Bridge Security Design

Overview, Recommended Practice & Future Needs
Learning Objectives

• Create awareness of highway bridge vulnerability to malicious attacks

• Understand low-probability, high-consequence events and the concept of risk

• Understand ways to reduce risk of damage and human injury

• Review current state-of-the-practice in bridge security and discuss future industry needs
Webinar Outline

• Why is bridge security important?
• State-of-the-practice in bridge security
 • FHWA Primer on Bridge Security Engineering and Design
 • Anti-Terrorist Planner for Bridges
• Future industry needs
Why is bridge security important?
• Documented attacks against transportation infrastructure have increased from less than 100 in 1979 to over 350 in 2015 according to the Global Terrorism Database (GTD)

Data from National Consortium for the Study of Terrorism and Responses to Terrorism, “Global Terrorism Database (GTD),” University of Maryland, 2018
Between 1973 and 2019, the Mineta Transportation Institute (MTI) Database includes 310 terrorist attacks specifically targeting vehicle bridges.

Of the attacks in industrialized nations between 1973 and 2001, 58% involved non-iconic structures.

Global Historical Trends

- Other Highway Bridges (35%)
- Suspension (30%)
- Tied Arch & Cable-Stayed (15%)
- Railroad (15%)
- Truss (5%)

Source: Based on data from Jenkins and Gersten, 2001
Other Factors to Consider

- Low-probability, high-consequence event (risk tolerance)
- We can learn from past non-terrorist related bridge collapses, e.g.:
 - May 2002, **Interstate Hwy 40 Bridge** (Oklahoma; barge impact)
 - September 2001, **Queen Isabella Causeway** (Texas; tugboat impact)
 - August 2007, **Interstate Hwy 35W Bridge** (Minnesota; structural failure)
 - May 1980, **Sunshine Skyway Bridge** (Florida; freighter ship impact)
- Collateral benefits (added value) in enhanced asset security
Bridges vs. Buildings

- Main structural components are directly exposed to the environment
 - Unlike typical building structures, no frangible envelope
- Highly accessible to the public
 - Very difficult to impose physical standoff
- Little bridge-specific protective design provisions
- Relatively limited structural redundancy
Unique Threats

Man-Made (non-natural) Threats; e.g.,

• Explosive devices
• Thermal/mechanical cutting devices
• Fires
• Vehicle/vessel impact (accidental and malicious)
Threat & Vulnerability Risk Assessment (TVRA)

1. **Define Design-Basis Threats**
 - Conceivable versus practical
 - Understanding and defining risk tolerance

2. **Identify Vulnerable Locations**
 - Accessibility
 - Bridge geometry and bridge component criticality

3. **Develop Credible Threat Scenarios**
 - Practical threat deployment
 - Credible attacks

4. **Conduct Threat Analysis**
 - Derive loading
 - Calculate damage/response and assess vulnerable members

5. **Design Specific Mitigation**
 - Passive: Hardening and damage acceptance
 - Active: Surveillance/Deterrence
Example Security Threat Matrix

<table>
<thead>
<tr>
<th>Threat Category</th>
<th>Tower & Piers</th>
<th>Bridge Deck</th>
<th>Stay Cables & Anchorages</th>
<th>Abutments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand-Emplaced Improvised Explosive Device (IED)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vehicle-borne IED</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Water-borne IED</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Non-Explosive Cutting Device (NECD)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Exothermic Torch</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Fire</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Impact (Vehicle, Ship, Aircraft)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
An Emerging Threat: Unmanned Aerial Vehicles (UAVs)

U.S. Government Threat Advisory

“Some terrorist groups overseas... pursue new technologies and tactics, such as unmanned aerial systems...”

“The current bulletin introduces unmanned aircraft systems potential threats...”

“There’s been an uptick in terrorist interest using unmanned aerial systems as weapons in the United States...”

- Homeland Security bulletin warns of weaponized drones and threat to aviation, ABC News; Nov. 9, 2017
- U.S. Department of Homeland Security (DHS) National Terrorism Bulletin issued Nov. 9, 2017
- Terror from skies as Mexican cartel attaches bomb to drone, The Washington Post; Oct. 24, 2017
The End Game…
State-of-the-Practice in Bridge Security

FHWA Bridge Security Engineering and Design Knowledge and Resources

Anti-Terrorist Planner for Bridges (ATP-Bridge)
Bridge Security Reference Documents

General Documents:
- Joint Transportation Research Program (JTRP): Synthesis of Best Practices in Transportation Security
- U.S. Department of Defense: UFC 3-340-02 Structures to Resist the Effects of Accidental Explosions

Federally Developed Software (available for free):
- ATP-Bridge – Anti-Terrorist Planner for Bridges
- SBEDS - Single-degree-of-freedom Blast Effects Design Spreadsheet
Vehicle Collision:
- ASTM International: F 2656-07
- AASHTO Guide Specifications for Protecting Bridge Piers against Vehicular Impact (currently being prepared for publication)
- NCHRP Report 892, Guidelines for shielding Bridge Piers
- FHWA-HIF-18-062: A Performance-Based Approach for Loading Definition of Heavy Vehicle Impact Events

Vessel Collision:
- Florida Department of Transportation (FDOT) Mathcad software program Vessel Impact Analysis v3.13
Bridge Security Reference Documents

Fire:

- **Society of Fire Protection Engineers (SFPE):** Handbook of Fire Protection Engineering

Stay Cables (Fire):

- **Post-tensioning Institute (PTI):** DC45.1-12: Recommendations for Stay-Cable Design, Testing, and Installation

FHWA Resources:
Source: http://www.fhwa.dot.gov/bridge/security

- Primer on Impact Protection for Critical Transportation Infrastructure (Dec. 2018)
1. Security Planning for Highway Bridges
2. Materials Performance
3. Blast Phenomenology
4. Mechanics of Structural Elements
5. Dynamic Response of Structures
Topics of Bridge Security Engineering and Design (cont’d)

9. Protective Design Best Practices for High-Strength Steel Cables
10. Protective Design Best Practices for Other Bridge Components
11. Anti-Terrorist Planner for Bridges (ATP-Bridge) Software
Security Planning for Highway Bridges

• Threat mitigation strategies
 • Planning & coordination measures
 • Information control measures
 • Site layout measures
 • Access control/deterrent measures
 • Deception measures
• Project coordination (get security folks involved at the outset of a project)
• Additional publicly available bridge security practices
2 Materials Performance

- Explosives
 - High explosives
 - Types of explosive charges
 - TNT equivalency
 - Charge shape
- Reinforced concrete & structural steel
 - Strain-rate effects
 - Strength values for design
 - Rate-dependent material models
 - Thermal effects

3 Blast Phenomenology

- Types of explosions
- Shock waves in air
- Far-field behavior of shock waves
- Near-field behavior of shock waves
- Shock wave interaction with bridge components
- Blast load characterization for analysis and design

Radially propagating incident shock front

Source: Permission Granted by Protection Engineering Consultants, LLC
4 Mechanics of Structural Elements

• Conventional RC elements
 • Local response mechanisms (spall/breach)
 • Global response mechanisms
• Prestressed & high-performance concrete elements
 • Prestressed, high-performance, and fiber-reinforced concrete
• Structural steel elements
 • Local response mechanisms (breach)
 • Global response mechanisms
• High-strength steel cables

Source: R.E. Walker et al., 2011 (Permission Granted by U.S. Army Engineer Research and Development Center [ERDC])
5 Dynamic Response of Structures

- Dynamic analysis process
- Performance criteria
 - Not apples-to-apples w/ building structures
- Pressure-impulse diagrams
- Single-Degree-of-Freedom (SDOF) analysis
- Multi-Degree-of-Freedom (MDOF) analysis
 - Frame/grillage models
 - High-fidelity finite element models

Source: Permission Granted by Eric Sammarco
Protective Design (PD) Topics

- Design loads
- Failure modes
- Performance criteria
- Design strategies
- Detailing
- Best Practice design procedure
- ATP-Bridge design examples
- Overview of threat mitigation strategies
6 PD: Reinforced Concrete Columns

- Leeward face pressure
- Incident pressure
- Clearing-affected reflected pressure

\[q_2 > q_1 \quad R_2 > R_1 \]

Source: Permission Granted by Eric Sammarco
7 PD: Steel Cellular Towers

Source: Ray and Walker, 2010 (Permission Granted by U.S. Army Engineer Research and Development Center [ERDC])
8 PD: Reinforced Concrete Towers

Cable-Induced Axial Compression in Deck and Tower Legs

Orthotropic Rebar Layout

Source: Permission Granted by WSP

Source: Permission granted by Eric Sammarco
8 PD: Reinforced Concrete Towers

- AASHTO LRFD provisions recommended in NCHRP Report 645
- Choose a Blast Design Category (BDC) for Design Requirements (AASHTO LRFD Design Article 4.7.6.2) (CFR citation needed here)
- Scaled Standoff \((Z) = \frac{R}{W^{1/3}}\) \(R = \) standoff, \(W = \) charge weight

<table>
<thead>
<tr>
<th>(Z < 1.5, \text{ BDC C})</th>
<th>(1.5 < Z < 3.0)</th>
<th>(Z > 3.0, \text{ BDC A})</th>
</tr>
</thead>
<tbody>
<tr>
<td>For a 5,000 lb Explosive Threat (R_x = 25) ft (more realistic (R_x = 5) ft, or (Z = 0.3))</td>
<td>(25 < R_x < 51) ft</td>
<td>(R_x > 51) ft</td>
</tr>
</tbody>
</table>

HYPOTHETICAL EXAMPLE

SDOF / MDOF / Conventional Blast Design

“No additional requirements beyond those for other applicable loads.”

Source: Permission Granted by Protection Engineering Consultants, LLC
Source: Permission Granted by Eric Sammarco
9 PD: High-Strength Steel Cables

7- Wire Strand

27- Strand Stay Cable

Post-Test (untensioned)

Post-Test (tensioned)

Source: Chiarito, et al. 2011 (Permission Granted by U.S. Army Engineer Research and Development Center [ERDC])
10 PD: Other Bridge Components

- Flexural members
- Bridge decks
- Bridge bearings
- Abutments & riprap walls
- Bridges over navigable waterways
- Horizontally curved bridges
- Truss bridges
- Built-up and laced members
- Proprietary protection methods
11 Anti-Terrorist Planner for Bridges

- Practical, engineering-level software program can:
 - Address a variety of threat scenarios
 - Predict response
 - Predict incurred damage
- Includes: RC columns, RC tower panels, steel tower panels, cables
- Threats
 - Contact & near-contact HE charges
 - Standoff detonations from bulk explosives
 - Various thermal, mechanical, and explosive cutting threats
- Supports vulnerability assessments of existing bridges and of new bridges
11 Anti-Terrorism Planner for Bridges

Source: Permission granted by U.S. Army Engineer Research and Development Center (ERDC)
Future Industry Needs
Industry Challenges

- Reduce and manage risk of vulnerable transportation infrastructure
- Maintain and secure transportation infrastructure to:
 - support national economic well-being
 - provide freedom of movement
 - serve as a national defense asset
- Since the Blue Ribbon Panel established Security R&D Roadmap:
 - A lot of progress, but...more to do!

Source: FHWA, 2003

Blue Ribbon Panel Report - Recommendations for Bridge and Tunnel Security
Industry Challenges

• Quantifying the size and likelihood of ever changing threats
• Varying bridge types and complexity
• Determining vulnerability and levels of accepted performance and risk
• Predicting long-term performance and behavior
• Validating how new materials perform
• Validating solutions for future protection measures
• Detailing retrofits of existing bridges vs. new bridge construction
• Predicting performance change of modified structures (goal is enhanced resiliency; i.e., add value)
Future Needs for Bridge Security Design: Partners

- Department of Homeland Security (DHS): Science & Technology (S&T), Transportation Security Laboratory (TSL), Transportation Security Administration (TSA)
- USACE: Engineer Research and Development Center (ERDC), Protective Design Center (PDC)
- National Institute of Standards and Technology (NIST)
- Academia: University of Texas at Austin; MCEER (State University of New York at Buffalo); University of Missouri; University of Connecticut, etc.
- Others: TRB, National Cooperative Highway Research Program, industry
- Professional Society Committees (e.g., ASCE-SEI Bridge & Tunnel Security Committee)
- Transportation infrastructure owners and stakeholders
Future Needs for Bridge Security Design: Non-Natural Hazards

• Credible security threats to highway bridges are non-conventional and challenging to mitigate

• Industry will benefit from standardized methodology for performing a threat, vulnerability, and risk assessment (TVRA) centered around risk tolerance for the following:
 • Explosive Threats: vehicle-borne improvised explosive device (VBEID), hand-emplaced improvised explosive device (HEIED)
 • Fire
 • Non-Explosive Cutting Devices (NECD)
 • Impact: Vehicles, Vessels
 • Emerging threats (e.g., drone attacks)
Future Needs for Bridge Security Design: Tools, R&D, and Goals

- Security Research & State Pooled-Fund Studies, e.g.:
 - Solutions for security retrofits and new protective construction
 - Use of novel materials for protective solutions
 - ATP-Bridge enhancements
 - Material specification language suggestions for owners to use to select security countermeasures
 - Consistent Validation and Verification process for numerical modeling (to reduce the need for physical testing to support new bridge construction)
 - Consistent procedures for defining design-basis threats/hazards and conducting TVRAs
 - Develop performance criteria specific to highway bridges

GOAL: Improve risk management and overall resiliency of our nation’s highway bridges in a prioritized and consistent manner.
Summary

• Security Improves Resiliency and Safety
 • A more secure bridge is also more resilient and safer (asset level)
 • Strengthens networked community (network level)

• The Vision
 • Involve stakeholders; identify knowledge gaps and needs
 • Develop consistent approach to assess/manage risks
 • Establish security measures (Detect, Deny, Deter, Defend) and improve with latest technology
 • Develop and identify best practices of security that improve resiliency
Questions?

FHWA POC: Vincent Chiarito, PE, SECB
Senior Bridge Engineer for Security and Safety

vincent.chiarito@dot.gov