FOREWORD

This handbook covers a full range of topics and design examples intended to provide bridge engineers with the information needed to make knowledgeable decisions regarding the selection, design, fabrication, and construction of steel bridges. Upon completion of the latest update, the handbook is based on the Seventh Edition of the AASHTO LRFD Bridge Design Specifications. The hard and competent work of the National Steel Bridge Alliance (NSBA) and prime consultant, HDR, Inc., and their sub-consultants, in producing and maintaining this handbook is gratefully acknowledged.

The topics and design examples of the handbook are published separately for ease of use, and available for free download at the NSBA and FHWA websites: http://www.steelbridges.org, and http://www.fhwa.dot.gov/bridge, respectively.

The contributions and constructive review comments received during the preparation of the handbook from many bridge engineering processinals across the country are very much appreciated. In particular, I would like to recognize the contributions of Bryan Kulesza with ArcelorMittal, Jeff Carlson with NSBA, Shane Beabes with AECOM, Rob Connor with Purdue University, Ryan Wisch with DeLong’s, Inc., Bob Cisneros with High Steel Structures, Inc., Mike Culmo with CME Associates, Inc., Mike Grubb with M.A. Grubb & Associates, LLC, Don White with Georgia Institute of Technology, Jamie Farris with Texas Department of Transportation, and Bill McElenny with NSBA.

Joseph L. Hartmann, PhD, P.E.
Director, Office of Bridges and Structures

Notice

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

Quality Assurance Statement

The Federal Highway Administration provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.
Supplementary Notes
The previous version of this Handbook was published as FHWA-IF-12-052 and was developed to be current with the AASHTO LRFD Bridge Design Specifications, 5th Edition with the 2010 Interims. FHWA-HIF-16-002 was updated in 2015 by HDR, Inc., to be current with the AASHTO LRFD Bridge Design Specifications, 7th Edition.

Abstract
Load rating is defined as the determination of the live load carrying capacity of a bridge using as-built bridge plans and supplemented by information gathered from the latest field inspection. Load ratings are expressed as a rating factor or as a tonnage for a particular vehicle. Emphasis in load rating is on the live-load capacity and dictates the approach of determining rating factors instead of the design approach of satisfying limit states. Existing highway bridges are rated to prioritize a bridge owner’s needs, assure the traveling public’s safety, and facilitate the passage of goods. Bridges that cannot safely carry statutory loads, based on a load-rating evaluation, should be load posted, rehabilitated or replaced. This module informs designers of load ratings, and discusses the LRFR methodology used for load rating evaluation.

Key Words
Steel Bridge, Load Rating, LRFR, Live-load Capacity, Legal Loading, Permit Loading, Bridge Posting

Distribution Statement
No restrictions. This document is available to the public through the National Technical Information Service, Springfield, VA 22161.
Table of Contents

1.0 BACKGROUND ... 1
2.0 GENERAL ... 2
3.0 PURPOSES .. 3
4.0 ASSUMPTIONS .. 4
5.0 EVALUATION METHODS ... 5
 5.1 Background ... 5
 5.2 Evolution of Rating Specifications .. 5
 5.3 Comparisons ... 5
 5.4 Federal Highway Administration Policy .. 6
6.0 LOAD AND RESISTANCE FACTOR RATING (LRFR) ... 7
 6.1 General .. 7
 6.1.1 General Load-Rating Equation ... 7
 6.1.2 Condition Factors .. 8
 6.1.3 System Factors ... 8
 6.1.4 Load Factors ... 9
 6.1.5 Levels of Evaluation .. 9
 6.2 Design-Load Rating .. 10
 6.2.1 General ... 10
 6.2.2 Live Load .. 10
 6.2.3 Limit States ... 10
 6.2.4 Load Factors ... 10
 6.3 Legal-Load Rating .. 10
 6.3.1 General ... 10
 6.3.2 Live Load ... 11
 6.3.2.1 Routine Commercial Vehicle ... 11
List of Figures

Figure 1 Design-Load Inventory-Rating Factor, RF, versus Reliability Index, β 6
List of Tables

Table 1 Condition Factors... 8
Table 2 System Factors.. 8
Table 3 Evaluation Live-load Factors for Steel Bridges... 9
Table 4 Dead Load Factors.. 9
Table 5 Routine Commercial Vehicle Evaluation Live Load Factors for Strength I 12
Table 6 Specialized Hauling Vehicle Evaluation Live Load Factors for Strength I 13
Table 7 Routine/annual-permit Evaluation Live Load Factors for Strength II for Steel Bridges 14
Table 8 Specialized Hauling Vehicle Evaluation Live Load Factors for Strength I 15
Table 9 Rating Examples in the MBE .. 17
1.0 BACKGROUND

The U.S. 35 “Silver Bridge” between Point Pleasant, West Virginia, and Kanauga, Ohio, collapsed in 1967, killing 46 people and injuring 9 when the bridge fell into the Ohio River or onto the Ohio shore (1).

The Silver Bridge collapse, the first major collapse since the Tacoma Narrows Bridge collapsed in 1940, prompted national concern about bridge safety and led to the establishment of the National Bridge Inspection Standards (NBIS) under the Federal-aid Highway Act of 1968 and the Special Bridge Replacement Program under the Federal-aid Highway Act of 1970.

Load rating is required by NBIS regulations. The regulations state “Rate each bridge as to its safe loading capacity in accordance with the AASHTO manual. Post or restrict the bridge in accordance with the AASHTO Manual or in accordance with state law, when the maximum unrestricted legal loads or State routine permit loads exceed that allowed under the operating rating or equivalent rating factor.”

The NBIS regulations apply to all structures defined as highway bridges located on all public roads. They apply to all publicly owned highway bridges longer than twenty feet located on public roads. Railroad/pedestrian structures that do not carry highways are not covered by the NBIS regulations.
2.0 GENERAL

The NBIS regulations define load rating as “The determination of the live load carrying capacity of a bridge using as-built bridge plans and supplemented by information gathered from the latest field inspection.” Load ratings are expressed as a rating factor (RF) or as a tonnage for a particular vehicle. Emphasis in load rating is on the live-load capacity and dictates the approach of determining rating factors instead of the design approach of satisfying limit states.

The rating factor is the multiple of the vehicular live-load effect (for example, moment or shear) that the bridge can carry when the limit-state under investigation is satisfied. The weight of the live-load in tons multiplied by the rating factor is the tonnage that the bridge can safely carry.

All superstructure spans, and main or primary components of the span and their connections shall be load rated until the governing component is established. The sudden collapse of the I-35W highway bridge in Minneapolis, Minnesota in August of 2007, reiterated the need to load rate connections as well as the members. The National Transportation Safety Board (NTSB) with the aid of the Federal Highway Administration (FHWA) determined that the probable cause of the deck-truss bridge collapse was inadequate load-carrying capacity of gusset plates connecting some truss members together due to a design error (2). In response, the FHWA developed guidelines for the load rating of such gusset plates (3). Additionally, the most recent version of the AASHTO Manual for Bridge Evaluation, Second Edition with 2014 Interims (8) provides guidelines for the load rating of gusset plates.
3.0 PURPOSES

Existing highway bridges are rated to:

- prioritize an owner’s needs,
- assure the traveling public’s safety, and
- facilitate the safe passage of goods.

Owners rate bridges upon completion of original construction and whenever a change in condition suggests that the current rating may have changed.

Bridges that cannot safely carry statutory loads, based on a load-rating evaluation, should be load posted, rehabilitated or replaced.

Bridge load ratings reported to the NBI weigh heavily in the determination of the Sufficiency Rating (SR). Federal resource allocation determinations utilize the SR to prioritize and distribute funds among the States to replace, rehabilitate and maintain our nation’s highway bridges. States, in addition, use the ratings in prioritizing projects for repair, rehabilitation or replacement, distributing bridge funds to local governments, determine load-posting needs, and for issuing overload permits.
4.0 ASSUMPTIONS

The load carrying capacity of an existing bridge is based upon its present condition. In general, the bridge will be inspected biennially. The condition of the bridge is captured and the load carrying capacity may be recalculated when the bridge condition or loading has changed.

Capacity often decreases with time due to deterioration. Live loads historically increase with time. Dead loads may increase through repairs and rehabilitations.
5.0 EVALUATION METHODS

5.1 Background

Several philosophies are available to rate bridges through various design methodologies. Bridge design and rating methodology has evolved over time from allowable stress design (ASD) through load factor design (LFD) to load and resistance factor design (LRFD). While bridges are designed using the LRFD philosophy of the AASHTO LRFD Bridge Design Specifications, 7th Edition (referred to herein as the LRFD Specifications) (4), bridges may be rated using either the load factor rating (LFR) or load and resistance factor (LRFR) methodology.

5.2 Evolution of Rating Specifications

Traditionally, existing bridges were rated using the evaluation methodologies of the AASHTO Manual for Conditional Evaluation of Bridges (5), the ASR or LFR methodologies. These evaluation methodologies are analogous to the design methodologies of the AASHTO LRFD Construction Specifications (6).

National Cooperative Highway Research Program (NCHRP) Project 12-46 developed an evaluation methodology analogous to the LRFD methodology of the AASHTO LRFD Bridge Design Specifications, 7th Edition (4). This reliability-based rating method is termed LRFR. This rating procedure was included in the AASHTO Manual for the Condition Evaluation and Load and Resistance Factor Rating of Highway Bridges (7).

With the publication of the AASHTO Manual for Bridge Evaluation (referred to herein as the MBE) (8), the LRFR methodology was added to the ASR and LFR methodologies in one all-encompassing document. The MBE replaces both the AASHTO Manual for Condition Evaluation of Bridges and the AASHTO Manual for Condition Evaluation and Load and Resistance Factor Rating of Highway Bridges. It serves as a single standard for the evaluation of all highway bridges. The MBE referred to herein is the 2nd Edition, published by AASHTO in 2011, with the 2014 Interims (8).

5.3 Comparisons

AASHTO Technical Committee T-18, Bridge Management, Evaluation and Rehabilitation, commissioned a research project to investigate the validity of the LRFR methodology. The objective of National Cooperative Highway Research Program (NCHRP) Project 20-07 Task 122 (9) was to provide explicit comparisons between the ratings produced by the LRFR and LFR methodologies. The comparisons are based upon flexural-strength ratings. For girder-type bridges, the rating comparisons further concentrate on the interior girder. The study compared 74 example bridges provided by the NYSDOT and WYDOT.

The reliability or safety of the example bridges was established through Monte-Carlo simulation. For each example bridge, 1,000,000 Monte Carlo simulations are made. The resultant reliability
indices are independent of the rating methodology as they represent inherent bridge safety. Twenty six of the bridges in the 74 bridge database demonstrated a failure rate of more than 10 failures out of 1,000,000 simulations, or a reliability index less than about 4.25. A plot, from the National Cooperative Highway Research Program (NCHRP) Project 20-07 Task 122 (9), comparing the reliability index, β, versus the design-load inventory-rating factors for both LRFR and LFR is given in Figure 1. In the figure, LRFR rating factors are represented by diamonds, while LFR rating factors are represented by squares. Little correlation with the inherent reliability indices is demonstrated by the LFR rating factors while a strong, more linear correlation is demonstrated by the LRFR rating factors. This comparison demonstrates the strong superiority of the LRFR methodology in predicting the reliability or safety of existing bridges.

![Figure 1](image)

Figure 1 Design-Load Inventory-Rating Factor, RF, versus Reliability Index, β

5.4 Federal Highway Administration Policy

The Federal Highway Administration (FHWA) considers LRFR as the preferred load-rating methodology for all existing bridges. Further, the FHWA has adopted a policy that starting October 1, 2010, bridges designed with LRFD be load rated with LRFR (10).

As such, only the preferred load rating methodology, LRFR, will be discussed herein. This methodology has been demonstrated to be most representative of the quantified safety of the bridge in terms of reliability index or probability of failure as shown in Figure 1 above.
6.0 LOAD AND RESISTANCE FACTOR RATING (LRFR)

6.1 General

The LRFR methodology consists of three distinct levels of evaluation:

1) design-load rating (first level evaluation),
2) legal-load rating (second level evaluation), and
3) permit-load rating (third level evaluation).

The results of each evaluation serve specific purposes and also inform the need for further evaluations. Each of the above evaluations is performed for a specific live load model with specifically calibrated load factors aimed at maintaining uniform and acceptable levels of reliability in all evaluations.

6.1.1 General Load-Rating Equation

The general load-rating equation for rating factor, RF, may be rewritten for steel bridges as follows, considering permanent loads other than dead load to be non-existent:

\[
RF = \frac{C - \gamma_{DC} (DC) - \gamma_{DW} (DW)}{\gamma_{LL} (LL + IM)}
\]

For the strength limit states:

\[
C = \phi_c \phi_s \phi R_n
\]

Where the following lower limit shall apply:

\[
\phi_c \phi_s \geq 0.85
\]

For the service limit states:

\[
C = f_R
\]

where:

- RF = Rating factor
- C = Capacity
- \(f_R \) = Allowable stress specified in the LRFD Specifications
- \(R_n \) = Nominal member resistance (as inspected)
- DC = Dead-load effect due to structural components and attachments
- DW = Dead-load effect due to wearing surface and utilities
- LL = Live-load effect
- IM = Dynamic load allowance
- \(\gamma_{DC} \) = LRFD load factor for structural components and attachments
\[\gamma_{DW} = \text{LRFD load factor for wearing surfaces and utilities} \]
\[\gamma_L = \text{Evaluation live-load factor} \]
\[\phi_c = \text{Condition factor} \]
\[\phi_s = \text{System factor} \]
\[\phi = \text{LRFD resistance factor} \]

6.1.2 Condition Factors

The condition factors, \(\phi_c \), given in Table 1 are only applied to strength limit-state ratings. The application of condition factors is optional based on the owner’s preference.

Table 1 Condition Factors

<table>
<thead>
<tr>
<th>Structural Condition of the Member</th>
<th>NBI Condition Rating</th>
<th>(\phi_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good or Satisfactory</td>
<td>6 or higher</td>
<td>1.00</td>
</tr>
<tr>
<td>Fair</td>
<td>5</td>
<td>0.95</td>
</tr>
<tr>
<td>Poor</td>
<td>4 or lower</td>
<td>0.85</td>
</tr>
</tbody>
</table>

6.1.3 System Factors

System factors are multipliers related to the level of redundancy of the complete superstructure system. Non-redundant bridges are penalized by requiring their members to provide higher safety levels than those of similar members in bridges with redundant configurations. System factors, \(\phi_s \), are given in Table 2 for various structure and member types.

Just as for the condition factors, the system factors are only applied to strength limit states. A system factor of 1.0 shall be used when checking shear at the strength limit state. Like the condition factors, the application of system factors may be considered optional based on the bridge owner’s preference. However, when rating nonredundant superstructures for legal loads using generalized load factors given in MBE Article 6A.4.4.2.3 (see Table 5), the system factors shown in Table 2 shall be used to maintain an adequate level of system safety. Additionally, the system factor for riveted and bolted gusset plates and their connection for all forces effects (Strength and Service) shall be taken as 0.90.

Table 2 System Factors

<table>
<thead>
<tr>
<th>Superstructure Type</th>
<th>(\phi_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welded members in two-girder/truss/arch bridges</td>
<td>0.85</td>
</tr>
<tr>
<td>Riveted members in two-girder/truss/arch bridges</td>
<td>0.90</td>
</tr>
<tr>
<td>Multiple eyebar members in truss bridges</td>
<td>0.90</td>
</tr>
<tr>
<td>Three-girder bridges with girder spacing ≤ 6 ft</td>
<td>0.85</td>
</tr>
<tr>
<td>Four-girder bridges with girder spacing ≤ 4 ft</td>
<td>0.95</td>
</tr>
<tr>
<td>All other girder bridges and slab bridges</td>
<td>1.00</td>
</tr>
<tr>
<td>Floorbeams with spacing > 12 ft and noncontinuous stringers</td>
<td>0.85</td>
</tr>
<tr>
<td>Redundant stringer subsystems between floorbeams</td>
<td>1.00</td>
</tr>
</tbody>
</table>
6.1.4 Load Factors

The load factors for use in the general load rating equation are given in MBE Table 6A.4.2.2-1.

Evaluation live-load factors, γ_L, are specified for each level of evaluation. These factors for steel bridges are summarized in Table 3.

The MBE allows owners to specify live load factors other than those given in Table 3 if comparable target reliability is achieved with site-specific load factors.

The dead load factors are summarized in Table 4.

<table>
<thead>
<tr>
<th>Limit State</th>
<th>Design Live Load</th>
<th>Legal Load</th>
<th>Permit Load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inventory</td>
<td>Operating</td>
<td></td>
</tr>
<tr>
<td>Strength I</td>
<td>1.75</td>
<td>1.35</td>
<td>See Table 5 & Table 6</td>
</tr>
<tr>
<td>Strength II</td>
<td>---</td>
<td>---</td>
<td>See Table 7 & Table 8</td>
</tr>
<tr>
<td>Service II</td>
<td>1.30</td>
<td>1.00</td>
<td>1.30</td>
</tr>
<tr>
<td>Fatigue</td>
<td>0.75**</td>
<td>---</td>
<td>1.00 *</td>
</tr>
</tbody>
</table>

* The Service II limit state load combination is optional for permit-load ratings.
** The Fatigue limit state load combination is optional for the inventory rating of the design live load.

6.1.5 Levels of Evaluation

The various levels of evaluation are structured to be performed in a sequential manner, as needed, starting with the design-load rating. The logical progress of load rating checks provides labor saving in a manual load rating process. In cases where load rating is done by automated methods, bridge owners may find it expedient to define all load models for analysis in a single run and utilize the results as needed.
6.2 Design-Load Rating

6.2.1 General

The design-load rating level screens bridges to assess their vulnerability. At this level, the HL-93 live-load model of the LRFD Specifications is applied. The HL-93 live load model was initially developed as a notional representation of shear and moment produced by a group of vehicles routinely permitted on highways of various states under “grandfather” exclusions to weight laws.

The traditional inventory and operating levels are maintained within the design-load rating procedures. Bridges that pass HL-93 screening at the Inventory level will have adequate capacity for all AASHTO legal loads and State legal loads that fall within the exclusion limits described in the LRFD Specifications.

Bridges that pass HL-93 screening only at the Operating level will have adequate capacity for AASHTO legal loads, but may not rate (The rating factor, RF, is less than 1.0) for all State legal loads, specifically those vehicles significantly heavier than the AASHTO trucks.

6.2.2 Live Load

The HL-93 notional live-load model of the LRFD Specifications discussed in the Steel Bridge Design Handbook module titled Loads and Combinations, including the dynamic load allowance, is applied in design-load rating to provide a convenient screening of existing bridges for all federal and state legal loads.

6.2.3 Limit States

Strength I and Service II load combinations shall be checked for the design loading. These limit states are as discussed in the Steel Bridge Design Handbook module titled Limit States for design.

6.2.4 Load Factors

The evaluation live load factors for the design-load rating level are as given in Table 3 above.

6.3 Legal-Load Rating

6.3.1 General

Legal-load ratings establish the need for posting or bridge strengthening when the rating factor, RF, is less than 1.0. This live-load capacity corresponds to a minimum target reliability index, β_r, of 2.5. Bridges with a rating factor, RF, less than 1.0 for legal loads may be evaluated for overweight permit loads.
6.3.2 Live Load

There are two main categories of legal loads that comply with all federal weight laws so they are legal in all 50 states:

1. Routine commercial vehicles, and
2. Specialized hauling vehicles (SHVs)

Dynamic load allowance is as specified in the LRFD Specifications except for longitudinal members with spans greater than 40 ft, where the dynamic load allowance may be decreased based upon the observed riding surface condition as provided in the Commentary to Article 6A.4.4.3 of the MBE.

6.3.2.1 Routine Commercial Vehicle

The three AASHTO family of legal loads (Type 3, Type 3S2 and Type 3-3) are used in load rating for routine commercial traffic. They have only fixed axles. These legal loads model three portions of the federal bridge formula which control short, medium, and long span lengths. These AASHTO vehicles model many of the configurations of present truck traffic. They are appropriate for use as rating and posting vehicles as they satisfy the goal of providing uniform reliability over all span lengths. Additionally, they are widely used as truck symbols on load posting signs and provide continuity with past practice.

The traditional family of three AASHTO legal-load vehicles is shown schematically in Figures D6A-1, D6A-2 and D6A-3 of the MBE.

For span lengths up to 200 feet, the MBE requires that only a legal-load vehicle is considered for legal-load rating. For span lengths greater than 200 ft., critical load effects shall be generated through the application of an AASHTO Type 3-3 vehicle multiplied by 0.75 combined with a lane load of 0.2 kips per linear feet. The superposition of the Type 3-3 vehicle and the lane load results in uniform reliability for span lengths greater than 200 ft (See Figure D6A-4 of the MBE). For negative moments and interior reactions of all span lengths, load effects shall also consider the application of two AASHTO Type 3-3 vehicles multiplied by 0.75 combined with a lane load of 0.2 kips per linear feet, where the two vehicles are spaced at 30 feet, between the rear and front axle (See Figure D6A-5 of the MBE).

6.3.2.2 Specialized hauling vehicles (SHV’s)

Since the adoption of the AASHTO family of three legal loads, the trucking industry has introduced specialized single unit trucks with closely-spaced multiple axles of maximum load up to 80,000 lbs, still satisfying the federal bridge formula. These trucks known as Specialized Hauling Vehicles (SHV) are legal in all states. SHVs commonly have axle groups with lift axles, which should be in the down position when the truck is loaded.
Short multi-axle single-unit trucks with liftable axles are not adequately modeled by the traditional family of three AASHTO legal loads. The adoption of these newer AASHTO legal loads to represent these new truck configurations ensures the safety of our bridges for all current legal traffic live loads. These new SHVs include the SU4, SU5, SU6 and SU7; shown schematically in Figure D6A-7 of the MBE.

6.3.2.3 Notional Rating Load (NRL)

Notional Rating Load (NRL) was developed to serve as a single load model that will envelop the load effects on simple and continuous span bridges of the most critical single-unit SHV configurations weighing up to 80 kips. It is termed “notional” because it does not represent a particular truck.

Bridges that rate (the rating factor, RF, is greater or equal to 1.0) for the NRL will have adequate load capacity for all legal SHVs up to 80 kips. Bridges that do not rate for the NRL should be investigated to determine posting needs using the specific SHVs discussed previously.

The NRL is shown schematically in Figure D6A-6 of the MBE.

6.3.3 Limit States

The Strength I and Service II limit-state load combinations are mandatory for legal-load ratings. These limit states are as discussed in the Steel Bridge Design Handbook volume titled Limit States for design.

6.3.4 Load Factors

The evaluation live-load factors for legal-load rating at the Strength I limit state load combination are a function of the average daily truck traffic (ADTT). The evaluation live-load factor for the Service II limit-state load combination is 1.30 as shown in Table 3.

6.3.4.1 Routine Commercial Vehicles

The evaluation live-load factors for routine commercial vehicles at the Strength I limit-state load combination are given in Table 5 (See Table 6A.4.4.2.3a-1 of the MBE). Linear interpolation is permitted for ADTT values between 1,000 and 5,000.

Table 5 Routine Commercial Vehicle Evaluation Live Load Factors for Strength I

<table>
<thead>
<tr>
<th>Traffic Volume In One Direction</th>
<th>Load Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>1.45</td>
</tr>
<tr>
<td>ADTT ≥ 5,000</td>
<td>1.45</td>
</tr>
<tr>
<td>ADTT ≤ 1,000</td>
<td>1.30</td>
</tr>
</tbody>
</table>
6.3.4.2 Specialized Hauling Vehicles

The evaluation live-load factors for SHVs at the Strength I limit-state load combination are given in Table 6. (See Table 6A.4.4.2.3b-1 of the MBE). Linear interpolation is permitted for ADTT values between 1,000 and 5,000.

<table>
<thead>
<tr>
<th>Traffic Volume In One Direction</th>
<th>Load Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>1.45</td>
</tr>
<tr>
<td>ADTT ≥ 5,000</td>
<td>1.45</td>
</tr>
<tr>
<td>ADTT ≤ 1,000</td>
<td>1.30</td>
</tr>
</tbody>
</table>

6.4 Permit-Load Rating

6.4.1 General

Permit-load rating reviews the safety and serviceability of bridges in the review of permit applications for the passage of vehicles above the legally established weight limitations. This third level of rating should only be applied to bridges having sufficient capacity for legal loads. Load factors by permit type and traffic conditions on the bridge are specified for reviewing the safety inherent with the passage of the overweight truck. Guidance is also provided on the serviceability that may be checked when reviewing permit applications.

6.4.2 Live Load

The actual permit vehicle’s gross vehicle weight and axle configuration will be the live load used in the permit-load evaluation.

The MBE categorizes permit loads into two classes:

1. Routine/annual permits, and
2. Special (limited crossing) permits.

Routine or annual permits are usually valid for unlimited trips over a period of time, up to one year.

Special permits are usually valid for a single trip, or for a limited number of trips, for a vehicle of specified configuration, axle weights, and gross weight. Special permit vehicles are usually heavier than those vehicles issued annual permits.

For spans up to 200 ft, only the permit vehicle shall be considered present in the lane. For span lengths between 200 and 300 ft and when checking negative moments in continuous span bridges, an additional lane load shall be applied to simulate closely following vehicles. The lane load shall be taken as 0.2 kips per linear feet in each lane. The lane load may be superimposed on the permit vehicle (for ease of analysis) and is applied to those portions of the span where the loading effects add to the permit load effects.
6.4.3 Limit States

Permits are checked using the Strength II limit-state load combination with the Service II limit-state load combination optional for steel bridges to limit potential permanent deformations. These limit states are as discussed in the Steel Bridge Design Handbook volume titled *Limit States* for design.

6.4.4 Load Factors

6.4.4.1 Routine/annual Permits

Routine permit-load rating uses the multi-lane distribution factors (DFs) of the LRFD Specifications. This assumes simultaneous side-by-side presence of two equally heavy vehicles in each lane.

The evaluation live-load factors for routine or annual permits are given in Table 7, below (See Table 6A.4.5.4.2a-1 of the MBE).

The live-load factors for routine permits are reduced with increasing permit weight, compared to legal loads, to account for the small likelihood of such simultaneous events during the evaluation period. This reduction accommodates the conservative application of multi-lane DFs.

The live-load factors are derived to account for the possibility of simultaneous presence of heavy trucks on the bridge when the permit vehicle crosses the span. Thus, the load factors are higher for spans with higher average daily truck traffic (ADTT).

In Table 7, load factors are based on the Permit Weight Ratio (PWR), which is equal to the Gross Vehicle Weight (GVW) divided by the Front Axle to Rear Axle Length (AL). Only the axles acting on the superstructure shall be considered in the calculation of the Permit Weight Ratio.

Table 7 Routine/annual-permit Evaluation Live Load Factors for Strength II for Steel Bridges

<table>
<thead>
<tr>
<th>Distribution Factor (DF)</th>
<th>ADTT</th>
<th>Load Factor by Permit Weight Ratio (PWR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PWR < 2.0 (kip/ft)</td>
</tr>
<tr>
<td>Two or More Lanes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 5,000</td>
<td>1.40</td>
<td>1.35</td>
</tr>
<tr>
<td>= 1,000</td>
<td>1.35</td>
<td>1.25</td>
</tr>
<tr>
<td>< 100</td>
<td>1.30</td>
<td>1.20</td>
</tr>
</tbody>
</table>

For situations where the routine permit is below 100 kips, the live-load factors approach those given for evaluating legal loads. When the routine permit weight is above 100 kips, the live-load factors are reduced as shown in Table 7. This reduction reflects the lower probability of two simultaneously heavy vehicles equal to the permit weight crossing the span simultaneously.

Linear interpolation can be used for values of ADTT and weight between the various ADTT and weight limits of the tables.
6.4.4.2 Special Permits

The MBE provides evaluation live-load factors for special permits for use with the one-lane DF’s of the LRFD Specifications. The permit live-load factor accounts for the probable weight of an adjacent random truck during a special permit crossing when the bridge is open to other traffic.

When performing a special permit-load rating, the single-lane multiple presence factor of 1.20 incorporated into the LRFD one-lane DF should be divided out as it specifically relates to the HL-93 live-load model.

The evaluation live-load factors for special permit-load rating at the Strength II limit-state load combination are given in Table 8 below (See Table 6A.4.5.4.2a-1 of the MBE).

<table>
<thead>
<tr>
<th>Trip Type</th>
<th>Other Traffic</th>
<th>Distribution Factor (DF)</th>
<th>ADTT</th>
<th>Load Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>Escorted with no other vehicles on bridge</td>
<td>One Lane</td>
<td>N/A</td>
<td>1.10</td>
</tr>
<tr>
<td>Single</td>
<td>Mix with traffic, other vehicles may be on bridge</td>
<td>One Lane</td>
<td>All ADTTs</td>
<td>1.20</td>
</tr>
<tr>
<td>Multiple</td>
<td></td>
<td>One Lane</td>
<td>All ADTTs</td>
<td>1.40</td>
</tr>
</tbody>
</table>

6.4.4.3 Refined Analysis and Permit Load Evaluations

Additional guidelines regarding permit vehicle live load factors are provided in the MBE for multi-girder bridges that utilize refined analysis methods to determine the member force effects.

When routine permit load checks are evaluated using the results of a refined analysis, the load factors given in Table 7 shall be increased by adding 0.10 to the load factor shown, and applied on two permit trucks placed in adjacent lanes. In the case of routine permits, the expected number of crossings is unknown so a conservative approach is adopted for the possibility of multiple routine permit loads on the structure at the same time.

When escorted special permits with no other vehicles on the bridge are evaluated using a refined analysis, a live load factor of 1.1 shall be applied the special permit vehicle, which is similar to the load factor shown in Table 8.

When an escorted especial permit is assumed to travel over a bridge at a crawl speed (less than 10 mph), and the Dynamic Load Allowance (Impact) effects are neglected, the rating shall consider the load factor provided on Table 8 (Table 6A.4.5.4.2a-1 of the MBE), but increase by a factor of 1.05. This increase in live load factor is intended to satisfy the minimum value of the reliability index, of $\beta_{\min} = 1.50$.

When special permits mixed with traffic are evaluated using a refined analysis, a live load factor of 1.0 shall be applied to the special permit truck, while a live load factor of 1.10 shall be applied to governing AASHTO legal truck placed in the adjacent lane.
The calibration of these previously discussed load factors for refined analysis for multi-girder bridges accounts for the conservatism and the variability of the AASHTO LRFD load distribution factors compared to those obtained from refined methods of analysis.
7.0 RATING EXAMPLES

Up-to-date rating examples are included in an appendix to the MBE. These examples are continually updated with any interim revisions to the MBE.

The rating examples are summarized in Table 9 below.

<table>
<thead>
<tr>
<th>Example Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Load rating of an interior and exterior girder of a simple-span composite steel stringer bridge.</td>
</tr>
<tr>
<td>A5</td>
<td>Load rating of an interior girder of a four-span continuous straight welded steel plate-girder bridge.</td>
</tr>
<tr>
<td>A6</td>
<td>Load rating of selected members of a simple-span through Pratt steel truss bridge.</td>
</tr>
<tr>
<td>A8</td>
<td>Load rating of a girder and floorbeam of a simple-span two-girder steel bridge.</td>
</tr>
<tr>
<td>A11</td>
<td>Single span through truss illustrating the load rating of gusset plates.</td>
</tr>
</tbody>
</table>
8.0 REFERENCES

