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FOREWORD 

 
It took an act of Congress to provide funding for the development of this comprehensive 
handbook in steel bridge design.  This handbook covers a full range of topics and design 
examples to provide bridge engineers with the information needed to make knowledgeable 
decisions regarding the selection, design, fabrication, and construction of steel bridges. The 
handbook is based on the Fifth Edition, including the 2010 Interims, of the AASHTO LRFD 
Bridge Design Specifications.  The hard work of the National Steel Bridge Alliance (NSBA) and 
prime consultant, HDR Engineering and their sub-consultants in producing this handbook is 
gratefully acknowledged.  This is the culmination of seven years of effort beginning in 2005. 
 
The new Steel Bridge Design Handbook is divided into several topics and design examples as 
follows: 
 

 Bridge Steels and Their Properties 
 Bridge Fabrication 
 Steel Bridge Shop Drawings 
 Structural Behavior 
 Selecting the Right Bridge Type 
 Stringer Bridges 
 Loads and Combinations 
 Structural Analysis 
 Redundancy 
 Limit States 
 Design for Constructibility 
 Design for Fatigue 
 Bracing System Design 
 Splice Design 
 Bearings 
 Substructure Design 
 Deck Design 
 Load Rating 
 Corrosion Protection of Bridges 
 Design Example: Three-span Continuous Straight I-Girder Bridge 
 Design Example: Two-span Continuous Straight I-Girder Bridge 
 Design Example: Two-span Continuous Straight Wide-Flange Beam Bridge 
 Design Example: Three-span Continuous Straight Tub-Girder Bridge 
 Design Example: Three-span Continuous Curved I-Girder Beam Bridge 
 Design Example: Three-span Continuous Curved Tub-Girder Bridge 

 
These topics and design examples are published separately for ease of use, and available for free 
download at the NSBA and FHWA websites: http://www.steelbridges.org, and 
http://www.fhwa.dot.gov/bridge, respectively.  
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The contributions and constructive review comments during the preparation of the handbook 
from many engineering processionals are very much appreciated.  The readers are encouraged to 
submit ideas and suggestions for enhancements of future edition of the handbook to Myint Lwin 
at the following address:  Federal Highway Administration, 1200 New Jersey Avenue, S.E., 
Washington, DC 20590. 
                                                                                                   

                                                                                                  
                                                                                                    M. Myint Lwin, Director 
                                                                                                    Office of Bridge Technology 
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1.0 INTRODUCTION 

 
Tub girders are often selected over I-girders because of their pleasing appearance offering a 
smooth, uninterrupted, cross section.  Bracing, web stiffeners, utilities, and other structural and 
nonstructural components are typically hidden from view within the steel tub girder, leading to a 
clean, uncluttered appearance.  Additionally, steel tub girder bridges offer advantages over other 
superstructure types in terms of span range, stiffness, durability, and future maintenance.   
 
Steel tub girders can potentially be more economical than steel plate I-girders in long span 
applications due to the increased bending strength offered by their wide bottom flanges, and 
because they require less field work due to handling fewer pieces.  Steel tub girders can also be 
suitable in short span ranges as well, especially when aesthetic preferences or constructability 
considerations preclude the use of other structure types.  However, tub girders are typically 
designed with a minimum girder depth of 5 feet deep to allow access for inspection, thus limiting 
their efficiency in short span applications. 
 
Tub girders, as closed-section structures, provide a more efficient cross section for resisting 
torsion than I-girders.  The increased torsional resistance of a closed composite steel tub girder 
also results in an improved lateral distribution of live loads.  For curved bridges, warping, or 
flange lateral bending, stresses are lower in tub girders, when compared to I-girders, since tub 
girder carry torsion primarily by means of St. Venant torsional shear flow around the perimeter 
of their closed sections, whereas I-girders have very low St. Venant torsional stiffness and carry 
torsion primarily by means of warping.   
 
The exterior surfaces of tub girders are less susceptible to corrosion since there are fewer details 
for debris to accumulate, in comparison to an I-girder structure.  For tub girders, stiffeners and 
most diaphragms are located within the tub girder, protected from the environment.  
Additionally, the interior surface of the tub girder is protected from the environment, further 
reducing the likelihood of deterioration.  Tub girder bridges tend to be easy to inspect and 
maintain since much of the inspection can occur from inside the tub girder, with the tub serving 
as a protected walkway. 
 
Erection costs for tub girders may be lower than that of I-girders because the erection of a single 
tub girder, in a single lift, is equivalent to the placement and connection of two I-girders.  Tub 
girders are also inherently more stable during erection, due to the presence of lateral bracing 
between the top flanges.  Overall, the erection of a tub girder bridge may be completed in less 
time than that of an I-girder counterpart because there are fewer pieces to erect, a fewer number 
of external diaphragms to be placed in the field, and subsequently fewer field connections to be 
made.  This is a significant factor to consider when available time for bridge erection is limited 
by schedule or site access. 
 
In many instances, these advantages are not well reflected in engineering cost estimates based 
solely on material quantity comparisons.  Consequently, tub girder bridges have historically been 
considered more economical than I-girder bridges only if their use resulted in a reduction in the 
total number of webs in cross section, particularly for straight bridges.  However, if regional 
fabricators have the experience and equipment to produce tub girders efficiently, the 
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competitiveness of tub girders in a particular application can be enhanced.  Therefore, the 
comparative economies of I- and tub girder systems should be evaluated on a case-by-case basis, 
and the comparisons should reflect the appropriate costs of shipping, erection, future inspection 
and maintenance as well as fabrication.    
 
Furthermore, designers should not feel limited by overly-strict reading of the AASHTO design 
provisions for tub girders in some cases.  For example, there are currently cross-sectional 
limitations placed on the use of approximate live load distribution factors for straight tub girders 
in the AASHTO LRFD Bridge Design Specifications [1].  Limiting the proportions of tub girder 
cross-sections solely to allow the use of these approximate live load distribution factors (to allow 
the use of simplified analysis methods) may reduce the efficiency and competitiveness of a tub-
girder cross-section.  However, these cross-section proportion limitations do not apply when a 
refined analysis is employed; thus the use of a refined analysis method allows the designer to 
explore additional, and perhaps more economical, design options.   
 
This design example demonstrates the design of a horizontally curved three-span continuous 
composite tub girder bridge with a span arrangement of 160′-0″ – 210′-0″ – 160′-0″.  This 
example illustrates the flexural design of a section in positive flexure, the flexural design of a 
section in negative flexure, computation of distortional stresses, the shear design of the web, the 
design of the bottom flange longitudinal stiffener, the design of an internal diaphragm, the design 
of a top flange lateral bracing member, the design of a bolted field splice, as well as other design 
and analysis related topics.   
 
The bridge cross-section consists of two trapezoidal tub girders with top flanges spaced at 10′-0″ 
on centers, 12′-6″ between the centerline of adjacent top tub flanges, and 4′-0″ overhangs for a 
deck width of 40′-6″ out-to-out.  For the sake of brevity, only the AASHTO LRFD Strength I 
and Service II load combinations are demonstrated in this design example.  The effects of wind 
loads are not considered.  The reader may refer to Design Example 1: Three-Span Continuous 

Straight Composite I-Girder for information regarding additional load combination cases and 
wind load effects.   
 
The example calculations provided herein comply with the current AASHTO LRFD Bridge 

Design Specifications (5th Edition, 2010), but the analysis described herein was not performed as 
part of this design example.  The analysis results and general superstructure details contained 
within this design example were taken from the design example published as part of the National 
Cooperative Highway Research Program (NCHRP) Project 12-52 published in 2005, titled 
“AASHTO-LRFD Design Example: Horizontally Curved Steel Box Girder Bridge, Final 
Report” [2]. 
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2.0 OVERVIEW OF LRFD ARTICLE 6.11 

 
The design of tub girder flexural members is contained within Article 6.11 of the Fifth Edition of 
the AASHTO LRFD Bridge Design Specifications [1], referred to herein as AASHTO LRFD (5

th
 

Edition, 2010).  The provisions of Article 6.11 are organized to correspond to the general flow of 
the calculations necessary for the design of tub girder flexural members.  Most of the provisions 
are written such that they are largely self-contained, however to avoid repetition, some portions 
of Article 6.11 refer to provisions contained in Article 6.10 for the design of I-girder sections 
when applicable (particularly those pertaining to tub girder top flange design, which is 
fundamentally similar to I-girder design).  The provisions of Article 6.11 are organized as 
follows: 
 
6.11.1 General 
6.11.2 Cross-Section Proportion Limits 
6.11.3 Constructibility 
6.11.4 Service Limit State 
6.11.5 Fatigue and Fracture Limit State 
6.11.6 Strength Limit State 
6.11.7 Flexural Resistance - Sections in Positive Flexure 
6.11.8 Flexural Resistance - Sections in Negative Flexure  
6.11.9 Shear Resistance 
6.11.10 Shear Connectors 
6.11.11 Stiffeners 
 
It should be noted that Article 6.11, and specifically Article 6.11.6.2, does not permit the use of 
Appendices A and B because the applicability of these provisions to tub girders has not been 
demonstrated; however, Appendices C and D are applicable.  Flow charts for flexural design of 
steel girders according to the new provisions, along with a revised outline giving the basic steps 
for steel-bridge superstructure design, are provided in Appendix C.   Appendix C provides a 
useful reference for tub girder design. Fundamental calculations for flexural members are 
contained within Appendix D. 
 
Example calculations demonstrating the provisions of Article 6.10, pertaining to I-girder design, 
are provided in Example 1 for a straight I-girder bridge, and Example 4 for a horizontally curved 
I-girder bridge within this Steel Bridge Design Handbook.  This design example will highlight 
several of the provisions of the AASHTO LRFD (5

th
 Edition, 2010) as they relate to horizontally 

curved tub girder design. 
 
One significant change in the AASHTO LRFD (5

th
 Edition, 2010) from earlier LRFD 

Specifications (prior to third edition) is the inclusion of the flange lateral bending stress in the 
design checks.  The provisions of Articles 6.10 and 6.11 provide a unified approach for 
consideration of major-axis bending and flange lateral bending, for both straight and curved 
bridges.  Bottom flange lateral bending stresses in tub girders tend to be quite small, due to the 
width of the bottom flange, and can typically be neglected.  Top flange lateral bending is caused 
by the outward thrust due to web inclination, wind load, temporary support brackets for deck 
overhangs, curvature, and from loads applied by the lateral bracing system. 
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In addition to providing adequate strength, the constructibility provisions of Article 6.11.3 ensure 
that nominal yielding does not occur and that there is no reliance on post-buckling resistance for 
main load-carrying members during critical stages of construction.  The AASHTO LRFD (5

th
 

Edition, 2010) specifies that for critical stages of construction, both compression and tension 
flanges must be investigated, and the effects of top flange lateral bending should be considered 
when deemed necessary by the Engineer.  For noncomposite top flanges in compression, 
constructibility design checks ensure that the maximum combined stress in the flange will not 
exceed the minimum yield strength, the member has sufficient strength to resist lateral torsional 
and flange local buckling, and that web-bend buckling will not occur.  For noncomposite bottom 
flanges in compression, during critical stages of construction, local buckling of the flange is 
checked in addition to web bend-buckling resistance.  For noncomposite top and bottom flanges 
in tension, constructibility design checks make certain that the maximum combined stress will 
not exceed the yield strength of the flanges during construction.   
 
One additional requirement specified particularly for tub girders sections is in regard to 
longitudinal warping and transverse bending stresses.  When tub girders are subjected to torsion, 
their cross-sections become distorted, resulting in secondary bending stresses.  Therefore, per 
Article 6.11.5, longitudinal warping stresses and transverse bending stresses due to cross-section 
distortion shall be considered for: 

 Single tub girder in straight or horizontally curved bridges 
 Multiple tub girders in straight bridges that do not satisfy requirements of Article 6.11.2.3 
 Multiple tub girders in horizontally curved bridges 
 Any single or multiple tub girder with a tub flange that is not fully effective according to 

the provisions of Article 6.11.1.1. 
 
In accordance with Article 6.11.1.1, transverse bending stresses due to cross section distortion 
shall be considered for fatigue as specified in Article 6.11.5, and at the strength limit state.  
Transverse bending stresses at the strength limit state shall not exceed 20.0 ksi.  Longitudinal 
warping stresses due to cross-section distortion shall be considered for fatigue as specified in 
Article 6.11.5, but may be ignored at the strength limit state.  Article C6.11.1.1 allows the use of 
the beam-on-elastic-foundation (BEF) analogy developed by Wright and Abdel-Samad [3] for 
determining the transverse bending stresses and the longitudinal warping stresses due to cross-
section distortion.  The BEF analogy is discussed in more detail within the calculations provided 
in this design example. 
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3.0 DESIGN PARAMETERS 

 
The following data apply to this design example: 
 
Specifications: 2010 AASHTO LRFD Bridge Design Specifications, Customary U.S. 

Units, Fifth Edition [1] 
Structural Steel: AASHTO M270, Grade 50W (ASTM A709, Grade 50W) uncoated 

weathering steel with Fy = 50 ksi, and conservatively Fu = 65 ksi 
Concrete: f’c = 4.0 ksi, = 150 pcf 
Slab Reinforcing Steel: AASHTO M31, Grade 60 (ASTM A615, Grade 60) with Fy = 60 ksi 
 
The bridge has spans of 160′-0″ – 210′-0″ – 160′-0″ measured along the centerline of the bridge.  
Span lengths are arranged to give relatively equal positive dead load moments in the end spans 
and center span.  The radius of the bridge is 700 ft at the centerline of the bridge.   
 
The out-to-out deck width is 40.5 ft, and the bridge is to be designed for three 12 ft traffic lanes.  
The roadway is superelevated at 5 percent.  All supports are radial to the roadway.  The framing 
consists of two trapezoidal tub girders with the top of the webs in each tub spaced 10 ft apart at 
the top of the tub and with a deck span of 12.5 ft between the top of the interior webs of the two 
adjacent tubs. 
 
Structural steel having a specified minimum yield stress of 50 ksi is used throughout the bridge.  
The deck is a conventional cast-in-place concrete deck, with a specified minimum 28-day 
compressive strength of 4,000 psi.  The structural deck thickness is 9.5 inches, and there is no 
integral wearing surface assumed.  The deck haunch is 4.0 inches thick, measured from the top 
of the web to the bottom of the deck, and is constant throughout the structure.  The width of the 
haunch is assumed to be 20.0 inches for weight computations.   
 
Shear connectors are provided along the entire length of each top flange, therefore the tub girders 
in this example are composite throughout the entire span, including regions of negative flexure.  
The shear connectors are 7/8 inch diameter by 6 inches in length.  All tub girders (whether 
straight or curved) are subject to torsional loading, and the use of shear connectors along the 
entire length of a tub girder bridge (in both the positive and negative moment regions) is required 
to ensure an adequate and continuous load path for St. Venant torsional shear flows along the 
entire length of the girder. 
 
Permanent steel stay-in-place deck forms are used between the girders; the forms are assumed to 
weigh 15.0 psf since it is assumed concrete will be in the flutes of the deck forms. In this 
example, the steel stay-in-place deck forms are used between the top flanges of individual tub 
girders and between the top flanges of adjacent girders. Sequential placement of the concrete 
deck is considered in this design example. 
 
An allowance for a future wearing surface of 25.0 psf is incorporated in the design.  Parapets are 
each assumed to weight 495 lb/ft. 
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The bridge is designed for HL-93 live load, in accordance with Article 3.6.1.2.  Multiple 
presence factors are accounted for in the analysis, as specified in Article 3.6.1.1.2  Live load for 
fatigue is taken as defined in Article 3.6.1.4.  The bridge is designed for a 75-year fatigue life, 
and single lane Average Daily Truck Traffic (ADTT)SL in one direction is assumed to be 1,000 
trucks per day. 
 
The bridge site is assumed to be located in Seismic Zone 1, so seismic effects are not considered 
in this design example. 
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4.0 GENERAL STEEL FRAMING CONSIDERATIONS 

 
Composite tub girder bridges fabricated using uncoated weathering steel have performed 
successfully without any interior corrosion protection.  However, the interiors of tub girders 
should always be coated in a light color to aid visibility during girder inspection.  Without owner 
direction towards a specific coating and preparation, girder interiors should receive a light brush 
blast and be painted with a white or light colored paint capable of telegraphing cracks in the steel 
section.  Specified interior paint should be tolerant of minimal surface preparation.  At the 
Engineer’s discretion, an allowance may be made for the weight of the paint. 
 
Provisions for adequate draining and ventilation of the interior of the tub are essential.  As 
suggested in the NSBA Publication Practical Steel Tub Girder Design [4], bottom flange drain 
holes should be 1 ½ inches in diameter and spaced along the bottom flange’s low side every 50 
feet, and be placed 4 inches away from the web plate.  Access holes must be provided to allow 
for periodic structural inspection of the interior of the tub.  The access holes should provide easy 
access for authorized inspectors.  Solid doors can be used to close the access holes, however they 
should be light in weight, and they should be hinged and locked, but not bolted.  Wire mesh 
screens should always be place over copes and clips in end plates, and over the bottom flange 
drain holes to prevent entry of wildlife and insects.  Wire mesh should be 10 gage to withstand 
welding and blasting and have a weave of approximately ½ inch by ½ inch.   
 
Additional detailing guidelines can be found at the AASHTO/NSBA Steel Bridge 
Collaboration’s Website, with particular attention given to document G1.4, Guidelines for 

Design Details [5].  Four other detailing references offering guidance include the NSBA 
Publication Practical Steel Tub Girder Design [4], the Texas Steel Quality Council’s Preferred 

Practices for Steel Bridge Design, Fabrication, and Erection [6], the Mid-Atlantic States 
Structural Committee for Economic Fabrication (SCEF) Standards, and the AASHTO/NSBA 
Steel Bridge Collaboration Guidelines for Design for Constructibility [7].   
 
4.1 Span Arrangement 

 
Often, site specific features will influence the span arrangement required.  Careful consideration 
to the layout of the steel framing is an important part of the design process and involve 
alternative span arrangements for the superstructure and substructure cots to arrive at the most 
economical solution.  In the absence of site constraints, choosing a balanced span arrangement 
for continuous steel bridges (end spans approximately 80% of the length of the center spans) will 
typically provide an efficient design.  The span arrangement for this example bridge has spans of 
160 feet – 210 feet – 160 feet′.  The framing plan of the bridge for this example is shown in 
Figure 1. Arch
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Figure 1  Framing Plan of the Tub Girder Bridge (all lengths shown are taken along the 

centerline of the bridge) 
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4.2 Field Section Sizes 

 
The lengths of field sections are generally dictated by shipping (weight and length) restrictions.  
Generally, the weight of a single shipping piece is restricted to 200,000 lbs, while the piece 
length is limited to a maximum of 140 feet, with an ideal piece length of 120 feet.  However, 
shipping requirements are typically dictated by state or local authorities, in which additional 
restrictions may be placed on piece weight and length.  Handling issues during erection and in 
the fabrication shop also need to be considered in the determination of field section lengths, as 
they may govern the length of field sections.  Therefore, the Engineer should consult with 
contractors and fabricators regarding any specific restrictions that might influence the field 
section lengths.   
 
Field section lengths should also be determined with consideration given to the number of field 
splices required, as well as the locations of field splices.  It is desirable to locate field splices as 
close as possible to dead load inflection points, so as to reduce the forces that must be carried by 
the field splice.  Field splices located in higher moment regions can become quite large, with cost 
increasing proportionally to their size.  The Engineer should determine an economical solution 
for the particular span arrangement.  For complex and longer span bridges, the fabricator’s input 
can be helpful in reaching an economical solution. 
 
The final girder field sections lengths are shown on the framing plan in Figure 1.  The longest 
field section is the field section of Girder G2 over the pier, and has a length of approximately 
116.75 feet.    This field section is also the heaviest field section, with a total approximate weight 
of 99,000 pounds (including internal cross frames, top flange lateral bracing, and other steel 
details).    
 
In curved girder bridges, the Engineer must also consider the girder sweep and the subsequent 
total width when determining the lengths of the field sections.  The curvature combined with the 
girder length can cause the field section to be too wide to transport, depending on shipping routes 
and local requirements.  In the case of the field section of Girder G2 over the pier, the total width 
of the tub girder including girder sweep and the width of the top flanges is approximately 13.90 
feet. 
 
4.3 Bridge Cross Section and Girder Spacing 

 
When developing the bridge cross-section, the designer will evaluate the number of girder lines 
required, relative to the overall cost.  Specifically, the total cost of the superstructure is a 
function of steel quantity, details, and erection costs.  Developing an efficient bridge cross-
section should also give consideration to providing an efficient deck design, which is generally 
influenced by girder spacing and overhang dimensions.  Specifically, with the exception of an 
empirical deck design, girder spacing significantly effects the design moments in the deck slab.  
In the case of tub girder bridges, which are comprised of torsionally stiff units, the deck should 
be designed to accommodate the transverse bending associated with differential girder deflection 
as shown in Figure C9.7.2.4-1 of the AASHTO LRFD (5

th
 Edition, 2010).  Larger deck overhangs 

result in a greater load on the exterior web of the tub girder.  Larger overhangs will increase the 

Arch
ive

d



 

10 
 

bending moment in the deck, caused by the cantilever action of the overhang, resulting in 
additional deck slab reinforcing for the overhang region of the deck.   
 
In addition, wider deck spans between top flanges can become problematic for several reasons.  
Some owners have very economical deck details standards that may not be suited, or even 
permitted, for wider decks spans.  At the same time, wider deck spans are progressively more 
difficult to form and construct.  Wider deck spans also limit options for future deck replacement 
and partial deck removal. 
 
As shown in Figure 2, the example bridge cross-section consists of two trapezoidal tub girders 
with top flanges spaced at spaced at 10.0 feet on centers, 12.5 feet between the centerline of 
adjacent top flanges with 4.0 feet deck overhangs and an out-to-out deck width of 40.5 feet.  The 
37.5 feet roadway width can accommodate up to three 12-foot-wide design traffic lanes.  The 
total thickness of the cast-in-place concrete deck is 9.5 inch including with no integral wearing 
surface.  The concrete deck haunch is 4 inch deep measured from the top of the web to the 
bottom of the deck.   
 

 
Figure 2  Cross Section of the Tub Girder Bridge [2] 

 
4.4 Internal and External Cross-Frame Bracing 

 
Internal intermediate cross-frames are provided in tub girders to control cross-sectional 
distortion.  Cross-sectional distortion is caused by torsional loads that do not act on the tub girder 
in the same pattern as the St. Venant shear flow, which is uniformly distributed along the 
circumference of the tub girder cross-section.  Cross-sectional distortion introduces additional 
stresses in the tub girder and, therefore, should be minimized.  Distortional stresses can be 
neglected in design if a sufficient number of internal cross-frames with adequate stiffness are 
provided.  At a minimum internal cross-frames shall be placed at points of maximum moment 
within a span and at points adjacent to field splices in straight bridges.  Spacing of internal 
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diaphragms, considered during development of the framing plan, should be influenced by factors 
such as the angle and length of lateral bracing members.   
 
Most cross-frames in modern tub girder bridges are K-frames, which allow better access during 
construction and inspection.  Slenderness requirements (KL/r) generally govern the design of 
cross-frame members, however handling and strength requirements should always be 
investigated.  When refined analysis methods are used and the cross-frame members are included 
in the structural model to determine force effects, the cross-frame members are to be designed 
for the calculated force effects.  Consideration should be given to the cross-frame member forces 
during construction.  When simplified analysis methods are used, such cross-frame forces due to 
dead and live loads are typically difficult to calculate.  Therefore, the cross-frame members 
should at least be designed to transfer wind loads and carry construction loads due to deck 
overhang brackets, control tub girder cross section distortion, and satisfy appropriate slenderness 
requirements.   
 
External intermediate cross-frames may be incorporated to control differential displacement and 
rotation of individual tub girders during deck placement.  In a finished bridge, when the tub 
girders are fully closed and the concrete deck effectively attaches the girders together, twist 
rotation is expected to be small and external cross-frames are not necessarily required.   
 
External intermediate cross-frames typically utilize a K-frame configuration, with depth closely 
matching the girder depth for efficiency and simplification of supporting details.  At locations of 
external intermediate cross-frames, there should be bracing inside the tub girder to receive the 
forces of the external bracing.  In some cases, for aesthetic reasons, it may be desirable to 
remove the external intermediate cross-frames after the deck has hardened.  However, extreme 
care should be taken in evaluating the effects that the removal of external intermediate cross-
frames has on the structure.  The NSBA Publication Practical Steel Tub Girder Design [4] offers 
discussion on this topic. 
 
Based on the preceding considerations, the internal cross-frame spacings shown on the framing 
plan in Figure 1 were chosen for this example. The tub girders are braced internally at 
intermediate locations with K-type cross-frames, where the diagonals intersect the top strut at the 
top flange level.  The internal cross-frames are uniformly spaced in the end span and center span 
field sections.  Internal cross-frame spacing in the center span positive flexure region is 15 feet.  
The top struts; both the individual struts and the ones that are part of internal cross-frames also 
serve as part of the top flange lateral bracing system.  Article C6.11.3.2 allows the Engineer, at 
their discretion to consider as brace points, the locations where top flange bracing is attached to 
the top flange where only struts exist between the flanges. 
 
The design of the internal cross frame members are not shown in this example.  Internal cross 
frames were modeled as truss members in the three-dimensional analysis, with a cross-sectional 
area of 5.0 square inches. 
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4.5 Diaphragms at the Supports 

 
Internal diaphragms at points of support are typically full-depth plate girder sections with a top 
flange.  These diaphragms are subjected to bending moments which result from the shear forces 
in the inclined girder webs.  If a single bearing is used at the support, and the bearing sole plate 
does not span the full width of the girder bottom flange, bending of the internal diaphragm over 
the support will result, causing bending stresses in the top flange of the diaphragm and and the 
bottom flange of the tub girder.  Additionally, a torsional moment reaction in the tub girder at the 
support will induce a shear flow along the circumference of the internal diaphragm.  In order to 
provide the necessary force transfer between the tub girder and the internal diaphragms, the 
internal diaphragms should be connected to the web and top flanges of the tub girder.   
 
Inspection access at the interior supports must also be provided through the internal diaphragm. 
Typically, an access hole will be provided within the internal diaphragm; however care must be 
given in determining the location and size of the hole.  The Engineer must investigate the flow of 
stress at the location of the hole in order to verify the sufficiency of the web near the access hole, 
or if reinforcing of the web may be required at the access hole. 
 
Similar to internal diaphragms, external diaphragms are typically full-depth plate girder sections, 
but with top and bottom flanges.  As acknowledged in the NSBA publication Practical Steel Tub 

Girder Design [4], the behavior of an external diaphragm at a point of support is highly 
dependent on the bearing arrangement at that location.  If dual bearings used at each girder 
sufficiently prevent transverse rotation, external diaphragms at the point of support should 
theoretically be stress free.  The force couple behavior of a dual bearing system resists the 
torsion that would otherwise be resisted by the external diaphragm and, in turn, minimizes the 
bending moments applied to the external diaphragm. 
 
In accordance with Article 6.7.4.3, full-depth internal and external diaphragms are provided at 
the support lines in this design example.  The web plates for the internal and external diaphragms 
in the three-dimensional analysis are assumed to have a thickness of 0.5 inches.  The external 
diaphragm top and bottom flanges are assumed to have an area of 8.0 square inches for each 
flange.  Furthermore, there are no intermediate external braces provided between the tub girders 
in this design example. 
 
4.6 Top Flange Lateral Bracing 

 
In accordance with Article 6.7.5.3, for horizontally curved tub girders, a full-length lateral 
bracing system between common flanges of individual tub sections shall be provided, and the 
stability of compression flanges between panel points of the lateral bracing system shall be 
investigated during the deck placement.  Generally, lateral bracing will not be required between 
adjacent tub girders.   
 
Top flange lateral bracing creates a quasi-closed section, which increases the torsional stiffness 
of tub girder sections during erection, handling, and deck casting.  For composite tub girders 
closed by the deck slab, the cross-section of the tub is torsionally stiff.  However, prior to 
placement of the deck slab the open tub is torsionally more flexible and subject to rotation or 
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twist.  The top flange lateral bracing, then, forms a quasi-closed section resisting shear flow from 
the noncomposite loading.   
 
Top lateral bracing is to be designed to resist shear flow in the pseudo box section due to 
factored loads before the concrete deck has hardened or is made composite.  Forces in the 
bracing due to flexure of the tub girder should also be considered during construction based on 
the Engineer’s assumed construction sequence.  The top lateral bracing member forces can be 
determined using a refined three-dimensional analysis where the bracing members are explicitly 
modeled.  Or, in the absence of a refined analysis, design equations have been developed to 
evaluate the bracing member forces due to tub girder major-axis bending [8 and 9]. 
 
The lateral bracing is typically comprised of WT or angle sections and is often configured in a 
single diagonal arrangement, such as a Warren-type or Pratt-type truss system.  The diagonal 
bracing members commonly frame into the workpoint of the girder top flange and internal 
diaphragm or strut connection.  Alternatively, the length between internal cross-frames can be 
divided into multiple lateral bracing panels.  Such framing arrangements usually include a single 
transverse strut at intermediate brace locations.  The plane of the top flange lateral bracing 
system should be detailed to be as close as possible to the plane of the girder top flanges so as to 
increase the torsional stiffness of the section, while at the same time reducing connection 
eccentricities and excessive out-of-plane bending in the web.  In most cases the top flange lateral 
bracing is often attached directly to the top flange of the tub girders. 
 
Single diagonal top lateral bracing systems are preferred over X-type systems because there are 
fewer pieces to fabricate and erect, and fewer connections.  Warren-type and Pratt-type systems 
offer some advantages with regard to the behavior of each top flange lateral bracing system.  In a 
Warren-type system the bracing members alternate directions along the length of the bridge (see 
Figure 3).  In most cases, the bracing forces will alternate from tension to compression along 
length of bridge.  The tension and compression forces result from a combination of girder major-
axis bending and girder torsion.  In a Pratt-type system the bracing members are often orientated 
in the same direction, in an effort to orientate them so that they are primarily in tension, thus 
allowing for smaller brace sizes (see Figure 4).  Under pure torsional loading, this may hold true, 
however the top lateral bracing is not solely subject to torsional loading and the force in the 
bracing members will be influenced by the major-axis bending moment in the non-composite 
girders.  Thus, even in a Pratt-type system, some bracing member will be subjected to 
compression forces that need to be accounted for by the designer. 
 

 
Figure 3  Plan View of a Warren-type truss lateral bracing system [1] 
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Figure 4  Plan View of a Pratt-type truss lateral bracing system [1] 

 
As shown in Figure 1, a Warren-Type single diagonal top lateral bracing system is used in this 
design example.  The bracing is assumed to be directly connected to the flanges at each internal 
cross frame and internal top strut, thus the bracing is in the plane of the top flange.  The 
connection of the top flange lateral bracing directly to the flanges may require wider flanges than 
might otherwise be required by design, however this approach may still be more economical 
considering the high fabrication cost associated with gusset plates for the connections. 
 
Truss members with an area of 8.0 square inches were assumed for the top flange lateral bracing 
members in the three-dimensional analysis. However, design calculations show that a WT9x48.5 
is required, which has a cross-sectional area of 14.3 square inches.  Although not done in this 
example, the designer should perform a second iteration of the analysis with the larger cross-
sectional area, as the larger cross-sectional area will affect the load distribution in the bracing 
system in the noncomposite condition. 
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5.0 FINAL DESIGN 

 
5.1 AASHTO LRFD Limit States 

 
AASHTO LRFD (5

th
 Edition, 2010) requires that bridges be designed for specified limit states to 

achieve the objectives of constructibility, safety, and serviceability.  These objectives are met 
through the strength, service, fatigue and fracture, and extreme-event limit states.  These limit 
states are intended to provide a safe, constructible, and serviceable bridge capable of carrying the 
appropriate design loads for a specified service life.  A brief discussion of these limit states is 
provided herein, but the reader can refer to Steel Bridge Design Handbook topic on Limit States 
for more detailed discussion. 
 
5.1.1 Strength Limit State 

 
The strength limit states ensure strength and stability of the bridge and its components under the 
statistically predicted maximum loads during the 75-year life of the bridge.  The strength limit 
states are not based upon durability or serviceability.  There are five different strength limit state 
load combinations that must be considered by the designer.   
 
In general, Strength I is the load combination used for checking the strength of a component 
under normal loading, in the absence of wind.  To check the strength of a member or component 
under special permit loadings in the absence of wind, the Strength II load combination is used.  
The Strength III load combination is used for checking the strength of a component assuming the 
bridge is exposed to a wind velocity exceeding 55 miles per hour in the absence of live load.  
The Strength IV load combination basically relates to bridges with very high dead-to-live load 
force effect ratios.  The Strength V load combination is used to check the strength of a 
component assuming the bridge is exposed to wind velocity equal to 55 miles per hour under 
normal loading. 
 
5.1.2 Service Limit State 

 
The service limit state ensures the durability and serviceability of the bridge and its components 
under typical “everyday” loads, traditionally termed service loads.  The AASHTO LRFD (5

th
 

Edition, 2010) includes four service limit state load combinations of which only two are 
applicable to steel bridges. 
 
The Service I load combination relates to normal operational use of the bridge and would be used 
primarily for crack control in reinforced concrete structures.  However, the live load portion of 
the Service I load combination is used for checking live load deflection in steel bridges.  The 
Service II load combination only applies to steel superstructures, and is intended to control 
yielding of steel structures and slip of slip critical connections due to vehicular live load. 
 
5.1.3 Fatigue and Fracture Limit State 

 
The fatigue and fracture limit state is treated separately from the strength and service limit states 
since it represents a more severe consequence of failure than the service limit states, but not 
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necessarily as severe as the strength limit states.  Fatigue cracking is certainly more serious than 
loss of serviceability as unchecked fatigue cracking can lead to brittle fracture, yet many 
passages of trucks may be necessary to cause a critically-sized fatigue crack while only one 
heavy truck can lead to a strength limit state failure.  The fatigue and fracture limit state is only 
applicable where the detail under consideration experiences a net applied tensile stress. 
 
The Fatigue I load combination is related to infinite load-induced fatigue life, and the Fatigue II 
load combination is related to finite load-induced fatigue life. 
 
5.1.4 Extreme Event Limit State 

 
Structural survival of the bridge must be ensured during an extreme event, such as an earthquake, 
flood, vessel collision, vehicle collision, or ice flow.  The Extreme Event I load combination is 
related to earthquake loading, while the Extreme Event II load combination relates to the other 
possible extreme events. 
 
5.1.5 Constructibility 

 
Although not a specific limit state, the bridge must be safely erected and have adequate strength 
and stability during all phases of construction, as constructibility is one the basic objectives of 
the AASHTO LRFD (5

th
 Edition, 2010).  Specific design provisions are given in Articles 6.10.3 

and 6.11.3 for I- and tub-girders, respectively, to help ensure constructibility.  The 
constructibility checks are typically performed on the steel section only under the factored 
noncomposite dead loads using appropriate strength load combinations, especially when 
considering the deck placement sequence.  Article 3.4.2 provides guidance for the load factors to 
use for construction loads. 
 
5.2 Loads 

 
5.2.1 Dead Load 

 
As defined in Article 3.5.1, dead loads are permanent loads that include the weight of all 
components of the structure, appurtenances and utilities attached to the structure, earth cover, 
wearing surfaces, future overlays and planned widenings. 
 
The component dead load (DC) consists of all the structure dead load except for non-integral 
wearing surfaces, if anticipated, and any specified utility loads. For composite steel-girder 
design, DC is further divided into:  
 

 Non-composite dead load (DC1) is the portion of loading resisted by the non-composite 
section.  DC1 represents the permanent component load that is applied before the concrete 
deck has hardened or is made composite.  

 Composite dead load (DC2) is the portion of loading resisted by the long-term composite 
section.  DC2 represents the permanent component load that is applied after the concrete 
deck has hardened or is made composite.  
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The self weight of the steel girders, cross-frames, diaphragms, lateral bracing and other 
attachments is applied to the erected steel structure in the three-dimensional model through the 
use of body forces in the various finite elements used to model the structure.  A steel density of 
490 pounds per cubic foot is assumed for all structural steel components.  The analysis 
assumption requires that the steel be fit and erected in the no-load condition.  The steel self-
weight is a non-composite dead load (DC1). 
 
The concrete deck weight is assumed to be placed at one time on the noncomposite steel 
structure for the strength limit state checks.  A separate deck placement sequence analysis is 
performed, where analysis results are used for constructibility checks.  The deck placement 
sequence is discussed later in this section.  The deck weight includes the deck and concrete 
haunches, as well as an assumed weight of 15 pounds per square foot for the permanent metal 
deck forms inside the tub girders and between the two tub girders.  The concrete deck weight, 
haunch weight, and permanent metal deck form weight are all considered non-composite dead 
loads (DC1). 
 
The composite dead load (DC2), also referred to as a superimposed dead load, includes the 
weight of the parapets.  The parapets are assumed to weigh 495 pounds per linear foot.  The 
parapet weight is applied as line loads along the edges of the deck elements in the three-
dimensional analysis. 
 
The component dead load (DW) consists of the dead load of any non-integral wearing surfaces 
and any utilities, which can also be considered as superimposed dead loads.  DW is applied as a 
surface load on the deck in the 3D analysis.  For this example, a future wearing surface of 30 
pounds per square foot of roadway is assumed, but no utilities are included.   
 
For computing flexural stresses from composite dead loads DC2 and DW, the stiffness of the 
long-term composite section in regions of positive flexure is calculated by transforming the 
concrete deck using a modular ratio of 3n (Article 6.10.1.1.1b).  In regions of negative flexure, 
the long-term composite section is assumed to consist of the steel section plus the longitudinal 
reinforcement within the effective width of the concrete deck (Article 6.10.1.1.1c). 
 
5.2.2 Deck Placement Sequence 

 
The deck is considered to be placed in the following sequence for the constructibility limit state 
design checks, which is also illustrated in Figure 5.  The concrete is first cast from the left 
abutment to a location near the dead load inflection point in Span 1.  The concrete between 
approximate dead load inflection points in Span 2 is cast second.  The concrete beyond the 
approximate dead load inflection point to the abutment in Span 3 is cast third.  Finally, the 
concrete over the two piers is cast.  In the analysis, earlier concrete casts are made composite for 
each subsequent cast. 
 
For the constructibility limit state design checks, the noncomposite section is checked for the 
moments resulting from the deck placement sequence or the moments computed assuming the 
entire deck is cast at one time, whichever is larger. 
 

Arch
ive

d



 

18 
 

The deck load is assumed to be applied through the shear center of the interior girders in the 
analysis.  However, the weight of the fresh concrete on the overhang brackets produces lateral 
force on the flanges of the exterior girders.  This eccentric loading and subsequent lateral force 
on the flanges must be considered in the constructibility limit state design checks. 
 

 
Figure 5  Diagram showing deck placement sequence  
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5.2.3 Live Load 

 
Live loads are assumed to consist of gravity loads (vehicular live loads, rail transit loads and 
pedestrian loads), the dynamic load allowance, centrifugal forces, and braking forces. Live loads 
illustrated in this example include the HL-93 vehicular live load and a fatigue load, with the 
appropriate dynamic load allowance and centrifugal force (see Section 5.3) effects included. 
 
Influence surfaces are utilized to determine the live load force effects in this design example.  
More details regarding influence surfaces and the live load analysis associated with the 3D 
analysis model are provided in Section 6.1.2 of this example.   
 
Live loads are considered to be transient loads applied to the short-term composite (n) section. 
For computing flexural stresses from transient loading, the short-term composite (n) section in 
regions of positive flexure is calculated by transforming the concrete deck using a modular ratio 
of n (Article 6.10.1.1.1b). In regions of negative flexure, the short-term composite (n) section is 
assumed to consist of the steel section plus the longitudinal reinforcement within the effective 
width of the concrete deck (Article 6.10.1.1.1c), except as permitted otherwise for the fatigue 
and service limit states (see Articles 6.6.1.2.1 and 6.10.4.2.1). 
 
When computing longitudinal flexural stresses in the concrete deck (see Article 6.10.1.1.1d), due 
to permanent and transient loads, the short-term composite section should be used.  
 
Design Vehicular Live Load (Article 3.6.1.2) 
The design vehicular live load is designated as the HL-93 and consists of a combination of the 
following placed within each design lane: 

 a design truck or design tandem. 
 a design lane load. 

The design vehicular live load is discussed in detail within Example 1 of the Steel Bridge Design 
Handbook. 
 
Fatigue Load (Article 3.6.1.4) 
The vehicular live load for checking fatigue consists of a single design truck (without the lane 
load) with a constant rear-axle spacing of 30 feet (Article 3.6.1.4.1).  The fatigue live load is 
discussed in detail within Example 1 of the Steel Bridge Design Handbook. 
 
5.3 Centrifugal Force Computation 

 
The centrifugal force is determined according to Article 3.6.3.  The centrifugal force has two 
components, the radial force and the overturning force.  The radial component of the centrifugal 
force is assumed to be transmitted from the deck through the end cross frames or diaphragms and 
to the bearings and the substructure. 
 
The overturning component of centrifugal force occurs because the radial force is applied at a 
distance above the top of the deck.  The center of gravity of the design truck is assumed to be 6 
feet above the roadway surface according to the provisions of Article 3.6.3.  The transverse 
spacing of the wheels is 6 feet per Figure 3.6.1.2.2-1.  The overturning component causes the 
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exterior (with respect to curvature) wheel line to be more than half the weight of the truck and 
the interior wheel line to be less than half the weight of the truck by the same amount.  Thus, the 
outside of the bridge is more heavily loaded.  The effect of superelevation, which reduces the 
overturning effect of centrifugal force, is considered, as permitted by Article 3.6.3.  Figure 6 
shows the relationship between the centrifugal force and the superelevation effect.  The 
dimensions denoted by s and h in Figure 6 are both equal to 6 feet. 
 
 

 
Figure 6  Vehicular Centrifugal Force Wheel-Load Reactions 

 
Article 3.6.3 states that the centrifugal force shall be taken as the product of the axle weights of 
the design truck or tandem and the factor C, taken as: 
 

 
R g

v
 fC

2

  Eq. (3.6.3-1) 

 
where:  
 
 f  =  4/3 for load combinations other than fatigue and 1.0 for fatigue 
 v  = highway design speed (ft/sec) 
 g = gravitational acceleration = 32.2 ft/sec2 
 R  = radius of curvature of traffic lane (ft) 
 
Use the average bridge radius, R = 700 ft in this case.  For the purpose of this design example, 
the design speed is assumed to be 35 mph = 51.3 ft/s.  Therefore, for the HL-93 Design Truck: 
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The next step is to compute the wheel load reaction, RCL and RCR, due to centrifugal force 
effects, as shown in Figure 6.  In the case of the design truck, the wheel spacing, s, and the height 
of the radial force, h, are both equal to 6.0 feet.  Therefore, summing moments about Point A 
(Figure 6) and enforcing equilibrium, the wheel load reactions, RCL and –RCR are simply equal to 
C multiplied by W, as follows: 
 

 

 

W156.0WC
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2
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2

cosh 
W)(CRR CRCL 












  

where:  
 
 W  =  axle weight (kips) 
  
RCL is an upward reaction for the left wheel, and RCR is an equal but opposite downward reaction 
for the right wheel. 
 
As permitted by Article 3.6.3, the effects of superelevation on the individual wheel load 
reactions can be computed and combined with the centrifugal force effects.  For the 5% deck 
cross slope, the angle  is equal to: 
 
  = tan-1 (0.05) = 2.86° 
 
The wheel load reactions due to superelevation, RSL and RSR, as shown in Figure 7, are computed 
by summing the moments about the left wheel, as follows: 
 

   

 

   

   
0.550W

2.86cos6

W)sin(2.8662.86cos
2

6

θscos

Wθhsinθcos
2

s

R SR 


































  

 
 RSL = 1.0W - RSR = 1.0W – 0.550W = 0.450W 
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Figure 7  Effects of Superelevation of the Wheel-Load Reactions 

 
For a refined analysis, as used in this design example, unit wheel load factors can be computed 
based on the sum of the wheel load reaction due to the centrifugal force and superelevation 
effects.  The unit wheel load factors are applied to the appropriate wheels in the analysis.  Unit 
wheel load factors due to the combined effects of centrifugal force and sueperlevation can be 
computed for the left wheels, FL, and the right wheels, FR.  The sum of FL and FR must equal 2.0, 
as there are two wheel loads per one axle.  The left and right unit wheel load factors, FL and FR, 
are computed as follows: 
 

212.1
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As shown in Figure 8, FL and FR represent the factors that must be multiplied by the left wheel 
and right wheel load, respectively, in the analysis to take into account the combined effects of 
both centrifugal force and superelevation.  In this case, since FL is greater than FR, the outermost 
girder will receive a slightly higher load and the innermost girder will receive slightly lower load 
from the design truck.  Therefore, it is also necessary to compute the condition with no 
centrifugal force, i.e., a stationary vehicle, and select the worst case.  In the live load analysis 
performed for this design example, force effects from an analysis due to live load cases with 
centrifugal force effects included (FL equals 1.212 and FR equals 0.788) are compared to force 
effects due to cases with no centrifugal force effects included (FL and FR equal 1.0), and the 
maximum/minimum force effect is selected. 
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Figure 8  Unit Wheel Load Factors due to Combined Effects of Centrifugal Force and 

Superelevation 

 
In accordance with Article C3.6.3, centrifugal force is not required to be applied to the design 
lane load, as the spacing of vehicles at high speed is assumed to be large, resulting in a low 
density of vehicles following and/or preceding the design truck. 
 
From separate calculations for the fatigue limit state, similar to those shown previously, the 
centrifugal force factor C is equal to 0.117, and the unit wheel load factors, FL and FR, are 1.134 
and 0.866, respectively. 
 
5.4 Load Combinations 

 
AASHTO LRFD (5

th
 Edition, 2010) Table 3.4.1-1 is used to determine load combinations for 

strength according to Article 3.4.   Strength I loading is used for design of most members for the 
strength limit state.  However, Load Combinations Strength III and V and Service I and II from 
Table 3.4.1-1 are also checked for temperature and wind loadings in combination with vertical 
loading. 
 
The following load combinations and load factors are typically checked in a girder design similar 
to this design example.  In some design instances, other load cases may be critical, but for this 
example, these other load cases are assumed not to apply. 
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From Table 3.4.1-1 (minimum load factors of Table 3.4.1-2 are not considered here): 
 
Strength I  η x [1.25(DC) + 1.5(DW) + 1.75((LL + IM) + CE + BR) + 1.2(TU)] 
Strength III  η x [1.25(DC) + 1.5(DW) + 1.4(WS) + 1.2(TU)] 
Strength V  η x [1.25(DC) + 1.5(DW) + 1.35((LL + IM) + CE + BR) + 0.4(WS) + 1.0(WL) + 

1.2(TU)] 
Service I  η x [DC + DW + (LL + IM) + CE + BR + 0.3(WS) + WL + 1.2(TU)] 
Service II  η x [DC + DW + 1.3((LL + IM) + CE + BR) + 1.2(TU)] 
Fatigue I η x [1.5((LL + IM) + CE)] 
Fatigue II η x [0.75((LL + IM) + CE)] 
 
where: 
 

η  =  Load modifier specified in Article 1.3.2 
DC  =  Dead load: components and attachments 
DW  =  Dead load: wearing surface and utilities 
LL =  Vehicular live load 
IM  =  Vehicular dynamic load allowance 
CE  =  Vehicular centrifugal force 
WS  =  Wind load on structure 
WL  =  Wind on live load 
TU  =  Uniform temperature 
BR  =  Vehicular braking force 
 

In addition to the above load combinations, a load combination is included for the 
constructibility limit state defined in Article 3.4.2 as follows: 
 
Construction Strength I: η x [1.25(DC) + 1.5(C) + 1.25(WC)] 
 
where: 
 

DC  =  Dead load 
C  =  Construction live loads 
WC =  Wind load for construction conditions from an assumed critical direction. 
   Magnitude of wind may be less than that used for final bridge design. 

 
In this design example, it has been assumed that there is no equipment on the bridge during 
construction and the wind load on the girders is negligible. 
 
For the purpose of this example, it has been assumed that the Strength I load combination 
governs for the strength limit state, so only Strength I loads are checked in the sample 
calculations for the strength limit state included herein.  Also, the load modifier, η, is assumed to 
be 1.0 throughout this example unless noted otherwise.  Furthermore, from a separate analysis, 
the girder demands due to thermal loading are determined to be quite small, and are neglected 
throughout these computations.  
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6.0 ANALYSIS 

 
Article 4.4 of the AASHTO LRFD (5

th
 Edition, 2010) requires that the analysis be performed 

using a method that satisfies the requirements of equilibrium and compatibility, and utilizes 
stress-strain relationships for the proposed materials.  Article 4.6.1.2 provides additional 
guidelines for structures that are curved in plan.  The moments, shears, and other force effects 
required to proportion the superstructure components are to be based on a rational analysis of the 
entire superstructure.  Equilibrium of horizontally curved I-girders is developed by the transfer of 
load between the girders, thus the analysis must recognize the integrated behavior of structural 
components.  Equilibrium of curved tub girders can be somewhat less dependent on the 
interaction between girders, as there are typically fewer external bracings between adjacent tub 
girders as compared to I-girder bridges. 
 
Furthermore, in accordance with Article 4.6.1.2, the entire superstructure, including bearings, is 
to be considered as an integral structural unit in the analysis.  Boundary conditions should 
represent the articulations provided by the bearings and/or integral connections used in the 
design. 
 
In most cases, small deflection elastic theory is acceptable for the analysis of horizontally curved 
steel girder bridges.  However, curved girders, especially I-girders, are prone to deflect laterally 
when the girders are insufficiently braced during erection, and this behavior may not be 
appropriately recognized by small deflection theory.  In curved tub girder bridges, there is 
typically sufficient bracing provided during steel erection so that deflections do not invalidate the 
use of small deflection elastic theory. 
 
In general, three levels of analysis exist for horizontally curved girder bridges: approximate 
methods of analysis, 2D (two-dimensional) methods of analysis, and 3D (three-dimensional) 
methods of analysis.  The V-load method and the M/R methods are approximate analysis method 
that are typically used to analyze curved I-girder bridges and curved tub girder bridges, 
respectively.  Both methods are developed based on the understanding of the distribution of 
forces through the curved bridge system.  The two primary types of 2D analysis models are the 
traditional grid (or grillage) model and the plate and eccentric beam model.  In 2D analysis 
models, the girders and external cross frames and diaphragms are modeled using beam elements, 
with nodes in a single horizontal plane.  A 3D model recognizes the depth of the superstructure, 
as the girders are modeled using a plate or shell element for the girder webs and internal and 
external diaphragm webs, and all internal and external cross frame members are modeled using 
truss type elements.  Two planes of nodes are typically used on each girder, one in the plane of 
the top flange and the second in the plane of the bottom flange.  Further details regarding these 
methods of analysis can be found in the Steel Bridge Design Handbook topic on Structural 
Analysis. 
 
6.1 Three-Dimensional Finite Element Analysis 

 
A three-dimensional finite element analysis is used to analyze the superstructure in this design 
example.  The girder webs and bottom flanges are modeled using plate elements. The top flanges 
of each tub girder are modeled with beam elements.  The girder elements connect to nodes that 
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are placed in two horizontal planes, one plane at the top flange and one plane at the bottom 
flange.  The horizontal curvature of the girders is represented by straight elements that have 
small kinks at the nodes, rather than by curved elements.  Nodes are placed on all flanges along 
the girder at each internal cross frame and top flange lateral bracing location, and typically at the 
middle of each top flange lateral bracing bay.  
 
The composite deck is modeled using a series of eight-node solid elements attached to the girder 
top flanges with beam elements, which represent the shear studs.   
 
Bearings are modeled with dimensionless elements called “foundation elements.”  These 
dimensionless elements can provide six different stiffnesses, with three for translation and three 
for rotation.  If a guided bearing is orientated along the tangential axis of a girder, a stiffness of 
zero would be assigned to the stiffness in the tangential direction.  The stiffness of the bearing, 
and supporting structure if not explicitly modeled, would be assigned to the direction orthogonal 
to the tangential axis. 
 
Internal cross frame members are modeled with individual truss elements connected to the nodes 
at the top and bottom flange of the girders.  Internal solid-plate diaphragms at the supports are 
modeled with a single plate element.  External solid-plate diaphragms at the supports are 
modeled using three full depth plate elements along the length of the diaphragm, and three beam 
elements placed at the top and bottom of the web representing the top and bottom flanges of the 
diaphragm.  Since the plate and beam elements are isoparametric three elements are used to 
model the web and flanges of the external diaphragm to allow for the possibility of reverse 
curvature. 
 
Top flange lateral bracing members are modeled with individual truss elements connected to 
nodes at the top flanges of the tub girders. 
 
6.1.1 Bearing Orientation and Arrangement 

 
The orientation and lateral restraint of bearings affects the behavior of most girder bridges for 
most load conditions, and is particularly true for curved and skewed girder bridges.  
Furthermore, in tub girder bridges on or two bearings can be use at each tub girder at each 
support. 
 
The use of two bearings to support an individual girder at a support allows the girder torsion to 
be directly removed through the force couple provided by the bearings, and reduces the reaction 
demand in the bearings.  Two bearing systems typically work well with radial supports, but are 
impractical with supports skewed more than a few degrees where the tub girder and/or 
diaphragms stiffness work against uniform bearing contact during various stages of girder 
erection and deck slab construction [4]. 
 
The use of one bearing to support an individual girder at a support optimizes contact between the 
girder and the bearing.  One bearing systems also tend to be more forgiving of construction 
tolerances and, for skewed supports one bearing systems are demonstrably better than two 
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bearing systems [4].  A disadvantage of one bearing systems is that stiff cross frames or 
diaphragms between girders are required to resolve the girder torsion into the bearings. 
 
In this example, two bearings are used at each girder support location.  The centerline of each 
bearing is located 28.5 inches from the girder centerline at the support.  Furthermore, the 
bearings at Pier 1 are assumed fixed against translation in both the radial and longitudinal 
directions (Fixed Bearing).  The bearings at the abutments and Pier 2 are assumed fixed against 
radial movement but free in the longitudinal direction (Guided Bearing).  The longitudinal 
direction at each support varies, as in this case the longitudinal direction is taken along a straight 
line chord line between fixed support (Pier 1) and each expansion bearing.  Curved girder 
bridges do not expand and contract along the girder line, but more so along the aforementioned 
chord lines.  Orientating the bearings in the manner discussed significantly reduces the 
longitudinal stresses in the girders that can occur due to thermal loading.  Therefore, due to the 
bearing orientation and from a separate analysis, the girder demands due to thermal loading are 
determined to be quite small, and are neglected throughout these computations.  In all designs 
the thermal demands must be considered and properly addressed. 
 
6.1.2 Live Load Analysis 

 
The use of live load distribution factors is typically not appropriate for curved steel tub girder 
bridges, because these structures are best analyzed as a system.  Therefore, influence surfaces are 
most often utilized to more accurately determine the live load force effects in curved girder 
bridges.  Influence surfaces are an extension of influence lines, such that an influence surface not 
only considers the longitudinal position of the live loads, but the transverse position as well. 
 
Influence surfaces provide influence ordinates over the entire deck.  The influence ordinates are 
determined by applying a series of unit vertical loads, one at a time, at selected longitudinal and 
transverse positions on the bridge deck surface.  The magnitude of the response for the unit 
vertical load is the magnitude of the ordinate of the influence surface for the particular response 
at the point on the deck where the load is applied.  The entire influence surface is created by 
curve fitting between calculated ordinates.  Specified live loads are then placed on the surface, 
mathematically, at the critical locations (maximum and minimum effects), as allowed by the 
governing specification.  The actual live load effect is determined by multiplying the live load by 
the corresponding ordinate.  In the case of an HL-93 truck load, a different ordinate will probably 
exist for each wheel load.  The total HL-93 truck live load effect is the summation of all the 
wheel loads times their respective ordinate.   
 
In curved girder bridges, influence surfaces are generally needed for all live load force results, 
such as major-axis bending moment, minor-axis bending moments, girder shear, reactions, 
torques, deflections, cross frame forces, diaphragm forces, lateral bracing forces, etc. 
 
Unless noted otherwise, all live load force effects in this example are computed using influence 
surfaces, developed using the three-dimensional analysis.  The dynamic load allowance (impact) 
is included in the analysis, and is applied in accordance with Article 3.6.2 for strength, service, 
and fatigue as required.  Multiple presence factors are also included within the analysis, and thus 
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are incorporated into the analysis results.   Also, as appropriate, centrifugal force effects are also 
included in the analysis, using wheel load factors as shown in Section 5.3 of this design example. 
 
6.2 Analysis Results 

 
This section shows the results from the three-dimensional analysis of the superstructure.  
Analysis results are provided for the moments, shears, and torques for girders G1 and G2.  All 
analysis results are unfactored.  Live load results included multiple presence factors, dynamic 
load allowance (impact), and centrifugal force effects. 
 
Specific analysis results for design Section G2-1, which is located approximately 57 feet from 
the centerline of the bearings at abutment 1, are provided in Table 7.  The analysis results are 
used in the design computations associated with Section G2-1, provided later within this design 
example.  
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Table 1  Girder G1 Unfactored Shears by Tenth Point 

 
Note:   Reported shears are the vertical shears and are for major-axis bending plus torsion in the critical 

tub girder web. 
 
 
  

DC1STEEL DC1CONC DC2 DW Pos. Neg. Pos. Neg.

(ft) (kip) (kip) (kip) (kip) (kip) (kip) (kip) (kip)

0 0.00 27 114 25 33 139 -24 52 -4

1 15.74 19 80 12 15 115 -29 41 -6

2 31.49 10 45 8 10 94 -35 34 -9

3 47.23 5 23 5 6 78 -41 28 -12

4 62.97 -6 -25 -3 -4 53 -52 22 -16

5 78.71 -11 -44 -6 -7 40 -63 16 -22

6 94.46 -16 -69 -8 -11 31 -83 13 -27

7 110.20 -23 -98 -13 -17 25 -101 10 -34

8 125.94 -28 -116 -18 -23 21 -116 7 -40

9 141.69 -34 -137 -24 -32 19 -127 7 -43

10 157.43 -44 -171 -40 -54 14 -163 4 -53

10 0.00 45 175 41 55 171 -15 58 -4

11 20.66 31 128 23 31 140 -23 44 -6

12 41.33 25 110 16 21 124 -26 39 -7

13 61.99 17 72 10 13 101 -37 31 -12

14 82.65 11 47 5 6 78 -45 27 -15

15 103.31 0 0 0 0 58 -57 22 -22

16 123.98 -11 -47 -5 -6 43 -78 15 -27

17 144.64 -17 -72 -10 -14 36 -101 12 -31

18 165.30 -25 -110 -16 -21 26 -124 6 -39

19 185.96 -31 -127 -23 -31 23 -140 6 -46

20 206.63 -45 -175 -41 -55 14 -166 4 -55

20 0.00 44 171 40 54 167 -15 56 -4

21 15.74 34 137 24 32 128 -19 43 -7

22 31.49 28 116 18 23 116 -21 40 -7

23 47.23 23 98 13 17 101 -25 34 -10

24 62.97 16 69 8 11 83 -31 27 -13

25 78.71 11 44 6 7 64 -38 22 -16

26 94.46 6 25 3 4 51 -52 16 -22

27 110.20 -5 -23 -5 -6 41 -77 12 -28

28 125.94 -10 -45 -8 -10 32 -92 9 -34

29 141.69 -19 -80 -12 -16 27 -113 6 -41

30 157.43 -27 -114 -25 -34 24 -139 4 -52

Fatigue LL+ISpan

Length
10th

Point

Girder G1 Unfactored Shears

Dead Load LL+I
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Table 2  Girder G2 Unfactored Shears by Tenth Point 

 
Note:   Reported shears are the vertical shears and are for major-axis bending plus torsion in the critical 

tub girder web. 
 
 
  

DC1STEEL DC1CONC DC2 DW Pos. Neg. Pos. Neg.

(ft) (kip) (kip) (kip) (kip) (kip) (kip) (kip) (kip)

0 0.00 31 110 39 52 128 -26 61 -12

1 16.26 19 74 17 22 110 -29 52 -12

2 32.51 11 44 11 15 93 -35 44 -12

3 48.77 5 21 6 8 75 -44 36 -12

4 65.03 -7 -26 -3 -5 54 -52 25 -18

5 81.29 -11 -45 -6 -8 40 -67 18 -27

6 97.54 -17 -69 -12 -16 36 -85 13 -34

7 113.80 -24 -97 -17 -23 33 -102 12 -43

8 130.06 -29 -117 -22 -29 26 -114 7 -49

9 146.31 -35 -137 -27 -35 16 -127 4 -53

10 162.57 -46 -185 -41 -55 13 -155 4 -61

10 0.00 47 185 44 58 160 -14 65 -4

11 21.34 32 130 28 37 135 -22 55 -4

12 42.68 26 105 22 29 120 -33 49 -9

13 64.01 17 69 15 20 100 -42 41 -13

14 85.35 12 46 7 10 78 -46 33 -16

15 106.69 0 0 0 0 57 -57 24 -24

16 128.03 -12 -46 -7 -10 46 -78 16 -33

17 149.36 -17 -69 -15 -20 41 -99 13 -41

18 170.70 -26 -105 -22 -29 33 -120 9 -50

19 192.04 -32 -130 -28 -37 22 -135 4 -55

20 213.38 -47 -185 -44 -58 14 -159 4 -64

20 0.00 46 185 41 55 158 -14 64 -4

21 16.26 35 137 27 35 128 -15 53 -4

22 32.51 29 117 22 29 115 -26 49 -7

23 48.77 24 97 17 23 102 -33 41 -12

24 65.03 17 69 12 16 85 -36 33 -13

25 81.29 11 45 6 8 67 -40 27 -18

26 97.54 7 26 3 5 52 -54 18 -25

27 113.80 -5 -21 -6 -8 44 -75 12 -36

28 130.06 -11 -44 -11 -15 34 -93 12 -44

29 146.31 -19 -74 -17 -22 28 -111 12 -52

30 162.57 -31 -110 -39 -52 26 -129 12 -61

Girder G2 Unfactored Shears

10th

Point

Span

Length

Dead Load LL+I Fatigue LL+I
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Table 3  Girder G1 Unfactored Major-Axis Bending Moments by Tenth Point 

 
 

 

  

DC1STEEL DC1CONC DC2 DW Pos. Neg. Pos. Neg.

(ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft)

0 0.00 0 0 0 0 0 0 0 0

1 15.74 521 2191 340 450 2472 -469 748 -98

2 31.49 882 3666 592 785 4330 -938 1252 -196

3 47.23 1049 4321 724 960 5412 -1408 1477 -293

4 62.97 1047 4320 734 972 5863 -1878 1545 -385

5 78.71 851 3503 620 821 5777 -2338 1502 -471

6 94.46 493 2043 387 514 5189 -2795 1367 -553

7 110.20 -75 -315 36 47 4109 -3915 1108 -667

8 125.94 -837 -3461 -434 -576 2602 -4547 714 -813

9 141.69 -1781 -7206 -1014 -1343 1252 -5559 270 -991

10 157.43 -2969 -11629 -1762 -2335 1061 -7784 231 -1249

10 0.00 -2969 -11629 -1762 -2335 1061 -7784 231 -1249

11 20.66 -1422 -5845 -802 -1062 1310 -4411 363 -810

12 41.33 -326 -1516 -95 -125 2993 -3033 924 -618

13 61.99 493 1881 425 563 4784 -2275 1324 -470

14 82.65 977 3900 733 972 5926 -2008 1556 -367

15 103.31 1118 4442 836 1108 6304 -1749 1616 -279

16 123.98 976 3900 733 972 5928 -2013 1556 -369

17 144.64 492 1880 424 562 4775 -2279 1326 -471

18 165.30 -327 -1519 -95 -127 3000 -3021 923 -616

19 185.96 -1422 -5848 -803 -1064 1315 -4421 381 -810

20 206.63 -2969 -11633 -1762 -2336 1062 -7788 233 -1230

20 0.00 -2969 -11633 -1762 -2336 1062 -7788 233 -1230

21 15.74 -1780 -7203 -1014 -1345 1248 -5556 270 -997

22 31.49 -837 -3459 -436 -577 2591 -4532 714 -810

23 47.23 -74 -312 34 46 4099 -3900 1107 -665

24 62.97 493 2044 386 511 5181 -2783 1367 -551

25 78.71 851 3504 618 819 5769 -2328 1502 -462

26 94.46 1047 4320 732 971 5855 -1868 1544 -378

27 110.20 1048 4321 723 958 5405 -1402 1477 -286

28 125.94 882 3666 591 784 4326 -993 1252 -191

29 141.69 521 2189 339 449 2470 -466 748 -96

30 157.43 0 0 0 0 0 0 0 0

Girder G1 Unfactored Major-Axis Bending Moments

10th

Point

Span

Length

Dead Load LL+I Fatigue LL+I
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Table 4  Girder G2 Unfactored Major-Axis Bending Moments by Tenth Point 

 
 

 

  

DC1STEEL DC1CONC DC2 DW Pos. Neg. Pos. Neg.

(ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft)

0 0.00 0 0 0 0 0 0 0 0

1 16.26 555 2268 351 465 2606 -484 796 -95

2 32.51 938 3868 610 808 4559 -967 1330 -191

3 48.77 1116 4632 742 984 5687 -1446 1564 -289

4 65.03 1115 4633 745 988 6152 -1931 1630 -390

5 81.29 905 3780 622 824 6059 -2416 1579 -498

6 97.54 525 2207 373 494 5434 -2907 1427 -616

7 113.80 -79 -256 -1 -1 4308 -4097 1148 -757

8 130.06 -892 -3579 -501 -665 2751 -4768 750 -917

9 146.31 -1896 -7599 -1122 -1488 1305 -5836 287 -1110

10 162.57 -3154 -12272 -1923 -2550 1114 -8127 256 -1384

10 0.00 -3154 -12272 -1923 -2550 1114 -8127 256 -1384

11 21.34 -1513 -6169 -906 -1201 1401 -4629 388 -902

12 42.68 -348 -1473 -160 -211 3176 -3197 933 -692

13 64.01 525 2077 384 509 5018 -2366 1345 -527

14 85.35 1040 4196 704 934 6205 -2070 1587 -393

15 106.69 1190 4826 813 1077 6598 -1786 1655 -277

16 128.03 1039 4195 704 934 6204 -2065 1585 -391

17 149.36 525 2075 384 509 5001 -2355 1344 -524

18 170.70 -348 -1476 -159 -211 3166 -3165 932 -690

19 192.04 -1514 -6173 -906 -1200 1393 -4627 399 -901

20 213.38 -3155 -12275 -1922 -2547 1114 -8128 255 -1378

20 0.00 -3155 -12275 -1922 -2547 1114 -8128 255 -1378

21 16.26 -1895 -7595 -1121 -1485 1312 -5843 289 -1113

22 32.51 -891 -3577 -500 -662 2762 -4778 751 -923

23 48.77 -79 -253 1 2 4320 -4106 1151 -760

24 65.03 525 2208 375 496 5445 -2917 1430 -621

25 81.29 906 3781 624 827 6068 -2424 1581 -495

26 97.54 1115 4634 747 990 6160 -1936 1631 -387

27 113.80 1116 4632 743 986 5689 -1451 1564 -287

28 130.06 938 3867 611 810 4560 -971 1330 -190

29 146.31 555 2266 351 465 2607 -487 797 -95

30 162.57 0 0 0 0 0 0 0 0

Girder G2 Unfactored Major-Axis Bending Moments

10th

Point

Span

Length

Dead Load LL+I Fatigue LL+I
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Table 5  Girder G1 Unfactored Torques by Tenth Point 

 
 

 

  

DC1STEEL DC1CONC DC2 DW Pos. Neg.

(ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft)

0 0.00 42 286 -62 -83 660 -398

1 15.74 82 398 -54 -71 775 -448

2 31.49 34 189 -40 -53 756 -482

3 47.23 30 153 -40 -52 597 -389

4 62.97 -1 9 -23 -31 389 -307

5 78.71 -29 -125 -13 -17 309 -354

6 94.46 -33 -158 0 0 360 -479

7 110.20 -54 -262 21 28 462 -636

8 125.94 -25 -165 46 62 569 -766

9 141.69 -10 -135 83 110 668 -866

10 157.43 -22 -231 126 168 1049 -922

10 0.00 36 294 -144 -191 1049 -922

11 20.66 4 105 -89 -117 995 -702

12 41.33 60 309 -52 -68 919 -598

13 61.99 39 205 -22 -30 716 -464

14 82.65 61 261 -9 -11 555 -383

15 103.31 0 0 0 0 446 -430

16 123.98 -64 -261 9 11 413 -540

17 144.64 -39 -205 22 29 500 -724

18 165.30 -60 -309 52 68 625 -906

19 185.96 -4 -105 89 117 713 -991

20 206.63 -36 -294 144 190 928 -1046

20 0.00 22 231 -127 -169 928 -1046

21 15.74 10 134 -85 -112 874 -657

22 31.49 25 166 -47 -62 770 -549

23 47.23 54 262 -22 -29 640 -434

24 62.97 33 158 0 -1 482 -319

25 78.71 30 125 12 17 375 -281

26 94.46 1 -10 23 30 346 -378

27 110.20 -30 -153 39 51 434 -591

28 125.94 -34 -190 39 52 512 -751

29 141.69 -82 -398 57 75 503 -772

30 157.43 -42 -285 75 99 399 -662

Girder G1 Unfactored Torques

10th

Point

Span

Length

Dead Load LL+I
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Table 6  Girder G2 Unfactored Torques by Tenth Point 

 
 

 

DC1STEEL DC1CONC DC2 DW Pos. Neg.

(ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft)

0 0.00 42 286 -62 -83 660 -398

1 15.74 82 398 -54 -71 775 -448

2 31.49 34 189 -40 -53 756 -482

3 47.23 30 153 -40 -52 597 -389

4 62.97 -1 9 -23 -31 389 -307

5 78.71 -29 -125 -13 -17 309 -354

6 94.46 -33 -158 0 0 360 -479

7 110.20 -54 -262 21 28 462 -636

8 125.94 -25 -165 46 62 569 -766

9 141.69 -10 -135 83 110 668 -866

10 157.43 -22 -231 126 168 1049 -922

10 0.00 36 294 -144 -191 1049 -922

11 20.66 4 105 -89 -117 995 -702

12 41.33 60 309 -52 -68 919 -598

13 61.99 39 205 -22 -30 716 -464

14 82.65 61 261 -9 -11 555 -383

15 103.31 0 0 0 0 446 -430

16 123.98 -64 -261 9 11 413 -540

17 144.64 -39 -205 22 29 500 -724

18 165.30 -60 -309 52 68 625 -906

19 185.96 -4 -105 89 117 713 -991

20 206.63 -36 -294 144 190 928 -1046

20 0.00 22 231 -127 -169 928 -1046

21 15.74 10 134 -83 -111 874 -657

22 31.49 25 166 -47 -62 770 -549

23 47.23 54 262 -22 -29 640 -434

24 62.97 33 158 0 -1 482 -319

25 78.71 30 125 12 17 375 -281

26 94.46 1 -10 23 30 346 -378

27 110.20 -30 -153 39 51 434 -591

28 125.94 -34 -190 39 52 512 -751

29 141.69 -82 -398 57 75 503 -772

30 157.43 -42 -285 75 99 399 -662

Girder G1 Unfactored Torques

10th

Point

Span

Length

Dead Load LL+I
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Table 7  Section G2-1 Unfactored Major-Axis Bending Moments and Torques  

 
 

  

DC1STEEL DC1CONC DC1CAST1 DC2 DW Pos. Neg. Pos. Neg.

Moment (kip-ft) 1144 4747 2979 765 1006 5920 -1689 -290 1525

Torque (kip-ft) 59 205 464 41 54 525 -409 -113 232

Demand
Dead Load LL+I Fatigue LL+I

Unfactored Demands at Section G2-1 (10th Point = 3.5)
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7.0 DESIGN 

 
Sample design calculations at selected critical locations of Girder G2 are provided within this 
section.  The calculations are intended to illustrate the application of some of the more 
significant provisions of the AASHTO LRFD (5

th
 Edition, 2010).  As such, complete calculations 

for each girder section and all bridge components are not shown.  Two critical girder section 
checks are provided: Section G2-1 represents a girder section checked for positive moment, and 
Section G2-2 represents a girder section at an interior pier and the maximum negative moment 
location.  The sample girder design calculations illustrate provisions that need to be checked at 
the Strength, Service, Fatigue, and Constructibility limit states.  Also, sample calculations for 
determining tub girder distortional stresses based on the beam-on-elastic-foundation analogy are 
provided. 
 
Sample design calculations are also provided for the longitudinal bottom flange stiffener design, 
internal full depth diaphragms design, bearing stiffener design, top flange lateral bracing member 
design, and a bolted field splice design.  The sample design calculations make use of moments, 
shears, and torques provided in tables shown in Section 6.2 of this design example, and section 
properties that are computed in the sections that follow.  In the calculations of major-axis 
bending stress throughout the sample calculations, compressive stresses are always shown as 
negative values and tensile stress are always shown as positive values.   
 
7.1 Girder Section Proportioning 

 
Figure 9 illustrates the Girder G2 elevation, showing the flange and web sizes employed in this 
design example.  The same flange and web sizes of Girder G2 are used on Girder G1, but with 
plate lengths radially proportional to Girder G2.  
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Figure 9  Girder G2 elevation 

Arch
ive

d



 

38 
 

7.1.1 Girder Web Depth 

 
Proper proportioning of tub girders involves a study of various girder depths versus girder weight 
to arrive at the least weight solution that meets all performance and handling requirements. The 
overall weight of the tub girder can vary dramatically based on web depth.  Therefore, selection 
of the proper girder depth is an extremely important consideration affecting the economy of steel 
girder design. The NSBA Publication, Practical Steel Tub Girder Design [3] points out that a 
traditional rule of thumb for steel tub girder bridge depths is L/25, however designers should not 
be reluctant to exceed this ratio.  Tangent steel tub girders have approached L/35 while meeting 
all code requirements for strength and deflection.  Furthermore, tub girders are generally stiffer 
than I-girders because an individual tub nearly acts as two I-girders for major-axis bending.  For 
torsion, an individual tub girder is significantly stiffer than two-I-girders. 
 
Article 2.5.2.6.3 provides suggested minimum span-to-depth ratios for I-girders, but does not 
specifically address tub girder sections.  The suggested minimum total depth of a composite I-
girder, in a continuous span, is given as 0.032L, where L is the span length in feet.  This criterion 
may be applied to determine a starting depth of the tub girder for the depth studies.  The length 
of the center span of the outside girder, Girder G2, is 213.38 feet (measured along the centerline 
of the tub section), which is the longest effective span in this design example.  Therefore the 
suggested minimum depth of the composite section is: 
 
 0.032(213.38) = 6.828 ft = 81.9 in. 
 
Considering that 81.9 inches is the suggested minimum depth of the composite section including 
the depth of the concrete deck, a vertical web depth of 78.0 inches is chosen in this design 
example. 
 
Tub girders typically employ inclined webs, as they are advantageous in reducing the width of 
the bottom flange.  Article 6.11.2.1 specifies that the web inclination shall not exceed 1:4 
(horizontal:vertical).  Because progressively deeper webs may result in a narrower and 
potentially thicker bottom flange plate (at location of maximum flexure), it is generally necessary 
for the engineer to explore a wide range of web depths and web spacing options in conjunction 
with bottom flange requirements to determine the optimal solution. 
 
The maximum allowed web inclination of 1:4 is used for this design example, so as to minimize 
the bottom flange width.  Based on the previously mentioned web depth study, a vertical web 
depth of 78.0 inches is selected, resulting in a distance of 81 inches between the centerline of the 
webs at the bottom flange.  The actual bottom flange widths is 83 inches in order to provide a 1.0 
inch flange extension on the outside of each web which permits welding of the webs to the 
bottom flange.  However, it should be noted, per the AASHTO/NSBA Steel Bridge Collaboration 

Document: Guidelines for Design Details [5], most fabricators prefer a bottom flange extension 
of 1.5 inches, and 1.0 inch is the minimum. 
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7.1.2 Cross-section Proportions 

 
Proportion limits for webs of tub girders are specified in Article 6.11.2.1.  Provisions for webs 
with and without longitudinal stiffeners are presented.  For this example a longitudinally 
stiffened web is not anticipated.  The web plate must be proportioned such that the web plate 
thickness (tw) meets the requirement: 
 

 150
t

D

w

  Eq. (6.11.2.1.2-1) 

 
where D is the distance along the web.  For inclined webs, Article 6.11.2.1.1 states that the 
distance along the web shall be used for all design checks.  The web thickness used along the 
entire length of both girders in this design example is 0.5625 inches.  Determine the web depth 
along the incline: 
 

in. 80.40
4.0

4.123
78D 








  

 
Checking Eq. (6.11.2.1.2-1): 
 

 1509.142
5625.0

40.80

t

D

w

  OK 

 
Cross-section proportion limits for top flanges of tub girders are specified in Article 6.11.2.2.  
The smallest top flange employed in this design example is 1.0 in. x 16.0 in.  The minimum 
width of flanges is specified as: 
 

 in. 13.4
6

80.40

6

D
b f   Eq. (6.11.2.2-2) 

 
Therefore, the minimum top flange width of 16.0 in. satisfies the requirements of Eq. (6.11.2.2-
2).  The minimum thickness of the top flange must satisfy the following two provisions: 
 

 0.12
t2

b

f

f
  Eq. (6.11.2.2-1) 

 

 0.120.8
)0.1(2

0.16

t2

b

f

f
  OK 

 
and, 
 
 wf  t1.1t   Eq. (6.11.2.2-3) 
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 in. 0.62)1.1(0.5625 t1.1in. 1.0t wf   OK 
 
Although not required in this design example, it should be noted that the AASHTO/NSBA Steel 
Bridge Collaboration Guidelines for Design and Constructibility [7] recommend a minimum 
flange thickness of 0.75 inches to enhance girder stability during handling and erection.   
 
This example utilizes the provisions of the AASHTO LRFD (5

th
 Edition, 2010) to size the bottom 

flanges, which impos no limitations in regard to the b/t ratio of bottom flanges in tension.  
However, the design engineer should consider current industry practice regarding sizing the 
bottom flange of tub girders in positive moment regions. For positive moment regions, past and 
current literature has suggested a lower bound limit for the bottom flange thickness.  These 
“rules of thumb” have suggested that a bottom flange in tension have a maximum b/t ratio of 120 
or an even more restrictive ratio of 80.  These limits are intended to address several fabrication 
concerns, including waviness and warping effects during welding of the bottom flange to the 
webs.  Additional discussion concerning this issue can be found in the NSBA publication 
Practical Steel Tub Girder Design [4].  
 
Furthermore, the designer should be aware that it is possible that the bottom flange in tension in 
the final condition may be in compression during lifting of the tub girder during erection, 
possibly causing buckling of the slender bottom flange.  Slenderness limits for the bottom 
tension flange have also been suggested to limit local vibrations, especially in very wide flanges 
that do not utilize any stiffening elements.   
 
The designer should consult with fabricators if it is determined that a bottom flange thickness 
that does not satisfy these previously discussed rules of thumb will be utilized in the final design 
of the structure.  It should be verified that a tub girder with the selected bottom flange thickness 
can be fabricated without causing handling and distortion concerns.  For this particular example, 
tension flange thicknesses that do not satisfy the b/t ratio of 120 are utilized (maximum b/t = 
81/0.625 = 129.6), as they are allowed by AASHTO LRFD (5

th
 Edition, 2010). 

 
7.2 Section Properties 

 
The calculation of the section properties for Sections G2-1 and G2-2 is illustrated below.  In 
computing the composite section properties, the structural slab thickness, or total thickness 
minus the thickness of the integral wearing surface, should be used.  However, in the case of this 
design example, there is no integral wearing surface assumed, therefore the total structural 
thickness of the deck slab is 9.50 in. 
 
For all section property calculations, the haunch depth of 4.00 in. is considered in computing the 
section properties, but the area of the haunch is not included.  Since the actual depth of the 
haunch concrete may vary from its theoretical value to account for construction tolerances, many 
designers ignore the haunch concrete depth in all calculations.  For composite section properties 
including only longitudinal reinforcement, a haunch depth is considered when determining the 
vertical position of the reinforcement relative to the steel girder.  The longitudinal reinforcement 
steel area is assumed to be equal to 20.0 in.2 per girder, and is assumed to be placed at the mid-
depth of the effective structural deck thickness. 
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The section properties also include the longitudinal component of the top flange lateral bracing 
area, the longitudinal bottom flange stiffener (where present), and the 1 in. bottom flange 
extensions beyond the webs.  A single top flange lateral bracing member of 8.0 in.2 placed at an 
angle of 30 degrees from the girder tangent is assumed in this design example. 
 
The composite section must consist of the steel section and the transformed area of the effective 
width of the concrete deck.  Therefore, compute the modular ratio, n (Article 6.10.1.1.1b):       
  

 
cE

E
n   Eq. (6.10.1.1.1b-1) 

 
where Ec is the modulus of elasticity of the concrete determined as specified in Article 5.4.2.4.  
A unit weight of 0.150 kcf is used for the concrete in the calculation of the modular ratio. 
 
 c

1.5

c1c f' wK 33,000E   Eq. (5.4.2.4-1) 
  
 ksi 3,8344.0(0.150) (1.0) 33,000E 1.5

c   
 

 7.56
3,834

29,000
n   

 
Even though Article C6.10.1.1.1b permits n to be taken as 8 for concrete with f′c equal to 4.0 ksi, 
n = 7.56 will be used in all subsequent computations in this design example. 
 
7.2.1 Section G2-1: Span 1 Positive Moment Section Properties 

 
Section G2-1 is located in Span 1, approximately 57 feet from the centerline of the bearing at 
abutment 1.  The cross section for Section G2-1 is shown in Figure 10.  For this section, the 
longitudinal reinforcement is conservatively neglected in computing the composite section 
properties as is typically assumed in design. 
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Figure 10  Sketch of Tub-Girder Cross–Section at Section G2-1 

 
7.2.1.1 Effective Width of Concrete Deck 

 
As specified in Article 6.10.1.1.1e, the effective flange width is to be determined as specified in 
Article 4.6.2.6.  According to Article 4.6.2.6, the deck slab effective width for an interior 
composite girder may be taken as one-half the distance to the adjacent girder on each side of the 
component; and for an exterior girder it may be taken as one-half the distance to the adjacent 
girder plus the full overhang width.  In a typical tub girder cross section, the deck slab between 
the two webs on the girder is considered as part of the effective flange width, as well as half the 
distance form one web to the adjacent web of the adjacent girder and the full overhang width, as 
applicable.  Therefore, the deck slab effective width, beff, for Girder G2 is: 
 

 in. 243ft 20.25
2

12.50
  10.00 4.00b eff   
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7.2.1.2 Elastic Section Properties: Section G2-1 

 
For tub sections with inclined webs, the area of the inclined webs should be used in computing 
all section properties.  Also, as shown in Figure 11, the moment of inertia of a single inclined 
web, Iow, with respect to a horizontal axis at mid-depth if the web is computed as: 
 

 w2

2

ow I 
1S

S
I


  

 
where: S = web slope with respect to the horizontal (equal to 4.00 in this example) 
 Iw = moment of inertia of each inclined web with respect to an axis normal to the web 
 

   43

2

2

in. 22,92980.40.5625
12

1
 

14.0

4.0
ow

I 















  

 

 
Figure 11  Moment of Inertia of an Inclined Web 

 
In the calculations of the section properties that follow in Table 8 to Table 10, d is measured 
vertically from a horizontal axis through the mid-depth of the web to the centroid of each 
element of the tub girder.   
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Table 8  Section G2-1: Steel Only Section Properties 

 

 
Table 9  Section G2-1: 3n=22.68 Composite Section Properties 
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Table 10  Section G2-1: n=7.56 Composite Section Properties 

 

 
7.2.1.3 Plastic Moment Neutral Axis: Section G2-1 

 
Per Article 6.11.6.2.2 for sections in positive flexure, the ductility requirements of Article 
6.10.7.3 must be satisfied for compact and noncompact sections, to protect the concrete deck 
from premature crushing.  This requires the computation of the plastic neutral axis, in accordance 
with Article D6.1.  The longitudinal deck reinforcement is conservatively neglected.  The 
location of the plastic neutral axis for the entire tub girder is computed as follows: 
 
 Pt = Fyt bt tt  = (50)(83.00)(0.625)  = 2,594 kips 
 Pw = 2 Fyw D tw = (2)(50)(80.40)(0.5625) = 4,523 kips 
 Pc = 2 Fyc bc tc  = (2)(50)(16.00)(1.00)  = 1,600 kips 
 Ps = 0.85 f’c beff ts = (0.85)(4.0)(243)(9.5) = 7,849 kips 
 Prb = Prt = 0 kips 
 
 Pt + Pw + Pc > Ps + Prb + Prt 
 2,594 + 4,523 + 1,600 = 8,717 kips  >  7,849 kips  
 
Therefore, the plastic neutral axis (PNA) is in the top flange, per Case II of Table D6-1.  
Compute the PNA in accordance with Case II: 
 

 
























 1

1,600

0 - 0 - 849,7594,2523,4

2

1.00
1

P

PPPPP

2

t
Y

c

rbrtstwc  

 
location)(PNA  flange  top theof  top thefrom downward in. 0.27Y   

 
7.2.2 Section G2-2: Support 2 Negative Moment Section Properties 

 
Section G2-2 is located at Support 2, and is as shown in Figure 12.  The effective width of 
concrete deck is the same for Section G2-2 as calculated for Section G2-1, beff = 243.0 in. 

Arch
ive

d



 

46 
 

 

 
Figure 12  Sketch of Tub-Girder Cross–Section at Section G2-2 

 
7.2.2.1 Elastic Section Properties: Section G2-2 

 
Furthermore, for members with shear connectors provided throughout their entire length that also 
satisfy the provisions of Article 6.10.1.7, Articles 6.6.1.2.1 and 6.10.4.2.1 permit the concrete 
deck to also be considered effective for negative flexure when computing stress ranges and 
flexural stresses acting on the composite section at the fatigue and service limit states, 
respectively.  Therefore, section properties for the short-term and long-term composite section, 
including the concrete deck but neglecting the longitudinal reinforcement, are also determined 
for later use in the calculations of Section G2-2 at these limits states. 
 
Although not required by the AASHTO LRFD (5

th
 Edition, 2010), for stress calculations 

involving the application of long-term loads to the composite section in regions of negative 
flexure in this example, the area of the longitudinal reinforcement is conservatively adjusted for 
the effects of concrete creep by dividing the area by 3 (i.e. 20.00 in.2/3 = 6.67 in.2).  The concrete 
is assumed to transfer the force from the longitudinal deck reinforcement to the rest of the cross-
section and concrete creep acts to reduce that force over time. 
 
As shown in Figure 10, a single WT 8x28.5 is utilized as a bottom flange longitudinal stiffener 
with the stem welded to the bottom flange, and is placed at the centerline of the bottom flange.  
The WT 8x28.5 is considered in the section property computations. 
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In the calculation of the section properties that follow in Table 11 to Table 15, d is measured 
vertically from a horizontal axis through the mid-depth of the web to the centroid of each 
element of the tub girder.  
  

Table 11  Section G2-2: Steel Only Section Properties 

 

 
Table 12  Section G2-2: 3n=22.68 Composite Section Properties with Transformed Deck 
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Table 13  Section G2-2: n=7.56 Composite Section Properties with Transformed Deck 

 

Table 14  Section G2-2: 3n Composite Section Properties with Longitudinal Steel 

Reinforcement 

 

Table 15  Section G2-2: n Composite Section Properties with Longitudinal Steel 

Reinforcement 
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7.2.3 Check of Minimum Negative Flexure Concrete Deck Reinforcement (Article 6.10.1.7) 

 
To control concrete deck cracking in regions of negative flexure, Article 6.10.1.7 specifies that 
the total cross-sectional area of the longitudinal reinforcement must not be less than 1 percent of 
the total cross-sectional area of the deck.  The minimum longitudinal reinforcement must be 
provided wherever the longitudinal tensile stress in the concrete deck due to either the factored 
construction loads or Load Combination SERVICE II exceeds fr.  is to be taken as 0.9 and fr 
shall be taken as the modulus of rupture of the concrete determined as follows: 
 

 For normal weight concrete: '
cr f24.0f   

 For lightweight concrete: fr is calculated as specified in Article 5.4.2.6. 
 
It is further specified that the reinforcement is to have a specified minimum yield strength not 
less than 60 ksi and a size not exceeding No. 6 bars. The reinforcement should be placed in two 
layers uniformly distributed across the deck width, and two-thirds should be placed in the top 
layer.  The individual bars must be spaced at intervals not exceeding 12 inches.   
 
Article 6.10.1.1.1c states that for calculating stresses in composite sections subjected to negative 
flexure at the strength limit state, the composite section for both short-term and long-term 
moments is to consist of the steel section and the longitudinal reinforcement within the effective 
width of the concrete deck.  Referring to the cross-section shown in Figure 2: 
 

overhang) ofportion r (triangula  deck) thick 9.5" of width (entireA deck   
 

  22
deck in.4,777ft33.17

12

216.0
4.0

12

0.4

2

1
240.5

12

9.5
A 




























     

 
      2in.47.77)0.01(4,777   
 

    in.in.0.098ftin.1.18
40.5

47.77 22
  

 
        girder  tubper in.23.810)0.098(243. 2

  
 
Therefore, the assumption of 20.00 in.2 for the longitudinal deck reinforcement used in the 
calculation of the section properties for Section G2-1 is conservative and is left as shown in 
Table 14 and Table 15, as the longitudinal deck reinforcement to be used is more than that 
assumed in the section property calculations.  In the actual deck, the longitudinal reinforcement 
should have a minimum cross-sectional area of 23.81 in.2 per tub girder.  If the reinforcement is 
detailed, #6 bars at 6 inches are placed in the top layer, and in the bottom layer use #4 bars at 6 
inches.  Therefore, the total area of deck reinforcement steel in the given effective width of 
concrete deck is: 
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  22
S in. 23.81in. 92.52

12

243.0
0.20  0.200.440.44A 








  

Also, approximately two-thirds of the reinforcement is in the top layer: 
3

2
69.0

28.1

44.044.0


  

 
7.3 Girder Check: Section G2-1, Constructibility (Article 6.11.3) 

 
Article 6.11.3 directs the engineer to Article 6.10.3 for discussion regarding the constructibility 
checks of tub girders.  For critical stages of construction, the provisions of Articles 6.10.3.2.1 
through 6.10.3.2.3 shall be applied to the top flanges of the tub girder.  The noncomposite 
bottom tub flange in compression or tension shall satisfy requirements specified in Article 
6.11.3.2.  Web shear shall be checked in accordance with Article 6.10.3.3 with the shear shall be 
taken along the slope of the web in accordance with the provisions of Article 6.11.6. 

As specified in Article 6.10.3.4, sections in positive flexure that are composite in the final 
condition, but noncomposite during construction, are to be investigated during the various stages 
of deck placement.  The effects of forces from deck overhang brackets acting on the fascia 
girders are also to be considered.  Wind load effects on the noncomposite structure prior to and 
during casting are also an important consideration during construction.  The presence of 
construction equipment may also need to be considered.  Lastly, the potential for uplift at 
bearings should be investigated at each critical construction stage.  For this design example, the 
effects of wind load on the structure and the presence of construction equipment are not 
considered. 
 
Calculate the maximum flexural stresses in the flanges of the steel section due to the factored 
loads resulting from the application of steel self-weight and Cast #1 of the deck placement 
sequence.  Cast #1 yields the maximum positive moment for the noncomposite Section G2-1.  As 
specified in Article 6.10.1.6, for design checks where the flexural resistance is based on lateral 
torsional buckling, fbu is to be determined as the largest value of the compressive stress 
throughout the unbraced length in the flange under consideration, calculated without 
consideration of flange lateral bending.  For design checks where the flexural resistance is based 
on yielding, flange local buckling or web bend-buckling, fbu may be determined as the stress at 
the section under consideration.  From Figure 1, brace points adjacent to Section G2-2 are 
located at intervals of approximately 16.3 feet, and the largest stress occurs within this unbraced 
length.   
 
In accordance with Article 3.4.2.1, when investigating Strength I, III, and V during construction, 
load factors for the weight of the structure and appurtenances, DC and DW, shall not be taken to 
be less than 1.25.  Also, as discussed previously, the  factor is taken equal to 1.0 in this 
example.  As shown in Table 7 the unfactored moments due to steel self-weight and Cast #1 are 
1,144 k-ft and 2,979 k-ft, respectively.  Therefore, 
 
For Construction Strength I: 
 

 General: 
nc

DC
bu

S

M  
f
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 Top Flange:  ksi27.14
4,334

2,979)(12)  1,1441.0(1.25)(
f bu 


  

 

 Bot. Flange: ksi30.21
5,029

2,979)(12)  1,1441.0(1.25)(
f bu 


  

 
7.3.1 Deck Overhang Bracket Load 

 
During construction, the weight of the deck overhang wet concrete is resisted by the deck 
overhang brackets.  Other loads supported by the overhang bracket during construction include 
the formwork, screed rail, railing, worker walkway, and the deck finishing machine.   
 
The deck overhang construction loads are typically applied to the non-composite section, and 
removed once the concrete deck has become composite with the steel girders.  The deck 
overhang bracket imparts a lateral force on the top and bottom flanges, resulting in lateral 
bending of the flanges.  The lateral bending of the top flange that must be considered as part of 
the constructibility check, however in a tub girder bridge, the flange lateral bending of the 
bottom flange is typically ignored due to the large section modulus of the bottom flange in the 
lateral direction.  Also, it should be noted that if the bottom of the bracket does not bear on the 
web near the junction of the web and bottom flange, additional checks for out-of-plane bending 
of the web may be warranted. 
 
Since G2 is a fascia girder, one-half of the deck overhang weight is assumed to be carried by the 
girder and one-half is placed on the overhang brackets, as shown in Figure 13. 
 

 
Figure 13  Deck Overhang Bracket Loading 
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The deck overhang bracket loads are assumed to be applied uniformly to the top flange, even 
though the brackets are actually spaced at approximately 3 feet along the length of the girder. 
 
The unbraced length of the top flange is approximately 16.3 ft in Span 1.  The deck thickness in 
the overhang area is assumed to be 10 inches, and the weight of the deck finishing machine is not 
considered in these calculations.  Therefore, the vertical load on the deck overhang brackets is 
computed as: 
 

 Deck Overhang:    150
12

10
0.4

2

1















  = 250 lbs/ft 

 
 Deck Forms + Screed Rail  = 224 lbs/ft  (assumed) 
 
 Total Uniform Load on Brackets = 474 lbs/ft 
 
 
The lateral force on the top flange is computed as: 
 

 









 1.49
5.67

0.78
tan 1  

 

kip/ft 0.411lb/ft  411
)tan(49.1

474
F 





 

 
The flange lateral bending moment on the exterior web top flange due to the deck overhang 
bracket is computed.  The flange lateral moment at the brace points due to the overhang forces is 
negative in the top flange of Girder G2 on the outside of the curve because the stress due to the 
lateral moment is compressive on the convex side of the flange at the brace points.  The opposite 
would be true on the convex side of the Girder G1 top flange on the inside of the curve at the 
brace points.  In the absence of a more refined analysis, the equations given in Article C6.10.3.4 
may be used to estimate the maximum flange lateral bending moments in the discretely braced 
compression flange due to the lateral bracket forces.  Assuming the flange is continuous with the 
adjacent unbraced lengths and that the adjacent unbraced lengths are approximately equal, the 
lateral bending moment due to a statically equivalent uniformly distributed lateral bracket force 
may be estimated as: 
 

 
ft-kip 9.1

12

16.30.411

12

L F
M

22
b

















   Eq. (C6.10.3.4-2) 

 
7.3.2 Flange Lateral Bending Due to Web Shear 

 
In addition to the lateral bending moment due to the overhang brackets, the inclined webs of the 
tub girder cause a lateral force on the top flanges.  However, in this example this force and 
subsequent lateral bending effects are relatively small and are ignored in these computations.   
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7.3.3 Flange Lateral Bending Due to Curvature 

 
Another source of lateral bending is due to curvature, which can either be taken from the analysis 
results, or estimated by the approximate V-load equation given in Article C4.6.1.2.4b.  The V-
load equation assumes the presence of a cross frame at the point under investigation and a 
constant major-axis moment over the distance between the brace points.  Although the use of the 
V-load equation is not theoretically pure for tub girders or at locations in between brace points, it 
may conservatively be used. 
 
The top flange size is constant between brace points in this region under investigation.  In 
positive moment regions, the largest value of the major-axis bending stress (fbu) may not 
necessarily be at either brace point.  Generally in positive moment regions, fbu will not be 
significantly larger than the value at adjacent brace points, which is the case in this example.  
Therefore, the computed value of fbu at Section G2-1 and the lateral bending moment at the brace 
points are conservatively combined for this constructibility check.   
 
For this example, and illustration purposes, the V-load equation is used to compute the flange 
lateral bending moment due to curvature.  For a single tub girder flange, consider only one-half 
of the girder major-axis moment due to steel self-weight and Cast #1 of the deck placement 
sequence.  
 

 
tf-kip 2,062

2

2,979 1,144
M 


   

 
  

   
ft-kip 11.8

6.5716.2510

16.32,062

D R N

 M
M

22

LAT 












   Eq. (4.6.1.2.4b-1) 

 
where: 
 
 MLAT  = flange lateral bending moment (kip-ft) 
 M = major-axis bending moment (kip-ft) 
 ℓ = unbraced length (ft) 
 N = a constant taken as 10 or 12 in past practice; 10 is used herein 
 R = girder radius (ft) 
 D = web depth (ft) 
 
The flange lateral moment at the brace points due to curvature is negative when the top flanges 
are subjected to compression because the stress due to the lateral moment is in compression on 
the convex side of the flange at the brace points.  The opposite is true whenever the top flanges 
are subjected to tension.  The total factored lateral moment and stress in the top flange, including 
the lateral moment from the overhang bracket is: 
 
      tf-kip 1.621.98.1125.1M TOT_LAT   
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 ksi34.7-
6(1.00)(16)

26.1(12)-

S

M
f

2

LAT_TOT




  

 
It should be noted that another significant source of flange lateral bending results from forces 
that develop from single-diagonal top flange bracing members, developing from the major-axis 
bending of the tub girder.  This effect is recognized in flange lateral moments taken directly from 
a finite element analysis.  In the absence of a refined analysis, equations have been developed to 
evaluate bracing member forces and the forces imparted on the top flange in tub girders due to 
major-axis bending [8 and 9].  The flange lateral bending due to the top lateral bracing is not 
considered in these computations. 
 
7.3.4 Top Flange Lateral Bending Amplification 

 
According to Article 6.10.1.6, lateral bending stresses determined from a first-order analysis may 
be used in discretely braced compression flanges for which: 
 

 
ycbu

bb
pb

Ff

RC
1.2LL          Eq. (6.10.1.6-2) 

 
Lp is the limiting unbraced length specified in Article 6.10.8.2.3 determined as: 
 

 
yc

tp
F

E
r0.1L          Eq. (6.10.8.2.3-4) 

 
where rt is the effective radius of gyration for lateral torsional buckling specified in Article 
6.10.8.2.3 determined as: 
 

 


















fcfc

wc

fc
t

tb

tD

3

1
112

b
r        Eq. (6.10.8.2.3-9) 

 
For the steel section, the depth of the web in compression in the elastic range, Dc, at Section G2-
1 is computed along the web (not vertical) as follows: 
 
 Note that for the steel section only: dTOP OF STEEL = 42.77 in.  
 

 
2

2

fSTEEL OF TOPc
S

1S
 )t(dD
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 in. 43.06
4

14
 1.00)(42.77D

2

2

c 


  

 
It should be noted that values of Dc and D are taken as distances along the web, in accordance 
with Article 6.11.2.1.1.  Therefore, 
 

 in.77.3

16(1.00)

25)43.06(0.56

3

1
112

16
r t 
















  

 

 ft57.7
50

29,000

12

1.0(3.77)
L p   

 
Cb is the moment gradient modifier specified in Article 6.10.8.2.3 and may conservatively be 
taken equal to 1.0.  According to Article 6.10.1.10.2, the web load-shedding factor, Rb, is to be 
taken equal to 1.0 when checking constructibility.  Finally, fbu is the largest value of the 
compressive stress due to the factored loads throughout the unbraced length in the flange under 
consideration, calculated without consideration of flange lateral bending.  In this case, use fbu =   
-14.27 ksi, as computed earlier for the Construction Strength I load combination.  Therefore: 
 

  
 

ft3.61Lft00.71

50

14.27-

1.01.0
7.571.2 b               Eq. (6.10.1.6-2) 

 
Therefore, Eq. (6.10.1.6-2) is satisfied, and amplification for the second-order elastic 
compression-flange lateral bending stresses is not required.  The flange lateral bending stress, fℓ, 
determined from the first-order elastic analysis is sufficient; thus fℓ = -7.34 ksi. 
 
7.3.5 Flexure (Article 6.11.3.2) 

 
For critical stages of construction, Article 6.11.3.2 directs the engineer to the provisions of 
Article 6.10.3.2 to compute the resistance of top flanges of tub sections.  The unbraced length 
should be taken as the distance between interior cross frames or diaphragms.  However per the 
commentary to Article 6.11.3.2, top lateral bracing attached to the flanges at points where only 
struts exist between the flanges may be considered as brace points at the discretion of the 
engineer. 
 
Article 6.10.3.2.1 requires that discretely braced flanges in compression satisfy the following: 
 
  ychfbu FRff 


       Eq. (6.10.3.2.1-1) 

 

  ncfbu Ff
3

1
f 


       Eq. (6.10.3.2.1-2) 
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  crwfbu Ff          Eq. (6.10.3.2.1-3) 
 
Article 6.11.3.2 requires that the noncomposite box flange (bottom flange) in tension satisfy: 
 
 Δ FRf yfhfbu         Eq. (6.11.3.2-3) 
 
where:  f  =  resistance factor for flexure from Article 6.5.4.2 (f = 1.0) 
 Rh = hybrid factor specified in Article 6.10.1.10.1 (1.0 at homogeneous Section G2-1)  
 Fcrw =  nominal elastic bend-buckling resistance for webs determined as specified in 

Article 6.10.1.9  
 Fnc  =  nominal flexural resistance of the compression flange determined as specified in 

Article 6.11.8.2 (i.e. local or lateral torsional buckling resistance, whichever 
controls).  The provisions of Article A6.3.3 shall not be used to determine the 
lateral torsional buckling resistance of top flanges of tub girders, per Article 
6.11.3.2. 

 Δ  =  a factor dependent on St. Venant torsional shear stress in the bottom flange.  St. 
Venant torsional shear stress will be addressed later in this example. 

 
7.3.5.1 Top Flange 

 
7.3.5.1.1 Top Flange: Yielding  

 
First, check that factored top flange stress does not exceed the yield resistance given by Eq. 
(6.10.3.2.1-1): 
 
 ychfbu FRff 


       Eq. (6.10.3.2.1-1) 

 
ksi61.127.3427.14ff bu 


 

 
    ksi 21.61  ksi 50.0501.01.0FR ychf    OK (Ratio = 0.432) 
 
Second, check that the factored top flange stress does not exceed buckling resistance given by 
Eq. (6.10.3.2.1-2).  The buckling resistance of the top flange is determined as the minimum of 
the local buckling and lateral torsional buckling resistance, which are computed as follows. 
 
7.3.5.1.2 Top Flange: Local Buckling Resistance (Article 6.10.8.2.2) 

 
Determine the slenderness ratio of the top flange: 
 

fc

fc
f

t2

b
          Eq. (6.10.8.2.2-3) 
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00.8
1.002

16
λ f   

 
Determine the limiting slenderness ratio for a compact flange (alternatively see table 
C6.10.8.2.2-1): 
 

yc

pf
F

E
38.0         Eq. (6.10.8.2.2-3) 

 

 15.9
50

000,29
38.0pf   

 
Since f  <  pf, 

 ychbnc FRRF         Eq. (6.10.8.2.2-1) 
 
Since Rb is taken as 1.0 for constructibility,  
 
     ksi 50501.01.0Fnc   
 
7.3.5.1.3 Top Flange: Lateral Torsional Buckling Resistance (Article 6.10.8.2.3) 

 
The limiting unbraced length, Lp, was computed earlier to be 7.57 feet.  The effective radius of 
gyration for lateral torsional buckling, rt, for the noncomposite Section G2-1 was also computed 
earlier to be 3.77 inches. The computations for Lp an rt are shown in a previous section 
discussing the top flange lateral bending amplification. 
 
Determine the limiting unbraced length, Lr: 
 

 
yr

tr
F

E
r πL         Eq. (6.10.8.2.3-5) 

 

 
ft28.41

500.7

29,000

12

(3.77) π
L r   

 
Since Lp = 7.57 feet < Lb = 16.30 feet < Lr = 28.41 feet, Eq. (6.10.8.2.3-2) is used to compute the 
lateral torsional buckling resistance. 
 

 ychbychb

pr

pb

ych

yr

bnc FRRFRR
LL

LL

FR

F
11CF 
















































   Eq. (6.10.8.2.3-2) 
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Compute the moment-gradient modifier, Cb, to be used in Eq. (6.10.8.2.3-2), where 
 
 Cb = 1.0 for members where fmid/f2 > 1 or f2 =0   Eq. (6.10.8.2.3-5) 
 

 Otherwise: 3.2
f

f
3.0

f

f
05.175.1C

2

2

1

2

1
b 





























    Eq. (6.10.8.2.3-7) 

 
And, where: 
 

fmid =  flange stress without the consideration of lateral bending at the middle of the 
unbraced length of the flange under consideration.  fmid shall be due to factored 
loads and shall be taken as positive in compression and negative in tension. 

 
f2 =  largest compressive flange stress without consideration of lateral bending at either 

end of the unbraced length of the flange under consideration.  f2 shall be due to 
factored loads and shall be taken as positive.  If the flange stress is zero or tensile 
in the flange under consideration at both ends of the unbraced length, f2 shall be 
taken as zero. 

 
f1 =  in the case of Section G2-1, the moment diagram along the entire length between 

brace points is concave in shape, and therefore, f1 = f0, and is the stress without 
consideration of lateral bending at the brace point opposite to the one 
corresponding to f2.  

 
The largest compressive stress in the unbraced length under consideration is at 65.04 ft into span 
1.  From calculations not shown herein, the unfactored moments at 65.04 ft due to steel self-
weight and Cast #1 are 1,115 k-ft and 3,361 k-ft, respectively.  Therefore, f2 is calculated as: 
 

 ksi49.15
4,334

3,361)(12)  1,1151.0(1.25)(
f 2 


  

 
fmid is the compressive stress at the location under investigation, previously computed as 14.27 
ksi in compression.  Check the fmid/f2 ratio: 
 

 1.0    0.92
15.49

14.27

f

f

2

mid
  

 
Therefore, Cb can be calculated using Eq. (6.10.8.2.3-7).  First, it is necessary to compute f1, 
which is the flange stress at the opposite brace point from f2.  From calculations not shown 
herein, the unfactored moments at 65.04 ft due to steel self-weight and Cast #1 are 1,116 k-ft and 
2,588 k-ft, respectively.  Therefore, f1 is calculated as: 
 

 ksi82.12
4,334

2,588)(12)  1,1161.0(1.25)(
f 1 
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Cb is computed as: 
 

 3.2  1.09
15.49

12.82
0.3

15.49

12.82
1.051.75C

2

b 
















  

 
Therefore, the lateral torsional buckling resistance is: 
 

 
 

  
        ksi 50501.01.0  ksi 47.7501.01.0

7.5728.41

7.5716.30

501.0

500.7
111.09F nc 




































  

 
Fnc is governed by the lateral torsional buckling resistance, which is less than the local buckling 
resistance of 50.0 ksi computed earlier.  Therefore, Fnc = 47.7 ksi.  Check Eq. (6.10.3.2.1-2): 
 

      ksi 47.747.71.0  ksi 16.727.34
3

1
14.27   OK (Ratio = 0.351) 

 
7.3.5.1.4 Top Flange: Web Bend-Buckling Resistance (Article 6.10.1.9) 

 
Determine the nominal elastic web bend-buckling resistance at Section G2-1 according to the 
provisions of Article 6.10.1.9.1 as follows: 
 

 






























0.7

F
 ,FRmin

t

D

0.9Ek
F

yw

ych2

w

crw
     Eq. (6.10.1.9.1-1) 

where: 
 

 
 

2

c DD

9
k          Eq. (6.10.1.9.1-2) 

 
In earlier calculations, Dc was computed as 43.06 in. along the inclined web.   
 

 1.31

04.80

06.43

9
k

2











  

 
Therefore, 
 

 ksi50F Rksi73.39

0.5625

80.4

)(31.1)0.9(29,000
F ych2crw 
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Check Eq. (6.10.3.2.1-3), 
 
    ksi 40.1140.111.0  ksi 14.2714.27   OK (Ratio = 0.356) 
 
It should be noted that the web bend-buckling resistance is generally checked against the 
maximum compression flange stress due factored loads, without consideration of flange lateral 
bending, as shown in the previous calculation.  Since web-bend buckling is a check of the web, 
the maximum flexural compression stress in the web could be calculated and used for 
comparison against the bend-buckling resistance.  However, the precision associated with 
making the distinction between the stress in the compression flange and the maximum 
compressive stress in the web is typically not warranted. 
 
7.3.5.2 Bottom Flange 

 
Noncomposite tub flanges in tension, in this particular case the bottom flange, must satisfy the 
following requirement: 
 
 Δ FRf yfhfbu         Eq. (6.11.3.2-3) 
 
where: 
 

 
2

yf

v

F

f
31Δ














        Eq. (6.11.3.2-4) 

 
The term fv is the St. Venant torsional shear stress in the flange due to factored loads at the 
section under consideration, and is taken as: 
 

 
fo

v
 tA 2

T
f          Eq. (6.11.3.2-5) 

 
where: 
 
 T  = internal torque due to factored loads (kip-in.) 
 Ao  =  enclosed area within the box section (in.3) 
 tf  =  bottom flange thickness (in.) 
 
Compute the enclosed area of the noncomposite box section, Ao. 
 

     2
o in. 2197,

2

0.625
78

2

1.00

2

1283120
A 
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As shown in Table 7 the unfactored torques due to steel self-weight and Cast #1 are 59 kip-ft and 
464 kip-ft, respectively.  Therefore, 
 

    

  
iks 0.50

1.007,921 2

12464591.25
f v 


  

 

 00.1
50

0.50
31

F

f
31Δ

22

yf

v
























  

 
The factored bottom flange major-axis bending stress, calculated previously, is 12.30 ksi, and 
checking Eq. (6.11.3.2-3), 
 
        50.0ksi1.0501.01.0  Δ FR  ksi 12.30f yfhfbu   OK (Ratio = 0.246) 
 
Although the check here of the bottom flange is illustrated for completeness, the bottom flange 
will typically not govern the constructibility check at the positive moment location. 
 
7.4 Girder Check: Section G2-1, Service Limit State (Article 6.11.4)  

 
Article 6.11.4 directs the Engineer to Article 6.10.4, which contains provisions related to the 
control of elastic and permanent deformations at the Service Limit State. 
 
7.4.1 Permanent Deformations (Article 6.10.4.2) 

 
Article 6.10.4.2 contains criteria intended to control permanent deformations that would impair 
rideability.  As specified in Article 6.10.4.2.1, these checks are to be made under the SERVICE 
II load combination.   
 
Article 6.10.4.2.2 requires that flanges of composite sections must satisfy the following: 
 
 Top flange of composite sections:     yfhf FR95.0f       Eq. (6.10.4.2.2-1) 
 

 Bottom flange of composite sections: yfhf FR95.0
2

f
f 

      Eq. (6.10.4.2.2-2) 

 
The term ff is the flange stress at the section under consideration due to the SERVICE II loads 
calculated without consideration of flange lateral bending.  The fℓ term, the flange lateral 
bending stress, in Eq. (6.10.4.2.2-2) shall be taken equal to zero, in accordance with Article 
6.11.4, for tub girder bottom flanges.  A resistance factor is not included in these equations 
because Article 1.3.2.1 specifies that the resistance factor be taken equal to 1.0 at the service 
limit state. 
 
It should be noted that in accordance with Article 6.11.4 redistribution of negative moment due 
to the Service II loads at the interior-pier sections in continuous span flexural members using the 
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procedures specified in Appendix B shall not apply to tub girder sections.  The applicability of 
the Appendix B provisions to tub girder sections has not been demonstrated, hence the 
procedures are not permitted for the design of tub girder sections. 
 
Furthermore, according to Article C6.11.4, under the load combinations specified in Table 3.4.1-
1, Eqs. (6.10.4.2.2-1) and (6.10.4.2.2-2) need only be checked for compact sections in positive 
flexure.  For sections in negative flexure and noncompact sections in positive flexure, these two 
equations do not control and need not be checked.  Composite sections in all horizontally curved 
girder systems are to be treated as noncompact sections at the strength limit state, in accordance 
with Article 6.11.6.2.2.  Therefore, for Section G2-1 Eqs. (6.10.4.2.2-1) and (6.10.4.2.2-2) do not 
need to be checked, and are not demonstrated in this example. 
 
7.4.2 Web Bend-Buckling 

 
With the exception of composite sections in positive flexure in which the web satisfies the 
requirement of Articles 6.11.2.1.2 and 6.10.2.1.1 (D/tw ≤ 150), web bend-buckling of all sections 
under the SERVICE II load combination is to be checked as follows: 
 
 crwc Ff          Eq. (6.10.4.2.2-4) 
 
The term fc is the compression-flange stress at the section under consideration due to the 
SERVICE II loads calculated without consideration of flange lateral bending, and Fcrw is the 
nominal elastic bend-buckling resistance for webs determined as specified in Article 6.10.1.9.  
Because Section G2-1 is a composite section subject to positive flexure satisfying Article 
6.11.2.1.2, Eq. (6.10.4.2.2-4) need not be checked as D/tw = 142.9 which is less than 150.  An 
explanation as to why these particular sections are exempt from the above web bend-buckling 
check is given in Article C6.10.1.9.1.  
 
7.5 Girder Check: Section G2-1, Fatigue Limit State (Article 6.11.5)  

 
Article 6.11.5 directs the designer to Article 6.10.5, where details in tub girder section flexural 
members must be investigated for fatigue as specified in Article 6.6.1.  As appropriate, the 
Fatigue I and Fatigue II load combinations specified in Table 3.4.1-1 and the fatigue live load 
specified in Article 3.6.1.4 shall be employed for checking load-induced fatigue in tub girder 
sections.  The Fatigue I load combination is used when investigating infinite load-induced 
fatigue life, and the Fatigue II load combination is used when investigating finite load-induced 
fatigue life. 
 
Per Article 6.11.5, one additional requirement specified particularly for tub girders sections is in 
regard to longitudinal warping and transverse bending stresses.  When tub girders are subjected 
to torsion, their cross-sections become distorted, resulting in secondary bending stresses.  
Therefore, longitudinal warping stresses and transverse bending stresses due to cross-section 
distortion shall be considered for: 

 Single tub girder in straight or horizontally curved bridges 
 Multiple tub girders in straight bridges that do not satisfy requirements of Article 6.11.2.3 
 Multiple tub girders in horizontally curved bridges 
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 Any single or multiple tub girder with a tub flange that is not fully effective according to 
the provisions of Article 6.11.1.1. 

 
Therefore, in this design example for Section G2-1, the stress range due to longitudinal warping 
resulting from torsion in the girders is considered in checking the fatigue resistance of the base 
metal.  For simplicity in this design example, it is assumed that the longitudinal warping stresses 
are similar to 10 percent of the longitudinal stresses caused by the major-axis bending moment.  
Thus, for the calculations contained herein at Section G2-1, the fatigue vertical bending moments 
are simply increased by 10 percent.   
 
The transverse bending stress range is considered separately from the longitudinal stresses for 
evaluating the fatigue resistance of the base metal adjacent to flange-to-web fillet welds and 
adjacent to the termination of fillet welds connecting transverse elements to webs and box 
flanges.  The transverse bending stress range is not computed in this design example for Section 
G2-1.  More exact calculations to determine the stress range from longitudinal warping and 
transverse bending can be carried out using the beam-on-elastic-foundation analogy (BEF) 
presented by Wright and Abdel-Samad [3].  Sample calculations for determining these 
distortional stresses based on the BEF analogy are presented in the 2003 AASHTO Guide 

Specification for Horizontally Curved Steel Girder Highway Bridges [10], which is superseded 
by the current AASHTO specifications.  Calculations demonstrating the use of the BEF analogy 
to compute the longitudinal warping stress and transverse bending stress are included in the 
fatigue check of Section G2-2. 
 
At Section G2-1, it is necessary to check the bottom flange for the fatigue limit state.  The base 
metal at the transverse stiffener weld terminations and internal cross frame connection plate 
welds at locations subject to a net tensile stress must be checked as a Category C′ fatigue detail 
(reference Table 6.6.1.2.3-1).  Only the bottom flange is checked herein, as a net tensile stress is 
not induced in the top flange by the fatigue loading at this location. 
 
According to Table 3.6.2.1-1, the dynamic load allowance for fatigue loads is 15%.  Centrifugal 
force effects are considered and included in the fatigue moments.  As discussed previously, the 
75-year single lane ADTT is assumed to be 1,000 trucks per day. 
 
According to Eq. (6.6.1.2.2-1), (Δf) must not exceed the nominal fatigue resistance, (ΔF)n.  In 
accordance with Article C6.6.1.2.2, the resistance factor, , and the load modifier, , are taken as 
1.0 for the fatigue limit state. 
 
     nFf          Eq. (6.6.1.2.2-1) 
 
From Table 6.6.1.2.3-2, the 75-year (ADTT)SL equivalent to infinite fatigue life for a Category 
C′ fatigue detail is 745 trucks per day.  Therefore, since the assumed (ADTT)SL for this design 
example is 1,000 trucks per day, the detail must be checked for infinite fatigue life using the 
Fatigue I load combination.  Per Article 6.6.1.2.5, the nominal fatigue resistance for infinite 
fatigue life is equal to the constant-amplitude fatigue threshold: 
 
    THn FF         Eq. (6.6.1.2.5-1) 
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where (ΔF)TH is the constant-amplitude fatigue threshold, and is taken from Table 6.6.1.2.5-3.  
For a Category C′ fatigue detail, (ΔF)TH = 12.0 ksi, and therefore: 
 
    ksi 12.0ΔF n   
 
As shown in Table 7 the unfactored negative and positive moments due to fatigue, including 
centrifugal force effects and the 15 percent dynamic load allowance, at Section G2-1 are -290 
kip-ft and 1,525 kip-ft, respectively.  The short-term composite section properties (n = 7.56) used 
to compute the stress at the bottom of the web (top of the bottom flange) are: 
 
 INA(n) = 478,009 in.4 
 
 dBOT OF WEB = dBOT OF STEEL – tf_BOT FLANGE = 68.56 in. – 0.625 in. = 67.94 in. 
 
Per Table 3.4.1-1, the load factor, , for the Fatigue I load combination is 1.5. The total factored 
stress range at the bottom of the web, including the 10 percent increase estimate for the 
longitudinal warping stress, is computed as follows: 
 

    
    

ksi 5.11
478,009

67.94121,5252901.10
1.5Δfγ 













 
  

 
Checking Eq. (6.6.1.2.2-1),  
 
     0.426)  (RatioOK           ksi 12.00ΔFksi 5.11Δfγ n   
 
7.5.1 Special Fatigue Requirements for Webs 

 
In accordance with Article 6.10.5.3, interior panels of stiffened webs must satisfy: 
 
 cru VV          Eq. (6.10.5.3-1) 
 
where: Vu = shear in the web at the section under consideration, due to unfactored permanent 

loads plus the factored fatigue load (Fatigue I live load factor) 
 
 Vcr = shear buckling resistance determined from Eq. (6.10.9.3.3-1). 
 
Satisfaction of Eq. (6.10.5.3-1) is intended to control elastic flexing of the web, and the member 
is assumed to be able to sustain an infinite number of smaller loadings without fatigue cracking 
due to this effect. The live load shear in the special requirement is supposed to represent the 
heaviest truck expected to cross the bridge in 75 years. 
 
Only interior panels of stiffened webs are investigated because the shear resistance of end panels 
of stiffened webs and the shear resistance of unstiffened webs are limited to the shear buckling 
resistance at the Strength limit state. 
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The detailed check of this special fatigue requirement for webs is not illustrated in this example; 
however, similar checks are illustrated in Example 1. 
 

7.6 Girder Check: Section G2-1, Strength Limit State (Article 6.11.6)   

 
7.6.1 Flexure (Article 6.11.6.2) 

 
According to Article 6.11.6.2.2, sections in horizontally curved steel tub girder bridges shall be 
considered as noncompact sections and shall satisfy the requirements of Article 6.11.7.2.  
Furthermore, compact and noncompact sections in positive flexure must satisfy the ductility 
requirement specified in Article 6.10.7.3.  The ductility requirement is intended to protect the 
concrete deck from premature crushing.  The section must satisfy: 
 
 tp D 0.42D          Eq. (6.10.7.3-1) 
 
Where Dp is the distance from the top of the concrete deck to the neutral axis of the composite 
section at the plastic moment, and Dt is the total depth of the composite section.  Reference the 
section property computations for the location of the neutral axis of the composite section at the 
plastic moment.  At Section G2-1: 
 
 in.12.770.270.10.49.5D p   
 
 in.92.139.50.40.870.625D t   
 
 in.12.77in.69.83)0.42(92.130.42D t    OK (Ratio = 0.330) 
 
For a horizontally curved steel tub girder at the strength limit state, noncompact sections in 
positive flexure must satisfy the provisions of Article 6.11.7.2.  At the strength limit state, the 
compression flanges of tub sections must satisfy: 
 
 ncfbu Ff          Eq. (6.11.7.2.1-1) 
 
where: 
 
 fbu  = longitudinal flange stress at the section under consideration calculated without 

consideration of flange lateral bending or longitudinal warping 
 f  =  resistance factor for flexure per Article 6.5.4.2 (f = 1.0) 
 Fnc  =  nominal flexural resistance of the compression flange determined as specified in 

Article 6.11.7.2.2 
 
Flange lateral bending is not considered for the compression flanges in positive bending at the 
strength limit state because the flanges are continuously supported by the concrete deck.  In 
accordance with Article 6.11.1.1, longitudinal warping stresses can be ignored at the strength 
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limit state.  However, St. Venant torsion and cross-section distortion stresses in the bottom box 
flange must be considered for noncompact sections. 
 
At the strength limit state, the tension flange must satisfy: 
 
 ntfbu Ff          Eq. (6.11.7.2.1-2) 
 
where: 
 
 Fnt  =  nominal flexural resistance of the tension flange determined as specified in 

Article 6.11.7.2.2 
 
Lateral bending does not need to be considered for the tension flange, in this case the bottom 
flange, as lateral bending is typically negligible in bottom flanges of tub girders. 
 
Furthermore, the maximum longitudinal compressive stress in the concrete deck at the strength 
limit state shall not exceed 0.6f′c.  The longitudinal compressive stress in the deck is to be 
determined in accordance with Article 6.10.1.1d, which allows the permanent and transient load 
stresses to be computed using the short-term section properties (i.e. modular ratio taken as n). 
 
The unfactored bending moments at Section G2-1 are taken directly from the analysis and are 
shown below (see Table 7Table 4).  The live load moment includes the centrifugal force and 
dynamic load allowance effects. 
 
 Noncomposite Dead Load:  MDC1  = 5,891 kip-ft 
 Composite Dead Load:  MDC2  = 765 kip-ft 
 Future Wearing Surface Dead Load: MDW = 1,006 kip-ft 
 Live Load (incl. IM and CF): MLL+IM = 5,920 kip-ft 
 
Compute the factored flange flexural stresses at Section G2-1 for the STRENGTH I limit state, 
without consideration of flange lateral bending.  As discussed previously, the  factor is taken 
equal to 1.0 in this example.  Therefore: 
 
For Strength I: 
 
 Top Flange: 
 

 ksi33.2512
43,181

,920)51.75(

14,329

,006)11.5(

14,329

65)71.25(

4,334

,891)51.25(
1.0f bu 









  

 
Bottom Flange: 

 

 ksi02.4012
6,972

,920)51.75(

6,406

,006)11.5(

6,406

65)71.25(

5,029

,891)51.25(
1.0f bu 
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In accordance with Article 6.11.1.1, the effects of both flexural and St. Venant torsional shear 
shall be considered in horizontally curved tub girder bridges.  Therefore, compute the factored 
St. Venant torsional shear stress, fv, in the bottom flange for the Strength I load combination.  fv 
is determined by dividing the St. Venant torsional shear flow [ f = T/(2Ao) ] by the thickness of 
the bottom flange: 
 

 
fo

v
 tA 2

T
f          Eq. (6.11.3.2-5) 

 
where: 
 
 T  = internal torque due to factored loads (kip-in.) 
 Ao  =  enclosed area within the box section (in.3) 
 tf  =  bottom flange thickness (in.) 
 
The unfactored torques at Section G2-1 obtained directly from the analysis and are shown below 
(not explicitly shown in Table 7).  The live load moment includes the centrifugal force and 
dynamic load allowance effects. 
 
 Noncomposite Dead Load:  TDC1  = 264 kip-ft 
 Composite Dead Load:  TDC2  = 41 kip-ft 
 Future Wearing Surface Dead Load: TDW = 54 kip-ft 
 Live Load (incl. IM and CF): TLL+IM = 525 kip-ft 
 
Article C6.11.1.1 indicates that for torques applied to the noncomposite section, Ao is to be 
computed for the noncomposite section.  Since the top lateral bracing in this example is attached 
to the top flange, the vertical depth can be calculated as the distance between the mid-thicknesses 
of the top and bottom flanges.  Furthermore, for torques applied to the composite section, Ao is to 
be computed for the composite section, using the depth from the mid-thickness of the bottom 
flange to the mid-thickness of the concrete deck.  In this example, the height of the deck haunch 
is considered.   
 
Compute the enclosed area of the noncomposite tub section, Ao_NC. 
 

     2
o_NC in. 9217,

2

0.625
78

2

1.00

2

1283120
A 











  

 
Compute the enclosed area of the composite tub section, Ao_C. 
 

     2
o_C in. 8,750

2

9.50
4.00

2

0.625
78

2

1283120
A 











  

 
Compute the factored Strength I St. Venant torsional shear stress on the noncomposite section: 
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ksi 0.40

0.6257,921 2

122641.25
1.0f v_NC   

 
Compute the factored Strength I St. Venant torsional shear stress on the composite section: 
 

  
          

  
ksi 15.1

0.6258,750 2

1252575.15450.1411.25
1.0f v_C 


  

 
Therefore the total factored Strength I St. Venant torsional shear stress is computed as: 
 
 ksi 1.551.150.40f v   
 
According to Article 6.11.1.1, the St. Venant torsional shear stress in box flanges due to factored 
loads at the strength limit state shall not exceed the factored torsional shear resistance of flange, 
Fvr, taken as: 
 

 
3

F
75.0F

yf

vvr         Eq. (6.11.1.1-1) 

 
where: 
 
 v  = resistance factor for shear specified in Article 6.5.4.2 
 
Therefore: 
  

   ksi 1.55f    ksi 21.65
3

50
1.00.75F vvr   OK 

 
7.6.1.1 Top Flange Flexural Resistance in Compression 

 
Per Article 6.11.7.2.2, the nominal flexural resistance of the compression flanges of noncompact 
composite tub sections shall be taken as: 
 
 ychbnc FRRF         Eq. (6.11.7.2.2-1) 
 
where: 
 
 Rb  =  web load-shedding factor determined as specified in Article 6.10.1.10.2 
 Rh =  hybrid factor determined as specified in Article 6.10.1.10.1. 
 
For a homogenous girder, the hybrid factor, Rh, is equal to 1.0.  In accordance with Article 
6.10.1.10.2, the web load-shedding factor, Rb, is equal to 1.0 for composite section in which the 
web satisfies the requirement of Article 6.11.2.1.2, such that D/tw ≤ 150. 
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 1509.142
5625.0

40.80

t

D

w

  

 
Therefore: 
 
     ksi 50.0050.01.01.0Fnc   
 
For Strength I: 
 
 ncfbu Ff          Eq. (6.11.7.2.1-1) 
 
      ksi 50.0050.001.0Fksi 25.33f ncfbu   OK (Ratio = 0.507) 
 
7.6.1.2 Bottom Flange Flexural Resistance in Tension 

 
Article 6.11.7.2.2 states that the nominal flexural resistance of the tension flange of a 
noncompact tub section shall be taken as: 
 
  ythnt FRF         Eq. (6.11.7.2.2-5) 
 
in which: 
 

 
2

yt

v

F

f
31Δ














        Eq. (6.11.7.2.2-6) 

 

 999.0
50.0

1.55
31Δ

2









  

 
Therefore: 
 
     ksi 93.940.99950.01.0F nt   
 
For Strength I: 
 
 ntfbu Ff          Eq. (6.11.7.2.1-2) 
 
      ksi 93.9449.931.0Fksi 02.40f ntfbu   OK (Ratio = 0.802) 
 
Note that longitudinal warping stresses due to cross-section distortion do not need to be checked 
at the strength limit state.  However, transverse bending stresses due to cross-section distortion 
do need to be checked and shall not exceed 20.0 ksi per Article 6.11.1.  However, in this design 

Arch
ive

d



 

70 
 

example for Section G2-1, it is assumed that the transverse bending stresses do not exceed 20.0 
ksi.  For more detailed calculations of the transverse bending stress at the strength limit state, see 
the computations for Section G2-2 in this design example. 
 
7.6.1.3 Concrete Deck Stresses 

 
According to Article 6.11.7.2.1, the maximum longitudinal compressive stress in the concrete 
deck at the strength limit state is not to exceed 0.6f′c.  This limit is to ensure linear behavior of 
the concrete, which is assumed in the calculation of steel flange stresses.  The longitudinal 
compressive stress in the deck is to be determined in accordance with Article 6.10.1.1d, which 
allows the permanent and transient load stresses to be computed using the short-term section 
properties (n = 7.56 composite section properties).  Referring to Table 10 of the section property 
calculations, the section modulus to the top of the concrete deck is: 
 

 
3

deck in. 20,280
68.5692.13

478,009
S 


  

 
Calculate the Strength I factored longitudinal compressive stress in the deck at this section, 
noting that the concrete deck is not subjected to noncomposite dead loads.  The stress in the 
concrete deck is obtained by dividing the stress acting on the transformed section by the modular 
ration, n. 
 

 
   

  
ksi00.112

56.720,280

920,575.11,0061.565)71.25(
1.0f deck 








 


 
 
   ksi 2.404.00.60.6f'ksi1.00f cdeck   OK (Ratio = 0.417) 
 
7.7 Girder Check: Section G2-2, Constructibility (Article 6.11.3)  

 
7.7.1 Flexure (Article 6.11.3.2) 

 
The bottom flange, in regions of negative flexure, shall satisfy the requirements of Eqs. 
(6.11.3.2-1) and (6.11.3.2-2) for critical stages of construction.  Generally these provisions will 
not control because the size of the bottom flange in negative flexure regions is normally 
governed by the Strength Limit State.  In regard to construction loads, the maximum negative 
moment reached during the deck placement analysis, plus the moment due to the self-weight, 
typically does not significantly exceed the calculated noncomposite negative moments assuming 
a single stage deck pour.  Nonetheless, the constructibility check is performed herein for 
completeness and to illustrate the constructibility checks required for a negative moment region.  
For this constructibility check, it is assumed that the concrete deck has not yet hardened at 
Section G2-2. 
 
 ncfbu Ff          Eq. (6.11.3.2-1) 
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 crwfbu Ff          Eq. (6.11.3.2-2) 
 
Additionally, the top flanges, which are considered discretely braced for constructibility (i.e. the 
deck is not hardened), must satisfy the requirement specified in Article 6.10.3.2.2.  Because the 
top flange is discretely braced, flange lateral bending must be considered, as shown in Eq. 
(6.10.3.2.2-1). 
 
 ythfbu FRff 


       Eq. (6.10.3.2.2-1) 

 
To illustrate this constructibility check, from separate analysis results not shown, the unfactored 
major-axis bending moment due to the deck pour sequence is -12,272 kip-ft.  As shown in Table 
4, the unfactored major-axis moment due to steel self-weight is -3,154 kip-ft.  
 
Calculate the factored major-axis flexural stresses in the flanges of the steel section due to the 
factored load resulting form the steel self-weight and the assumed deck pour sequence. 
 
For Construction Strength I: 
 

 Top Flange:  ksi01.23
10,057

(12)(-12,272)]  (-3,154)1.0(1.25)[
f bu 


  

 

 Bot. Flange: ksi45.20
11,316

(12)(-12,272)]  (-3,154)1.0(1.25)[
f bu 


  

 
For this example, and illustration purposes, the V-load equation is used to compute the top flange 
lateral bending moment due to curvature.  For a single flange, consider only one-half of the 
girder major-axis moment due to steel self-weight and the deck placement sequence.  
 

    
tf-kip 713,7-

2

272,12154,3
M 


   

 
  

   
ft-kip 0.44

5.625.71610

3.16713,7

D R N

 M
M

22

LAT 



    Eq. (4.6.1.2.4b-1) 

 
Combine the flange lateral bending moment computed using the V-load equation with the lateral 
moment due to the overhang brackets which was computed in Section G2-1 calculations.  Noting 
that the unfactored flange lateral bending moment due to the deck overhang bracket is 9.1 kip-ft, 
the factored flange lateral bending moment and flange lateral bending stress are computed as: 
 
    tf-kip 4.661.90.4425.1M TOT_LAT   
 

 ksi4.92
6(3.00)(18)

(66.4)(12)

S

M
f

2

LAT_TOT
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It should be noted that another significant source of flange lateral bending results from forces 
that develop from single-diagonal top flange bracing members, resulting from the major-axis 
bending of the tub girder.  This effect is recognized in flange lateral moments taken directly from 
a finite element analysis.  In the absence of a refined analysis, Fan and Helwig [8] have 
developed equations to evaluate bracing member forces and the forces imparted on the top flange 
in tub girders due to major-axis bending.  The flange lateral bending due to the top lateral 
bracing is not considered in these computations.  However, in an actual bridge design the flange 
lateral bending moment due to the top lateral bracing should be considered, and can be computed 
using the procedures suggested by Fan and Helwig [8]. 
 
Compute the factored St. Venant torsional shear stress, fv, in the bottom flange for the Strength I 
load combination.   
 

 
fo

v
 tA 2

T
f          Eq. (6.11.3.2-5) 

 
Compute the enclosed area of the noncomposite tub section, Ao. 
 

     2
o in. 065,8

2

1.50
78

2

3.00

2

1283120
A 











  

 
The unfactored torques due to steel self-weight and Cast #1 are -22 kip-ft and -33 kip-ft, 
respectively (note that results for Cast #1 at this location are not provided in the analysis results 
table).  Therefore, 
 

  
   

  
ksi 0.03 

1.508,065 2

1233221.25
1.0f v 


  

 
7.7.1.1 Top Flange 

 
Check that the top flange tension stress is in compliance with Article 6.10.3.2.2: 
 
 ythfbu FRff 


       Eq. (6.10.3.2.2-1) 

 
For Construction Strength I: 
 
 ksi 27.93ksi 4.92ksi 23.01ff bu 


 

 
    ksi 50.050.01.01.0FR ythf   

  
  ksi 50.0FR  ksi 27.93ff ythfbu 


 OK (Ratio = 0.559) 
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7.7.1.2 Bottom Flange 

 
7.7.1.2.1 Bottom Flange: Flexural Resistance in Compression – Stiffened Flange 

 
Calculate the nominal flexural resistance of the bottom flange in compression, Fnc, in accordance 
with Article 6.11.8.2.  Per Article 6.11.3.2, in computing Fnc for constructibility, the web load-
shedding factor, Rb, shall be taken as 1.0.  The bottom flange is longitudinally stiffened at this 
location with a single WT 8x28.5, placed at the center of the bottom flange.  Therefore, Article 
6.11.8.2.3 applies. 
 
Determine the slenderness ratio of the bottom flange: 
 

 
fc

fc
f

t

b
         Eq. (6.11.8.2.2-4) 

 
where, in this case: 
 
 bfc  = w  = larger of the width of the flange between the longitudinal flange stiffeners 

or the distance from a web to the nearest longitudinal flange stiffener. 
 
Since the longitudinal stiffener is at the center of the bottom flange, w is the distance from the 
longitudinal stiffener to the centerline of the web. 
 

 0.27
50.1

2

81

f 










  

 
Calculate the first limiting slenderness ratio: 
 

 
yc

1
F

kE
R  

 
where: 
 

 




















































2

S

2

yc

v2

1

k

k

F

f
4ΔΔ

2

1

0.57
R     Eq. (6.11.8.2.2-8) 

 
and where: 
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2

yf

v

F

f
31Δ














        Eq. (6.11.8.2.2-5) 

 
Per Article 6.11.8.2.3, since a single bottom flange stiffener is used, n = 1 and the plate-buckling 
coefficient for uniform normal stress, k, shall be taken as: 
 

 
3

1

3

fc

S

 tw

I 8
k














         Eq. (6.11.8.2.3-1) 

 
and, the plate-buckling coefficient for shear stress, ks, shall be taken as: 
 

 
 

34.5
1n

 tw

I
84.234.5

k
2

3

1

3

fc

S

S 


















      Eq. (6.11.8.2.3-3) 

 
where: 
 
 fv  =  St. Venant torsional shear stress in the flange due to factored loads 
 n =  number of equally spaced longitudinal flange stiffeners 
 k  =  plate-buckling coefficient for uniform normal stress, 1.0 ≤ k ≤ 4.0 
 ks  =  plate-buckling coefficient for shear stress 
 IS  =  moment of inertia of a single longitudinal flange stiffener about an axis parallel to 

the flange and taken at the base of the stiffener 
 
Structural tees are efficient shapes for longitudinal stiffeners because they provide a high ratio of 
stiffness to cross-sectional area.  For the WT 8x28.5 stiffener, Ix = 48.7 in.4, A = 8.39 in.2, and 
the elastic neutral axis (N.A.) is 6.28 in. from the tip of the stem. Therefore, Is is computed as: 
 
    42

S in. 379.66.288.3948.7I   
 
Compute the Δ term: 
 

 00.1
50.0

0.03
31Δ

2









  

 
Compute the plate-buckling coefficients, k and ks: 
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0.481.2

1.50 
2

81

379.6 8
k

3

1

3



































  

 

 
  

 
34.533.2

11

50.15.40

379.6
84.234.5

k
2

3

1

3

S 


















  

 
Therefore, R1 and the first limiting slenderness ratio are computed as: 
 

 57.0

2.33

2.81

50.0

0.03
400.100.1

2

1

0.57
R

22

2

1 



































  

 

   
01.23

0.50

000,2981.2
57.0

F

kE
R

yc

1   

 
Since f is greater than 23.01 (f = 27.0), it is necessary to compute the second limiting 
slenderness ratio: 
 

 
yc

2
F

kE
R  

 
where: 
 

 



































































2

S

2

yc

v

2

yc

yr

yc

yr

2

k

k

F

f
4

F

F

F

F

1.2

1

1.23
R    Eq. (6.11.8.2.2-9) 

 
and where: 
 
   ywycyr FF0.4ΔF        Eq. (6.11.8.2.2-7) 
 
    ksi 50.0ksi 30.0500.41.0Fyr   
 
Therefore, 
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 23.1

2.33

2.81

50.0

0.03
4

50.0

30.0

50.0

30.0

1.2

1

1.23
R

222
2 












































  

  

   
7.49

0.50

000,2981.2
23.1

F

kE
R

yc

2   

 

Since f  >  
yc

1
F

kE
R , but f  ≤  

yc

2
F

kE
R , Eq. (6.11.8.2.2-2) applies: 

 

 





































































































































12

yc

fc

2

ych

yr

ychbnc
RR

kE

F

t

w
R

2

π
sin1

FR

F
ΔΔFRRF  Eq. (6.11.8.2.2-2) 

 

   
  

  



































































































































57.023.1

000,2981.2

50.0

1.50

40.5
23.1

2

π
sin1

0.500.1

30.0
1.0000.10.500.10.1F nc  

 
      ksi 49.450.98950.01.01.0Fnc   
 
Checking compliance with Eq. (6.11.3.2-1): 
 
 ncfbu Ff          Eq. (6.11.3.2-1) 
 
For Construction Strength I: 
 
    ksi 49.45  49.4500.1F  ksi 45.02-f ncfbu    OK (Ratio = 0.414) 
 
7.7.1.2.2 Bottom Flange: Flexural Resistance in Compression – Web Bend-Buckling 

 
According to Article 6.11.3.2, for sections with compact or noncompact webs, the web bend-
buckling check of Eq. (6.11.3.2-2) is not necessary.  Therefore, check if web satisfies the 
noncompact slenderness limit given in Article 6.10.6.2.3. 
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ycw

c

F

E
7.5

t

D2
        Eq. (6.10.6.2.3-1) 

 
where: 
 
 Dc  =  depth of web in compression in the elastic range (in.). 
 
For a tub girder, the depth of the web must be taken along the inclined web.  Therefore: 
 

  
8.136

5625.0

14.04 /cos1.538.822

t

2D

w

c



  

 

 3.137
0.50

000,29
7.5

F

E
7.5

yc

  

 
Since Eq. (6.10.6.2.3-1) is satisfied the web is noncompact, and the web bend-buckling check of 
Eq. (6.11.3.2.-2) does not need to be investigated for constructibility. 
 
7.7.1.3 Shear (Article 6.11.3.3) 

 
For constructibility, Article 6.10.3.3 requires that interior panels of stiffened webs satisfy the 
following requirement: 
 
 crvu VV          Eq. (6.10.3.3-1) 
 
where: 
 
 v  =  resistance factor for shear per Article 6.5.4.2 (v = 1.0) 
 Vu = shear in the web at the section under consideration due to the factored permanent 

loads and factored construction loads applied to the noncomposite section. 
 Vcr = shear-buckling resistance determined from Eq. (6.10.9.3.3-1). 
 
The panel on the span 2 side of Section G2-2 will be investigated herein.  The transverse 
stiffener spacing at this location is 62 inches.  The total factored shear load will include the 
contribution of the noncomposite dead load, and should not only include the vertical shear due to 
flexure, but also shear in the web due to torsion.  Although not included herein, wind loads and 
construction live loads also need to be considered by the designer, as applicable.   The shears 
used in the computations below are for flexure plus the torsional shear in the critical web.  The 
critical web shear due to steel self-weight is 47 kips (see Table 2), and the critical web shear for 
Cast #1 is taken as 185 kips (analysis results not explicitly provided for Cast #1). 
 
For Construction Strength I: 
 
    kip 265851471.251.0V u   
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However, it is required that the shear be taken along the inclined web, in accordance with Article 
6.11.9: 
 

 
)cos( θ

V
V

WEB

u
ui         Eq. (6.11.9-1) 

 

 kip 732
)cos(14.04

265
V ui 


  

 
The shear-buckling resistance of the 62 inch panel is determined as: 
 
 pcrn CVVV         Eq. (6.10.9.3.3-1) 
 
C is the ratio of the shear-buckling resistance to the shear yield strength determined as specified 
in Article 6.10.9.3.2.  First, compute the shear-buckling coefficient, k: 
 

 41.31

80.4

62

5
5

D

d

5
5k

22

o

























     Eq. (6.10.9.3.2-7) 

 

Since: 
 

 5.123
50

41)29,000(13.
1.40

F

Ek
1.40142.9

0.5625

80.4

t

D

yww

   

 

 






























yw
2

w

F

Ek

t

D

57.1
C        Eq. (6.10.9.3.2-6) 

 

 
 

0.598
50

41)29,000(13.

142.9

1.57
C

2









  

 
Vp is the plastic shear force and is calculated as follows: 
 
 wywp  tD F 0.58V         Eq. (6.10.9.3.3-2) 
 
     kips 1,3110.562580.4050.0 0.58V p   
 
Therefore, 
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    kip 7851,3120.598CVVV pcrn   
 
 kip8571.0(785)V crv   
 
 kip 785Vkip 732V crvui    OK  (Ratio = 0.348)  
 
7.8 Girder Check: Section G2-2, Service Limit State (Article 6.11.4)   

 
Article 6.11.4 directs the Engineer to Article 6.10.4, which contains provisions related to the 
control of elastic and permanent deformations at the Service Limit State.   
 

7.8.1 Permanent Deformations (Article 6.10.4.2) 

 
Article 6.10.4.2 contains criteria intended to control permanent deformations that would impair 
rideability.  As specified in Article 6.10.4.2.1, these checks are to be made under the SERVICE 
II load combination.   
 
As stated previously for the Service limit state check of G2-1, Article 6.10.4.2.2 requires that 
flanges of composite sections satisfy the following: 
 
 Top flange of composite sections:     yfhf FR95.0f       Eq. (6.10.4.2.2-1) 
 

 Bottom flange of composite sections: yfhf FR95.0
2

f
f 

      Eq. (6.10.4.2.2-2) 

 
However, according to Article C6.11.4, under the load combinations specified in Table 3.4.1-1, 
Eqs. (6.10.4.2.2-1) and (6.10.4.2.2-2) need only be checked for compact sections in positive 
flexure.  For sections in negative flexure and noncompact sections in positive flexure, these two 
equations do not control and need not be checked.  Composite sections in all horizontally curved 
girder systems are to be treated as noncompact sections at the strength limit state, in accordance 
with Article 6.11.6.2.2.  Therefore, for Section G2-2 Eqs. (6.10.4.2.2-1) and (6.10.4.2.2-2) do not 
need to be checked, and are not demonstrated in this example. 
 
7.8.2 Web Bend-Buckling 

 
With the exception of composite sections in positive flexure in which the web satisfies the 
requirement of Articles 6.11.2.1.2 and 6.10.2.1.1 (D/tw ≤ 150), web bend-buckling of all sections 
under the SERVICE II load combination is to be checked as follows: 
 
 crwc Ff          Eq. (6.10.4.2.2-4) 
 
The term fc is the compression-flange stress at the section under consideration due to the 
SERVICE II loads calculated without consideration of flange lateral bending, and Fcrw is the 
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nominal elastic bend-buckling resistance for webs determined as specified in Article 6.10.1.9.  
Because Section G2-1 is a section in negative flexure, it must be checked for Eq. (6.10.4.2.2-4). 
 
Determine the nominal web bend-buckling resistance, Fcrw, for Section G2-2 in accordance with 
Article 6.10.1.9.1, as follows:  
 

 
2

w

crw

t

D

k E 0.9
F















         Eq. (6.10.1.9.1-1) 

 
However, Fcrw shall not exceed the smaller of RhFyc and Fyw/0.7.  The bend-buckling coefficient, 
k, is computed as: 
 

 
 

2

c D/D

9
k          Eq. (6.10.1.9.1-2) 

 
where: 
 
 Dc = depth of the web in compression in the elastic range (in.).  For composite sections, 

Dc shall be determined as specified in Article D6.3.1. 
 
In accordance with Article 6.10.4.2.1, for members with shear connectors provided throughout 
the entire length of the girder that also satisfy Article 6.10.1.7, the concrete deck may be 
assumed to be effective for both positive and negative flexure, provided that the corresponding 
longitudinal stresses in the concrete deck at the section under consideration are smaller than 2fr, 
where fr is the modulus of rupture of concrete specified in Article 5.4.2.6.  Article 6.10.1.7 is in 
regard to the minimum of one percent of longitudinal reinforcement provided in the concrete 
deck, and is satisfied for Section G2-2 in this design example. 
 
 cr 'f24.0f          Article 5.4.2.6 
 
Therefore,  
 
   ksi 0.96040.2422f r   
 
In accordance with Article 6.10.1.1.1d, the longitudinal flexural stresses in the concrete deck due 
to all permanent and transient loads are to be computed using the short-term modular ratio, n.  
The calculated stress on the transformed section is divided by n to obtain the longitudinal stress 
in the concrete deck.  Since the deck is not subjected to noncomposite dead loads, the 
longitudinal stress in the deck at Section G2-2 is due to DC2, DW, and LL+I moments only.  The 
unfactored major-axis bending moments at Section G2-2 are (see Table 4): 
 
 Noncomposite Dead Load:  MDC1  = -15,426 kip-ft 
 Composite Dead Load:  MDC2  = -1,923 kip-ft 
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 Future Wearing Surface Dead Load: MDW = -2,550 kip-ft 
 Live Load (incl. IM and CF): MLL+IM = -8,127 kip-ft 
 
The longitudinal compressive stress in the deck is to be determined in accordance with Article 
6.10.1.1d, which allows the permanent and transient load stresses to be computed using the 
short-term section properties (n = 7.56 composite section properties).  Referring to  

 

 

 

Table 13 of the section property calculations, the section modulus to the top of the concrete deck 
is: 
 

 3
deck in. 27,132

62.2700.39

833,768
S 


  

 
Calculate the Service II factored longitudinal compressive stress in the deck at this section, 
noting that the concrete deck is not subjected to noncomposite dead loads.  The stress in the 
concrete deck is obtained by dividing the stress acting on the transformed section by the modular 
ration, n. 
 

 
   

  
ksi880.012

56.727,132

127,830.12,550-1.00,923)11.00(-
1.0f deck 








 
  

 
 ksi 0.9602f  ksi0.880f rdeck   
 

Since fdeck is less than 2fr, for this Service limit state check, the flexural stresses in the 

section caused by the Service II load combination may be computed assuming that the 

deck is effective in tension.  Refer to Table 12 and  

 

 

 

Table 13 for the section properties assuming that the concrete deck is effective.  The major-axis 
bending stress in the top and bottom flange for the Service II load combination are computed as 
follows (ft = tension flange, fc = compression flange): 
 
For Service II: 
 
 Top Flange: 
 

 ksi22.2412
41,214

,127)81.30(-

19,574

,550)21.00(-

19,574

923),11.00(-

10,057

5,426)11.00(-
1.0f t 
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 Bottom Flange: 
 

 ksi10.3012
13,390

,127)81.30(-

12,562

,550)21.00(-

12,562

923),11.00(-

11,316

5,426)11.00(-
1.0f c 









  

 
In order to compute Fcrw, it is first necessary to determine Dc, the depth of the web in 
compression, in accordance with Eq. (D6.3.1-1): 
 

 0td
ff

f
D fc

tc

c
c 


















       Eq. (D6.3.1-1) 

 
where: 
 
 fc = sum of the compression flange stresses caused by DC1, DC2, DW, and LL+I; 

acting on their respective sections (ksi).  Flange lateral bending is disregarded. 
 ft = sum of the tension flange stresses caused by DC1, DC2, DW, and LL+I; acting on 

their respective sections (ksi).  Flange lateral bending is disregarded. 
 d = depth of steel section (in.) 
 tfc = thickness of compression flange (in.) 
 
Therefore: 
 

   0  in. 44.221.5082.50
24.2230.10

30.10)(
D c 


















   

 
However, the depth of the web in compression, Dc, should be taken along the inclined web for 
computing the web bend-buckling resistance of Eq. (6.10.1.9.1-1).  Therefore, the vertical web 
depth must be divided by cos(: 
 

 
 

 in. 45.58
14.04 cos

44.22
D ci 


   

 
Compute the bend-buckling coefficient, k: 
 

 
   

75.29
40.80/22.44

9

D/D

9
k

22

c

         

 
Therefore, the nominal web bend-buckling resistance, Fcrw, is computed as: 
 

    
  ksi 50.0/0.7F,FRmin  ksi 38.01

0.5625

80.40

29.75 29,000 0.9

t

D

k E 0.9
F ywych22

w

crw 
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Verify Eq. (6.10.4.2.2-4): 
 
 ksi 38.01Fksi 30.10f crwc    OK (Ratio = 0.792) 
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7.9 Girder Check: Section G2-2, Fatigue Limit State (Article 6.11.5)  

 
Article 6.11.5 directs the designer to Article 6.10.5, where details in tub girder flexural members 
must be investigated for fatigue as specified in Article 6.6.1.  The Fatigue I load combination 
specified in Table 3.4.1-1 and the fatigue live load specified in Article 3.6.1.4 are employed for 
checking load-induced fatigue at Section G2-2.   
 
At Section G2-2, it is necessary to check the top flange for the fatigue limit state for major-axis 
bending.  The base metal at the transverse stiffener weld terminations and internal cross frame 
connection plate welds at locations subject to a net tensile stress must be checked as a Category 
C′ fatigue detail (reference Table 6.6.1.2.3-1).  Additional consideration must be given to cross-
section distortion stresses, as discussed in more detail later in this section. 
 
According to Table 3.6.2.1-1, the dynamic load allowance for fatigue loads is 15%.  Centrifugal 
force effects are considered and included in the fatigue moments.  As discussed previously, the 
75-year single lane ADTT is assumed to be 1,000 trucks per day. 
 
According to Eq. (6.6.1.2.2-1), (Δf) must not exceed the nominal fatigue resistance, (ΔF)n.  In 
accordance with Article C6.6.1.2.2, the resistance factor, , and the load modifier, , are taken as 
1.0 for the fatigue limit state. 
 
     nFf          Eq. (6.6.1.2.2-1) 
 
From Table 6.6.1.2.3-2, the 75-year (ADTT)SL equivalent to infinite fatigue life for a Category 
C′ fatigue detail is 745 trucks per day.  Therefore, since the assumed (ADTT)SL for this design 
example is 1,000 trucks per day, the detail must be checked for infinite fatigue life using the 
Fatigue I load combination.  Per Article 6.6.1.2.5, the nominal fatigue resistance for infinite 
fatigue life is equal to the constant-amplitude fatigue threshold: 
 
    THn FF         Eq. (6.6.1.2.5-1) 
 
where (ΔF)TH is the constant-amplitude fatigue threshold and is taken from Table 6.6.1.2.5-3.  
For a Category C′ fatigue detail, (ΔF)TH = 12.0 ksi, and therefore: 
 
    ksi 12.0ΔF n   
 
As shown in Table 4 the unfactored negative and positive moments due to fatigue, including the 
15 percent dynamic load allowance, at Section G2-2 are -1,384 kip-ft and 256 kip-ft, 
respectively.   
 
In accordance with Article 6.6.1.2.1, for flexural members that utilize shear connectors 
throughout the entire length that also have concrete deck reinforcement satisfying the provisions 
of Article 6.10.1.7, it is permissible to compute the flexural stresses assuming the concrete deck 
to be effective for both positive and negative flexure at the fatigue limit state.   
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As required by Articles 6.10.10.1 and 6.11.10, shear connectors are necessary along the entire 
length of horizontally curved tub girder bridges.  Also, earlier calculations in this design example 
show that the deck reinforcement is in compliance with Article 6.10.1.7.  Therefore, the concrete 
deck is assumed effective in computing the major-axis bending stresses for the fatigue limit state 
at Section G2-2.  The short-term composite section properties (n = 7.56) used to compute the 
stress at the top of the web (bottom of the top flange) are: 
 
 INA(n) = 833,768 in.4 
 
 dTOP OF WEB = dTOP OF STEEL – tf_TOP FLANGE = 20.23 in. – 3.00 in. = 17.23 in. 
 
Per Table 3.4.1-1, the load factor, , for the Fatigue I load combination is 1.5. The factored stress 
range at the top of the web, without consideration of the longitudinal warping stress, is computed 
as follows: 
 

    
   

ksi 41.0
833,768

17.2312652384,1
1.5Δfγ 













 
  

 
7.9.1 Cross-section Distortion Stresses 

 
As stated previously for the fatigue limit state check of Section G2-1, additional requirements are 
placed on computing stresses due to fatigue loads for tub sections.  In particular, Article 6.11.5 
requires the consideration of longitudinal warping stresses and transverse bending stresses in tub 
sections.  When a tub section is subjected to torsion, the cross-section becomes distorted, 
resulting in these secondary stresses. 
 
Per Article 6.11.5, the stress range due to longitudinal warping should be considered when 
investigating the fatigue resistance of the base metal at all details in the tub section.  For 
simplicity, the longitudinal warping stresses are added to the longitudinal major-axis bending 
stresses. 
 
Also, per Article 6.11.5, the stress range due to the transverse bending stresses shall be 
investigated in the base metal adjacent to the termination of fillet welds connecting transverse 
elements to webs and box flanges.  The transverse bending stresses are considered separately 
from the longitudinal warping stresses.  Article C6.11.5 states that as a result of the transverse 
bending, a stress concentration occurs at the termination of the fillet welds connecting transverse 
elements to webs and box flanges.  The fatigue resistance of this detail, when subject to 
transverse bending, is not currently quantified but is anticipated to be as low as a Category E 
detail.   
 
Calculations to determine the stress range from longitudinal warping and transverse bending can 
be carried out using the beam-on-elastic-foundation (BEF) analogy presented by Wright and 
Abdel-Samad [3].  The Designers Guide to Box Girder Bridges by Bethlehem Steel Corporation 
[11] also presents the method developed by Wright and Abdel-Samad to estimate the transverse 
bending stresses using the BEF analogy.  In this method, the deflection of the BEF is analogous 
to the transverse bending stress.  Sample calculations for determining these distortional stresses 
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based on the BEF analogy are presented in the 2003 AASHTO Guide Specification for 

Horizontally Curved Steel Girder Highway Bridges [10], which is superseded by the current 
AASHTO LRFD Bridge Design Specifications.   
 
The BEF analogy for computing the distortional stresses is demonstrated for Section G2-2 in the 
calculations that follow.  Equation and figure references relate to those shown in the Designers 

Guide to Box Girder Bridges (DGBGB) [11]. 
 
From a separate analysis (all results not shown) the unfactored negative and positive torques due 
to fatigue loading, including the 15 percent dynamic load allowance, at Section G2-2 are -309 
kip-ft and 339 kip-ft, respectively.  The torque fatigue range is a result of placing the fatigue 
truck in two different positions on the bridge but on opposite sides of the tub section.  Also, it is 
assumed that this range is larger than the range produced by a single passage of the fatigue truck 
for this design example.  As indicated in Article 6.11.5, a factor of 0.75 can be applied to this 
torque range to account for the fact that two separate positions of the fatigue trick are required to 
cause the critical torque range.  Therefore applying this 0.75 factor, and the load factor for the 
Fatigue I load combination ( = 1.5), the factored fatigue torque range, TFAT, is: 
 
     ft-kip 7293393091.50.75T FAT   
 
Other required constants that will be used in the calculations that follow are: 
 
 INA(n)  = 833,768 in.4. 
 tc = web thickness = 0.5625 in. 
 tb = bottom flange thickness = 1.50 in. 
 ta = slab thickness = 9.5 in. 
 Ec = 3,834 ksi 
 Es = 29,000 ksi 
 c = Possion’s ratio for concrete = 0.20 (Article 5.4.2.5) 
 s = Possion’s ratio for steel = 0.30 
 ℓ = cross frame spacing = 16.30 ft = 196 in. 
 Transverse stiffener spacing at Section G2-2 = 62 in. 
 Transverse stiffener is 0.5 in. x 5.5 in. 
 
Calculate the transverse flexural rigidities, Da and Db, of the concrete deck and the bottom box 
flange, respectively. 
 

 
 

  

  in.

in.k
 285,345

0.20112

9.53,834

μ112

tE
D

2

2

3

2
c

3
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    DGBGB Eq. (A3a) 

 

 
 

  

  in.

in.k
 963,8

0.30112

1.5029,000

μ112

tE
D

2

2

3

2
s

3
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b








    DGBGB Eq. (A3b) 
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Article 6.11.1.1 permits transverse stiffeners to be considered effective in resisting transverse 
bending.  Therefore, the transverse flexural rigidity of the web, Dc, is computed considering the 
stiffness of the transverse stiffener. Calculate the effective width of the web plate, do, that acts 
with the transverse stiffener (see Figure 14): 
 

 
 2

s

o

1
h

d
6.5

h

d
6.5tanhd

d












        DGBGB Eq. (A4) 

 
where: 
 
 d  =  spacing of transverse stiffeners = 62 in. 
 h =  web plate depth, along the inclined web = 80.40 in. 

 
Figure 14  Effective Width of Web Plate, do, Acting with the Transverse Stiffener 

 
 
Therefore,  
 

 
 

 

in. 15.8

0.301
80.40

62
 5.6

80.40

62
 5.6 tanh62

d
2

o 
































   

 
The transverse flexural rigidity of the web, Dc, considering the stiffness of the transverse 
stiffener is computed as: 
 

 
d

IE
D ss

c          DGBGB Eq. (A3d) 

 
where: 
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 Is  =  moment of inertia of the effective stiffened web plate for transverse bending, 
including the transverse stiffener. 

 
To compute Is, first compute the location of the neutral axis of the effective section from the 
outer web face: 
 
 Area of stiffener  =  (5.5) (0.5)   =  2.75 in.2 
 Area of effective web =  (15.8) (0.5625) =  8.89 in.2 
 Total Area     =  11.64 in.2 
 

 in. 1.0
11.64

2

0.5625
8.89

2

5.5
0.56252.75

N.A. 




















   

 
Calculate the moment of inertia, Is: 
 

      
3

2
3

s 5625.08.15
12

1
0.15625.0

2

5.5
75.25.55.0

12

1
I 


























  

  
2

0.1
2

5625.0
89.8 








  

 
4

s in. 26.5I   
 
Therefore, 
 

   

in.

in.-kip
 12,395

62

26.529,000
D

2

c     

 
The stiffness of the transverse stiffener is assumed to be distributed evenly along the web. 
 
Compute the compatibility shear, v, at the center of the bottom (box) flange for unit loads 
applied at the top corners of a box section of a unit length: 
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c
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1
abcba2

D

1

v     DGBGB Eq. (A2) 

 
where a, b, and c are dimensional parameters of the tub section: 
 
 a  =  distance between centerline of webs at top of tub section = 120 in. 
 b =  distance between centerline of webs at bottom of tub section = 81 in. 
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 c = height of web, along the incline = 80.40 in. 
 

 
         

 
     

22.0

963,8

81

395,12

818112012040.802

345,285

120
81120

12081
345,285

1
40.8081120811202

395,12

1

v
3223

3























    

 
Compute the box distortion per kip of load, 1, assuming no cross-bracing or diaphragms are 
present: 
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1   DGBGB Eq. (A1) 
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395,12

40.80

8112024
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kip

in.
 0.36δ

2

1     

 
The BEF stiffness parameter, , is a measure of the torsional stiffness of the beam, and is 
analogous to the beam-foundation parameter in the BEF derivation.  The BEF stiffness 
parameter, , is calculated as: 
 

 
4

1

1c δ I E

1
β














        DGBGB Eq. (A5) 

 

   

1
4

1

in. 0.00327
0.36833,76829,000

1
β 















    

 
Multiplying the BEF stiffness parameter by the length between internal cross frames yields: 
 

   64.00.1960.00327 β     
 
The transverse bending stress range at the top or bottom corners of the tub section may be 
determined as: 
 

 rangedtt T 
2a

1
 β F Cσ         DGBGB Eq. (A8) 
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where: 
 
 Ct  =  BEF factor for determining the transverse distortional bending stress from 

DGBGB Figure A6 (see Figure 15) 
 Trange =  range of concentrated torque = TFAT (computed previously) 
 a = distance between webs at the top of tub section 

 Fd  = 
S2

bv
  for the bottom corner of tub section [DGBGB Eq. (A9a)] 

  = 


















v

ba

b

S2

a  for top corner of tub section [DGBGB Eq. (A9b)] 

 S = section modulus of the transverse member (per inch)  
 
Calculate the section modulus, S, per unit length of the stiffened portion of the web.  S is taken at 
the top of the transverse member.  In the following equation, the section modulus is divided by 
the stiffener spacing, d; and the distance from neutral axis of the stiffened web to the tip of the 
stiffener is cS. 
 

 
in.

in.
 0.084

62

1

1.00.56255.5

26.5

d

1

c

I
S

3

S

STIFFENED 








































    

 
Calculate the section modulus, S, per unit length of the unstiffened portion of the web taken at 
the mid-thickness of the web.  In the equation that follows, bUS is taken as a unit 1.0 inch, so that 
the section modulus is computed per unit length. 
 

   

in.

in.
 0.0527

6

5625.00.1

6

hb
S

322
US

DUNSTIFFENE 




























    

 
Compute the term Fd at the bottom corner of the tub section for the stiffened and unstiffened 
portions of the web: 
 

Stiffened Web: 
  

 

1-
d in.  106

0.0842

0.2281

2S

bv
F   

 

Unstiffened Web: 
  

 

1-
d in.  169

0.05272

0.2281

2S

bv
F   

 
Compute the term Fd at the top corner of the tub section for the stiffened and unstiffened portions 
of the web: 
 

Stiffened Web: 
 

1-
d in.  1310.22

81120

81

0.0842

120
v

ba

b

2S

a
F 
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Unstiffened Web: 
 

1-
d in.  2080.22

81120

81

0.05272

120
v

ba

b

2S

a
F 












































  

 
It is conservatively assumed that the transverse stiffeners are not attached to the top or bottom 
flanges.  Therefore, Fd is equal to 208 in.-1, as the larger value governs so as to produce a larger 
transverse bending stress. 
 
In order to read Ct from Figure 15 (DGBGB Figure A6), the dimensionless ratio, q, must be 
calculated.  The quantity q represents the ratio of cross frame / diaphragm brace stiffness to the 
tub section stiffness per unit length and is computed as: 
 

 2
b

1b

bb δ 
δ  L

A E
q 












       DGBGB Eq. (A6) 

 
where: 
 
 Eb  =  Young’s modulus of the internal cross frame / diaphragm material 
 Ab =  cross-sectional area of one cross frame / diaphragm bracing member 
 ℓ  =  internal cross frame / diaphragm spacing 
 Lb =  length of cross frame / diaphragm bracing member 
 b = deformation of the bracing member due to the applied torque and is calculated in 

accordance with DGBGB Eq. (A7) 

  =  1
2

h2

ba
1

b

a
12











 












      DGBGB Eq. (A7) 

 h = vertical web depth of the tub section. 
 
First, compute b: 
 

 

 

 
kip

in.
 1.100.36

782

81120
1

81

120
12

δ
2

2
b 









 












   

 
Calculate the cross frame stiffness ratio, q.  The area of one diagonal, Ab, in the internal cross 
frame is assumed to be equal to 5.0 in.2, and the length of the diagonal, Lb, is equal to 87.9 in. 
 

 
  

   
  3.281.10 

0.3619687.9

5.029,000
q

2
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From Figure 15, for q = 28.3 and ℓ = 0.64, Ct is approximately equal to 0.12.  Therefore, the 
transverse bending stress range at the top or bottom corners of the tub section is: 
 

      
 

   ksi 2.9812729 
1202

1
 0.00327 208 0.12σ t     

 

 
Figure 15  Concentrated Torque at Mid-panel on Continuous Beam - Distortional Bending 

Stress at Load (DGBGB Figure A6 [11]) 

 
Per Article 6.6.1.2.5, the nominal fatigue resistance for infinite fatigue life is equal to the 
constant-amplitude fatigue threshold: 
 
    THn FF         Eq. (6.6.1.2.5-1) 
 
where (ΔF)TH is the constant-amplitude fatigue threshold, and is taken from Table 6.6.1.2.5-3.  
As discussed previously, the base metal adjacent to the termination of fillet welds connecting 
transverse elements to webs and box flanges is assumed to be a Category E detail for transverse 
bending.  For a Category E fatigue detail, (ΔF)TH = 4.5 ksi, and therefore: 
 
   ksi 2.98σ  ksi 4.5ΔF tn    OK  (Ratio = 0.662) 
 
The fatigue longitudinal warping stress range at the top and bottom corners of the tub section due 
to cross section distortion can be computed as follows: 
   

 range
w

dw T 
a β I

y C
σ         DGBGB Eq. (A10) 
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where: 
 
 Cw  =  BEF factor for determining the distortional longitudinal stress from DGBGB 

Figure A9 (see Figure 16) 
 y = distance along the transverse vertical axis of the tub section from the neutral axis 

to the point under consideration 
 

Obtain Cw from the graph shown in Figure 16, where q = 28.3 and ℓ = 0.64.  Cw is 

approximately 0.55.  Therefore, using the short-term composite section properties with the 

transformed deck at Section G2-2 (see  

 

 

 

Table 13), the factored distortional longitudinal stresses are: 
 

    

     
   ksi 0.2512729 

120 0.00327 833,768

17.23 0.55
σ TOP dw_   

 

    

     
   ksi 0.8912729 

120 0.00327 833,768

60.77 0.55
σ BOT dw_   

 

 
Figure 16  Concentrated Torque at Mid-panel on Continuous Beam – Normal Distortional 

Warping Stress at Mid-panel (DGBGB Table A9 [11]) 
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The distortional longitudinal warping stress ranges at the top and the bottom of the tub section 
are considered in checking the fatigue resistance of the base metal at the connection plate welds.  
At Section G2-2, it is necessary to check the fatigue resistance at the top flange for the Category 
C′ fatigue detail previously discussed, due to the combined effects of major-axis bending and the 
distortional longitudinal warping stress. 
 
     ksi 0.66  ksi 0.25ksi 41.0ΔfγΔfγ TOP_dwBending   
 
     ksi 12.0ΔF  ksi 0.66 Δfγ n 

 
 OK (Ratio = 0.055) 

 
7.10 Girder Check: Section G2-2, Strength Limit State (Article 6.11.6)  

 
7.10.1 Flexure (Article 6.11.6.2) 

 
For composite sections in negative flexure at the strength limit state, Article 6.11.6.2.3 directs 
the Engineer to Article 6.11.8.  Furthermore, Article 6.11.6.2.3 states that the provision of 
Appendix A shall not apply, nor is redistribution of negative moment per Appendix B allowed. 
 
At the strength limit state, the top flanges in tension continuously braced by the concrete deck, 
shall satisfy: 
 
 ntfbu Ff          Eq. (6.11.8.1.2-1) 
 
where Fnt is the nominal flexural resistance of the bottom flange determined as specified in 
Article 6.11.8.3. 
 
At the strength limit state, tub flanges (bottom flanges) in compression shall satisfy: 
 
 ncfbu Ff          Eq. (6.11.8.1.1-1) 
 
Where Fnc is the nominal flexural resistance of the bottom flange determined as specified in 
Article 6.11.8.2. 
 
The unfactored bending moments at Section G2-2 from the analysis are shown below (see Table 
4).  The live load moment includes the centrifugal force and dynamic load allowance effects. 
 
 Noncomposite Dead Load:  MDC1  = -15,426 kip-ft 
 Composite Dead Load:  MDC2  = -1,923 kip-ft 
 Future Wearing Surface Dead Load: MDW = -2,550 kip-ft 
 Live Load (incl. IM and CF): MLL+IM = -8,127 kip-ft 
 
Compute the factored flange flexural stresses at Section G2-2 for the Strength I limit state, 
without consideration of flange lateral bending.  For loads applied to the composite section, 
cracked section properties are used to compute the major-axis bending stresses in accordance 
with Article 4.5.2.2.  Shear lag need not be considered since the box flange (bottom flange) does 
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not exceed one-fifth of the span of the bridge (Article C6.11.1.1).  Therefore, major-axis bending 
stress is assumed to be uniform across the flange because shear lag need not be considered.  
Also, the longitudinal warping stress due to cross sectional distortion does not need to be 
considered at the strength limit state, in accordance with Article 6.11.1.1.  As discussed 
previously, the  factor is taken equal to 1.0 in this example.  Therefore: 
 
For Strength I: 
 
 Top Flange: 
 

 ksi41.4412
11,862

8,127)1.75(

10,654

2,550)1.5(

10,654

1,9232)1.25(

10,057

15,426)1.25(
1.0f bu 








 









  

 
 Bottom Flange: 
 

 ksi60.4112
11,674

8,127)1.75(

11,447

2,550)1.5(

11,447

1,923)1.25(

11,316

15,426)1.25(
1.0f bu 








 









  

 
In accordance with Article 6.11.1.1, the effects of both flexural and St. Venant torsional shear 
shall be considered in horizontally curved bridges.  Therefore, compute the factored St. Venant 
torsional shear stress, fv, in the bottom flange for the Strength I load combination.  fv is 
determined by dividing the St. Venant torsional shear flow [ f = T/(2Ao) ] by the thickness of the 
bottom flange: 
 

 
fo

v
 tA 2

T
f          Eq. (6.11.3.2-5) 

 
where: 
 
 T  = internal torque due to factored loads (kip-in.) 
 Ao  =  enclosed area within the box section (in.3) 
 tf  =  bottom flange thickness (in.) 
 
The unfactored torques at Section G2-2 obtained from the analysis are shown below (see Table 
6).  The live load moment includes the centrifugal force and dynamic load allowance effects.  
The positive value torques are used in the calculations that follow as the total of the positive 
torques governs over the absolute total of the negative torques. 
 
 Noncomposite Dead Load:  TDC1  = 36 kip-ft + (-33 kip-ft) = 3 kip-ft 
 Composite Dead Load:  TDC2  = 192 kip-ft 
 Future Wearing Surface Dead Load: TDW = 255 kip-ft 
 Live Load (incl. IM and CF): TLL+IM = 980 kip-ft 
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Article C6.11.1.1 indicates that for torques applied to the noncomposite section, Ao is to be 
computed for the noncomposite section.  Since the top lateral bracing in this example is attached 
to the top flange, the vertical depth can be calculated as the distance between the mid-thicknesses 
of the top and bottom flanges.  Furthermore, for torques applied to the composite section, Ao is to 
be computed for the composite section using the depth from the mid-thickness of the bottom 
flange to the mid-thickness of the concrete deck.  In this example, the height of the deck haunch 
is considered.   
 
Compute the enclosed area of the noncomposite tub section, Ao_NC. 
 

     2
o_NC in. 065,8

2

1.50
78

2

3.00

2

1283120
A 











  

 
Compute the enclosed area of the composite tub section, Ao_C. 
 

     2
o_C in. 8,794

2

9.50
4.00

2

50.1
78

2

1283120
A 











  

 
Compute the factored Strength I St. Venant torsional shear stress in the bottom flange of the 
noncomposite section: 
 

  
   

  
ksi 0.002

1.508,065 2

1231.25
1.0f v_NC   

 
Compute the factored Strength I St. Venant torsional shear stress in the bottom flange of the 
composite section: 
 

  
          

  
ksi 063.1

1.508,794 2

1298075.125550.11921.25
1.0f v_C 


  

 
Therefore the total factored Strength I St. Venant torsional shear stress is computed as: 
 
 ksi 1.071.063002.0f v   
 
According to Article 6.11.1.1, the St. Venant torsional shear stress in box flanges (bottom flange 
in this tub girder) due to factored loads at the strength limit state shall not exceed the factored 
torsional shear resistance of the flange, Fvr, taken as: 
 

 
3

F
75.0F

yf

vvr         Eq. (6.11.1.1-1) 

 
where: 
 
 v  = resistance factor for shear specified in Article 6.5.4.2 
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Therefore: 
  

   ksi 1.07f    ksi 21.65
3

50
1.00.75F vvr   OK 

 
 
7.10.2 Top Flange  

 
Calculate the nominal flexural resistance of the top flange in tension, Fnt, in accordance with 
Article 6.11.8.3. 
 
 ythnt FRF          Eq. (6.11.8.3-1) 
 
For a homogenous girder, Rh, is equal to 1.0 (Article 6.10.1.10.1).  Therefore: 
 
    ksi 50.050.01.0Fnt    
 
For Strength I: 
 
 ntfbu Ff          Eq. (6.11.8.1.2-1) 
 
      ksi 50.0050.001.0Fksi 41.44f ntfbu   OK (Ratio = 0.888) 
 
7.10.3 Bottom Flange  

 
Calculate the nominal flexural resistance of the bottom flange in compression, Fnc, in accordance 
with Article 6.11.8.2.  The bottom flange is longitudinally stiffened at this location, with a single 
WT 8x28.5, placed at the center of the bottom flange. 
 

 
fc

fc
f

t

b
         Eq. (6.11.8.2.2-4) 

 
where, in this case: 
 
 bfc  = w  = larger of the width of the flange between the longitudinal flange stiffeners 

or the distance from a web to the nearest longitudinal flange stiffener. 
 
Since the longitudinal stiffener is at the center of the bottom flange, w is the distance from the 
longitudinal stiffener to the centerline of the web. 
 

 0.27
50.1

2

81

f 
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Calculate the first limiting slenderness ratio: 
 

 
yc

1
F

kE
R  

 
where: 
 

 




















































2

S

2

yc

v2

1

k

k

F

f
4ΔΔ

2

1

0.57
R     Eq. (6.11.8.2.2-8) 

 
and where: 

 
2

yf

v

F

f
31Δ














        Eq. (6.11.8.2.2-5) 

 
Per Article 6.11.8.2.3, since a single bottom flange stiffener is used, n = 1 and the plate-buckling 
coefficient for uniform normal stress, k, shall be taken as: 
 

 
3

1

3

fc

S

 tw

I 8
k














         Eq. (6.11.8.2.3-1) 

 
and, the plate-buckling coefficient for shear stress, ks, shall be taken as: 
 

 
 

34.5
1n

 tw

I
84.234.5

k
2

3

1

3

fc

S

S 


















      Eq. (6.11.8.2.3-3) 

 
where: 
 
 fv  =  St. Venant torsional shear stress in the flange due to factored loads 
 n =  number of equally spaced longitudinal flange stiffeners 
 k  =  plate-buckling coefficient for uniform normal stress, 1.0 ≤ k ≤ 4.0 
 ks  =  plate-buckling coefficient for shear stress 
 IS  =  moment of inertia of a single longitudinal flange stiffener about an axis parallel to 

the flange and taken at the base of the stiffener 
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Structural tees are efficient shapes for longitudinal stiffeners because they provide a high ratio of 
stiffness to cross-sectional area.  For the WT 8 x 28.5 stiffener, Ix = 48.7 in.4, A = 8.39 in.2, and 
the elastic neutral axis (N.A.) is 6.28 in. from the tip of the stem. Therefore, Is is computed as: 
 
    42

S in. 379.66.288.3948.7I   
 
Compute the Δ term: 
 

 999.0
50.0

1.07
31Δ

2









  

 
Compute the plate-buckling coefficients, k and ks: 
 

  

 

0.481.2

1.50 
2

81

379.6 8
k

3

1

3



































  

 

 
  

 
34.533.2

11

50.15.40

379.6
84.234.5

k
2

3

1

3

S 


















  

 
Therefore, R1 and the first limiting slenderness ratio are computed as: 
 

 57.0

2.33

2.81

50.0

1.07
400.100.1

2

1

0.57
R

22

2

1 



































  

 

   
01.23

0.50

000,2981.2
57.0

F

kE
R

yc

1   

 
Since f is greater than 23.01 (f = 27.0), it is necessary to compute the second limiting 
slenderness ratio: 
 

 
yc

2
F

kE
R  
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where: 
 

 



































































2

S

2

yc

v

2

yc

yr

yc

yr

2

k

k

F

f
4

F

F

F

F

1.2

1

1.23
R    Eq. (6.11.8.2.2-9) 

 
and where: 
 
   ywycyr FF0.4ΔF        Eq. (6.11.8.2.2-7) 
 
    ksi 50.0ksi 95.92500.4999.0F yr   
 
Therefore, 
 

 23.1

2.33

2.81

50.0

1.07
4

50.0

29.95

50.0

29.95

1.2

1

1.23
R

222
2 












































  

  

   
7.49

0.50

000,2981.2
23.1

F

kE
R

yc

2   

 

Since f  >  
yc

1
F

kE
R , but f  ≤  

yc

2
F

kE
R , Eq. (6.11.8.2.2-2) applies: 

 

 





































































































































12

yc

fc

2

ych

yr

ychbnc
RR

kE

F

t

w
R

2

π
sin1

FR

F
ΔΔFRRF  Eq. (6.11.8.2.2-2) 

 
The hybrid factor, Rh, is equal to 1.0, per Article 6.10.1.10.1.   
 
Determine the web load-shedding factor, Rb.  First, compute the depth of the web in 
compression, Dc, due to the Strength I factored loads, in accordance with the provisions of 
Article D6.3.1.  These provisions state that for composite sections in negative flexure, Dc is 
computed for the section consisting of the steel girder plus the longitudinal deck reinforcement.  
For this example, Dc is calculated using the short-term (n) section property computations shown 
in Table 15. 
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Therefore, compute Dc along the inclined web: 
 

   in. 41.31
4

14
 1.5041.58D

2

2

c 


   

 
According to the provisions of Article 6.10.1.10.2: 
 

  
9.146

5625.0

31.412

t

D2

w

c
       Eq. (6.10.1.10.2-2) 

 

 3.137
50

000,29
7.5

F

E
7.5

yc

rw      Eq. (6.10.1.10.2-4) 

 

Since rw

w

c

t

2D
 , calculate Rb as follows: 

 

 1.0λ
t

2D

300a1200

a
1R rw

w

c

wc

wc
b 































    Eq. (6.10.1.10.2-3) 

 
where, 
 

   

  
373.0

50.10.83

5625.031.412

tb

t2D
a

fcfc

wc
wc      Eq. (6.10.1.10.2-5) 

 
Therefore, 
 

 
 

 
1.0997.03.371

0.5625

41.312

0.3733001200

0.373
1R b 

























  

 
Computing the nominal flexural compressive resistance, Fnc, of the bottom box flange: 
 

   
  

  



































































































































57.023.1

000,2981.2

50.0

1.50

40.5
23.1

2

π
sin1

0.500.1

29.95
999.0999.00.500.1997.0F nc

 
      ksi 49.250.98850.01.00.997Fnc   
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Checking compliance with Eq. (6.11.8.1.1-1): 
 
 ncfbu Ff          Eq. (6.11.8.1.1-1) 
 
For Strength I: 
 
    ksi 49.25  49.2500.1F  ksi 1.604-f ncfbu    OK (Ratio = 0.845) 
 
Article C6.11.8.1.1 states that in general, bottom box flanges at interior pier sections are 
subjected to biaxial stresses due to major-axis bending of the tub section and major-axis bending 
of the internal diaphragm over the bearing sole plate.  The bottom flange is also subject to shear 
stresses due to the internal diaphragm vertical shear and, in cases where it needs to be 
considered, the St. Venant torsional shear.  For cases where the shear stresses and/or bending of 
the internal diaphragm are deemed significant, Article C6.11.8.1.1 suggests that the following 
equation be used to check the combined stress state in the box flange at the strength limit state: 
 

   ychbf

2

vd
2

bybybu
2

bu FRRff3ffff     Eq. (C6.11.8.1.1-1) 
 
where: 
 
 fbu  =  longitudinal stress due to factored loads at the section under consideration 

calculated without consideration of longitudinal warping (ksi) 
 fby =  stress in the flange due to the factored loads caused by major-axis bending of the 

internal diaphragm over the bearing sole plate (ksi) 
 fd = shear stress in the flange caused by the internal diaphragm vertical shear due to 

factored loads (ksi) 
 fv =  St. Venanat torsional shear stress in the flange due to factored loads (ksi) 
 Rb = web load-shedding factor determined as specified in Article 6.10.1.10.2 
 Rh = hybrid factor determined as specified in Article 6.10.1.10.1 
 
In this example, each tub girder is supported on two bearings at each support.  Therefore, the 
bottom flange bending stresses due to major-axis bending of the diaphragm over the bearing sole 
plates are relatively small and are neglected in this example (fby = 0.0 ksi).  The effect of these 
forces in a tub section supported on a single bearing is likely to be more significant and should 
be considered.  Per Article C6.11.8.1.1 an effective flange width of 6 times the thickness of the 
tub girder bottom flange may be considered effective with the internal diaphragm for computing 
the stress in the box flange (bottom flange in this tub girder) caused by major-axis bending of the 
internal diaphragm over the bearing sole plate.   Furthermore, if an access hole is provided within 
the internal diaphragm, the hole should be considered in calculating the section properties of the 
effective diaphragm section. 
 
From previous calculations, the total factored St. Venant torsional shear stress in the bottom 
flange, fv, is equal to 1.07 ksi. 
 

Arch
ive

d



 

103 
 

To estimate the shear stress in the bottom flange due to the internal diaphragm shear, a 1 in. by 
12 in. top flange for the diaphragm is assumed.  The diaphragm web is assumed to be 78 inches 
deep and 1 inch thick, and an access hole is not provided in the web.  As specified in Article 
C6.11.8.1.1, a box flange width equal to 6 times its thickness may be considered effective with 
the internal diaphragm.  Therefore: 
 
   in. 9.01.50 6b bf_EFF   
 
Therefore, the effective bottom flange of the internal diaphragm is 9.0 inches wide and has a 
thickness of 1.50 inches.  The thickness of the effective bottom flange of the internal diaphragm 
is the same as the thickness of the tub girder bottom flange. 
 
From separate calculations not shown here, the moment of inertia of the effective internal 
diaphragm is 79,565 in.4, and the neutral axis is located 39.89 in. above the bottom of the bottom 
flange.  Calculations associated with the design of the internal diaphragm, shown later, indicate 
that the total factored vertical component of the diaphragm shear is 1,406 kips.  The shear stress 
in the tub girder bottom flange, fd, caused by the internal diaphragm vertical shear due to 
factored loads is approximated as: 
 

 
fc

d
 tI

Q V
f          Eq. (C6.11.8.1.1-2) 

 
where: 
 
 V  =  vertical shear in the internal diaphragm due to flexure plus St. Venant torsion 

(kip) 
 Q =  first moment of inertia of one-half the effective box-flange area about the neutral 

axis of the effective internal diaphragm (in.3) 
 I = moment of inertia of the effective internal diaphragm section (in.4) 
 
The first moment of inertia of one-half the effective box-flange area about the neutral axis of the 
effective internal diaphragm, Q, is computed as: 
 

    3in. 2.642
2

50.1
89.3950.10.9

2

1
Q 








  

 
Therefore, 
 

 
  

  
ksi 3.11

1.5079,565

264.21,406

 tI

Q V
f

fc

d   

 
Only one-half of the first moment of inertia, Q, and the thickness of the effective bottom flange, 
tfc, are used in this calculation due to the fact that in this particular case the horizontal component 
of the transverse shearing stress is required. 
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The factored longitudinal stress in the tub girder bottom flange, fbu, resulting from major-axis 
bending was computed previously as -41.60 ksi.  Also, Rh is equal to 1.0, and Rb was computed 
in previous computations and is equal to 0.997. 
 
Checking compliance with Eq. (C6.11.8.1.1-1): 
 

          ksi 42.2307.111.330060.4160.41
222
  

 
     ksi 49.85501.00.9971.0FRR42.23ksi ychbf   OK (Ratio = 0.847) 

 
7.10.3.1 Cross-section Distortion Stresses 

 
In accordance with Article 6.11.1.1, transverse bending stress due to cross-section distortion 
shall be considered at the strength limit state.  The transverse bending stresses due to factored 
loads shall not exceed 20.0 ksi at the strength limit state.  Longitudinal warping stresses due to 
cross-section distortion may be ignored at the strength limit state. 
 
As shown previously in the fatigue computations for Section G2-2, the transverse bending stress 
range at the top or bottom corners of the tub section may be determined as: 
 

 T 
2a

1
 β F Cσ dtt         DGBGB Eq. (A8) 

 
The same values computed under the fatigue computations may be used at the strength limit 
state, thus Ct is equal to 0.12, Fd is equal to 208 in.-1,  is equal to 0.00327 in.-1, and a is equal to 
120 in.  T represents the total factored concentrated torque, and is computed as follows: 
 
For STRENGTH I: 
 
         ft-kip 2,3419801.752551.501921.2531.25T   
  
Therefore, the factored transverse bending stress due to cross-section distortion is computed as: 
 

      
 

   ksi 20.0ksi 55.912341,2 
1202

1
 0.00327 208 0.12σ t    OK 

 
7.10.4 Shear (Article 6.11.6.3) 

 
Article 6.11.6.3 invokes the provision of Article 6.11.9 to determine the shear resistance at the 
strength limit state.  Article 6.11.9 further directs the Engineer to the provision of Article 6.10.9 
for determining the factored shear resistance of a single web.  For the case of inclined webs, D, 
shall be taken as the depth of the web measured along the slope.  The factored shear load in the 
inclined web shall be taken as: 
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 θ cos

V
V u

ui          Eq. (6.11.9-1) 

  
where, Vu is the shear due to factored loads on one inclined web, and  is the angle of inclination 
of the web plate.  For tub sections, especially those in horizontally curved bridges, St. Venant 
torsional shear must be considered in the design of the webs.  The total shear in one web is 
greater than the shear in the other web at the same section since the torsional shear is of opposite 
sign in the two webs.  The critical shear should be the maximum combination of factored shear 
due to major-axis bending and the St. Venant torsional shear.  For practicality, both webs are 
designed for the critical shear. 
 
At the strength limit state, webs must satisfy the following: 
 
 nvu VV          Eq. (6.10.9.1-1) 
 
where: 
 
 v = resistance factor for shear = 1.0 (Article 6.5.4.2) 
 Vn  =  nominal shear resistance determined as specified in Articles 6.10.9.2 and 6.10.9.3 

for unstiffened and stiffened webs, respectively 
 Vu =  Vui = shear in a single web at the section under consideration due to factored 

loads. 
 
The unfactored shears at Section G2-2 obtained from the analysis are shown below (see Table 2).  
The unfactored shears are vertical shears and are the summation of the shear due to major-axis 
bending and St. Venant torsional shear in the critical web.  The live load moment includes the 
centrifugal force and dynamic load allowance effects.  The positive value shears are used in the 
calculations that follow as the total of the positive shear governs over the absolute total of the 
negative torques. 
 
 Noncomposite Dead Load:  VDC1  = 232 kip 
 Composite Dead Load:  VDC2  = 44 kip 
 Future Wearing Surface Dead Load: VDW = 58 kip 
 Live Load (incl. IM and CF): VLL+IM = 160 kip 
 
The  factor is again taken equal to 1.0 in this example at the strength limit state.  The total 
factored shear at the interior pier in the inclined web is: 
 

  

 
kips734

14.036cos

1.75(160)1.5(58)44)3221.25(1.0
V ui 




  

 
7.10.4.1 Interior Panel (Article 6.10.9.3.2) 

 
Article 6.10.9.1 stipulates that the transverse stiffener spacing for interior panels without a 
longitudinal stiffener shall not exceed 3D = 3(80.40) = 241.2 inches.  For the first panel on each 
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side of the interior support, a transverse stiffener spacing of 62 inches is assumed for this design 
example, satisfying the 3D requirement. 
 
For interior panels of girders with the section along the entire panel proportioned such that: 
 

 
 

5.2
tbtb

Dt2

ftftfcfc

w



       Eq. (6.10.9.3.2-1) 

 
the nominal shear resistance is to be taken as the sum of the shear-buckling resistance and the 
post-buckling resistance due to tension-field action, which is to be computed according to: 
 

 












































2

o

pn

D

d
1

)C1(87.0
CVV       Eq. (6.10.9.3.2-2) 

 
in which: 
 
 wp DtF58.0V

yw
        Eq. (6.10.9.3.2-3) 

 
where: 
 
 do = transverse stiffener spacing (in.) 
 Vn  =  nominal shear resistance of the web panel (kip) 
 Vp =  plastic shear force (kip) 
 C  = ratio of the shear-buckling resistance to the shear yield strength. 
 
For the interior web panel under consideration, checking Eq. (6.10.9.3.2-1): 
 

   

      
5.278.0

00.31850.12/83

5625.040.802



  

 
Therefore, Eq. (6.10.9.3.2-2) is applicable.  First, compute the shear-buckling coefficient, k: 
 

 41.13

40.80

62

5
5

D

d

5
5k

22

o

























     Eq. (6.10.9.3.2-7) 

 
Since: 
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 5.123
50

41)29,000(13.
1.40

F

Ek
1.40142.9

0.5625

80.4

t

D

yww

   

 

 






























yw
2

w

F

Ek

t

D

57.1
C        Eq. (6.10.9.3.2-6) 

 

 
 

0.598
50

41)29,000(13.

142.9

1.57
C

2









  

 
Vp is the plastic shear force and is calculated as follows: 
 
 wywp  tD F 0.58V         Eq. (6.10.9.3.3-2) 
 
     kips 1,3120.562580.4050.0 0.58V p   
 
Therefore, 
 

   kips 1,148

80.40

62.0
1

0.598)0.87(1
0.5981,312V

2
n 








































  

 
Checking compliance with Eq. (6.10.9.1-1): 
 
    kips 1,1481,1481.0Vkips 734V nvu   OK  (Ratio = 0.639) 
 
7.11 Bottom Flange Longitudinal Stiffener  

 
A single longitudinal flange stiffener is used on the bottom flange of the tub girders in the 
negative moment regions.  The longitudinal stiffeners are terminated at the bolted field splices at 
each end of field sections 2 and 4.  By terminating the longitudinal stiffener at the bolted field 
splices, it is not necessary to consider fatigue at the terminus of the stiffener.  The bottom flange 
splice plates inside the tub girder must be designed and fabricated to permit the longitudinal 
stiffener to extend to the free edge of the flange, where the longitudinal stress is zero. 
 
A single WT 8x28.5 is utilized for the longitudinal stiffener with the stem welded to the bottom 
flange, and it is placed at the centerline of the bottom flange.  Per Article 6.11.11.2, longitudinal 
compression flange stiffeners on tub girder bottom flanges (box flanges) are to be equally spaced 
across the width of the flange.  Furthermore, the yield strength of the longitudinal stiffener must 
not be less than the yield strength of the flanges to which they are attached. 
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The projecting width, bl, of the longitudinal flange stiffener must satisfy Eq. (6.11.11.2-1): 
 

 
yc

sl
F

E
 t0.48b         Eq. (6.11.11.2-1) 

 
where: 
 
 ts = thickness of the projecting longitudinal stiffener element (in.) 
 
In the case of a structural tee, ts is taken as the flange thickness of the structural tee since each 
half-flange would buckle similarly to a single plate connected to the web.  Furthermore, the 
projecting width, bl, of structural tees shall be taken as on-half the width of the flange.  
Therefore, 
 

 in. 8.27
50

29,000
(0.715) 0.48b l   

 

 in. 8.27in. 3.56
2

7.12
b l    WT 8x28.5 flange is OK 

 
The moment of inertia, Iℓ, of each stiffener about an axis parallel to the flange and taken at the 
base of the stiffener shall satisfy: 
 

  

 
 3

fc t wψI 


       Eq. (6.11.11.2-2) 
 
where: 
 
  = 0.125k3 for n = 1 
  = 1.120k3 for n = 2 
 k = plate buckling coefficient for uniform stress, 1.0 ≤ k ≤ 4.0 
 n = number of equally spaced longitudinal flange stiffeners 
 w = larger of the width of the flange between longitudinal flange stiffeners or the 

distance from a web to the nearest longitudinal flange stiffener (in.) 
 tfc = thickness of compression tub girder flange 
 
Calculate the moment of inertia of the stiffener, Iℓ, about the base of the stiffener: 
 
 Iℓ = Io + Ad2 = 48.7 + (8.39) (8.22 – 1.94)2 = 379.6 in4 
 
Per Article C6.11.11.2, the actual longitudinal flange stiffener moment of inertia, Is, used in 
determining the plate-buckling coefficient for uniform normal stress, k, from either Eq. 
(6.11.8.2.3-1) or Eq. (6.11.8.2.3-2), as applicable, automatically satisfies Eq. (6.11.11.2-2).  
Alternatively, for preliminary sizing of the stiffener for example, a value of k can be assumed in 
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lieu of Eq. (6.11.8.2.3-1) or Eq. (6.11.8.2.3-2), but a range of 2.0 to 4.0 should generally apply.  
For completeness, check Eq. (6.11.11.2-2), where k was previously calculated as 2.81: 
 

 4334 in. 379.1(1.5)
2

81
)0.125(2.81in. 379.6 








   OK 

 
Since Eq. (6.11.11.2-1) and Eq. (6.11.11.2-2) are satisfied, the WT 8x25 is acceptable for the 
longitudinal bottom flange stiffener. 
 
7.12 Internal Pier Diaphragm Design  

 
Article 6.11.1 directs the designer to the provision of Article 6.7.4 for general design 
considerations for internal and external cross-frames and diaphragms.  The internal diaphragms 
are subject to major-axis bending over the bearing sole plates in addition to shear.  Article 
C6.11.8.1.1 requires that the principal stresses in the internal support diaphragm at the strength 
limit state not exceed the compressive resistance given by Eq. (C6.11.8.1.1-1), which is a yield 
criterion for combined stress.  In this example, each tub girder is supported by two bearings, 
therefore, per Article C6.11.8.1.1, the major-axis bending stress in the internal diaphragms, fby, is 
typically small and can be neglected. 
 
Example calculations are demonstrated for the Girder G2 internal diaphragms at the Pier 1 
supports (Girder Section G2-2).  A 1.0 inch thick Grade 50 steel plate is assumed for the internal 
diaphragm web at this location.  Figure 17 shows a sketch of the internal diaphragm. 
 

 
Figure 17  Sketch of the Internal Diaphragm and Bearing Locations 

 
First, summarize the maximum vertical shears and torsional moments acting on the internal 
diaphragm.  The unfactored shears are taken from Table 2, and most of the unfactored toques are 
taken from Table 6.   
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The maximum unfactored vertical shears acting on the internal diaphragm, using the critical tub 
girder web are shown below.  The unfactored vertical shears are due to the combined effects of 
bending and St. Venant torsion in the critical tub girder web.  Therefore, it is necessary to 
separate out the shears due to bending and St. Venant torsion in computations that follow later in 
this section.   
 
The maximum unfactored vertical shears in the critical tub girder web, due to tub girder flexure 
and St. Venant torsion, are: 
 
 
 Steel Dead Load:  VDC1-STEEL  = 47 + |-46| = 93 kips 
 Concrete Deck Dead Load:  VDC1-CONC  = 185 + |-185| = 370 kips 
 Composite Dead Load:  VDC2  = 44 + |-41| = 85 kips 
 Future Wearing Surface Dead Load: VDW = 58 + |-55| = 113 kips 
 Live Load (incl. IM and CF): VLL+IM = 160 + |-155| = 315 kips 
 
The maximum unfactored torques acting on the internal diaphragm, are: 
 
 Steel Dead Load:  TDC1-STEEL  = |-22| + 36 = 58 kip-ft 
 Concrete Dead Load:  TDC1-CONC  = 48 + |-33| = 81 kip-ft 
 Composite Dead Load:  TDC2  = |-149| + 192 = 341 kip-ft 
 Future Wearing Surface Dead Load: TDW = |-197| + 255 = 452 kip-ft 
 Live Load (incl. IM and CF): TLL+IM = 980 + |-425| = 1405 kip-ft 
 
For computing the Live Load torque above, assumed concurrent torsions are used that produce 
the largest torsional reaction at the support, thus the largest torque acting on the internal 
diaphragm. 
 
Compute the maximum factored shear stress in the diaphragm web.  The vertical shear acting on 
the critical tub girder web is equal to the maximum shear in the internal diaphragm.  First, it is 
necessary to separate out the shears due to tub girder flexure (bending), Vb, and the shears due to 
St. Venant torsion, VT, as the maximum unfactored vertical shears above include the web shear 
due to torsion.   
 
7.12.1 Web Shear Check 

 
The calculations in this section check the combined principal stresses in the internal diaphragm 
web and the shear in the internal diaphragm web.  To perform these checks it is necessary to 
separately consider the shear in the internal diaphragm for tub girder flexure (bending) and the 
shear due to torsion. 
 
7.12.1.1 Noncomposite Shear Force 

 
The sum of the total noncomposite Strength I factored shear is: 
 
 VDC1 = 1.25 (93 +370) = 579 kips 
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To compute the shear due to torsion, it is necessary to compute the shear flow in the 
noncomposite tub girder section. The enclosed area of the noncomposite tub section, Ao_NC, was 
computed in previous calculations as 8,065 in2.  The factored shear flow in the noncomposite 
section is computed as: 
 

 
o

v
A 2

T
f          Eq. (C6.11.1.1-1) 

 
where: 
 
 T  = internal torque due to factored loads (kip-in.) 
 Ao  =  enclosed area within the box section (in.3) 
 

 kip/in 0.129
2(8,065)

81)(12)851.25(

A 2

T
f

o

v 


        

 
Note that the internal factored torque is equal to 173.8 kip-ft.  
 
To obtain the factored St. Venant shear, VT, multiply the factored shear flow, by depth of the tub 
girder web along the incline: 
 
 VT = 0.129 (80.40) = 10.37 kips 
 
The vertical component of VT is computed as: 
 

 kips 10.06
80.40

78.0
37.01)(V VertT 








         

 
The vertical shear in the diaphragm web due to tub girder flexure alone and noncomposite loads 
is then computed by subtracting the St. Venant torsional component from the total noncomposite 
shear: 
 
 Vb = 579 – 10.06 = 569 kips 
 
Figure 18 provides an illustration of the above calculation. 
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Figure 18  Illustration for the computation of the shear in the internal diaphragms due to 

St. Venant torsion and tub girder flexure 

 
7.12.1.2 Composite Shear Force 

 
The sum of the total composite Strength I factored shear is: 
 
 VDC2+DW+(LL+I) = 1.25 (85) + 1.5 (113) +1.75 (315) = 827 kips 
 
The enclosed area of the composite tub section, Ao_C, was computed in previous calculations as 
8,794 in2.  The factored shear flow in the composite section is computed as: 
 

 kip/in 43.2
2(8,794)

)](12)1.75(1,405  1.5(452)  [1.25(341)

A 2

T
f

o

v 


   

 
To obtain the factored St. Venant shear, VT, multiply the factored shear flow, by depth of the 
web along the incline: 
 
 VT = 2.43 (80.40) = 195.4 kips 
 
The vertical component of VT is computed as: 
 

 kips 901
80.40

78.0
4.195)(V VertT 








         

 
The vertical shear in the diaphragm web due to tub girder flexure alone and composite loads is 
then computed by subtracting the St. Venant torsional component from the total composite shear: 
 
 Vb = 827 – 190 = 637 kips 
 
7.12.1.3 Total Factored Shear Force 

 
The total factored shear stress in the diaphragm web due to torsion is calculated by dividing the 
shear flows by the thickness of the web: 
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 ksi 2.56
in. 1.0

2.43

in. 1.0

0.129
)(f Tv    

 
The average Strength I factored shear stress in the diaphragm web due to tub girder flexure 
(bending) is calculated by dividing the total factored shear by the area of the web: 
 

 ksi 15.46
78(1.0)

376569
)(f bv 


   

 
7.12.1.4 Check of Internal Diaphragm Web 

 
As discussed previously, for a tub girder supported on two bearings, the bending stresses in the 
plane of the internal diaphragm due to vertical bending of the diaphragm over the bearing sole 
plates are relatively small and will be neglected in this example for simplicity.  For a tub girder 
supported on a single bearing, the effects of the bending stresses in the plane of the diaphragm 
are likely to be more significant and should be considered.  As specified in Article C6.11.8.1.1 a 
width of the bottom (box) flange equal to 6 times the thickness may be considered effective with 
the diaphragm in resisting in-plane bending. 
 
Therefore, for this example, since bending in the plane of the diaphragm is ignored, the 
maximum principal stress is simply equal to the total factored shear stress: 
 
 fv = (fv)T + (fv)b = 2.56 +15.46 = 18.02 ksi 
 
The combined principal stresses in the diaphragm due to factored loads are checked using the 
general form of the Huber-von Mises-Hencky yield criterion, which is similar to Eq. 
(C6.11.8.1.1-1).  The general form of the Huber-von Mises-Hencky yield criterion is: 
 
 y

2
221

2
1 F         

 
where 1 and 2 are the maximum and minimum principal stresses in the diaphragm web, and: 
 

 2
v

2

zyzy

21 f
22

, 












 














 
   

 
There is a major-axis bending moment that must be carried by the internal diaphragm, resulting 
from the fact that the web is cantilevered out from the bearing (see Figure 17).  Assuming that 
the vertical shear force acts at the mid-depth of the web, the internal diaphragm moment at the 
centerline of the bearing is computed as: 
 
 MID = (569 kips + 637 kips) (12.0 in. + 9.75 in.) = 26,231 kip-in. 
 
It was stated earlier in these calculations that the moment of inertia of the effective internal 
diaphragm is 79,565 in.4, and the neutral axis is located 39.89 in. above the bottom of the bottom 
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flange.  The bottom flange thickness is equal to the bottom flange thickness of the tub girder, 
which is 1.50 inches.  Therefore, the major-axis bending stress, y in the internal diaphragm web 
is computed as: 
 

   
ksi 66.12

79,565

1.5039.8926,231

I

cM
σ ID

y 


   

 
z is equal to zero because there are no loads applied that cause stress in vertical direction in the 
internal diaphragm web. 
 
Therefore, the principal stresses are computed as: 
 

 ksi 43.2518.02
2

066.21

2

066.12
σ 2

2

1,2 






 








 
   

 
Check the combined principal stress using the Huber-von Mises-Hencky yield criterion: 
 
 ksi .005Fksi .0544)43.25()43.25(25.43)(43.25 y

22
   OK (Ratio= 0.881)  

 
Next, check the shear resistance of the internal diaphragm and compare to the factored shear 
force.  Compute the shear resistance according to Article 6.11.9 which specifies the use of the 
provision of Article 6.1.9 for I-girders.  Calculations not shown here indicate that C = 1.0. 
 
 nvu VV          Eq. (6.10.9.1-1) 
 
 pcrn CVVV         Eq. (6.10.9.2-1) 
 
 kips 262,2(78)(1.0)0.58(50.0)Dt0.58FV wp yw

   Eq. (6.10.9.2-2) 
 
 kips 226,22)(1.0)(2,26V n    
 
Check Eq. (6.10.9.1-1): 
  
 kips 262,22)(1.0)(2,26Vkips 1,208396569V nvu   OK (Ratio 0.534) 
 
7.12.2 Bearing Stiffeners 

 
Bearing stiffeners are placed on each side of the web of the internal diaphragm at each bearing 
location.  The design of the Girder G2 bearing stiffeners at Pier 1 (Section G2-2) is illustrated in 
this section.  It is assumed that the bearings at Pier 1 are fixed, thus there is no expansion casing 
eccentric loading on the bearing stiffeners that are attached to the internal diaphragm.  According 
to Article 6.11.11.1, bearing stiffeners attached to the internal diaphragms are to be designed 
using the provisions of Article 6.10.11.2.4b applied to the diaphragm rather than the girder web. 
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Bearing stiffeners must extend the full depth of the web and as closely as practical to the outer 
edges of the flanges.  Each stiffener must be either milled to bear against the flange through 
which it receives its load or attached to that flange by a full penetration groove weld.  Typical 
practice is for the bearing stiffeners to be milled to bear plus fillet welded to the appropriate 
flange.  Full penetration groove welds are costly and often result in welding deformation of the 
flange. 
 
The unfactored reactions are as shown below for the left and right bearings at Pier 1, Girder G2.  
These results are directly from the three-dimensional analysis. 
 
Left Bearing: 
 Steel Dead Load:  RDC1-STEEL  = 79 kips 
 Concrete Deck Dead Load:  RDC1-CONC  = 238 kips 
 Composite Dead Load:  RDC2  = 85 kips 
 Future Wearing Surface Dead Load: RDW = 113 kips 
 Live Load (incl. IM and CF): RLL+IM = 294 kips 
 
Right Bearing: 
 Steel Dead Load:  RDC1-STEEL  = 93 kips 
 Concrete Deck Dead Load:  RDC1-CONC  = 370 kips 
 Composite Dead Load:  RDC2  = 11 kips 
 Future Wearing Surface Dead Load: RDW = 15 kips 
 Live Load (incl. IM and CF): RLL+IM = 287 kips 
 
The maximum Strength I factored reactions for each bearing are computed as: 
 
 RLEFT = 1.25 (79 + 238 + 85) + 1.5 (113) + 1.75 (294) = 1,187 kips 
 
 RRIGHT = 1.25 (93 + 370 + 11) + 1.5 (15) + 1.75 (287) = 1,117 kips 
 
The factored reaction at the left bearing is larger, and therefore controls.  The bearing stiffeners 
are assumed to have a yield stress of 50 ksi, and are 1 in. by 11 in. plates.  As shown in Figure 
17, there is one bearing stiffener on each side of the internal diaphragm web, and therefore two at 
each bearing location.  
 
The width, bt, of the projecting stiffener element must satisfy: 
 

 
ys

pt
F

E
 t0.48b         Eq. (6.10.11.2.2-1) 

 

 in. 11.6
50

29,000
(1.0) 0.48

F

E
 t0.48in. 11.0b

ys

pt    OK   
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7.12.2.1 Bearing Resistance 

 
According to Article 6.10.11.2.3, the factored bearing resistance for the fitted ends of bearing 
stiffeners is taken as: 
 
    

nsbbrsb RR         Eq. (6.10.11.2.3-1) 
 
where: 

 
 b = resistance factor for bearing specified in Article 6.5.4.2 (b = 1.0) 
 (Rsb)n =  nominal bearing resistance for fitted ends of bearing stiffeners (kip) 

 
and: 
   yspnnsb FA4.1R         Eq. (6.10.11.2.3-2) 
 
where: 
 
 Apn  = area of the projecting elements of the stiffener outside of the web-to-flange fillet 

welds but not beyond the edge of the flange (in.2) 
 Fys  = specified minimum yield strength of the stiffener (ksi) 
 
Assuming a 1 inch stiffener clip, compute Apn as follows: 
 
    2

pn in .00200.11112A     
 
The nominal bearing resistance of the stiffeners at a single bearing is computed as: 
 
      kips 400,1500.204.1R nsb   
 
The factored bearing resistance of the stiffeners at a single bearing is computed as: 
 
     kips 187,1Rkips 400,1400,10.1R ursb     OK 
 
7.12.2.2 Axial Resistance 

 
Determine the axial resistance of the bearing stiffener according to Article 6.10.11.2.4.  This 
article directs the engineer to Article 6.9.2.1 for calculation of the factored axial resistance, Pr.  
The yield strength is Fys, the radius of gyration is computed about the midthickness of the web, 
and the effective length is 0.75 times the web depth (Kl = 0.75D). 
 
 ncr PP           Eq. (6.9.2.1-1) 
 
where: Pn = nominal compressive resistance determined using the provisions of Article 6.9.4 
 c = resistance factor for compression as specified in Article 6.5.4.2 (c = 0.90) 
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As indicated in Article 6.9.4.1.1, Pn is the smallest value of the applicable modes of buckling, 
and in the case of bearing stiffeners, torsional buckling and flexural-torsional buckling are not 
applicable.  Therefore, Pn is computed for flexural buckling only.  
 
To compute Pn, first compute Pe and Po.  Pe is the elastic critical buckling resistance determined 
as specified in Article 6.9.4.1.2 for flexural buckling.  Po is the equivalent nominal yield 
resistance equal to QFyAg, where Q is the slender element reduction factor, taken equal to 1.0 for 
bearing stiffeners per Article 6.9.4.1.1: 
 

 
g2

s

2

e A

r

K

E
P




















           Eq. (6.9.4.1.2-1) 

 
In accordance with Article 6.10.11.2.4, the effective length, Kℓ, shall be taken as 0.75D: 
 
 Kℓ = 0.75D = 0.75(80.40) = 60.3 in. 
 
Compute the radius of gyration about the midthickness of the web. 
 

 
s

s
s

A

I
r   

 
According to the provisions of Article 6.10.11.2.4b, for stiffeners welded to the web, a portion of 
the web shall be included as part of the effective column section.  For stiffeners consisting of two 
plates welded to the web, the effective column section shall consist of the two stiffener elements, 
plus a centrally located strip of web extending 9tw on each side of the outer projecting elements 
of the group.  The area of the web that is part of the effective section is computed as follows: 
 
     2

w in. 0.180.10.192A   
 
The total area of the effective section is therefore: 
 
 2

s in. 0.40)00.11)(00.1(20.18A   
 
Next, compute the moment of inertia of the effective section about the centerline of the 
diaphragm of the web, conservatively using the stiffeners only: 
 

    4

2

3
in. 014,1

2

0.1

2

0.11
0.110.110.1
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Compute the radius of gyration: 
 

 in. 03.5
0.40

014,1
r s   

 
The elastic critical buckling resistance is computed as follows: 
 

  
  kips 663,970.40

03.5

3.60

000,29
P

2

2

e 











  

 
The equivalent nominal yield resistance is computed as follows, with As used for Ag: 
 
     kips 000,20.40500.1AQFP gyo   
 
Since  
 

44.08.39
000,2

663,79

P

P

o

e
 , 

 
the nominal compressive resistance is computed as: 
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n P658.0P e
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          Eq. (6.9.4.1.1-1) 

 

   kips  979,1000,2658.0P 8.39

1

n 






























 

 
The factored compressive resistance of the bearing stiffeners is computed as follows: 
 
   kips 781,1979,190.0PP ncr   
 
 kips 1,781Pkips 1,187P ru     OK (Ratio = 0.666) 
 
The 1.0 in. by 11.0 in. bearing stiffeners selected satisfy the requirements for design. 
 
7.13 Top Flange Lateral Bracing Design  

 
Top flanges of tub girders should be braced so that the section acts as pseudo-box for 
noncomposite loads applied before the concrete deck hardens or is made composite.  Herein, 
calculations demonstrate the design of the top flange single diagonal bracing member in Span 1 
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of Girder G2 in the first bay adjacent to the abutment for constructibility.  However, top flange 
bracing must be designed to satisfy constructibility as well as the strength limit state for the final 
condition.  In many cases, the factored force during construction may govern over the factored 
forces in the final condition. 
 
Article 6.11.1 specifies that the top lateral bracing for tub girders must satisfy the provisions of 
Article 6.7.5.  The bracing is designed according to the provision of Articles 6.8 and 6.9 for 
tension and compression, respectively.  Wind lateral loading, and the lateral force caused by 
deck overhang brackets, are neglected in this design example. 
 
The unfactored axial force in the diagonal bracing member in the first bay of Span 1 of Girder 
G2 are obtained from the three-dimensional analysis and are as follows:  
 
 Steel Dead Load:  PSTEEL  = -13 kip 
 Deck Cast #1 Dead Load:  PCONC  = -100 kip 
 
In accordance with Article 3.4.2.1, when investigating Strength I, III, and V during construction, 
load factors for the weight of the structure and appurtenances, DC and DW, shall not be taken to 
be less than 1.25.  Therefore, the factored axial load is computed as: 
 
 Pu = Paxial = 1.25 [-13 + (-100)] = -141 kips (C) 
 
Compute the unbraced length of the top flange lateral bracing member, Lb: 
  
 Tub width at the top flanges = 120 in. 
 Top flange width = 16 in. 
 Clear distance between top flanges = 120 – 16 = 104 in. 
 Spacing of top flange lateral bracing = 16.3 ft = 196 in. 
 

in. 222196104L 22
b   

  
A structural tee is used for the top flange lateral bracing, with the stem down and its flange 
bolted to the bottom of the top flanges, which is the preferable method of connection. A WT 
9x48.5 is selected for the top flange lateral bracing.  From the AISC Steel Construction Manual, 
the section properties for a WT 9x48.5 are:  
 
 Area = 14.2 in.2; y = 1.91 in.; Sx = 12.7 in.3; rx = 2.56 in.; ry = 2.65 in.; J = 2.92 in.4 
 
Check buckling about the x-axis as this is the governing condition.  The eccentricity of the 
connection to the center of gravity of the structural tee causes a moment on the member.  The 
moment due to eccentricity is computed as: 
 
 Mux = Paxial y = (141) (1.91) = 269 kip-in. 
 
Since the structural tee is subjected to axial compression and flexure, it is necessary to check the 
combined effects of axial compression and flexure, in accordance with Article 6.9.2.2. 
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First, check the limiting slenderness ratio for secondary members in compression, as specified in 
Article 6.9.3.  The effective length factor, K, as specified in Article 4.6.2.5, for bolted 
connections at both ends is 0.75. 
 

   
1400.65

56.2

22275.0

r

K 

x


  OK 

 
Determine if the WT 9x48.5 is a nonslender member, in accordance with Article 6.9.4.2.1: 
 

 
yF

E
k

t

b
         Eq. (6.9.4.2-1) 

 
where: 
 
 k  = plate buckling coefficient as specified in Table 6.9.4.2.1-1 
 b  =  width of plate as specified in Table 6.9.4.2.1-1 (in.) 
 t = plate thickness (in.) 
 
The plate buckling coefficient is taken as 0.75 from Table 6.9.4.2-1 for stems of rolled tees.  The 
width, b, is taken as the full depth of the tee section and thickness, t, is for that of the stem.  
Check Eq. (6.9.4.2-1): 
 

 1.18
50

000,29
75.0

F

E
k4.17

535.0

30.9

t

b

y

    

 
Since Eq. (6.9.4.2-1) is satisfied, the slender element reduction factor, Q, specified in Article 
6.9.4.1.1 shall be taken as 1.0. 
 
Compute the compressive resistance in accordance with Article 6.9.2.1, where the factored 
resistance of components, Pr, is taken as: 
 
 ncr PP          Eq. (6.9.2.1-1) 
 
where: 
 
 c  = resistance factor for compression as specified in Article 6.5.4.2 (c = 0.90) 
 Pn  =  nominal compressive resistance as specified in Article 6.9.4 or 6.9.5, as applicable 

(kip) 
 
Compute the nominal compressive resistance, Pn, in accordance with Article 6.9.4.1.1.  In order 
to determine which equation to use to compute the nominal compressive resistance, it is 
necessary to compute the elastic critical buckling resistance, Pe, and the equivalent nominal yield 
resistance, Po. 
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The elastic critical buckling resistance, Pe, is specified in Article 6.9.4.1.2 for flexural buckling, 
and specified in Article 6.9.4.1.3 for flexural-torsional buckling.  In accordance with Table 
6.9.4.1.1-1, flexural buckling and flexural-torsional buckling must be considered to determine 
the compressive resistance of structural tees.  Separate calculations, not provided here, show that 
flexural buckling governs the particular case of this lateral bracing member.  The computation of 
Pe for the flexural buckling resistance is illustrated herein. 
 
Compute the elastic critical buckling resistance, Pe, based on flexural buckling, in accordance 
with Article 6.9.4.1.2: 
 

 
g2

s

2

e A

r

K 

Eπ
P



















       Eq. (6.9.2.1-1) 

 
where: 
 
 Ag  = gross cross-sectional area of the member (in.2) 
 K  =  effective length factor in the plane of buckling determined as specified in Article 

4.6.2.5 
 ℓ = unbraced length in the plane of buckling (in.) 
 rs = radius of gyration about the axis normal to the plane of buckling (in.) 
 
The elastic critical buckling resistance is then computed as: 
 

 
 

 
  kips 96214.2

65.0

29,000π
P

2

2

e     

 
The equivalent nominal yield resistance, Po, is computed in accordance with Article 6.9.4.1.1 as 
follows: 
 
 gyo A F QP      
 
where: 
 
 Q  = slender element reduction factor determined as specified in Article 6.9.4.2.   
 
As stated previously, since Eq. (6.9.4.2-1) is satisfied, Q can be taken as 1.0.  Therefore, the 
nominal yield resistance, Po, is computed as: 
 
     kips 71014.2501.0P o      
 
Per Article 6.9.4.1.1, check the result of Pe / Po: 
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 35.1
710

962

P

P

o

e
     

 
Since Pe / Po is greater than 0.44, the nominal compressive resistance, Pn, is computed in 
accordance with Eq. (6.9.4.1.1-1). 
 

 o

P

P

n P658.0P e

o
































       Eq. (6.9.4.1.1-1) 

 

   kips 5217100.658P 962

710

n 






























    

 
Compute the factored compressive resistance, Pr, in accordance with Article 6.9.2.1: 
 
    kips 4695210.90PP ncr       Eq. (6.9.2.1-1) 
 
Determine the factored flexural resistance about the x-axis using the provisions of Article 
6.12.1.2 for miscellaneous flexural members, and specifically Article 6.12.2.2.4 for structural 
tees. 
 
The factored flexural resistance, Mr, shall be taken as: 
 
 nfr MM          Eq. (6.12.1.2.1-1) 
 
where: 
 
 f  = resistance factor for flexure as specified in Article 6.5.4.2 (f = 1.0) 
 Mn  =  nominal flexural resistance specified in Articles 6.12.2.2 or 6.12.2.3, as applicable 

(kip-in.) 
 
In accordance with Article 6.12.2.2.4, the nominal flexural resistance shall be taken as the 
smallest value based on yielding, lateral torsional buckling, or local buckling of the elements, as 
applicable.   
 
For yielding, the nominal flexural resistance is given as: 
 
 xypn ZFMM         Eq. (6.12.2.2.4-1) 
 
where: 
 
 Mp  =  plastic moment (kip-in.) 
 Fy = specified minimum yield strength (ksi) 
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 Zx = plastic section modulus about the x-axis (in.3) 
 
Also per Article 6.12.2.2.4, Mn in Eq. (6.12.2.2.4-1) is limited to 1.6My for stems in tension, and 
My for stems in compression, where My is the yield moment based on the distance to the tip of 
the stem.  Determine if the tip of the stem is in compression or tension: 
 

 ksi 11.3
12.7

269

14.2

141

S

M

A

P
f

x

ux

g

axial
stem tip, 


  (tension) 

 
Therefore, the nominal flexural resistance shall be limited to 1.6My.  The nominal flexural 
resistance for yielding is computed as: 
 
    inkip 1,13022.650ZFM xyn     
 
    inkip 1,01612.7506.1SF6.1M6.1 xyy   (governs)  
 
 inkip 1,016M n   (for yielding) 
 
For lateral torsional buckling, the nominal flexural resistance is to be taken as: 
 

   p
2

b

y

n MB1B
L

GJEIπ
M       Eq. (6.12.2.2.4-2) 

 
in which: 
 

 
J

I

L

d
3.2B

y

b

        Eq. (6.12.2.2.4-3) 

 
where: 
 
 d  =  total depth of the section (in.) 
 G = shear modulus of elasticity for steel = 0.385E (ksi) 
 Iy = moment of inertia about the y-axis (in.4) 
 J = St. Venant torsional shear constant (in.4) 
 Lb = unbraced length (in.) 
 
The plus sign for B in Eq. (6.12.2.2.4-3) applies when the stem is in tension, and the minus sign 
applies when the stem is in compression anywhere along the length of the unbraced length.  
Therefore, the term B is computed as: 
 

 567.0
92.2

100

222

30.9
3.2B 
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The lateral torsional buckling resistance is then computed as: 
 

 
       p

2
n Minkip 7,4810.56710.567

222

2.9211,20010029,000π
M     

 
Therefore, the nominal flexural resistance for lateral torsional buckling is taken as:  

 
inkip 1,130MM pn     

  
Since the flange is in compression, flange local buckling must also be considered per Article 
6.12.2.2.4.  First check if the flange slenderness, f, exceeds the limiting slenderness for a 
compact flange, pf.  If pf is not exceeded, flange local buckling does not need to be checked. 
 

 
 

6.38
0.870 2

11.1

2t

b
λ

f

f
f      

 

 15.9
50

000,29
38.0

F

E
38.0λ

y

pf      Eq. (6.12.2.2.4-5) 

 
 15.96.38λ pff      
 
Given that f  <  pf, local flange buckling does not need to be checked.  Also, because the stem 
is in tension, local buckling of the stem does not need to be investigated. 
 
Thus, the nominal flexural resistance, Mn, of the tee section is governed by yielding, and is equal 
to 1,016 kip-in.  Compute the factored flexural resistance, Mr, as follows: 
 
    in.kip 1,0161,0161.0MM nfr      Eq. (6.12.1.2.1-1) 
 
Check the combined axial compression and flexure per Article 6.9.2.2.  First, it is necessary to 
determine the value of the factored axial compressive load, Pu, divided by the factored 
compressive resistance, Pr. 
 

 2.0301.0
469

141

P

P

r

u



     

 
Since the above ratio is greater than 0.2, Eq. (6.9.2.2-2) shall be used to check the combined 
axial compression and flexure, noting that there is no bending about the y-axis. 
 

 0.1
M

M

0.9

0.8

P

P

rx

ux

r

u















        Eq. (6.9.2.2-2) 

 

Arch
ive

d



 

125 
 

where: 
 
 Mux  =  factored flexural moment about the x-axis (kip-in.) 
 Mrx = factored flexural resistance (kip-in.) 
 
Checking Eq. (6.9.2.2-2): 
 

 0.154.0
016,1

269

0.9

0.8

469

141

M

M

0.9

0.8

P

P

rx

ux

r

u




























   OK  

 
The WT 9x48.5 as the top flange diagonal bracing member in Span 1 of Girder G2 in the first 
bay adjacent to the abutment satisfies the interaction ratio for combined axial compression and 
flexure for constructibility loading.  Design checks would be performed for all top flange lateral 
bracing members, investigating both tension and compression constructibility forces. 
 
7.14 Bolted Field Splice Design  

 
This section will show the design of a bolted field splice, in accordance with the provisions of 
Article 6.13.6.  The design computations will be illustrated for the Field Splice #1 on Girder G2 
(see Figure 9).  First, single bolt capacities are computed for slip resistance (Article 6.13.2.8) and 
shear resistance (Article 6.13.2.7), and the bearing resistance on the connected material (Article 
6.13.2.9).  The field splice is then checked for constructibility, the service limit state, and the 
strength limit state. 
 
All bolts used in the field splice are 0.875 inch diameter ASTM A325 bolts.  Table 6.13.2.4.2-1 
shows that a standard hole diameter size for a 0.875 inch diameter bolt is 0.9375 inch.  The 
connection is designed assuming a Class B surface condition is provided, which corresponds to 
unpainted and blast-cleaned surfaces.  Also, it is assumed that the bolt threads will not be 
permitted in the shear planes 
 
Article 6.13.6.1.4a requires at least two rows of bolts on each side of the connection.  Oversize or 
slotted holes in either the member or the splice plates are not permitted.  The bolt pattern for the 
top flange splice is shown in Figure 19, the bolt pattern for the bottom flange splice is shown in 
Figure 20, and the bolt pattern for the web splice is shown in Figure 21.  It should be noted that a 
0.5 inch gap is assumed between the edges of the field pieces at this splice location. 
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Figure 19  Bolt Pattern for the Top Flange Field Splice 

 

 
Figure 20  Bolt Pattern for the Bottom Flange Field Splice, shown inside the tub girder 

looking down at the bottom flange 

 

Arch
ive

d



 

127 
 

 
Figure 21  Bolt Pattern for the Web Field Splice, shown along the web slope 

 
Unfactored analysis results for the girder major-axis bending moments, torques, shears, and top 
flange lateral bending moments at Field Splice #1 on Girder G2 are summarized in Table 16. 
 

Table 16  Unfactored Analysis Results for the Design of Field Splice #1 on Girder G2 

 
Note:   Reported shears are the vertical shears and are for major-axis bending plus torsion in the critical 

tub girder web. 
 

DC1STEEL DC1CONC DC1CAST1 DC2 DW Pos. Neg.

Moment (kip-ft) 462 1941 2749 326 428 5221 -3080

Torque (kip-ft) -36 -125 -188 -58 -76 346 -517

Top Flange Lateral 

Moment (kip-ft)
-1 -7 -15 n/a n/a n/a n/a

Shear (kips) -17 -69 -61 -12 -16 36 -85

Unfactored Demands at G2 Field Splice 1

Demand
Dead Load LL+IArch
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Per Article C6.13.6.1.4a, for a flexural member, it is recommended that the smaller section at the 
point of the splice be taken as the side of the splice that has the smaller calculated moment of 
inertia for the noncomposite section.  Therefore, girder section properties at Field Splice #1 on 
Girder G2 should be taken as those computed previously for the design Section G2-1 illustrated 
in this design example, as it is the smaller section at this splice location.  Reference the tables 
and computations provided in Section 7.2 of this design example. 
 
Furthermore, in accordance with Article 6.13.6.1.4a, the flexural stresses due to the factored 
loads at the strength limit state and for checking slip of bolted connections at the point of the 
splice shall be determined using gross section properties. 
 
In accordance with Article C6.13.6.1.4c, for horizontally curved tub girders, the St. Venant 
torsional shear must be considered in the design of bottom flange splices at all limit states.  The 
St. Venant torsional shears are typically neglected in the top flanges of tub sections once the 
flanges are continuously braced.  St. Venant torsional shears in the top flange are not considered 
in the design of the top flange splice in this design example, as these shears are negligible. 
 
7.14.1 Bolt Resistance for the Service Limit State and Constructibility 

 
For slip-critical connections, the factored resistance, Rr, of a bolt at the SERVICE II load 
combination is taken as: 
 

Rr = Rn                  Eq. (6.13.2.2-1) 
 
where: 
 
 Rn  =  the nominal resistance as specified in Article 6.13.2.8 
 
The nominal slip resistance of a bolt in a slip-critical connection shall be taken as: 
 

 tsshn PNKKR                  Eq. (6.13.2.8-1)  
 
where: 
 
 Ns  =  number of slip planes per bolt 
 Pt  = minimum required bolt tension specified in Table 6.13.2.8-1 
 Kh  = hole size factor specified in Table 6.13.2.8-2 
 Ks = surface condition factor specified in Table 6.13.2.8-3 
 
For this design example:  

 2 slip planes are provided as there are two splice plates on each side of the girder 
element, thus Ns equals 2 

 Per Table 6.13.2.8-1, for 0.875 inch diameter A325 bolt, Pt is equal to 39 kips 
 Per Table 6.13.2.8-2, for a standard size hole, Kh is equal to 1.00 
 Per Table 6.13.2.8-3, for Class B surface conditions, Ks is equal to 0.50 
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Therefore, the factored resistance for service and constructibility checks is: 
 
 kips/bolt 39)39)(2)(50.0)(0.1(RR nr   
 
7.14.2 Bolt Resistance for the Strength Limit State  

 
The factored resistance, Rr, of a bolted connection at the strength limit state shall be taken as 
 

Rr = Rn                 Eq. (6.13.2.2-2) 
 
where: 
 
   =  resistance factor for bolts specified in Article 6.5.4.2 
 
Article 6.13.6.1.4a states that the factored flexural resistance of the flanges at the point of the 
splice at the strength limit state must satisfy the applicable provisions of Article 6.10.6.2, which 
relates to flexure.  The girder satisfies the applicable provisions of Article 6.10.6.2 at the splice 
location; however, the checks at this particular location are not included in this example.   
 
7.14.2.1 Bolt Shear Resistance 

 
The nominal shear resistance, Rn, of a high-strength bolt at the strength limit state where threads 
are excluded from the shear plane is computed as follows: 
 
 subbn NFA48.0R                  Eq. (6.13.2.7-1)  
 
where: 
 
 Ab  =  area of bolt corresponding to the nominal diameter 
 Fub  = specified minimum tensile strength of the bolt per Article 6.4.3 
 Ns  = number of shear planes 
 
In accordance with Article 6.4.3, the minimum tensile strength of a 0.875 inch diameter A325 
bolt is 120 ksi.  Two shear planes exist for all field splice connections.  Therefore, the nominal 
shear resistance is computed as: 
 

Rn = 0.48(0.601)(120)(2) = 69.2 kips/bolt 
 
The factored shear resistance, Rr, of a high-strength bolt at the strength limit state is computed in 
accordance with: 
 

Rr = sRn                Eq. (6.13.2.2-2) 
 
where:  
 s  =  shear resistance factor for bolts in shear from Article 6.5.4.2 (s = 0.80) 
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Therefore, the factored shear resistance is: 
 
 Rr = (0.80)(69.2) = 55.4 kips/bolt 
 
7.14.2.2 Bearing Resistance on Connected Material 

 
The nominal bearing resistance of interior and end bolt holes at the strength limit, Rn, is taken as 
one of the following two terms, depending on the bolt clear distance and the clear end distance. 
 

(1) With bolts spaced at a clear distance between holes not less than 2.0d and with a clear 
end distance not less than 2.0d: 

 
un dtF4.2R                  Eq. (6.13.2.9-1)  

 
(2) If either the clear distance between holes is less than 2.0d or the clear end distance is less 

than 2.0d: 
 

ucn tFL2.1R                  Eq. (6.13.2.9-2)  
 
where:  
 
 d  =  nominal diameter of the bolt (in.) 
 t = thickness of the connected material (in.) 
 Fu  = tensile strength of the connected material specified in Table 6.4.1-1 (ksi) 
 Lc = clear distance between holes or between the holed and the end of the member in 

the direction of the applied force 
 
In the case of the web, the end distance is 2.0 inches.  For simplicity, assume the bolt hole 
diameter is 1 inch, creating a clear end distance of 1.5 inches, which is less than 2.0d.  Therefore, 
Eq. (6.13.2.9-2) applies.  The tensile strength of the girder and splice plates in this design 
example is conservatively taken as 65 ksi.  The nominal bearing resistance for the end row of 
bolts in the web is: 
 
 Rn = 1.2(1.5)(0.5625)(65) = 65.81 kips/bolt 
 
The factored bearing resistance, Rr, is computed as: 
 

Rr = bbRn         Eq. (6.13.2.2-2) 
 
where:  
 
 bb  =  shear resistance factor for bolts bearing on material from Article 6.5.4.2  
 (bb = 0.80) 
 
Therefore, the factored bearing resistance is: 
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 Rr = bbRn = (0.80)(65.81) = 52.65 kips/bolt 
 
The bearing resistance above is computed for the thinnest element, the web, but it can 
conservatively be used for the flanges as well, as the web thickness is less than the flange 
thickness.  Alternatively, the bearing resistance for the flange elements can be computed as well. 
 
For interior rows of bolts, Eq. (6.13.2.9-1) applies, and the nominal bolt resistance is computed 
as: 
 

Rn = 2.4dtFu               Eq. (6.13.2.9-1) 
 

Rn = 2.4(0.875)(0.5625)(65) = 76.78 kips/bolt 
 
Therefore, the factored bearing resistance is: 
 

Rr = bbRn = (0.80)(76.78) = 61.42 kips/bolt 
 
Again, the bearing resistance above is computed for the thinnest element, the web, but it can 
conservatively be used for the flanges as well. 
 
7.14.3 Constructibility Checks 

 
According to Article 6.13.6.1.4a, connections must be proportioned to prevent slip during the 
erection of the steel and during the casting of the concrete deck.  Article 6.13.6.1.4c requires that 
lateral bending effects be considered in the design of curved girder splices.  Therefore, flange 
lateral bending must be considered for the top flanges of tub girders prior to hardening of the 
concrete deck, as the top flanges are discretely braced in this situation. To account for the effects 
of flange lateral bending, the flange splice bolts will be designed for the combined effects of 
shear and moment using the traditional elastic vector method.  The shear on the bolts is caused 
by the flange force calculated from the average major-axis bending stress in the flange, and the 
moment on the bolts is caused by the flange lateral bending. 
 
Concrete deck Cast #1 causes a larger positive major-axis moment at the splice location than 
moment caused by assuming the entire concrete deck is placed at one time.  Therefore, for this 
field splice, perform the constructibility checks for the loading case of steel self-weight plus 
concrete deck Cast #1.  For constructibility, the dead load factor is 1.25 according to the 
provisions of Article 3.4.2. 
 
In accordance with Article C6.13.6.1.4c, longitudinal warping stresses due to cross-section 
distortion are to be considered when checking the slip resistance of the bolts for constructibility 
and at the service limit state for flange splices in horizontally curved tub-girder bridges.  The 
internal cross frame spacing in the region of the splice is approximately 16.0 feet.  An 
examination of the longitudinal warping stresses at the top of the tub girder for constructibility 
and the service limit state for this internal cross frame spacing (according to calculations similar 
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to those illustrated for design Section G2-1) indicates that these longitudinal stresses are 
negligible in this case and will be ignored in calculations provided herein. 
 
7.14.3.1 Constructibility Check of Top Flange Splice Bolts 

 
To check constructibility of the top flange, first compute the polar moment of inertia of the top 
flange bolt pattern, shown in Figure 19.  The bolt pattern consists of the 12 bolts in the flange on 
one side of the connection.  The polar moment of inertia, Ip, is computed as: 
 

       2222
p in 4230.3420.60.332I   

 

Compute the total unfactored major-axis bending moment due to vertical loads and the total 
unfactored flange lateral moment from the analysis results provided in Table 16 for steel plus 
concrete for Cast #1 (DC1STEEL + DC1CAST1): 
 
 Major-axis bending moment = 462 + 2,749 = 3,211 kip-ft 
 
 Top flange lateral bending moment = -1 + (-15) = -16 kip-ft 
 
As discussed previously, the section properties of Field Section 1 of Girder 2 are used to 
compute the bending stresses since Field Section 1 is the smaller of the two girder sections 
connected by the splice.  This splice location has the same section properties as those computed 
for design Section G2-1.  The Construction Strength I factored major-axis bending stresses at the 
mid-thickness of the top flange is computed as: 
 

 
  

ksi 10.98
185,384

1.0/2-42.77123,211
1.25f top 









  

 

Compute the factored force in the top flange using the major-axis bending stress at the mid-
thickness the flange.  Multiply the factored flange stress by the gross section of the flange to 
check for slip. 
 
 Ftop = (-10.98)(16.0)(1.0) = -176 kips 
 
Compute the factored longitudinal force in each bolt resulting from the major-axis bending, by 
dividing the factored flange force by the number of bolts on one side of the splice: 
 

 kips/bolt 14.67
12

176
F   vertLong 


  

 
Compute the factored longitudinal component of force in the critical bolt due to the flange lateral 
moment, noting that the transverse distance from the centroid of the bolt group to the critical bolt 
is 6.0 inches: 
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kips/bolt 4.21
342

6.01216
1.25F lat  Long 


  

 
Therefore, the total factored longitudinal force in the critical bolt is computed as: 
 
 kips/bolt 88.1821.467.14F   totLong   
 
Compute the factored transverse component of force in the critical bolt due to the flange lateral 
moment, noting that the longitudinal distance from the centroid of the bolt group to the critical 
bolt is 3.0 inches: 
 

  
  

kips/bolt 2.11
342

3.01216
1.25FTrans 


  

 
Compute the resultant force on the critical bolt: 
 
 kips/bolt 00.1911.288.18FR 22

u   
 
Check that the factored resultant force on the critical bolt, Ru is less than the factored slip 
resistance of one bolt, Rr, calculated previously as 39 kips/bolt: 
 
 Ru = 19.00 kips/bolt < Rr = 39 kips/bolt  OK 
 
7.14.3.2 Constructibility Check of Bottom Flange Splice Bolts 

 
To check constructibility of the bottom flange, first compute the polar moment of inertia of the 
bottom flange bolt pattern, shown in Figure 20.  The bolt pattern consists of the 40 bolts in the 
flange on one side of the connection.  The polar moment of inertia, Ip, is computed as: 
 

Ip = [2(20)(2.25)2 + 2(2)(2.52 + 6.252 + 10.02 + 13.752 + 17.52 + 21.252 + 25.02 + 28.752  
+ 32.52 + 36.252)] = 19,859 in.4 

 

Compute the total unfactored major-axis bending moment due to vertical loads, and the 
unfactored torque from the analysis results provided in Table 16 for steel plus concrete for Cast 
#1 (DC1STEEL + DC1CAST1): 
 
 Major-axis bending moment = 462 + 2,749 = 3,211 kip-ft 
 
 Torque = -36 + (-188) = -224 kip-ft 
 
As discussed previously, the section properties of Field Section 1 of Girder 2 are used to 
compute the bending stresses since Field Section 1 is the smaller of the two girder sections 
connected by the splice.  This splice location has the same section properties as those computed 
for design Section G2-1.  The Construction Strength I factored major-axis bending stresses at the 
mid-thickness of the bottom flange is computed as: 
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ksi 50.9
185,384

0.625/2-36.86123,211
1.25f bot 









  

 
Compute the factored force in the bottom flange using the average major-axis bending stress at 
the mid-thickness of the flange.  Multiply the factored flange stress by the gross section of the 
flange to check for slip. 
 
 Fbot = (-9.50)(83.0)(0.625) = 493 kips 
 
The bottom flange splice bolts should be design for the combined effects of St. Venant torsional 
shear and major-axis bending moment.  The enclosed area of the noncomposite tub girder, Ao, is 
previously computed to be 7,921in.2 in the constructibility check of the bottom flange of section 
G2-1.  The unfactored St. Venant torsional shear in the bottom flange is computed as: 
 

 
 

 
  kips 13.781

79212

12224
b

2A

T
V f

o

flgbot 


  

 
Because the St. Venant torsional shear is assumed to act at the centerline of the field splice, it 
produces a lateral moment on the bottom flange bolt group on each side of the splice. The 
factored lateral moment on the bolt group, computed at the centroid of the bolt group is: 
 

  in.-kip 7.61
2

4.5

2

4.5
13.7M LAT 








  

 
Compute the factored longitudinal component of force in the critical bolt due to the lateral 
moment in the bottom flange, noting that the transverse distance from the centroid of the bolt 
group to the critical bolt is 36.25 inches: 
 

  
 

kips/bolt 14.0
19,859

36.257.61
1.25F lat  Long   

 
Compute the factored longitudinal force in each bolt resulting from the major-axis bending, by 
dividing the factored flange force by the number of bolts on one side of the splice: 
 

 kips/bolt 12.33
40

493
F   vertLong   

 
Therefore, the total factored longitudinal force in the critical bolt is computed as: 
 
 kips/bolt 47.1233.1214.0F   totLong   
 

Arch
ive

d



 

135 
 

Compute the factored transverse component of force in the critical bolt due to the lateral moment 
in the bottom flange, noting that the longitudinal distance from the centroid of the bolt group to 
the critical bolt is 2.25 inches: 
 

  
 

kips/bolt 01.0
19,859

2.257.61
1.25F lat  Trans   

 
Compute the factored transverse force in each bolt resulting from the St. Venant torsional shear 
force by dividing the shear force by the number of bolts on one side of the splice, and 
multiplying by the 1.25 load factor: 
 

   kips/bolt 0.43
40

7.13
25.1F Shear  Trans   

 
Therefore, the total factored transverse force in the critical bolt is computed as: 
 
 kips/bolt 44.043.001.0F   totTrans   
 
Compute the resultant force on the critical bolt: 
 
 kips/bolt 48.1244.047.12FR 22

u   
 
Check that the factored resultant force on the critical bolt, Ru is less than the factored slip 
resistance of one bolt, Rr, calculated previously as 39 kips/bolt: 
 
 Ru = 12.48 kips/bolt < Rr = 39 kips/bolt  OK 
 
7.14.3.3 Constructibility Check of Web Splice Bolts 

 
A pattern of two rows of 7/8 inch diameter bolts spaced vertically at 3.75 inches is designed for 
the web splice.  There are 40 bolts on each side of the connection, and the pattern is previously 
shown in Figure 21.  In this example, the web splice is designed conservatively, assuming that 
the maximum major-axis bending moment and maximum vertical shear at the splice occur with 
the same loading condition. 
 
First, compute the polar moment of inertia of the web bolt group about the centroid of the bolt 
group on one side of the splice using Eq. (C6.13.6.1.4b-3): 
 

     1mg1ns
12

mn 
I 2222

p       Eq. (C6.13.6.1.4b-3) 

 
where:  
 
 n  =  number of bolts in one vertical row 
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 m = number of vertical rows of bolts 
 s = vertical pitch (in.) 
 g = horizontal pitch (in.) 
 
Therefore the web bolt group polar moment is computed as: 
 

 
   

     42222
p in. 18,793123.001203.75

12

2 20
I    

 
Compute the total unfactored shear at the splice (flexure plus torsional shear in the critical web) 
from the analysis results provided in Table 16 for steel plus concrete for Cast #1 (DC1STEEL + 
DC1CAST1): 
 
 Shear = -17 + (-61) = -78 kips 
 
Therefore, using the Construction Strength I load factor for dead load of 1.25, the factored shear 
is: 
 
 V = (1.25) (-78) = 97.5 kips 
 
Compute the moment, Mv, due to the eccentricity of the factored shear about the centroid of the 
connection (refer to the web bolt pattern in Figure 21). 
 

ft-kip 5.30
12

1

2

5.4

2

3
5.97eVM v 
















  

 
Determine the portion of the major-axis bending moment resisted by the web, Muw, and the 
horizontal force resultant in the web, Huw, using the equations provided in Article C6.13.6.1.4b.  
Muw and Huw are assumed to be applied at the middepth of the web.  The factored bending 
stresses at the mid-thickness of the top and bottom flanges for Steel plus Cast #1 were previously 
computed as follows: 
 
 Top flange: fs = ftop = -10.98 ksi (C) 
 

Bottom flange: fos = fbot = 9.50 ksi (T) 
 
where: 
 
 fs  =  maximum factored major-axis bending stress for constructibility loading at the 

mid-thickness of the flange under consideration for the smaller section at the point 
of the splice; positive for tension, negative for compression (ksi) (see Article 
C6.13.6.1.4b) 

 fos = factored major-axis bending stress for constructibility loading at the mid-
thickness of the other flange at the point of the splice with fs in the flange under 
consideration; positive for tension, negative for compression (ksi) (see Article 
C6.13.6.1.4b) 
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Using the factored flexural stresses, use the following equations to compute a suggested design 
moment, Muw, and a design horizontal resultant, Huw that will be applied at the mid-depth of the 
web for designing the web splice plates and their connections: 
 

 ncfcfcfh

2
w

uw fRFR
12

Dt
M       Eq. (C6.13.6.1.4b-1) 

 

  ncfcfcfh
w

uw fRFR
2

Dt
H        Eq. (C6.13.6.1.4b-2) 

 
where: 
 
 tw  =  web thickness of the smaller section at the point of the splice (in.) 
 D = web depth of the smaller section at the point of the splice (in.)  
 Rh = hybrid factor specified in Article 6.10.1.10.1, and is equal to 1.0 in this example 
 Rcf = for checking slip resistance, this ratio is taken as 1.0 per Article C6.13.6.1.4b. 
 Fcf  = fs, per Article C6.13.6.1.4b 
 fncf = fos, per Article C6.13.6.1.4b 
  
Therefore, using the vertical web depth of 78 inches, Muw and Huw are computed as: 
 

   
    ftkip 487

12

1
9.501.010.981.0

12

780.5625
fRfR

12

Dt
M

2

oscfsh

2
w

uw 







   

 

  
  

     kips 32.59.501.010.981.0
2

780.5625
fRfR

2

Dt
H oscfsh

w
uw    

 
The total factored moment applied to the web splice is the sum of the moment caused by the 
vertical shear, Mv, and the moment computed by Eq. (C6.13.6.1.4b-1), Muw: 
 
 Mtot = Mv + Muw = 30.5 + 487 = 518 kip-ft 
 
Compute the factored force in each bolt resulting from the vertical shear, by dividing the factored 
shear by the number of bolts on one side of the splice: 
 

 kips/bolt 2.44
40

5.97
FShear vert   

 
However, the above bolt force, FShear vert, is in the vertical plane, and must be resolved to the 
inclined plane of the web.  Therefore, the in-plane bolt force is computed as: 
 

 
   

kips/bolt 2.52
04.14cos

44.2

cos

F
F Shearvert

S 
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Compute the in-plane factored force in each bolt resulting from the horizontal force resultant, by 
dividing the factored resultant by the number of bolts on one side of the splice: 
 

 kips/bolt 0.81
40

5.32
F H 


  

 
Compute the in-plane factored vertical component of force in the critical bolt due to the total 
factored moment on the splice, noting that the horizontal distance from the centroid of the bolt 
group to the critical bolt is 1.5 inches: 
 

 
 

   

 
kips/bolt .510

04.14cos

1

18,793

1.512518

cos

1

I

xM
F

p

tot
Mv 

































  

 
Compute the in-plane factored horizontal component of force in the critical bolt due to the total 
factored moment on the splice, noting that the vertical distance from the centroid of the bolt 
group to the critical bolt is 35.625 inches: 
 

    
kips/bolt 78.11

18,793

35.62512518

I

yM
F

p

tot
Mh   

 
Compute the resultant in-plane force on the critical bolt: 
 
    

2

MhH

2

MvSru FFFFFR   
 
     kips/bolt 12.9511.780.810.512.52R

22

u   
 
Check that the factored resultant force on the critical bolt, Ru is less than the factored slip 
resistance of one bolt, Rr, calculated previously as 39 kips/bolt: 
 
 Ru = 12.95 kips/bolt < Rr = 39 kips/bolt  OK 
 
7.14.4 Service Limit State 

 
According to the provisions of Article 6.13.6.1.4c, bolted connections for flange splices shall be 
designed as slip-critical connections for the flange design force.  As a minimum, for checking 
slip of the flange splice bolts, the design force for the flange under consideration must be taken 
as the Service II design stress, Fs, times the smaller gross flange area on either side of the splice.  
Fs is calculated as follows: 
 

h

s
s

R

f
F         Eq. (6.13.6.1.4c-5) 
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where:  
 
 fs = maximum flexural stress due to Load Combination Service II at the mid-thickness 

of the flange under consideration for the smaller section at the point of the splice 
(ksi) 

 Rh = hybrid factor specified in Article 6.10.1.10.1, and is equal to 1.0 in this example 
 
Compute the flexural stresses for the top and bottom flanges at the mid-thickness of the flange, 
for both the negative and positive live load bending cases and using the load factors for the 
Service II load combination from Table 3.4.1-1. 
 
Positive live load bending case 
 

        
  (C) ksi 99.812

009,478

57.10221,530.1

505,352

10.244283260.1

384,185

27.42941,14620.1
f flg tops, 

















 
        

  (T) ksi 73.1812
009,478

25.68221,530.1

505,352

72.544283260.1

384,185

55.36941,14620.1
f flgbot s, 















  

 
Negative live load bending case 
 
Note that the flange stresses for the negative live load bending cases are computed 
conservatively, assuming that the negative live load bending moments act on the steel section 
only, and contribution from the longitudinal reinforcement, or concrete deck if applicable, is 
ignored.  Furthermore, to maximize the flange stress for negative live load bending, the bending 
moment due to DW is ignored as well, since it is the opposite sign of the negative live load 
moment and DW is a future loading. 
 

        
  (T) ksi 11.412

384,185

27.42080,330.1

505,352

10.243260.1

384,185

27.42941,14620.1
f flg tops, 








 





 
 

        
  (C) ksi 18.312

384,185

55.36080,330.1

505,352

72.543260.1

384,185

55.36941,14620.1
f flgbot s, 








 



  

 
The above calculations of factored flange stress show that the positive live load bending case 
governs at this field splice for the Service Limit State.  The positive live load bending will be the 
only case considered in the Service Limit State check of the flange field splice bolts. 
 
In accordance with Article C6.13.6.1.4c, longitudinal warping stresses due to cross-section 
distortion are to be considered when checking the slip resistance of the bolts for constructibility 
and at the service limit state for flange splices in horizontally curved tub-girder bridges.  The 
internal cross frame spacing in the region of the splice is approximately 16.0 feet.  An 
examination of the longitudinal warping stresses at the top of the tub girder for constructibility 
and the service limit state for this internal cross frame spacing (according to calculations similar 
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to those illustrated for design Section G2-1) indicates that these longitudinal stresses are 
negligible in this case and will be ignored in calculations provided herein. 
 
7.14.4.1 Service Limit State Check of Top Flange Splice Bolts 

 
Compute the Service II factored flange lateral moment from the analysis results provided in 
Table 16 for the noncomposite loads only (DC1STEEL + DC1CONC).  Other loads do not need to be 
considered as the deck is hardened for those loading conditions, and thus the flange is considered 
as continuously braced. 
 
 Top flange lateral bending moment = 1.0 [-1 + (-7)] = -8 kip-ft 
 
Compute the factored longitudinal component of force in the critical bolt due to the factored 
flange lateral moment, noting that the transverse distance from the centroid of the bolt group to 
the critical bolt is 6.0 inches, and the polar moment of inertia of the bolt group, Ip, was 
previously computed as 342 in.2: 
 

 
  

kips/bolt 1.68
342

6.0128
F lat  Long 


  

 
Compute the factored transverse component of force in the critical bolt due to the factored flange 
lateral moment, noting that the longitudinal distance from the centroid of the bolt group to the 
critical bolt is 3.0 inches: 
 

 
  

kips/bolt 0.84
342

3.0128
FTrans 


  

 
Compute the factored force in the top flange using the major-axis bending stress at the mid-
thickness of the flange.  Multiply the factored flange stress by the gross area of the flange to 
check for slip. 
 
 Ftop = (-8.99)(16.0)(1.0) = -144 kips 
 
Compute the factored longitudinal force in each bolt resulting from the major-axis bending, by 
dividing the factored flange force by the number of bolts on one side of the splice: 
 

 kips/bolt 12.00
12

144
F  vertLong 


  

 
Therefore, the total factored longitudinal force in the critical bolt is computed as: 
 
 kips/bolt 68.1368.100.12F   totLong   
 
Compute the resultant force on the critical bolt: 
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 kips/bolt 71.1384.068.13FR 22
u   

 
Check that the factored resultant force on the critical bolt, Ru is less than the factored slip 
resistance of one bolt, Rr, calculated previously as 39 kips/bolt: 
 
 Ru = 13.71 kips/bolt < Rr = 39 kips/bolt  OK 
 
7.14.4.2 Service Limit State Check of Bottom Flange Splice Bolts 

 
Compute the Service II factored noncomposite and composite unfactored torque from the 
analysis results provided in Table 16.  The negative live load torque is used, as it controls over 
the positive live load torque. 
 
 Factored Noncomposite Torque = 1.0[-36 + (-125)] = -161 kip-ft 
 
 Factored Composite Torque = 1.0[-58 + (-76)] + 1.30[-517] = -806 kip-ft  
 
The bottom flange splice bolts should be designed for the combined effects of St. Venant 
torsional shear and major-axis bending moment.  The enclosed area of the noncomposite tub 
girder, Ao, was previously computed to be 7,921 in.2  The factored St. Venant torsional shear in 
the bottom flange due to noncomposite loads is computed as: 
 

 
 

 
  kips 9.981

7,9212

12611
b

2A

T
V f

o

flgbot  NC 


  

 
The enclosed area of the composite tub girder, Ao, was previously computed to be 8,750 in.2.  
The factored St. Venant torsional shear in the bottom flange due to noncomposite loads is 
computed as: 
 

 
 

 
  kips 8.4481

8,7502

12806
b

2A

T
V f

o

flgbot  C 


  

 
Because the St. Venant torsional shear is assumed to act at the centerline of the field splice, it 
produces a lateral moment on the bottom flange bolt group on each side of the splice. The 
factored lateral moment on the bolt group, computed at the centroid of the bolt group is: 
 

  in.-kip 2.246
2

4.5

2

4.5
44.89.9M LAT 








  

 
Compute the factored longitudinal component of force in the critical bolt due to the factored 
lateral moment in the bottom flange, noting that the transverse distance from the centroid of the 
bolt group to the critical bolt is 36.25 inches: 
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kips/bolt 45.0
19,859

36.252.246
F lat  Long   

 
Compute the factored transverse component of force in the critical bolt due to the factored lateral 
moment in the bottom flange, noting that the longitudinal distance from the centroid of the bolt 
group to the critical bolt is 2.25 inches: 
 

 
 

kips/bolt 03.0
19,859

2.252.246
F lat  Trans   

 
Compute the factored force in the bottom flange using the average major-axis bending stress at 
the mid-thickness of the flange.  Multiply the factored flange stress by the gross area of the 
flange to check for slip. 
 
 Fbot = (18.73)(83.0)(0.625) = 972 kips 
 
Compute the factored longitudinal force in each bolt resulting from the major-axis bending, by 
dividing the factored flange force by the number of bolts on one side of the splice: 
 

 kips/bolt 24.30
40

972
F   vertLong   

 
Therefore, the total factored longitudinal force in the critical bolt is computed as: 
 
 kips/bolt 75.2430.2445.0F   totLong   
 
Compute the factored transverse force in each bolt resulting from the factored St. Venant 
torsional shear force, by dividing the shear force by the number of bolts on one side of the splice: 
 

  
kips/bolt 37.1

40

8.449.9
F Shear  Trans 


  

 
Therefore, the total factored transverse force in the critical bolt is computed as: 
 
 kips/bolt 40.103.037.1F   totTrans   
 
Compute the resultant force on the critical bolt: 
 
 kips/bolt 79.2440.175.24FR 22

u   
 
Check that the factored resultant force on the critical bolt, Ru is less than the factored slip 
resistance of one bolt, Rr, calculated previously as 39 kips/bolt: 
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 Ru = 24.79 kips/bolt < Rr = 39 kips/bolt  OK 
 
7.14.4.3 Service Limit State Check of Web Splice Bolts 

 
According to the provisions of Article 6.13.6.1.4b, bolted connections for web splices shall be 
designed as slip-critical connections for the maximum resultant bolt design force.  As a 
minimum, for checking slip of the web splice bolts, the design shear shall be taken as the shear at 
the point of splice under Load Combination Service II, as specified in Table 3.4.1-1.  
Calculations for the Service Limit State check of the web bolts are not provided herein, but 
would be similar to those carried out for the Constructibility check and would use loads 
combined for the Service II load combination.  Calculations not provided herein show that the 
web splice bolts are satisfactory for the Service Limit State. 
 
7.14.5 Strength Limit State 

 
Bolted splices are designed at the strength limit state to satisfy the requirements specified in 
Article 6.13.1.  In basic terms, Article 6.13.1 indicates that a splice shall be designed for the 
larger of (a) the average of the factored applied stresses and the factored resistance of the 
member or (b) 75 percent of the factored resistance of the member.   
 
At the strength limit state, splice plates and their connections on the controlling flange shall be 
proportioned to provide a minimum resistance taken as the design stress, Fcf, times the effective 
flange area, Ae, on either side of the splice, where Fcf is defined as: 
 

yff

yff

h

cf

cf F75.0
2

F
R

f

F 



      Eq. (6.13.6.1.4c-1) 

 
in which: 
 
 Ae = effective area of the flange (in.2).  For compression flanges, Ae, shall be taken as 

the gross area of the flange Ag.  For tension flanges, Ae shall be taken as: 
 

gn

yty

uu
e AA

F

F
A 


















       Eq. (6.13.6.1.4c-2) 

 
where: 
 
 fcf = maximum flexural stress due to factored loads at the mid-thickness of the 

controlling flange at the point of the splice (ksi) 
 Rh = hybrid factor specified in Article 6.10.1.10.1; for this example is equal to 1.0. 
  = 1.0, except a lower value equal to (Fn/Fyf) may be used for flanges where Fn is less 

than Fyf.   
 f = resistance factor for flexure specified in Article 6.5.4.2 (f = 1.0) 
 Fn = nominal flexural resistance of the flange (ksi) 
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 Fyf = specified minimum yield strength of the flange (ksi) 
 u = resistance factor for fracture of tension members specified in Article 6.5.4.2  
   (u = 0.80) 
 y = resistance factor for yielding of tension members specified in Article 6.5.4.2  
   (y = 0.95) 
 An = net area of the tension flange determined as specified in Article 6.8.3 (in.2) 
 Fu = specified minimum tensile strength of the tension flange determined as specified 

in Table 6.4.1-1 (ksi) 
 Fyt = specified minimum yield strength of the tension flange (ksi) 
 
The controlling flange is defined as either the top or bottom flange for the smaller section at the 
point of the splice, whichever flange has the maximum ratio of the elastic flexural stress at its 
mid-thickness due to factored loads for the loading condition under investigation to its factored 
flexural resistance.  The other flange is termed the noncontrolling flange.  In areas of stress 
reversal, the splice must be checked independently for both positive and negative flexure. 
 
Splice plates and their connections on the noncontrolling flange at the strength limit state shall be 
proportioned to provide a minimum resistance taken as the design stress, Fncf, times the smaller 
effective flange area, Ae, on either side of the splice, where Fncf is defined as: 
 

yff

h

ncf
cfncf F75.0

R

f
RF        Eq. (6.13.6.1.4c-3) 

 
where: 
 
 Rcf = the absolute value of the ratio of Fcf to fcf for the controlling flange 
 fncf = flexural stress due to factored loads at the mid-thickness of the noncontrolling 

flange at the point of the splice concurrent with fcf (ksi) 
 Rh = hybrid factor specified in Article 6.10.1.10.1; for this example is equal to 1.0. 
 
First, compute the flexural stresses for the top and bottom flanges at the mid-thickness of the 
flange, for both the negative and positive live load bending cases and using the load factors for 
the Strength I load combination from Table 3.4.1-1. 
 
Positive live load bending case 
 

           
 12

009,478

57.10221,575.1

505,352

10.244285.132625.1

384,185

27.42403,225.1
f flg tops, 














 
 

(C) ksi 50.11f flg tops, 

  
           

 12
009,478

25.68221,575.1

505,352

72.544285.132625.1

384,185

55.36403,225.1
f flgbot s, 
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(T) ksi 72.24f flgbot s, 

  
Negative live load bending case 
 
Note that the flange stresses for the negative live load bending cases are computed 
conservatively, assuming that the negative live load bending moments act on the steel section 
only, and contribution from the longitudinal reinforcement is ignored.  Furthermore, to maximize 
the flange stress for negative live load bending, the bending moment due to DW is ignored as 
well, since it is the opposite sign of the negative live load moment and DW is a future loading.  
The minimum load factor for dead load, 0.9, per Table 3.4.1-1 is used as well, in order to 
maximize the negative live load effects. 
 

        
 12

384,185

27.42080,375.1

505,352

10.2432690.0

384,185

27.42403,290.0
f flg tops, 








 


 
 

(T) ksi 59.8f flg tops, 

  
        

 12
384,185

55.36080,375.1

505,352

72.5432690.0

384,185

55.36403,290.0
f flgbot s, 








 


 
 

(C) ksi 09.7f flgbot s, 

  
Per Article 6.13.6.1.4c, in areas of stress reversal, such as this field splice, the splice must be 
independently checked for both positive and negative flexure.   
 
In accordance with Article C6.13.6.1.4c, longitudinal warping stresses due to cross-section 
distortion in horizontally curved tub girders can be ignored when checking the splices in the top 
and bottom flanges at the strength limit state. 
 
7.14.5.1 Positive Flexure Strength Limit State Design Forces 

 
Compute the effective flange area, Ae, of the top and bottom flanges, as these will be used in 
subsequent computations.  Since the top flange is in compression, per Article 6.1.6.1.4c, the 
effective top flange area is equal to the gross area of the flange, Ag: 
 
 Ae,top flg = Ag = (16.0)(1.0) = 16.0 in.2 
 
The bottom flange is in tension, therefore the effective area of the flange must consider the net 
area of the flange, An, and be computed in accordance with Eq. (6.13.6.1.4c-2): 
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       Eq. (6.13.6.1.4c-2) 

 
The net area of the bottom flange is computed in accordance with Article 6.8.3, which states that 
the net area, An, of an element is the product of the thickness of the element and its smallest net 
width.  The width of each standard bolt hole shall be taken as the nominal diameter of the hole.  
Therefore, the net area of the bottom flange at the location of the splice is computed as: 
 
 An,bot flg = [83.0 – 20 (0.875 + 0.0625)](0.625) = 40.1 in.2 
 
The effective area of the bottom flange is then computed as: 
 

  

  
     2

g
2

n

yty

uu
flgbot  e, in. 51.90.62583.0Ain. 43.940.1

500.95

650.8
A

F

F
A 

































  

 
2

flgbot  e, in. 43.9A   
 
For the positive live load bending case, the controlling flange is bottom flange since it has the 
largest ratio of the flexural stress to the corresponding critical flange stress.  Therefore, the 
design stress, Fcf, is computed in accordance with Eq. (6.13.6.1.4c-1): 
 

   

ksi 37.36
2

501.01.0
1.0

24.72

2

Fα
R

f

F

yff

h

cf

cf 







    

 
    ksi 37.50501.01.00.75F0.75 αF yffcf    

 
Therefore, Fcf shall be taken as 37.50 ksi. 
 
For the positive live load bending case, the minimum design force from the controlling flange 
(bottom flange), Pcf, is taken equal to Fcf times the smaller effective flange area, Ae, on either 
side of the splice.  The area of the smaller flange is used to ensure that the design force does not 
exceed the strength of the smaller flange.  In this case, the effective flange areas are the same on 
both sides of the splice.  The minimum design force, Pcf, is computed as: 
 
 Pcf = Fcf Ae,bot flg = (37.50) (43.9) = 1,646 kips (T) 
 
For the positive live load bending case, the minimum design stress for the noncontrolling flange 
(top flange), Fncf, is computed in accordance with Eq. (6.13.6.1.4c-3).  First, it is necessary to 
compute Rcf, the absolute value of the ratio of Fcf to fcf for the controlling flange: 
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52.1
72.24

50.37

f

F
R

cf

cf
cf      

 
Compute Fncf, in accordance with Eq. (6.13.6.1.4c-3): 
 

  ksi 17.48
1.0

11.50
1.52

R

f
RF

h

ncf
cfncf 


    

 
    iks 37.50501.01.00.75F0.75 αF yffncf     

 
Therefore, Fncf shall be taken as 37.50 ksi. 
 
For the positive live load bending case, the minimum design force from the noncontrolling 
flange (top flange), Pncf, is taken equal to Fncf times the smaller effective flange area, Ae, on 
either side of the splice.  The area of the smaller flange is used to ensure that the design force 
does not exceed the strength of the smaller flange.  In this case, the effective flange areas are the 
same on both sides of the splice.  The minimum design force, Pncf, is computed as: 
 
 Pncf = Fncf Ae,top flg = (37.50) (16.0) = 600 kips (C) 
 
7.14.5.2 Negative Flexure Strength Limit State Design Forces 

 
Compute the effective flange area, Ae, of the top and bottom flanges, as these will be used in 
subsequent computations.  Since the bottom flange is in compression, per Article 6.1.6.1.4c, the 
effective bottom flange area is equal to the gross area of the flange, Ag: 
 
 Ae,bot flg = Ag = (83.0)(0.625) = 51.88 in.2 
 
The top flange is in tension, therefore the effective area of the flange must consider the net area 
of the flange, An, and be computed in accordance with Eq. (6.13.6.1.4c-2): 
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       Eq. (6.13.6.1.4c-2) 

 
The net area of the top flange is computed in accordance with Article 6.8.3.  The width of each 
standard bolt hole shall be taken as the nominal diameter of the hole.  Therefore, the net area of 
the top flange at the location of the splice is computed as: 
 
 An,top flg = [16 – 4 (0.875 + 0.0625)](1.0) = 12.25 in.2 
 
The effective area of the top flange is then computed as: 
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flg  tope, in. 0.611.000.61Ain. 41.3112.25
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2

flg  tope, in. 41.31A   
 
For the negative live load bending case, the controlling flange is top flange since it has the 
largest ratio of the flexural stress to the corresponding critical flange stress.  Therefore, the 
design stress, Fcf, is computed in accordance with Eq. (6.13.6.1.4c-1): 
 

   

ksi 30.92
2

501.01.0
1.0

8.59

2

Fα
R

f

F

yff

h

cf

cf 







    

 
    ksi 37.50501.01.00.75F0.75 αF yffcf    

 
Therefore, Fcf shall be taken as 37.50 ksi. 
 
For the negative live load bending case, the minimum design force from the controlling flange 
(top flange), Pcf, is taken equal to Fcf times the smaller effective flange area, Ae, on either side of 
the splice.  The area of the smaller flange is used to ensure that the design force does not exceed 
the strength of the smaller flange.  In this case, the effective flange areas are the same on both 
sides of the splice.  The minimum design force, Pcf, is computed as: 
 
 Pcf = Fcf Ae,top flg = (37.50) (13.41) = 503 kips (T) 
 
For the negative live load bending case, the minimum design stress for the noncontrolling flange 
(bottom flange), Fncf, is computed in accordance with Eq. (6.13.6.1.4c-3).  First, it is necessary to 
compute Rcf, the absolute value of the ratio of Fcf to fcf for the controlling flange: 
 

37.4
59.8

50.37

f

F
R

cf

cf
cf      

 
Compute Fncf, in accordance with Eq. (6.13.6.1.4c-3): 
 

  ksi 30.98
1.0

09.7
4.37

R

f
RF

h

ncf
cfncf 


    

 
    iks 37.50501.01.00.75F0.75 αF yffncf     

 
Therefore, Fncf shall be taken as 37.50 ksi. 
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For the negative live load bending case, the minimum design force from the noncontrolling 
flange (bottom flange), Pncf, is taken equal to Fncf times the smaller effective flange area, Ae, on 
either side of the splice.  The area of the smaller flange is used to ensure that the design force 
does not exceed the strength of the smaller flange.  In this case, the effective flange areas are the 
same on both sides of the splice.  The minimum design force, Pncf, is computed as: 
 
 Pncf = Fncf Ae,bot flg = (37.50) (51.88) = 1,946 kips (C) 
 
7.14.5.3 Summary of Flexure Strength Limit State Design Forces 

 
A summary of factored design forces for the bottom and top flange splices at the strength limit 
state are as follows: 
 
 Top Flange: Pncf = 600 kips (C) 
  Pcf = 503 kips (T) 
 
 Bottom Flange: Pcf = 1,646 kips (T) 
  Pncf = 1,946 kips (C) 
 
7.14.5.4 Strength Limit State Check of Top Flange Splice Bolts 

 
St. Venant torsional shear is not considered in the top flanges of tub girders.  The composite deck 
is assumed to resist the majority of the torsional shear acting on the top of the tub girder once the 
section is closed.  Flange lateral bending in the top flange is also not considered after the deck 
has hardened and the flange is continuously braced.   
 
Therefore, compute the factored longitudinal force in each bolt resulting from the major-axis 
bending by dividing the governing design flange force by the number of bolts on one side of the 
splice: 
 

 kips/bolt 00.05
12

600

12

P
FR ncf

bolt flg topu   

 
Check that the factored bolt force, Ru is less than the factored shear resistance of one bolt, Rr, 
calculated previously as 55.4 kips/bolt: 
 
 Ru = 50.00 kips/bolt < Rr = 55.4 kips/bolt  OK 
 
Since a fill plate is not required for the top flange splice, no reduction in the bolt design shear 
resistance is required per Article 6.13.6.1.5. 
 
7.14.5.5 Strength Limit State Check of Bottom Flange Splice Bolts 

 
Determine the St. Venant torsional shear in the bottom flange of tub girder at the strength limit 
state.  As discussed previously, the longitudinal warping stresses do not need to be considered in 
the design of bolted box flange splices (bottom flange of tub) at the strength limit state.  
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Compute the Strength I factored noncomposite and composite torque from the analysis results 
provided in Table 16.  The negative live load torque is used, as it controls over the positive live 
load torque. 
 
 Factored Noncomposite Torque = 1.25[-36 + (-125)] = -201 kip-ft 
 
 Factored Composite Torque = 1.25(-58) + 1.5(-76) + 1.75(-517) = -1,091 kip-ft  
 
The enclosed area of the noncomposite tub girder, Ao, is previously computed to be 7,921 in.2.  
The factored St. Venant torsional shear in the bottom flange due to noncomposite loads is 
computed as: 
 

 
 

 
  kips 3.2181

7,9212

12201
b

2A

T
V f

o

flgbot  NC 


  

 
The enclosed area of the composite tub girder, Ao, is previously computed to be 8,750 in.2.  The 
factored St. Venant torsional shear in the bottom flange due to ncomposite loads is computed as: 
 

 
 

 
  kips 6.6081

8,7502

12091,1
b

2A

T
V f

o

flgbot  C 


  

 
Therefore, the total St. Venant torsional shear force at the centerline of the splice is computed as: 
 
 Vtot = 12.3 + 60.6 = 72.9 kips 
 
Because the St. Venant torsional shear is assumed to act at the centerline of the field splice, it 
produces a lateral moment on the bottom flange bolt group on each side of the splice. The 
factored lateral moment on the bolt group, computed at the centroid of the bolt group is: 
 

  in.-kip 1.328
2

4.5

2

4.5
9.72M LAT 








  

 
It should be noted that in accordance with Article C6.13.6.1.4c, at the strength limit state, the 
torsional shear due to factored loads does not need to be multiplied by the factor, Rcf, when 
computing the moment in the splice due to the torsional shear. 
 
Compute the factored longitudinal component of force in the critical bolt due to the factored 
lateral moment in the bottom flange, noting that the transverse distance from the centroid of the 
bolt group to the critical bolt is 36.25 inches, and the polar moment of inertia of the bolt group, 
Ip, was previously computed as 19,859 in.2: 
 

 
 

kips/bolt 60.0
19,859

36.251.328
F lat  Long   
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Compute the factored transverse component of force in the critical bolt due to the factored lateral 
moment in the bottom flange, noting that the longitudinal distance from the centroid of the bolt 
group to the critical bolt is 2.25 inches: 
 

 
 

kips/bolt 04.0
19,859

2.251.328
F lat  Trans   

 
Therefore, compute the factored longitudinal force in each bolt resulting from the major-axis 
bending, by dividing the governing design flange force, by the number of bolts on one side of the 
splice: 
 

 kips/bolt 65.48
40

946,1

40

P
F cf

bolt flgbot   

 
Therefore, the total factored longitudinal force in the critical bolt is computed as: 
 
 kips/bolt 25.4965.4860.0F   totLong   
 
Compute the factored transverse force in each bolt resulting from the factored St. Venant 
torsional shear force by dividing the shear force by the number of bolts on one side of the splice: 
 

  
kips/bolt 82.1

40

9.72
F Shear  Trans   

 
Therefore, the total factored transverse force in the critical bolt is computed as: 
 
 kips/bolt 86.104.082.1F   totTrans   
 
Compute the resultant force on the critical bolt: 
 
 kips/bolt 29.4986.125.49FR 22

u   
 
Check that the factored bolt force, Ru is less than the factored shear resistance of one bolt, Rr, 
calculated previously as 55.4 kips/bolt: 
 
 Ru = 49.29 kips/bolt < Rr = 55.4 kips/bolt  OK 
 
Since a fill plate is not required for the bottom flange splice, no reduction in the bolt design shear 
resistance is required per Article 6.13.6.1.5. 
 
7.14.5.6 Strength Limit State Check of Web Splice Bolts 

 
Per Article 6.13.6.1.4b, web splice plates and their connections are to be designed for shear, the 
moment due to the eccentricity of the shear at the point of the splice, and the portion of the 
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flexural moment assumed to be resisted by the web at the point of the splice.  Additionally, for 
horizontally curved tub girders, the shear shall be taken as the sum of the flexural and St. Venant 
torsional shear in the web.  Also, for inclined webs, the web splice and connections shall be 
designed for the component of shear in the plane of the web.   
 
For this design example, only the positive live load bending case will be used to illustrate the 
check of the web splice for the strength limit state. 
 
As a minimum, at the strength limit state, the design shear, Vuw, shall be taken as follows: 
 
If Vu < 0.5 v Vn, then: 
 

Vuw = 1.5Vu        Eq. (6.13.6.1.4b-1) 
 
Otherwise: 
 

 

2

VV
V nvu

uw


        Eq. (6.13.6.1.4b-2) 

 
where:  
 
 v = resistance factor for shear specific in Article 6.5.4.2 (v = 1.0) 
 Vu = shear due to factored loading at the point of the splice (kip) 
 Vn = nominal shear resistance determined as specified in Articles 6.10.9.2 and 6.10.9.3 

for unstiffened and stiffened webs (kip) 
 
Determine the vertical design shear, Vuw, for the web splice design according to the provisions of 
Article 6.13.6.1.4b.   
 
First, compute the Strength I factored girder shear, Vu, from the analysis results provided in 
Table 16.  The girder shear provided in Table 16 is the summation of the flexural shear and St. 
Venant torsional shear in the critical web, therefore additional calculations for the torsional shear 
in the web are not required.  By inspection, the negative live load torque case governs. 
 
 Vu = |1.25 [-17 + (-69) + (-12)] + 1.5 (-16) + 1.75 (-85)| = 295 kips 
 
Compute the shear in the plane of the web. 
 

 
 

kips 304
14.04cos

295
V ui 


   

 
Compute the nominal shear resistance of the 0.5625 inch thick web at the splice according to the 
provision of Articles 6.10.9.2 and 6.10.9.3 for unstiffened and stiffened webs, respectively.  
However, for this design example, separate calculations indicate that transverse stiffeners are 
required for this web thickness, therefore Article 6.10.9.3 is employed.  A stiffener spacing equal 
to the internal cross frame spacing used on Girder G2 is assumed, where do = 196 inches. 
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It is necessary to compute the nominal shear resistance, Vn, in order to determine the appropriate 
design shear, Vuw.  The nominal shear resistance of an interior web panel is computed in 
accordance with Article 6.10.9.3.2.  First, determine if Eq. (6.10.9.3.2-1) is satisfied. 
 

 
5.2

tbtb

Dt2

ftftfcfc

w



       Eq. (6.10.9.3.2-1) 

 

 

  

      
5.233.1

0.116625.083

5625.040.802

tbtb

Dt2

ftftfcfc

w






  

 
Since Eq. (6.10.9.3.2-1) is satisfied, the nominal shear resistance, Vn, can be computed in 
accordance with Eq. (6.10.9.3.2-2). 
 

 












































2

o

pn

D

d
1

C187.0
CVV       Eq. (6.10.9.3.2-2) 

 
where: 
 
 Vn = nominal shear resistance of the web panel (kip) 
 Vp = plastic shear force (kip) 
 C = ratio of shear-buckling resistance to the shear yield strength 
 do = transverse stiffener spacing (in.) 
 
The plastic shear force, Vp, is computed according to Eq. (6.10.9.3.2-3): 
 

Vp = 0.58 Fyw D tw       Eq. (6.10.9.2.2-3) 
 
Determine which equation is to be used to compute the ratio of shear-buckling resistance to the 
shear yield strength, C.  
 

 84.5

40.80
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d
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     Eq. (6.10.9.3.2-7) 
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57.1
C        Eq. (6.10.9.3.2-6) 

 

 
 

0.260
50

4)29,000(5.8

142.9

1.57
C
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Vp is the plastic shear force and is calculated as follows: 
 
 wywp  tD F 0.58V         Eq. (6.10.9.3.3-2) 
 
     kips 1,3120.562580.4050.0 0.58V p   
 
Therefore, 
 

   kips 626

80.40

196.0
1

0.260)0.87(1
0.2601,312V

2
n 








































  

 
Checking compliance with Eq. (6.10.9.1-1): 
 
    kips 6266621.0Vkips 043V nvui   OK  
 
Since Vui = 304 kips < 0.5vVn = 331 kips, the design shear, Vuw, can be computed in accordance 
with Eq. (6.13.6.1.4b-1): 
 

Vuw = 1.5Vu = 1.5(304) = 456 kips     Eq. (6.13.6.1.4b-1) 
 
The moment, Muv, due to the eccentricity of the design shear, Vuw, from the centerline of the 
splice to the centroid of the web splice bolt group is computed as follows: 
 
 Muv = Vuw e 
 

   ftkip 143
12

1

2

4.5

2

3
456M uv 
















  

 
Determine the portion of the design moment resisted by the web, Muw, and the design horizontal 
force resultant in the web, Huw, according to the provision of Article C6.13.6.1.4b.  Muw and Huw 
are applied at the mid-depth of the web.  Separate calculations, not shown, indicate that the 
positive live load bending case controls the design of the web splice. 
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As computed previously for the positive live load bending case: 
 
 fcf  =  24.72 ksi 
 Fcf  =  37.50 ksi 
 fncf  =  -11.50 ksi 
 Rcf  =  1.52 
 
Using the above values, use the following equations to compute a suggested design moment, 
Muw, and a design horizontal resultant, Huw that will be applied at the mid-depth of the web for 
designing their connections: 
 

 ncfcfcfh

2
w

uw fRFR
12

Dt
M       Eq. (C6.13.6.1.4b-1) 

 

 
  

      ftkip 1,307
12

1
50.1152.150.370.1

12

78.00.5625
M

2

uw 







   

 

  ncfcfcfh
w

uw fRFR
2

Dt
H        Eq. (C6.13.6.1.4b-2) 

 

   
       kips 43911.501.5237.501.0

2

78.00.5625
H uw     

 
The total factored moment applied to the web splice is the sum of the moment caused by the 
vertical shear, Mv, and the moment computed by Eq. (C6.13.6.1.4b-1), Muw: 
 
 Mtot = Muv + Muw = 143 + 1,307 = 1,450 kip-ft 
 
Compute the factored force in each bolt resulting from the vertical shear, by dividing the factored 
shear by the number of bolts on one side of the splice: 
 

 kips/bolt 40.11
40

456

N

V
F

b

uw
Shear vert   

 
However, the above bolt force, FShear vert, is in the vertical plane, and must be resolved to the 
inclined plane of the web.  Therefore, the in-plane bolt force is computed as: 
 

 
   

kips/bolt 75.11
04.14cos

40.11

cos

F
F Shearvert

S 





  

 
Compute the in-plane factored force in each bolt resulting from the horizontal force resultant, 
Huw, by dividing the factored resultant by the number of bolts on one side of the splice: 
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 kips/bolt 98.01
40

439

N

H
F

b

uw
H   

 
Compute the in-plane factored vertical component of force in the critical bolt due to the total 
factored moment on the splice, noting that the horizontal distance from the centroid of the bolt 
group to the critical bolt is 1.5 inches: 
 

 
 

   

 
kips/bolt 43.1

04.14cos

1

18,793

1.512450,1

cos

1

I

xM
F

p

tot
Mv 

































  

 
Compute the in-plane factored horizontal component of force in the critical bolt due to the total 
factored moment on the splice, noting that the vertical distance from the centroid of the bolt 
group to the critical bolt is 35.625 inches: 
 

    
kips/bolt 98.32

18,793

35.62512450,1

I

yM
F

p

tot
Mh   

 
Compute the resultant in-plane force on the critical bolt: 
 
    

2

MhH

2

MvSru FFFFFR   
 

     kips/bolt 9.5498.2398.0143.175.11R
22

u   
 
Check that the factored resultant force on the critical bolt, Ru is less than the factored slip 
resistance of one bolt, Rr, calculated previously as 55.4 kips/bolt: 
 
 Ru = 45.9 kips/bolt < Rr = 55.4 kips/bolt  OK 
 
7.14.5.7 Strength Limit State Check of Top Flange Splice Plates 

 
The width of the outside splice plate should be at least as wide as the width of the narrowest 
flange at the splice.  In the case of this design example, the width of the top flange is the same on 
either side of the splice.  Therefore, the following top flange splice plates are used: 
  
 Outer plate: 0.5 in. by 16.0 in. plate, Grade 50 Steel 
 Inner plates: Two 0.625 in. by 6 in. plates, Grade 50 Steel 
 
As specified in Article C6.13.6.1.4c, if the combined area of the inner splice plates is within 10 
percent of the area of the outside plate, then both the inner and outer plates may be designed for 
one-half of the flange design force.  Such is the case for this top flange splice.  Also, since this 
10 percent provision is satisfied, double shear can be assumed in designing the connections.  If 
the areas differ by more than 10 percent, the design force in each splice plate and its connection 
at the strength limit state should be determined by multiplying the flange design force by the 
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ratio of the area of the splice plate under consideration to the total area of the inner and outer 
splice plates.  In this case, the shear resistance of the connection would be checked for the 
maximum calculated splice plate force acting on a single shear plane. 
 
Article 6.13.5.2 specifies that the splice plates in tension at the strength limit state are to be 
investigated for yielding on the gross section, fracture on the net section, and block shear rupture.  
Article 6.13.6.1.4c  specifies that the design force for splice plates subjected to compression shall 
not exceed the factored resistance, Rr, in compression taken as: 
 
 Rr = c Fy As        Eq. (C6.13.6.1.4c-4) 
 
where: 
 
 c = resistance factor for compression specific in Article 6.5.4.2 (c = 0.90) 
 Fy = specified minimum yield strength of the splice plate (ksi) 
 As = gross area of the splice plate (in.2) 
 
Flange lateral bending is ignored for the top flange splice plates at the strength limit states 
because the flange is continuously braced by the hardened concrete deck.  St. Venant torsional 
shears are also typically ignored in the design of the top flanges of tub girders once the flange is 
continuously braced by the hardened concrete deck, as the deck is assumed to resist the majority 
of torsional shear acting on the top of the tub girder.  Therefore, St Venant torsional shear is not 
considered in the design of the top flange splice plates.  Lastly, as discussed previously, 
longitudinal warping stresses due to cross-section distortion can be ignored at the strength limit 
state for the design of the top and bottom flange splices. 
 
For the positive live load bending case, the top flange is the noncontrolling flange and is 
subjected to compression.  The total design force was previously computed as 600 kips.  The 
factored compressive resistance, Rr, is computed per Eq. (C6.13.6.1.4c-4): 
 
 Rr = c Fy As        Eq. (C6.13.6.1.4c-4) 
 
For the outer top flange splice plate: 
 

      kips 300
2

600
kips 36016.00.5500.90R r   OK 

  
For the two inner top flange splice plates: 
 

       kips 300
2

600
kips 3386.00.6252500.90R r    OK 

 
For the negative live load bending case, the top flange is the controlling flange and is subjected 
to tension.  The total design force was previously computed as 503 kips.  Per Article 6.8.2.1, the 
factored tensile resistance of the splice plates, Pr, is taken as the lesser of the following two 
equations: 

Arch
ive

d



 

158 
 

 
 Pr = y Pny = y Fy Ag       Eq. (6.8.2.1-1) 
 
 Pr = u Pnu = u Fu An Rp U      Eq. (6.8.2.1-2) 
 
where: 
 
 Pny = nominal tensile resistance for yielding in the gross section (kip) 
 Fy = specified minimum yield strength (ksi) 
 Ag = gross cross-sectional area of the member (in.2) 
 Fu = tensile strength (ksi) 
 An = net area of the member as specified in Article 6.8.3 (in.2), but shall not be taken 

greater than 85 percent of the gross area of the splice plate per Article 6.13.5.2 
 Rp = reduction factor for holes taken equal to 0.90 for bolt holes punched full size and 

1.0 for bolt holes drilled full size or subpunched and reamed to size; 1.0 is 
assumed for this design example 

 U = reduction factor for shear lag, to be taken as 1.0 for splice plates per Article 
6.13.5.2 

 y = resistance factor for yielding of tension members as specified in Article 6.5.4.2 
(y = 0.95) 

 u = resistance factor for fracture of tension members as specified in Article 6.5.4.2  
   (u = 1.0) 
 
Compute the net area, An, for the outer and inner splice plates. 
 
Outer splice plate:  

        2
g

2
n in. 6.80.5016.00.850.85Ain. 6.130.500.06250.875416.0A   

 
Inner splice plates:  

         2
g

2
n in. 6.40.6256.020.850.85Ain. 16.50.6250.06250.87526.02A   

 
Compute the factored tensile resistance of the outer splice plate: 
 
 Pr = y Pny = y Fy Ag = 0.95 (50) (16.0) (0.50) = 380 kips 
 
 Pr = u Pnu = u Fu An Rp U = 0.80 (65) (6.13) (1.0) (1.0) = 319 kips 
 
Compute the factored tensile resistance of the inner splice plates: 
 
 Pr = y Pny = y Fy Ag = 0.95 (50) (2) (6.0) (0.625) = 356 kips 
 
 Pr = u Pnu = u Fu An Rp U = 0.80 (65) (5.16) (1.0) (1.0) = 268 kips 
 
Check that the minimum resistance provided by the splice plates, 268 kips, is more than one-half 
the design force: 
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 kips 522
2

503
kips 268P r    OK 

 
7.14.5.8 Strength Limit State Check of Top Flange Splice Plates - Bearing 

 
Check the bearing of the bolts on the connected material at the strength limit state, for the design 
force of 600 kips in the top flange.  The design bearing resistance, Rn, is computed in accordance 
with Article 6.13.2.9. Check the outer splice plate as it is thinner than the inner plates, and check 
the top flange of the girder itself. 
 
For the outer plate, calculate the clear distance between holes and the clear end distance and 
compare to 2.0d (d = bolt diameter) to determine the equation to be used to compute the bearing 
resistance. 
 
The center-to-center distance between the bolts in the direction of the force is 3.0 in.  Therefore: 
 
 Clear distance between holes = 3.0 – 0.9375 = 2.06 in. 
 
For the four bolts adjacent to the end of the splice plate, the end distance is assumed to be 1.5 in.  
Therefore, the clear distance between the edge of the holes and the end of the splice plate is: 
 
 Clear end distance = 1.5 – 0.9375 / 2 = 1.03 in. 
 
The value of 2d is equal to 1.75 in. for a 7/8 inch diameter bolt.  Since the clear end distance is 
less than 2.0d, Eq. (6.13.2.9-2) is to be used to compute the nominal bearing resistance, Rn: 
 
 Rn = 1.2 Lc t Fu = 1.2(1.03)(0.50)(65) = 40.2 kips/bolt 
 
The factored bearing resistance, Rr, is computed as: 
 

Rr = bbRn         Eq. (6.13.2.2-2) 
 
where:  
 
 bb  =  shear resistance factor for bolts bearing on material from Article 6.5.4.2  
   (bb = 0.80) 
 
Therefore, for the outer splice plate, the factored bearing resistance at single bolt hole is: 
 
 Rr = bbRn = (0.80)(40.2) = 32.2 kips/bolt 
 
For the outer plate, the factored bearing resistance for the connection is computed by multiplying 
the single bolt hole resistance by the number of bolts in the connection. Check this total 
resistance against the force in the outer plate, which is one-half of the design force of 600 kips: 
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    kips 300
2

600
kips 386kips/bolt 32.2bolts 12P r    OK 

 
For the girder top flange itself, calculate the clear distance between holes and the clear end 
distance and compare to 2.0d to determine the equation to be used to compute the bearing 
resistance. 
 
The center-to-center distance between the bolts in the direction of the force is 3.0 in.  Therefore: 
 
 Clear distance between holes = 3.0 – 0.9375 = 2.06 in. 
 
For the four bolts adjacent to the end of the girder at the splice, the end distance is conservatively 
assumed to be 1.5 in. (actual end distance is 3.0 in. per Figure 19).  Therefore, the clear distance 
between the edge of the holes and the edge of the girder is: 
 
 Clear end distance = 1.5 – 0.9375 / 2 = 1.03 in. 
 
The value of 2d is equal to 1.75 in. for a 7/8 inch diameter bolt.  Since the clear end distance is 
less than 2.0d, Eq. (6.13.2.9-2) is to be used to compute the nominal bearing resistance, Rn: 
 
 Rn = 1.2 Lc t Fu = 1.2(1.03)(1.0)(65) = 80.3 kips/bolt 
 
Therefore, for the girder top flange, the factored bearing resistance at single bolt hole is: 
 
 Rr = bbRn = (0.8)(80.3) = 64.2 kips/bolt 
 
For the top flange, the factored bearing resistance for the connection is compute by multiplying 
the single bolt hole resistance by the number of bolts in the connection. Check this total 
resistance against the force in the top flange, which is equal to 600 kips: 
 
 Pr = (12 bolts)(64.2 kips/bolt) = 770 kips > 600 kips  OK 
 
7.14.5.9 Strength Limit State Check of Bottom Flange Splice Plates 

 
The following bottom flange splice plates are used: 
  
 Outer plate: 0.375 in. by 75.5 in. plate, Grade 50 Steel 
 Inner plates: Two 0.375 in. by 36.75 in. plates, Grade 50 Steel 
 
Since the inner splice plate must be partially split to accommodate the longitudinal stiffener on 
the Field Section 2 side of the splice, as shown in Figure 20, the plate is conservatively treated as 
two separate plates in the subsequent calculations although this is physically not the case.  The 
combined area of the inner splice plates is within 10 percent of the area of the outside plate, 
therefore the inner and outer plates may be designed for one-half of the flange design force. 
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For the positive live load bending case, the bottom flange is the controlling flange with a design 
force of 1,646 kips in tension.  For the negative live load bending case, the bottom flange is the 
noncontrolling flange with a design force of 1,946 kips in compression.  The St. Venant torsional 
shear was computed previously for the bottom flange bolt design at the strength limit state.  The 
factored moment resulting form the eccentricity of the torsional shear on the bolt group was 
computed as 328.1 kip-in. 
 
Flange splice plates subject to compression at the strength limit state are checked for yielding on 
the gross section at the strength limit state, in accordance with Eq. (C6.13.6.1.4c-4).  In the case 
of the bottom flange, the flange should be checked for the combined applied stress due to the 
flange design compression force and lateral bending caused by eccentricity of the torsional shear. 
For yielding of the bottom flange splice plates, the total combined stress on the splice plates can 
be computed as: 
 

 
g SPL,

LAT

g SPL,

ForceDesign 

(C) flgbot 
S

M

A

P
f     

 
where: 
 
 ASPL,g = gross cross-sectional area of the splice plates (in.2) 
 MLAT = moment resulting from eccentricity of the torsional shear (kip-in.) 
 SSPL,g = gross lateral section modulus of the splice plates (in.3) 
 
The gross area of the bottom flange splice plates is computed as: 
 
       2

g SPL, in. 55.936.750.375275.50.375A    
 
The gross lateral section modulus of the outer and inner splice plates is computed as: 
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Compute the total combined stress acting on the outer and inner bottom flange splice plates: 
 

 ksi 35.3
713

328.1

55.9

1,946
f (C) flgbot     

 
Check that the total combined stress is less than the factored compressive resistance in terms of 
stress, per Eq. (C6.13.6.1.4c-4): 
 
    ksi 45.0500.90Fksi 35.3f yc(C) flgbot   OK 
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Flange splice plates subject to tension at the strength limit state are investigated for yielding on 
the gross section and fracture on the net section.  First, check yielding on the gross section for the 
tension design force.  Compute the total combined stress on the splice plates as: 
 

 ksi 9.92
713

328.1

55.9

1,646

S

M

A

P
f

SPL

LAT

g SPL,

ForceDesign 

yield (T), flgbot     

 
Check that the total combined stress is less than the factored tension resistance in terms of stress, 
per Eq. (C6.8.2.1-1): 
 
    ksi 47.5500.95Fksi 9.92f yyyield (T), flgbot   OK 
 
For fracture on the net section, the combined stress in the bottom flange splice plates can be 
computed as: 
 

 
n,SPL

LAT

n SPL,

ForceDesign 

frac (T), flgbot 
S

M

A

P
f     

 
where: 
 
 ASPL,n = net cross-sectional area of the splice plates (in.2) 
 SSPL,n = net lateral section modulus of the splice plates (in.4) 
 
The net cross section areas of the outer and inner splice plates are computed as: 
 

Outer plate:     2
nSPL, in. 21.280.3750.06250.8752075.5A     

 
Inner plates:     2

nSPL, in. 20.530.3750.06250.8751075.632A     
 

Total:  2
nSPL, in. 41.8153.2028.21A     

 
According to Article 6.13.5.2, for splice plates subjected to tension, An must not exceed 0.85Ag.  
Verify that is provision is satisfied: 
 

Outer plate:    22
nSPL, in. 24.070.37575.50.85in. 21.28A    OK 

 
Inner plates:     22

nSPL, in. 23.430.37536.7520.85in. 20.53A   OK 
 

Total:  22
nSPL, in. 47.523.4324.07in. 41.81A    OK 

 
The net lateral section modulus of the outer and inner splice plates, SSPL,n, can be computed as 
follows: 
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c

dAI
S

bN

1i

2
ihgSPL,

nSPL,






   

 
where: 
 
 ISPL,g = gross lateral moment of inertia of the splice plates (in.2) 
 Ah = area of a single bolt hole (in.2) 
 di = distance from center of bolt hole to lateral neutral axis (in.) 
 c = distance from lateral neutral axis to edge of splice plates (in.) 
 

          4233
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Therefore, SSPL,n, is computed as: 
 

 4
nSPL, in. 621

2

75.5

455,326,898
S 


    

 
The combined stress in the bottom flange, for checking fracture, is then computed as: 
 

 ksi 9.93
621

328.1

41.81

1,646

S

M

A

P
f

nSPL,

LAT

n SPL,

ForceDesign 

frac (T), flgbot     

 
Check that the total combined stress is less than the factored tension resistance for fracture, in 
terms of stress per Eq. (C6.8.2.1-2): 
 
      ksi 0.250.10.1650.80URFksi 39.9f puufrac (T), flgbot   OK 
 
7.14.5.10 Strength Limit State Check of Bottom Flange Splice Plates - Bearing 

 
Check the bearing of the bolts on the connected material at the strength limit state, for the design 
force of 1,946 kips in the bottom flange.  The design bearing resistance, Rn, is computed in 
accordance with Article 6.13.2.9. Check the outer splice plate as it is the same thickness as the 
inner plates, and check the bottom flange of the girder itself. 
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For the outer plate, calculate the clear distance between holes and the clear end distance and 
compare to 2.0d (d = bolt diameter) to determine the equation to be used to compute the bearing 
resistance. 
 
The center-to-center distance between the bolts in the direction of the force is 4.5 in.  Therefore: 
 
 Clear distance between holes = 4.5 – 0.9375 = 3.56 in. 
 
For the 20 bolts adjacent to the end of the splice plate, the end distance is assumed to be 1.5 in.  
Therefore, the clear distance between the edge of the holes and the end of the splice plate is: 
 
 Clear end distance = 1.5 – 0.9375 / 2 = 1.03 in. 
 
The value of 2d is equal to 1.75 in. for a 7/8 inch diameter bolt.  Since the clear end distance is 
less than 2.0d, Eq. (6.13.2.9-2) is to be used to compute the nominal bearing resistance, Rn: 
 
 Rn = 1.2 Lc t Fu = 1.2(1.03)(0.375)(65) = 30.1 kips/bolt 
 
The factored bearing resistance, Rr, is computed as: 
 

Rr = bbRn         Eq. (6.13.2.2-2) 
 
where:  
 
 bb  =  shear resistance factor for bolts bearing on material from Article 6.5.4.2 
   (bb = 0.80) 
 
Therefore, for the outer splice plate, the factored bearing resistance at single bolt hole is: 
 
 Rr = bbRn = (0.80)(30.1) = 24.1 kips/bolt 
 
For the outer plate, the factored bearing resistance for the connection is computed by multiplying 
the single bolt hole resistance by the number of bolts on one side of the connection. Check this 
total resistance against the force in the outer plate, which is one-half of the design force of 1,946 
kips: 
 

    kips 739
2

1,946
kips 649kips/bolt 24.1bolts 40P r    Say OK 

 
The factored bearing resistance of the outer and inner plates can be increased by slightly 
increasing the clear end distance of the bolts adjacent to the end of the splice plate.  For example, 
if the end distance is increased from 1.5 in. to 1.75 in., the clear end distance (Lc) is 1.28 in., and 
Rr is 30.0 kips/bolt, resulting in a total connection factored bearing resistance of 1,200 kips. 
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For the girder bottom flange itself, calculate the clear distance between holes and the clear end 
distance and compare to 2.0d to determine the equation to be used to compute the bearing 
resistance. 
 
The center-to-center distance between the bolts in the direction of the force is 4.5 in.  Therefore: 
 
 Clear distance between holes = 4.5 – 0.9375 = 3.56 in. 
 
For the 20 bolts adjacent to the end of the girder at the splice, the end distance is 2.0 in. (see 
Figure 20).  Therefore, the clear distance between the edge of the holes and the edge of the girder 
is: 
 
 Clear end distance = 2.0 – 0.9375 / 2 = 1.53 in. 
 
The value of 2d is equal to 1.75 in. for a 7/8 inch diameter bolt.  Since the clear end distance is 
less than 2.0d, Eq. (6.13.2.9-2) is to be used to compute the nominal bearing resistance, Rn: 
 
 Rn = 1.2 Lc t Fu = 1.2(1.53)(0.625)(65) = 74.6 kips/bolt 
 
Therefore, for the girder bottom flange, the factored bearing resistance at single bolt hole is: 
 
 Rr = bbRn = (0.8)(74.6) = 59.7 kips/bolt 
 
For the bottom flange, the factored bearing resistance for the connection is computed by 
multiplying the single bolt hole resistance by the number of bolts on one side of the connection. 
Check this total resistance against the design force in the bottom flange, which is equal to 1,945 
kips: 
 
 Pr = (40 bolts)(59.7 kips/bolt) = 2388 kips > 1,946 kips  OK 
 
7.14.5.11 Strength Limit State Check of Web Splice Plates 

 
The web splice is conservatively designed assuming that the maximum moment and maximum 
shear at the splice occur due to the same loading condition.  Article 6.13.6.1.4b states that the 
design shear shall not exceed the lesser of the factored shear resistance of the web splice plates 
specified in Article 6.13.4 (shear yielding and shear rupture), or the factored shear resistance of 
the web splice plates specified in Article 6.13.5.3 (block shear rupture). Also, at the strength 
limit state, the combined flexural and axial stress in the web splice plates shall not exceed the 
specified minimum yield strength of the splice plates times the resistance factor, f, specified in 
Article 6.5.4.2. 
 
Article 6.13.6.1.4b also specifies that for all limit states for tub sections in horizontally curved 
bridges, the shear due to factored loads is to be taken as the sum of the flexural and St. Venant 
torsional shears in the web subjected to additive shears.  For tub girders with inclined webs, the 
web splice shall be design for the component of vertical shear in the plane of the web. 
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Furthermore, webs shall be spliced symmetrically by plates on each side of the web, and the 
splice plates shall extend as near as practical for the full depth of the web between the flanges. 
 
Therefore, the following web splice plates are used: 
  
 Web plates: Two - 0.375 in. by 75.25 in. deep plates, Grade 50 steel 
 
For this design example, only the positive live load bending case will be used to illustrate the 
check of the web splice for the strength limit state. 
 
First, check the flexural yielding on the gross section of the web splice plates.  The design 
moments and design horizontal force were previously computed as: 
 
 Muv  =  143 kip-ft  [moment resulting from eccentricity of flexural shear] 
 Muw  =  1,307 kip-ft  [design moment per Eq. (C6.13.6.1.4b-1)] 

Huw  = 439 kips  [design horizontal force per Eq. (C6.13.6.1.4b-2)] 
 
The maximum combined flexural and axial stress in the web splice plates is computed by: 
 

 
g,SPL

uw

g,SPL

uwuv
web

A

H

S

MM
f 


    

 
where: 
 
 SSPL,g = gross section modulus of the web splice plates in the vertical plane (in.2) 
 ASPL,g = gross cross-sectional area of the web splice plates (in.2) 
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   2

gSPL, in. 56.475.250.3752A   
 
The combined maximum stress in the web splice plates for the positive live load bending case is 
computed as: 
 

 
  

ksi 33.90
56.4

439

666.2

121,307143

A

H

S

MM
f

gSPL,

uw

gSPL,

uwuv
web 





    

 
Check that the combined flexural and axial stress in the web splice plates does not exceed the 
specified minimum yield strength of the splice plates times the resistance factor, f, specified in 
Article 6.5.4.2: 
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    ksi 50501.0Fksi 33.90f yfweb    OK 
 
Check for shear yielding on the gross section of the web splice plates due to the in-plane design 
shear.  The in-plane design shear force, Vuw, was previously computed as 456 kips.  In 
accordance with Article 6.13.5.3, the shear yielding factored resistance of the connection element 
shall be taken as: 
 
 vgyvr A F 0.58 R         Eq. (6.13.5.3-1) 
 
where: 
 
 v = resistance factor for shear as specified in Article 6.5.4.2 
 Fy = specified minimum yield strength of the connection element (ksi) 
 Avg = gross area of the connection element subject to shear (in.2) 
 
Therefore, the shear yielding factored resistance is computed as: 
 
      kips 1,63656.4500.581.0A F 0.58 R vgyvr     
 
The in-plane shear design force is checked against the shear yielding factored resistance: 
 
 kips 1,636Rkips 456V ruw   OK 
 
Check for shear rupture on the net section of the web splice plates due to the in-plane design 
shear.  In accordance with Article 6.13.5.3, the shear rupture factored resistance of the 
connection elements shall be taken as: 
 
 vnupvur A F R 0.58 R        Eq. (6.13.5.3-2) 
 
where: 
 
 vu = resistance factor for shear rupture of connection elements as specified in Article 

6.5.4.2 (vu = 0.80) 
 Rp = reduction factor for holes taken equal to 0.90 for bolt holes punched full size 

and 1.0 for bolt holes drilled full size or subpunched and reamed to size.  1.0 is 
used in this example. 

 Fu = ultimate tensile strength of the connection elements (ksi) 
 Avn = net area of the connection element subject to shear (in.2) 
 
Therefore, the shear rupture factored resistance is computed as: 
 
           kips 1,2779375.0375.0202-56.4650.10.580.80A F R 0.58 R vnupvur    
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Check that the in-plane shear design force is less than the shear rupture factored resistance: 
 
 kips 1,277Rkips 456V ruw   OK 
 
7.14.5.12 Strength Limit State Check of Web Splice – Bearing on Girder Web 

 
Similar to the flange splices, it is necessary to check the bearing resistance of the web splice 
plate bolt holes at the strength limit state.  The calculation herein will simply use bolt forces and 
factored resistance computed previously within this design example. 
 
The maximum resultant in-plane force on the extreme bolt, Ru, was computed earlier to be 45.9 
kips.  The factored resistance for bearing on the girder web in the end column of bolts was 
previously computed as 52.65 kips.  Therefore: 
 
 Ru = 45.9 kips < bbRn = 52.65 kips/bolt OK 
 
Note that the web thickness is 0.5625 in., which is less than the total thickness of the two web 
splice plates (2 times 0.375 in. = 0.75 in.).  Therefore, bearing on the girder web governs as it has 
the smaller thickness. 
 
7.14.5.13 Strength Limit State Check of Web Splice Plates – Block Shear 

 
In accordance with Article 6.13.4, splice plates subjected to tension shall be investigated to 
ensure adequate connection material is provided to develop the factored resistance of the 
connection.  The connection shall be investigated by considering all possible failure planes in the 
member and connection plates.  Such planes shall include those that are parallel and 
perpendicular to the applied forces.  The planes parallel to the applied force shall be considered 
to resist only shear stresses.  The planes perpendicular to the applied force shall be considered to 
resist only tension stresses. 
 
Block shear rupture resistance normally does not govern for typical web splice plates, but the 
check is illustrated here for completeness.   
 
The factored resistance of the combination of parallel and perpendicular planes is computed in 
accordance with Eq. (6.13.4-1): 
 

   tnubsvgypbstnubsvnupbsr AFUAF58.0RAFUAF58.0RR    Eq. (6.13.4-1) 
 
where: 
 
 bs = resistance for block shear failure as specified in Article 6.5.4.2 (bs = 0.80) 
 Rp = reduction factor for holes taken equal to 0.90 for bolt holes punched full size 

and 1.0 for bolt holes drilled full size or subpunched and reamed to size.  1.0 is 
used in this example. 

 Fu = specified minimum tensile strength of the connected material (ksi) 
 Avn = net area along the plane resisting shear stress (in.2) 
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 Avg = gross area along the plane resisting shear stress (in.2) 
 Ubs = reduction factor for block shear rupture resistance taken equal to 0.50 when 

tension stress is non-uniform and 1.0 when the tension stress is uniform 
 Atn = net area along the plane resisting tension stress (in.2) 
 
First, compute the area terms, based on the block shear failure planes: 
 
    2

vg in. 44.65375.025.752A   
 
     2

vn in. 40.52375.00625.0875.05.20225.712A   
 
     2

tn in. 32.2375.00625.0875.05.15.132A   
 
Compute the factored resistance as follows: 
 
            kips 1,34332.2650.152.406558.00.180.0R 1r  (controls) 
 
          kips 1,43032.2650.144.565058.00.180.0R 2r   

 kips 1,343Rkips 456V ruw   OK 
 
Similar calculations to those illustrated here for the web splice plates show that the factored 
block shear resistance for the top and bottom flange splice plates is not exceeded by the flange 
design forces.  Calculations demonstrating the block shear rupture check of the top and bottom 
flange splice plates are not provided in this example.  
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8.0 SUMMARY OF DESIGN CHECKS AND PERFORMANCE RATIOS 

 
The results for this design example at each limit state are summarized below for the maximum 
positive moment and maximum negative moment locations.  The results for each limit state are 
expressed in terms of a performance ratio, defined as the ratio of a calculated value due to 
applied loads to the corresponding resistance. 

Maximum Positive Moment Region, Span 1 (Section G2-1) 

Constructibility 
 Flexure (Strength I) 
  Eq. (6.10.3.2.1-2) – Top Flange    0.351 
  Eq. (6.10.3.2.1-3) – Top Flange    0.359 
  Eq. (6.11.3.2-3) – Bottom Flange    0.246 
 
Service Limit State 
 No checks required in this design example 
 
Fatigue Limit State 
 Flexure (Fatigue I) 
  Eq. (6.6.1.2.2-1) – Bottom Flange    0.426 
 
Strength Limit State 
 Ductility Requirement – Eq. (6.10.7.3-1)    0.330 
 Flexure (Strength I) 
  Eq. (6.11.7.2.1-1) – Top Flange    0.507 
  Eq. (6.11.7.2.2-5) – Bottom Flange    0.802 
  Article 6.11.7.2.1 – Concrete Deck Stresses   0.417 
 
Interior Support, Maximum Negative Moment (Section G2-2) 

Constructibility 
 Flexure (Strength I) 
  Eq. (6.10.3.2.2-1) – Top Flange    0.559 
  Eq. (6.11.3.2-1) – Bottom Flange    0.414 
 Shear (Strength I) 
  Eq. (6.10.3.3-1)      0.217 
 
Service Limit State (Service II) 
 Web Bend-Buckling - Eq. (6.10.4.2.2-4)    0.792 
 
Fatigue Limit State 
 Flexure (Fatigue I) 
  Eq. (6.6.1.2.2-1) – Top Flange    0.055 
 Cross-section distortional stresses – Bottom Flange   0.662 
 
Strength Limit State  
 Flexure (Strength I) 
  Eq. (6.11.8.1.2-1) – Top Flange    0.888 
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  Eq. (6.11.8.1.1-1) – Bottom Flange    0.845 
  Eq. (C6.11.8.1.1-1) – Bottom Flange    0.847 
  Article 6.11.1.1 
   Bottom Flange cross-section distortional stresses 0.484 
 Shear (Strength I) – Eq. (6.10.9.1-1)     0.639 
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