized typical
material densities and applied loads to account for the weight of non-modeled components is

recommended.

In addition to accurately modeling the total mass, the distribution of mass and how it interacts
with the structure must also be modeled correctly. Mass moment of inertia is a value describing
the body’s resistance to angular acceleration under an applied torque. Therefore, it is the angular

equivalent of mass, i.e.:

For linear motion: F = ma

For rotational motion: = Iya
where:

F = force;

m = mass;

a = acceleration;

T = torque;

Im = mass moment of inertia; and

o = angular acceleration.

The mass moment of inertia depends on the spatial distribution of the mass about an axis. Refer
to a standard dynamics textbook, for example (Beer, et al., 2016), for the equations of the mass
moment of inertias for various shapes. While the total mass may be easily accounted for in an
analysis model, unless care is taken the mass moment of inertia may not accurately represent the

actual structure.

The torsional response of most typical bridges is not critical to the overall dynamic behavior.
However, for sharply curved bridges there can be significant vertical and lateral coupling with
the torsional response of the bridge. Additionally, in aeroelastic evaluations the torsional
response is very important, and it is critical that the mass moment of inertia is properly modeled.
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As an example, consider the curved bridge being modeled as a spine beam shown in Figure 110.
An equivalent mass density can be assigned to the spine elements to account for the full mass of
the superstructure, however the software program may assume that all of the mass is located
along the beam elements or at the nodal locations (depending on the use of a consistent or
lumped mass matrix). As a result of neglecting the fact that there is mass that is eccentric to the
beam line, the dynamic torsional response of the structure will not be correct.

Superstructure spine beam \

Figure 110. lllustration. Example of an analysis model of a curved bridge using a spine
beam superstructure.

To remedy this, the mass moment of inertia of the superstructure about the longitudinal axis can
be determined, and the model can be modified to have a similar mass moment of inertia value.
Depending on the software being used, this can be accomplished by employing eccentrically

placed masses, as shown in Figure 111, or by assigning masses with rotational components along
the spine beam. -
P Massless rigid link (typ.)

Superstructure spine beam

o e 0 B Point mass (typ.)

. - . .

Substructure (typ.)

Figure 111. lllustration. Spine model modified to use eccentrically placed masses to result
in the proper mass moment of inertia for the superstructure.

Results from a simplified version of the spine model (for instance, utilizing only one span) could

be compared with a simplified PEB model of the deck system to ensure that the modeling of the
mass moment of inertia is appropriately capturing the behavior of the structure. Often it will not
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be apparent what, if any, mass moment of inertia is included in a given software package’s beam
element formulation. Information such as this is sometimes missing from a program’s
documentation. For such a case, it is recommended to create some simple dynamic models and
back-calculate the included mass moment of inertia, then determine what additional inertia needs
to be added.

5.4.2.2 Modeling Damping

Damping acts to reduce the motions of the system and dissipate the energy which is input. The
damping in actual structures is due to a multitude of interactions. At small displacements,
behaviors such as friction between components, micro-cracking of concrete, hysteretic material
behavior, localized yielding of steel, slip of steel connections, and others all contribute to the
damping. At large displacements, the yielding of components and formation of hinges further
add to the amount of energy dissipated from the system.

The actual damping behavior of structures tends to be complex, nonlinear, and amplitude but not
frequency dependent. However for simplicity, damping is typically accounted for using
equivalent viscous damping (sometimes referred to as classical damping). In this formulation,
damping is proportional to velocity, as was shown previously in the dynamic equilibrium
equation. Despite being a simplification of the actual behavior, it has been shown that use of
equivalent viscous damping produces reasonable results for typical structures. Furthermore, the
use of equivalent viscous damping greatly reduces the computational effort and permits the
problem to be solved by modal analysis methods. This is in large part due to the classical
damping matrix, C, being diagonal.

The magnitude of the equivalent viscous damping is expressed as a percentage of the critical
damping value (often referred to as the damping ratio, &). The critical damping value is the
smallest amount of damping which will inhibit oscillation completely. The damping ratio for use
in an analysis should be selected based on collected data of similar structure types, or based on
the material, construction type, and stress levels expected for the analysis being performed.
AASHTO LRFD C.4.7.1.4 recommends damping ratios of one percent, two percent, and seven
percent for welded or bolted steel construction, concrete construction, and timber construction,
respectively. Additional recommended damping ratios are shown in Table 7. It should be noted
that these values were obtained from studies on buildings. Bridges, especially medium to long-
span ones, can often have damping ratios smaller than those shown.
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Table 7. Recommended damping ratios (Chopra, 2017).

Stress Level Type and Condition of Structure Damping Ratio (%)

\Welded steel
Prestressed concrete 2-3

<Y yield stress |[Reinforced concrete w/ slight cracking
[Reinforced concrete w/ considerable cracking 3-5
[Bolted or riveted steel 5-7
\Wood with nailed or bolted joints
\Welded steel 5-7
Prestressed concrete w/o complete 10ss in prestress

At or just below |Reinforced concrete 7-10

yield Prestressed concrete w/ no prestress left

IBolted or riveted steel 10-15
\Wood with bolted joints
\Wood with nailed joints 15-20

For modal analysis, which will be described further below, typically the damping ratio can be
input directly, either for specific modes or for all modes utilized. For time-history analysis, a
formulation called Rayleigh damping is often used, in which the damping matrix is developed as
a linear combination of the mass and stiffness matrices, as illustrated in Equation (29):

[C] = ay[M] + a,[K] (29)

where: [M], [C], and [K], are the mass, damping, and stiffness matrices, respectively, ao is the
mass-proportional damping coefficient, and aa is the stiffness proportional damping coefficient.

With this method, the amount of damping can be selected to approximate the actual or desired
amount damping with the proper selection of the values aoand ai. This methodology has been
shown to be reasonably accurate for structures with relatively low damping (less than roughly 15
percent of the critical damping value). To determine the mass-proportional and stiffness-
proportional damping coefficients, the desired damping ratio is selected at two frequencies and
Equations (30) and (31) are solved simultaneously.

1.1 i
z{:ﬂoii“:ﬂj_] — Ef‘

(30)

1.3

H—agtwzay) = &;
2 e J ] (31)
where: wi and w; are the frequencies selected to have the percentage of critical damping values &;
and ;.

Typically, the frequencies of the highest and lowest contributing modes are selected to determine
aoand ai. The engineer should plot € vs. frequency to understand how the amount of damping
varies with frequency and to ensure important vibration modes are not inadvertently over or
underdamped. The two proportional damping coefficients can then be adjusted as necessary to
achieve the desired damping effect.
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As an example, say it is desired to obtain a target damping of 2.5 percent in the range from 0.75
Hz to 5Hz. Solving for aoand a: using the known w values and &; and §; values both equal to 2.5
percent results in the plot shown in Figure 112.

Damping Ratio
o = ] () et o
X R R R R
e

0 1 2 3 4 5 6 7 8 9 10
Frequency (Hz)

Figure 112. Graph. Example Rayleigh (proportional) damping curve.

At the two selected frequencies the damping ratios are equal to the desired value. At frequencies
above and below the range of interest (i.e. < 0.75 Hz and > 5 Hz), the developed relationship
provides damping ratios greater than the target value of 2.5 percent. Within the range of interest
(0.75 Hz-5 Hz) damping ratios less than the target value are obtained (in this case with a
minimum value of 1.68 percent at a frequency of 2 Hz). Once plotted, the range of interest or
target damping ratios can be manipulated to adjust the curve and obtain the desired effect. The
curve will always have a shape similar to what is shown above, with a damping ratio that varies
with frequency. It is not possible to obtain a truly constant damping ratio with Rayleigh
damping.

5.4.2.3 Modeling Stiffness

Typical procedures for modeling stiffness in static analyses apply equally well for dynamic
analyses. Section 3 provides guidance regarding proper modeling of beams, cross-frame
stiffness, torsional stiffness, boundary conditions, etc.

When a linear elastic dynamic analysis is performed for a structure and the elastic limit is likely
to be exceeded, then the stiffness used for a dynamic analysis can be modified to account for
this. An example of this would be concrete columns in a seismic analysis. For static analysis the
columns may be modeled using gross section properties, however for a seismic analysis the
stiffness should be reduced if cracking of the concrete is likely to occur. For more information,
refer to Section 7.3.2 of FHWA (2006).
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5.4.2.4 Model Discretization

For a given model, the computational effort required to solve a dynamic analysis is often greater
than for a static analysis. For large analysis models, a reduction in the model size from that used
for static analyses may be required so that the model can run efficiently and the results files do
not become impractically large. However the effects on the output of reducing model size need
to be considered, and the layout of the mesh needs to at least meet the requirements of any
relevant specifications (for instance: AASHTO LRFD BDS, AASHTO Guide Specifications for
LRFD Seismic Bridge Design, or FHWA, 2006).

For modal analysis, natural mode shapes of the structure are required. The number of modes that
can be solved for is equal to the number of degrees of freedom in the model, however the
number of modes needed for accurate results is usually significantly less than this. This is
appropriate since not all modes, particularly the very high frequency ones, contribute
significantly to the response of the structure. While not all modes need to be utilized to
determine the response of the structure, it must be ensured that enough modes are present to
obtain an accurate representation of the actual behavior. This is done by examining mass
participation factors, which indicate how much of the mass is participating in each mode and in
each direction. These values can be output from the analysis program, and it needs to be ensured
that the sum of values for each direction is a sufficient amount of the mass of the structure
(typically given as 90 percent). With larger models, more modes are required to reach the 90
percent level.

For time-history analyses, it must be remembered that output at each element/node will be stored
for each time-step, which can result in a large pool of data which may be difficult to work with,
both in terms of storage and file manipulation, as well as processing, evaluating and
understanding the results. For both response spectrum and time-history analysis, there are times
when it is appropriate to utilize a “lower order” model for dynamic analyses than what was used
for static analyses. For instance, a bridge modeled using a PEB model for static analysis may
best be modeled as a spine beam to perform the seismic analysis. This is especially true if the
critical interests for the seismic analysis are the connection forces between the substructure and
the superstructure (i.e. stresses in the girders are not paramount). In other cases, a condensation
procedure may be appropriate to simplify a portion of the structure and reduce the number of
degrees of freedom.

One option available in some programs to reduce the computational effort for modal analyses is
to selectively include only modes with significant amounts of modal mass when determining the
structural response. Another option that may be available is a Guyan (static condensation)
reduction feature, which allows the software to condense the available degrees of freedom of the
model into a smaller subset, either chosen by the user or automatically chosen by the software
(Cook, 2001). Great care should be taken to ensure that important modes of vibration are not
inadvertently condensed out, which would cause the resulting analysis to be in error.

5.4.3 Multi-Modal Response Spectrum Analysis
5.4.3.1 Input
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The primary input to a response spectrum analysis is the relationship between acceleration and
modal period. A response spectrum is constructed by recording the peak response, usually
acceleration, of a single degree of freedom (SDOF) oscillator when subjected to an earthquake’s
ground motion. The peak acceleration of the SDOF is then plotted against the period (or
frequency) of the oscillator, which is varied to produce the full spectrum curve.

A design response spectrum typically represents the combined hazard of many different potential
earthquake events, and is smoothed. Figure 113 shows an example of the shape of a response
spectrum curve, with the acceleration expressed as a percentage of gravity (g).

e o o
~ e e

0.6
0.5

cceleration (g)

1] 0.5 1 1.5 2
Period [s)

Figure 113. Graph. Example of the shape of a seismic response spectrum.

The response spectrum depicted in Figure 113 is the typical shape used for design, with a plateau
at lower period/high frequency values and a tail which asymptotically approaches zero at infinite
period. It should be noted that damping is typically accounted for in the response spectrum
itself, and therefore does not need to be included in the model.

The response spectrum is input into an FEA model by discretizing the curve. Finite element
programs typically use a linear interpolation between the input points, so enough data points
must be input such that the linear interpolation appropriately represents the actual curve. The
LRFD Specifications require that the response spectrum be applied in the longitudinal and the
transverse directions. For curved structures the longitudinal direction is generally taken as along
the chord between supports.

5.4.3.2 Solution

The problem is transformed from n coupled equations (according to the equation for dynamic
equilibrium in Section 5.4) into m uncoupled equations, where n is the number of degrees of
freedom and m is the number of mode shapes considered in the modal analysis. For each mode
shape, there is an associated frequency, determined by performing an eigenvalue analysis prior to
the response spectrum analysis.

All modes do not contribute equally to the response of the structure, so while the upper limit of
m is n, generally m can be significantly less than n. The appropriate number of modes to use is
determined by examining the mass participation factors output from the eigenvalue analysis.
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The total mass participation in each direction should be 90 percent or greater. If the total mass
participation is less than 90 percent, then either more modes need to be considered or the model
needs to be adjusted. Methods of adjustment include reducing the number of DOF in the model
or artificially reducing the number of DOF for the eigenvalue analysis by Guyan Reduction (also
see Section 5.4.1.4). Consult the manual for the software being used to determine how this
procedure is implemented.

Combining the mode shapes and the mass properties of the system allows a set of inertia “forces”
to be developed for each mode. When these are applied to the structure and multiplied by an
acceleration value, the dynamic response of the mode undergoing that acceleration can be
determined. Since the response spectrum provides the peak acceleration values over the duration
of the seismic loading for different frequencies, the peak response for each mode is simply the
effects of the inertia “forces” multiplied by the response spectrum ordinate associated with the
frequency of the mode. Then by combining the effects of all modes, the total response of the
structure is found. Since effectively each mode is treated as a SDOF system with an already
known peak acceleration (from the response spectrum), this procedure greatly reduces the
computational requirements when compared with time-stepping methods which are described in
Section 5.4.4.2.1.

The peak responses of each mode do not necessarily occur at the same time, so an accurate
estimate of the overall response of a structure requires some method of modal combination that
accounts for this. Studies have shown that estimates of peak response found by using methods
such as the Square-Root-Sum-of-Squares (SRSS) method and the Complete Quadratic
Combination (CQC) method provide values which are sufficiently accurate for design purposes.
Generally the CQC method is preferable, especially if the modes of the structure are closely
spaced. When no damping is specified for the CQC method, it reverts to the SRSS method.

5.4.3.3 Output

Response spectrum analysis results are the peak output values, not values at specific times. Due
to the manner in which the responses of the various modes are combined, the sign of the
response is lost, and therefore all values in the results are positive. Because of these two facts,
care must be taken when utilizing the analysis output. The responses determined are not
concurrent, and therefore base reactions cannot be summed, since that would overestimate the
value due to the peak reactions likely occurring at different time instances. Likewise, the relative
displacement between nodes cannot be determined from the response spectrum output, since the
peak displacements of two nodes may not coincide with the occurrence of their peak relative
displacement. Therefore, all responses of interest, such as relative displacements or
combinations of forces, must be calculated prior to combining modal results. The analysis model
can be modified as necessary to ensure that this occurs. For instance, a joint element with very
low stiffness can be added between nodes so that the peak change in length of the joint element
will be recorded by the program.

As mentioned previously, the response spectrum is input in the transverse and longitudinal
directions. The responses in these directions are then combined to arrive at the design force
effects and displacements. Generally the 30 percent rule is used, wherein the maximum response
is determine from either 1.0L+0.3T or 0.3L+1.0T, where L and T represent the responses due to
the spectrum applied in the longitudinal and transverse directions, respectively. This requires
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selecting the longitudinal and transverse directions. The Caltrans CQC3 procedure removes this
feature by requiring the 30 percent rule to be run for all orientations, creating an envelope of
seismic motions in all directions. This can be done by selecting a longitudinal/transverse
orientation and then performing the analysis in angle increments up to 90 degrees to determine
the most severe force effect for each component.

5.4.4 Time-History Analysis
5.4.4.1 Input

The inputs for a seismic time-history analysis are sets of ground motions, typically specified as
acceleration vs. time. Often these come from actual recorded earthquakes, although they also
can be artificially generated. The selected time-history data can be altered using spectrum
matching to result in input motions with characteristics similar to the desired design response
spectrum. Spectrum matching is typically performed using specialized software such as
RspMatch and is beyond the scope of this manual.

The time-history input is assigned to each support location in the model. If the model represents
a long structure (about 2 miles or longer), then some of the time-histories input in the model may
need to be modified to account for the seismic wave not occurring at all locations
simultaneously. Further guidance can be found in other seismic specific sources such as
(FHWA, 2006). Per the AASHTO LRFD Specifications a minimum of 3 time-histories must be
utilized in the longitudinal, transverse, and vertical directions. For curved structures the
longitudinal direction is taken as along the chord between supports. Use of 7 or more time-
history analyses can allow for the use of mean output values instead of maximum values for
design purposes. Different states and agencies may have slightly different requirements.

For other types of dynamic time-history analysis problems, the input loading will often be a set
of forces that vary through time in location and/or in magnitude. An example would be a truck
crossing over a bridge. The loading may be modeled with either a constant force for each of the
wheel loads, or with variable forces which account for the impact resulting from the dynamic
interaction of the truck suspension system with the bridge.

5.4.4.2 Solution

For a multi-degree of freedom (MDOF) system with n degrees of freedom, the equation for
dynamic motion given in Section 5.4.1 results in n coupled differential equations. The methods
of solution of these equations falls into one of two categories: time-stepping methods involving
step-by-step integration or modal analysis. Time-stepping methods must be used to handle the
most complex problems, including nonlinear time-history analysis and systems with non-
classical damping. Modal analysis has the benefit of being much more numerically efficient than
time-stepping methods, but its use is limited to assumptions of linear elastic behavior and
classical damping.

5.4.4.2.1 Time-Stepping Methods

For time-stepping methods the equations of dynamic equilibrium are solved at discrete time-
steps by use of the initial conditions, values at previous time-steps, and assumptions regarding
how the values vary between time-steps. Two types of time-stepping methods are typically
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available in finite element analysis programs: explicit and implicit. The two methods differ in
how the dynamic equilibrium equations are solved, which results in different characteristics
relating to the maximum useable time-step size, accuracy, convergence, stability, and
computational demands. The specific time-stepping methods of the program being used should
be understood so that the one most applicable and best suited to the problem at hand can be
selected.

When using explicit methods, the solution at the next time-step is determined by satisfying the
dynamic equilibrium equations at the current time-step. This solution scheme results in the de-
coupling of the equations of equilibrium, such that the stiffness matrix does not need to be
inverted at each time-step. However, it also results in the solution being only conditionally
stable, meaning that a solution can only be obtained if the time-step utilized is less than the
critical time-step. With time-steps larger than the critical value, the responses of the higher
frequencies will not be evaluated correctly, resulting in the errors accumulating until the solver
“crashes.” The critical time-step can be defined as 2 divided by wmax, where wmax is the
maximum circular frequency of the system. Often explicit methods are used for wave
propagation problems, for instance the examination of stress waves from blast or impact loading
(i.e. very short duration, pulse loadings). In these circumstances, with a uniform mesh present,
the critical time-step can be estimated as S/c, where S is the distance between nodes and c is the
wave propagation speed of the material, which can be taken as the square root of E divided by p.

For implicit methods, the solution at the next time-step is determined by satisfying the
equilibrium equations at the next time-step. Unlike the explicit method, this scheme requires
inverting the stiffness matrix at each time-step (a very computationally demanding endeavor),
but the solution is unconditionally stable and therefore the choice of time-step is dependent only
on accuracy considerations. To accurately account for all of the high frequency modes, the time-
step would need to be less than the critical time-step described above, however, implicit methods
are typically used when lower frequency components are more influential to the response, such
that the effects of higher modes can be neglected. This is typically the case for analysis of
problems such as seismic loading or vibrations due to live loads, which have loadings that are
not pulse-like in nature. With high frequencies not contributing significantly to the response, use
of fewer time-steps which are much larger than the critical time-step is often acceptable. This
mitigates the computational demands of the stiffness matrix needing to be inverted at each time-
step. A time-step of 1/10""-1/20™ of the period of the highest mode which influences the total
response is recommended.

Finite element software programs may have their own methods to select an appropriate time-step
for both explicit and implicit solution methods. The documentation for the program being
utilized should be examined to gain an understanding of what is occurring “under the hood.”
Additionally, regardless of the method used, upon completion of the initial time-history analysis,
the analysis should be performed again utilizing a smaller input time-step to ensure that the
solution is not being significantly affected by the selected value.

5.4.4.2.2 Modal Time-History Analysis

Modal time-history analysis requires the determination of mode shapes and frequencies, as
described above for response spectrum analysis, however some FEA programs will utilize load-
dependent mode shapes (Ritz vectors) instead of the free vibration mode shapes. Once the
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modes and equivalent static forces have been determined, time-stepping methods are used to
solve the SDOF system associated with each mode. The responses of the modes are then
combined for each time-step.

The solution using modal analysis requires the selection of a time-step, and it is usually sufficient
to use 1/10"- 1/20™ of the period of the highest mode utilized. A larger value can be utilized if
the higher modes do not contribute significantly to the behavior of the structure. As mentioned
above, modal analysis is limited to examining problems with linear elastic behavior and classical
damping.

5.4.4.3 Output

Time-history analyses determine the response at all time-steps. This can result in extremely
large sets of output data. In some cases it may be acceptable to run the analysis utilizing a small
time-step, but have the program save the results using a larger time-step. In this way, accuracy
of the results can be assured while reducing the size of the output files, however care needs to be
taken to ensure that this down sampling does not result in missing important peak values in the
response. An envelope of the force effects from the analysis can often be utilized in lieu of the
large post-processing effort which would be required to sort through the data and summarize
each maximum and minimum force effect with its concurrent effects at each node of interest.
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CHAPTER 6. VERIFICATION/VALIDATION
6.1 Introduction

Analysis and design software has become almost ubiquitous throughout the bridge design
community. Some packages are now available which can create the model from limited input
with modeling “wizards,” code-check the sections and produce reports with many figures and
diagrams all in a single afternoon. Unfortunately, the one task the software will not do is take
responsibility for any of the results. Below is a disclaimer typical of those found in software
manuals or licensing materials.

Considerable time, effort and expense has gone into the development and
documentation of [the programs]. The programs have been thoroughly tested and
used. By using the programs, however, the user accepts and understands that no
warranty is expressed or implied by the developers or the distributors on the
accuracy or the reliability of the programs.

The user must explicitly understand the assumptions of the programs and must independently
verify the results.

As software does more and more, the need for independent verification increases. The multi-
colored plots of stress contours, three-dimensional deformed meshes, and reams of computer
produced design checks have become so convincing that even the most well-grounded engineer
begins to respond to the siren’s call of advanced graphics and quantity of data. But the analyst
must always be aware that errors do occur and checking results is as important as ever.

There are two sources of inaccurate computer results; user input errors, and internal software
bugs. User input errors include errors in input data (the venerable GIGO, Garbage In = Garbage
Out, observation) as well as misapplication of the software stemming from an incomplete
understanding of the software’s capabilities and operational details. These types of errors are
very familiar to most engineers, although that does not make them any less troubling.

Perhaps more troubling though are the errors resulting from software bugs. When learning to use
a software package, analysts become accustomed to incorrect results coming from incorrect
modeling and input errors. The default assumption on the part of the analyst, as it should be, is
that errors are due to the user. Because software bugs are so rare, substantial effort is made
looking for the misplaced decimal point, or the incorrectly connected element. When it becomes
clear that the input is correct, and the problem lies with the software’s execution, the analysts
confidence in the ability of the software is greatly shaken.

Why do software bugs persist? Many of the base codes contained in commercial software
packages are many decades old. It would seem that by now any possible error in the algorithms
would have been discovered, especially considering the extensive verification problem sets that
are used by the developers. The answer appears to be in the implementation of new features and
capabilities, and their interaction with the existing code structure. A beam formulation may
perform flawlessly, but when an eccentricity feature is added errors may arise when temperature
loading is applied or when torsional properties are required.
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It should be noted that when referring to finite element analyses, verification and validation are
not the same thing. Verification refers to making sure that the model is behaving as intended and
giving the results that are expected. For instance, if you were modeling a column to determine
the Euler buckling load, it should give you the same answer as performing a hand calculation of
the Euler buckling load. Validation means confirming that the model is behaving the same as an
actual structure.

Examples of model verification from actual designs are presented in this section involving:

e the use of alternative methods of static analysis;
e the verification of time dependent effects; and
e the results of incorrect boundary conditions of live load analyses of a girder bridge

Finally, when the models are being developed to repair or rehabilitate an existing structure then
the opportunity exists to measure something in the field and compare the results to the finite
element analysis, thus validating the model. Several examples of this type of approach are
presented in more detail later in this section dealing with comparisons of FEA results with
measured live load response using:

e deflections;
e mode shapes and frequencies; and
e strain gauge results.

Although several of the examples deal with models of complex bridges beyond the scope of this
manual, they are not intended as examples of how to model those complex structures, but as
examples of how to approach the process of verification/validation.

6.2 Software Verification

When starting with a new finite element analysis package or an update for that matter, it is
important to become confident that the software works, or, on the contrary, to find out what is
wrong with it. It is often convenient to start with the simple question “does a symmetric problem
subject to symmetric loads yield symmetric results?” Is it possible to do a problem simple
enough that one can determine that the sum of the vertical reactions is, in fact, equal to the sum
of the vertical loads?

Start with something which can solved by hand whenever possible and analyze it with the
software. If one is about to embark on a second-order analysis, it might be prudent to check if
one can solve a simple Euler column before proceeding further. Add complexities and observe
trends. Analyze a model for which some form of alternative solution exists. For example, one
might build a plate model and compare the results to tables based on the theory of plates and
shells in some of the classic texts or handbooks. To this end the model should be faithful to the
requirements of the closed form solution. Likewise, there are equations or tabular results
available for plane stress/plane strain analysis in texts on the theory of elasticity.

One should start with symmetrical problems and symmetrical loadings to facilitate the
confirmation of symmetric results are part of the vetting process. Similarly, one might use
boundary conditions that facilitate the accumulation of reactions to determine whether
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equilibrium is present. Once a basic skill set is established, the models can be made more
complicated and the trend in results verified, even if closed form solutions do not exist.

Running benchmark problems such as those in Appendix C of AISC Design Guide 25 (Kaehler
et al., 2015) can not only provide assurances that the software is working properly, but can also
give a feel for the meshing requirements for the elements being used.

6.3 Design Model Verification

Engineers have to perform professional due-diligence regarding the checking of the results of a
refined analysis. It is certainly possible to do a line-by-line check of input files, or element by
element check through a graphical interface, since often having a second set of eyes check the
model will catch obvious modeling errors, and such a check should typically be performed, but
that type of check does not confirm the functionality of the software.

When models are built as part of a design or review process to represent a structure which does
not yet exist, the analysis results should be verified. Model verification can take several different
forms depending on what the models are going to be used for. For most models, it is probably
not likely that closed form or tabular form solutions exist, but they should be used if available. It
is also unlikely that a checker will perform a hand analysis using classical methods, although it is
certainly valid when used appropriately. In some cases it may be possible to draw analogies
between tabulated influence lines of continuous beams to formulate a check, for instance see
(Anger, 1956) or the beam tables in the AISC Manual of Steel Construction. Influence surfaces
of plates available in (Homberg et al., 1963), (Homberg, 1968) and (Pucher, 1977) are
commonly used in concrete design. In many cases a simpler FEA will be used to verify results
of a more complicated FEA.

For routine design of typical slab girder bridges, even those with curvature or skew, comparing
the design moments and shears to an appropriate line girder analysis done using a trusted
program can provide confidence that the results are reasonable. Simply examining results by
looking at the deflected shape or the shapes of shear and moment diagrams, and the magnitudes
of the extreme force effects, can provide confidence when they satisfy the intuitive sense of the
experienced bridge designer. Sometimes a comparison with the results of a strength based
mechanism solution or simple statically determinate load proportioning can be used to gain
confidence in an FEA solution and may even qualify as an independent check.

For models utilizing surface (shell) or volume elements, stress contours should be viewed as well
as the deflected shape. Although there are a number of different stresses that can be viewed,
start with the normal stress in the direction of loading. Viewing principal stresses can also be
helpful. Often the default contours are averaged or interpolated, typically referred to as
smoothing. Ideally, the unsmoothed results should be examined for highly discontinuous
contours between elements, indicating modeling issues that typically require a more refined
mesh.

One of the issues facing analysts utilizing 2- or 3-dimensional analyses is cross-frame/diaphragm
designs. With 2D or 3D analyses, the analyst is explicitly provided with cross-frame/diaphragm
forces that a 1D analysis cannot provide. In some cases, these forces may be much larger than
the cross-frames/diaphragms the analyst is accustomed to providing can carry. This may be due
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to analysts ignoring second-order softening effects and over-estimating the stiffness of cross-
frames/diaphragms in their models. In some cases there may be a feedback loop established
where as the cross-frames/diaphragms get larger and stiffer more load is attracted, requiring the
cross-frames/diaphragms to get still larger and stiffer.

In situations where the cross-frames/diaphragms are not being counted on to distribute forces,
but are merely present during construction to provide stability, the cross-frames/diaphragms can
be conservatively omitted from the model, or the stiffnesses of the cross-frames/diaphragms
adjusted such that little or no force is carried by them. In all other situations such as curved or
skewed structures where the cross-frames/diaphragms are being counted on to distribute forces,
the analyst should attempt to provide the correct stiffness of the cross-frames/diaphragms in the
model, such that the forces are representative of the actual bridge.

In some cases, it may be prudent to bound the solution, and design the girders as if no cross-
frame distribution is occurring, but design the cross-frames as if the maximum distribution is
occurring. At a minimum the structure should be designed to provide the assumed load path
provided by the analysis. For instance, do not use an analysis model with large forces in the
cross-frames/diaphragms to provide design forces for the girders, and then disregard the large
forces when designing the cross-frames/diaphragms. If incompatible assumptions are employed
in determining the design forces for different members, make sure they are conservative.

On projects of a scope that make it feasible to employ more than one finite element package,
vetting the results by comparing two analyses using totally different packages has proved
effective but not fool-proof in past projects. If two models quickly produce very comparable
results then the vetting can be efficient. However, there have been more than a few cases where
results were sufficiently different that a considerable amount of time and effort had to be devoted
to resolve the differences between programs. This is probably more apt to be the case where
dynamic analyses, stability analyses, or automated applications of the AASHTO live load are
involved. Considerable care is required to make sure that the applied loading is the same for
both of the models and that the boundary conditions are identical.

Time and budget permitting, especially for complex analyses, it is strongly recommended that
independent models using different finite element programs be used to verify results.

6.3.1 Example Comparison to Alternative Methods of Analysis

Strut and tie modeling is a lower bound analysis methodology covered in AASHTO LRFD
Article 5.6.3 that is essentially an extension of the truss analogy used in beams. It is used in
disturbed regions, also referred to as “discontinuous” or “D” regions, which are those that do not
adhere to typical plane stress assumptions. The regions are given an assumed load path
consisting of compression struts and tension ties to form a stable structural system. Tension ties
represent areas requiring steel reinforcement while the compression struts represent an area of
concrete effective in carrying the load. Points where struts and ties meet are referred to as nodes,
and are designed based on the number of struts and ties framing in.

Due to the unrestricted nature of this process, a number of acceptable models can be created for a
given problem. However, engineering judgment should be exercised to determine a reasonable
and logical flow of forces. As a general rule, strut and tie models should minimize the number of
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ties (for greater efficiency) and generate stresses similar to those found in an elastic distribution.
The creation and use of a strut and tie model for the concrete pier cap illustrated in Figure 114 is
detailed in the following example.
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Figure 114. lllustration. Example pier cap.

To aid in the creation of a strut and tie model it can be helpful to first observe the principal
stress fields (trajectories) in a plane stress model. Figure 115 shows the results of such an
analysis, which can then be used to identify appropriate configurations of struts and ties or to
validate results from a refined finite element analysis.
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Figure 115. Illustration. Principal stress field.

Using Figure 115 as a guide to the anticipated flow of forces, a strut and tie model is constructed
using idealized lines and is shown in Figure 116. It should be noted that without doing the
aforementioned analysis first, one may arrive at a different, yet equally valid (in terms of
AASHTO LRFD compliance) strut and tie geometry. However, the incorporation of this step

will result in forces that more closely reflect actual behavior and therefore produce a more
efficient design.
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Figure 116. Illustration. Example strut and tie model.
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After the model is created, forces in the struts, ties, and nodes can be determined via analysis. A
model that is statically determinant is preferable so that member stiffnesses, which are difficult
to accurately estimate, can be ignored and forces can be easily calculated and/or checked by
hand.

Once forces are determined, ties can be designed and stress levels in struts and nodes can be
checked in accordance with the AASHTO provisions (5.6.3.3-5.6.3.5). If the required rebar and
strut area are compatible with the assumed geometry (i.e. they can fit within the location), then
no further iterations are required. However, it may be necessary to modify the model and
recalculate forces to accommodate the design. Once a design compatible geometry is set, final
checks on anchorage and crack control can be made.

6.3.2 Verification of Time Dependent Analysis — Creep
6.3.2.1 Description of the Problem

Often times when dealing with highly stressed concrete structures, or those that experience
changes in the statical system over time, correctly accounting for the effects of creep and
shrinkage is required to produce a robust design. The following example uses the challenge of
modeling creep effects in a concrete structure to highlight some of the methods that should be
used by engineers to validate the results of complex analyses. The specific details of the
problem should not be the focus, but rather the process of verification and the general approach.
Time-dependent properties, such as those associated with creep and shrinkage, can be an
especially vexing problem. It has been found that starting with a relatively simple problem that
has a known load, a known age of loading, a period under sustained load and an unloaded period,
and comparing that to analytic results can be helpful.

For complex structures, or structures exhibiting complex behavior, it is usually impossible to
perform check calculations by hand to verify all of the results of a refined analysis. However,
the software can still be verified to be handling the class of problem correctly, and by performing
multiple analyses using very different approaches, the overall results can be verified to be
converging toward a single solution.

6.3.2.2 Verification Process

The approach taken was a two-pronged attack: verify the ability of the software to handle a
basic creep problem correctly and use two different methods of analysis to provide an estimate
of the variability of the results. The first line of attack was used to vet different software
packages available to determine which could or could not appropriately handle the creep
problem, and to build a deeper understanding of the issues surrounding long-term deformations
in concrete. The second method was applied to the final analyses of the structure and the
determination of the design forces.

6.3.2.3 The Simple Test Case

The first step was to conceive of a simple problem which would exhibit all of the complex creep
behavior expected in the structure. Because the construction timeline of the structure would
extend over several years, and the loads on it can change dramatically throughout the
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construction to include cycles of loading and unloading, the problem must accommodate changes
in loading over time. It was found that a simple column with a variable loading history would
encompass the behaviors of interest.

To most engineers, creep is a rather strange effect, and the deeper one digs into the behavior, the
stranger it gets. It is almost as if concrete has a memory for loads, and never forgets what loads
have been applied, even when they are removed. This is a very difficult behavior to include into
a software package, and in fact various programs have been found to not correctly handle it.

The simple problem is as follows: A column 5 feet tall, with a one foot square cross section is
subjected to a 150 kip axial load which is removed and then reapplied. The goal is to match the
deflection versus time plot with that calculated by hand using the methods contained in the CEB-
FIP 90 Specification. Figure 117 shows the loading history applied.

The problem was solved by FEA, once using beam elements and once using shell elements, as
the software handles creep differently in the two element types. Adjusting the modulus of
elasticity over time was found to have little effect on this example. The results are shown in
Figure 118. The beam and the hand calculations based on the CEB-FIP equations look to be
very similar, however it does not appear that the shells are creeping after unloading. Further
investigations showed that indeed, the shell elements were not displaying true creep behavior,
and were not continuing to creep after the loads were removed.

When elements are suspected of providing such erroneous results, the software vendor should be
notified. Once the “bug” is confirmed, then the problem becomes what to do? Waiting for the
corrected element formulation in the next software release typically would result in unacceptable
delays. The best solution would be to find a software package that handles the problem
correctly, but often this is not a practical option. Better vendors will provide assistance but much
of the time it is up to the analyst to develop an acceptable workaround.

Load (kips)
150

30 360 720 900
Time (days)
Figure 117. Graph. Loading history for test problem.
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Figure 118. Graph. Comparison of displacements due to creep.

6.3.2.4 Bounding the Solution

The results of the software vetting process indicated that beam elements could adequately
approximate the creep behavior contained in CEB-FIP 90, but that shell elements were not as
good. However, the structure in question is a variable depth, multi-cellular concrete structure
with loadings both in and out-of-plane which is best modeled with shell elements. The solution
adopted was to model the structure twice, once using shell elements and again using a “McHenry
Lattice” approach, which is a way of modeling shell structures using only beam and truss
elements.

Figure 119 shows the shell element model of the structure. This model was used to investigate
localized stresses and to obtain the loads for design. Each slab and wall was modeled explicitly,
including the variations in slab thickness and overall structure depth. Creep analyses were also
done with this model. The shell element results were integrated to obtain axial force, shears, and
bending moments on notional beams which were made up of a wall and associated top and
bottom slab widths. These forces were then used to design the notional beams using methods
from the AASHTO LRFD.
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Figure 119. Illustration. Shell element model of the apron region.

The McHenry lattice model is shown in Figure 120. Details on using a McHenry lattice are
contained in “Bridge Deck Behavior” (Hambly, 1976). In general, the method can be described
as replacing shell elements by a number of frames containing beam elements around the frame
perimeters and X-bracing across the frame centers. The perimeter beams replace the bending
and axial stiffness of the slab, while the X-bracing replaces the shear stiffness and a portion of
the axial stiffness. This method was originally proposed in 1943 as a way to model shell
structures prior to the development of finite element analysis methods.
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Figure 120. Illustration. Lattice model of apron region.

The McHenry lattice model was used to investigate the global behavior of the bridge, and to
determine the effects of the different creep formulation in shell elements and beam elements.
One distinct advantage of the McHenry lattice over the shell element model was the greatly
reduced degrees of freedom in the model which greatly improved processing time and allowed
quick parametric analyses of alternative configurations of the structure.

The results from the McHenry lattice were integrated into beam forces, as with the shells, and
compared to the integrated shell results. For analyses without creep, they generally closely
matched, with the shell element results displaying a much greater refinement and better
accounting for localized behavior. Figure 121 shows results for one of the exterior longitudinal
notional beams. The agreement in this example is very good, with the lattice (here called
grillage) results displaying a coarser, but accurate plot of the axial load.

When creep is included, shown in Figure 122, the results begin to diverge. The shell element
model does not display as much change in the forces due to creep as the grillage model. In fact,
a substantial increase in the axial load is shown in the grillage model that is not accounted for in
the shell element model. Therefore, the use of multiple models based on different assumptions
permitted the incorporation of creep into the analysis, resulting in a significantly different, and
substantially more accurate, design for this structure.
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Figure 121. Graph. Comparison of results for edge girder without creep.
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Figure 122. Graph. Comparison of results for edge girder after creep of 10,000 days.

6.4 Validating Models of Existing Bridges
6.4.1 Introduction

Retrofitting an existing bridge presents a unique circumstance in that a physical entity already
exists. Often the original designer’s calculations or at least a stress sheet are available. Itis
important to compare initial results to the designer’s estimate. Even though the design may
have been done pre-computer, there is a very good chance the designer developed a reasonably
good indication of the primary loads. Recently an analysis was performed of a large bridge in
which the analyst got results radically different from the stress sheet. In fact, they differed so
much that the owner was alerted to a possible safety issue. The analysis had been done using
truss members in a three-dimensional frame work. Unfortunately, one of the section properties
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was incorrect on one of the truss diagonal members, reflected in four elements due to symmetry.
When this was found and corrected, the results obtained agreed very closely with those
calculated by the designers.

As illustrated in some of the analyses of existing structures presented herein, it is very
appropriate to try to measure something, a displacement, force, mode shape, or stress, in order
to compare with the finite element analysis. The fact that the structure exists, as distinguished
from new design, provides an invaluable opportunity to ascertain that the finite element analysis
is operating correctly. Of course, existing bridges have been subject to wear and tear, which may
make their analysis a little more difficult. This may be particularly true on older bridges that
have pin wear. The advent of gap elements and one-way elements in the newer finite element
packages has been a tremendous advantage to engineers trying to solve these kinds of problems.
These elements have also added realism to seismic analyses of certain classes of structures.

Finally, try to find out how the existing bridge was built. This involves the erection method and
the degree to which camber was accounted for. One might start with the assumption that the
two-dimensional design model may have been statically determinate, e.g., a cantilever truss, and,
therefore, camber is not significant in determining the stresses. However, if that same structure
is now analyzed as a three-dimensional model, it will be vitally important that the camber in the
primary members and the camber, or lack thereof, in the secondary members be accounted for.
Similarly, structures are sometimes erected so that in the partial stage of erection the articulation
is different than it is in the final condition. For example, it is not too unusual to erect steel true
arch bridges using pins at the crown and the spring lines. One or more of these pinned
connections may be spliced with bolted plates to create moment connections after the steel is
erected to make the structure statically indeterminate for other applied loads. Failure to
recognize this would result in an improper dead load analysis.

6.4.2 Field Validated Model Example

The case of a bow string arch bridge with a very slender tie and a large arch rib which serves as
the primary bending element will be examined (Kulicki, 1988). This particular bridge exhibited
relatively large and long lasting vibrations under the passage of isolated trucks. The resultant
problems were two-fold. The global vertical displacement field of the tied-arch spans was
excessive and, due to the public’s loss of confidence in the bridge, intolerable. Secondly, out-of-
plane distortions of the floorbeams, which were related to the global displacement, had resulted
in ever-increasing fatigue cracking in the webs of the welded floorbeams at locations shown in
Figure 123.
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Figure 123. Illustration. Circles showing locations of typical fatigue cracks on welded
floorbeams.

A combined field and analytic approach was taken as it was clear that field verified computer
models would provide the most confident basis for evaluating proposed retrofits on the bridge,
which had a history of prior problems. Since the observed problems were dynamic in nature,
investigations began with field studies using accelerometers and strain gauges. Analytic studies
utilized extensive finite element time history dynamic modeling and sub-structuring. The finite
element models used to study the global dynamics were three-dimensional assemblages of plate
bending, beam and truss elements as shown in Figure 124.

T

3 A LY

Figure 124. lllustration. Isometric view of three-dimensional finite element model.

Figure 125 is a comparison of analytically-obtained displacements compared to field-estimated
displacements for two test trucks moving northbound and two test trucks moving southbound.
Field data on displacements were obtained by estimating vertical displacement by sighting from
a pier cap to a bolt pattern five panels away using a transit. While this type of measurement was
quick and convenient, more accurate measurements could be taken with LIDAR, lasers and
sometimes string potentiometers. Despite the expedient nature of the measurements taken in this
case they were sufficient to produce confidence in the global model.
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Figure 125. Graph. Two trucks — unit V (three-dimensional model).

Measured frequencies and mode shapes under imposed or ambient excitation provide a more
comprehensive comparison assessment of the accuracy of a computer model because they
combine the effects of stiffness and mass. Additionally, while the frequencies represent an
integrated response, the mode shapes can sometimes point to local deficiencies or errors in a
model. A comparison of field-measured and calculated frequencies and mode shapes for the arch
bridge under consideration are shown in Figure 126. In this figure, the closed circles represent
measured normalized amplitudes at the discrete accelerometer locations, while the continuous
solid lines represent calculated mode shapes. Note that the mode numbers indicate that not all of
the theoretical modes are significantly excited by the controlled truck traffic used in the field

studies.
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Figure 126. Illustration. Comparison of field-measured vs. calculated frequencies and mode

shapes.
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The measurement of strains made under vehicles of known weight and under random traffic can
be particularly useful where behavior of an individual member or detail is being investigated as
may often be the case in fatigue or cracking investigations.

In the current case strain measurements were compared to analytic results obtained using a
submodel shown in Figure 127, which contains 670 plate bending elements, 541 beam elements,
14 truss elements and 156 boundary elements interconnecting 592 joints, resulting in 5,690
degrees of freedom. For a given instant of the time-history obtained using the global model
shown in Figure 124, the displacement field surrounding the submodel was applied, which was
then allowed to take the deformation pattern and, hence strains required to accommodate the
global displacements. Figure 128 shows a comparison of field-measured and calculated strain
histories from the submodel at four locations in unwelded gaps between plates. These gaps were
cope size, i.e. about an inch in length.
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Figure 127. lllustration. Finite element model of first level submodel.
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Figure 128. Illustration. Field vs. calculated strain time histories.

The comparison of field and analytic results indicates that the computer modeling accurately
represents the physical situation. This step provided a confident base onto which various
retrofits could be superimposed.

Often investigations such as those described above involving a field verified computer model are
important not only in understanding the problem at hand, but also in evaluating potential
retrofits. In the case at hand, the effect of two promising retrofit concepts on the dynamic
response under vehicular traffic were studied using the three-dimensional finite element models.
A typical comparison of the two concepts and the original response is shown in Figure 129. This
comparison shows the time history of quarter point displacements under truck passage calculated
for the original configuration and hypothetical retrofits based either on adding inclined hangers
or conversion of the tie into a stiffening truss. The results of these studies indicate that while
both were quite effective in reducing the unacceptable vertical displacement, the stiffening truss
retrofit concept was more effective in reducing the crack-inducing distortion of the welded
floorbeams.
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Figure 129. Graph. Quarter point displacements for unmodified and retrofitted structure.

In this case, the implemented solution involved the addition of a stiffening truss under traffic
using the original tie girder as the bottom chord, and the addition of numerous gap closing plates
and angles. Field tests after retrofit indicated that the reduction in displacement was almost
exactly as predicted in the computer simulations.

6.5 Ramifications of Incorrect Boundary Conditions

Boundary conditions are a recurring problem in FEA. Consider the structure shown in Figure
130. This was a relatively straightforward bridge designed by grid analysis. The designer had a
good model for this structure, except that the rotational degree of freedom corresponding to the
global "X" axis was fixed instead of being released at all of the bearings. This did not allow the
diaphragms at the piers and abutments to respond correctly to the imposed loadings and
deformations, and also had the effect of producing artificially stiff ends on the girders by virtue
of vector resolution between global and local systems. The effect of this condition on the
reactions obtained at the abutments and piers was dramatic.

For brevity, Table 8 shows only results for the far abutment. It can be seen that the reactions are
quite non-uniform, with a very substantial uplift reported at the acute angle. Note the moments
at the pinned ends of the girders in the moment diagram reflecting the incorrect reactions shown
in Figure 130. Also shown in Table 8 are the correct reactions determined when the structure
was modeled as a grid with proper boundary conditions at the supports using a generic computer
program for matrix structural analysis. In this case, a positive reaction is found at all bearings,
and a significantly different moment diagram also resulted as shown in Figure 130.
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The modeling of the degrees of freedom at the lines of support on this structure was also
investigated utilizing a relatively complete three-dimensional finite element analysis. The deck
slab, girders and cross-frames were modeled in their proper relative positions. The comparison
of reactions obtained with the grid and FEA models was excellent.

Table 8. Live load reactions.

FAR ABUTMENT (FA) SUPPORT REACTIONS

“GRID” CORRECT | DESIGNER’S “GRID” INCORRECT SUPPORT
GIRDER SUPPORT INCORRECT CONDITIONS USING DESIGNER’S
NO. CONDITION REACTIONS ASSUMPTIONS
(VERTICAL -k) | (VERTICAL-k) | (VERTICAL-k) | (MOMENT X k-ft)
1 66.68 223.61 223.24 811.24
2 64.36 47.07 47.14 1231.35
3 64.93 86.29 85.49 1229.66
4 66.62 117.94 117.94 1237.95
5 69.46 -81.63 -81.51 813.37

DEAD LOAD MOMENTS - GIRDER NO. |

DESIGNER'S INCORRECT VALUES
'STRESS' CORRECT VALUES

Figure 130. lllustration. Framing plan and moment diagrams for Girder 1.
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Boundary condition errors in models can be easily overlooked, as point support problems
typically are not something easily seen visually in graphic displays, unlike connectivity or
geometry. This example illustrates the importance of verifying that the boundary conditions of
the model represent the support conditions of the structure. It is essential that the proper restraint
is provided at boundaries, including the orientation.

Model boundary conditions can be verified in a number of ways. Reactions can be viewed to
determine if values are as expected. If moments are found at pinned supports, or force effects in
directions intended to be released, then the boundary condition parameters should be revised.
Acrticulation of the support can be investigated by viewing the deflected shape. Verify that the
translations and rotations are as expected. A simplified loading can be assigned to the model and
reactions verified to be in the range expected.
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CHAPTER 7. LOAD APPLICATION
7.1 Applying Loads

Applying structural loadings in finite element programs can range from specifically defining the
load at each node in the model, to taking advantage of automatic load generators to apply
predefined truck loadings automatically. Most bridge analysis programs will have the
capabilities to apply not only concentrated loads, but varying distributed or pressure loads,
temperature changes resulting in thermal expansion/contraction (strains), prescribed
displacements, and accelerations to mass resulting in force effects, e.g. acceleration due to
gravity. Many will also allow defining combinations of concentrated and distributed loads to
simulate various truck and lane loadings.

While most programs will permit defining the location of loadings between nodes, how they
apply the defined load to the model is important, and may vary depending on what elements are
being utilized. For instance, if the transformation involves simply proportioning the loads to the
adjacent nodes based on geometry, i.e. lumped (simple beam) distribution to the nearest nodes, it
can result in errors in the load effects, especially when the mesh is relatively coarse, and the
resulting nodal loads are not statically equivalent to the defined loads. For instance, say a simple
span beam is modeled using three equal length elements. The applied loading is a concentrated
load P at midspan, for which we know the resulting maximum moment, PL/4. The given model
applies a load of P/2 at each of the third point nodes, resulting in a maximum moment of PL/6, or
an error of 50 percent.

General recommendations for applying loads:

e A node should be present at locations of unmoving concentrated loads.

e The mesh should be fine enough to approximate the static equivalent load effects for
distributed loads, automatic gravity loads, and moving loads in cases where only
lumped nodal loads are calculated and always verify how loads are being applied.

The finer the mesh, the more accurately the model load effects will reflect the applied loadings,
due to node proximity to the applied loads and the nodal loading approaching the statically
equivalent loading. Mesh refinement needs to be balanced against computational effort,
however. The analyst should verify that the loading is accurately reflected in the model, by
checking how the loading is approximated and adjusting the mesh and/or loading such that the
load effects are sufficiently correct.

7.2 Dead Loads
7.2.1 Modeled Components

Incorporating the dead load of modeled components can be relatively easy in a refined analysis.
Since the length/width of an element and the cross-sectional area/thickness are available to the
program, it can automatically calculate the dead load of modeled elements using the material
density and applying the acceleration due to gravity. For elements that incorporate dissimilar
materials using modular ratios to alter some of the dimensions, an effective density can be
utilized to achieve the correct loading. Alternatively, the applied acceleration can be altered to
account for differences. Note that all of the inputs should be checked for accuracy when taking

195



advantage of this capability, and as a further check the load effects and reactions can be
examined as well.

7.2.2 Non-Modeled Components

Non-modeled components are elements that are present on the bridge, but which the designer
does not wish to contribute to the stiffness of the structural model. Non-modeled components
may include but are not limited to connection plates, integral wearing surface, future wearing
surface, haunches, barriers, and utilities.

The dead load of non-modeled components can be included in a number of ways, depending on
the accuracy of the analysis required. The easiest way is to include it via the modeled
components, by increasing the effective material density or the effective gravitational
acceleration. Usually this is performed in preliminary design, by adding an additional 5-10
percent for concrete bridges and 10-20 percent for steel bridges to the weight of the modeled
components.

A second more accurate way to add the dead weight of non-modeled components is through the
use of concentrated or distributed loadings on the model. This requires the calculation of the
dead loads of all the non-modeled components, but has the advantages of not only applying more
accurate weights but also of applying the loads closer to the specific location of the component.

While evenly distributing barrier loads to all girders can be appropriate for a 1D analysis, barrier
weights can be modeled as distributed line loads applied at their actual locations in 2D and 3D
analyses. For 2D and 3D models applying the load to the edge of the deck where a barrier is
present, not necessarily through the barrier centroid, is usually sufficient. Similarly, utility loads
can be applied as distributed line loads at their actual locations in 2D and 3D analyses. Haunch
weight can be applied as distributed line loads along girder lines. Integral and future wearing
surfaces can be applied as distributed line loads on 1D models and 2D grid models, or pressure
distributed loads on the deck surface of 2D PEB models or 3D models. Gusset and connection
plate loads can be applied as concentrated loads at the location of the connections.

An alternate way to add the dead load of elements whose stiffness the analyst wishes to neglect
is to explicitly model them but assign a negligible stiffness to them. This is a good technique to
use with elements whose stiffness is desired in certain analyses, but is neglected in others, such
that a single base model can be utilized. Examples would be stiffnesses of an integral wearing
surface or barriers that the analyst wishes to conservatively neglect in a strength limit state
analysis, but include in a service limit state, such as deflection, analysis.

It may be tempting to the analyst to neglect the weight of non-modeled components such as
connection plates or stiffeners as insignificant. For final design in particular, it is strongly
advised that calculations be performed confirming that dead loads are indeed insignificant prior
to neglecting them.
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7.3 Live Loads
7.3.1 AASHTO LRFD Requirements

Section 3.6 of AASHTO LRFD contains most of the provisions pertaining to application of live
loads in bridge design. The live loads are generally the same no matter what method of analysis
is used. A search through the Seventh Edition of AASHTO LRFD identified provisions related
to the magnitude and application of live load in refined analyses. The articles are listed in
Appendix 7A. Most of the provisions relate to correct application of live load to refined models
and when a refined model can/should be used to get a more accurate distribution of live load.
Some relief is provided in the form of a reduced load factor when the fatigue stress range is
maximized by placing the truck in two different positions laterally on the bridge.

A similar search of the Second Edition of AASHTO MBE vyielded the provisions listed in
Appendix 7B. The MBE provides for the use of site specific loadings as well as permit checks
and AASHTO Legal Loads. Reduced load factors are specified for fatigue analyses based on
refined analyses.

7.3.2 Additional Requirements

No specification can cover every situation a designer may encounter. There are places where
unique situations occur and designers have to be alert as it may require additional, site-specific,
evaluation of live load. AASHTO LRFD provides some examples of such situations in Articles
C3.6.1.2.1 and C3.6.1.3.1. From the perspective of this manual these caveats flag the possible
need for the analyst to provide a description of one or more custom vehicle configurations and/or
custom line or surface loads, and to ensure that such custom loads are properly defined and
applied to the appropriate analysis model(s).

7.3.3 Modeling Vehicle Live Loads

For various provisions in AASHTO LRFD the live load is modeled as a uniform line load,
concentrated loads, a distributed pressure load, and individual patch loads. The basic HL-93
loading involves the design truck, the uniform load, and the design tandem, all of which are
shown in Figure . The HL-93 Truck Train is also included in Figure , which consist of two HL-
93 Trucks. 100 percent of the truck axle loads are shown in the figure for visualization;
however, only 90 percent of the effect of the two trucks is used when applying the load in
accordance with AASHTO LRFD. Where dimensions of the elements of the structure under
design are large relative to the spacings of the vehicle wheel/axle loads, concentrated point loads
for wheels and/or axles are adequate. In reality, most truck trailers would be twin axles with
wheel patch loads as illustrated in Figure 132, but for many analysis models this refinement has
little effect.

There are applications where point loadings are insufficient. This would be the case for example
with local fatigue effects, orthotropic decks, grid decks, closely spaced joists, certain timber
decks, and buried culverts and pipes. In these cases, the single axle may be represented as twin
axles and the point loads may be represented by patches. Figure 132 shows the refined truck
which uses both twin axles and patch loads representing the wheels. This configuration should
be used when the actual tire pressure area and tire spacing could affect the results. It is the
responsibility of the user to make sure that the software adequately represents the configuration
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of the vehicle being used for the element under design, or at least as a conservative
representation of it. The effect of superelevation or centrifugal force should be considered as
well as they may unbalance the lines of wheel loads.

Amplification of live loadings due to dynamic effects are accounted for through the application
of the Dynamic Load Allowance of AASHTO LRFD Atrticle 3.6.2. For most elements and limit
states this factor is 33 percent, applied to vehicle loads only, not sidewalk or distributed lane
loads. This factor is most easily applied by increasing the vehicle loads in the analysis, but it can
also be applied to the force effects afterward, as long as vehicle and lane effects are kept
separate.

| T I
HL-93 Truck: BOKIP 320 KIP 320 KIP
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Figure 131. lllustration. AASHTO standard vehicle loadings (AASHTO, 2017).
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Figure 132. Illustration. HS20 Truck with tandem axles and wheel patch loads with 30’
spacing between 32k axles (AASHTO, 2017).

Fatigue loading consists of a single HL-93 truck or axles thereof with a constant spacing of 30’
between the 32-kip axles. A dynamic load allowance of 15 percent is applied to the fatigue load
per Article 3.6.2.1 of AASHTO LRFD. The truck should be placed both longitudinally and
transversely to create the extreme stress range effect. In some cases, the maximum stress range
in a detail such as a cross-frame or orthotropic rib will be obtained by placing trucks in two
different transverse positions on the deck. Previous editions of AASHTO LRFD dealt with this
situation by applying a 75 percent factor to the stress range. This has been changed in the 2015
Interim Revisions to using the single transverse location that results in the largest stress range.
Note that two longitudinal positions may still be used to generate the largest stress range.

Sidewalks or shared use paths, the designation for sidewalks that also accommodate bicycle
traffic, are often present along with vehicular travel lanes on bridges. AASHTO LRFD treats
these as an additional travel lane with respect to multiple presence, and prescribes a design
pedestrian live load of 75 psf in Article 3.6.1.6. Also according to Article 3.6.1.6, vehicles are to
be considered on the sidewalk when they can mount it, but not concurrently with pedestrian
loads. Some owners may require vehicle loads be applied to sidewalks/paths, sometimes on a
site specific basis, for instance to allow for future widening. When the path is separated from the
roadway, judgment may be required to determine what vehicles, if any, should be used for path
design.

7.3.4 From Wheels to Loads

Once the live loadings have been defined, they must be applied appropriately to the model. This
can be harder than it appears. Given that generally the model does not have a node at every
point where one wishes to locate a wheel, the mesh size and the method used to apply patch or
concentrated loads is important. Even though FEA programs will typically allow loads to be
applied between nodes, often the effective loading applied to the model is simply the given
loading proportionately distributed to the adjacent nodes. As mentioned previously, this
approximation can be significantly wrong if the mesh is coarse, especially near supports.

The AASHTO recommended lane width is twelve feet, which typically should be used in
modeling. The exception to this is when the bridge is striped for narrower lanes, then the
narrower lane width should also be used in modeling and design. The lane load is ten feet wide
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and vehicle loads are typically six feet between wheel lines. The lane load and truck load should
be placed transversely within the lane in order to obtain the extreme force effect in the member
under consideration. Truck loads are typically limited to the center eight feet of each lane, the
exception being for design of overhangs, where the wheel load is placed one foot from the face
of curb or railing. Lanes should be positioned to produce the extreme force effect in the member
under consideration, which may not correspond with the striped lanes.

Typically, 1D models do not account for lateral or torsional force effects. The exception is the
spine beam model, where the entire bridge cross-section is modeled with a single line element.
To model the effects correctly, the eccentricity causing torsional effects due to transverse
placement of lanes, wind on live load, or centrifugal loads needs to be included. This can be
accomplished either by providing dummy elements at the location of the load, and attaching
them to the spine beam with rigid links, or more easily by including the torsional effect as a
torsional moment or couple as part of the applied load.

Another confounding provision is the multiple presence factor. AASHTO LRFD Atrticle
3.5.1.1.2 assigns factors based on the number of loaded lanes, such that each lane load is reduced
as more lanes are loaded. This factor accounts for the fact that the probability that all lanes will
have the load in the extreme location for a given element drops as more lanes are loaded. The
result is that an increase in the number of loaded lanes does not necessarily result in an increase
in the extreme effect, even when the additional lane is contributing to the effect.

7.3.5 Live Load Optimization

In order to perform component design, the maximum and minimum live load force effects in the
component must be determined. This requires the live loading to be placed on the bridge model
in the positions which result in the extreme force effects. For some relatively simple structures
the location of loads to maximize the force effects is intuitive and obvious, but for more complex
structures influence lines or surfaces can be used to help determine these loading patterns.

Obtaining influence lines for a single girder with the appropriate boundary conditions and span
lengths is sufficient for 1D models and can be useful in determining the approximate longitudinal
position of live load on 2D and 3D bridge models. Most software packages can generate
influence lines automatically, or they can be generated by the user. For very simple structures,
handbook solutions exist.

One way to generate influence lines/surfaces is to use the Muller-Breslau principle which states
that the influence lines of an action (force or moment) is a scaled form of the deflection that the
structure displays after removing the restraint on the point where the action is evaluated and
applying a concentrated load or moment at that point which causes a unit displacement. The
major advantage to this method is that it only requires calculation of the specific influence
ordinates desired. The main disadvantage is that it requires a modification of the model for
every point of interest. If influence lines/surfaces are required for many points, it can be time-
intensive.

A second way to generate influence lines/surfaces is to use a general “brute force” method,
which entails solving the structural analysis of the model independently for a unit load at every
single node on the influence surface. The effect of all the analyses at any point can be mapped to
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the point of application of the unit load causing that effect to determine the influence surface.
The major advantage of this method is that once all of the analyses have been performed an
influence surface can be generated for any force effect at any point. The disadvantage is that it is
computationally inefficient, especially when the influence surface contains many nodes and
relatively few influence surfaces are desired.

Influence lines/surfaces can be generated by applying the principles above, and then loads
applied to generate the extreme force effects. This consists of applying the Specification loads in
the prescribed manner. For example, Figure 133 shows an influence surface generated for
bending moment at a specific point, Node 24, in a three span curved bridge. In Figure 134, the
influence ordinates are used to position the AASHTO Fatigue Truck loading to maximize the
positive bending moment at Node 24.

Figure 133. Illustration. Influence surface for vertical bending moment at the circled
location, Node 24 (Grubb, 2011).
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Figure 134. Illustration. Wheel-load model of the fatigue live load positioned on influence
surface to maximize the positive vertical bending moment at Node 24 (Grubb, 2011).

Sometimes additional design live loads, such as permit or legal loads, are specified by the
Owner. The configuration, loading, and manner in which permit loads are applied differs from
Owner to Owner. Sometimes Owners may require that the design load occupy only one lane
(Figure 135 Part A), two lanes (Figure 135 Part B), or all design lanes (Figure 135 Part C).
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Some Owners may require that the permit load occupy one lane, with HL-93 loading in the
remaining lanes (Figure 135 Part D). The reason for requiring multiple permit loads might be
that certain routes carry a high number of permit vehicles. Placing HL-93 traffic in the
remaining lanes with permit loading would account for cases when permit loads are present
along with normal traffic. For more on live load placement see (Grubb, 2011).
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Figure 135. Illustration. Various permit lane and truck loading configurations (Grubb,
2011).

A trial and refinement approach would probably need to be utilized when applying loads based
on influence surfaces, with the number of refinements required largely dependent on the required
accuracy of the results, and the engineer’s ability to estimate/understand the shape of the
influence surface. In order to reduce computational effort, during preliminary design or model
verification, a relatively coarse mesh can be utilized and the vehicle placement increment can be
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relatively large, in the range of 4-6 feet. For final design, a finer mesh can be utilized and a
vehicle placement increment of 1-3 feet both transversely and longitudinally is typically
adequate. Judgment may be required based on the geometry of the structure in order to balance
the level of accuracy versus the solution effort.

Even with a good understanding of the structural behavior of the system, difficulties can arise
with multi-lane bridges due to the large number of variables, such as lane placement, truck
placement within the lane, presence of a shared use path, multiple presence factors, etc., not to
mention the effort involved in generating the influence surfaces.

In some cases, it may be simpler to dispense with the influence lines/surfaces completely, and
use a “brute force” method of many load cases independently stepping the truck load and
stepping a small patch of lane load “nose to tail” longitudinally along the structure in a
transversely defined lane. The maximum load in a component would be the load case of the
maximum truck load summed with all of the lane load cases that contribute to the maximum
effect. This method is particularly attractive when a lateral distribution factor for the component
is easily calculated, such that lateral placement of the load is not a variable. Additional “vehicle”
loadings using various axle combinations can be included if there are cases where neglecting
certain axles increases the maximum effect.

Some FEA packages, especially those tailored for bridge design, have the ability to generate
influence lines/surfaces and to determine the placement of live loads to maximize/minimize the
desired force effects automatically. This greatly simplifies the procedure for the user, but still
generally requires a large computational effort. And as always, results should be verified.

7.3.6 Wind Loads

Section 3.8 of AASHTO LRFD prescribes the means to calculate design wind load pressures for
bridge design. The specification also details how windward and leeward wind as well as skew
effect should be applied.

To apply wind to surface or volume elements, the wind pressure can simply be applied to the
appropriate surface. To apply wind loading to line elements, the depth of the projected wind
areas of the members can be multiplied by the wind pressure to obtain a distributed force, which
can then be applied to the member. Alternatively, the full projected area of an element can be
multiplied by the wind pressure, and the resulting concentrated force divided appropriately
among the element nodes.

Most of the time, even for 3D models, the full cross-sectional wind area is not explicitly
modeled, i.e. parapets are not modeled with shell elements, and shell element deck height is not
explicitly modeled. Any combination of concentrated, distributed, or pressure loads can be used
to apply the wind pressure, as long as a statically equivalent loading to the wind pressure
results.

To account for wind loading on vehicles, AASHTO LRFD prescribes an interruptible 0.10 kif
force acting 6.0 ft. above the roadway. Usually there are not any nodes or elements located 6.0
ft. above the deck in a model, so the load is transformed into a statically equivalent loading of a
transverse distributed force of 0.10 kif and a distributed moment of 0.60 k-ft/ft applied at deck
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level. The distributed moment can be applied either by a direct moment or by a force couple,
ideally at the wheel locations, depending on what is easiest.

The wind force on vehicles is interruptible because vehicles need not be present in all locations
on the bridge, so the load should be conservatively applied only when it contributes to the
extreme force effect in the component under consideration. Generally, the patch pattern of wind
can be limited on a span basis, i.e. the wind is either present or not on each span of the bridge
between supports to produce an extreme effect in an element. The LRFD specification details
how to account for the skew effect of wind on vehicles as well, by adjusting the percentage of
lateral and longitudinal force effects.

Article 3.8.2 of AASHTO LRFD details the magnitude of an upward acting longitudinal
distributed load equal to 0.020 ksf times the width of the bridge applied at the windward quarter
point of the deck. This load is easily applied as a distributed load on the model. Note that it is
only applied in conjunction with wind loading acting perpendicular to the bridge.

The AASHTO LRFD prescribes wind tunnel tests to address aeroelastic instability and dynamic
response to wind loadings when bridge span to width or depth ratio exceeds 30.

7.3.7 Centrifugal and Braking Forces

The lateral forces due to centrifugal and braking should be considered as well. The magnitudes
of the centrifugal and braking forces are prescribed by AASHTO LRFD Atrticles 3.6.3 and 3.6.4,
respectively. Similarly to wind forces acting on live load, the centrifugal and braking forces are
applied 6.0 ft. above the deck surface. Again, like wind, the forces can be applied at deck level
with in-plane forces and moments as necessary. The moments can be applied directly or as a
force couple, ideally at the wheel locations.

Modeling the boundary conditions or the bearing elements connecting the superstructure to the
substructure correctly is important when analyzing for centrifugal and braking load effects. A
load path needs to be provided to carry these in-plane forces to the substructure, and the bearings
are often the critical elements in this path.

7.3.8 Thermal Loads

The extremes of design uniform temperatures that are to be used for determining stresses and/or
movements are prescribed by Article 3.12.2 of AASHTO LRFD. A uniform temperature
increase or decrease loading in a finite element model is achieved by simply applying a uniform
temperature change to every element comprising the model. Load effects and/or displacements
can then be extracted from the model. Where physical restraints exist, care should be taken to
make sure appropriate boundary conditions are being utilized in the model, such that unintended
restraint from idealized unyielding supports does not result in spurious forces/overstressed
members or incorrect displacements. Avoiding unintentional horizontal restraint can be
particularly important in the analysis of significantly curved and skewed structures.

Article 3.12.3 of AASHTO LRFD prescribes the design temperature gradient for concrete deck
on girder bridges. Note that the temperature gradient does not prescribe an absolute temperature,
but the difference in temperature with depth. No stresses or reactions are produced in statically
determinate structures when the temperature variation is linear, only changes in length or
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curvature. When the temperature variation is nonlinear, self-equilibrating stresses are induced in
individual cross-sections of statically determinate structures, but no reactions. When the
structure is statically indeterminate, temperature variations can result in both reactions and
internal forces in members. For cases where uniform temperature changes result in force effects
in the structure, temperature gradients should be superimposed on uniform temperature changes
to obtain extreme effects.

Acrticle C4.6.6 of AASHTO LRFD provides some guidance on how to estimate the imposed
deformations of a linear temperature gradient on a 1D beam. A linear temperature gradient
analysis needs to consider axial extension, flexural deformation, and internal stresses. For more
information and examples see (Ghali, 2009).

Because most FEA programs can only accommodate linear thermal gradients within beam and
shell elements, in order to analyze a temperature gradient in a 2D PEB analysis, it is
recommended that a nonlinear gradient over the cross-section be approximated by linear
gradients applied to the elements of the model. Differing linear temperature gradients can be
applied to the deck and the girder in order to achieve this.

For a full 3D analysis, the temperature gradient can either be applied as a series of linear
gradients, or if the mesh is fine enough and/or the gradient is shallow enough, as a stepwise
series of uniform temperature variations through the depth of the section, or some combination
of the two methods. The application of a nonlinear temperature gradient can be made simpler by
meshing the model with the assumed gradient in mind.

It is important that boundary conditions/bearings are modeled correctly in cases where thermal
forces are developed in the superstructure and substructure of a bridge. Often an analysis is
performed to verify that piers are flexible enough to tolerate thermal movements such that pinned
rather than expansion bearings can be provided on the maximum number of piers. Integral piers
will also need to be designed for force effects due to thermal loadings.

7.3.9 Loading Substructures

When the substructure is modeled along with the superstructure, extreme force effects due to live
loading can be determined in a similar manner as for the superstructure. The stiffnesses of the
superstructure/substructure interface elements will distribute the concurrent force effects
automatically and design forces can be obtained directly utilizing influence lines/surfaces. When
the substructure and superstructure are modeled independently, the extreme force effects at the
superstructure/substructure interface, usually bearings, need to be determined in the
superstructure model, then applied to the substructure model.

Depending on the geometry of the substructure, different strategies may need to be employed to
obtain the force effects from the superstructure model to be applied to the substructure model in
order to determine the substructure design force effects. Often five loadcases, maximizing the
total axial force, total transverse and longitudinal bending moment, and total transverse and
longitudinal shear on the substructure unit are sufficient. But for substructures that are
unsymmetrical, skewed, or bents with interior columns, the loadings can be more complicated
and more care should be exercised.
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For most slab on girder bridges, modeling the substructure along with the superstructure is
generally not complicated, and does not add many degrees of freedom to the model, meaning not
much additional computing time is required. If the analyst chooses to model the substructure,
ensure that the modeled stiffness results in accurate, or at worst conservative bearing reactions.

7.3.10 Verifying Live Loads

As stated previously, correct calculation of the effects of the moving live load requires the proper
application of the AASHTO LRFD mandated number of design lanes, multiple presence factors,
lane size and position of lanes and position of truck or patch load within the lane boundaries.
Implementing this correctly for a general situation is quite a challenge. Add to this the variety
and complexity of influence surface shapes for various force effects and the result is a very
difficult programming problem. One might think that after decades of application all software
gets this right, but two examples over twenty years apart will show that this is not the case. The
analyst must still take the responsibility to confirm that the results are correct.

The relatively simple curved, single span bridge whose framing is shown in Figure 136 was
analyzed circa 1980 using a commercial grid-based software package that had AASHTO live
load processing. The designer modeled the bridge with nodes between diaphragms to more
thoroughly define the live load force effect envelopes. Fortunately, the designer spent time to
study the results before proceeding to proportion the girders. The results just looked odd. The
moment envelopes were plotted for each girder and the results are shown in the top part of
Figure 136. After discussions with the software vendor, it was discovered that the live load
processor assumed that all nodes were connections between girders and diaphragms. The
additional nodes added to better define the shape of the envelopes were not being processed
correctly. Removal of some of the added nodes improved the results as shown in the lower part
of Figure 136. This previously unreported problem was quickly addressed by the vendor, but
was discovered only by the vigilance of the designer.

Twenty years later another problem in the application of the AASHTO live load was discovered
in cutting edge commercial software. As in the example above, it was only the vigilance of a
designer who could not believe that the large reported difference between traditional design
methods and a three-dimensional analysis made sense. The shape of force effect envelopes
looked fine; the difference in magnitude did not. One would expect some difference in
magnitude but the reported difference just looked about 10 percent too great. After some test
cases, it was found that the new software was applying the provisions for multiple presence
incorrectly; a very subtle problem, but a problem nonetheless.

Another bug that has occasionally cropped up with automatic software optimization is that the
methods are too general. For instance, trucks and tandems will be mixed, or different numbers
of lane loads and truck loads will be used in the same load case. While not as worrisome as
other errors, since presumably these types of bugs provide conservative results, the analyst
should be aware of the possibility of odd loadings being generated by automatic optimizers.
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ib) GRID MODEL.

Figure 136. Illustration. Calculated moment envelopes.

As the above examples demonstrate, software cannot always be relied on to provide the correct
answers, and user error is always a possibility as well. But simply examining the influence
lines/surfaces, the placement of the loads, and the resulting force effects, is often sufficient to
spot erroneous results. Sometimes the intuition of an experienced engineer is the best tool for
detecting errors, and for many force effects the user should have a qualitative idea of what the
loading should look like. Another approach to verifying results would be to spot check results
manually, by using approximate methods, to confirm that the FEA automatic procedure was
producing reasonably accurate results. A final verification method would be to independently
generate the results with a different finite element program, and confirm that similar results were
obtained.

7.4 Prestressing Loads

The AASHTO LRFD handles concrete prestressing on the resistance side of the equation. As
such, it is not treated as a load subject to load factors, but as a contributor to the resistance
subject to resistance factors. That being said, when analyzing prestressed concrete, the
prestressing forces need to be accounted for in the model. There are typically two ways to model
prestressing, the equivalent force method and the explicit modeling method. The equivalent
force method replaces the steel bars/tendons with statically equivalent forces. The explicit
modeling method models the bars/tendons at their correct geometry and then shortens them using
the program to develop the appropriate tension. For more guidance on prestressed concrete
modeling see Section 4.1.3.
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7.5 Loading Nonlinear Models

Load Combinations in AASHTO LRFD typically take advantage of the ability to superimpose
and factor (or extrapolate) multiple linear elastic analyses. Nonlinear analyses results cannot be
factored or superimposed. All factoring and superposition must be done before performing the
nonlinear analysis. Due to this limitation, performing multiple nonlinear analyses for load
combinations such as moving vehicle loadings can become quite onerous, and is not
recommended.

Performing nonlinear analyses should only be performed on a limited number of cases. Further,
when using any automatic factoring or load combination features of any particular software
package in conjunction with any nonlinear analysis, it is a good idea to confirm that the factoring
and/or combining is indeed being performed prior to the nonlinear analysis.

For more guidance on nonlinear modeling, see Section 5.3.
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CHAPTER 8. ANALYSIS TO DESIGN
8.1 Compatibility of Analysis and Specification Provisions

While analysis is a major part of bridge design, it is still just one of the steps in the multi-step
process of designing a bridge based on AASHTO LRFD. Analysis as part of routine slab on
girder bridge design typically entails a first-order linear elastic solution that provides load
resultants based on member stiffness and connectivity. Bridge design is also an iterative process,
requiring multiple analyses, often of multiple models, and for multiple load cases, as the design
is optimized. After each analysis iteration bridge components must be checked to make sure
they satisfy all limit states using the provisions of AASHTO LRFD as well as other applicable
specifications.

Most FEA software only provides analysis results in the form of forces or stresses. Some
software packages provide specification checking within the program, but as always, the
designer should verify that the checks are being performed correctly, and that all relevant checks
are being performed.

Ideally, bridge analysis methods and bridge design methods would be completely compatible,
with a seamless integration of the two, making it a relatively easy proposition to check the load
carrying capacities of bridge components as well as check all other limit states. This is not the
case, due to a number of reasons, not the least of which is the AASHTO LRFD was not written
with a specific analysis method in mind. The AASHTO LRFD also contains provisions that
implicitly account for certain design factors, such as residual stresses or initial out-of-
straightness, which need to be addressed if an alternative approach is substituted for the
AASHTO strength design, such as determining the compression capacity of a member directly
from the finite element analysis.

The AASHTO LRFD is mostly a component design specification. Given member properties and
using the various provisions of AASHTO LRFD, individual member nominal ultimate capacities
at the strength limit state, which often intrude into the non-linear realm of behavior, are generally
calculated in the form of moments, shears and axial forces. Equations in the AASHTO LRFD
such as the steel column resistance give results as forces. Flexural resistance of concrete girders
is calculated as a moment due to the material non-linearity of concrete and reinforcing bars at the
strength limit state. The concrete moment-axial interaction curve requires loads and resistances
in forces.

In its current form, especially for the Strength Limit State, the AASHTO LRFD is most
compatible with line element analyses, such as single girder analyses using the approximate
distribution factors from Acrticle 4.6.2, or basic grid analyses. In these cases, loads extracted
from the linear elastic analyses are the factored shears, moments and axial forces that can be
compared to factored resistances calculated by the LRFD Specification.

Making a model more discretized, and using plate, shell, volume, or combinations of elements
provides the design engineer with the capabilities necessary to handle complex 3D analyses.
However, generally the output from these elements is in the form of stresses or nodal forces, and
in the case of volume elements, three-dimensional stress fields, not the component moments,
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shears, and axial forces required for design. Additional 3D model complexity also often results
in more complicated “book keeping” to account for the live load stresses.

In the cases where AASHTO LRFD provides for directly checking stresses, usually it is in one
dimension, and often for Serviceability Limit States, where concrete behavior is assumed to be
linear. Shear and normal stresses are typically addressed independently rather than looking at
principal stresses. An example of a check in two dimensions is contained in Article 5.8.5 of
AASHTO LRFD which details the service and construction load cases for which webs of
segmental concrete bridges are subject to the principal stress check. Future versions of the
AASHTO Bridge Design Specifications may incorporate additional principal stress checks,
which can be calculated by hand using Mohr’s circle, or directly obtained from FEA analyses.

8.2 Analysis Results to Design Inputs

When the analysis results do not correspond to the required design inputs, additional post-
processing steps are needed to obtain the values which are needed to perform the design checks
required by the AASHTO LRFD. Two different approaches are possible; the analysis results
can be transformed into the form needed to apply specification checks, or the specification
checks can be transformed into a form compatible with the analysis outputs. An example of the
former would be integrating stresses over a surface to determine forces, or summing force
outputs of several elements, to calculate the design load resultants, or the demands on a given
component, such as the shears, moments and axial forces necessary to compare to AASHTO
LRFD limit states. An example of the latter would be using the section properties and the
resistance forces to calculate the corresponding maximum stress for a given resistance, which
would then be compared to the analysis stress.

When calculating a corresponding stress from an LRFD resistance, care should be taken such
that the stress is the actual stress expected in a linear elastic member due to the given load, and
not a notional stress. For instance, if one wished to check shear stress in the web of a steel
member, calculating a notional stress using the shear force divided by the area of the web would
not be appropriate for comparing to the parabolic shear stress expected from FEA shell element
results.

Furthermore, it is not appropriate to conduct a geometric nonlinear analysis including geometric
imperfections, or a full nonlinear analysis with or without geometric imperfections, and compare
the corresponding results to the resistance equations in the Specifications. The Specifications
often implicitly or explicitly include additional effects that have been empirically verified, such
as creep and shrinkage, relaxation, or residual stresses. Failure to include all of the factors that
affect resistance in a refined analysis can result in an unsafe overestimation of capacity. In such
cases the analyst should strive to correlate analysis results with physical tests, preferably those
used to calibrate the Specification being used.

Nominal section and material properties should also typically be used. The LRFD Specification
is probability based, and takes the variability of members and materials used in construction of
bridges into account. Unless a statically valid sample has been obtained for measurement and/or
testing, “actual” section and material properties should not be used for design or rating.
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8.2.1 Integrating Stresses

To obtain member force effects such as shears (V), moments (M), axial forces (P), and torsion
(T) from the stress output generated by an FEA program, stresses can be integrated over the
area of the component, such as the one in Figure . Alternatively, it may be possible to output
membrane and plate force effects on a unit width basis for use in design calculations. Major-axis
bending moments can be found from the output stresses by summing the integrated stresses
about the centroid of the section.

These steps can be done outside of the finite element software program, for instance in a
spreadsheet application, though this can quickly become a tedious undertaking. Some FEA
programs have tools which will automatically slice through shell elements (or a combination of
shell and beam elements) and sum the internal stresses and/or forces present to determine the
effective total forces at the sliced locations, with an output that is similar to that of a beam or
frame element.

\ Neutral Axis \ Neutral Axis
R - Integrate Stresses i e ﬂ/l‘vﬂoment
. and Sum about TRy
Neutral Axis 7

Stress values

Figure 137. lllustration. Determining moments from FEA stress output.

Section 9.1.2.3.3 shows an example of integrating stresses over the area of a deck shell element
and summing the forces. The general procedure is summarized as follows:

e Determine the geometric properties of the cross-section, including dimensions of all
of the individual elements, centroid and shear center of the entire cross-section using
a strength of materials approach, and “participating” width (see Section 8.2.3) of the
deck, if necessary.

e Extract the forces for any beam elements that are part of the cross-section.

e Extract the stresses for all shell and/or solid elements that are part of the cross-
section.

e From the extracted shear stresses and geometric properties, determine the equivalent
shear forces and lines of action for all shell and/or solid elements.

e Transform the shear forces into major-axis and minor-axis components if necessary.

e Sum the major-axis shear forces and the minor-axis shear forces, including any beam
element resultant to get the net major-axis shear and minor-axis shear forces,
respectively.
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e Sum the shear force resultants of all the elements, including any beam elements,
times the distance from the shear center of the cross-section to get the net torsional
force.

e Determine the equivalent normal forces and lines of action for all shell and/or solid
elements from the extracted normal stresses and the geometric properties.

e Sum the normal forces on the cross-section to get the net axial force.

e Sum the moments from the equivalent normal forces times their distance from the
centroid of the cross-section in both the major-axis and minor-axis planes along with
any major-axis or minor-axis moments from beam elements to get the net major-axis
and minor-axis moments on the cross-section. Note that if there is no net axial force
on the cross-section, the moments can be summed about any arbitrary convenient
point on the section, such as the neutral axis.

While this procedure can be time consuming when compared with extracting the force effects of
lower order elements, the end result is that the shell elements can produce results which can be
used for design in a form similar to those produced by beam elements. Care must be taken to
ensure that the coordinate axes of the slice are set-up properly and are understood prior to using
the program output. Performing a simplified test case which can be checked by hand is always
recommended. For instance, Section 9.1.2.3.3 demonstrates a check of the moment/shear/axial
force slicing capability of an FEA program.

8.2.2 Non-Composite Construction

Many concrete slab on girder highway bridges are non-composite for some, although typically
not all, of the applied loads. Examples of non-composite loads would be the girder and deck
weight of a bridge with an unshored cast-in-place concrete deck.

Non-composite girder loadings are relatively simple to model and design. The model force
effects are based on the stiffnesses of the girders and diaphragms/cross-frames, and the design
applies these force effects to the properties of the girder-only section. For 1D or 2D models, the
design shears, moments and axial forces can be directly obtained. For 3D models, the design
forces would need to be integrated as detailed in Section 8.2.1 before designing the girders
according to AASHTO LRFD.

8.2.3 Composite Construction

When a composite section is loaded in bending, the axial stress in the deck is a maximum
directly above the girder and then decreases as you move transversely away from the girder
centerline due to shear lag. In calculating design capacity of composite sections, a simplification
is usually employed. A notional “effective width” of deck is assigned, and the stress on this
notional width is assumed to be uniform and equal to the maximum stress in the deck. The
effective width of this uniform maximum stress is equal to the width required such that the total
force is equal to the sum total force carried over the actual width of participating deck.

For refined analyses, knowledge of the effective width of deck is often not necessary and to some
extent may be misleading. What is required for design is a calculation of the moment and shear
(and possibly axial force) present in the composite girder. In order to determine these force
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effects, the forces in the deck in the refined analysis must be proportioned correctly to each
composite girder.

In situations where the analyst wishes to determine the effects of shear lag, such as the
distribution of normal stresses in the deck, it is important that the mesh is sufficiently refined. A
minimum of two elements between web lines is required to capture shear lag effects, but at least
four elements is recommended.

When using a slicing utility of an FEA program that automatically integrates the stresses over the
selected elements and returns the equivalent beam forces (M, V, P, T), something akin to an
“effective width,” referred to here as “participating width,” must be employed in order to
proportionally distribute the deck forces correctly among the girders. Often this participating
width is simply halfway to the next girder, or the width that results in no net axial force in the
composite section. Quantifying shear lag effects and identifying the participating width in more
complicated situations can be a more difficult proposition.

A method to approximate an effective flange width for design purposes is provided in AASHTO
LRFD Article 4.6.2.6 for various types of systems (concrete decks, box beams, orthotropic
decks, etc.). In multi-girder bridges, typically the design effective flange width is taken to be
equal to the tributary width of deck above the member, and the same participating width can be
used for analysis purposes. However in some cases, effective width calculations can become
complicated if the bridge geometry is not straight forward. For instance, in cases similar to what
is depicted in Figure 138, in which the girders are not the same size, the tributary width
assumption of AASHTO LRFD is not valid and its use may result in an unconservative design.
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Figure 138. Illustration. Deck system in which the effective flange width set equal to the
tributary width may result in an underestimation of force effects for the larger section.

7

The larger stiffness of the exterior beam will cause a larger width of deck to act compositely with
it, so while the tributary width assumption would be conservative for use as a design section for
the exterior beam, determining the analysis force effects using this effective width as the
participating width would most likely underestimate the actual force effects. In a case such as
this, sometimes the refined analysis can be used to determine the participating width which can
then also be used as the design “effective width.” If the composite girders carry only moment
and shear the effective width can be determined by finding the width resulting in no net axial
force on the composite section.
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One technique for determining the design forces is to integrate the stresses over an estimated
participating width of deck slab, then sum the forces over the cross-section, as described in
Section 8.2.1 of this manual. By iteratively adjusting the participating width of deck slab until
there is no net axial force, the equivalent force effects can be determined. This method also has
the advantage of producing a participating width of deck, which can then be used in determining
the effective width of deck used for calculating resistance.

When little or no net axial force is present in the composite member, the participating width of
deck is not required, and the composite force effects can be determined using the beam forces
only. Assuming that the moment in the deck slab is negligible and the axial stress in the deck
slab is uniform, the major-axis moment in the cross-section can be determined by adding the
moment in the girder section to the moment due to the axial force couple between the deck slab
and the girder section. To estimate the moment due to the couple, multiply the axial force in the
girder section, which should be equal and opposite the axial force in the effective width of deck,
times the arm between the girder centroid and the deck slab centroid.

When net axial forces are present in girders, engineering judgement may be required to
determine girder design forces. This may entail estimating the distribution of axial force across
the width of the bridge, or bounding the design forces, among the possible approaches.

This method can be used for any model where the beam forces can be isolated from the deck
forces, and can also provide a quick check of an FEA slicing utility. The model should account
for any Specification required effective modular ratio factors for permanent load effects. This
shortcut is not valid when net axial forces are present in the girders, due to transverse bridge
loadings or in curved or skewed bridges for instance. Even though the bridge cross-section may
not have a net axial force, when individual girders have axial load the stresses must be
integrated, unless those effects can be subtracted out prior to calculating the in-plane moment.

Once the equivalent beam force effects (M, V, P, T) have been determined, design can proceed
using the AASHTO LRFD Specification as usual. For instance, normal stresses can be
calculated using M/S, or shear at the composite interface can be calculated using the well known
formula VQ/I as one step in the design of shear connectors for deck slabs. The change in axial
force in the girder of a composite section is also equal to the interface shear, and can be used in
place of, or as a check on the VQ/I method.

8.2.4 Concrete Girder Bridges

For typical design, per Article 4.5.2.2 of AASHTO LRFD, concrete components are generally
modeled using gross (un-cracked) section properties to determine distribution of forces, even
though those forces may be used to design a cracked section. Although cracked stiffness
properties are seldom used in models for routine slab-girder bridge design, they might be utilized
for more complex structures or when more accurate results are required.

As a consequence, the shell element stresses extracted from an analysis model are only valid if
the stresses present would not result in cracking or crushing of the concrete. If the analysis
shows that cracking occurs, the correct stresses would have to be found by applying the force
effects from the model to the design section, accounting for the lack of participation of the
cracked concrete in tension as illustrated in Figure 139.
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Figure 139. Illustration. Analysis and design section for a concrete member in positive

bending.

In most circumstances, stresses extracted directly from an FEA model are not used to develop or
check the design of concrete members at the strength limit state. Instead of stresses it is typically
moment, axial force, or shear force values which are compared with resistances calculated per
the AASHTO LRFD which are then used to determine the adequacy of the design. If the model
is representative of the actual structure, concrete compressive strains should be limited to a
maximum of 0.003.

On the other hand, the AASHTO LRFD provides stress limits for the Constructability and
Serviceability Limit States, allowing these to be directly checked in an analysis. Care should be
taken to make sure that the direction and location of the stress generated by the model
corresponds to the limit state being checked. Models should also reflect the locations that are
cracked, as well as the assumed effective modular ratio of 2n for permanent loads and prestress.
The correct load and resistance factors also should be applied, either within the program or
externally.

8.2.5 Steel Girder Bridges

Most concrete deck slab on steel girder bridges designed and constructed today take advantage of
composite behavior by connecting the deck and the girders, although some new designs as well
as some existing bridges are designed non-compositely. Non-composite steel girder bridges are
simpler to analyze and design, as all loads are applied to a single steel-only model, and load
resultants are easily factored and summed to be applied to the design of the steel girders, as
detailed in Section 8.2.2.

As mentioned previously, per Articles 4.5.2.2 and C6.10.1.5 of AASHTO LRFD, analysis models
for composite steel bending members typically allow tension in the deck concrete and assume
composite action over the entire length of the bridge to determine distribution of forces, although
some software packages allow the use of “partially composite” sections over the negative
moment regions. Different section properties are then used in design, resulting in analysis
model stresses not being equivalent to those which are used for design. Figure 140 depicts the
assumed section properties to be used for analysis and design of a continuous composite steel
girder.
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For each step in the sequence of loading the correct associated stiffness must be used in the
analysis; for bridges composite in the final condition, non-composite properties are used for
loads applied prior to the hardening of the attached concrete deck, long-term composite
properties are used for additional dead loads, and short-term composite properties are used for
transient loads. Steel reinforcement is typically neglected when modeling composite decks in
compression.

In positive moment regions, the section properties assumed for analysis are the same as the
section properties assumed for design, and the stresses determined from the model can be used
for all design checks which involve linear elastic loadings.

In negative moment regions the analysis and design sections are dissimilar due to the
assumptions made about how the concrete deck behaves in tension. Per 6.10.1.1c of AASHTO
LRFD, the tensile capacity of the concrete must be neglected in negative moment regions when
determining resistance, but as described above it is not neglected when determining force effects.
As a result, the process shown in Figure 141 must be used to determine the design stresses. The
concrete deck slab longitudinal steel reinforcing can be used to resist the negative moment if the
deck is composite and sufficient shear connectors are present to develop the reinforcing within
the effective width.
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Figure 140. Illustration. Steel girder analysis and design sections (note that in some
circumstances the longitudinal deck steel reinforcement which is not illustrated may be
taken as part of the design section in negative moment regions).

217



) = 1
1. Stresses 2. Determine
Output from Moment on
Analysis Analysis
Section

1
3. Apply 4. Determine

Moment to Stresses on
Design Design
Section Section

Figure 141. lllustration. Steps required to determine design stresses from stress output in
negative moment regions

At strength limit states design inelastic behavior of composite steel girders is permitted.
Depending on section criteria, which include local stability and ductility limits for steel sections,
up to the full plastic section capacity can be achieved in both positive and negative bending.
Plastic ultimate capacity is load sequence independent, and due to the nature of the composite
member (compression carried by the deck as well as support of the top flange) achieving full
plastic capacity in positive bending is not unusual, while achieving the full plastic capacity in
negative bending is more difficult, and is generally not economical. Article 6.10.7.1.2 in
AASHTO LRFD limits the maximum allowable positive moment capacity to 1.3My in
continuous steel girder bridges, unless the ability to redistribute additional load to the negative
moment regions is confirmed.

As with concrete, it is difficult to directly utilize the stresses from a 3D model for steel design at
the Strength Limit State. Directly checking stress limits at the Constructability and
Serviceability Limit States is generally easier, as long as the section properties of the analysis
model are consistent with the section properties of the design section. As stated previously for
concrete, care should be taken to make sure that the direction and location of the stress generated
by the model corresponds to the limit state being checked and that correct load and resistance
factors are applied, either within the program or externally.

When steel cross-frames participate in the lateral distribution of forces, for instance in curved or
skewed bridges, the cross-frames need to be designed for the force resultants determined by the
design model. For 3D models, where the elements are non-composite and explicitly modeled,
the design forces can be directly obtained from the model. Composite top chords of cross-frames
should be treated similarly to composite girders, as described in Section 8.2.3. For models such
as grids using effective single element representations of cross-frames, the single element force
resultants need to be transformed into the forces in the individual elements of the cross-frames.
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To accomplish this transformation, the joint forces commonly are determined as shown in Figure
142. The Vi and Vj shears are essentially the same; the difference between them is equal to the
weight of the cross-frame. The cross-frame weight is generally negligible, so the largest of these
forces is typically selected and equally divided between the top and bottom nodes of the cross-
frame (assuming an X-type cross-frame). For cross-frames with a single diagonal framing into
the girders at each end of the cross-frame, the shear force is applied to the cross-frame node
corresponding to the diagonal.

For a case of a V-type cross-frame with no top chord, the flexural stiffness of the cross-frame is
highly dependent upon the stiffness of the combination of the bottom chord and any connection
plates across the joint at the cross-frame mid-length. The distribution of the shear between the
diagonal and the bottom chord in this case is statically indeterminate, but it is reasonable to
assume that any shear is taken predominantly by the diagonal.
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Figure 142. Illustration. Conventional practices for determination of cross-frame member
forces from 2D-grid analysis results (adapted from White et al., 2012).

For most girder bridges, the axial forces, Pa and Pb, are negligible. In the case that they are not,
they can be equally divided between the top and bottom joints in order to satisfy equilibrium,
assuming that the reference axis of the equivalent beam element is located at the centroid of the
cross-frame.

The left and right moments, Ma and Mb, are decomposed into force couples with magnitude
equal to M/h, where h is the depth of the cross-frame, and applied as equal and opposite forces to
the cross-frame joints. The forces in the chords and the diagonals can be obtained by statics
assuming the cross-frame is a truss. For more information, see (White et al., 2012).

8.2.6 Spine Beam Models

The stress resultants from a spine beam model are the shears, moments (including torsion), and
axial force at the selected design cross-sections of the bridge. AASHTO LRFD Atrticle 5.8.2.1
provides an equation to determine if torsional effects need be investigated for concrete box
girders. If torsion cannot be neglected, Article 5.8.2.1 also provides an equation for calculating
the equivalent shear in the exterior web including the torsional shear, as illustrated in Figures 143
and 144. The torsional shear is added to the flexural shear, which is generally determined to be
the flexural shear divided by the number of webs. Any inclination of webs should also be
included, as illustrated in Figure 145. A similar approach is taken for calculating shear in the top
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and bottom flanges of the box. Design proceeds according to the AASHTO LRFD
Specifications for shear and flexure. For a complete design examples, see (Nutt et al., 2008) and
(Corven, 2015).

Similar considerations apply to steel boxes. Article C6.11.1.1 provides an equation for shear
flow due to torsion in a box section, from which shear in the flanges and webs can be
determined.

Figure 144. Illustration. Shear flow due to torsion in multicell box girder (Corven, 2015).
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Figure 145. Illustration. Shear flow due to major-axis shear in single cell box girder with
inclined webs (Corven, 2015)

8.2.7 Deflection and Camber

Refined analyses are excellent tools for calculating deflection and/or camber directly. But the
models used for deflection calculations often are completely different from the models used to
calculate load effects. The reason is that for strength design, the goal is obtaining load effects
that are equal to or greater than the actual load effects. Being conservative is not inherently bad.
For deflections or camber design, the goal is to be as accurate as possible. As such, deflection
analyses should include all non-structural sources of stiffness, such as barriers and wearing
surfaces.

For concrete bridges, getting the effective moment of inertia correct is important when
calculating deflections. For prestressed girders, it is recommended that the uncracked gross
concrete section be used. For mild reinforced concrete girders, an effective moment of inertia
such as that provided in LRFD Article 5.7.3.6.2 should be used. For more advanced models
where the reinforcement is modeled explicitly, concrete material with tensile cracking properties
can be used, but will require a nonlinear analysis. The modulus of elasticity for concrete
specified in LRFD Article 5.4.2.4 can be used in most cases, but for some structures, such as
segmentally constructed bridges, the maturity of the concrete at the time of loading should be
taken into account.

2D and 3D analyses are much better than 1D analyses for deflection/camber calculations. 1D
analyses do not model the cross-frames and diaphragms that connect the girders and force the
structure to deflect as a unit. If the dead load distribution is not properly approximated in a 1D
analysis, the resulting errors in camber can lead to issues with haunch thickness and deck
elevations. For 2D and 3D analyses, the dead load distribution is automatically performed based
on the relative stiffnesses of the elements. As long as the stiffnesses are modeled correctly, good
results for deflection/camber can be obtained.

8.2.8 Volume Elements

Volume elements suffer from many of the same issues as shell elements, if not more so, with
respect to designing with AASHTO LRFD. If volume elements are used to model a component
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such as a girder of a bridge, the designer would need to integrate over the surface and sum the
results of all the volume and any other additional elements of the component in order to calculate
the moment, shear, and axial force demands for design. For this reason volume elements are
more suited to analysis of local effects, where stresses can be directly checked. In the future, as
AASHTO LRFD evolves, and programs become more powerful, designers may be able to
capacity check components directly, making shell and volume elements easier to use in bridge
design analysis.

8.2.9 Nonlinear Behavior

Inelastic and/or nonlinear analyses are commonly used for determining the capacity of a given
element or structural system under a specific loading scenario. Determining inelastic/nonlinear
capacity can be useful in situations such as forensic analyses, or where post yield/post ultimate
phenomenon is desired, for example in the evaluation of the pushover capacity of a bridge for
seismic design or redundancy assessments of bridges with fracture critical members (FCMs). In
particular, a redundancy analysis usually involves sophisticated elements and material models
able to replicate the inelastic and nonlinear response of members along an alternative loading
path activated after a FCM fails.

Analysis including geometric nonlinearities are useful to determine the second order effects,
otherwise addressed with approximate equations in the Specifications. As mentioned previously
in Section 5.3, when behavior is nonlinear, superposition and/or factoring of load effects no
longer is valid. Therefore, when using the results of nonlinear analyses for design according to
a load-factor method such as LRFD, factoring should be performed prior to applying the loads
in the nonlinear analysis. This means that for situations with a large number of load cases,
nonlinear analyses are not usually the best tool for the task. As an alternative, a number of
representative nonlinear analyses can be performed, ratioed to their linear counterparts and then
enveloped to determine an appropriate design amplification factor to be used for all design load
cases. For more details on nonlinear analyses and corresponding modeling approaches, see
Section 5.3.

8.2.10 Stability
8.2.10.1 Beam Columns

Compression members, such as columns or arches, are prone to undergo instability issues
commonly referred to as buckling. This is a condition where the structure reaches a maximum or
critical load and is unable to sustain any additional loading exhibiting instead a progressive
deformation that can lead to collapse (Structural Stability Research Council, 2010). Stability
limit states in bridge design are a function of a number of variables, including the state of
residual stress in the case of steel material, the initial out-of-straightness of the elements,
eccentricity of load, time-dependent effects (i.e. creep in concrete), and the actual end-member
restraints.

For straight, constant cross-section members with commonly-defined end conditions, the LRFD
Specification equations include design resistance equations that were calibrated to provide a
conservative estimate of the capacity of typical columns, including the effects of residual stresses
and an initial geometric imperfection of L/1500 (White, 2015, Griffis and White, 2013).
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Therefore, these aspects do not need to be addressed in a refined analysis when the member
capacities are determined according to the Specifications. When the behavior begins to include
complexities such as curved elements, variable cross-sections, complex buckling modes or
nonlinear end conditions, refined analysis can aid in accurately determining the member
capacity. However, care must be taken to avoid neglecting the effects of initial geometric
imperfections and residual stresses.

One way to approach refined analysis for stability member design is to determine the maximum
elastic buckling load from a refined analysis. The maximum load resulting from the refined
analysis is set as the Euler buckling load, or the elastic critical buckling resistance, Pe, of the
member and substituted into the column equations from the Specifications to get the member
capacities. The resultant critical buckling load can also be used to determine the effective
slenderness ratio (KL/r) (or effective length, KL) from the Pe equation. The convenience of
using KL/r (or KL) instead of the critical load directly is that it provides a better feel for the
influence of the member end restraints on the buckling modes. Additionally, the slenderness
ratio can be utilized in the approximate single step moment magnification equations in the
Specifications to determine second order effects. The resulting amplification factor can then be
used to increase the design moments determined from linear analyses, accordingly.

The key to calculating the slenderness ratio when analyzing concrete is to model the stiffness of
the column accurately. Due to items such as variability in cracking, reinforcement, and creep
along the length of concrete compression members, it is inappropriate to use the gross section
moment of inertia to calculate the stiffness along the entire member. Various formulas have
been developed to calculate an effective stiffness of concrete members in such situations.
AASHTO LRFD Article 5.7.4.3 provides a method based on section properties and loading.
ACI 318-14 Article 6.6.4.4.4 (ACI, 2014) utilizes the AASHTO equations as well as a third
equation for calculating effective stiffness. The third equation in ACI is considered the most
accurate but requires more information about the section. Additional discussion on reinforced
concrete member stiffness can be found in various text (Wight and MacGregor 2012, Khuntia
and Ghosh 2004a, Khuntia and Ghosh 2004b).

In practice, linear and nonlinear refined analyses are available to identify the critical loads where
instability occurs. Elastic linear buckling analyses typically provide the eigenvalue solution, and
result in a load factor which, when applied to the existing loads, provides the theoretical
bifurcation point or critical load. Eigenvalue analyses are very attractive for design purposes
since they are quick, easy to perform typically using a line (beam) element model, and provide a
definite load for each buckling mode.

When conditions are outside the limits of the specifications, or more accurate results are needed,
nonlinear load-deflection analyses may be more desirable to identify the early stages of
buckling. Nonlinear load-deflection analyses, including time history, incremental, or step-wise
nonlinear analyses, reformulate the stiffness of the system at each load step as the applied loads
are factored up. These analyses can utilize appropriate stiffness reductions and geometric
imperfections in the context of the AISC Direct Analysis Method (Chapter C) or Advanced
Analysis Method (Appendix 1) (AISC, 2016). Although these analyses provide immediate
magnified force effects at any load level, it can be more challenging to determine secondary
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buckling modes, especially if they correspond to a particular live load deformation pattern or if
there is an interaction of several buckling modes.

Regardless of the approach selected, the designer must ensure that the important effects of
residual stresses and initial imperfections are accounted for in the design process, either through
the use of the AASHTO capacity equations, or directly in the analysis.

With regard to the design of steel arch ribs, AASHTO LRFD includes some simplified
guidelines to address the in-plane buckling but no recommendations are given to consider the
out-of-plane behavior which may be the controlling mode for arches with minimal lateral
bracing. Such a case would be a good candidate for a refined nonlinear analysis.

8.2.10.2 Lateral-Torsional Buckling

For design of typical concrete slab on girder bridges, girder stability can be an important issue.
Stability of precast concrete girders can be critical during transportation and erection. Stability
of positive moment regions of steel girders can be a concern during deck placement, prior to the
slab curing. Most of the time, modeling lateral torsional buckling explicitly is unnecessary. For
routine design of typical concrete slab on girder bridges, using the AASHTO LRFD provisions to
ensure stability based on the load effects from a linear elastic analysis is recommended.

Determining the actual stability capacity of negative moment regions of steel girders with
relatively long unbraced lengths in existing bridges can be challenging, especially if loadings
change causing ratings to decrease. Quantifying the design benefits of an inflection point may
be helpful in increasing ratings and avoiding costly repairs. This can be difficult, as considering
inflection points to be fully braced can be unconservative. A full 3D shell model of the negative
moment region of the girder can be used to determine the resistance based on AASHTO LRFD
Article 6.10.8.2.3.

A procedure analogous to finding the elastic buckling load of a column as described in Section
8.2.10.1 can be used. In this case the elastic lateral torsional buckling stress Fcr is analogous to
the elastic buckling load Pe, and the moment gradient modifier Cy times the web load shedding
factor Ry is analogous to the effective length factor K. Because Article 6.10.8.2.3 utilizes
stresses, the elastic buckling analysis results can be used directly to calculate CoRb.

8.2.11 Dynamic Behavior

According to Article 4.7 of the LRFD Specifications, dynamic analysis may be required to
investigate wind or vehicle induced vibrations, the effects of seismic loads, or the effects of blast
loads. There are in general two methods available for dynamic analysis: response spectrum
analysis and time-history analysis. For seismic analyses, the LRFD Specifications provide
guidance on when each method should be used. This depends on features of the structure, such
as the number of spans, span length, horizontal curvature, overall complexity, operational
classification, seismic zone, etc. The development of finite element analysis models for each
method is similar, but the loadings and analysis techniques are different. The time-history
analysis is the more advanced of the two methods, since non-linear geometric and material
effects can be considered, and its use is required to analyze structures of significant importance
and complexity. Once a refined dynamic analysis has been performed, the load effects can be
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utilized directly by the LRFD Specification to perform member design. For guidance on
modeling for dynamic analyses, see Section 5.4.
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CHAPTER 9. EXAMPLES
Introduction

This chapter demonstrates the use of the manual contents in seven design examples: (1) a
straight, three-span, composite precast concrete I-girder concrete deck slab bridge with square
supports, simply supported for dead load made continuous for live load; (2) a straight, three-span
continuous, composite steel I-girder concrete deck slab bridge with square supports; (3) a curved,
three-span continuous, composite steel I-girder concrete deck slab bridge with skewed supports;
(4) a curved, three-span continuous, concrete box girder spine beam; (5) dynamic analysis of a
curved steel girder bridge; (6) stability analysis of a tall concrete pier column; and (7) a four-
span continuous prestressed segmental concrete box girder bridge. The geometry for Example 1
comes from a bridge on the PennDOT ECMS website, geometry for Examples 2, 3, and 5 use
information from NHI Course 130095, geometry for Example 4 is taken from Appendix B of
NCHRP 620, and geometry for Examples 6 and 7 are from available plan sets. This chapter
does not contain any new guidance regarding the use of the different analysis methods; instead, it
provides examples of the implementation of the information provided in the previous chapters.
For the first two examples, dead and live load moments, shears, and deflections are determined
using 1D line girder, 2D plate and eccentric beam, and 3D finite element analysis methods. For
the third example, dead and live load moments, shears, and deflections are determined using 2D
plate and eccentric beam and 3D finite element analysis methods for the final condition, and 2D
grid (since no slab is present during erection) and 3D finite element analysis methods for a steel
only analysis. The 1D line girder analyses utilize PennDOT’s Continuous Beam Analysis (CBA)
program. The Spine Beam, 2D, and 3D analyses were performed using the FEA program
LUSAS. The goal was to remain as software non-specific as possible; but in some cases the
method used was specific to the software used and is stated as such.

For completeness, detailed calculations for the 1D models are provided as well. Some readers
may choose to skip over these calculations to those dealing with the more refined methods of
analysis.

9.1 Example 1 - Three-span, Precast Concrete I-Girder Bridge (Continuous for Live
Load)

A three-span composite precast concrete I-girder concrete deck slab bridge made continuous for
live load is the subject of Example 1. The cross-section consists of four (4) AASHTO Type VI
precast concrete beams spanning 113 ft-3 inches when simply supported and spanning lengths of
114 ft-3 inches — 115 ft-3 inches — 114 ft-3 inches when continuous. The precast concrete beams
utilize 8 ksi concrete. Intermediate diaphragms are placed at the centerline of each simple span;
continuity diaphragms are placed at the piers to make the girders continuous for live load.
Diaphragms are also present at each abutment. Figure 146 shows the Example 1 framing plan.
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Figure 146. lllustration. Example 1 framing plan.

Figure 147 shows the Example 1 bridge cross-section. The composite concrete deck slab is 82
inches thick including a ¥ inch integral wearing surface; the deck slab utilizes 4 ksi concrete.
The intermediate diaphragms are 10 inches wide by 3 ft-10 inches deep. The pier continuity
diaphragms are 30 inches wide by approximately 7 ft-2% inches deep while the abutment
diaphragms are 4 feet wide by approximately 6 ft-6 inches deep. The diaphragms utilize 3.5 ksi

concrete.
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Figure 147. lllustration. Example 1 bridge cross-section.
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9.11

1D Line Girder Analysis

The three simple spans shown in Figure 146 that are made continuous for composite dead loads
and live loads are modeled with a 1D Line Girder Analysis. To adequately capture behavior in
the different loading stages at least three separate models are required; one for non-composite
dead loads, one for composite dead loads, and one for live load. Because simply supported and
continuous support conditions are both considered for composite dead load and live load in these
examples an additional two models are used. The 1D line girder analysis utilizes the
approximate distribution factors contained in Article 4.6.2.2 of the AASHTO LRFD Bridge
Design Specifications (AASHTO LRFD). The following steps are used to determine the dead
and live load moments, shears, and deflections:

1.

2.

Determine non-composite and composite section properties for interior and exterior
girders.

Calculate moment distribution factors for interior and exterior girders for one lane loaded
and multiple lanes loaded.

Determine the dead loads due to girder self-weight, concrete deck slab, haunches,
barriers, intermediate diaphragms, stay-in-place (SIP) forms, and future wearing surface
(FWS).

Develop and run analysis models. (Notes: Depending on software, several models may
have to be developed using the different section properties from Step 1; live load
distribution factors from Step 2 may, depending on software, be included in the
developed model and distributed moments will be provided as results)

Develop moment, shear, and deflection diagrams for non-composite dead load, composite
dead load, and live load.

In this analysis, the following models are developed and used to determine the dead and live load
moments, shears, and deflections:

Non-composite section properties with non-composite dead loads applied,;

0 These dead loads include the following: girder self-weight, SIP forms (if used),
diaphragms, haunches, and concrete deck slab.

o0 The non-composite dead loads are applied to a simply supported girder. Before
the concrete deck hardens the girders span between bearings and act
independently to resist loads.

Composite section properties with composite dead loads applied;

o Composite dead loads include the barriers and future wearing surface. Because
these loads act in long-duration, variation in time-dependent material properties
caused by factors such as creep must be accounted for. Depending on the level of
complexity required, a thorough treatment of creep behavior and its resulting
effects may be modeled; however, this is not done in these examples.

0 The composite dead loads are applied to both simply supported and continuous
girders. As the concrete deck (including concrete placed between the ends of
girders in adjacent spans) hardens and attains stiffness (and the ability to transmit
load), the system becomes continuous. However, in the interest of conservatism,
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some agencies require an assumed loss in continuity which reverts back to the

previously stated simply supported condition. Though it is not the typical case,

this is the methodology used in the examples herein. As a result the maximum

force effects from either the simply supported or continuous girder are utilized.
e Composite section properties with live load applied.

o Similarly to the composite dead load model, live loads are applied to both simply
supported and continuous girders, utilizing the force effects of the worst
condition.

o0 Live loads considered in these examples include HL-93 Trucks as prescribed by
AASHTO LRFD Section 3.6.1.2.1, but investigation of other project specific
loads may also be required. Because live loads are considered short-duration
loads, no consideration is given to time-dependent material properties.

9.1.1.1 Step 1 — Determine Non-Composite and Composite Section Properties
9.1.1.1.1 Non-Composite Section Properties — Interior and Exterior Girders

The non-composite section properties are calculated using basic mechanics of materials
equations. These include equations for the moment of inertia about the centroidal axes of
rectangles and triangles as well as the parallel axis theorem. These equations are shown as
Equation (32) through Equation (34).

1 .
',R:‘n'hm_:;h' = ﬁf)hi

(32)
I L bh?
I'riangle 36 (33)
Parallel Axis Theorem = I, ; + A;(¥i — Ypar e (34)
The non-composite section properties for the AASHTO Type VI precast concrete beam are
calculated below in Table with the different areas shown in Figure 148 and the dimensions
shown in Figure 149. The second row of the table indicates the column number.
Table 9. Non-composite section property calculation.
b h A A d=(y-Yoar . . I =1, +Ad?
Comp. | # |y | my | ) | | o | Gme | AT | @) | E
Q) 116 @ (©) (6) @) (8) 9) (10) (11)
Al 1 4] 5 210 | 69.5 | 14595.0 33.12 230347.25 | 4375 230785
A2 2 [13] 3 39 66 2574.0 29.62 34214.94 19.5 34234
A3 2 | 4 3 24 | 655 | 1572.0 29.12 20350.48 18.0 20368
A4 2 | 4 4 16 62.7 | 1002.7 26.29 11055.28 14.22 11069
A5 1 | 8 | 59 [ 472 | 375 [ 17700.0 1.12 591.39 136919 137510
A6 2 [10] 10 100 | 113 | 11333 -25.05 62736.78 | 555.56 63292
A7 1 128 ] 8 224 4 896.0 -32.38 234865.38 | 1194.67 | 236060
TA=| 1085 | TAy=| 39473.0 Ix=1] 733320
Voar = ZAy/ZA= 36.38 inches
A= 1085 in2
Ix=  733320.29 in*
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Figure 148. Illustration. Components of Figure 149. Illustration. Dimensions of
AASHTO Type VI prestressed beam. AASHTO Type VI prestressed beam.

9.1.1.1.2 Composite Section Properties for Interior Girders

The composite section properties for the interior girders are calculated below. Because the deck
slab and beam have different stiffness properties, the modular ratio must be calculated to create a
transformed section and enforce the assumption that plane sections remain plane. The modular
ratio is the ratio of modulus of elasticity for the beam to the modulus of elasticity of the deck
slab. The modulus of elasticity of concrete with compressive strengths less than or equal to 5.0
ksi is calculated using the concrete compressive strength and AASHTO LRFD Equation
C5.4.2.4-1, shown here as Equation (35). For concrete with compressive strength greater than 5
ksi, Equation (36) is used where wc is given by Equation (37) and K is taken equal to 1.0. The
modulus of elasticity for the beam is determined to be 5314 ksi and for the deck slab is
determined to be 3640 ksi, based on compressive strengths of 8 and 4 ksi respectively. The
modular ratio, given by Equation (38), is 1.46.

E. = 1820,/f
E, = 33,000K,wls [f]

(35)
(36)
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w, = 0.140 + 0.001f, (37)

i Epeam

Ederk
The deck slab contribution depends on the effective flange width determined according to
AASHTO LRFD Article 4.6.2.6. This section indicates that the center-to-center girder spacing
should be used as the effective flange width for the interior girders. The depth of the haunch and
the %% inch integral wearing surface are conservatively not included in any of the section
properties calculated in this example.

(38)

Table 10. Composite section property calculation — interior girder.

b h A A d=(Y-Ypar . . 1=,
comp. | i | | ity | g | | e | ARG | @ | A
Q16 1@l 6 1.6 1 0 ®) ©) (10) ()
Deck 94.52 8 756.2 76 57468.9 23.35 412198.0 4032.90 416230.9
Beam - - 1085 36.38 39473 -16.27 287273.2 733320.3 1020593.5
A= 1841.2 YAy=| 96941.9 Iy = | 1436824.3
Yoar = ZAy/ZA= 52.65 inches
A= 1841.2 in?
Iy = 1436824.3 in4

9.1.1.1.3 Composite Section Properties for Exterior Girders

The calculation is identical to that of the interior girders except that the effective flange width is
different for exterior girders. AASHTO LRFD Article 4.6.2.6 indicates that one-half the center-

to-center girder spacing plus the overhang width should be used as the effective flange width for
exterior girders.

Table 11. Composite section property calculation — exterior girder.

b

h

A

Ay

d=(y-Ynar)

1=l

Comp- | iy | in) | (in?) (i)rlw) (in%) (in) A (in) | o) A e ing)
€))] 3) (4) (5) (6) ) (8) 9 (10) (11)
Deck | 8373 | 8 | 669.9 | 76 | 509090 | 2450 | 4019523 | 3572.6 | 4055249
Beam | - ~ | 1085 | 3638 | 39473 | -1512 | 2481610 | 7333203 | 9814813
TA= | 17549 | TAy=| 903829 I, = | 1387006.2
Ybar = ZAy/ZA= 51.50 inches
A= 17549 in?
I,=  1387006.2 in

9.1.1.2 Step 2 — Determine Approximate Live Load Distribution Factors

9.1.1.2.1 Interior Girder Moment Distribution Factors

Equations for the approximate live load distribution factors, “g,” are provided in AASHTO
LRFD Article 4.6.2.2. Different cross-section types are provided in AASHTO LRFD Table

4.6.2.2.1-1; comparing Figure 147 to those in the table, it is determined that cross-section “k” is
similar. Using the cross-section type and AASHTO LRFD Table 4.6.2.2.2b-1, the equations for
the moment distribution factors for interior girders can be found.
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The distribution factor equations for live load moment in interior girders are shown as Equation
(39) for one lane loaded and Equation (40) for multiple lanes loaded.

S 0.4 oy 0.3 K 0.1
o = 0.06+ (—) (—) d
gstm 14) \r) \1zoLe?

(39)
(y 0.6 S 0.2 Kg 0.1
o = 0075+ (5=) (3) ( )
9.5 L 12.0Lt} (40)
Where: S = girder spacing [ft]
L = span length [ft]
ts = deck slab thickness [in]
Ky = longitudinal stiffness parameter [in*] = n(Ix + Aeg?)
n = modular ratio
A, Ix = area and moment of inertia for non-composite beam
€g = distance between centers of gravity of the non-composite beam and deck
slab [in]
g = distribution factor

The first step in determining the approximate distribution factors is to determine the value of Kg.
This value is the same for both the interior and exterior girders as the same beam is used. The
non-composite area and moment of inertia are found in Table 9. The value for “eq” is
determined using Equation (41) and found to be 39.62 inches.
L
e, = D — ypar +§

(41)

Substituting all values into the equation for Kg, determine that Kg is 3557176 in®.

K, = n(1 +Ae;) = 1.46(733320.3in* + 1085in? x (39.62in)*) = 3557176in*

The second step in determining the approximate distribution factors is to determine if the bridge
characteristics satisfy the range of applicability listed in AASHTO LRFD Table 4.6.2.2.2b-1.
These characteristics, the range of applicability, and the Example 1 bridge values are shown in
Table 12.

Table 12. Bridge characteristics for distribution factor equations.

Characteristic Range Satisfied for Example 1
Girder spacing, S 3.5<5<16.0 S=115, YES
Deck Slab thickness, ts 45<ts<12.0 ts =8, YES
Span length, L 20<L <240 L =114.25 and 115.25, YES
Number of beams, Nb Nb >4 Nb =4, YES
Longitudinal Stiffness, Kg | 10,000 < Kg < 7,000,000 Kg = 3557176, YES

Since all of the criteria are satisfied, the approximate distribution factors of Equations (39) and
(40) can be used to calculate the moment distribution factors for the interior girders. The
distribution factors depend on the span length; the center span of this bridge is slightly longer
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than the side spans, therefore separate distribution factors will be calculated for the center span.
Additionally for negative moment between dead load points of contraflexure (POCs), AASHTO
LRFD indicates that the average of the two span lengths can be used (See AASHTO LRFD
Table C4.6.2.2.1-1). Calculation of the moment distribution factor in an interior girder for one
lane loaded is shown below, the others are similarly calculated and are shown in Table 13 below.

S 0.4 .S 0.3 ‘,{ 0.1
iy = 0.06+(—) (—) g
o 14/ \L/ \12.0L¢3
0.06 + (22 BrILs A0 3557176 4 it
- +( 14) (114.25) (12 X 114.25 xs:;) = 0.61 lanes

Table 13. Interior girder moment distribution factors.

) Lanes Spans 1
Action Loaded | and3 | “P3n2
1 0.61 0.60
M+ and M- not between POCs N 0.91 0.91
1 0.61
M- between POCs o 0.91

9.1.1.2.2 Exterior Girder Moment Distribution Factors

AASHTO LRFD Table 4.6.2.2.2d-1 indicates that for one lane loaded, the lever rule should be
used; for two or more lanes loaded, use the equation provided in AASHTO LRFD Table
4.6.2.2.2d-1. But in no case, for any number of lanes loaded, should the distribution factor be
less than that calculated using AASHTO LRFD Eq. C4.6.2.2.2d-1 which assumes a rigid cross-
section.

The lever rule uses statics to distribute the live load to the girders. The lever rule assumes that
the deck slab is hinged at the interior girder and is therefore statically determinant transversely.
Figure 150 shows the dimensions necessary to calculate the moment distribution factor via the
lever rule. Using the lever rule also requires application of the multiple presence factor in
AASHTO LRFD Table 3.6.1.1.2-1.
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Figure 150. Illustration. Lever rule dimensions.
The dimensions shown in Figure 150 are defined as: S is the girder spacing, OVER is the
overhang width, P1 and P2 are the left and right wheel centerlines respectively, X1 is the
distance from the left wheel to centerline of exterior girder, and X2 is the distance from the
exterior girder centerline to the right wheel. X1 is determined using Equation (42), where
“barrier” is the width of the barrier, and X2 is determined using Equation (43). X1 is negative if
the wheel line is between the edge of the deck slab and the centerline of the exterior girder and
positive if between girders. The distribution factor can then be calculated using Equation (44),
where m is the multiple presence factor from AASHTO LRFD Table 3.6.1.1.2-1.

X1 = OVER — Barrier — 2’ (42)
X2=6+X1 (43)
m(S—X1+S—X2)
q= -
28 (44)

Using the dimensions in Figure 147 and Equations (42) and (43), X1 is determined to be -9
inches and X2 is determined to be 63 inches. Using Equation (44) and selecting the multiple
presence factor from AASHTO LRFD Table 3.6.1.1.2-1 for one lane loaded, the distribution
factor is calculated as 0.97 lanes.

_m(S—-X1+S-X2) 1.2(138"—(-9") + 138" —63")
- 29 - 2 x 138"

g = 0.97 lanes

For multiple lanes loaded, AASHTO LRFD Table 4.6.2.2.2d-1 indicates to use the equation
provided in the table. The moment distribution factor for multiple lanes loaded and exterior
girders is given by Equation (45) and “e” is given by Equation (46).

Iumem = €Gmim (45)
d.

e=0774+—
91 (46)

In Equation (46), de is the horizontal distance from the centerline of the web of the exterior
girder to the interior face of the traffic barrier. Using Equation (47), de is determined. AASHTO
LRFD Table 4.6.2.2.2d-1 indicates that the calculated value of de must be between -1.0 ft and 5.5
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ft. Figure 147 indicates the overhang width to be 4 ft-5%4 inches and the barrier width to be 1 ft-
8Y4 inches, giving a value of de equal to 2.75 ft; this value is between -1.0 ft and 5.5 ft.

d, = OVER — Barrier (47)

Substituting de into Equation (46), “e” is determined to be 1.072. Table 14 shows the moment
distribution factors determined using AASHTO LRFD Table 4.6.2.2.2d-1 for multiple lanes
loaded.

Table 14. Exterior girder moment distribution factors.

Action Lanes Loaded | Spansland3 | Span?2
M+ and M- not between POCs 2+ 0.97 0.97
M- between POCs 2+ 0.97

The final step to determine the moment distribution factor for the exterior girders is to consider
the rigid cross-section analysis of AASHTO LRFD C4.6.2.2.2d. The live load distributed to the
exterior girder is determined using Equation (48).

Nr
NL XE):E Elue)

N Vb 42
b El X (48)

Where: R = reaction on exterior beam in terms of lanes
m = multiple presence factor, from AASHTO LRFD Table 3.6.1.1.2-1
NL = number of loaded lanes under consideration
e = eccentricity of design truck or design lane load from center of gravity of the
pattern of girders [ft]
X = horizontal distance from center of gravity of girder pattern to each girder [ft]
Xext = horizontal distance from center of gravity of girder pattern to exterior girder
[ft]
Nb = number of beams/girders
One Lane Loaded: Two Lanes Loaded:
Multiple Presence Factor: (Table 3.6.1.1.2-1) Multiple Presence Factor: (Table 3.6.1.1.2-1)
m=12 m=10
First Term of Equation (48): First Term of Equation (48):
N|_ =1 N|_ =2
Np,=4 Np,=4
NL/Np=0.25 NL/Np=0.5
Second Term of Equation (48): Second Term of Equation (48):
Xext = 1.5x11.5 ft = 17.25 ft , Xext = 1.5x11.5 = 17.25 ft '
€= Xoxe + OVER — 200 — 2/ — & =15 ft €1= Xox + OVER — 0 — 2’ — 2 =15 f
er=e; — 12 ft =31t
Ye =15 ft Ye = 15ft + 3 ft = 18 ft
X1, Xa=15x11.5 ft = 17.25 ft X1, Xa=15x11.5 ft = 17.25 ft
X2, X3 = 0.5x11.5 ft = 5.75 ft X2, X3=0.5x11.5 ft = 5.75 ft
¥x2 = 2x(5.75 ft)? + 2 x(17.25 ft)? = 661.25 ft? ¥x2 = 2x(5.75 ft)? + 2 x(17.25 ft)? = 661.25 ft?
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My
Nexe Ly "8 17.25ft(15f8) Xext Ly "€ _ 1725ft(18ft)

b 2 661.25ft 2 032 5, 0 12 T Teerzsfil D47
Reaction on Exterior Beam: Reaction on Exterior Beam:
V II. I\ II.
R—m( +X—:\%) R—m( +X—:\%)
=1.2%(0.25+0.39) =1.0%(0.50+0.47)
=0.77 lanes =0.97 lanes

The moment distribution factors for the exterior girders are summarized in Table 15. For one
lane loaded, AASHTO LRFD Table 4.6.2.2.2d-1 resulted in a larger distribution factor than
assuming a rigid cross-section; for multiple lanes loaded the opposite occurred. For the exterior
girders, the moment distribution factor is 0.97.

Table 15. Exterior girder distribution factor summary.

One Lane Loaded | Multiple Lanes Loaded
Table 4.6.2.2.2d-1 0.97 0.97

Rigid Cross-Section 0.77 0.97

9.1.1.3 Step 3 — Determine Dead Loads
9.1.1.3.1 Self-Weight of Girder, wsw

The unit weight of concrete girders is assumed to be 150 pounds per cubic foot. The cross-
section area is 7.54 ft>. The self-weight of the girder, wsw, is equal to wsw = 7.54 ft2 x 150 lb/ft3
= 1,131 Ib/ft = 1.13 kip/ft.

9.1.1.3.2 Weight of Stay-in-Place Forms, wsip

Stay-in-place forms with an assumed weight of 0.015 ksf are used. The weight includes the
weight of the form as well as the concrete in the form valleys. For the interior girders, the
weight for SIP forms is 0.015 ksf x 11.5 ft = 0.17 k/ft. For the exterior girders, the SIP forms are
used only between girders; therefore the weight of SIP forms is 0.015 ksf x 5.75 ft = 0.086 k/ft.

9.1.1.3.3 Weight of Concrete Deck Slab, Wadeck

For the interior girder, the tributary width is taken as one-half the girder spacing on each side of
the girder while for the exterior girder, the tributary width is taken as the overhang plus one-half
the girder spacing. The deck slab is 8% inches thick, including a % inch integral wearing
surface. The concrete deck slab unit weight is assumed to be 150 pounds per cubic foot. The
weight of the concrete deck slab for the interior and exterior girders is determined below.

Interior Girder: Exterior Girder:
Tributary Width, ty: Tributary Width, ty:

tw=S/2+S/2=S tw = S/2 + Overhang

=115 1t =115 ft/2 + 4 ft-5% inches = 10.1875 ft
Deck Slab Thickness, ts: Deck Slab Thickness, ts:
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ts= 8.5 inches ts= 8.5 inches

Concrete Unit Weight, yc: Concrete Unit Weight, yc:
ve = 150 Ib/ft3 ve = 150 Io/ft3
Interior Girder Deck Slab Weight Exterior Girder Deck Slab Weight
— - 3 —
o 11.5ftx 8.5 in/12 x 150 Ib/ft° = 1222 Waeek =10.1875ft x 8.5 in/12 x 150 Ib/ft® = 1082 Ib/ft

=1.22 k/ft =1.08 k/ft

9.1.1.3.4 Weight of Concrete Haunches

The weight of the haunch is determined using the cross-section area of the haunch and the unit
weight of concrete. For the interior girders, the haunch depth is assumed to be 5%s inches.

The weight of the haunch on the interior girder, whi, is determined to be (5%/s inches x 42 inches)
/ (144 in?/ft?) x 150 Ib/ft3 = 0.24 k/ft.

For the exterior girders, the concrete in the overhang in excess of the deck slab thickness is
included in the weight of the haunch. The haunch depth is 5%/ inches at the centerline of the
exterior girder.

The weight of the haunch, including the concrete in the upturn and overhang, is determined to be
0.39 k/ft.

9.1.1.3.5 Weight of Intermediate Diaphragms

The intermediate diaphragm is located at the center of each span. The diaphragm is 10 inches
wide and 46 inches deep and constructed of reinforced concrete. The diaphragm weight applied
to the interior girders is 5.2 k and to the exterior girder is 2.44 k.

9.1.1.3.6 Weight of Barriers

The weight of the barrier is determined using available dimensions shown in Figure 151. The
calculation of the barrier weight is also shown as part of Figure 151.
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Total Barrier Height:
- 1 H =42 inches

Total Barrier Width:
W = 20.25 inches

i i Total Area:
A=WxH
=42 inches x 20.25 inches = 850.5 in?

Upturn Area:
Ayp=20.25 in?

Sloped Face Area:
Arace = (32 inches x 4.875 inches) + ¥4(3.375
inches x 32 inches) + %(7 inches x 4.875
' inches) = 227.0625 in?

Barrier Area:
H Ap=A—-Aup — Aface
i - i =850.5in? - 20.25 in? — 227.06 in?
=603.2 in? = 4.19 ft?

-—
-

Barrier Weight:
Wp = Ap X ¢ =4.19 ft? x 150 Ib/ft® = 628.5 Ib/ft
= 0.63 k/ft

Figure 151. lllustration. Barrier dimensions and weight calculation.

The distribution of the barrier weight to the girders can be performed in several different ways:
equally to all girders, to the exterior girder only, or by the lever rule to the exterior girder and
first interior girder. For this example, the weight of the barriers will be assumed to be distributed
equally to all girders, wp = 0.315 k/ft.

9.1.1.3.7 Weight of Future Wearing Surface

A 30 psf future wearing surface is considered in the design of the bridge. The weight of the
wearing surface can be distributed equally to all girders or based on tributary width; this example
assumes the weight is distributed based on tributary width. For the interior girders, the tributary
width is equal to the girder spacing. For the exterior girders, the tributary width is equal to one-
half the girder spacing plus the overhang distance minus the width of the barrier. The magnitude
of the applied load to the interior girders is 0.030 ksf x 11 ft-6 inches = 0.35 k/ft. The magnitude
of the applied load to the exterior girders is 0.030 ksf x ((11 ft-6 inches)/2 + (4 ft-5%4 inches-1 ft-
8 Ya inches)) = 0.26 k/ft.

9.1.1.3.8 Summary of Dead Loads

A summary of the dead load magnitudes for the interior and exterior girders is shown in Table 16
below. The loads shown are on a per girder basis.
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Table 16. Dead loads on a per girder basis.

Dead Load Component Interior | Exterior
Girder Self-Weight, wsw [k/ft] 1.130 1.130
Stay-in-Place Forms, wsip [k/ft] 0.170 0.086
Concrete Deck Slab, Wdeck [K/ft] 1.220 1.080
Concrete Haunch, wn [k/ft] 0.240 0.390
Intermediate Diaphragms, Pd [K] 5.190 2.440
Barrier, wp [k/ft] 0.315 0.315
Future Wearing Surface, wrws [k/ft] 0.350 0.260

9.1.1.4 Step 4 — Develop Analysis Models

This step will be software specific in many of the details, but in general the following will need
to be defined in the model:

1) Basic layout such as span lengths and support types

2) Properties of the cross-sections such as moment of inertia
3) Dead loads

4) Live loads

As part of this step the engineer needs to verify that the software is performing correctly. One
simple test is to apply a known load and ensure that the reactions sum to the total load applied. In
this case, the barrier load was applied as a test.

Barrier Load = 0.305 k/ft
Length of Bridge = 114.25ft + 115.25ft + 114.25ft = 343.75 ft
Total Applied Load = 0.315 k/ft x 343.75 ft = 108.28 k

Reactions from 1D Line Girder Analysis:

Abutment1 | Pierl | Pier2 | Abutment?2 Total

14.38 k 39.76 k | 39.76 k 14.38 k 108.28 k
..Sum of reactions is equal to applied load; model should be
providing reasonable results. Additionally, the reactions are
symmetric as would be expected.

For further verification, an approximate check is made for the maximum negative live load
moment. This calculation can be made in several ways, but a standard method used in the past,
and used in this example, is with the tables from AISC Moments, Shears and Reactions for
Continuous Highway Bridges.

For N=1.0 (approximately equal span lengths) and a total length of 343.75 ft the maximum
negative moment for a design truck is interpolated as -1356.97 k-ft/lane. The lane load is given
by -0.10wL2 = (-0.10)(0.64 k/ft)(114.25 ft)2 = -835.40 k-ft/lane.
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Therefore, including impact and distribution, the maximum negative live load moment for an
interior girder is given by [(1.33)(-1356.97 k-ft/lane)+(-835.40 k-ft/lane)](0.91 lanes) = -2402.55
k-ft.

This is within 1 percent of the results provided by the analysis software, suggesting the program
is operating as expected. In general, acceptable levels of accuracy should consider the
complexity of the analysis and geometry being investigated, but ultimately depend on the
discretion of the project manager.

9.1.1.5 Step 5 - Develop Moment, Shear, and Deflection Diagrams

After performing the analysis, moment, shear, and deflection diagrams are created using the
analysis results. Diagrams can be developed for individual components or combined according
to the type of applied load. Figures 152 through 157 show the moments, shears, and deflection
calculated from the 1D line girder analysis. The following figures show the moment, shear, and
deflection due to: non-composite dead loads including the beam self-weight, stay-in-place deck
forms, diaphragms, haunches, and concrete deck slab, maximum and minimum (from continuity
conditions) composite dead loads including the barrier and future wearing surface, and maximum
positive and negative live load moments including 33 percent dynamic load allowance on the
axles only.
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Figure 152. Graph. 1D moment diagram and live load envelope for interior girder.
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Figure 153. Graph. 1D shear diagram and live load envelope for interior girder.
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Figure 154. Graph. 1D deflection diagram for interior girder.
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Figure 155. Graph. 1D moment diagram and live load envelope for exterior girder.
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Figure 156. Graph. 1D shear diagram and live load envelope for exterior girder.
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Figure 157. Graph. 1D deflection diagram for exterior girder.
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9.1.2 Plate and Eccentric Beam Analysis

Taking the 1D analysis from the previous section one degree further in complexity, the three
simple spans shown in Figure 146 that are made continuous for composite dead loads and live
loads are modeled with a 2D Plate and Eccentric Beam. To adequately capture behavior in the
different loading stages at least three separate models are required; one for non-composite dead
loads, one for composite dead loads, and one for live load. Because simply supported and
continuous support conditions are both considered for composite dead load and live load in these
examples an additional two models are used. For this example, an automated utility within the
analysis software was used to determine the location of the truck (or tandem) and lane load that
resulted in the maximum positive and negative moments at each tenth point along the structure,
but other methods of determining loading extremes (such as development and utilization of
influence lines/surfaces) could also be used. All geometry is modeled at the centroid of the
girders. The following steps are used to determine the dead and live load moments, shears, and
deflections:

1. Create model for non-composite dead loads.

a. Define location of girders and intermediate diaphragms. Depending on software,
the girder may have to be defined by multiple segments such that the intermediate
diaphragm can be connected to the girders, see Figure 158. Between nodes used
to define member ends it may also be necessary in this step to discretize the
geometry (through addition of nodes) such that members are ultimately composed
of a sufficient number of elements. The number of elements should be enough to
capture the expected behavior of each component, but not so many that
computational time becomes excessive. Consideration should also be given to
where results are required, as additional nodes may need defined at these
locations. In the analysis software used, elements are created through a meshing
process, where an element size/number is specified and applied to the structural
members. As elements are defined geometrically, it may also be necessary to
choose element type. Further discussion of element definition and element types
can be found in Section 3.7.

CONNECTION : it
BETWEEN GIRDER AND

DIAPHRAGM (TYP.)NQ

INTERMEDIATE
DIAPHRAGM

GIRDER YP.)
(TYP))

I 2
H
e ' L,x
(typ) -
Figure 158. lllustration. Girder and intermediate diaphragm location.
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f.
g.
h.

Define geometry of girder cross-section and intermediate diaphragm cross-
section. Analysis software may have standard girder cross-sections stored
internally; these can be used but the dimensions should be verified. (Note: ensure
that the section properties and the model are using consistent units).

Define material properties for girders and intermediate diaphragms. Separate
material properties are defined for the prestressed girders and intermediate
diaphragms as different strength concretes are used. The analysis software may
have material properties for commonly used materials stored internally; these can
be used but should be verified.

Define support conditions.

Define loads applied to the non-composite structure.

i. For the members defined in the model, the girders and intermediate
diaphragms, automatic dead load application can be used if mass density is
assigned through material properties. Otherwise, concentrated or
distributed loads that are statically equivalent to the weight of the
members can be used.

ii. The other non-composite dead loads (SIP forms, haunches, deck slab) are
applied as uniform line loads to each girder.
Define load cases.
Ensure correct attributes (geometric and material properties, support conditions,
and non-composite dead loads) are assigned to appropriate components.
Run analysis; verify analysis results using simplified methods.
Extract required results from analysis software.

2. Create models for composite dead loads (continuation of the model created in Step 1).

a.

Define location of concrete deck slab and create appropriate surface elements (see
Step la and Section 3.7.1.3 for more information). For the continuous beam
model span lengths will require modification from those created in Step 1 and
used for the simply supported case, but will otherwise be identical.

Define geometry and thickness of concrete deck slab. An eccentricity is applied
to the deck such that it is at the appropriate elevation relative to the other
members. Some elements support offsets internally, making assigning
eccentricities easier. For elements that do not support eccentricities, rigid link
constraints or rigid beam elements can be used to provide the required offset.
Define material properties concrete deck slab. (See Step 1c for more
information).

Define loads applied to the composite structure.

I. The FWS is defined as a uniform load distributed over an area. If
possible, the load should be applied over a partial width of the bridge,
representing placement between barriers. However, if the area of loading
does not coincide with the model geometry and partial width loading
cannot be specified, either the geometry can be modified to facilitate load
application or the load should be modified such that the total applied load
remains the same, though the area over which it is spread may be
different.
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ii. The weight of the barrier is defined as a uniform line load. Similarly to
the FWS, if the barrier load cannot be precisely located due to geometric
and loading constraints, either geometry can modified or approximations
can be made.

Define support conditions.
Define load cases.
g. Ensure correct attributes are assigned (geometric and material properties, support
conditions, and loading) to appropriate components.
h. Run analysis; verify analysis results using simplified methods.
i. Extract required results from analysis software.
3. Create models for composite live loads (continuation of the models created in Step 2).
a. Determine optimized loading. The analysis software may have utilities that help
in the determination. Influence surfaces can be developed to aid in loading
generation.
b. Run analysis with optimized loadings and verify results
c. Extract required results from analysis software
4. Combine analysis results extracted in Steps 1i, 2h, and 3c.

—h @D

9.1.2.1 Step 1 - Create Non-Composite Dead Load Model
9.1.2.1.1 Step la - Define Girder and Intermediate Diaphragm Locations

From Figures 146 and 147 , the location of the girders and intermediate diaphragms as well as
the non-composite span length can be found. Assuming that the origin is located at the left end
of girder B4 in Figure 146, the coordinates for the girder ends and intermediate diaphragm
locations are shown in Table 17. Each girder is defined by two segments, one from x = 0 ft to x
= 56.625 ft and the second from x = 56.625 ft to x = 113.25 ft. Since the software being used has
elements that allow offsets to be defined, as the coordinates in Table 17 indicate, the nodes of all
components lie on the same horizontal plane; in the physical structure, the component centroids
do not all lie on the same plane.

Table 17. Coordinates for girder and intermediate diaphragm ends.

Component Start End
x(f) [y | z(f) | x(f) | y(fr) | z(f)
Bl 0 34.5 0 113.25 | 345 0
B2 0 23.0 0 113.25 | 23.0 0
B3 0 115 0 113.25 | 115 0
B4 0 0 0 113.25 0 0
Int. Diaphragm B1-B2 | 56.625 | 23.0 0 56.625 | 34.5 0
Int. Diaphragm B2-B3 | 56.625 | 11.5 0 |[56.625| 23.0 0
Int. Diaphragm B3-B4 | 56.625 0 0 |[56.625| 115 0

Beam elements are used for modeling both the girders and intermediate diaphragms. In the
software used, both Timoshenko and Euler beam elements are available. The Timoshenko
formulation, which is capable of capturing shear deformations, is used. However, because shear
deformations are insignificant in these members, Euler beam elements would be acceptable as

250



well, though there is a negligible computational penalty for utilizing the more complete
formulation.

For the girders, each line is divided into five elements. This is done such that nodes are located
at the girder tenth-points. For the intermediate diaphragms, three elements per line are specified.

9.1.2.1.2 Step 1b — Define Girder and Intermediate Diaphragm Cross-Sections
Refer to Section 9.1.1.1 for calculation of the girder properties.

The intermediate diaphragm is defined as a rectangle that is 46 inches deep and 10 inches wide.
Table 18 shows the intermediate diaphragm section properties as calculated by the analysis
software.

Because the centroid of the diaphragms is at a different height than the girder centroid a vertical
offset is required. The centroid of the girder is 36.375 inches from the bottom of the girder while
the centroid of the intermediate diaphragm is 44 inches from the bottom of the girder; therefore
the intermediate diaphragm cross-section must be shifted up by 7.625 inches (or 0.635 ft) (see
Figure 159). In the software used, this is entered as a negative value.

Table 18. Intermediate diaphragm section properties.
Section Property Value
Cross-section Area (A) (ft?) 3.194
Strong Axis Moment of Inertia (lyy) (ft%) 3.912
Weak Axis Moment of Inertia (122) (ft*) 0.185

Torsion Constant (Jxx) (ft*) 0.638
Shear Area in y direction (Avy) (ft?) 2.662
Shear Area in z direction (Avz) (ft?) 2.662

Offset in z direction (Rz) (ft) -0.635

llntermediate Diaphragm

i

T L ] L

Figure 159. Illustration. Diaphragm eccentricity.
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9.1.2.1.3 Step 1c — Define Material Properties for Girders and Intermediate Diaphragms

Material properties can be calculated by hand and input into the analysis software or defined
using materials already included in the software. If specifying material properties directly from
analysis software it should be verified that they conform to the design specifications. Based on
the available information, the girders utilize concrete with a 28-day compressive strength of 8 ksi
while the intermediate diaphragms utilize concrete with a 28-day compressive strength of 3.5 ksi.
This example utilizes material properties shown in Table 19 calculated in accordance with
Equations (36) and (37) in Section 9.1.1.1.2.

Table 19. Concrete material properties.

. Girder Concrete | Int. Diaphragm Concrete
Material Property (8 ksi) (3.5 ksi)
Modulus of Elasticity (ksf) 765,216 490,307
Poisson’s Ratio 0.2 0.2
Unit Weight (k/ft%) 0.153 0.150
Thermal Expansion
Coefficient (ft/ft/°F) 6.0E-6 6.0E-6

9.1.2.1.4 Step 1d — Define Support Conditions

The beams are simply supported before the continuity diaphragms at the piers are placed. One
end of each girder is restrained in the vertical and transverse directions only. At the other end,
each girder is restrained vertically, transversely, and longitudinally. In this model the supports
are located vertically at the centroid of the girders. For dead load, modeling the supports at the
girder centroid, rather than below the bottom of the girder should not have any effect on the
results.

9.1.2.1.5 Step le — Define Non-Composite Loads

The non-composite dead loads in addition to self-weight (SIP forms, haunches, and deck slab)
are applied as uniform line loads to each girder. The values previously calculated in Sections
9.1.1.3.2 through 9.1.1.3.4 for the SIP form weight, haunch weight, and deck slab weight are
applied to the interior and exterior girders as uniformly distributed line loads.

9.1.2.1.6 Step 1f — Define Load Cases

The next step is to define different load cases. Since all loads in this model are non-composite,
they are combined into a single load case.

9.1.2.1.7 Step 1g — Ensure Correct Attributes Are Assigned to Components

After defining the geometry, member properties, material properties, support conditions, and
loads, these attributes must be assigned to the appropriate geometry within the model. The
elements defining the girder are assigned the properties associated with the girders and the
elements defining the intermediate diaphragms are assigned the properties associated with the
intermediate diaphragms. Listed below are the different components and the attributes that must
be assigned:
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e Girders

0 Beam elements

0 Geometric cross-section

o0 Concrete material properties, f’c = 8 ksi in this example

0 Dead loads (including self-weight, SIP forms, haunches, and deck slab)
e Intermediate diaphragms

0 Beam elements

0 Geometric cross-section

o Concrete material properties, f’c = 3.5 ksi in this example

0 Dead load (self-weight)

When applying different loads, make sure that the load is applied to the correct load case.
9.1.2.1.8 Step 1h — Run Analysis and Verify Results using Simplified Methods

The next step is to run the analysis. Errors may exist such that the analysis cannot be finished,
these must be corrected. Errors may also exist that do not prevent the analysis from finishing but
may provide erroneous results. These errors are typically more difficult to detect. Viewing the
deflected shape should always be the first step as it can often reveal obvious problems.

The analysis results can be verified using a variety of simplified methods. In this particular case,
for a simply supported bridge, midspan moment or end reaction can be calculated using textbook
equations. The results from the equations should be very similar to the results from the analysis.
In this example, the reaction and midspan moment due to girder self-weight are verified.

From Section 9.1.2.1.2 and 9.1.2.1.3, the girder area (A) is 7.41 ft> and the unit weight of the
concrete is 0.153 k/ft®. The weight per linear foot of the girder, w, is therefore 1.134 k/ft.

The midspan moment is calculated using the equation, M = wL?/8 = 1818.02 k-ft. The reaction
is calculated using the equation, R = wL/2 = 64.21 k.

Textbook Equation | Analysis Software | % Difference
Midspan Moment (k-ft) 1818.02 1818.02 0.00%
End Reaction (k) 64.21 64.22 0.02%

Therefore, the model is producing reasonable results.
9.1.2.1.9 Step 1i — Extract Required Results from Analysis Software

After verifying that the results from the analysis are reasonable, the results of interest can be
extracted and input into a spreadsheet for further use. For the non-composite analysis, the
moments in the beam elements can be used directly.

9.1.2.2 Step 2 — Create Composite Dead Load Model

This will be a continuation of the model created in Step 1 above. The bridge is made continuous
for composite loads by the pier diaphragms and deck slab. As the deck concrete hardens,
including concrete which is placed between ends of adjacent girders, the composite girders will
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span between the centerline of piers rather than between bearings. As a result, the continuous
span lengths increase to 114 ft-3 inches, 115 ft-3 inches, and 114 ft-3 inches; the intermediate
diaphragms are located at the center of the simple spans not at the center of the continuous spans.

9.1.2.2.1 Step 2a — Define Girder, Diaphragm, and Concrete Deck Slab Location

From Figures 146 and 147, the location of the girders, diaphragms (abutment, intermediate, and
pier), concrete deck slab, barrier width, and composite span lengths can be found. Assuming that
the origin is located at the lower, left corner of the deck slab in Figure 146, the coordinates for
the girder supports and diaphragms are shown in Table 20. The pier diaphragms are used to
make the girders continuous for composite loads.

254



Table 20. Coordinates for girder and diaphragm ends.

Component Start End

x(f) | y(@®) |z(f) | x(f) | y(f) | z(f)
— Abut. 1 Diaphragm B1-B2 0 27.4375 0 0 38.9375 0
S | Abut. 1 Diaphragm B2-B3 0 159375| 0 0 274375 0
< Abut. 1 Diaphragm B3-B4 0 4.4375 0 0 15.9375 0
Bl 0 38.9375 0 114.25 | 38.9375 0
B2 0 27.4375 0 114.25 | 27.4375 0
— B3 0 15.9375 0 114.25 | 15.9375 0
§ B4 0 4.4375 0 114.25 | 4.4375 0
n Int. Diaphragm B1-B2 57.125 | 27.4375 0 57.125 | 38.9375 0
Int. Diaphragm B2-B3 57.125 | 15.9375 0 57.125 | 27.4375 0
Int. Diaphragm B3-B4 57.125 | 4.4375 0 57.125 | 15.9375 0
- P1 Diaphragm B1-B2 114.25 | 27.4375 0 114.25 | 38.9375 0
] P1 Diaphragm B2-B3 114.25 | 15.9375 0 114.25 | 27.4375 0
o- P1 Diaphragm B3-B4 114.25 | 4.4375 0 114.25 | 15.9375 0
B5 114.25 | 38.9375 0 229.5 | 38.9375 0
B6 114.25 | 27.4375 0 229.5 | 27.4375 0
N B7 114.25 | 15.9375 0 229.5 | 15.9375 0
§ B8 114.25 | 4.4375 0 229.5 | 4.4375 0
n Int. Diaphragm B5-B6 171.875 | 27.4375 0 171.875 | 38.9375 0
Int. Diaphragm B6-B7 171.875 | 15.9375 0 171.875 | 27.4375 0
Int. Diaphragm B7-B8 171.875 | 4.4375 0 171.875 | 15.9375 0
~ P2 Diaphragm B1-B2 229.5 | 27.4375 0 229.5 | 38.9375 0
] P2 Diaphragm B2-B3 229.5 | 15.9375 0 229.5 | 27.4375 0
o P2 Diaphragm B3-B4 229.5 | 4.4375 0 229.5 | 15.9375 0
B9 229.5 | 38.9375 0 343.75 | 38.9375 0
B10 229.5 | 27.4375 0 343.75 | 27.4375 0
™ B11l 229.5 | 15.9375 0 343.75 | 15.9375 0
§ B12 229.5 | 4.4375 0 343.75 | 4.4375 0
n Int. Diaphragm B9-B10 | 286.625 | 27.4375 0 286.625 | 38.9375 0
Int. Diaphragm B10-B11 | 286.625 | 15.9375 0 286.625 | 27.4375 0
Int. Diaphragm B11-B12 | 286.625 | 4.4375 0 286.625 | 15.9375 0
N Abut. 2 Diaphragm B1-B2 | 343.75 | 27.4375 0 343.75 | 38.9375 0
E Abut. 2 Diaphragm B2-B3 | 343.75 | 15.9375 0 343.75 | 27.4375 0
< Abut. 2 Diaphragm B3-B4 | 343.75 | 4.4375 0 343.75 | 15.9375 0

Consideration should be given to node location when defining the geometry. While it is
desirable to model all components at their actual locations, sometimes models can be greatly
simplified without compromising the results by modeling components in slightly shifted
locations, where a node is already present for some other reason. As always, judgment should be
exercised.

For this example, even though the intermediate diaphragms are not located at midspan of Spans 1
and 3 in the continuous structure, they were modeled at that location, 6 inches from their actual
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location. This aligned them with the node location of one of the tenth-points, where critical force
effects were desired. Alternatively, the actual diaphragm location could have been modeled, and
the tenth-point results taken from those nodes or interpolated to their actual location. Combining
these nodes makes meeting aspect ratio recommendations much easier, as otherwise a 6-inch
long element between these two locations would have been required. Using the same
assumptions as in Table 20, the coordinates for the corners of the concrete deck slab are shown
in Table 21.

Table 21. Coordinates of concrete deck slab corners.

Corner X (ft) y (ft) z (ft)
Upper, Left 0 43.375 0
Upper, Right | 343.75 | 43.375 0
Lower, Right | 343.75 0 0
Lower, Left 0 0 0

The elements defined for the girders and intermediate diaphragms in the non-composite model
are also used in the composite model. Thick shell elements, a type of surface element capable of
capturing shear deformations and membrane forces, are used to model the concrete deck slab.

9.1.2.2.2 Step 2b — Define Diaphragm Cross-Sections and Concrete Deck Slab Thickness

The definition of the girder and intermediate diaphragm cross-section is described in Section
9.1.2.1.2. The difference between the definitions in the composite model and the non-composite
model is the presence of the concrete deck slab and diaphragms at the abutments and piers. The
nodes defining the deck slab, girders, and diaphragms all lie on the same horizontal plane in the
analytical model but in the actual structure they are not at the same elevation. To more
accurately model the structure, an eccentricity is applied to the concrete deck slab (see Figure
160), pier diaphragms, and abutment diaphragms to shift the centroids vertically to the correct
position relative to the girders and intermediate diaphragms (see Section 9.1.2.1.2). Cross-slope
of the deck is neglected in the geometry of the model as its effect on load distribution and load
effects is negligible, while it can add a nontrivial amount of preprocessing time.

The pier diaphragms are 30 inches wide and 7 ft-2%4 inches deep while the abutment diaphragms
are 48 inches wide and 6.5 feet deep. The cross-section properties are shown in Table 22.

Table 22. Pier and abutment diaphragm section properties.

Section Property Pier Abutment

Cross-section Area (A) (ft?) 17.98 26.00
Strong Axis Moment of Inertia (lyy) (ft*) 77.49 91.54
Weak Axis Moment of Inertia (I22) (ft*) 9.36 34.67
Torsion Constant (Jxx) (ft%) 29.26 85.55

Shear Area in y direction (Avy) (ft?) 14.98 21.67
Shear Area in z direction (Avz) (ft) 14.98 21.67
Offset in z direction (Rz) (ft) 0.625 0.281
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The only values required to define the concrete deck slab are the thickness and eccentricity. The
deck slab thickness used in the model is the structural design thickness of 8 inches, which
neglects stiffness contributions from the % inch integral wearing surface. To account for the
weight of the omitted wearing surface thickness the material properties of the concrete deck slab
will be modified in the following section.
slab.

An eccentricity of 3.406 ft is applied to the deck

reference plane at
girder centroid

Figure 160. lllustration. PEB model.

9.1.2.2.3 Step 2c — Define Material Properties for the Concrete Deck Slab

The properties for the deck slab concrete are added to the model. The deck slab concrete has a
28 day compressive strength of 4 ksi. The 150 pcf unit weight is increased by the ratio of actual
deck slab thickness (including wearing surface) to the modeled deck slab thickness. Table 23
shows the material properties for the concrete deck.

Table 23. Concrete material properties.

Material Property Deck Slab Concrete (4 ksi)
Modulus of Elasticity (ksf) 524,757
Poisson’s Ratio 0.2
Unit Weight (k/ft®) 0.159
Thermal Expansion
Coefficient (ft/°F) 6.0E-6

While the deck slab, girder, and diaphragms are expected to have differential creep behavior (as
a function of variable mix design and age) which suggests the use of a modular ratio, this effect
is generally negligible and no modular ratio is applied.

9.1.2.2.4 Step 2d — Define Support Conditions

The supports at the abutments and Pier 1 restrain movement in the vertical and transverse
directions only. At Pier 2, the girders are restrained vertically, transversely, and longitudinally
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against translation. Rotation about all three orthogonal axes is allowed at all bearing locations.
Because of eccentricities applied in Section 9.1.2.2.2, the supports in this model are effectively
located at the centroid of the girders. If desired, rigid links could be added to relocate the
supports as they exist at the bottom of the girders.

9.1.2.2.5 Step 2e — Define Dead Loads Applied to Composite Structure

The future wearing surface (FWS) load is defined as a uniform load distributed over the bridge
width. To account for the difference in modeled width and actual width (which spans only
between barriers), the FWS load is reduced from 0.030 ksf (spread over 40.0 ft) to 0.028 ksf
(spread over 43.375 ft).

The weight of the barrier, determined above in Section 9.1.1.3.6, is applied as a uniform line
load.

9.1.2.2.6 Step 2f — Define Load Cases

Separate load cases are defined for the composite dead loads; in this analysis, the composite dead
loads are simply added together as moment envelopes are being compared but if the force effects
were to be used in design, the barrier would be a DC (component dead load) load while the
future wearing surface would be a DW (wearing surface dead load) load with the appropriate
load factors applied.

9.1.2.2.7 Step 2g — Ensure Correct Attributes Are Assigned to Components

After defining the geometry and elements, member properties, material properties, support
conditions, and loads, these attributes must be assigned to the appropriate geometry within the
model. The lines defining the girders, intermediate diaphragms, and pier diaphragms are
assigned the properties for the respective component. The concrete deck slab surfaces are
assigned the properties of the deck slab. Listed below are the different components and the
attributes that must be assigned:

e Girders

0 Beam elements

o0 Geometric cross-section

o0 Concrete material properties, f’c = 8 ksi in this example
e Intermediate Diaphragms

o0 Beam elements

0 Geometric cross-section

o Concrete material properties, f’c = 3.5 ksi in this example
e Pier Diaphragms

0 Beam elements

0 Geometric cross-section

o Concrete material properties, f’c = 3.5 ksi in this example
e Concrete Deck Slab

0 Thick shell elements

0 Deck slab thickness

o0 Concrete material properties, f’c = 4 ksi in this example
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o0 Future wearing surface and barrier loading

9.1.2.2.8 Step 2h — Run Analysis and Verify Results using Simplified Methods

After running the analysis moments and reactions can be calculated using published equations
for uniform loads. For a three equal span continuous beam with uniform loading, the reaction at
the end support is 0.4wl and the reaction at the interior support is 1.1wl. Using tributary areas,
an average span of 114 ft-7 inches, and the FWS load of 0.028 ksf the approximate reactions at
the supports are listed below:

Girder | Girder | Girder | Girder Total
Linel | Line2 | Line3 | Line4
Abutment 1 13.07 14.76 14.76 13.07 55.66
Pier 1 35.95 | 4059 | 4059 | 35.95 | 153.08
Pier 2 35.95 | 4059 | 4059 | 35.95 | 153.08
Abutment 2 | 13.07 14.76 14.76 13.07 55.66
Total | 417.48

Location

Compare these to the reactions from the PEB Model:

Girder | Girder | Girder | Girder Total
Linel | Line2 | Line3 | Line4
Abutment1 | 12.16 15.63 15.63 12.16 55.58
Pier 1 3353 | 43.05 | 43.05 | 33.53 | 153.16
Pier 2 33.53 | 43.05 | 43.05 | 33.53 | 153.16
Abutment2 | 12.16 15.63 15.63 12.16 55.58
Total | 417.48

Location

The reactions are very similar, verifying that the model is providing accurate results.
Additionally, for uniform loads applied to the entire structure, the total applied load applied can
be calculated and should equal the sum of the reactions from the analysis model.

Check reactions for FWS load versus applied load:

Weight of FWS = 0.028 ksf

Area over which FWS applied = 43 ft-4% inches x 343 ft-9 inches = 14910.16 ft?
Total Weight of FWS = 0.028 ksf x 14910.16 ft? = 417.48 k

The total applied FWS load is equal to the sum of the reactions from the model. Additionally,
since the structure is symmetric the reactions should also be symmetric. The reactions are
symmetric as expected.

9.1.2.2.9 Step 2i — Extract Required Results from Analysis Software
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Since the results from the analysis appear reasonable, the results of interest can be extracted and
input into a spreadsheet for further analysis or used within the analysis and design software. The
results of interest are moments, shears, and deflections in the girders. For a PEB model, the
moment due to composite dead load and live load in the girder is not just the moment directly
from the beam element. Due to the multiple elements that make up the composite section and
eccentricity of the beam elements (plate and eccentric beam), the actual moment in the
composite design girder is equal to the moment at the center of gravity of the beam element plus
the moment in the deck shell elements and the axial force couple between the deck shell
elements and girder beam element. Alternatively, if the analysis software includes a numerical
integration utility, the utility could be used to integrate the stresses from the shell elements and
the forces/moments in the girder to determine the design moment. Example calculations are
shown in Section 9.1.2.3.3.

9.1.2.3 Step 3 — Create Live Load Model
This model uses the same geometry as the model created in Step 2.
9.1.2.3.1 Step 3a — Determine Optimized Live Load

The analysis software may have utilities that help in the determination of optimum live load
placement in order to produce extreme effects at chosen design cross-sections. For this example,
the software used automatically generates the influence surfaces and then determines the load
placement required for extreme effects. In the absence of such utilities, influence line/surfaces
can be generated using classical analysis methods.

9.1.2.3.2 Step 3b — Run Analysis and Verify Results using Simplified Methods

After the optimized loadings for each location of interest have been determined, the analysis can
be performed. As an example check, the results are verified by summing the reactions and
comparing to the total applied load. A sample load case in which two HL-93 Design Trucks are
applied was chosen, each truck weighs 72 k resulting in a total applied load of 144 k.

Reactions from Model:

Girder | Girder | Girder | Girder Total
Linel | Line2 | Line3 | Line4
Abutment1 | 0.315 0.671 0.928 1.486 3.408
Pier 1 -1.557 | -3.878 | -6.592 | -8.579 | -20.606
Pier 2 3.049 | 18.721 | 43.299 | 50.852 | 115.922
Abutment2 | -1.030 | 8.875 | 14.559 | 22.880 | 45.284
Total 144.000

Location

The total applied load and the sum of the reactions are equal. The reactions along girder line 4
are greater than those along the other girder lines; this is expected since this load case was to
determine the maximum moment in the exterior girder. The reactions are not expected to be
symmetric as the loading is not symmetric. Therefore, the model appears to be providing
reasonable results.
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9.1.2.3.3 Step 3c — Extract Required Results from Analysis Software

The results needed to create the moment, shear, and deflection diagrams can be extracted from
the model once the results have been verified. The design moments in the girder can be
calculated by summing the moment in the beam element and the axial force in the beam element
times the eccentricity. If the moment in the deck shell elements is assumed to be negligible, and
there is no net axial forces on the cross-section, the composite design moment can be
approximated by adding the moment in the girder beam element to the moment due to the couple
between the axial force in the girder beam element and the axial force in the deck as described in
Section 8.2.1 (sample calculation shown below). The deck eccentricity is determined in Section
9.1.2.2.2.

Shown in Figure 161, are the force effects at the four-tenths point of the center span in the
exterior girder for the future wearing surface loading. The design moment in the girder is
calculated by summing the moments about the centroid of the deck slab.

M =—[M, + F, X eyaer | = —[—48.0 k — ft + 7.4k x (77.25 in — 36.375 in)/12]

= 7321k — ft
77.250 in.
Deck Centroid - SFygeck = 7.59 k
36.375 in.
8 —— Girder Centroid — Fx=7.40 k
My = -48.0 k-ft

Figure 161. lllustration. PEB moment calculation.

Alternatively, this calculation can be performed as described in Section 8.2.1 manually, by
integrating the shell stresses on the cross-section and summing the results. Some FEA software
provides a utility that will integrate stresses over a cross-section automatically. Note that at the
nodes the forces will appear to have a discontinuity due to the node also behaving as a shear
connector. The moment calculated from the utility in this case is 73.68 k-ft, which is slightly
different from values above due to rounding.
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At this point, depending on the Owner’s policy, it may be necessary to repeat Steps 2 and 3 for a
simply supported girder bridge. This step was taken in this example. All the steps illustrated
above remain the same, except that only a single span is analyzed. The continuous and simple
span results were then enveloped.

9.1.2.4 Step 4 — Combine Analysis Results

Once the results of interest, in this case moments, shears, and deflections, have been extracted
from the analysis software, they are combined into groups of non-composite dead loads,
composite dead loads, and live loads.

The HL-93 Design Load consists of the maximum of the design truck or design tandem
amplified by the dynamic load allowance plus the design lane load. The analysis software utility
develops the critical vehicle and lane loadings separately, therefore the results must be
combined. Similarly, for negative moment between dead load inflection points, the design truck
train amplified by the dynamic load allowance and design lane must be combined. The analysis
program includes the 0.9 factor for negative moment between dead load inflection points as well
as the multiple presence factor. With some software, these steps will need to be done manually

Once the moments, shears, and deflections have been combined into appropriate groups using
the results from the various analyses, graphs can be created to show the moment diagram and
deflected shape. In this example, the envelope of maximum moments, shears, and deflections
from either the simple or continuous girder models for composite dead load and live load are
used. The analysis results are combined using the same groups as for the 1D analysis: non-
composite dead loads (girder self-weight, diaphragms, SIP forms, haunches, and concrete deck
slab), composite dead loads (barrier and FWS), and maximum and minimum live loads including
dynamic load allowance. The moment, shear, and deflection diagrams from the PEB analysis are
shown in Figures 162 through 167.
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Figure 162. Graph. 2D moment diagram and live load envelope for interior girder.
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Figure 163. Graph. 2D shear diagram and live load envelope for interior girder.
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Figure 164. Graph. 2D deflection diagram for interior girder.
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Figure 165. Graph. 2D moment diagram and live load envelope for exterior girder.
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Figure 166. Graph. 2D shear diagram and live load envelope for exterior girder.
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Figure 167. Graph. 2D deflection diagram for exterior girder.
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9.1.3 Finite Element Model and Analysis

A full 3D FEA is more involved than the previous two methods presented. In a 3D FEA, the
structure depth including supports is modeled explicitly unlike the PEB analysis where all
components are modeled in the same plane and then are offset to the correct physical location.
The stiffness of the girders and diaphragms are used to distribute non-composite loads and the
stiffness of the girders, diaphragms, and deck slab are used to distribute composite dead loads
and live loads. The approximate distribution factors in AASHTO LRFD Atrticle 4.6.2.2 are not
used. Similarly to the previous sections, a minimum of three separate models are required for the

analysis.

The following steps are used to determine the dead and live load bending moments, shears, and

deflections:

1. Create non-composite dead load model.

a.

Qo

f.
g.
h.

Define geometry for girders and intermediate diaphragms. Flanges of girders and
diaphragms are modeled with beam elements, the girder webs with surface
elements. Further guidance on modeling these members and discretizing them
into an appropriate number of elements is provided in Section 3.7.

Define section properties for those components modeled with beam elements and
thicknesses of those with shell elements.

Define material properties for girders and intermediate diaphragms.

Define support conditions.

Define loads applied to the non-composite structure.

i.  For the members defined in the model, the girders and intermediate
diaphragms, automatic dead load application can be used if mass density is
assigned through material properties. Otherwise, concentrated or
distributed loads that are statically equivalent to the weight of the
members can be used.

ii.  The other non-composite dead loads (SIP forms, haunches, deck slab) are
applied as uniform line loads to each girder.

Define non-composite load cases.

Ensure correct attributes are assigned (geometric and material properties, support
conditions, and non-composite dead loads) to appropriate components.

Run analysis; verify analysis results using simplified methods.

Extract required results from analysis software.

2. Create model for composite dead loads (will be a continuation of the model created in
Step 1).

a.

0T

Define geometry for concrete deck slab. Similarly to Section 9.1.2, the concrete
deck slab is modeled with surface elements.
Define thickness of concrete deck slab.
Define material properties for concrete deck slab.
Define support conditions.
Define loads applied to the composite structure.
I. The FWS is defined as a uniform load distributed over an area.
ii. The weight of the barrier is defined as a uniform line load.
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f. Define load cases for composite dead loads.

g. Ensure correct attributes are assigned (geometric and material properties, support
conditions, and loading) to appropriate components.

h. Run analysis; verify analysis results using simplified methods.

I. Extract required results from analysis software.

3. Create model for live loads (continuation of the model created in Step 2).

a. Determine optimized loading. The analysis software may have utilities that help
in the determination. Influence surfaces can be developed to aid in loading
generation.

b. Run analysis with optimized loadings and verify results.

c. Extract required results from analysis software

4. Combine analysis results extracted in Steps 1i, 2i, and 3c.

9.1.3.1 Step 1 - Develop Non-Composite Model
9.1.3.1.1 Step la - Define Geometry for Girders and Diaphragms

The girder geometry is defined by creating surface elements along the girder centerline. Four
elements in cross-section are used to represent the girder webs while beam elements are used to
represent the girder flanges at the top and bottom of the web. When defining the girders, nodes
should be defined at the locations of the intermediate diaphragms to facilitate connections. The
intermediate diaphragms are defined by beam elements connecting the points at midspan of each
girder.

In a prestressed concrete girder bridge, the flanges represent a significant portion of the total
girder depth; the vertical location of the supports varies depending on how the web is modeled.
In this example, the shell elements defining the web are modeled to extend the full depth of the
section, as recommended in Section 3.6.2.1 of the manual, and illustrated in Figure 168.
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N\
Figure 168. Illustration. Modeling of web depth.

The girder web surface elements utilize thick shells, a type of surface element capable of
capturing shear deformations and membrane forces further discussed in Section 3.6.1.3. Thick
beam elements, a beam element capable of capturing shear deformations, are used for the girder
flanges and intermediate diaphragms and further discussed in Section 3.6.1.2.

Diaphragms could be modeled with surface elements similarly to the girder webs, but doing so
significantly increases preprocessing and post-processing time for negligible improvements in
accuracy. For preprocessing it requires consideration of matching node location for members
with different height so that elements can be connected, while post-processing requires
additional effort to extract force effects. Figure 169 shows an isometric view of the non-
composite model.
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Intermediate
Diaphragm (beam)

Web Elements
(surface)

Top Flange (beam)

Bottom Flange (beam)

Figure 169. Illustration. Non-composite 3D FEA model.

9.1.3.1.2 Step 1b — Define Cross-Section Properties

The cross-section properties for the girder top and bottom flanges must be defined and the
element located such that the section properties of the entire girder cross-section are correct.
Figure 170 shows the dimensions for the top and bottom flanges; the section properties and
centroid location were determined and are listed in Table 24. Because the flange beam elements
are connected at the top and bottom of the web, offsets shown in the table are used to locate the
flange beam elements at the centroid of each flange so they are at the correct height relative to
the girder web.

I ' I
Figure 170. lllustration. Girder flanges for 3D FEA model.
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Table 24. Girder flange section properties.

Section Property Top Flange | Bottom Flange

Cross-section Area (A) (ft?) 1.736 1.813
Strong Axis Moment of Inertia (lyy) (ft*) 0.075 0.230
Weak Axis Moment of Inertia (1) (ft*) 1.848 0.976
Torsion Constant (Jxx) (ft*) 0.139 0.195

Shear Area in y direction (Avy) (ft?) 0.084 0.039
Shear Area in z direction (Avz) (ft?) 1.544 1.615
Offset in z direction (Rz) (ft) 0.323 -0.568

The intermediate diaphragms are 10 inches wide by 46 inches deep. In this example the
diaphragm is connected at the top flange of the girder and offset such that it is in the correct
location, but the member could be modeled at the correct location and attached via constraint
equations or rigid links. The offset is equal to the distance between the top of the modeled girder
web and the centroid of the diaphragm. The section properties for these intermediate diaphragms
(which are modeled with beam elements) are the same as the previous section, except for the
eccentricity (offset), which is now offset from the top of the web rather than centroid of the
girder, a distance of 2.3125 feet.

The only geometric property needed for the girder web is the thickness, 8 inches.
9.1.3.1.3 Step 1c — Define Material Properties

Similar to the girder section properties, the material properties can be calculated by hand and
input into the analysis software or defined using material properties already included in the
software library. If the latter is used, the properties should be verified to conform with design
specifications. This example utilizes material properties shown in Table 25. Based on the
available information, the girders utilize concrete with a 28-day compressive strength of 8 ksi
while the intermediate diaphragms utilize concrete with a 28-day compressive strength of 3.5 ksi.

Table 25. Concrete material properties.

: Girder Concrete Int. Diaphragm
Material Property (8 ksi) Concrete (3.5 ksi)
Modulus of Elasticity (ksf) 765,216 490,307
Poisson’s Ratio 0.2 0.2
Unit Weight (k/ft%) 0.153 0.150
Thermal Expansion
Coefficient (Ft/ft/°F) 6.0E-6 6.0E-6

9.1.3.1.4 Step 1d — Define Support Conditions

The same support conditions as the 2D model are used in this model, but are located at the actual

elevation along the bottom flange.
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9.1.3.1.5 Step le — Define Non-Composite Loads

Self-weight of members defined in the model, the girders and intermediate diaphragms, is
applied using a body force.

The other non-composite dead loads (SIP forms, haunches, and deck slab) are applied as uniform
line loads to each girder. The values previously calculated in Sections 9.1.1.1.2 through
9.1.1.1.4 for the SIP form weight, haunch weight, and deck slab weight are applied to the interior
and exterior girders as uniformly distributed loads.

9.1.3.1.6 Step 1f — Define Load Cases

The next step is to define load cases. Since all loads in this model are non-composite they are
combined into a single load case. If the results of this example were used for design, the loads
could still be combined into a single load case because they carry the same load factors. In
Section 9.1.3.1.8, the results are verified using a simplified method. To facilitate checking of the
model it may be desirable to create a separate load case containing only one of the loads (e.g.
girder self-weight or stay-in-place forms).

9.1.3.1.7 Step 1g — Ensure Correct Attributes Are Assigned to Components
The attributes assigned to each of the different components as shown below:

e Girders
o Web
= Thick Shell surface elements
= Geometric surface cross-section
= Concrete material properties, in this example, f’c = 8 ksi
= Body force acceleration (gravity)
o Flanges
= Thick beam elements
Flange cross-sections
Concrete material properties, in this example, f’c = 8 ksi
Body force acceleration (gravity)
Other non-composite loads (to top flange only)
e Intermediate Diaphragms
0 Thick beam elements
Geometric cross-section
Concrete material properties, in this example, f’c = 3.5 ksi
Body force acceleration (gravity)

O OO

9.1.3.1.8 Step 1h — Run Analysis and Verify Results

The next step is to run the analysis. The analysis results can be verified using a variety of
simplified methods. Using the equations shown in Section 9.1.2.1.8 to calculate the midspan
moment and the weight per linear foot from Section 9.1.1.1.1, the moment is 1789.2 k-ft.
Determining the moment at midspan, by hand, from the 3D analysis model is more involved due
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to using multiple beam and shell elements. The required element nodal forces and moments
required to determine the design moment in the girder are shown in Figure 171. The shell
element nodal “forces,” indicated as Ny in Figure 171, are equal to the stress at the node
multiplied by the element thickness. A sample moment calculation is shown below Figure 171.

f1.75in

67.875 in.

53.81251n.

35.8751n.

| 17.937510n.

6.8125in.

0in.

Top of Web
Top Flange Centroid

Node at V2 Web Depth

Node at /2 Web Depth

Node at %2 Web Depth

Bottom Flange Centroid
Bottom of Web

-—— N, = -98.389 kit
-+—F,,=-225002 k
M,; = -3.54449 k-t

— MNypas = -47.0619 kit
N-,rbu 25 = -49.0812 k/ft

—— N5 = 2.09229 k/ft
Mypos = 0.0824927 kit

——® N5 = 51.2594 kit
Nybtl 75 — 49 2392 k/ft

Fo = 218577k
Mys = -11.2596 k-ft

—— = N, = 100.576 kift

— -

Figure 171. lllustration. Element force effects in non-composite concrete girder
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Nodal Forces (from analysis software):
Shell Elements (4 Elements through web depth):

Nyo = -98.389 k/ft (upper node of top shell element)
Nywo2s = -47.062 k/ft (lower node of top shell element)
Nybo2s = -49.081 k/ft (upper node of second shell element)
Nywoso = 2.092 k/ft (lower node of second shell element)
Nyboso = 0.082 k/ft (upper node of third shell element)
Nywo7s = 51.259 k/ft (lower node of third shell element)
Nybo7s = 49.239 k/ft (upper node of bottom shell element)
Nyir = 100.576 k/ft (lower node of bottom shell element)
Beam Elements
Fxt = -225.092 k (axial force in top flange beam element)
Myt = -3.544 k-ft (bending moment in top flange beam element)
Fxo = 218577k (axial force in bottom flange beam element)
Mypb = -11.260 k-ft (bending moment in bottom flange beam element)

Nodal Force Lever Arms from Bottom of Web:

Eyo = 71.75 inches
Ext = 67.875 inches
Eyoio2s = 53.8125 inches
Eybitoso = 35.875 inches
Eyoo.7s = 17.9375 inches
Exb = 6.8125 inches
Ey1 = 0inches

Web Element height:
he = 17.9375 inches

Sum Moments about Bottom of Web:
M = -(Nyo x he/2 x Eyo + Fxt X Ext + Myt + (Nyt0.25 + Nyb0.25)/2 X he X Eybrto.25 +
(Nyto.50
+ Nyb050)/2 X he X Eybroso + (Nyt0.75 + Nyb0.75)/2 X he X Eybro.7s + Fxo X Exp +
Myb + Ny1 X he/2 X Ey1)
= -(-98.389k/ft x (17.9375inches/2)/(12inches/ft) x 71.75inches + -225.092k x
67.875inches + -3.544 k-ft x 12inches/ft + (-47.062k/ft + -49.081k/ft)/2 x
17.9375inches/(12inches/ft) x 53.8125inches + (2.092k/ft + 0.082k/ft)/2 x
17.9375inches/(12inches/ft) x 35.875inches + (51.259k/ft + 49.239k/ft)/2 x
17.9375inches/(12inches/ft) x 17.9375incehs + 218.577k x 6.8125inches + -
11.260k-ft x 12incehs/ft + 100.576k/ft x (17.9375inches/2)/(12inches/ft) x
Oinches)
= 21704.05 k-inches = 1808.67 k-ft
.. OK, Moment from 3D model is within 1 percent of calculated value using
equation. Model is providing reasonable results. (Note: If more elements were used,
the difference would be even smaller). The moment from the software’s internal
numerical integration utility is 1808.53 k-ft.
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Furthermore, axial loads are summed to verify there is no net axial force on the section.

Sum Axial Loads:

P = -(Nyo X he/2 + Fxt + (Nyt0.25 + Nyb0.25)/2 X he + (Nyt0.50 + Nyb0.50)/2 X he + (Nyt0.75

+ Nybo.75)/2 X he + Fxb + Ny1 X he/2)

-(-98.389k/ft x (17.9375inches/2)/(12inches/ft) + -225.092k + (-47.0619k/ft + -
49.0812k/ft)/2 x 17.9375inches/(12inches/ft) + (2.09229k/ft + 0.0824927k/ft)/2
x 17.9375inches/(12inches/ft) + (51.2594k/ft + 49.2392k/ft)/2 x
17.9375inches/(12inches/ft) x + 218.577k + 100.576k/ft x
(17.9375inches/2)/(12inches/ft))

4.88 k

.. OK, Net axial force from 3D is approximately zero. It is expected that due to the

3D nature of the model that this net axial force should be small (for straight

bridges), but nonzero. This force arises when behavior of the girders, which do not

precisely conform to typical idealized assumptions (where girders act
independently), is captured.

Check reactions due to stay-in-place forms. The weight per linear foot of girder for the stay-in-
place forms is 0.17 k/ft for the interior girders and 0.086 k/ft for the exterior girders.

L=113.25ft
R =2 x (0.17 k/ft + 0.086 k/ft) x 113.25 ft = 57.984 k

Reactions from Model:

Location G_i rder G.irder G_i rder G_i rder Total
Line 1 Line 2 Line 3 Line 4
Left Support 6.003 8.493 8.493 6.003 28.992
Right Support 6.001 8.495 8.495 6.001 28.992
Total 57.984
.. OK, model is providing reasonable results

9.1.3.1.9 Step li— Extract Required Results from Analysis Software

After verifying that the results from the analysis are reasonable, the results of interest can be
extracted and input into a spreadsheet for further use. The analysis results required are typically
moments and shears which are not readily available due to using multiple beam and/or shell
elements. The moments can be determined as described in Section 8.2.1 and shown above, by
integrating the shell stresses on the cross-section and summing the results. Some FEA software
provides a utility that will integrate stresses over a cross-section automatically. Note that at the
nodes where the deck is connected the forces will appear to have a discontinuity due to the node
also behaving as a shear connector.

9.1.3.2 Step 2 — Create Composite Dead Load Model
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Step 2 is a continuation of the model created in Step 1 above. As the girders are made composite
and become continuous over piers, the span lengths change from 113 ft-3 inches between
centerline of bearings for all three simple spans in the non-composite model to 114 ft-3 inches
for Spans 1 and 3 and 115 ft-3 inches between centerline of abutments and piers for Span 2 in the
continuous composite model.

9.1.3.2.1 Step 2a — Create Geometry for Girders, Diaphragms, and Deck Slab

Since critical force effects are desired at the tenth-points, nodes should be provided at these
locations. As with the PEB model, even though the intermediate diaphragms are 6 inches away
from midspan of Spans 1 and 3, modeling them at the tenth-point midspan node should not
noticeably affect accuracy of results (Span 1 is shown in Figure 172):

- = = T — P —— = S o S Y
..........................................

___________

T T T Gehws=sr T T T T 7T T X | 5@ 11.425° =57.125" b
T T \L 1

Figure 172. lllustration. Surface definitions for Span 1 of composite model.

The deck slab surface elements are defined using the points along the top edges of the previously
defined girder webs. The slab geometry in the 3D finite element analysis is similar to that shown
in Section 9.1.2.2.1 for the PEB analysis. Thick shell elements are used to model the deck slab.
Elements that do not include through-thickness shear deformation can be used; the decrease in
accuracy is not significant.

9.13.2.2 Step 2b — Define Cross-Sections for Girders, Diaphragms, and Concrete Deck
Slab

The pier diaphragms are 30 inches wide and approximately 7 ft-2%4 inches deep and are
connected to the concrete deck slab. The abutment diaphragms are 48 inches wide and
approximately 6 ft-6 inches deep and are connected to the concrete deck slab. These diaphragms
are connected to the concrete slab locations rather than at the centroid of girders for convenience,
as no new nodes or lines are required. The cross-section properties for all diaphragms are shown
in Table 26. Similar to Section 9.1.2.2.2, vertical offsets are made as necessary to correctly
locate members relative to the centroid of the girder web. The offsets are different than those in
the 2D example as components are connected at different points in space (for example, the deck
sits at the top of the girder in the 3D model, instead of at the girder centroid).

Table 26. Abutment, intermediate, and pier diaphragm section properties.
Section Property Abutment | Intermediate | Pier
Cross-section Area (A) (ft?) 26.00 3.19 17.98
Strong Axis Moment of Inertia (lyy) (ft*) 91.54 3.91 77.49
Weak Axis Moment of Inertia (Iz) (ft*) 34.67 0.19 9.36
Torsion Constant (Jxx) (ft%) 85.55 0.64 29.26
Shear Area in y direction (Avy) (ft?) 21.67 2.66 14.98
Shear Area in z direction (Avz) (ft?) 21.67 2.66 14.98
Offset in z direction (Rz) (ft) 2.77 2.31 3.14
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The concrete deck slab is modeled with the 8 inches design thickness to neglect stiffness
contributions of the integral wearing surface. An eccentricity of 0.781 ft, which includes
haunches, is applied.

9.1.3.2.3 Step 2c — Define Material Properties for Girders, Diaphragms, and Deck Slabs

The material properties for the 4 ksi concrete used in the deck slab are added in the composite
model and are shown in Table 27. The unit weight is modified to account for the % inch integral
wearing surface that is not included in the deck thickness.

Table 27. Concrete material properties.

Material Property Slab Concrete (4 ksi)
Modulus of Elasticity (ksf) 524,757
Poisson’s Ratio 0.2
Unit Weight (k/ft%) 0.159
Thermal Expansion
Coefficient (Ft/ft/°F) 6.0E-6

9.1.3.2.4 Step 2d — Define Support Conditions

The supports conditions used in the 3D composite dead load model are the same as those used in
the 2D composite dead load model.

9.1.3.2.5 Step 2e — Define Loads Applied to Composite Structure

The FWS load is defined as a uniform load distributed over the bridge width. The magnitude of
the FWS load is reduced from 0.030 ksf to 0.028 ksf to account for the fact that the FWS is being
spread over the full bridge width instead of just between barriers.

The weight of the barrier, determined above in Section 9.1.1.1.6, is applied as a uniform line
load.

9.1.3.2.6 Step 2f — Define Load Cases for Composite Dead Loads

Define load cases for the future wearing surface and barrier dead loads. Defining separate load
cases is important for composite dead loads; in the design process, wearing surface loads and
component dead loads have different load factors.

9.1.3.2.7 Step 2g — Ensure Correct Attributes Are Assigned to Components
The attributes assigned to each of the different components as shown below:

e Girders
o Web
= Thick shell surface elements
= Geometric surface cross-section
= Concrete material properties, in this example, f’c = 8 ksi
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o Flanges
= Thick beam elements
= Flange cross-section properties
= Concrete material properties, in this example, f’c = 8 ksi
e Abutment, Intermediate, and Pier Diaphragms
0 Thick beam elements
0 Geometric cross-section properties
o0 Concrete material properties, in this example, f’c = 3.5 ksi
e Concrete Deck Slab
0 Thick shell surface elements
0 Geometric surface cross-section
o0 Concrete material properties, in this example, f’c = 4 ksi
0 FWS and barrier loading

9.1.3.2.8 Step 2h — Run Analysis and Verify Results Using Simplified Methods

The next step is to run the analysis. The analysis results can be verified using a variety of
simplified methods. For continuous span bridges, moments and reactions can be calculated
using textbook equations for uniform loads. Additionally, for uniform loads applied to the entire
structure, the total applied load applied can be calculated and should equal the sum of the
reactions from the analysis model.

Check reactions for FWS load versus applied load:

Weight of FWS = 0.028 ksf

Area over which FWS applied = 43 ft-4% inches x 343 ft-9 inches = 14910.16 ft?
Total Weight of FWS = 0.028 ksf x 14910.16 ft? = 417.48 k

Reactions from Model:

Location Line 1 Line 2 Line 3 Line 4 Total
(B1-B5-B9) | (B2-B6-B10) | (B3-B7-B11) | (B4-B8-B12)
Abutment 1 12.744 14.976 14.976 12.744 55.440
Pier 1 32.850 43.800 43.800 32.850 153.300
Pier 2 32.849 43.799 43.805 32.847 153.300
Abutment 2 12.744 14.976 14.976 12.744 55.441
Total 417.481

The calculated total applied load is equal to the sum of the reactions from the model.
Additionally, the reactions are approximately symmetric as expected.

The next check of the results will be verifying the moment at the four-tenths point of Span 1 due
to the FWS loading. Determining the moment by hand from the 3D analysis model is more
involved due to using beam and shell elements. Shown in Figure 173, are the required element
nodal forces in the assumed effective width of the concrete deck slab for the exterior girder. The
total force in the deck slab is determined and shown in Figure 174. The shell element nodal
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“forces,” indicated as Nx and Ny in Figures 173 and 174, are equal to the stress at the node
multiplied by the element thickness. A sample moment calculation is shown below Figure 174.

- Mas = -2 91897 Kt ——
i ! §
I V]
| -
N~
I— Myt = -2.92695 kit Y
g = Nee=-291434 KRk
I V]
o
| S
L _ Mg =-29403 K1t _ Y .
| > Bk LR T T ¢ Ext. Girder
g V]
I ©
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Mg =-281612 kKt &

- Mo =-27308 kit —)

Figure 173. lllustration. Deck slab element forces in composite concrete girder.

Unaveraged Element Nodal Force/Length (from analysis software):
Shell Elements:

Nxt1 = -2.919 k/ft (upper node of top shell element)

Nxb1 = -2.927 k/ft (lower node of top shell element)

Nxt2 = -2.914 k/ft (upper node of second shell element)

N xb2 = -2.950 k/ft (lower node of second shell element

Nxt3 = -2.937 k/ft (upper node of third shell element)

Nxb3 = -2.813 k/ft (lower node of third shell element)

N xta = -2.816 k/ft (upper node of bottom shell element)

N xb4 = -2.740 k/ft (lower node of bottom shell element)
Element Width

Wit = 1ft-5%inches (1/2 of 2 ft-10%2 inches)

Wibixze = 2 ft-10% inches

Wixbaxis = 2 ft-9% inches [Y2 of (2 ft-10% inches + 2 ft-9 inches)]

Wipsxa = 2 ft-2% inches [¥2 of (2 ft-9 inches + 1 ft-8%4 inches)]

Wxba = 0 ft-10% inches (%2 of 1 ft-8Y4 inches)
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Element Nodal Forces

Fxt1 = Nxa X Wxu =-2.919 k/ft x 1 ft-5% inches = -4.20 k
Fxoie = (Nxb1 + Nx2)/2 X Wipwxz = (-2.927k/ft + -2.914k/ft)/2 x 2 ft-10%
inches
= -840k
Fxb2ixta = (Nxbz + Nx3)/2 X Wixp2ixz = (-2.950k/ft + -2.937k/ft)/2 x 2 ft-9%
inches = -8.28k
Fxbaxta = (Nxb3 + Nxt4)/2 X Wixbaixta = (-2.813k/ft + -2.816k/ft)/2 x 2 ft-2%
inches = -6.25k
Fxba = Nxbs X Wxpa =-2.740 k/ft x 0 ft-10% inches
= -231k

Total Force Applied at Deck Slab Centroid = -29.41 k

f7.0in

71.751n.
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T dsssin
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l TR 4__‘ 17.9375in.
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Node at 74 Web Depth

Node at %2 Web Depth
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Bottom of Web
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Figure 174. Illustration. Element force effects in composite concrete girder.

Nodal Forces (from analysis software):

Shell Elements (4 Elements through web depth):

Nyo = -8.511 k/ft
Nywo2s = -2.756 k/ft
Nyboos = -2.882 k/ft
Nytoso = 2.747 k/ft
Nyboso = 2.587 k/ft
Nywo7s = 8.233 k/ft
Nybo7s = 8.051 k/ft
Ny1 = 13.709 k/ft

(upper node of top shell element)
(lower node of top shell element)
(upper node of second shell element)
(lower node of second shell element)
(upper node of third shell element)
(lower node of third shell element)
(upper node of bottom shell element)
(lower node of bottom shell element)
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Beam Elements

Fxt = -17.878k (axial force in top flange beam element)

Myt = -0.554 k-ft (bending moment in top flange beam element)

Fxb = 30974k (axial force in bottom flange beam element)

Myb = -1.500 k-ft (bending moment in bottom flange beam element)
Force in Deck Slab Elements

YFxdeck = -29.41 k
Nodal Force Lever Arms from Centroid of Deck Slab:

EDeck = 0inches

Eyo = 5.25inches

Ext = 9.125 inches

Eyoto2s = 23.1875 inches

Eyooso = 41.125 inches

Eyoro7s = 59.0625 inches

Exb = 70.125 inches

Ey1 = 77 inches
Element height:

he = 17.9375 inches
Sum Moments about Deck Slab Centroid:

M =  XFxdeck X Edeck + Nyo X he/2 X Eyo + Fxt X Ext + Myt + (Nyt0.25 + Nybo.25)/2
X he X Eybito.2s + (Nyto.50 + Nyb0.50)/2 X he X Eybitos0 + (Nyto.75 + Nybo.75)/2 %
he X Eybito.75 + Fxb X Exb + Myb + Ny1 X he/2 x Ey1

= -29.41k x Qinches + -8.51108k/ft x (17.9375inches/2)/(12inches/ft) x
5.25inches + -17.878k x 9.125inches + -0.554001 k-ft x 12inches/ft + (-
2.75592k/ft + -2.88155k/ft)/2 x 17.9375inches/(12inches/ft) x
23.1875inches + (2.74697k/ft + 2.58673k/ft)/2 x 17.9375
inches/(12inches/ft) x 41.125inches + (8.23321k/ft + 8.0511k/ft)/2 x
17.9375inches/(12inches/ft) x 59.0625inches + 30.9738k x 70.125inches
+-1.50001k-ft x 12inches/ft + 13.7086k/ft x
(17.9375inches/2)/(12inches/ft) x 77inches

= 3524.86 k-inches = 293.74 k-ft

Simple Calculation (assume that all three spans are of equal length)

Mmax = 0.08wL? (see case 39 of AISC Manual of Steel Construction, 13"
Edition)

W = 0.255 k/ft = 0.030 ksf [(11 ft-6 inches)/2 + 4 ft-5% inches — 1 ft-8Y4
inches)

L = 114 ft-7 inches = [(114 ft-3 inches + 115 ft-3 inches + 114 ft-3 inches)/3]

(average span length)

M max 0.08 x 0.255 k/ft x (114 ft-7 inches)?

267.84 k-ft
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.. OK, Moment from 3D model is within 9 percent of value calculated using
equation assuming equal span lengths. When a similar process is followed for
an interior girder, the result from the analysis software and AISC equations are
327.09 k-ft and 362.37 k-ft, respectively. Therefore, considering the total
moment between an interior and exterior girder, the difference is approximately
1.5 percent. This suggests better load sharing is occurring between girders than
assumed by the equation and that the model is providing reasonable results.
Furthermore, axial loads are summed to verify there is no net axial force on the section.

Sum Axial Forces:
P =  XFxdeck + Nyo X he/2 + Fxt + (Nyt0.25 + Nyb0.25)/2 X he + (Nyto.50 +
NybO.50)/2 X he + (Nyt0.75 + Nyb0.75)/2 X he + Fxb + Ny1 X he/2
= -29.41k + -8.511k/ft x (17.9375in/2)/(12in/ft) + -17.878k + (-2.756k/ft +
-2.882k/ft)/2 x 17.9375inches/(12inches/ft) + (2.747k/ft + 2.587k/ft)/2 x
17.9375inches/(12inches/ft) + (8.233k/ft + 8.051k/ft)/2 x
17.9375inches/(12inches/ft) + 30.974k + 13.709k/ft x
(17.9375inches/2)/(12inches/ft)
= -0.486 k
.. OK, Net axial force from 3D is approximately zero. It is expected that due
to the 3D nature of the model that this net axial force should be small (for
straight bridges), but nonzero. This force arises when behavior of the girders,
which do not precisely conform to typical idealized assumptions (where
girders act independently), is captured.

9.1.3.2.9 Step 2i — Extract Analysis Results

After verifying that the results from the analysis are reasonable, the results of interest can be
extracted and input into a spreadsheet for further analysis or used within the analysis and design
software. Refer to Section 9.1.3.1.9 for further discussion.

At this point, depending on the Owner’s policy, it may be necessary to repeat Steps 2 and 3 for a
simply supported girder bridge. This step was taken in this example. All the steps illustrated
above remain the same, except that only a single span is analyzed. The continuous and simple
span results were then enveloped.

9.1.3.3 Step 3 — Create Composite Live Load Model

This model uses the same geometry as the model created in Step 2. The deck slab thickness in
this model should be equal to the design thickness of 8 inches.

9.1.3.3.1 Step 3a — Determine Optimized Live Load

In this example, critical moments at tenth-points along all spans for the interior and exterior
girders (both positive and negative) about the transverse axis of the bridge are determined. Some
FEA software has utilities that aid in the generation of influence surfaces and optimized

loadings. In the absence of such utilities, influence lines/surfaces can be generated using
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classical analysis methods. It is always a good idea to at least spot check the optimized loadings
to make sure that they are reasonable. If the optimized loadings are reasonable, the analysis can
then be run.

Once the optimized loading for each location is found, a check of the critical loadings should be
performed to verify that the loadings are reasonable and make sense. As an example, the lane
(Figure 175) and truck (Figure 176) loadings shown below were obtained for the maximum
positive moment in an exterior girder at Pier 1 in this example. Loading Span 3 is exactly what
would be expected if one was trying to maximize the positive moment at Pier 1.

Figure 175. lllustration. Critical lane
loading.

Figure 176. lllustration. Critical truck
loading.

9.1.3.3.2 Step 3b — Run Analysis and Verify Results using Simplified Methods

After the optimized loadings for each location have been determined, the analysis can be
performed. The results can be verified using simplified methods. As an example, the results are
verified by summing the reactions and comparing to the total applied load for the loading shown
in Figure 176. Two HL-93 Design Trucks are applied in this model, each truck weighs 72 k
resulting in a total applied load of 144 k.

Reactions from Model:

Location Line 1 Line 2 Line 3 Line 4 Total
(B1-B5-B9) | (B2-B6-B10) | (B3-B7-B11) | (B4-B8-B12)
Abutment 1 0.218 0.647 1.018 1.519 3.40
Pier 1 -0.627 -4.200 -7.010 -8.875 -20.71
Pier 2 -0.648 21.777 43.410 49917 114.46
Abutment 2 0.136 8.650 14.903 23.167 46.86
Total 144.0

The total applied load and the sum of the reactions are equal. The reactions along girder line 4

are greater than those along the other girder lines; this is expected since this load case was to

determine the maximum moment in the exterior girder. The reactions are not expected to be
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symmetric as the loading is not symmetric. The model appears to be providing reasonable
results.

An additional check is made for the maximum positive moment in the first span. Because the
maximum positive moment will occur in the simply supported case the span will be fully loaded
with lane load. The truck will placed such that the centroid of the load group is the same distance
from one support as one of the loads is from the other. By inspection the design truck will
control over the design tandem. The maximum moment for a simply supported beam with a
113.25 ft span is determined as follows:

Reaction at support 1:

R1 = [(32 K)(113.25 ft — 44.96 ft)+(32 K)(113.25 ft — 58.96 ft)+(8 k)(113.25 ft — 72.96
ft)]/(113.25 ft) = 37.48 k

M max truck/iane = (37.48 k) (44.96 ft)+(5.48 k)(14 ft) = 1761.82 k-ft/lane
Mianenane = (0.64 k/ft)(58.96 ft)(113.25 ft — 58.96 ft)/2 =1024.30 k-ft/lane
MuL-93 = (1761.82 k-ft/lane)(1.33)+(1024.30 k-ft/lane) = 3367.71 k-ft/lane
Using distribution factors for an interior girder from Section 9.1.1.2.1:
MvLL = (3367.71 k-ft/lane)(0.91 lanes) = 3064.62 k-ft

From the analysis, the maximum positive live moment was determined to be 2367.89 k-ft. This
is within 1 percent of the value from the 1D model, but 29 percent in the 3D model. The
difference is accounted for by the fact that the distribution factors are a conservative estimate of
how many design lanes each girder will receive. This level of conservatism demonstrates the
advantage of refined analysis for design.

9.1.3.3.3 Step 3c — Extract Required Results from Analysis Model

After verifying that the results from the analysis are reasonable, the results of interest can be
extracted and input into a spreadsheet for further analysis or used within the analysis and design
software. Refer to Section 9.1.3.1.9 for further discussion. Similar, to Section 9.1.3.2.9 the
continuous and simple span results were enveloped.

9.1.3.4 Step 4 — Combine Analysis Results

Once the results of interest, in this case moments, shears, and deflections, have been extracted
from the analysis software, they are combined into groups of non-composite dead loads,
composite dead loads, and live loads.

Similar to Section 9.1.2.4 moment, shear, and deflection diagrams from the 3D finite element
analysis are shown in Figures 177 through 182.
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Figure 177. Graph. 3D moment diagram and live load envelope for interior girder.
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Figure 178. Graph. 3D shear diagram and live load envelope for interior girder.
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Figure 180. Graph. 3D moment diagram and live load envelope for exterior girder.
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Figure 181. Graph. 3D shear diagram and live load envelope for exterior girder.
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Figure 182. Graph. 3D deflection diagram for exterior girder.
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9.1.4 Comparison of 1D, 2D, and 3D Analysis Results

The results from the 1D, 2D, and 3D analyses are compared in the following sections for both
the interior and exterior girders. The 3D analysis is expected to provide the most accurate
results.

9.1.4.1 Interior Girder
9.1.4.1.1 Moment

The moment results are compared in Figure 183. The figure shows that the 1D non-composite
dead load moments are within 2 percent of the 3D non-composite dead load moments. The 1D
composite dead load moments are typically from 5-25 percent greater than 3D composite dead
load moments. The 1D live load moments are typically between 10-40 percent greater than the
3D live load moments.

The 2D non-composite dead load moments are within 2 percent of the 3D non-composite dead
load moments. The 2D composite dead load and live load moments are typically less than 5
percent, but up to 10 percent greater than the 3D composite dead load moments.

The 1D non-composite dead load moments are very nearly equal to corresponding 2D moments.
1D composite dead load moments are typically 5-20 percent greater than 2D composite dead
load moments. The 1D live load moments are typically 20-50 percent greater than 2D live load
moments.

Figure 184 compares the factored Strength I moments from the 1D, 2D, and 3D models. The 1D
model typically provides conservative design force effects when compared to the 2D and 3D
models.
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Figure 183. Graph. Comparison of moments for interior P/S concrete girder.
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Figure 184. Graph. Comparison of factored moments for interior P/S concrete girder.
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9.1.4.1.2 Shear

A comparison of shears is shown in Figure 185. With the exception of vales near midspan, the
1D non-composite dead load shears are within 2 percent of the 3D shears. Due to the relatively
small magnitude, the 1D composite dead load shears are different by 0-50 percent as compared
to corresponding 3D values. The 1D live load shears are mostly within 25-30 percent of the 3D
values, but vary inconsistently along the span.

The 2D dead load non-composite shears are mostly within 1 percent, but up to 5 percent smaller
than 3D shears. Composite dead load shears are typically 10 percent smaller in the 2D case. The
2D live load shears are typically smaller than those from the 3D analysis, but vary significantly
in magnitude along the span.

1D and 2D non-composite dead load shears are mostly within 2 percent but are approximately 6
percent greater in the 1D case at supports. Composite dead load shears are typically higher in 1D
analysis, particularly at supports where they are 60-75 percent larger. The ratio of live load
shears varies inconsistently along the span, but the 2D results are consistently enveloped by
those from 1D analysis.

Figure 186 compares the factored Strength | shears for the 1D, 2D, and 3D models. Similar to
the moments, the 1D model provides more conservative design forces when compared to the 2D
and 3D models.
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Figure 185. Graph. Comparison of shears for interior P/S concrete girder.
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Figure 186. Graph. Comparison of factored shears for interior P/S concrete girder.
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9.1.4.1.3 Deflection

A comparison of deflections is shown in Figure 187. The 1D non-composite dead load
deflections are within 2 percent of the 3D non-composite dead load deflections. The 1D
composite dead load deflections are typically 20-22 percent greater than those from the 3D
analysis. The 1D live load deflections are typically 10 percent higher than the live load
deflections from the 3D analysis.

The 2D dead load (both non-composite and composite) deflections are 2-5 percent higher than
the 3D deflections. The live load deflections are generally 2 percent smaller than the 3D
deflections.

1D non-composite dead load deflections are typically 4 percent smaller than 2D deflections,
while composite dead load deflections are 15-17 percent greater. 1D live load deflections are 12-
14 percent greater than those from the 2D analysis.
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Figure 187. Graph. Comparison of deflections for interior P/S concrete girder.
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9.1.4.2 Exterior Girder
9.1.4.2.1 Moment

Moments are compared in Figure 188. The non-composite dead load moments from the 1D
analysis are approximately 3-5 percent less than the non-composite dead load moments from the
3D analysis. The 1D composite dead load moments are between 5-20 percent lower than the
composite dead load moments from the 3D analysis. Similarly to the interior girder, the 1D live
load moments are typically 10-40 percent greater than those from the 3D analysis.

The non-composite dead load moments are about 2 percent lower for the 2D analysis than the 3D
analysis. The composite dead load moments from the 2D analysis are typically within 5 percent,
but up to 10 percent smaller than 3D moments. The 2D positive live load moment is typically 5
percent less than the 3D positive live load moment while the 2D negative live load moment is
typically 5-10 percent higher than the 3D negative live load moment.

1D non-composite dead load moments are within 3 percent of the 2D moments. Composite dead
load moments from the 1D analysis are typically 15-20 percent lower than 2D composite dead
load moments. Live load moments from 1D analysis are typically 20-50 percent greater than 2D
live load moments.

Figure 189 compares the factored Strength | moments from the 1D, 2D, and 3D models. The 1D
model typically provides conservative design force effects when compared to the 2D and 3D
models.
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Figure 188. Graph. Comparison of moments for exterior P/S concrete girder.
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Figure 189. Graph. Comparison of factored moments for exterior P/S concrete girder.
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9.1.4.2.2 Shear

Shears are compared in Figure 190. The shears due to non-composite dead loads are
approximately 5 percent lower for the 1D analysis than for the 3D analysis and approximately
20-30 percent lower for the composite dead loads. The 1D maximum positive live load shears
are mostly within 25 percent of corresponding 3D values, but are as much as 80 percent different
in some cases. The ratio of minimum live load shears (maximum negative shears) are
inconsistently related in terms of magnitude, but 1D results envelope those from the 3D analysis.

The 2D non-composite dead load shears are typically 0-5 percent lower than those from 3D
analysis, and composite dead load shears are mostly 10 percent lower. The 2D minimum live
load shears are typically 10 percent lower than corresponding 3D shears while the 2D maximum
live load shears are typically considerably smaller and are enveloped by the 3D shears.

The 1D non-composite dead load shears are typically within 5 percent of those from the 2D
analysis. Composite dead load shears are typically 20-30 percent smaller in the 1D case, but are
larger in a few cases where values are small near midspan. 1D live load shears envelope the 2D
results, and are typically greater by approximately 35 percent at supports.

Figure 191 compares the factored Strength | shears for the 1D, 2D, and 3D models. Similar to
the moments, the 1D model provides more conservative design forces when compared to the 2D
and 3D models.
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Figure 190. Graph. Comparison of shears for exterior P/S concrete girder.
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Figure 191. Graph. Comparison of factored shears for exterior P/S concrete girder.
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9.1.4.2.3 Deflection

Deflections are compared in Figure 192. The deflections due to non-composite dead loads are
approximately 3 percent lower for the 1D analysis than for the 3D analysis and approximately 10
percent lower for the composite dead loads. The 1D live load deflections are approximately 5
percent lower than the 3D deflections.

The deflections from the 2D non-composite dead load analysis exceed the 3D non-composite
dead load deflections by less than 3 percent. The 2D composite dead load deflections are
typically 3 percent lower than the 3D deflections. The live load deflections from the 2D analysis
are generally 5 percent lower than those from the 3D analysis.

The 1D non-composite dead load deflections are typically 6 percent smaller than those from the
2D analysis, and 7-10 percent smaller for the composite dead load case. The 1D live load
deflections are approximately equal to those from the 2D analysis.
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Figure 192. Graph. Comparison of deflections for exterior P/S concrete girder.
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9.1.4.3 Conclusions

The 1D line girder analysis results in non-composite dead load moments that are typically within
5 percent of corresponding moments from 3D analysis for both interior and exterior girders. For
the composite case the interior girder moments in the 1D analysis are typically 20 percent higher
than 3D results, while the exterior girder moments are 20 percent lower. The exception is with
midspan moments, where 1D results for the interior and exterior girders closely match those
from 3D analysis. As would be expected, this suggests that the assumption of equal load sharing
between interior and exterior girders in 1D analysis is most reasonable in areas away from
supports. Live load moments are typically 10-40 percent greater for 1D line girder analysis than
from the 3D analysis for both interior and exterior girders. This is a result of the live load
distribution factors used in 1D analysis, which tend to overestimate the amount of load each
girder takes.

Non-composite dead load shears from the 1D analysis are typically within 5 percent of those
from the 3D analysis for interior girders and exterior girders. Similar to the moments, composite
dead load shears tend be over-predicted in the interior girder and under-predicted in the exterior
girder on the order of 30-50 percent due to assumptions in load sharing. 1D live load shears are
around 25-50 percent different than the 3D live load shears for interior girders and exterior
girders. Differences tend to be greatest near midspan, where shear values are smallest and minor
differences in magnitude result in larger error.

Non-composite dead load deflections from the 1D analysis are typically within 3 percent of 3D
deflections for interior and exterior girders. For exterior girders, composite dead load deflections
are typically 15-20 percent lower than corresponding 3D deflections, while interior girder
deflections are 10 percent higher (for similar reasons to the difference in moments). 1D live load
deflections are around 5 percent smaller than 3D live load deflections for the exterior girders and
are 10 percent greater for the interior girders.

The Plate and Eccentric Beam method generally provides reasonable results when compared to
the 3D Finite Element Method. The moments from the 2D analysis are generally within 10
percent of those from the 3D analysis for both dead and live loads. 2D shears are typically
within 5 percent of the 3D dead load shears for interior girders and exterior girders. Similar to
the 1D case, the largest disparities are observed where shear values are small, near midspan. 2D
live load shears vary inconsistently with 3D live load shears for interior girders and exterior
girders. 2D deflections are typically within 5 percent of the 3D deflections for both dead and
live load and for both interior and exterior girders.

The 1D non-composite dead load moments are within 3 percent of the 2D results for both interior
and exterior girders. The composite dead load interior moments are up to 20 percent greater and
20 percent lower in exterior girders from 1D to 2D, as a result of the assumption that the interior
girders will carry an equal share of these loads, whereas items such as barriers are mostly going
to be carried by the exterior girders. 1D live load moments are 20-50 percent greater than 2D
moments, mostly as a result of the use of live load distribution factors.

The 1D non-composite dead load shears are typically within 5 percent of those from the 2D

analysis for both interior and exterior girders. 1D composite dead load shears are typically

higher in interior girders and smaller in exterior girders than corresponding 2D shears for reasons
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similar to the moments. Similarly to the moments, the 1D live load shears are consistently larger
than 2D shears as a result of the live load distribution factors.

The 1D deflections follow a similar pattern to the moments and shears for dead load. Non-
composite dead load deflections are similar for the interior and exterior girders, while composite
dead load shears are typically higher in the interior girders and lower in exterior girders. Live
load deflections are closer between the two analyses as no distribution factors are applied.

Overall, the greatest improvements in terms of design benefits will typically come from
refinement into a 2D model, particularly in the instance of live load where the conservative
distribution factors are no longer applied. In most cases, it is typical that the 2D results
sufficiently approach those from the 3D model.
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9.2 Example 2 — Three-span Continuous Steel I-Girder Bridge

A three-span continuous steel I-girder bridge adapted from an example in NHI Course 130095 is
the subject of Example 2. The cross-section consists of four welded steel plate girders spanning
160 ft-0 inches — 210 ft-0 inches — 160 ft-0 inches. Cross-frames are at 20 ft-0 inch centers in

Spans 1 and 3 and 21 ft-0 inch centers in Span 2. Figure 193 shows the framing plan for
Example 2.
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Figure 193. Illustration. Example 2 framing plan.

Figure 194 shows the bridge cross-section for Example 2. The concrete deck slab is 9% inches
thick including a % inch integral wearing surface; the deck slab is constructed with concrete
having a compressive strength of 4 ksi. The intermediate cross-frames are composed of L5x5x7%
top chords and WT6x22.5 diagonals and bottom chord. The cross-frames at the piers and
abutments are composed of L8x8x%4 top chords and L5x5x% diagonals and bottom chord. The

welded steel girders have a 92-inch deep web. The top and bottom flange plate dimensions are
shown in Figure 195.
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Figure 194. Illustration. Example 2 bridge cross-section.
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Figure 195. Illustration. Example 2 girder elevation.
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9.2.1

1D Line Girder Analysis

1D line girder analysis utilizes the approximate distribution factors contained in Article 4.6.2.2
of the AASHTO LRFD Bridge Design Specifications (Specifications). The following steps are
used to determine the dead and live load bending moments, shears, and deflections:

I.

2.

Determine non-composite and short- and long-term composite section properties for
interior and exterior girders.

Calculate moment distribution factors for interior and exterior girders for one lane loaded
and multi-lane loaded situations.

Determine and input magnitude (generally in kips or kips per foot) of dead loads due to
girder self-weight, concrete deck slab, haunches, barrier, and cross-frames.

Develop and run analysis models. (Notes: Depending on software, several models may
have to be developed using the different section properties from Step 1; live load
distribution factors from Step 2 may, depending on software, be included in the
developed model and distributed moments (and shears) will be provided as results)
Develop moment, shear, and deflection diagrams for non-composite dead load, composite
dead load, and live load.

In this analysis, the following models are developed and used to determine the dead and live load
bending moments, shears, and deflections:

Non-composite section properties with non-composite dead loads applied;
o The non-composite dead loads are applied to a continuous girder.
o These dead loads include the following: girder self-weight, cross-frames,
haunches, and concrete deck slab.
Long-term composite section properties with composite dead loads applied; and
o The composite dead loads are applied to a continuous girder.
o Composite dead loads include the barrier and future wearing surface.
Short-term composite section properties with live load applied.
o The live load is applied to a continuous girder.

9.2.1.1 Step 1 — Determine Non-Composite and Various Composite Section Properties

9.2.1.1.1 Non-Composite Section Properties — Interior and Exterior Girders

The non-composite section properties are calculated using basic mechanics of materials
equations and are shown in Table 28. For details, see Example 1.

Table 28. Example 2 non-composite section properties.
Section Area (in?) | Moment of Inertia (in*)
Section A-A 93.50 118401
Section B-B 112.75 160309
Section C-C 168.00 286524
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9.2.1.1.2 Long-Term Composite Section Properties for Interior Girders

The long-term composite section properties for the interior girders are calculated below. Due to
the different materials used in the deck slab and beam, the modular ratio must be calculated. The
modular ratio is the ratio of modulus of elasticity for the beam to the modulus of elasticity of the
deck slab. The modulus of elasticity of concrete is calculated using the concrete compressive
strength and AASHTO LRFD Equation C5.4.2.4-1, shown here as Equation (49). The modulus
of elasticity for the beam is 29,000 ksi and for the deck slab is determined to be 3640 ksi, for a
compressive strength of 4 ksi. The modular ratio, given by Equation (50), is then 29000 ksi
divided by 3640 ksi which is equal to 7.96 (rounded to 8).

E, = 1820./f. )
_ Ebeam
Edeck (50)

The long-term section properties are shown in Table 29 using an effective modular ratio of 3n to
account for the effects of creep. The effective modular ratio is used to convert the deck slab
concrete into an equivalent area of steel. The deck slab contribution depends on the effective
flange width determined according to AASHTO LRFD Article 4.6.2.6 which indicates that the
center-to-center girder spacing should be used as the effective flange width for the interior
girders. The depth of the haunch and the % inch integral wearing surface are, conservatively, not
included in the section property calculation.

Table 29. Example 2 interior girder long-term composite section properties.
Section Area (in?) | Moment of Inertia (in*)
Section A-A 143.00 204576
Section B-B 162.25 260717
Section C-C 217.50 406754

9.2.1.1.3 Short-Term Composite Section Properties for Interior Girders

The short-term section properties are calculated using the modular ratio as indicated previously
and shown in Table 30. The center-to-center girder spacing is used for the effective flange width.
Because there are no creep effects for loads of short duration no modification of the modular
ratio is applied. To account for the different material properties, the effective flange width is
divided by the modular ratio. As above, the depth of the haunch and the % inch integral wearing
surface are, conservatively, not included in the section property calculation.

Table 30. Example 2 interior girder short-term composite section properties.

Section Area (in?) | Moment of Inertia (in*)
Section A-A 242.00 271576
Section B-B 261.25 347766
Section C-C 316.50 534705
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9.2.1.1.4 Long-Term and Short-Term Composite Section Properties for Exterior Girders

The long-term and short-term composite section properties for the exterior girders are shown in
Tables 31 and 32, respectively. The calculation is identical to that of the interior girders except
that the effective flange width is different for exterior girders. AASHTO LRFD Article 4.6.2.6
indicates that one-half the center-to-center girder spacing plus the overhang width should be used
as the effective flange width for exterior girders. As above, the depth of the haunch and the Y4
inch integral wearing surface are, conservatively, not included in the section property
calculation.

Table 31. Example 2 exterior girder long-term composite section properties.

Section Area (in?) | Moment of Inertia (in*)

Section A-A 135.13 195073

Section B-B 154.38 249036

Section C-C 209.63 391414

Table 32. Example 2 exterior girder short-term composite section properties.

Section Area (in?) | Moment of Inertia (in*)

Section A-A 218.38 261051

Section B-B 237.63 333531

Section C-C 292.88 511988

9.2.1.2 Step 2 — Determine Approximate Live Load Distribution Factors
9.2.1.2.1 Interior Girder Distribution Factors

The approximate live load distribution factor equations are provided in AASHTO LRFD Article
4.6.2.2. Different cross-section types are provided in AASHTO LRFD Table 4.6.2.2.1-1;
comparing Figure 194 to those in the table, it is determined that cross-section “a” is similar. The
controlling distribution factors for the interior and exterior girders are summarized in Table 33.
For detailed calculation of the distribution factors, refer to Appendix 9.A.

Table 33. Example 2 distribution factors.

Spans 1
Girder Action End 3 Span 2

A-A | B-B| C-C | A-A | B-B | C-C
Interior Girder M+ and M- not 0.76 | 0.78 | 0.82 | 0.71 | 0.73 | 0.76
Exterior Girder between POCs 0921092092 | 092 | 092 | 0.92

A-A B-B C-C

Interior Girder 0.73 0.75 0.79

Exterior Girder | M- oetween POCs =5 5 0.92 0.92

A-A B-B C-C

Interior Girder Shear 1.02 1.02 1.02

Exterior Girder 0.90 0.90 0.90
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9.2.1.3  Step 3 — Determine Dead Loads on a “Per Girder” Basis
9.2.1.3.1 Self-Weight of Girder, wsw

The self-weight of the girder is calculated using the cross-section area and unit weight of the
material. The values are summarized in Table 34.

Table 34. Example 2 girder self-weight.

Cross-Section | Lineal Weight (k/ft)
A-A 0.319
B-B 0.384
C-C 0.575

9.2.1.3.2 Weight of Stay-in-Place Forms, wsip

Stay-in-place forms with an assumed weight of 0.015 ksf are used. The weight includes the
weight of the form as well as the concrete in form valleys. For the interior girders, the weight for
SIP forms is 0.015 ksf x 11 ft =0.17 k/ft. For the exterior girders, the weight of SIP forms is
0.015 kst x 5.5 ft = 0.083 k/ft.

9.2.1.3.3 Weight of Concrete Deck Slab, Waeck

The weight of the concrete deck slab is determined on a basis of tributary width for the interior
and exterior girders. For the interior girder, the tributary width is taken as one-half the girder
spacing on each side of the girder while for the exterior girder, the tributary width is taken as the
overhang plus one-half the girder spacing. The resulting loads are 1.31 k/ft for interior girders
and 1.10 k/ft for exterior girders.

9.2.1.3.4 Weight of Concrete Haunches

The weight of the haunch is determined using the cross-section area of the haunch and the unit
weight of concrete. For the interior girders, the total depth (deck slab plus haunch) is 1 ft-2%5
inches at the centerline of the girder with the deck slab having a 2 percent cross-slope.

] . O

TOP OF GIRDER

Figure 196. Illustration. Haunch area for interior girders.
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The weight of the haunch on the interior girder, whi, is determined to be 0.075 k/ft for Section A-
A, 0.078 k/ft for Section B-B, and 0.053 k/ft for Section C-C.

For the exterior girders, the concrete in the overhang in excess of the deck slab thickness is
included in the weight of the haunch. The weight of the haunch, including the concrete in the
upturn and overhang, is determined to be 0.155 k/ft for Section A-A, 0.152 k/ft for Section B-B,
and 0.103 k/ft for Section C-C.

9.2.1.3.5 Weight of Intermediate Cross-Frames and Connection Plates

Intermediate cross-frames are located at equal spacing in each span. The cross-frames are
composed of L5x5x% top chords and WT6x22.5 diagonals and bottom chords. The weight of
each cross-frame is determined using the steel section properties and member length. For the
exterior girders, one-half of the cross-frame weight calculated for the interior girders is applied.
The cross-frame weight applied to the interior girders is 1.25 k and to the exterior girder is

0.63 k.

9.2.1.3.6 Weight of Barrier

The weight of the barrier is determined to be 0.40 k/ft. The distribution of the barrier weight to
the girders can be performed in several different ways: equally to all girders, to the exterior
girder only, or by the lever rule to the exterior girder and first interior girder. The barrier weight
is assumed to be distributed equally to all girders. Therefore, 0.20 k/ft is applied to each girder to
represent the weight of the barrier.

9.2.1.3.7 Weight of Future Wearing Surface

A 30 psf future wearing surface is considered in the design of the bridge. The weight of the
wearing surface can be distributed equally to all girders or based on tributary width; this example
assumes the weight is distributed based on tributary width. For the interior girders, the tributary
width is equal to the girder spacing. For the exterior girders, the tributary width is equal to one-
half the girder spacing plus the overhang distance minus the width of the barrier. The magnitude
of the applied load to the interior girders is 0.33 k/ft. The magnitude of the applied load to the
exterior girders is 0.23 k/ft.

9.2.1.3.8 Summary of Dead Loads

A summary of the dead load magnitudes for the interior and exterior girders is shown in Table 35
below. The loads shown are on a “per girder” basis.
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Table 35. Dead loads on a per girder basis.

Self- Cross-
Section Weight, Frames, P SJVP F[(l)<r/r§]s ’ Dvizk[ks/lf?}) ’ HaIEE;: fltl]’ Wh Barrier, FWS [k/ft]
Waw [k s wp [k/1t]
[k/ft] Int. Ext. | Int. Ext. Int. | Ext. Int. Ext. Int. Ext
A-A 0.319 0.075 | 0.155
B-B 0.384 1.25 | 0.63 | 0.17 | 0.083 | 1.31 | 1.10 | 0.078 | 0.152 0.20 0.33 | 0.23
C-C 0.575 0.053 | 0.103

9.2.1.4 Step 4 — Develop Analysis Models

This step will be software specific in many of the details, but in general the following will need
to be defined in the model:

1) Basic layout such as span lengths and support types

2) Properties of the cross-sections such as moment of inertia
3) Dead loads

4) Live loads

As part of this step the engineer needs to verify that the software is performing correctly. For
verification a check is made for the sum of deck slab dead load reactions. For an interior girder,
the total applied load is (1.31 k/ft)(530 ft) = 694.3 k.

The reactions from the analysis software:

Location | Reaction (k)
Abutment 1 71.15
Pier 1 276
Pier 2 276
Abutment 2 71.15
Total 694.3

The sum of reactions matches the applied loading and as expected the reactions are symmetric.
Therefore, the software is operating as anticipated. In general, acceptable levels of accuracy
should consider the complexity of the analysis and geometry being investigated, but ultimately
depend on the discretion of the project manager.

9.2.1.5 Step 5 — Develop Moment, Shear, and Deflection Diagrams

After performing the analysis, moment, shear, and deflection diagrams are created using the
analysis results. Diagrams can be developed for individual components or combined according
to the type of applied load. Figures 197 through 202 show the moments, shears, and deflections
calculated from the 1D line girder analysis. The following figures show the moment, shear, and
deflection due to: non-composite dead loads including the beam self-weight, stay-in-place deck
forms, diaphragms, haunches, and concrete deck slab, composite dead loads including the barrier
and future wearing surface, and maximum positive and negative live load moments including
dynamic load allowance.
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Figure 197. Graph. 1D moment diagram and live load envelope for interior girder.
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Figure 198. Graph. 1D shear diagram and live load envelope for interior girder.
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Figure 199. Graph. 1D deflection diagram for interior girder.
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Figure 200. Graph. 1D moment diagram and live load envelope for exterior girder.
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Figure 201. Graph. 1D shear diagram and live load envelope for exterior girder.
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Figure 202. Graph. 1D deflection diagram for exterior girder.
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9.2.2 Plate and Eccentric Beam Analysis

Similar to Section 9.1.2, the 1D analysis from the previous section is taken one degree further in
complexity. A PEB analysis, which utilizes the stiffness of the girders and cross-frames to
distribute the non-composite dead loads and the stiffness of the girders, cross-frames, and deck
slab to distribute the composite dead loads and live loads, is used. The approximate distribution
factors in AASHTO LRFD Article 4.6.2.2 are not used. Geometry is modeled at the centroid of
the first girder section, Section A-A. The following steps are used to determine the dead and live
load bending moments, shears, and deflections and are similar to those in Section 9.1.2:

1. Create model for non-composite dead loads.

a.

Define location of girders and cross-frames. Depending on software, the girder
may have to be defined by multiple segments such that the intermediate cross-
frame can be connected to the girders, see Figure 203. Between nodes used to
define member ends it may also be necessary in this step to discretize the
geometry (through addition of nodes) such that members are ultimately composed
of a sufficient number of elements. The number of elements should be enough to
capture the expected behavior of each component, but not so many that
computational time becomes excessive. Consideration should also be given to
where results are required, as additional nodes may need defined at these
locations. In the analysis software used, elements are created through a meshing
process, where an element size/number is specified and applied to the structural
members. As elements are defined geometrically, it may also be necessary to
choose element type. Further discussion of element definition and element types
can be found in Section 3.5.

CONNECTION T
BETWEEN GIRDER AND

CROSS-FRAME (TYP.)

=0
AN

INTERMEDIATE
. z \ CROSS-FRAME (TYP.)
frs L,x GIRDER (TYP.)

Figure 203. Illustration. Girder and intermediate cross-frame location.

b.

Define geometry of girder and intermediate cross-frame cross-sections. The
girder in this example has several cross-sections along its length due to plate
transitions; section properties may be calculated by hand as in Section 9.2.1.1.1 or
the analysis software may require plate dimensions to be input from which the
cross-section properties will be calculated. The cross-frames are composed of a
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g.
h.

1.

top chord, bottom chord, and two diagonals but will be represented by a single
member in the PEB analysis. Therefore, the cross-section properties must be
estimated. This process is further described below.

Define material properties for girders and intermediate cross-frames. The
analysis software may have material properties for commonly used materials
stored internally; these can be used but should be verified.

Define support conditions.

Define loads applied to the non-composite structure.

i. For the members defined in the model, the girders and intermediate
diaphragms, automatic dead load application can be used if mass density is
assigned through material properties. Otherwise, concentrated or
distributed loads that are statically equivalent to the weight of the
members can be used.

ii. The other non-composite dead loads (SIP forms, haunches, deck slab) are
applied as uniform line loads to each girder.
Define load cases.
Ensure correct attributes are assigned (geometric and material properties, support
conditions, and non-composite dead loads) to appropriate components.
Run analysis; verify analysis results using simplified methods.
Extract required results from analysis software.

2. Create model for composite dead loads (continuation of the model created in Step 1).

a.

b.

f.

Define location of concrete deck slab and create appropriate surface elements (see
Step 1a and Section 3.5.2.1 for more information).

Define geometry and thickness of concrete deck slab. An eccentricity is applied
to the deck such that it is at the appropriate elevation relative to the other
members. Some elements support offsets internally, making assigning
eccentricities easier. For elements that do not support eccentricities, rigid link
constraints or rigid beam elements can be used to provide the required offset.
Define material properties for concrete deck slab (See Step 1c above for more
information). The stiffness is reduced by a factor of 3 for long-duration loading.
Define support conditions.

Define loads applied to the composite structure.

i. The FWS is defined as a uniform load distributed over an area. If
possible, the load should be applied over a partial width of the bridge,
representing placement between barriers. However, if the area of loading
does not coincide with the model geometry and partial width loading
cannot be specified, either the geometry can be modified to facilitate load
application or the load should be modified su