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FOREWORD

It took an act of Congress to provide funding for the development of this comprehensive
handbook in steel bridge design. This handbook covers a full range of topics and design
examples to provide bridge engineers with the information needed to make knowledgeable
decisions regarding the selection, design, fabrication, and construction of steel bridges. The
handbook is based on the Fifth Edition, including the 2010 Interims, of the AASHTO LRFD
Bridge Design Specifications. The hard work of the National Steel Bridge Alliance (NSBA) and
prime consultant, HDR Engineering and their sub-consultants in producing tlis handbook is
gratefully acknowledged. This is the culmination of seven years of effort be ing in 2005.

The new Steel Bridge Design Handbook is divided into several topics and les as
follows:

Bridge Steels and Their Properties
Bridge Fabrication

Steel Bridge Shop Drawings

Structural Behavior

Selecting the Right Bridge Type
Stringer Bridges ‘
Loads and Combinations
Structural Analysis
Redundancy

Limit States

Design for Constructibility
Design for Fatigue
Bracing System Desig
Splice Design
Bearings
Substructure

ce-span Continuous Straight I-Girder Bridge

: Two-span Continuous Straight I-Girder Bridge

: Two-span Continuous Straight Wide-Flange Beam Bridge
: Three-span Continuous Straight Tub-Girder Bridge
Design Example: Three-span Continuous Curved I-Girder Beam Bridge
Design Example: Three-span Continuous Curved Tub-Girder Bridge

These topics and design examples are published separately for ease of use, and available for free
download at the NSBA and FHWA websites: http://www.steelbridges.org, and
http://www.thwa.dot.gov/bridge, respectively.

Xii


http://www.steelbridges.org/
http://www.fhwa.dot.gov/bridge/

The contributions and constructive review comments during the preparation of the handbook
from many engineering processionals are very much appreciated. The readers are encouraged to
submit ideas and suggestions for enhancements of future edition of the handbook to Myint Lwin
at the following address: Federal Highway Administration, 1200 New Jersey Avenue, S.E.,
Washington, DC 20590.
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1.0 INTRODUCTION

Tub girders are often selected over I-girders because of their pleasing appearance offering a
smooth, uninterrupted, cross section. Bracing, web stiffeners, utilities, and other structural and
nonstructural components are typically hidden from view within the steel tub girder, leading to a
clean, uncluttered appearance. Additionally, steel tub girder bridges offer advantages over other
superstructure types in terms of span range, stiffness, durability, and future maintenance.

suitable in short span ranges as well, especially when aesthetic preferen
considerations preclude the use of other structure types. However, tul
designed with a minimum girder depth of 5 feet deep to allow access for in
their efficiency in short span applications.

Tub girders, as closed-section structures, provide a more effi ss @8ction for resisting
torsion than I-girders. The increased torsional resistance comp@Fite steel tub girder
also results in an improved lateral distribution of live loa Fo ridges, warping, or
flange lateral bending, stresses are lower in gir ompared to I-girders, since tub
girder carry torsion primarily by means of St. ear flow around the perimeter
of their closed sections, whereas I-girders have t torsional stiffness and carry
torsion primarily by means of warping.

The exterior surfaces of tub girders e tovcorrosion since there are fewer details
for debris to accumulate, in compariso
most diaphragms are locate i
Additionally, the interior sur
reducing the likelihood of d

tub girder, protected from the environment.

er is protected from the environment, further
ub girder bridges tend to be easy to inspect and
ccur from inside the tub girder, with the tub serving

girders are d
between the anges. Overall, the erection of a tub girder bridge may be completed in less
an [-girder counterpart because there are fewer pieces to erect, a fewer number
of external diapN#gms to be placed in the field, and subsequently fewer field connections to be
made. This is a $gnificant factor to consider when available time for bridge erection is limited

by schedule or site access.

In many instances, these advantages are not well reflected in engineering cost estimates based
solely on material quantity comparisons. Consequently, tub girder bridges have historically been
considered more economical than I-girder bridges only if their use resulted in a reduction in the
total number of webs in cross section, particularly for straight bridges. However, if regional
fabricators have the experience and equipment to produce tub girders efficiently, the



competitiveness of tub girders in a particular application can be enhanced. Therefore, the
comparative economies of I- and tub girder systems should be evaluated on a case-by-case basis,
and the comparisons should reflect the appropriate costs of shipping, erection, future inspection
and maintenance as well as fabrication.

Furthermore, designers should not feel limited by overly-strict reading of the AASHTO design
provisions for tub girders in some cases. For example, there are currently cross-sectional
limitations placed on the use of approximate live load distribution factors for straight tub girders
in the AASHTO LRFD Bridge Design Specifications [1]. Limiting the propgrtions of tub girder

refined analysis is employed; thus the use of a refined analysis method igner to
explore additional, and perhaps more economical, design options.

This design example demonstrates the design of a horizontal pan continuous
composite tub girder bridge with a span arrangement of 160 — 160'-0". This
example illustrates the flexural design of a section in pos 1 cllexural design of a
section in negative flexure, computation of distortional stre ~ ¥csign of the web, the
design of the bottom flange longitudinal stiffgfer, th i
of a top flange lateral bracing member, the desig
and analysis related topics.

The bridge cross-section consists icders with top flanges spaced at 10'-0"
on centers, 12'-6" between the cent ] top tub flanges, and 4'-0"” overhangs for a

loads are not considered. Th to Design Example 1: Three-Span Continuous
Straight Composite I-Gir i n regarding additional load combination cases and

The exa ovided herein comply with the current AASHTO LRFD Bridge
Design Sp n, 2010), but the analysis described herein was not performed as
part of thi e analysis results and general superstructure details contained
within this d fre taken from the design example published as part of the National

Cooperative K
“AASHTO-LR
Report” [2].

way Research Program (NCHRP) Project 12-52 published in 2005, titled
D Design Example: Horizontally Curved Steel Box Girder Bridge, Final



2.0 OVERVIEW OF LRFD ARTICLE 6.11

The design of tub girder flexural members is contained within Article 6.11 of the Fifth Edition of
the AASHTO LRFD Bridge Design Specifications [1], referred to herein as AASHTO LRFD (5"
Edition, 2010). The provisions of Article 6.11 are organized to correspond to the general flow of
the calculations necessary for the design of tub girder flexural members. Most of the provisions
are written such that they are largely self-contained, however to avoid repetition, some portions
of Article 6.11 refer to provisions contained in Article 6.10 for the design of I-girder sections
when applicable (particularly those pertaining to tub girder top flangg design, which is
fundamentally similar to I-girder design). The provisions of Article 6. re organized as
follows:

6.11.1 General
6.11.2 Cross-Section Proportion Limits

6.11.3 Constructibility

6.11.4 Service Limit State

6.11.5 Fatigue and Fracture Limit State

6.11.6 Strength Limit State

6.11.7 Flexural Resistance - Sections in Positive Flexure

6.11.8 Flexural Resistance - Sections in Negg@éive E re
6.11.9 Shear Resistance

6.11.10 Shear Connectors
6.11.11 Stiffeners

rticle 6.11.6.2, does not permit the use of
Appendices A and B because the app ili e provisions to tub girders has not been

steel girders according to the
for steel-bridge superstru rovided in Appendix C. Appendix C provides a

ndamental calculations for flexural members are

Example S@iCHghie ting the provisions of Article 6.10, pertaining to I-girder design,
are provide traight I-girder bridge, and Example 4 for a horizontally curved
I-girder bridy t 8¢l Bridge Design Handbook. This design example will highlight

sions of the AASHTO LRFD (5" Edition, 2010) as they relate to horizontally
design.

several of the
curved tub gird

One significant ®hange in the AASHTO LRFD (5" Edition, 2010) from earlier LRFD
Specifications (prior to third edition) is the inclusion of the flange lateral bending stress in the
design checks. The provisions of Articles 6.10 and 6.11 provide a unified approach for
consideration of major-axis bending and flange lateral bending, for both straight and curved
bridges. Bottom flange lateral bending stresses in tub girders tend to be quite small, due to the
width of the bottom flange, and can typically be neglected. Top flange lateral bending is caused
by the outward thrust due to web inclination, wind load, temporary support brackets for deck
overhangs, curvature, and from loads applied by the lateral bracing system.



In addition to providing adequate strength, the constructibility provisions of Article 6.11.3 ensure
that nominal yielding does not occur and that there is no reliance on post-buckling resistance for
main load-carrying members during critical stages of construction. The AASHTO LRFD (Sth
Edition, 2010) specifies that for critical stages of construction, both compression and tension
flanges must be investigated, and the effects of top flange lateral bending should be considered
when deemed necessary by the Engineer. For noncomposite top flanges in compression,
constructibility design checks ensure that the maximum combined stress in the flange will not
exceed the minimum yield strength, the member has sufficient strength to rgsist lateral torsional
and flange local buckling, and that web-bend buckling will not occur. For ne@somposite bottom
flanges in compression, during critical stages of construction, local bucklind@K the flange is
checked in addition to web bend-buckling resistance. For noncomposite tg
in tension, constructibility design checks make certain that the maximu
not exceed the yield strength of the flanges during construction.

their cross-sections become distorted, resulting in second
Article 6.11.5, longitudinal warping stresses and transverse
distortion shall be considered for:

e Single tub girder in straight or horizontall

e Multiple tub girders in straight bridges tha quirements of Article 6.11.2.3
e Multiple tub girders in horizontally
e Any single or multiple tub at is not fully effective according to

bending stresses due to cross section distortion
shall be considered for fatig Article 6.11.5, and at the strength limit state.
Transverse bending stres, limit state shall not exceed 20.0 ksi. Longitudinal



3.0 DESIGN PARAMETERS

The following data apply to this design example:

Specifications: 2010 AASHTO LRFD Bridge Design Specifications, Customary U.S.
Units, Fifth Edition [1]

Structural Steel: AASHTO M270, Grade 50W (ASTM A709, Grade S0W) uncoated
weathering steel with Fy = 50 ksi, and conservatively F, = 65 ksi

Concrete: £ =4.0 ksi, y =150 pcf

Slab Reinforcing Steel: AASHTO M31, Grade 60 (ASTM A615, Grade 6Wj@ith Fy = 60 ksi
The bridge has spans of 160’-0" —210’-0" — 160’-0" measured along the ce CWithe bridge.
Span lengths are arranged to give relatively equal positive dead load mo g

and center span. The radius of the bridge is 700 ft at the centerline of the b

The out-to-out deck width is 40.5 ft, and the bridge is to be desi \ e traffic lanes.
The roadway is superelevated at 5 percent. All supports are rad g ay. The framing
consists of two trapezoidal tub girders with the top of the : paced 10 ft apart at

the top of the tub and with a deck span of 12.5 ft between t ) crior webs of the two
adjacent tubs. ‘

Structural steel having a specified minimum yiel
The deck is a conventional cast-in-place ck, with a specified minimum 28-day
compressive strength of 4,000 psi ickness is 9.5 inches, and there is no
integral wearing surface assumed. is 4% inches thick, measured from the top
of the web to the bottom of the deck, a roughout the structure. The width of the
computations.

Shear connectors are provided! re length of each top flange, therefore the tub girders
in this example are co e entire span, including regions of negative flexure.
The shear connectors cter by 6 inches in length. All tub girders (whether
straight orgs ct to torsional loading, and the use of shear connectors along the

example, the stee¥ stay-in-place deck forms are used between the top flanges of individual tub
girders and between the top flanges of adjacent girders. Sequential placement of the concrete
deck is considered in this design example.

An allowance for a future wearing surface of 25.0 psf is incorporated in the design. Parapets are
each assumed to weight 495 Ib/ft.



The bridge is designed for HL-93 live load, in accordance with Article 3.6.1.2. Multiple
presence factors are accounted for in the analysis, as specified in Article 3.6.1.1.2 Live load for
fatigue is taken as defined in Article 3.6.1.4. The bridge is designed for a 75-year fatigue life,
and single lane Average Daily Truck Traffic (ADTT)sy in one direction is assumed to be 1,000
trucks per day.

The bridge site is assumed to be located in Seismic Zone 1, so seismic effects are not considered
in this design example.

‘N
\
™




4.0 GENERAL STEEL FRAMING CONSIDERATIONS

Composite tub girder bridges fabricated using uncoated weathering steel have performed
successfully without any interior corrosion protection. However, the interiors of tub girders
should always be coated in a light color to aid visibility during girder inspection. Without owner
direction towards a specific coating and preparation, girder interiors should receive a light brush
blast and be painted with a white or light colored paint capable of telegraphing cracks in the steel
section. Specified interior paint should be tolerant of minimal surface preparation. At the
Engineer’s discretion, an allowance may be made for the weight of the paint

Provisions for adequate draining and ventilation of the interior of the tub As
suggested in the NSBA Publication Practical Steel Tub Girder Design [4]4P

holes should be 1 ' inches in diameter and spaced along the bottom flang@ Esvery S0
feet, and be placed 4 inches away from the web plate. Access holes must{@s idglN0 allow

owever they
olted. Wire mesh
the bottom flange

access for authorized inspectors. Solid doors can be used to clo
should be light in weight, and they should be hinged and loc
screens should always be place over copes and clips in e
drain holes to prevent entry of wildlife and insects. Wire
welding and blasting and have a weave of ap‘xim

Additional detailing guidelines can be fo SHTO/NSBA Steel Bridge
Collaboration’s Website, with particular i i
Design Details [5]. Four other@gtaild
Publication Practical Steel Tub Gir
Practices for Steel Bridge Design,
Structural Committee for Eco
Steel Bridge Collaboration Guj

as Steel Quality Council’s Preferred
Erection [6], the Mid-Atlantic States

lines for

alternative
economical dbsence of site constraints, choosing a balanced span arrangement
for continuou bridges (end spans approximately 80% of the length of the center spans) will
typically provi§@an efficient design. The span arrangement for this example bridge has spans of
160 feet — 210 — 160 feet’. The framing plan of the bridge for this example is shown in
Figure 1.
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Figure 1 Framing Plan of the Tub Girder Bridge (all lengths shown are taken along the

centerline of the bridge)



4.2 Field Section Sizes

The lengths of field sections are generally dictated by shipping (weight and length) restrictions.
Generally, the weight of a single shipping piece is restricted to 200,000 Ibs, while the piece
length is limited to a maximum of 140 feet, with an ideal piece length of 120 feet. However,
shipping requirements are typically dictated by state or local authorities, in which additional
restrictions may be placed on piece weight and length. Handling issues during erection and in
the fabrication shop also need to be considered in the determination of field section lengths, as
they may govern the length of field sections. Therefore, the Engineer ghould consult with
contractors and fabricators regarding any specific restrictions that mighi{\@tluence the field
section lengths.

Field section lengths should also be determined with consideration given of field
splices required, as well as the locations of field splices. It is desirable to Wlices as
close as possible to dead load inflection points, so as to reduce thegl arried by
the field splice. Field splices located in higher moment regions g ite targe, with cost

increasing proportionally to their size. The Engineer should d@i& onomical solution
for the particular span arrangement. For complex and lon ¢ fabricator’s input
can be helpful in reaching an economical solution.

The final girder field sections lengths are sh& plan in Figure 1. The longest
field section is the field section of Girder G2 o i as a length of approximately
116.75 feet.  This field section is also the i section, with a total approximate weight
of 99,000 pounds (including int
details).

In curved girder bridges, the E so consider the girder sweep and the subsequent
total width when determining ield sections. The curvature combined with the
girder length can cause th i too wide to transport, depending on shipping routes
1d section of Girder G2 over the pier, the total width
of the tub girder inclu i nd the width of the top flanges is approximately 13.90

4.3 Bridg i irder Spacing
When develof e bridge cross-section, the designer will evaluate the number of girder lines
required, relatig@\ to the overall cost. Specifically, the total cost of the superstructure is a
function of stec@uantity, details, and erection costs. Developing an efficient bridge cross-
section should al30 give consideration to providing an efficient deck design, which is generally
influenced by girder spacing and overhang dimensions. Specifically, with the exception of an
empirical deck design, girder spacing significantly effects the design moments in the deck slab.
In the case of tub girder bridges, which are comprised of torsionally stiff units, the deck should
be designed to accommodate the transverse bending associated with differential girder deflection
as shown in Figure C9.7.2.4-1 of the AASHTO LRFD (5™ Edition, 2010). Larger deck overhangs
result in a greater load on the exterior web of the tub girder. Larger overhangs will increase the



bending moment in the deck, caused by the cantilever action of the overhang, resulting in
additional deck slab reinforcing for the overhang region of the deck.

In addition, wider deck spans between top flanges can become problematic for several reasons.
Some owners have very economical deck details standards that may not be suited, or even
permitted, for wider decks spans. At the same time, wider deck spans are progressively more
difficult to form and construct. Wider deck spans also limit options for future deck replacement
and partial deck removal.

As shown in Figure 2, the example bridge cross-section consists of two tra
with top flanges spaced at spaced at 10.0 feet” on centers, 12.5 feet between
adjacent top flanges with 4.0 feet deck overhangs and an out-to-out deck w;z
37.5 feet roadway width can accommodate up to three 12-foot-wide des
total thickness of the cast-in-place concrete deck is 9.5 inch including witigmo i yearing
surface. The concrete deck haunch is 4 inch deep measured fi bedWeb to the
bottom of the deck.

goidal tub girders

g _centerline of
feet. The

Qut to Out = 406"

Road =3
3 Lanes

Typ. Plate Diaphragm
at Bearings

12"6"

Cross Section of the Tub Girder Bridge [2]

1¢' Q" R A

4.4 Internal ajg@ External Cross-Frame Bracing

Internal intermediate cross-frames are provided in tub girders to control cross-sectional
distortion. Cross-sectional distortion is caused by torsional loads that do not act on the tub girder
in the same pattern as the St. Venant shear flow, which is uniformly distributed along the
circumference of the tub girder cross-section. Cross-sectional distortion introduces additional
stresses in the tub girder and, therefore, should be minimized. Distortional stresses can be
neglected in design if a sufficient number of internal cross-frames with adequate stiffness are
provided. At a minimum internal cross-frames shall be placed at points of maximum moment
within a span and at points adjacent to field splices in straight bridges. Spacing of internal
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diaphragms, considered during development of the framing plan, should be influenced by factors
such as the angle and length of lateral bracing members.

Most cross-frames in modern tub girder bridges are K-frames, which allow better access during
construction and inspection. Slenderness requirements (KL/r) generally govern the design of
cross-frame members, however handling and strength requirements should always be
investigated. When refined analysis methods are used and the cross-frame members are included
in the structural model to determine force effects, the cross-frame members are to be designed
for the calculated force effects. Consideration should be given to the cross-fiame member forces
during construction. When simplified analysis methods are used, such crosS¥@@ame forces due to
dead and live loads are typically difficult to calculate. Therefore, the crosS#l@me members
should at least be designed to transfer wind loads and carry constructigf’foad e to deck
overhang brackets, control tub girder cross section distortion, and satisfy aropriate‘@@gderness
requirements.

rotation of individual tub girders during deck placement. cd Bfge, when the tub
girders are fully closed and the concrete deck effectivel iflers together, twist
rotation is expected to be small and external cross-frames ar

External intermediate cross-frames typically&l' nfiguration, with depth closely
matching the girder depth for efficiency and sim i orting details. At locations of
external intermediate cross-frames, there s ing inside the tub girder to receive the

ck has hardened. However, extreme
removal of external intermediate cross-
hcation Practical Steel Tub Girder Design [4] offers

care should be taken in evaluating the
frames has on the structure. Th
discussion on this topic.

Based on the precedin si jons, tW¥ internal cross-frame spacings shown on the framing
osen example. The tub girders are braced internally at
-type cross-frames, where the diagonals intersect the top strut at the
oss-frames are uniformly spaced in the end span and center span
r e spacing in the center span positive flexure region is 15 feet.
The top stru dual struts and the ones that are part of internal cross-frames also
C top flange lateral bracing system. Article C6.11.3.2 allows the Engineer, at
consider as brace points, the locations where top flange bracing is attached to
e only struts exist between the flanges.

The design of the internal cross frame members are not shown in this example. Internal cross

frames were modeled as truss members in the three-dimensional analysis, with a cross-sectional
area of 5.0 square inches.

11



4.5 Diaphragms at the Supports

Internal diaphragms at points of support are typically full-depth plate girder sections with a top
flange. These diaphragms are subjected to bending moments which result from the shear forces
in the inclined girder webs. If a single bearing is used at the support, and the bearing sole plate
does not span the full width of the girder bottom flange, bending of the internal diaphragm over
the support will result, causing bending stresses in the top flange of the diaphragm and and the
bottom flange of the tub girder. Additionally, a torsional moment reaction in the tub girder at the
support will induce a shear flow along the circumference of the internal digghragm. In order to
provide the necessary force transfer between the tub girder and the inte diaphragms, the
internal diaphragms should be connected to the web and top flanges of the tub BT

Inspection access at the interior supports must also be provided through t
Typically, an access hole will be provided within the internal diaphragm; : ust be

Similar to internal diaphragms, external diaphragms are typi
but with top and bottom flanges. As acknow@dged 4
Girder Design [4], the behavior of an ext a point of support is highly
dependent on the bearing arrangement at that bearings used at each girder
sufficiently prevent transverse rotation, € ragms at the point of support should
theoretically be stress free. f a dual bearing system resists the

publication Practical Steel Tub

In accordance with Article 6. ernal and external diaphragms are provided at
the support lines in this degd . web plates for the internal and external diaphragms
in the three-dimensiona ed to have a thickness of 0.5 inches. The external

diaphragm top and b sumed to have an area of 8.0 square inches for each
flange. F e no intermediate external braces provided between the tub girders
in this de

In accordance \@lith Article 6.7.5.3, for horizontally curved tub girders, a full-length lateral
bracing system @@ween common flanges of individual tub sections shall be provided, and the
stability of compfession flanges between panel points of the lateral bracing system shall be
investigated during the deck placement. Generally, lateral bracing will not be required between
adjacent tub girders.

Top flange lateral bracing creates a quasi-closed section, which increases the torsional stiffness
of tub girder sections during erection, handling, and deck casting. For composite tub girders
closed by the deck slab, the cross-section of the tub is torsionally stiff. However, prior to
placement of the deck slab the open tub is torsionally more flexible and subject to rotation or

12



twist. The top flange lateral bracing, then, forms a quasi-closed section resisting shear flow from
the noncomposite loading.

Top lateral bracing is to be designed to resist shear flow in the pseudo box section due to
factored loads before the concrete deck has hardened or is made composite. Forces in the
bracing due to flexure of the tub girder should also be considered during construction based on
the Engineer’s assumed construction sequence. The top lateral bracing member forces can be
determined using a refined three-dimensional analysis where the bracing members are explicitly
modeled. Or, in the absence of a refined analysis, design equations havg been developed to
evaluate the bracing member forces due to tub girder major-axis bending [8

The lateral bracing is typically comprised of WT or angle sections and is oured in a
single diagonal arrangement, such as a Warren-type or Pratt-type truss g§§tem. diagonal

divided into multiple lateral bracing panels. Such framing arra
transverse strut at intermediate brace locations. The plane o
system should be detailed to be as close as possible to the i op flanges so as to
increase the torsional stiffness of the section, while at i educing connection
eccentricities and excessive out-of-plane be
bracing is often attached directly to the top flarlg

Single diagonal top lateral bracing systems over X-type systems because there are

fewer pieces to fabricate and erec Warren-type and Pratt-type systems
offer some advantages with regard t ach%op flange lateral bracing system. In a
Warren-type system the bracing memb ctions along the length of the bridge (see
Figure 3). In most cases, the will alternate from tension to compression along

length of bridge. The tension
axis bending and girder toggio pe system the bracing members are often orientated
ate them so that they are primarily in tension, thus
e 4). Under pure torsional loading, this may hold true,
however the ing is not solely subject to torsional loading and the force in the
bracing nigh 1 nced by the major-axis bending moment in the non-composite
girders. t-type system, some bracing member will be subjected to

0 be accounted for by the designer.

- - Abuy,
l‘ !.

Figure 3 Plan View of a Warren-type truss lateral bracing system [1]
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design example. The bracing is assumed to be directly connected to the flan¥
cross frame and internal top strut, thus the bracing is in the plane of thess
connection of the top flange lateral bracing directly to the flanges may req
might otherwise be required by design, however this approach may stil

Truss members with an area of 8.0 square inches were assumed
members in the three-dimensional analysis. However, desi
is required, which has a cross-sectional area of 14.3 squa
example, the designer should perform a second 1terat10n 0
sectional area, as the larger cross-sectional
system in the noncomposite condition.

1th the larger cross-
load dlstrlbutlon in the bracing

14



5.0 FINAL DESIGN
5.1 AASHTO LRFD Limit States

AASHTO LRFD (5™ Edition, 2010) requires that bridges be designed for specified limit states to
achieve the objectives of constructibility, safety, and serviceability. These objectives are met
through the strength, service, fatigue and fracture, and extreme-event limit states. These limit
states are intended to provide a safe, constructible, and serviceable bridge capable of carrying the
appropriate design loads for a specified service life. A brief discussion ofgthese limit states is
provided herein, but the reader can refer to Steel Bridge Design Handbook Tq@ic on Limit States
for more detailed discussion.

5.1.1 Strength Limit State

The strength limit states ensure strength and stability of the bridg nder the
statistically predicted maximum loads during the 75-year life o rength limit
states are not based upon durability or serviceability. There are trength limit state

g the strength of a component
under normal loading, in the absence of wind.” Tgche th of a member or component
under special permit loadings in the absence of II load combination is used.
The Strength III load combination is used f
bridge is exposed to a wind velo
The Strength IV load combination o brtdges with very high dead-to-live load
force effect ratios. The Strength V k
component assuming the bridg
normal loading.

wind velocity equal to 55 miles per hour under

5.1.2 Service Limit Sta

The servicgalimi s the durability and serviceability of the bridge and its components
under typ\e : traditionally termed service loads. The AASHTO LRFD (5th
Edition, 2088 rvice limit state load combinations of which only two are

The Service | |§@ combination relates to normal operational use of the bridge and would be used
primarily for crd@h control in reinforced concrete structures. However, the live load portion of
the Service I loa® combination is used for checking live load deflection in steel bridges. The
Service II load combination only applies to steel superstructures, and is intended to control
yielding of steel structures and slip of slip critical connections due to vehicular live load.

5.1.3 Fatigue and Fracture Limit State

The fatigue and fracture limit state is treated separately from the strength and service limit states
since it represents a more severe consequence of failure than the service limit states, but not
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necessarily as severe as the strength limit states. Fatigue cracking is certainly more serious than
loss of serviceability as unchecked fatigue cracking can lead to brittle fracture, yet many
passages of trucks may be necessary to cause a critically-sized fatigue crack while only one
heavy truck can lead to a strength limit state failure. The fatigue and fracture limit state is only
applicable where the detail under consideration experiences a net applied tensile stress.

The Fatigue I load combination is related to infinite load-induced fatigue life, and the Fatigue II
load combination is related to finite load-induced fatigue life.

5.1.4 Extreme Event Limit State

Structural survival of the bridge must be ensured during an extreme event,

earthquake,
flood, vessel collision, vehicle collision, or ice flow. The Extreme Even 1

related to earthquake loading, while the Extreme Event II load combinatiQ ¢ other
possible extreme events.

5.1.5 Constructibility

Although not a specific limit state, the bridge must be safel {g@rect e adequate strength

and stability during all phases of constructiq@iaas cgmstructi
the AASHTO LRFD (5™ Edition, 2010). Specifi
and 6.11.3 for I- and tub-girders, respecti
constructibility checks are typically perfg steel section only under the factored
noncomposite dead loads using ad combinations, especially when
considering the deck placement sequ 1 .2 provides guidance for the load factors to
use for construction loads.

ty is one the basic objectives of
ns are given in Articles 6.10.3
sure constructibility.  The

5.2 Loads
5.2.1 Dead Load

As definedml dead loads are permanent loads that include the weight of all
urtenances and utilities attached to the structure, earth cover,

wearing su averlaWs and planned widenings.

Article

The componeé
wearing surfad
design, DC is fu

ad load (DC) consists of all the structure dead load except for non-integral
if anticipated, and any specified utility loads. For composite steel-girder
er divided into:

e Non-composite dead load (DC)) is the portion of loading resisted by the non-composite
section. DC; represents the permanent component load that is applied before the concrete
deck has hardened or is made composite.

e Composite dead load (DC,) is the portion of loading resisted by the long-term composite
section. DC; represents the permanent component load that is applied after the concrete
deck has hardened or is made composite.
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The self weight of the steel girders, cross-frames, diaphragms, lateral bracing and other
attachments is applied to the erected steel structure in the three-dimensional model through the
use of body forces in the various finite elements used to model the structure. A steel density of
490 pounds per cubic foot is assumed for all structural steel components. The analysis
assumption requires that the steel be fit and erected in the no-load condition. The steel self-
weight is a non-composite dead load (DC,).

The concrete deck weight is assumed to be placed at one time on the noncomposite steel
structure for the strength limit state checks. A separate deck placement gequence analysis is
performed, where analysis results are used for constructibility checks. deck placement
sequence is discussed later in this section. The deck weight includes the g8

haunches, as well as an assumed weight of 15 pounds per square foot fo Slanent metal
deck forms inside the tub girders and between the two tub girders. The weight,
haunch weight, and permanent metal deck form weight are all considered e dead
loads (DC,).

The composite dead load (DC,), also referred to as a superi ¢ load, includes the
weight of the parapets. The parapets are assumed to wef linear foot. The
parapet weight is applied as line loads along the edges ments in the three-
dimensional analysis. ‘

The component dead load (DW) consists of the
and any utilities, which can also be consid posed dead loads. DW is applied as a

ple, a future wearing surface of 30

pounds per square foot of roadway 1 1es are included.

For computing flexural stresse ite dead loads DC, and DW, the stiffness of the
long-term composite section tive flexure is calculated by transforming the
concrete deck using a mo tio of 3NMArticle 6.10.1.1.1b). In regions of negative flexure,
the long-term composit 1 to consist of the steel section plus the longitudinal
reinforcement within 1 the concrete deck (Article 6.10.1.1.1¢).

The deck is laced in the following sequence for the constructibility limit state
design check ich is also illustrated in Figure 5. The concrete is first cast from the left
abutment to a \@kation near the dead load inflection point in Span 1. The concrete between
oad inflection points in Span 2 is cast second. The concrete beyond the
approximate dead load inflection point to the abutment in Span 3 is cast third. Finally, the
concrete over the two piers is cast. In the analysis, earlier concrete casts are made composite for
each subsequent cast.

For the constructibility limit state design checks, the noncomposite section is checked for the

moments resulting from the deck placement sequence or the moments computed assuming the
entire deck is cast at one time, whichever is larger.
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The deck load is assumed to be applied through the shear center of the interior girders in the
analysis. However, the weight of the fresh concrete on the overhang brackets produces lateral
force on the flanges of the exterior girders. This eccentric loading and subsequent lateral force
on the flanges must be considered in the constructibility limit state design checks.

LY
3
g

(1) POUR SEQUENCE

LEGE
ZAPOUR LIMITS

Figure 5 Diagram showing deck placement sequence
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5.2.3 Live Load

Live loads are assumed to consist of gravity loads (vehicular live loads, rail transit loads and
pedestrian loads), the dynamic load allowance, centrifugal forces, and braking forces. Live loads
illustrated in this example include the HL-93 vehicular live load and a fatigue load, with the
appropriate dynamic load allowance and centrifugal force (see Section 5.3) effects included.

Influence surfaces are utilized to determine the live load force effects in this design example.
More details regarding influence surfaces and the live load analysis assgeciated with the 3D
analysis model are provided in Section 6.1.2 of this example.

Live loads are considered to be transient loads applied to the short-term g n) section
For computing flexural stresses from transient loading, the short-term co ction in
regions of positive flexure is calculated by transforming the concrete deck r ratio
of n (Article 6.10.1.1.1b). In regions of negative flexure, the sho section is
assumed to consist of the steel section plus the longitudinal rej ) i e effective

width of the concrete deck (Article 6.10.1.1.1c), except as pe c ise for the fatigue

When computing longitudinal flexural stressgg ck (see Article 6.10.1.1.1d), due
to permanent and transient loads, the short-te should be used.

Design Vehicular Live Load (Article 3 6.1.
The design vehicular live load is
following placed within each design
e adesign truck or design tandem:
e adesign lane load.

The design vehicular live load @ discussedain il within Example 1 of the Steel Bridge Design
Handbook.

and consists of a combination of the

Fatigue Load (Article .

The vehic i ecking fatigue consists of a single design truck (without the lane

load) witlk Onste pacing of 30 feet (Article 3.6.1.4.1). The fatigue live load is
i % e 1 of the Steel Bridge Design Handbook.

5.3 Centrifil orce Computation

The centrifugal @ice is determined according to Article 3.6.3. The centrifugal force has two
components, the rfadial force and the overturning force. The radial component of the centrifugal
force is assumed to be transmitted from the deck through the end cross frames or diaphragms and
to the bearings and the substructure.

The overturning component of centrifugal force occurs because the radial force is applied at a
distance above the top of the deck. The center of gravity of the design truck is assumed to be 6
feet above the roadway surface according to the provisions of Article 3.6.3. The transverse
spacing of the wheels is 6 feet per Figure 3.6.1.2.2-1. The overturning component causes the
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exterior (with respect to curvature) wheel line to be more than half the weight of the truck and
the interior wheel line to be less than half the weight of the truck by the same amount. Thus, the
outside of the bridge is more heavily loaded. The effect of superelevation, which reduces the
overturning effect of centrifugal force, is considered, as permitted by Article 3.6.3. Figure 6
shows the relationship between the centrifugal force and the superelevation effect. The
dimensions denoted by s and h in Figure 6 are both equal to 6 feet.

ce shall be taken as the product of the axle weights of
the factor C, taken as:

Eq. (3.6.3-1)

f = 4/3 for load combinations other than fatigue and 1.0 for fatigue
v = highway design speed (ft/sec)

g = gravitational acceleration = 32.2 ft/sec’

R = radius of curvature of traffic lane (ft)

Use the average bridge radius, R = 700 ft in this case. For the purpose of this design example,
the design speed is assumed to be 35 mph = 51.3 ft/s. Therefore, for the HL-93 Design Truck:
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[ 513
3 {(32 .2)(700 )

| &

C = —|:0.156
J

The next step is to compute the wheel load reaction, Rcp and Rcg, due to centrifugal force
effects, as shown in Figure 6. In the case of the design truck, the wheel spacing, s, and the height
of the radial force, h, are both equal to 6.0 feet. Therefore, summing moments about Point A
(Figure 6) and enforcing equilibrium, the wheel load reactions, R¢p and —Rcr are simply equal to
C multiplied by W, as follows:

h cos (0)

Ry, =-R,; =C*W) ——=C=*W =0.156 W
2 S*cos(e)
(2 )

where:
W = axle weight (kips)

Rcyr is an upward reaction for the left wheel, and Rcg is an os®downward reaction
for the right wheel.

n the individual wheel load
rce effects. For the 5% deck

As permitted by Article 3.6.3, the effects of,
reactions can be computed and combined with t
cross slope, the angle 0 is equal to:

ntrifuga

0 =tan™ (0.05)=2.86°

s. and Rgg, as shown in Figure 7, are computed
follows:

*Wcos (2.86 °) + (6)sin(2.86 °)}w

\2)
= 0.550W

(6 )cos (2.86 °)
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Figure 7 Effects of Superelevati

Load Reactions

nit wheel load factors can be computed
to centrifugal force and superelevation

e appropriate wheels in the analysis. Unit
trifugal force and sueperlevation can be

am

For a refined analysis, as used in this desi
based on the sum of the wheel

effects. The unit wheel load factors

as there are two wheel loads
are computed as follows:

4

e 8, FL and Fr represent the factors that must be multiplied by the left wheel

As shown in Fi¥
d, respectively, in the analysis to take into account the combined effects of

and right wheel g2

both centrifugal force and superelevation. In this case, since Fy is greater than Fg, the outermost
girder will receive a slightly higher load and the innermost girder will receive slightly lower load
from the design truck. Therefore, it is also necessary to compute the condition with no
centrifugal force, i.e., a stationary vehicle, and select the worst case. In the live load analysis
performed for this design example, force effects from an analysis due to live load cases with
centrifugal force effects included (Fi. equals 1.212 and Fg equals 0.788) are compared to force
effects due to cases with no centrifugal force effects included (Fp and Fg equal 1.0), and the

maximum/minimum force effect is selected.
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Figure 8 Unit Wheel Load Factors due to ine of Centrifugal Force and

In accordance with Article C3.6.3,
lane load, as the spacing of vehicles

required to be applied to the design
assumed to be large, resulting in a low

From separate calculationg ft i limit state, similar to those shown previously, the
and the unit wheel load factors, Fy and Fg, are 1.134

AASHTO L 2010) Table 3.4.1-1 is used to determine load combinations for
o Article 3.4. Strength I loading is used for design of most members for the
. However, Load Combinations Strength III and V and Service I and II from
Iso checked for temperature and wind loadings in combination with vertical

strength limit
Table 3.4.1-1 a
loading.

The following load combinations and load factors are typically checked in a girder design similar

to this design example. In some design instances, other load cases may be critical, but for this
example, these other load cases are assumed not to apply.
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From Table 3.4.1-1 (minimum load factors of Table 3.4.1-2 are not considered here):

Strength T nx [1.25(DC) + 1.5(DW) + 1.75(LL + IM) + CE + BR) + 1.2(TU)]

Strength III 1 x [1.25(DC) + 1.5(DW) + 1.4WS) + 1.2(TU)]

Strength V. 1 x [1.25(DC) + 1.5(DW) + 1.35((LL + IM) + CE + BR) + 0.4(WS) + 1.0(WL) +
1.2(TU)]

ServiceI ~ nx [DC + DW + (LL + IM) + CE + BR + 0.3(WS) + WL + 1.2(TU)]

Service 11 nx [DC+DW + 1.3((LL + IM) + CE + BR) + 1.2(TU)]
Fatigue I nx [1.5(LL + IM) + CE)]
Fatigue II nx [0.75((LL + IM) + CE)]
where:
n = Load modifier specified in Article 1.3.2
DC = Dead load: components and attachments
DW = Dead load: wearing surface and utilities
LL = Vehicular live load
IM = Vehicular dynamic load allowance
CE = Vehicular centrifugal force
WS = Wind load on structure ‘
WL = Wind on live load
TU = Uniform temperature

BR = Vehicular braking force

In addition to the above load loal combination is included for the

constructibility limit state defined in A
Construction Strength I: n x [1

where:

DCai=_ Dead loa

C ruction loads
W r camstruction conditions from an assumed critical direction.
ind may be less than that used for final bridge design.

In this design
construction an

mple, it has been assumed that there is no equipment on the bridge during
wind load on the girders is negligible.

For the purpose of this example, it has been assumed that the Strength I load combination
governs for the strength limit state, so only Strength I loads are checked in the sample
calculations for the strength limit state included herein. Also, the load modifier, n, is assumed to
be 1.0 throughout this example unless noted otherwise. Furthermore, from a separate analysis,
the girder demands due to thermal loading are determined to be quite small, and are neglected
throughout these computations.
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6.0 ANALYSIS

Article 4.4 of the AASHTO LRFD (5" Edition, 2010) requires that the analysis be performed
using a method that satisfies the requirements of equilibrium and compatibility, and utilizes
stress-strain relationships for the proposed materials. Article 4.6.1.2 provides additional
guidelines for structures that are curved in plan. The moments, shears, and other force effects
required to proportion the superstructure components are to be based on a rational analysis of the
entire superstructure. Equilibrium of horizontally curved I-girders is developed by the transfer of
load between the girders, thus the analysis must recognize the integrated bghavior of structural
components. Equilibrium of curved tub girders can be somewhat lesSq@lgpendent on the
interaction between girders, as there are typically fewer external bracings bet\¥W@@a adjacent tub
girders as compared to I-girder bridges.

Furthermore, in accordance with Article 4.6.1.2, the entire superstructure, [wIngs, is
to be considered as an integral structural unit in the analysis. (
represent the articulations provided by the bearings and/or ig
design.

In most cases, small deflection elastic theory is acceptable fi
steel girder bridges. However, curved girde
when the girders are insufficiently braced
appropriately recognized by small deflection t
typically sufficient bracing provided durin | ere
use of small deflection elastic the

rs, are prone to deflect laterally
d this behavior may not be
tub girder bridges, there is
so that deflections do not invalidate the

In general, three levels of analysis e i lly curved girder bridges: approximate
1 ethods of analysis, and 3D (three-dimensional)
methods of analysis. The V-1 M/R methods are approximate analysis method
that are typically used t I-girder bridges and curved tub girder bridges,
respectively. Both met based on the understanding of the distribution of
forces through the cu i ¥ The two primary types of 2D analysis models are the

s model and the plate and eccentric beam model. In 2D analysis
cross frames and diaphragms are modeled using beam elements,
plane. A 3D model recognizes the depth of the superstructure,
ing a plate or shell element for the girder webs and internal and

methods of anal
Analysis.

1s can be found in the Steel Bridge Design Handbook topic on Structural

6.1 Three-Dimensional Finite Element Analysis
A three-dimensional finite element analysis is used to analyze the superstructure in this design

example. The girder webs and bottom flanges are modeled using plate elements. The top flanges
of each tub girder are modeled with beam elements. The girder elements connect to nodes that
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are placed in two horizontal planes, one plane at the top flange and one plane at the bottom
flange. The horizontal curvature of the girders is represented by straight elements that have
small kinks at the nodes, rather than by curved elements. Nodes are placed on all flanges along
the girder at each internal cross frame and top flange lateral bracing location, and typically at the
middle of each top flange lateral bracing bay.

The composite deck is modeled using a series of eight-node solid elements attached to the girder
top flanges with beam elements, which represent the shear studs.

for rotation. If a guided bearing is orientated along the tangential axis of @t tiffness of
zero would be assigned to the stiffness in the tangential direction. The s i
and supporting structure if not explicitly modeled, would be assigned to th§
to the tangential axis.

Internal cross frame members are modeled with individual truss s c@ilhected to the nodes
at the top and bottom flange of the girders. Internal soli ragma@at the supports are
modeled with a single plate element. External solid-pl i at the supports are
modeled using three full depth plate element* the diaphragm, and three beam
elements placed at the top and bottom of the We top and bottom flanges of the
diaphragm. Since the plate and beam element ic three elements are used to
model the web and flanges of the externgladiaph to allow for the possibility of reverse
curvature.

Top flange lateral bracing members a individual truss elements connected to

The orientation and 1 arings affects the behavior of most girder bridges for
most loa iti is particularly true for curved and skewed girder bridges.
Furtherm i es on or two bearings can be use at each tub girder at each
support

The use of t rings to support an individual girder at a support allows the girder torsion to
d through the force couple provided by the bearings, and reduces the reaction
demand in the ings. Two bearing systems typically work well with radial supports, but are
impractical with¥supports skewed more than a few degrees where the tub girder and/or
diaphragms stiffness work against uniform bearing contact during various stages of girder
erection and deck slab construction [4].

The use of one bearing to support an individual girder at a support optimizes contact between the

girder and the bearing. One bearing systems also tend to be more forgiving of construction
tolerances and, for skewed supports one bearing systems are demonstrably better than two
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bearing systems [4]. A disadvantage of one bearing systems is that stiff cross frames or
diaphragms between girders are required to resolve the girder torsion into the bearings.

In this example, two bearings are used at each girder support location. The centerline of each
bearing is located 28.5 inches from the girder centerline at the support. Furthermore, the
bearings at Pier 1 are assumed fixed against translation in both the radial and longitudinal
directions (Fixed Bearing). The bearings at the abutments and Pier 2 are assumed fixed against
radial movement but free in the longitudinal direction (Guided Bearing). The longitudinal
direction at each support varies, as in this case the longitudinal direction is tgken along a straight
line chord line between fixed support (Pier 1) and each expansion bea Curved girder
bridges do not expand and contract along the girder line, but more so along tijSs@orementioned
chord lines. Orientating the bearings in the manner discussed signj
longitudinal stresses in the girders that can occur due to thermal loading. e to the
bearing orientation and from a separate analysis, the girder demands due jqing are
determined to be quite small, and are neglected throughout thes j
the thermal demands must be considered and properly addressed

6.1.2 Live Load Analysis

The use of live load distribution factors is tyf riate for curved steel tub girder
bridges, because these structures are best anal? erefore, influence surfaces are
most often utilized to more accurately determi orce effects in curved girder
bridges. Influence surfaces are an extensio infl
only considers the longitudinal po

Influence surfaces provide influence or entire deck. The influence ordinates are
determined by applying a serie | loads, one at a time, at selected longitudinal and
transverse positions on the byilfge deck The magnitude of the response for the unit
vertical load is the magnit if@lte of the influence surface for the particular response

at the point on the dec applied. The entire influence surface is created by
Specified live loads are then placed on the surface,
| locations (maximum and minimum effects), as allowed by the

wheel loads tt eir respective ordinate.

In curved girder\@idges, influence surfaces are generally needed for all live load force results,
such as major-a¥s bending moment, minor-axis bending moments, girder shear, reactions,
torques, deflections, cross frame forces, diaphragm forces, lateral bracing forces, etc.

Unless noted otherwise, all live load force effects in this example are computed using influence
surfaces, developed using the three-dimensional analysis. The dynamic load allowance (impact)
is included in the analysis, and is applied in accordance with Article 3.6.2 for strength, service,
and fatigue as required. Multiple presence factors are also included within the analysis, and thus
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are incorporated into the analysis results. Also, as appropriate, centrifugal force effects are also
included in the analysis, using wheel load factors as shown in Section 5.3 of this design example.

6.2 Analysis Results

This section shows the results from the three-dimensional analysis of the superstructure.
Analysis results are provided for the moments, shears, and torques for girders G1 and G2. All
analysis results are unfactored. Live load results included multiple presence factors, dynamic
load allowance (impact), and centrifugal force effects.

57 feet from
results are
ks design

Specific analysis results for design Section G2-1, which is located approximg
the centerline of the bearings at abutment 1, are provided in Table 7. Th
used in the design computations associated with Section G2-1, provided |

)
N
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Table 1 Girder G1 Unfactored Shears by Tenth Point

Girder G1 Unfactored Shears

10th Span Dead Load LL+l Fatigue LL+l
Point Length | DClgreg | DCleonc DC2 DW Pos. Neg. Pos. Neg.
(ft) (kip) (kip) (kip) (kip) (kip) (kip) (kip) (kip)
0 0.00 27 114 25 33 139 -24 52 -4
1 15.74 19 80 12 15 115 -29 41 -6
2 31.49 10 45 8 10 94 -35 34 -9
3 47.23 5 23 5 6 78 -41 3 -12
4 62.97 -6 -25 -3 -4 53 -52 -16
5 78.71 -11 -44 -6 -7 40 -63 -22
6 94.46 -16 -69 -8 31 -27
7 110.20 -23 -98 -13 -34
8 125.94 -28 -116 -18 -40
9 141.69 -34 -137 -24 -43
10 157.43 -44 -171 -40 -53
10 0.00 45 175 41 -4
11 20.66 31 128 2 -6
12 41.33 25 110 16 -7
13 61.99 17 72 10 -12
14 82.65 11 E 78 -45 27 -15
15 103.31 0 58 -57 22 -22
16 123.98 -11 43 -78 15 -27
17 144.64 -17 36 -101 12 -31
18 165.30 -25 26 -124 6 -39
19 18596 [ -31 || -31 23 -140 6 -46
20 206.63 -55 14 -166 4 -55
20 0.00 54 167 -15 56 -4
21 32 128 -19 43 -7
22 18 23 116 -21 40 -7
23 13 17 101 -25 34 -10
24 8 11 83 -31 27 -13
25 6 7 64 -38 22 -16
26 3 4 51 -52 16 -22
27 -5 -6 41 -77 12 -28
28 . -8 -10 32 -92 9 -34
29 141.69 -19 -80 -12 -16 27 -113 6 -41
30 157.43 -27 -114 -25 -34 24 -139 4 -52
Note:  Reported shears are the vertical shears and are for major-axis bending plus torsion in the critical

tub girder web.
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Table 2 Girder G2 Unfactored Shears by Tenth Point

Girder G2 Unfactored Shears

10th Span Dead Load LL+l Fatigue LL+l
Point Length | DClgreg | DCleonc DC2 DW Pos. Neg. Pos. Neg.
(ft) (kip) (kip) (kip) (kip) (kip) (kip) (kip) (kip)
0 0.00 31 110 39 52 128 -26 61 -12
1 16.26 19 74 17 22 110 -29 52 -12
2 32.51 11 44 11 15 93 -35 44 -12
3 48.77 5 21 6 8 75 -44 -12
4 65.03 -7 -26 -3 -5 54 -52 -18
5 81.29 -11 -45 -6 -8 40 -67 -27
6 97.54 -17 -69 -12 36 -34
7 113.80 -24 -97 -17 -43
8 130.06 -29 -117 -22 -49
9 146.31 -35 -137 -27 -53
10 162.57 -46 -185 -41 -61
10 0.00 47 185 44 -4
11 21.34 32 130 2 -4
12 42.68 26 105 22 -9
13 64.01 17 69 15 -13
14 85.35 12 78 -46 33 -16
15 106.69 0 57 -57 24 -24
16 128.03 -12 46 -78 16 -33
17 149.36 -17 41 -99 13 -41
18 170.70 -26 33 -120 9 -50
19 19204 | -32 || -37 22 -135 4 -55
20 213.38 -58 14 -159 4 -64
20 0.00 55 158 -14 64 -4
21 35 128 -15 53 -4
22 22 29 115 -26 49 -7
23 17 23 102 -33 41 -12
24 12 16 85 -36 33 -13
25 6 8 67 -40 27 -18
26 3 5 52 -54 18 -25
27 -6 -8 44 -75 12 -36
28 . -11 -15 34 -93 12 -44
29 146.31 -19 -74 -17 -22 28 -111 12 -52
30 162.57 -31 -110 -39 -52 26 -129 12 -61

Note:  Reported shears are the vertical shears and are for major-axis bending plus torsion in the critical
tub girder web.
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Table 3 Girder G1 Unfactored Major-Axis Bending Moments by Tenth Point

Girder G1 Unfactored Major-Axis Bending Moments

10th Span Dead Load LL+l Fatigue LL+l
Point Length | DClgreg | DCleonc DC2 DW Pos. Neg. Pos. Neg.
(ft) (kip-ft) | (kip-ft) | (kip-ft) | (kip-ft) | (kip-ft) | (kip-ft) | (kip-ft) | (kip-ft)
0 0.00 0 0 0 0 0 0 0 0
1 15.74 521 2191 340 450 2472 -469 748 -98
2 31.49 882 3666 592 785 4330 -938 -196
3 47.23 1049 4321 724 960 5412 -293
4 62.97 1047 4320 734 972 5863 -385
5 78.71 851 3503 620 821 5777 -471
6 94.46 493 2043 387 514 5189 553
7 110.20 -75 -315 36 a7 -667
8 12594 | -837 | -3461 | -434 576 | 2604 | -2 -813
9 141.69 -1781 -7206 -1014 -1343 -991
10 157.43 -2969 -11629 -1762 -2335 231 -1249
10 0.00 -2969 -11629 -1762 231 -1249
11 20.66 -1422 -5845 -80 - | 1N 363 -810
12 41.33 -326 -1516 -95 924 -618
13 61.99 493 1324 -470
14 82.65 977 5926 -2008 1556 -367
15 103.31 1118 6304 -1749 1616 -279
16 123.98 976 5928 -2013 1556 -369
17 144.64 492 4775 -2279 1326 -471
18 165.30 -327 3000 -3021 923 -616
19 185.96 -1064 1315 -4421 381 -810
20 206.63 -2336 1062 -7788 233 -1230
20 0.00 -2336 1062 -7788 233 -1230
21 5.74 -1345 1248 -5556 270 -997
22 -436 -577 2591 -4532 714 -810
23 34 46 4099 -3900 1107 -665
24 386 511 5181 -2783 1367 -551
25 618 819 5769 -2328 1502 -462
26 732 971 5855 -1868 1544 -378
27 723 958 5405 -1402 1477 -286
28 . 591 784 4326 -993 1252 -191
29 141.69 521 2189 339 449 2470 -466 748 -96
30 157.43 0 0 0 0 0 0 0 0
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Table 4 Girder G2 Unfactored Major-Axis Bending Moments by Tenth Point

Girder G2 Unfactored Major-Axis Bending Moments

10th Span Dead Load LL+l Fatigue LL+l
Point Length | DClgreg | DCleonc DC2 DW Pos. Neg. Pos. Neg.
(ft) (kip-ft) | (kip-ft) | (kip-ft) | (kip-ft) | (kip-ft) | (kip-ft) | (kip-ft) | (kip-ft)
0 0.00 0 0 0 0 0 0 0 0
1 16.26 555 2268 351 465 2606 -484 796 -95
2 32.51 938 3868 610 808 4559 -967 -191
3 48.77 1116 4632 742 984 5687 -289
4 65.03 1115 4633 745 988 6152 -390
5 81.29 905 3780 622 824 6059 -498
6 97.54 525 2207 373 5434 -616
7 113.80 -79 -256 -1 -757
8 130.06 -892 -3579 -501 -917
9 146.31 -1896 -7599 -1122 -1110
10 162.57 -3154 -12272 -1923 -1384
10 0.00 -3154 -12272 -1923 -1384
11 | 2134 | 1513 | 6169 | -90dfp -902
12 42.68 -348 -1473 -160 -692
13 64.01 525 2077 384 -527
14 85.35 1040 6205 -2070 1587 -393
15 106.69 1190 6598 -1786 1655 -277
16 128.03 1039 6204 -2065 1585 -391
17 149.36 525 5001 -2355 1344 -524
18 170.70 -348 3166 -3165 932 -690
19 192.04 -1200 1393 -4627 399 -901
20 213.38 -2547 1114 -8128 255 -1378
20 0.00 -2547 1114 -8128 255 -1378
21 -1485 1312 -5843 289 -1113
22 -500 -662 2762 -4778 751 -923
23 1 2 4320 -4106 1151 -760
24 375 496 5445 -2917 1430 -621
25 624 827 6068 -2424 1581 -495
26 747 990 6160 -1936 1631 -387
27 743 986 5689 -1451 1564 -287
28 . 611 810 4560 -971 1330 -190
29 146.31 555 2266 351 465 2607 -487 797 -95
30 162.57 0 0 0 0 0 0 0 0
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Table 5 Girder G1 Unfactored Torques by Tenth Point

Girder G1 Unfactored Torques
10th Span Dead Load LL+l
point | Length | DCliree | DCleonc | DC2 DW Pos. Neg.
(ft) (kip-ft) | (kip-ft) | (kip-ft) | (kip-ft) | (kip-ft) | (kip-ft)
0 0.00 42 286 -62 -83 660 -398
1 15.74 82 398 -54 -71 775 -448
2 31.49 34 189 -40 -53 756 @ -482
3 47.23 30 153 -40 -52 597 |
4 62.97 -1 9 -23 -31
5 78.71 -29 -125 -13 -17
6 94.46 -33 -158 0 0
7 110.20 -54 -262 21
8 125.94 -25 -165
9 141.69 -10 -135
10 157.43 -22 -231
10 0.00 36 294
11 20.66 4 105‘
12 41.33 60 309
13 61.99 39
14 82.65 -11 555 -383
15 103.31 0 446 -430
16 123.98 11 413 -540
17 144.64 29 500 -724
18 52 68 625 -906
19 | 185.9¢8| 89 117 713 -991
20 144 190 928 -1046
........... 20 -127 -169 928 -1046
134 -85 -112 874 -657
166 -47 -62 770 -549
262 -22 -29 640 -434
158 0 -1 482 -319
125 12 17 375 -281
-10 23 30 346 -378
27 110.20 -30 -153 39 51 434 -591
28 125.94 -34 -190 39 52 512 -751
29 141.69 -82 -398 57 75 503 -772
30 157.43 -42 -285 75 99 399 -662




Table 6 Girder G2 Unfactored Torques by Tenth Point

Girder G1 Unfactored Torques
10th Span Dead Load LL+l
point | Length | DCliree | DCleonc | DC2 DW Pos. Neg.
(ft) (kip-ft) | (kip-ft) | (kip-ft) | (kip-ft) | (kip-ft) | (kip-ft)
0 0.00 42 286 -62 -83 660 -398
1 15.74 82 398 -54 -71 775 -448
2 31.49 34 189 -40 -53 756 @ -482
3 47.23 30 153 -40 -52 597 |
4 62.97 -1 9 -23 -31
5 78.71 -29 -125 -13 -17
6 94.46 -33 -158 0 0
7 110.20 -54 -262 21
8 125.94 -25 -165
9 141.69 -10 -135
10 157.43 -22 -231
10 0.00 36 294
11 20.66 4 105‘
12 41.33 60 309
13 61.99 39
14 82.65 -11 555 -383
15 103.31 0 446 -430
16 123.98 11 413 -540
17 144.64 29 500 -724
18 52 68 625 -906
19 | 185.9¢8| 89 117 713 -991
20 144 190 928 -1046
........... 20 -127 -169 928 -1046
134 -83 -111 874 -657
166 -47 -62 770 -549
262 -22 -29 640 -434
158 0 -1 482 -319
125 12 17 375 -281
-10 23 30 346 -378
27 110.20 -30 -153 39 51 434 -591
28 125.94 -34 -190 39 52 512 -751
29 141.69 -82 -398 57 75 503 -772
30 157.43 -42 -285 75 99 399 -662




Table 7 Section G2-1 Unfactored Major-Axis Bending Moments and Torques

Unfactored Demands at Section G2-1 (10th Point = 3.5)

Dead Load LL+H Fatigue LL+
Demand
DC1gyee | DCleonciDClcastii DC2 DW Pos. Neg. Pos. Neg.
Moment (kip-ft)| 1144 4747 2979 765 1006 5920 | -1689 -290 1525
Torque (kip-ft) 59 205 464 41 54 525 -409 -113 232

‘N
\
™
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7.0 DESIGN

Sample design calculations at selected critical locations of Girder G2 are provided within this
section. The calculations are intended to illustrate the application of some of the more
significant provisions of the AASHTO LRFD (5" Edition, 2010). As such, complete calculations
for each girder section and all bridge components are not shown. Two critical girder section
checks are provided: Section G2-1 represents a girder section checked for positive moment, and
Section G2-2 represents a girder section at an interior pier and the maximum negative moment
location. The sample girder design calculations illustrate provisions that nged to be checked at
the Strength, Service, Fatigue, and Constructibility limit states. Also, sarf s
determining tub girder distortional stresses based on the beam-on-elastic-foundh
provided.

design, and a bolted field splice design. The sample design ca
shears, and torques provided in tables shown in Section 6.2 of
properties that are computed in the sections that follo lons of major-axis
bending stress throughout the sample calculations, comprog ‘ dre always shown as
negative values and tensile stress are always *wn iti

7.1 Girder Section Proportioning

ange and web sizes employed in this
ird€r G2 are used on Girder G1, but with
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Figure 9 Girder G2 elevation
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7.1.1 Girder Web Depth

Proper proportioning of tub girders involves a study of various girder depths versus girder weight
to arrive at the least weight solution that meets all performance and handling requirements. The
overall weight of the tub girder can vary dramatically based on web depth. Therefore, selection
of the proper girder depth is an extremely important consideration affecting the economy of steel
girder design. The NSBA Publication, Practical Steel Tub Girder Design [3] points out that a
traditional rule of thumb for steel tub girder bridge depths is L/25, however designers should not
be reluctant to exceed this ratio. Tangent steel tub girders have approachedgl /35 while meeting
all code requirements for strength and deflection. Furthermore, tub girders\g@a, generally stiffer

spec1ﬁcally address tub girder sections. The suggested minimurny e p b a@dMposite 1-
girder, in a continuous span, is given as 0.032L, where L is the s ' (.- This criterion
may be applied to determine a starting depth of the tub girder . The length
of the center span of the outside girder, Girder G2, is 213. ong the centerline
of the tub section), which is the longest effective span in ple. Therefore the
suggested minimum depth of the composite WOH

0.032(213.38) = 6.828 ft =81.9 in.

Considering that 81.9 inches is th
the depth of the concrete deck, a
example.

th of the composite section including
h o' 78.0 inches is chosen in this design

Tub girders typically employ hey are advantageous in reducing the width of
the bottom flange. Arti that the web inclination shall not exceed 1:4
(horizontal:vertical). ely deeper webs may result in a narrower and

potentially thicker bot ocation of maximum flexure), it is generally necessary
for the engae wide range of web depths and web spacing options in conjunction
with botto prcqui to determine the optimal solution

The maxim clination of 1:4 is used for this design example, so as to minimize
idth. Based on the previously mentioned web depth study, a vertical web
ies is selected, resulting in a distance of 81 inches between the centerline of the
webs at the bottG@ flange. The actual bottom flange widths is 83 inches in order to provide a 1.0
inch flange exter®ion on the outside of each web which permits welding of the webs to the
bottom flange. However, it should be noted, per the AASHTO/NSBA Steel Bridge Collaboration
Document: Guidelines for Design Details [5], most fabricators prefer a bottom flange extension
of 1.5 inches, and 1.0 inch is the minimum.
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7.1.2 Cross-section Proportions

Proportion limits for webs of tub girders are specified in Article 6.11.2.1. Provisions for webs
with and without longitudinal stiffeners are presented. For this example a longitudinally
stiffened web is not anticipated. The web plate must be proportioned such that the web plate
thickness (t,) meets the requirement:

D s Eq. (6.11.2.1.2-1)
t

w

where D is the distance along the web. For inclined webs, Article 6.11 ates that the
distance along the web shall be used for all design checks. The web thi
entire length of both girders in this design example is 0.5625 inches. De
along the incline:

4.123
D =78
L 4.0

W = 8040 in.
)

Checking Eq. (6.11.2.1.2-1):

=142 .9 <150

D 80.40
t, 0.5625

girders are specified in Article 6.11.2.2.
ple is 1.0 in. x 16.0 in. The minimum

Cross-section proportion limits for t
The smallest top flange employe
width of flanges is specified as;

Eq. (6.11.2.2-2)

nge width of 16.0 in. satisfies the requirements of Eq. (6.11.2.2-
top flange must satisty the following two provisions:

Eq. (6.11.2.2-1)

OK

and,

€ >10t Eq. (6.11.2.2-3)
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t, =10 >11t, =1105625 )=062 n OK

Although not required in this design example, it should be noted that the AASHTO/NSBA Steel
Bridge Collaboration Guidelines for Design and Constructibility [7] recommend a minimum
flange thickness of 0.75 inches to enhance girder stability during handling and erection.

This example utilizes the provisions of the AASHTO LRFD (5" Edition, 2010) to size the bottom
flanges, which impos no limitations in regard to the b/t ratio of bottom flanges in tension.
However, the design engineer should consider current industry practice ggarding sizing the
bottom flange of tub girders in positive moment regions. For positive momcN@egions, past and
current literature has suggested a lower bound limit for the bottom flangg
“rules of thumb” have suggested that a bottom flange in tension have a ma;
or an even more restrictive ratio of 80. These limits are intended to add
concerns, including waviness and warping effects during welding of the
webs. Additional discussion concerning this issue can be fg
Practical Steel Tub Girder Design [4].

Publication

Furthermore, the designer should be aware that it is possib at ott ange in tension in
the final condition may be in compression during lifting rder during erection,
possibly causing buckling of the slender m derness limits for the bottom
tension flange have also been suggested to limit specially in very wide flanges
that do not utilize any stiffening elements.

The designer should consult with
that does not satisty these previously thumb will be utilized in the final design
of the structure. It should be veri tub girdé® with the selected bottom flange thickness
can be fabricated without causi
tension flange thicknesses th
81/0.625 = 129.6), as the

e b/t ratio of 120 are utilized (maximum b/t =
SHTO LRFD (5™ Edition, 2010).

design examp
thickness of th

here is no integral wearing surface assumed, therefore the total structural
kck slab is 9.50 in.

For all section property calculations, the haunch depth of 4.00 in. is considered in computing the
section properties, but the area of the haunch is not included. Since the actual depth of the
haunch concrete may vary from its theoretical value to account for construction tolerances, many
designers ignore the haunch concrete depth in all calculations. For composite section properties
including only longitudinal reinforcement, a haunch depth is considered when determining the
vertical position of the reinforcement relative to the steel girder. The longitudinal reinforcement
steel area is assumed to be equal to 20.0 in.” per girder, and is assumed to be placed at the mid-
depth of the effective structural deck thickness.
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The section properties also include the longitudinal component of the top flange lateral bracing
area, the longitudinal bottom flange stiffener (where present), and the 1 in. bottom flange
extensions beyond the webs. A single top flange lateral bracing member of 8.0 in.” placed at an
angle of 30 degrees from the girder tangent is assumed in this design example.

The composite section must consist of the steel section and the transformed area of the effective
width of the concrete deck. Therefore, compute the modular ratio, n (Article 6.10.1.1.1b):

no WLo.1.1.1b-1)
EC

where E. is the modulus of elasticity of the concrete determined as speci
A unit weight of 0.150 kcf is used for the concrete in the calculation e

1.5
E, =33000 K,w,_ 4f,

E_ = 33000 (1.0) (0.150) "~ +/40 = 3,834 ksi

(5.4.2.4-1)

29,000

n = = 7.56
3,834
Even though Article C6.10.1.1.1b pCtgh n a¥s for concrete with f'¢ equal to 4.0 ksi,
n=7.56 will be used in all subsequent 1 his design example.

7.2.1 Section G2-1: Span 1 P, ction Properties

Section G2-1 is located ately 57 feet from the centerline of the bearing at
abutment 1. n G2-1 is shown in Figure 10. For this section, the
longitudin is conservatively neglected in computing the composite section
propertie
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beff= 243.0"

- ( 120" 1
0
()]
]
2
"T -
Fr I } —=
<
\1" X 16" Flange
=
- 2
2 = 96" Webs
[+2)
!

E 5/8" Bottom Flang
¢

—

r Cross—Section at Section G2-1

cffective flange width is to be determined as specified in
Article 4.6.2.6, the deck slab effective width for an interior
one-half the distance to the adjacent girder on each side of the
or girder it may be taken as one-half the distance to the adjacent
overhang width. In a typical tub girder cross section, the deck slab between
e girder is considered as part of the effective flange width, as well as half the
web to the adjacent web of the adjacent girder and the full overhang width, as
bre, the deck slab effective width, besr, for Girder G2 is:

component;
girder plus tf
the two webs §
distance form o
applicable. Ther

12.50
b_ =4.00 +10.00 + = 2025 ft =243 in.

eff
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7.2.1.2 Elastic Section Properties: Section G2-1

For tub sections with inclined webs, the area of the inclined webs should be used in computing
all section properties. Also, as shown in Figure 11, the moment of inertia of a single inclined
web, I,w, with respect to a horizontal axis at mid-depth if the web is computed as:

2

S
Iow = 2 Iw
S™+1

where: S = web slope with respect to the horizontal (equal to 4.00 in this exa
I, = moment of inertia of each inclined web with respect to an axis n

the web

4.0 ° 1
I = : —(0.5625 )(80.4 )' = 22,929 in. *
ow 407 +1)12

78.00"

19 172"

f Inertia of an Inclined Web

In the calcylations of t ction properties that follow in Table 8 to Table 10, d is measured
vertically horizon is through the mid-depth of the web to the centroid of each
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Table 8 Section G2-1: Steel Only Section Properties

Component A d Ad Ad? Io I
S
2 Top Flanges 32.00| 39.50|  1.264| 49,928 267 49,931
(1"x 16")
2 Webs
(9/16" x 80.40%) 90.45|  0.00 45858 45,858
Bottom Flange 5
(5/8" x 83") 51.88| -39.31 2.039 80.169 1.69| 80,171
Top Flange Lat. Bracing 5
(8 in2 @ 30°) 6.93| 39.50 273.7 10,813
181.3 -501.3
—(-2.77)(-50
—501.3

d = =-2.77in.

) 181.3
dTD?DFSTEEL = 40 OD + 2 77 = 4277 lTl dBDTDFSTEEL
S 185,384 4334 in.° g

- =—2=4, mn.
TOPOF 8TEEL 42.77 BOTOFY

2

Table 9 Section G2-1: 3n=22.68

osite ion Properties

Component Ad2 Io I
Steel Section 186,773
g‘:}lcff félf)?,n o 232,110  765.5| 232,876
2 i s i
419,649
_15.40(4.360)=  -67,144
Lya=  352,505in.4

dBU‘TD‘FSTEEL = 3963 + 1540 = 5503 ]Il

S BOTOFSTEEL =

352,505
55.03

= 6,406 in.”
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Table 10 Section G2-1: n=7.56 Composite Section Properties

Component A d Ad Ad? Io I
Steel Section 181.3 -501.3 186.773

Concrete Slab
(995" x 2437)/7.56

305.4| 47.75 14,583 696.331 2,297 693,628

486.7 14,082 885.401
—28.93(14,082)= -407,392
14,082 , 478,009 in.4
d =" _2303im.
486.7
g 478,009 43.181 0. g 478,000
= = = El ]I]. = =
TOPOF STEEL 11.07 BOTOF STEEL 63.56

7.2.1.3 Plastic Moment Neutral Axis: Section G2-1

s, to protect the concrete deck
stic neutral axis, in accordance
nservatively neglected. The

from premature crushing. This requires the com
with Article D6.1. The longitudinal deck rein
location of the plastic neutral axis fj

P =Fy bt = 2,594 kips
Py=2FwDty =4,523 kips
P.=2F.bctc = 1,600 kips
P, =0.85f°; besr ts = 17,849 kips
P =P =0 kips
Therefore, W al axis (PNA) is in the top flange, per Case II of Table D6-1.

Compute the\@IN A accorddnce with Case I1:

. | 100 [4,523 +2,594 —7,849 -0-0 |
+1] = +1
P | 2 { 1,600 J

c

+P -P -P -P,

Y =0.27 in. downward fiom the top of the top flange (PNA Ilocation)

7.2.2 Section G2-2: Support 2 Negative Moment Section Properties

Section G2-2 is located at Support 2, and is as shown in Figure 12. The effective width of
concrete deck is the same for Section G2-2 as calculated for Section G2-1, begr = 243.0 in.

45



120" —Ag= 20.00 in2

o 4.75"
. '
L .

L L]
S

" x 18" Flange

=

S )

S P! 9/16" Webs

©
WT8x28
!

1 1/2" Bottom Flange

—-—-

satisfy the provisions of Arti
deck to also be consider egative flexure when computing stress ranges and
flexural stresses acti section at the fatigue and service limit states,
¢s for the short-term and long-term composite section,
ut neglecting the longitudinal reinforcement, are also determined
Section G2-2 at these limits states.

Wthe AASHTO LRFD (5th Edition, 2010), for stress calculations
involving the\@@Plication of long-term loads to the composite section in regions of negative
flexure in this & ple, the area of the longitudinal reinforcement is conservatively adjusted for
the effects of coN@ete creep by dividing the area by 3 (i.e. 20.00 in.?/3 = 6.67 in.?). The concrete
is assumed to trarfsfer the force from the longitudinal deck reinforcement to the rest of the cross-
section and concrete creep acts to reduce that force over time.

As shown in Figure 10, a single WT 8x28.5 is utilized as a bottom flange longitudinal stiffener

with the stem welded to the bottom flange, and is placed at the centerline of the bottom flange.
The WT 8x28.5 is considered in the section property computations.
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In the calculation of the section properties that follow in Table 11 to Table 15, d is measured
vertically from a horizontal axis through the mid-depth of the web to the centroid of each
element of the tub girder.

Table 11 Section G2-2: Steel Only Section Properties

Component A d Ad Ad? Ip I
2
2 Top Flanges 108.0| 40.50|  4.374| 177.147 81.0 177.228
(3" x 18")

2 Webs

(9/16" x 80.40™)
Bottom Flange

(1.50" x 83")

Top Flange Lat. Bracing
(8 in.2 @ 30°)

Bottom Flange Stiffener

90.45 0.00 45,858

124.5| -39.75 -4.949 196.718

6.93| 40.50 280.7

8.39| -32.72 -274.5 9,031

WT 8x28.5
338.3 440,225
056
—568.8 = 439,269 in.4
d, = =—-1.68in. ‘ ;
’ 338.3
dTD?DFSTEEL = 42 .OO + 1.68 = 43 .68 jI'l. 0 _50 —1_68 = 38 _82 jn_
S 439,269 10.05 439,269 11316 in.?
P =——=10.05 =———=11316in.
TOPOFSTEEL 13.68 38.82

Table 12 Section G2-2: 3n Section Properties with Transformed Deck

Component Ad Ad? Io I
Steel Section -568.8 440,225
Concret
7372 7372
(91" 4.861 232,110 765.5 232,876
1202 673,101
—9.75(4,292)= -41,847
L L,= 631.254in
In T
g 631,254 19.574 in.* s 631.254 12.562 in.}
- = = ) . == P, m.
TOPOF STEEL 32.25 BOTOFSTEEL 50.25
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Table 13 Section G2-2: n=7.56 Composite Section Properties with Transformed Deck

Component A d Ad Ad? Io I
Steel Section 338.3 -568.8 440,225
Concrete Slab
O 2 2439/7.56 305.4| 47.75| 14.583| 696,331 2,297| 698,628
643.7 14,014 1,139,372
-21.77(14,014)= -305,085
14,014 = 833.768in.4
d, = =21.77in
643.7
dropopsreer =42.00 — 21.77=2023 in. dsororsteer = 40.50 +21.7
< 833,768 _ i.i . 833,768
TOPOFSTEEL — W - ¥ m. BOTOFSTEEL — W

Table 14 Section G2-2: 3n Composite Section Properti
Reinforcement

—250.3
345.0
455,250
42.73 M

d,, = =—0.73 in.

S roporsTEEL =

Component A d Ad I
Steel Section 338.3 440,225
Longitudinal 6.67| 47.75 15,208
Reinforcement
345.0 455,940
—(-0.73)(-250.3) = -183

Iyo= 455250in*

dBD‘TU‘FS‘TEEJ_ = 40.50 - U .T3 = 39 .?? jI]..
455,250

=11,447 in.
39.77

SzororsTERL =

Reinforcement

d, = =1.081
358.3
droporserr = 42.00 —1.08 = 40.94 in.
S oporsTEEL = 283,409 _ 11,862 in.”
; 40.92

d Ad Ad2 Io I
-568.8 440,225
47.75 955.0 45.601 45.601
386.2 486.333
-1.06(378.5)= -417

Iy = 485409in*

485,400

=11,674 m.”
41.58

SpororstErL =
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7.2.3 Check of Minimum Negative Flexure Concrete Deck Reinforcement (Article 6.10.1.7)

To control concrete deck cracking in regions of negative flexure, Article 6.10.1.7 specifies that
the total cross-sectional area of the longitudinal reinforcement must not be less than 1 percent of
the total cross-sectional area of the deck. The minimum longitudinal reinforcement must be
provided wherever the longitudinal tensile stress in the concrete deck due to either the factored
construction loads or Load Combination SERVICE II exceeds ¢f;. ¢ is to be taken as 0.9 and f;
shall be taken as the modulus of rupture of the concrete determined as follows:

e For normal weight concrete: f, = 0.24 4/f

e For lightweight concrete: f; is calculated as specified in Article 5

It is further specified that the reinforcement is to have a specified mini 89zth not
less than 60 ksi and a size not exceeding No. 6 bars. The reinforcegs
layers uniformly distributed across the deck width, and two-thij
layer. The individual bars must be spaced at intervals not excee

Article 6.10.1.1.1c¢ states that for calculating stresses in co S
flexure at the strength limit state, the comyosite both short-term and long-term
moments is to consist of the steel section ar% inforcement within the effective
width of the concrete deck. Referring to the cro tion Figure 2:

A = (entire width of 9.5¢%

deck

portion  of overhang)

2

47.77
5

—118 in */f = 0098 in */in

0.098(243. 0) = 23.81 in. ~ per tb girder

Therefore, the mption of 20.00 in.? for the longitudinal deck reinforcement used in the
calculation of th§Section properties for Section G2-1 is conservative and is left as shown in
Table 14 and Table 15, as the longitudinal deck reinforcement to be used is more than that
assumed in the section property calculations. In the actual deck, the longitudinal reinforcement
should have a minimum cross-sectional area of 23.81 in.> per tub girder. If the reinforcement is
detailed, #6 bars at 6 inches are placed in the top layer, and in the bottom layer use #4 bars at 6
inches. Therefore, the total area of deck reinforcement steel in the given effective width of
concrete deck is:

49



243.0 o o
A =(044 +044 +020 +020) =25.92 i > > 2381 in
12
. . . .. 0.44 + 0.44 2
Also, approximately two-thirds of the reinforcement is in the top layer: —— = 0.69 ~ —
1.28 3

7.3 Girder Check: Section G2-1, Constructibility (Article 6.11.3)

Article 6.11.3 directs the engineer to Article 6.10.3 for discussion regarding the constructibility
checks of tub girders. For critical stages of construction, the provisions @@drticles 6.10.3.2.1
through 6.10.3.2.3 shall be applied to the top flanges of the tub girder. B noncomposite
bottom tub flange in compression or tension shall satisfy requirements 4 d in Article
6.11.3.2. Web shear shall be checked in accordance with Article 6.10.3.3 ar shall be
taken along the slope of the web in accordance with the provisions of Arti

the final
ing the various stages
ting on the fascia

As specified in Article 6.10.3.4, sections in positive flexure tf
condition, but noncomposite during construction, are to be inve
of deck placement. The effects of forces from deck overha
girders are also to be considered. Wind load effects on th cture prior to and
during casting are also an important consideration duri i . The presence of
construction equipment may also need to ’co . stly, the potential for uplift at
bearings should be investigated at each critical cgust . For this design example, the
effects of wind load on the structure and the ence struction equipment are not

considered.
Calculate the maximum flexural str i es ot the steel section due to the factored
loads resulting from the application o ght and Cast #1 of the deck placement

moment for the noncomposite Section G2-1. As
specified in Article 6.10.1.6, here the flexural resistance is based on lateral
torsional buckling, fi, 1 determi@@d as the largest value of the compressive stress
throughout the unbrac in flange under consideration, calculated without
consideration of flang or design checks where the flexural resistance is based
on yielding ling or web bend-buckling, f,, may be determined as the stress at
the sectio i . From Figure 1, brace points adjacent to Section G2-2 are

Article 3.4.2.1, when investigating Strength I, III, and V during construction,
load factors for @@ weight of the structure and appurtenances, DC and DW, shall not be taken to
be less than 1.257 Also, as discussed previously, the m factor is taken equal to 1.0 in this
example. As shown in Table 7 the unfactored moments due to steel self-weight and Cast #1 are
1,144 k-ft and 2,979 k-ft, respectively. Therefore,

In accordance ¥

For Construction Strength I:

General: f,, =
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1.0(1.25)( 1,144 + 2,979)(12)

bu

= —14 .27 ksi

Top Flange: £
4,334

1.0(1.25)( 1,144 + 2,979)(12)

bu

Bot. Flange: r =12.30 ksi

5,029

7.3.1 Deck Overhang Bracket Load

During construction, the weight of the deck overhang wet concrete is re d by the deck
overhang brackets. Other loads supported by the overhang bracket during ion i
the formwork, screed rail, railing, worker walkway, and the deck finishing

The deck overhang construction loads are typically applied to thgeses 0 g@ftion, and
removed once the concrete deck has become composite with

the constructibility check, however in a tub girder bridg
bottom flange is typically ignored due to thedarge sgction
lateral direction. Also, it should be noted tha®if th
web near the junction of the web and bottom fl
of the web may be warranted.

e bottom flange in the
e bracket does not bear on the
ecks for out-of-plane bending

ang®Weight is assumed to be carried by the
s shown in Figure 13.

: [ —F=411bi

78.00"

195" | 48"

|i-“" L A

Figure 13 Deck Overhang Bracket Loading
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The deck overhang bracket loads are assumed to be applied uniformly to the top flange, even
though the brackets are actually spaced at approximately 3 feet along the length of the girder.

The unbraced length of the top flange is approximately 16.3 ft in Span 1. The deck thickness in
the overhang area is assumed to be 10 inches, and the weight of the deck finishing machine is not
considered in these calculations. Therefore, the vertical load on the deck overhang brackets is
computed as:

Deck Overhang: [ - |(4.0)( % Jas0 ) =250 Ibs/ft

(2) (12 )
Deck Forms + Screed Rail = 224 Ibs/ft (assumed)
Total Uniform Load on Brackets =474 lbs/ft

The lateral force on the top flange is computed as:

o = tan 7l(ﬂW:49.1° ‘

L67.5)

474

F, = ———— =411 b/t 3
tan(49.1  °)
The flange lateral bending mome i eb top flange due to the deck overhang
bracket is computed. The flan t at the brace points due to the overhang forces is
negative in the top flange of tside of the curve because the stress due to the
lateral moment is compr side of the flange at the brace points. The opposite

would be true on the
cfined analysis, the equations given in Article C6.10.3.4
aximum flange lateral bending moments in the discretely braced
eral bracket forces. Assuming the flange is continuous with the
at the adjacent unbraced lengths are approximately equal, the

» 1
m, oL W oMLUe3) ey Eq. (C6.10.3.4-2)
12 L 12 |

7.3.2 Flange Lateral Bending Due to Web Shear

In addition to the lateral bending moment due to the overhang brackets, the inclined webs of the
tub girder cause a lateral force on the top flanges. However, in this example this force and
subsequent lateral bending effects are relatively small and are ignored in these computations.
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7.3.3 Flange Lateral Bending Due to Curvature

Another source of lateral bending is due to curvature, which can either be taken from the analysis
results, or estimated by the approximate V-load equation given in Article C4.6.1.2.4b. The V-
load equation assumes the presence of a cross frame at the point under investigation and a
constant major-axis moment over the distance between the brace points. Although the use of the
V-load equation is not theoretically pure for tub girders or at locations in betgeen brace points, it
may conservatively be used.

The top flange size is constant between brace points in this region ung In
positive moment regions, the largest value of the major-axis bending may not
necessarily be at either brace point. Generally in positive moment red not be
significantly larger than the value at adjacent brace points, whi example

r flange, consider only one-half
ast #1 of the deck placement

lateral bending moment due to curvature. F
of the girder major-axis moment due to steel sglf-
sequence.

(1,144 + 2,979 )

Eq. (4.6.1.2.4b-1)

where:
M e late ending moment (kip-ft)
M is beWding moment (kip-ft)
L gth (ft)
N constant taken as 10 or 12 in past practice; 10 is used herein
R irder radius (ft)
D = Web depth (ft)

The flange lateral moment at the brace points due to curvature is negative when the top flanges
are subjected to compression because the stress due to the lateral moment is in compression on
the convex side of the flange at the brace points. The opposite is true whenever the top flanges
are subjected to tension. The total factored lateral moment and stress in the top flange, including
the lateral moment from the overhang bracket is:

M =(1.25)-11.8+(-9.1)]=-26.1kip - ft

TOT_LAT
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M o _LAT - 26.1(12)

f =

4

- —— = 734 ksi
S, (1.00)16) > /6

It should be noted that another significant source of flange lateral bending results from forces
that develop from single-diagonal top flange bracing members, developing from the major-axis
bending of the tub girder. This effect is recognized in flange lateral moments taken directly from
a finite element analysis. In the absence of a refined analysis, equations have been developed to
evaluate bracing member forces and the forces imparted on the top flange b girders due to
major-axis bending [8 and 9]. The flange lateral bending due to the top la bracing is not
considered in these computations.

7.3.4 Top Flange Lateral Bending Amplification

According to Article 6.10.1.6, lateral bending stresses determineg
be used in discretely braced compression flanges for which:

C.R
L, <12L bb
P
oo /e ‘
u ye

L, is the limiting unbraced length specified in Arti

E

L, =1.0r [—
F

ye

where 1; is the effective radi
6.10.8.2.3 determined as;

.

10.8.2.3 @etermined as:

Eq. (6.10.8.2.3-4)

of gyraig lateral torsional buckling specified in Article

Eq. (6.10.8.2.3-9)

For the steel sd
1 is computed a

on, the depth of the web in compression in the elastic range, D., at Section G2-
o the web (not vertical) as follows:

Note that for the steel section only: dtop oF steeL = 42.77 in.

2

S™ +1
D =0

c

TOP OF STEEL _tf)

S
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2

1
D = @#277 -1.00) =43.06 i

42

It should be noted that values of D, and D are taken as distances along the web, in accordance
with Article 6.11.2.1.1. Therefore,

16
r = =3.77 in.

t
1 43.06(0.56  25)
ity
3 16(1.00)

1.03.77) 29,000

, =7.57
12 50
Cy is the moment gradient modifier specified in Article 6.10.§ gy conservatively be

taken equal to 1.0. According to Article 6.10.1.10.2, the wgb 1 ' ingefactor, Ry, is to be
taken equal to 1.0 when checking constructibility. Fin bu | cdltrgest value of the
compressive stress due to the factored loads throughout the raccd in the flange under
consideration, calculated without considerati’of bending. In this case, use fy, =
-14.27 ksi, as computed earlier for the Constructi combination. Therefore:

Eq. (6.10.1.6-2)

Therefore, Eq. (6.10.1.6-2)
compression-flange later
determined from the fi

amplification for the second-order -elastic
is not required. The flange lateral bending stress, fi,
sis is sufficient; thus f, = -7.34 ksi.

For critica on, Article 6.11.3.2 directs the engineer to the provisions of
e resistance of top flanges of tub sections. The unbraced length
the distance between interior cross frames or diaphragms. However per the
icle 6.11.3.2, top lateral bracing attached to the flanges at points where only
the flanges may be considered as brace points at the discretion of the

should be taks
commentary to
struts exist betw
engineer.

Article 6.10.3.2.1 requires that discretely braced flanges in compression satisfy the following:

Eq. (6.10.3.2.1-1)

o+ —f, <¢,F, Eq. (6.10.3.2.1-2)
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F<¢,F. Eq. (6.10.3.2.1-3)

Article 6.11.3.2 requires that the noncomposite box flange (bottom flange) in tension satisfy:

f, <¢ R F A Eq. (6.11.3.2-3)
where: ¢ = resistance factor for flexure from Article 6.5.4.2 (¢r= 1.0)
Ry = hybrid factor specified in Article 6.10.1.10.1 (1.0 at homogg s Section G2-1)

Fiw = nominal elastic bend-buckling resistance for webs determind@as specified in
Article 6.10.1.9
F.. = nominal flexural resistance of the compression flange detq
Article 6.11.8.2 (i.e. local or lateral torsional buckling
controls). The provisions of Article A6.3.3 shall g e

6.11.3.2.
A = afactor dependent on St. Venant torsional
7.3.5.1 Top Flange ‘

7.3.5.1.1 Top Flange: Yielding

First, check that factored top flan s doe

(6.10.3.2.1-1):

t exded the yield resistance given by Eq.

Eq. (6.10.3.2.1-1)

50.0 ksi > 21.61 ksi OK  (Ratio=0.432)

Second, che d top flange stress does not exceed buckling resistance given by
The buckling resistance of the top flange is determined as the minimum of
the local buckI N and lateral torsional buckling resistance, which are computed as follows.
7.3.5.1.2 Top Flange: Local Buckling Resistance (Article 6.10.8.2.2)

Determine the slenderness ratio of the top flange:

A, = — Eq. (6.10.8.2.2-3)
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16
A, = =8.00
2(1.00 )

Determine the limiting slenderness ratio for a compact flange (alternatively see table
C6.10.8.2.2-1):

AL =038 |— Eq. (6.10.8.2.2-3)
F
29,000
A, =038, = 9.15
’ 50

Since A < Apr,

(6.10.8.2.2-1)

Since Ry, is taken as 1.0 for constructibility,
F_ =(1.0)(1.0 )(50 ) = 50 ksi

7.3.5.1.3 Top Flange: Lateragd Torsj Resistance (Article 6.10.8.2.3)

The limiting unbraced length, L,, wa ier to be 7.57 feet. The effective radius of

gyration for lateral torsional buckli the nonCdmposite Section G2-1 was also computed

earlier to be 3.77 inches. T

discussing the top flange later

Determine the limitin

Eq. (6.10.8.2.3-5)

Since L, = 7.57 feet <L, = 16.30 feet < L, = 28.41 feet, Eq. (6.10.8.2.3-2) is used to compute the
lateral torsional buckling resistance.

F, L, -L )l
P P " ||R R,F, <R,R,F, Eq. (6.10.8.2.3-2)
F

]
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Compute the moment-gradient modifier, Cy, to be used in Eq. (6.10.8.2.3-2), where

Cp, = 1.0 for members where f,;¢/f > 1 or £, =0 Eq. (6.10.8.2.3-5)
Otherwise: ¢, =1.75 - 1.05 (f—‘J + o.3[f—‘J <23 Eq. (6.10.8.2.3-7)
f2 fZ
And, where:

loads and shall be taken as positive in compression and nega

f, = largest compressive flange stress without consideratjg atc endifi¥ at either
be due to
factored loads and shall be taken as positive. If't € st@8s is zero or tensile
in the flange under consideration at both en length, f; shall be
taken as zero.

fi = in the case of Section G2-1, th% long the entire length between
brace points is concave in shape, — fo, and is the stress without
consideration of lateral bendj e brace point opposite to the one
corresponding to f,.

The largest compressive stress in the u der consideration is at 65.04 ft into span
1. From calculations not show, i unfactored moments at 65.04 ft due to steel self-

Therefore, Cy, can be calculated using Eq. (6.10.8.2.3-7). First, it is necessary to compute fj,
which is the flange stress at the opposite brace point from f,. From calculations not shown
herein, the unfactored moments at 65.04 ft due to steel self-weight and Cast #1 are 1,116 k-ft and
2,588 k-ft, respectively. Therefore, f] is calculated as:

. 1.0(125)( 1,116 + 2,588)(12)

1

=12 .82 ksi
4,334
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Cy is computed as:

2

(12,82 W (12.82 \
C, =175 -1.05 +03 =109 <2.3
(1549 ) (1549 )

Therefore, the lateral torsional buckling resistance is:

F _=(1.09 )I 1- W I(I.O )(1.0 )(50 ) = 47.7 ksi < (1.0

X 0.7 (50 ) (16.30 - 7.57
| (1.0 )(50 ) )L 2841 - 7.57 )|
Fyc is governed by the lateral torsional buckling resistance, which is less tiih My ckling

resistance of 50.0 ksi computed earlier. Therefore, F,. =47.7 ksi. Chg

7.3.5.14 Top Flange: Web Bend-Buc@g Resistanc

Determine the nominal elastic web bend-buckls i ection G2-1 according to the
provisions of Article 6.10.1.9.1 as follows:

0.9Ek
F = <mn | R F_,
crw 2 ye
0.7

2

Eq. (6.10.1.9.1-1)

where:
K Eq. (6.10.1.9.1-2)
In earlier cal computed as 43.06 in. along the inclined web.
k = =31.1
{ 80 :04 )
Therefore,

~0.9(29,000 )(31.1)

=39.73 ksi <R, F_ =50 ksi
80.4

(05625 )
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Check Eq. (6.10.3.2.1-3),

|- 1427 |=1427 ksi < (1.0 )(40.11 )= 40.11 ksi OK  (Ratio = 0.356)

It should be noted that the web bend-buckling resistance is generally checked against the
maximum compression flange stress due factored loads, without consideration of flange lateral
bending, as shown in the previous calculation. Since web-bend buckling is a check of the web,
the maximum flexural compression stress in the web could be calc
comparison against the bend-buckling resistance. However, the precisi
making the distinction between the stress in the compression flange
compressive stress in the web is typically not warranted.

ssociated with
maximum

7.3.5.2 Bottom Flange

Noncomposite tub flanges in tension, in this particular case thg
following requirement:

ye, must satisfy the

f, <O,R F A

bu T

q. (6.11.3.2-3)

where:

Eq. (6.11.3.2-4)

The term f, is the St. Venan
section under considerati

ess in the flange due to factored loads at the

Eq. (6.11.3.2-5)

where:
T ernal torque due to factored loads (kip-in.)
A, = osed area within the box section (in.3)
te m flange thickness (in.)

Compute the enclosed area of the noncomposite box section, A,.

2

_[120 + (83 - 2(1))”1-00 s e 2B ) o
2 L2 2 )

o
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As shown in Table 7 the unfactored torques due to steel self-weight and Cast #1 are 59 kip-ft and
464 kip-ft, respectively. Therefore,

- (125 )(59 + 464 )(12) 050 kei
2 (7,921 )(1.00 )

The factored bottom flange major-axis bending stress, calculated previou 30 ksi, and

checking Eq. (6.11.3.2-3),

f, =1230 ksi <¢ R F A =(1.0)1.0)(50)1.0)= 50.0ksi

bu

6)

Although the check here of the bottom flange is illustrated for cne38l the bottom flange
will typically not govern the constructibility check at the pd§ili ent [g@Ation.

7.4 Girder Check: Section G2-1, Service ‘lit

Article 6.11.4 directs the Engineer to Article 6. i ains provisions related to the
control of elastic and permanent deformati the ice Limit State.

rideability. As specified in A .10.42. se checks are to be made under the SERVICE
II load combination.

Article 6.10.4.2.2 req composite sections must satisfy the following:

ections:  f,Z <0.95R F Eq. (6.10.4.2.2-1)
f

ge of composite sections: f, + — < 0.95R | F Eq. (6.10.4.2.2-2)
2

The term f; is thdWflange stress at the section under consideration due to the SERVICE II loads
calculated without consideration of flange lateral bending. The f; term, the flange lateral
bending stress, in Eq. (6.10.4.2.2-2) shall be taken equal to zero, in accordance with Article
6.11.4, for tub girder bottom flanges. A resistance factor is not included in these equations
because Article 1.3.2.1 specifies that the resistance factor be taken equal to 1.0 at the service
limit state.

It should be noted that in accordance with Article 6.11.4 redistribution of negative moment due
to the Service II loads at the interior-pier sections in continuous span flexural members using the
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procedures specified in Appendix B shall not apply to tub girder sections. The applicability of
the Appendix B provisions to tub girder sections has not been demonstrated, hence the
procedures are not permitted for the design of tub girder sections.

Furthermore, according to Article C6.11.4, under the load combinations specified in Table 3.4.1-
1, Egs. (6.10.4.2.2-1) and (6.10.4.2.2-2) need only be checked for compact sections in positive
flexure. For sections in negative flexure and noncompact sections in positive flexure, these two
equations do not control and need not be checked. Composite sections in all horizontally curved
girder systems are to be treated as noncompact sections at the strength limitgstate, in accordance
with Article 6.11.6.2.2. Therefore, for Section G2-1 Egs. (6.10.4.2.2-1) and 4.2.2-2) do not
need to be checked, and are not demonstrated in this example.

7.4.2 Web Bend-Buckling

With the exception of composite sections in positive flexure ig ] isfies the
requirement of Articles 6.11.2.1.2 and 6.10.2.1.1 (D/ty, < 150), wiéh g all sections
under the SERVICE II load combination is to be checked as foll

f <F_, q-(6.10.4.2.2-4)
The term f. is the compression-flange stress der consideration due to the
SERVICE 1I loads calculated without considera teral bending, and F., is the
nominal elastic bend-buckling resi tance ined as specified in Article 6.10.1.9.
Because Section G2-1 is a com i j positive flexure satisfying Article
6.11.2.1.2, Eq. (6.10.4.2.2-4) need n w = 142.9 which is less than 150. An
explanation as to why these parti i empt from the above web bend-buckling

icle 6.10.5, where details in tub girder section flexural

members d for fatigue as specified in Article 6.6.1. As appropriate, the

Fatigue I § binations specified in Table 3.4.1-1 and the fatigue live load
specified 1 be employed for checking load-induced fatigue in tub girder
sections. gad combination is used when investigating infinite load-induced
fatigue life, a e Fatlgue IT load combination is used when investigating finite load-induced
fatigue life.

Per Article 6.11.5] one additional requirement specified particularly for tub girders sections is in
regard to longitudinal warping and transverse bending stresses. When tub girders are subjected
to torsion, their cross-sections become distorted, resulting in secondary bending stresses.
Therefore, longitudinal warping stresses and transverse bending stresses due to cross-section
distortion shall be considered for:

e Single tub girder in straight or horizontally curved bridges

e Multiple tub girders in straight bridges that do not satisfy requirements of Article 6.11.2.3

e Multiple tub girders in horizontally curved bridges
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e Any single or multiple tub girder with a tub flange that is not fully effective according to
the provisions of Article 6.11.1.1.

Therefore, in this design example for Section G2-1, the stress range due to longitudinal warping
resulting from torsion in the girders is considered in checking the fatigue resistance of the base
metal. For simplicity in this design example, it is assumed that the longitudinal warping stresses
are similar to 10 percent of the longitudinal stresses caused by the major-axis bending moment.
Thus, for the calculations contained herein at Section G2-1, the fatigue vertical bending moments
are simply increased by 10 percent.

The transverse bending stress range is considered separately from the longig 8l stresses for

G2-1. More exact calculations to determine the stress range fj
transverse bending can be carried out using the beam-on-el
presented by Wright and Abdel-Samad [3]. Sample
distortional stresses based on the BEF analogy are pre
Specification for Horizontally Curved Steel Girder Highwa
by the current AASHTO specifications. Calgfatio
to compute the longitudinal warping stress an
fatigue check of Section G2-2.

determining these
AASHTO Guide
¥which is superseded
se of the BEF analogy
ing stress are included in the

At Section G2-1, it is necessary t for the fatigue limit state. The base
nd Internal cross frame connection plate
welds at locations subject to a net tenst checked as a Category C’ fatigue detail
flange is checked herein, as a net tensile stress is

not induced in the top flange b, g at this location.

force effects are cons in the fatigue moments. As discussed previously, the
75-year sipgle ssumed to be 1,000 trucks per day.

According
accordance

(Af) must not exceed the nominal fatigue resistance, (AF),. In
21.2.2, the resistance factor, ¢, and the load modifier, ), are taken as

v(af) < (NS, Eq. (6.6.1.2.2-1)

From Table 6.6.1.2.3-2, the 75-year (ADTT)s. equivalent to infinite fatigue life for a Category
C' fatigue detail is 745 trucks per day. Therefore, since the assumed (ADTT)sy for this design
example is 1,000 trucks per day, the detail must be checked for infinite fatigue life using the
Fatigue I load combination. Per Article 6.6.1.2.5, the nominal fatigue resistance for infinite
fatigue life is equal to the constant-amplitude fatigue threshold:

(AF), = (AF),, Eq. (6.6.1.2.5-1)
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where (AF)ry is the constant-amplitude fatigue threshold, and is taken from Table 6.6.1.2.5-3.
For a Category C' fatigue detail, (AF)ry = 12.0 ksi, and therefore:

(AF ) =120 ksi

As shown in Table 7 the unfactored negative and positive moments due to fatigue, including
centrifugal force effects and the 15 percent dynamic load allowance, at Section G2-1 are -290
kip-ft and 1,525 kip-ft, respectively. The short-term composite section propghties (N = 7.56) used
to compute the stress at the bottom of the web (top of the bottom flange) are:

Inam) = 478,009 in.*
dpot oF weB = dBoT OF STEEL — tf BOT FLANGE = 68.56 in. — 0.625 in. = 6
Per Table 3.4.1-1, the load factor, v, for the Fatigue I load comh S The total factored

estimate for the
longitudinal warping stress, is computed as follows:

) (1.10 (|- 290 | + 1,525 )(12*7.94

478,009

y(af )= (1.5

Checking Eq. (6.6.1.2.2-1),
y(Af )= 5.11 ksi < (AF) tio = 0.426)

7.5.1 Special Fatigue Requi

In accordance with Arj

where: V. [TegeD at the section under consideration, due to unfactored permanent
@S plus the factored fatigue load (Fatigue I live load factor)

panels of stiffened webs must satisfy:

Eq. (6.10.5.3-1)

buckling resistance determined from Eq. (6.10.9.3.3-1).

Satisfaction of Eq. (6.10.5.3-1) is intended to control elastic flexing of the web, and the member
is assumed to be able to sustain an infinite number of smaller loadings without fatigue cracking
due to this effect. The live load shear in the special requirement is supposed to represent the
heaviest truck expected to cross the bridge in 75 years.

Only interior panels of stiffened webs are investigated because the shear resistance of end panels

of stiffened webs and the shear resistance of unstiffened webs are limited to the shear buckling
resistance at the Strength limit state.

64



The detailed check of this special fatigue requirement for webs is not illustrated in this example;
however, similar checks are illustrated in Example 1.

7.6 Girder Check: Section G2-1, Strength Limit State (Article 6.11.6)
7.6.1 Flexure (Article 6.11.6.2)

According to Article 6.11.6.2.2, sections in horizontally curved steel tub gigder bridges shall be
considered as noncompact sections and shall satisfy the requirements W@mArticle 6.11.7.2.
Furthermore, compact and noncompact sections in positive flexure must sa the ductility
requirement specified in Article 6.10.7.3. The ductility requirement is i
concrete deck from premature crushing. The section must satisfy:

D <042 D,
Where D, is the distance from the top of the concrete dec of the composite
section at the plastic moment, and Dy is the total depth of i ion. Reference the
section property computations for the location of the neutral @i mposite section at the

plastic moment. At Section G2-1:

D, =95 +4.0-1.0+027 =1277 i
D, =0625 +780+4.0+095
042D | = 0.42(92.13 )

OK  (Ratio =0.330)

For a horizontally curv
positive flexure must
compression flanges o

at the strength limit state, noncompact sections in
of Article 6.11.7.2. At the strength limit state, the

Eq. (6.11.7.2.1-1)

where:
fou = itudinal flange stress at the section under consideration calculated without

1deration of flange lateral bending or longitudinal warping

¢r = resistance factor for flexure per Article 6.5.4.2 (¢¢= 1.0)

F.. = nominal flexural resistance of the compression flange determined as specified in
Article 6.11.7.2.2

Flange lateral bending is not considered for the compression flanges in positive bending at the
strength limit state because the flanges are continuously supported by the concrete deck. In
accordance with Article 6.11.1.1, longitudinal warping stresses can be ignored at the strength
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limit state. However, St. Venant torsion and cross-section distortion stresses in the bottom box
flange must be considered for noncompact sections.

At the strength limit state, the tension flange must satisfy:

f, <o.F, Eq. (6.11.7.2.1-2)
where:
Fn. = nominal flexural resistance of the tension flange determinS@as specified in
Article 6.11.7.2.2
Lateral bending does not need to be considered for the tension flange, i bottom

flange, as lateral bending is typically negligible in bottom flanges of tub gird

Furthermore, the maximum longitudinal compressive stress in {
limit state shall not exceed 0.6f.. The longitudinal co
determined in accordance with Article 6.10.1.1d, which all
stresses to be computed using the short-term section properti

edeck at the strength
the deck is to be
and transient load
W ratio taken as n).

The unfactored bending moments at Section G ctly from the analysis and are
shown below (see Table 7Table 4). The live lo oment 11M®tudes the centrifugal force and
dynamic load allowance effects.

Noncomposite Dead Load:
Composite Dead Load:
Future Wearing Surfac
Live Load (incl. IM a

,891 kip-ft
65 kip-ft
= 1,006 kip-ft

Compute the factored ge fl
without consideration nge late
equal to 1 i herefore:

es at Section G2-1 for the STRENGTH I limit state,
ending. As discussed previously, the n factor is taken

25( 5,891) 1.25( 765) 1.5( 1,006) 1.75( 5,920) |
+ + + 12
L 4,334 14,329 14,329 43,181

= —25.33 ksi

Bottom Flange:

|—1.25( 5,891) 1.25( 765) 1.5( 1,006) 1.75( 5,920) ] )
f,, =10 L + + + J12 =40 .02 ksi

5,029 6,406 6,406 6,972
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In accordance with Article 6.11.1.1, the effects of both flexural and St. Venant torsional shear
shall be considered in horizontally curved tub girder bridges. Therefore, compute the factored
St. Venant torsional shear stress, f,, in the bottom flange for the Strength I load combination. f,
is determined by dividing the St. Venant torsional shear flow [ f = T/(2A,) ] by the thickness of
the bottom flange:

Eq. (6.11.3.2-5)

where:

T = internal torque due to factored loads (kip-in.)
Ao enclosed area within the box section (in.’)
te bottom flange thickness (in.)

af\d are shown below
itrifugal force and

The unfactored torques at Section G2-1 obtained directly from t
(not explicitly shown in Table 7). The live load mome
dynamic load allowance effects.

Noncomposite Dead Load: Ql
Composite Dead Load: Tp

Future Wearing Surface Dead Load: Tpw 54 kip-
Live Load (incl. IM and CEx

Article C6.11.1.1 indicates that for the noncomposite section, A, is to be
computed for the noncomposite s . e the top lateral bracing in this example is attached

of the top and bottom flanges. foMorques applied to the composite section, A, is to
be computed for the co i ng the depth from the mid-thickness of the bottom
flange to the mid-thic deck. In this example, the height of the deck haunch
1s considered.

Compute the encl®sed area of the composite tub section, A, c.

120 + (83 - 2(1 0.625 0
120 + ())](78 + +4.00 + \:8,750 in
2 L 2 2

o C -

Compute the factored Strength I St. Venant torsional shear stress on the noncomposite section:
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f o =(10) (1.25 )(264 )12 ) =040 ksi

e 2 (7,921 )(0.625 )

Compute the factored Strength I St. Venant torsional shear stress on the composite section:

f . —(0 )[(1.25 )41)+ (1.50 )(54 ) + (1.75 )(525 )](12) s ki
- 2 (8,750 )(0.625 )

Therefore the total factored Strength I St. Venant torsional shear stress is co

f, =040 +1.15 =155 ksi

According to Article 6.11.1.1, the St. Venant torsional shear stress in box
loads at the strength limit state shall not exceed the factored torsi esista of flange,
F.., taken as:

F_=0.75¢, — (6.11.1.1-1)
NG
where:
¢y = resistance factor fo €6.54.2
Therefore:
F_ =075 (10 )2: 21 OK

7.6.1.1 Top Flange F al Resl In Compression

Per Articl S8 the nOf@al flexural resistance of the compression flanges of noncompact

beYaken as:

Fo= Eq. (6.11.7.2.2-1)

where:

R, = web load-shedding factor determined as specified in Article 6.10.1.10.2
Ry hybrid factor determined as specified in Article 6.10.1.10.1.

For a homogenous girder, the hybrid factor, Ry, is equal to 1.0. In accordance with Article
6.10.1.10.2, the web load-shedding factor, Ry, is equal to 1.0 for composite section in which the
web satisfies the requirement of Article 6.11.2.1.2, such that D/t,, < 150.
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=142 .9 <150

D 80.40
t, 0.5625

Therefore:
F _=(1.0 )(1.0 )(50.0 )= 50.00 ksi

For Strength I:

£, = |- 2533 |ksi < ¢, F, = (1.0 )(50.00 )=50.00 ksi OK

7.6.1.2 Bottom Flange Flexural Resistance in Tension

Article 6.11.7.2.2 states that the nominal flexural resigan the sion flange of a
noncompact tub section shall be taken as:

Eq. (6.11.7.2.2-5)

Eq. (6.11.7.2.2-6)

Eq. (6.11.7.2.1-2)

f,, =40.02 ksi <¢ F_=(10)(49.93 )=49.93 ksi OK  (Ratio =0.802)

b
Note that longitudinal warping stresses due to cross-section distortion do not need to be checked

at the strength limit state. However, transverse bending stresses due to cross-section distortion
do need to be checked and shall not exceed 20.0 ksi per Article 6.11.1. However, in this design
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example for Section G2-1, it is assumed that the transverse bending stresses do not exceed 20.0
ksi. For more detailed calculations of the transverse bending stress at the strength limit state, see
the computations for Section G2-2 in this design example.

7.6.1.3 Concrete Deck Stresses

According to Article 6.11.7.2.1, the maximum longitudinal compressive stress in the concrete
deck at the strength limit state is not to exceed 0.6f".. This limit is to ensure linear behavior of
the concrete, which is assumed in the calculation of steel flange stresses The longitudinal
compressive stress in the deck is to be determined in accordance with Arti8
allows the permanent and transient load stresses to be computed using the SH@-term section
properties (n = 7.56 composite section properties). Referring to Table 10 of i
calculations, the section modulus to the top of the concrete deck is:

478,009 o
oy = ————————=120280 in.
92.13 — 68.56
Calculate the Strength I factored longitudinal compressi th ck at this section,

noting that the concrete deck is not subjected to noncomp s. The stress in the
concrete deck is obtained by dividing the str. i sformed section by the modular

ration, N.
[1.25( 765) +1.5 .
fdcck =10 —1.00 kSl
(20,280
f =|-1.00 ksi|< o6f OK  (Ratio=0.417)

7.7 Girder Check: Sec , Cons@lctibility (Article 6.11.3)

7.7.1 Flexure (Article

The bottok . i of negative flexure, shall satisfy the requirements of Egs.
or critical stages of construction. Generally these provisions will
> the siZze of the bottom flange in negative flexure regions is normally
QXS trength Limit State. In regard to construction loads, the maximum negative
moment reachc@uring the deck placement analysis, plus the moment due to the self-weight,
typically does no@®ignificantly exceed the calculated noncomposite negative moments assuming
a single stage deck pour. Nonetheless, the constructibility check is performed herein for
completeness and to illustrate the constructibility checks required for a negative moment region.
For this constructibility check, it is assumed that the concrete deck has not yet hardened at
Section G2-2.

f, <¢,F Eq. (6.11.3.2-1)

f~ nc
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fo<.F Eq. (6.11.3.2-2)

bu f = cw

Additionally, the top flanges, which are considered discretely braced for constructibility (i.e. the
deck is not hardened), must satisfy the requirement specified in Article 6.10.3.2.2. Because the
top flange is discretely braced, flange lateral bending must be considered, as shown in Eq.
(6.10.3.2.2-1).

£ +f, <¢,R,F

bu 4

Eq. (6.10.3.2.2-1)

yt

4, the unfactored major-axis moment due to steel self-weight is -3,154 kip-,

Calculate the factored major-axis flexural stresses in the flanges s fue to the
factored load resulting form the steel self-weight and the assume

For Construction Strength I:

Top Flange: f, =-

b

Bot. Flange: = - = —20 .45 ksi

For this example, and illustration e V-loadequation is used to compute the top flange

ip -fl Eq. (4.6.1.2.4b-1)
(716 .25 )(6.5)

Combine the fl lateral bending moment computed using the V-load equation with the lateral
moment due to th@bverhang brackets which was computed in Section G2-1 calculations. Noting
that the unfactored flange lateral bending moment due to the deck overhang bracket is 9.1 kip-ft,
the factored flange lateral bending moment and flange lateral bending stress are computed as:

M e = (1.25)[44.0 + 9.1]= 66 .4 kip - ft
M 66.4)(12
f=———= Cod2 —— =492 ksi
s, (3.00)18) > /6
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It should be noted that another significant source of flange lateral bending results from forces
that develop from single-diagonal top flange bracing members, resulting from the major-axis
bending of the tub girder. This effect is recognized in flange lateral moments taken directly from
a finite element analysis. In the absence of a refined analysis, Fan and Helwig [8] have
developed equations to evaluate bracing member forces and the forces imparted on the top flange
in tub girders due to major-axis bending. The flange lateral bending due to the top lateral
bracing is not considered in these computations. However, in an actual bridge design the flange
lateral bending moment due to the top lateral bracing should be considered, gnd can be computed
using the procedures suggested by Fan and Helwig [§].

Compute the factored St. Venant torsional shear stress, f,, in the bottom fl
load combination.

Strength 1

120 + (83 - 2(1))](3.00
- 2 L2

+ 78 +

o

The unfactored torques due to
respectively (note that results for Ca
table). Therefore,

stress 1s in compliance with Article 6.10.3.2.2:

Eq. (6.10.3.2.2-1)

f.+1f, =2301 ksi + 492 ksi = 2793 ksi

bu

¢, R F =(1.0)(1.0)(50.0 )=500 ksi

f, +f,=2793 ksi <¢ R F =500 ksi OK  (Ratio =0.559)

b
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7.7.1.2 Bottom Flange
7.7.1.2.1 Bottom Flange: Flexural Resistance in Compression — Stiffened Flange

Calculate the nominal flexural resistance of the bottom flange in compression, F,,, in accordance
with Article 6.11.8.2. Per Article 6.11.3.2, in computing F,. for constructibility, the web load-
shedding factor, Ry, shall be taken as 1.0. The bottom flange is longitudinally stiffened at this
location with a single WT 8x28.5, placed at the center of the bottom flange. Therefore, Article
6.11.8.2.3 applies.

Determine the slenderness ratio of the bottom flange:

where, in this case:

th
ngit

bre. = w = larger of the width of the flange bet
or the distance from a web to the neares

al flange stiffeners
tflange stiffener.

Since the longitudinal stiffener is at the center e bo e, w is the distance from the
longitudinal stiffener to the centerline of the web.

]
A= V2
1.50
60

Calculate the first limitin rness rat

where:

Eq. (6.11.8.2.2-8)

and where:
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Eq. (6.11.8.2.2-5)

Per Article 6.11.8.2.3, since a single bottom flange stiffener is used, n = 1 and the plate-buckling
coefficient for uniform normal stress, k, shall be taken as:

11.8.2.3-1)

and, the plate-buckling coefficient for shear stress, ks, shall be taken as:

1

I 3
5.34 +2.84 S -
wtfc‘

kg = - <5.34
(n+1)

where: ‘

(6.11.8.2.3-3)

f, = St. Venant torsional shear stress in t nge dueto factored loads
n = number of equally ygaced inal e stiffeners
k = plate-buckling coef’ stress, 1.0 <k <4.0
ks = plate-buckling coeffici
Is = moment of inertia 1 ngitudihal flange stiffener about an axis parallel to
the flange and t the stiffener
Structural tees are effici for lon@ludinal stiffeners because they provide a high ratio of

stiffness to cross-secti
the elastic neutral axis

Compute the plate-buckling coefficients, k and k:
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k = =2.81<4.0
81
(—W (150 *)
\2)
!
379.6 3
5.34 + 2.84[()(3)}
40 .5)\1.50
k. = =2.33 <5.34

S

(1+1)°
Therefore, R; and the first limiting slenderness ratio are computed as:

0.57

i ! , (0.03 Y(zm
“l1.00 + J1.007 + 4] ——| | &=
N

4

kE (2.81)(29,000 )
R, |[— =057 ,|[—————==23.01
F 50 .0

Since Af 1s greater than 23.01 (Af .0), it eceSary to compute the second limiting
slenderness ratio:
- 0
R, |—

2

F.
ye

where:

Eq. (6.11.8.2.2-9)

and where:

F o =(A-04)F <F Eq. (6.11.8.2.2-7)
F, = (1.0 —04)(50) =300 ksi <500 ksi

Therefore,
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(2.81)(29,000 )
F ' 50.0

. kE
Since A > R, [—,
VF
ye

buths < R, |~ Eq. (6.11.8.2.2-2) applies:
F

(6.11.8.2.2-2)

40.5 50.0
1.50 '\ (2.81)(29,000 )

{

F = (1.0)(1.0)(50.0)I 1.00 — [1.00 -
|

L

F _=(1.0 )(1.0 )(50

|
|
L
|
J

1
; 1.23 - 0.57 III
| iy

Checking campliance wi .(6.11.3.2-1):

Eq. (6.11.3.2-1)

= (1.00 )(49.45 )= 49.45 ksi OK (Ratio=0.414)

7.7.1.2.2 Bottom Flange: Flexural Resistance in Compression — Web Bend-Buckling
According to Article 6.11.3.2, for sections with compact or noncompact webs, the web bend-

buckling check of Eq. (6.11.3.2-2) is not necessary. Therefore, check if web satisfies the
noncompact slenderness limit given in Article 6.10.6.2.3.
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fcs7 |— Eq. (6.10.6.2.3-1)

where:
D. = depth of web in compression in the elastic range (in.).
For a tub girder, the depth of the web must be taken along the inclined web. Jherefore:

2D | 2(3882 - 1.5 )/cos 14.04 °
- =136 .8

t 0.5625

w

E 29,000
57 |[—=5.7 =137 .3
F . 50 .0

Since Eq. (6.10.6.2.3-1) is satisfied the web is noncompact}
Eq. (6.11.3.2.-2) does not need to be investigated for constru

ebb

-buckling check of

7.7.1.3 Shear (Article 6.11.3.3)

For constructibility, Article 6.10.3,3 requj
following requirement:

at 18@sior panels of stiffened webs satisfy the

v, Eq. (6.10.3.3-1)
where:
by
Vu eb at the section under consideration due to the factored permanent
ed construction loads applied to the noncomposite section.
Ver stance determined from Eq. (6.10.9.3.3-1).
The panel o pan 2 side of Section G2-2 will be investigated herein. The transverse

at this location is 62 inches. The total factored shear load will include the
contribution of §#& noncomposite dead load, and should not only include the vertical shear due to
flexure, but also §ear in the web due to torsion. Although not included herein, wind loads and
construction live loads also need to be considered by the designer, as applicable. The shears
used in the computations below are for flexure plus the torsional shear in the critical web. The
critical web shear due to steel self-weight is 47 kips (see Table 2), and the critical web shear for
Cast #1 1s taken as 185 kips (analysis results not explicitly provided for Cast #1).

stiffener spact

For Construction Strength I:

V.o =10(1.25 )(47 +185)= 265 kip

u
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However, it is required that the shear be taken along the inclined web, in accordance with Article
6.11.9:

Voo Eq. (6.11.9-1)
cos( 0 ., )
265
Vo — 2 73 kip

cos(14.04 °)

The shear-buckling resistance of the 62 inch panel is determined as:

V. =V_=CV

cr p

C is the ratio of the shear-buckling resistance to the shear yield
in Article 6.10.9.3.2. First, compute the shear-buckling coefdici€

k=s5+—— s+ —— 13 SP'S Eq. (6.10.9.3.2-7)
(4] (2
\ D ) \ 804 )
Since:
D 80.4
— = =1429 > =123 .5
t, 05625 50

Eq. (6.10.9.3.2-6)

V =058 F Dt Eq. (6.10.9.3.3-2)
V, =058 (500 )(80.40 )(0.5625 )=1311 kips

Therefore,

78



V. =V_=CV (0.598 )(1,312 )= 785 kip

L=
6. V_ =10(785) =785 kip

V,=273kp <¢ V_ =78 kip OK (Ratio = 0.348)

uj

7.8 Girder Check: Section G2-2, Service Limit State (Article 6.11.4)

Article 6.11.4 directs the Engineer to Article 6.10.4, which contains prov s related to the

control of elastic and permanent deformations at the Service Limit State.
7.8.1 Permanent Deformations (Article 6.10.4.2)

Article 6.10.4.2 contains criteria intended to control permanent dgf i 1d impair
rideability. As specified in Article 6.10.4.2.1, these checks are
II load combination.

As stated previously for the Service limit state check of 0.4.2.2 requires that

flanges of composite sections satisfy the foll<‘ng:

Top flange of composite sections:  f, < Eq. (6.10.4.2.2-1)

Bottom flange of composite s i f, 0.95R  F Eq. (6.10.4.2.2-2)

However, according to Articl
Egs. (6.10.4.2.2-1) and (6.10

d noncompact sections in positive flexure, these two
ecked. Composite sections in all horizontally curved

requirement of AWicles 6.11.2.1.2 and 6.10.2.1.1 (D/t,, < 150), web bend-buckling of all sections
under the SERVICE II load combination is to be checked as follows:

£ <F Eq. (6.10.4.2.2-4)

The term f;. is the compression-flange stress at the section under consideration due to the
SERVICE 1I loads calculated without consideration of flange lateral bending, and F., is the
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nominal elastic bend-buckling resistance for webs determined as specified in Article 6.10.1.9.
Because Section G2-1 is a section in negative flexure, it must be checked for Eq. (6.10.4.2.2-4).

Determine the nominal web bend-buckling resistance, F., for Section G2-2 in accordance with
Article 6.10.1.9.1, as follows:

09 E k

2

t

However, F, shall not exceed the smaller of RyF,. and Fy,/0.7. The ben
k, is computed as:

Eq. (6.10.1.9.1-1)

oefficient,

1-2)

where:

D. = depth of the web in compressi’in t
D, shall be determined as specifi

ic rqe (in.). For composite sections,

Arti

shear connectors provided throughout
the entire length of the girder th i rticlg6.10.1.7, the concrete deck may be
assumed to be effective for both posi flexure, provided that the corresponding
longitudinal stresses in the concr under consideration are smaller than 2f,
ecified in Article 5.4.2.6. Article 6.10.1.7 is in
regard to the minimum of o ongitudinal reinforcement provided in the concrete
deck, and is satisfied for Z8gti 1 design example.

f =20.24 Article 5.4.2.6

In accordance wi@@PArticle 6.10.1.1.1d, the longitudinal flexural stresses in the concrete deck due
to all permanent and transient loads are to be computed using the short-term modular ratio, n.
The calculated stress on the transformed section is divided by n to obtain the longitudinal stress
in the concrete deck. Since the deck is not subjected to noncomposite dead loads, the
longitudinal stress in the deck at Section G2-2 is due to DC2, DW, and LL+I moments only. The
unfactored major-axis bending moments at Section G2-2 are (see Table 4):

Noncomposite Dead Load: Mpcr  =-15,426 kip-ft
Composite Dead Load: Mpcz  =-1,923 kip-ft
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Future Wearing Surface Dead Load: Mpyw  =-2,550 kip-ft
Live Load (incl. IM and CF): Mirim =-8,127 kip-ft

The longitudinal compressive stress in the deck is to be determined in accordance with Article
6.10.1.1d, which allows the permanent and transient load stresses to be computed using the
short-term section properties (N = 7.56 composite section properties). Referring to

Table 13 of the section property calculations, the section modulus to the tofio ete deck

1S:

833,768 \
— 227132 i

deck =

93.00 - 62.27

eck at this section,
dead loads. The stress in the
formed section by the modular

Calculate the Service II factored longitudinal compressiv
noting that the concrete deck is not subjec?to

concrete deck is obtained by dividing the stres
ration, N.

[1.00- 1,923) +
1.0

deck ="

f, = 0880 ksi <2f,

deck

combination may be computed assuming that the
effective in tension. Refer to Table 12 and

Table 13 for
bending stress
follows (f; = ten

ction properties assuming that the concrete deck is effective. The major-axis
he top and bottom flange for the Service II load combination are computed as
flange, f, = compression flange):

For Service II:

Top Flange:

0F1.00(- 15426)  1.00(- 1,923)  1.00(- 2,550)  130(- 8,127) |
. + + +
10,057 19,574 19,574 41,214

f =-1 12 = 24 .22 ksi
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Bottom Flange:

rl.OO(- 15,426) 1.00(- 1,923) 1.00(- 2,550) 1.30(- 8,127) ]
.0 + + + 12 = =30.10 ksi
L 11,316 12,562 12,562 13,390 J

In order to compute F.., it is first necessary to determine D, the depth of the web in
compression, in accordance with Eq. (D6.3.1-1):

_fc
D =|———|d-t_ >0
f |+ f,

c

where:
f. = sum of the compression flange stresses caused b and LL+I;
acting on their respective sections (ksi). Flange 13 igdis disregarded.
fi = sum of the tension flange stresses caused by J8C1 d LL+I; acting on
their respective sections (ksi). Flange lateral
d = depth of steel section (in.)
te. = thickness of compression ﬂan&in.)
Therefore:
b - — (-30.10) Y
|- 30.10 |+ 2422
However, the depth of the we 1 «» should be taken along the inclined web for
computing the web bend, i of Eq. (6.10.1.9.1-1). Therefore, the vertical web
depth must be divided
D
Compute the §@u@ouckling coefficient, k:

9
= =29.75

(44.22 /80 .40 )

Therefore, the nominal web bend-buckling resistance, F.y, is computed as:

09 Ek 0.9 (29,000 )(29.75 )

- - F_,F._ /07 )=500 ksi
D ( 80.40 \
¢ 05625 )

h ™ ye y

F_ = 3801 ksi <min (R
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Verify Eq. (6.10.4.2.2-4):

£, =]~ 3010 |ksi <F_ =3801 ksi OK

™

N

(Ratio = 0.792)
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7.9 Girder Check: Section G2-2, Fatigue Limit State (Article 6.11.5)

Article 6.11.5 directs the designer to Article 6.10.5, where details in tub girder flexural members
must be investigated for fatigue as specified in Article 6.6.1. The Fatigue I load combination
specified in Table 3.4.1-1 and the fatigue live load specified in Article 3.6.1.4 are employed for
checking load-induced fatigue at Section G2-2.

At Section G2-2, it is necessary to check the top flange for the fatigue limit state for major-axis
bending. The base metal at the transverse stiffener weld terminations and gnternal cross frame

According to Table 3.6.2.1-1, the dynamic load allowance for fatigue load
force effects are considered and included in the fatigue moments 1

According to Eq. (6.6.1.2.2-1), y(Af) must not exceed the
accordance with Article C6.6.1.2.2, the resistance factor, ¢,
1.0 for the fatigue limit state. ‘

v(Af)< (AF), Eq. (6.6.1.2.2-1)
From Table 6.6.1.2.3-2, the 75-ye
C' fatigue detail is 745 trucks per da
example is 1,000 trucks per day
Fatigue I load combination.
fatigue life is equal to the con

o infinite fatigue life for a Category

y@huce the assumed (ADTT)sp for this design
ust be*checked for infinite fatigue life using the
2.5, the nominal fatigue resistance for infinite

Eq. (6.6.1.2.5-1)

where (A mplitude fatigue threshold and is taken from Table 6.6.1.2.5-3.
For a Cate AF)r = 12.0 ksi, and therefore:

As shown in Taji@4 the unfactored negative and positive moments due to fatigue, including the
15 percent dynatic load allowance, at Section G2-2 are -1,384 kip-ft and 256 kip-ft,
respectively.

In accordance with Article 6.6.1.2.1, for flexural members that utilize shear connectors
throughout the entire length that also have concrete deck reinforcement satisfying the provisions
of Article 6.10.1.7, it is permissible to compute the flexural stresses assuming the concrete deck
to be effective for both positive and negative flexure at the fatigue limit state.
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As required by Articles 6.10.10.1 and 6.11.10, shear connectors are necessary along the entire
length of horizontally curved tub girder bridges. Also, earlier calculations in this design example
show that the deck reinforcement is in compliance with Article 6.10.1.7. Therefore, the concrete
deck is assumed effective in computing the major-axis bending stresses for the fatigue limit state
at Section G2-2. The short-term composite section properties (N = 7.56) used to compute the
stress at the top of the web (bottom of the top flange) are:

Inam) = 833,768 in.*

dtop oF we = dtop oF sTEEL — tf ToP FLANGE = 20.23 in. — 3.00 in. = 17.

Per Table 3.4.1-1, the load factor, vy, for the Fatigue I load combination is 1 [bitored stress
range at the top of the web, without consideration of the longitudinal warp
as follows:

(|- 1384 |+ 256)(12 )(17.23 )
y(Af )= (1.5) = 0.41 ksi
833,768

7.9.1 Cross-section Distortion Stresses ‘

As stated previously for the fatigue limit state ch 1, additional requirements are
placed on computing stresses due to fatigu b sections. In particular, Article 6.11.5
requires the consideration of longi@lina and transverse bending stresses in tub
sections. When a tub section is 1 ion,¥the cross-section becomes distorted,
resulting in these secondary stresses.

Per Article 6.11.5, the stress itudinal warping should be considered when
investigating the fatigue resi base metal at all details in the tub section. For
simplicity, the longitudi s are added to the longitudinal major-axis bending
stresses.

Also, pe
investigate§
elements to
from the long
bending, a stre
elements to we
transverse bendiri®
detail.

jacent to the termination of fillet welds connecting transverse
finges. The transverse bending stresses are considered separately
al warping stresses. Article C6.11.5 states that as a result of the transverse
oncentration occurs at the termination of the fillet welds connecting transverse
and box flanges. The fatigue resistance of this detail, when subject to
is not currently quantified but is anticipated to be as low as a Category E

Calculations to determine the stress range from longitudinal warping and transverse bending can
be carried out using the beam-on-elastic-foundation (BEF) analogy presented by Wright and
Abdel-Samad [3]. The Designers Guide to Box Girder Bridges by Bethlehem Steel Corporation
[11] also presents the method developed by Wright and Abdel-Samad to estimate the transverse
bending stresses using the BEF analogy. In this method, the deflection of the BEF is analogous
to the transverse bending stress. Sample calculations for determining these distortional stresses
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based on the BEF analogy are presented in the 2003 AASHTO Guide Specification for
Horizontally Curved Steel Girder Highway Bridges [10], which is superseded by the current
AASHTO LRFD Bridge Design Specifications.

The BEF analogy for computing the distortional stresses is demonstrated for Section G2-2 in the
calculations that follow. Equation and figure references relate to those shown in the Designers
Guide to Box Girder Bridges (DGBGB) [11].

From a separate analysis (all results not shown) the unfactored negative and
to fatigue loading, including the 15 percent dynamic load allowance, at S¢
kip-ft and 339 kip-ft, respectively. The torque fatigue range is a result of p§
truck in two different positions on the bridge but on opposite sides of the t

positive torques due
G2-2 are -309
b the fatigue

assumed that this range is larger than the range produced by a single passa e truck
for this design example. As indicated in Article 6.11.5, a factor of 0.75 G@h p@ to this
torque range to account for the fact that two separate positions of 1 ¥ et quired to
cause the critical torque range. Therefore applying this 0.75 f3 factor for the

Fatigue I load combination (y = 1.5), the factored fatigue torque

T, = (075 )15 )] 309 | + 339 ]= 729 kip

FAT

-1

Other required constants that will be used in the

Inam = 833,768 in.*.

te = web thickness =
ty = bottom flange thic
ta = slab thickness =
E. = 3,834ksi

E, = 29, 000 ksi

5) k—in
D = = (84 )O3 ) = 285,345 = DGBGB Eq. (A3a)
2(0-p2) 12(1-020 %) in.
E t (29,000 )(1.50 )’ k —in
D, = = = 8,963 DGBGB Eq. (A3b)

20-p2) 12(1-030 7) in.

86



Article 6.11.1.1 permits transverse stiffeners to be considered effective in resisting transverse
bending. Therefore, the transverse flexural rigidity of the web, D., is computed considering the
stiffness of the transverse stiffener. Calculate the effective width of the web plate, d,, that acts
with the transverse stiffener (see Figure 14):

d tanh (5 .6 —W
a - % DGBGB Eq. (A4)
56— (1-n’)
h
where:
d = spacing of transverse stiffeners = 62 in.
h = web plate depth, along the inclined web = 80.40 in.

Figure 14 Effective Wig

Therefore,

The transverse flRural rigidity of the web, D., considering the stiffness of the transverse
stiffener is computed as:

D - DGBGB Eg. (A3d)

where:
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I; = moment of inertia of the effective stiffened web plate for transverse bending,
including the transverse stiffener.

To compute I, first compute the location of the neutral axis of the effective section from the
outer web face:

Area of stiffener = (5.5) (0.5) = 2.75in.?
Area of effective web = (15.8) (0.5625) = 8.89 in.
Total Area = 11.64 in.

2.75 (0.5625 + i\ + 8.89 (0'5625 W
\ 2 ) L\ 2 )

11.64

Calculate the moment of inertia, I:

5.5
—+ 0.5625 -1

I, = (LW(O.S)(S.SY +2.75

(12 ) (
9(0.5625 Y ‘
)

-1.0
L 2

I, =265 i °
Therefore,
29,000 )(26.5 ki :
TR )‘95 lp"

The stiffne e stiffener is assumed to be distributed evenly along the web.

.o) + W(l
)\

+ 8.8

Compute eQiibkity s , v, at the center of the bottom (box) flange for unit loads
applied at th box section of a unit length:

[(2a + b)abc |+ 17ba ’
D
: DGBGB Eq. (A2)
a 2c(a2+ab+b2) b
+ +
D D D

a c b

where a, b, and ¢ are dimensional parameters of the tub section:

a = distance between centerline of webs at top of tub section = 120 in.
b = distance between centerline of webs at bottom of tub section = 81 in.
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¢ = height of web, along the incline = 80.40 in.

[(2(120 )+ 81)(120 )(81)(80 .40 )] + (81)(120 *)
oo 12,395 285,345 02

3 3

120 2(80 .40 )(120 * + (120 )(81) + 81° 81
(120 + 81) + ( )( + (120 )(81) + )+

285 ,345 12,395 8,963

Compute the box distortion per kip of load, d;, assuming no cross-braci
present:

or diaphragms are

ab FL(Zab —V(2a+b))+a2( b

5 =
24(a+b)|_DC\a+b ) D,la+b

(120 )(81) [ 80 .40 (2(120 )81) (0.2 )(2(120 ) + 81)) .

S, =
24 (120 + 81) 12,395 | 120 + 81
. 2
6 =036 T
| 3
kip L 2
The BEF stiffness parameter, 3, is a measure o torsiondY stiffness of the beam, and is
analogous to the beam-foundatig@ par in t EF derivation. The BEF stiffness

parameter, [3, is calculated as:

DGBGB Egq. (A5)

= 0.00327 in.

The transverse bending stress range at the top or bottom corners of the tub section may be
determined as:

1
Gt :Ct Fd ﬁ_Tran

: DGBGB Eg. (A8)
a

ge
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where:

C: = BEF factor for determining the transverse distortional bending stress from
DGBGB Figure A6 (see Figure 15)
Trange= range of concentrated torque = Trat (computed previously)

a = distance between webs at the top of tub section
b
Fq = 2> for the bottom corner of tub section [DGBGB Egq. (A9a)]
28
= (iY b vw for top corner of tub section [DGBGB Egq.
(2S )la+b )
S = section modulus of the transverse member (per inch)
Calculate the section modulus, S, per unit length of the stiffened port1on of Uik Sgken at
the top of the transverse member. In the following equation, the 36 ) fffivided by

the stiffener spacing, d; and the distance from neutral axis of t
stiffener is cs.

C— [L]( o 265

¢, JUd) 55 + 05625 0 )

Calculate the section modulus, S, per unit length
the mid-thickness of the web. In't
the section modulus is computed pe

unstiftehied portion of the web taken at
fo bus is taken as a unit 1.0 inch, so that

portions of the web:

S UnsTFFENE D = 0.0527 -
m.
Compute the term Fq4 & of the tub section for the stiffened and unstiffened

022

Stiffened

2 0.084

Unstiffened W

Compute the term Fg4 at the top corner of the tub section for the stiffened and unstiffened portions
of the web:

Stiffened Web: F, = fi}( b —v\=( 120 ]( i -022 \:131 i~
(28 Jla+b ) (2(0.084 ))( 120 + 381 )
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, ( a V b W 120 ( 81 ) o
Unstiffened Web: F =] — -v|= -022 |=208 in
(28 Jla+b ) |2(00527 ))(120 + 81 )

It is conservatively assumed that the transverse stiffeners are not attached to the top or bottom
flanges. Therefore, Fq is equal to 208 in.”, as the larger value governs so as to produce a larger
transverse bending stress.

In order to read C; from Figure 15 (DGBGB Figure A6), the dimensionless ratio, q, must be
calculated. The quantity q represents the ratio of cross frame / diaphragm e stiffness to the
tub section stiffness per unit length and is computed as:

[E, A, 1,
q=| |3,
L, (38, |
where:
E, = Young’s modulus of the internal cross frame Y@l ial
A, = cross-sectional area of one crosg frame / diaphig@gm br member
¢ = internal cross frame / diaphra pa
L, = length of cross frame / diaphragm4{@igcing
O, = deformation of the bracing member ied torque and is calculated in
accordance with DGRGB
2(1 + iw
L b)
- —2(81 DGBGB Egq. (A7)
[a+D]
1+
| 2n
h = vertical e the section.
First, co :
81 (036 )=1.10 m'.
120 + 81 | ip
2(78) J

Calculate the cross frame stiffness ratio, . The area of one diagonal, Ay, in the internal cross
frame is assumed to be equal to 5.0 in.%, and the length of the diagonal, Ly, is equal to 87.9 in.

[ (29,000 )5.0) 1

1 {(87.9 )(196 )(0.36 )J 0) -
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From Figure 15, for q = 28.3 and Bl = 0.64, C, is approximately equal to 0.12. Therefore, the
transverse bending stress range at the top or bottom corners of the tub section is:

o, =(0.12 )(208 )(0.00327 ) (729 (12)) = 2.98 ksi

2(120 )

10 ;

“ELETE

—

1.0 =
A :
0.5 = 00 !
000——H. i
//‘ + ' 1
10,000 ]

0.1 05 10

Eq. (6.6.1.2.5-1)

where (A pstant“g@rplitude fatigue threshold, and is taken from Table 6.6.1.2.5-3.
As discussc@ip g1y base metal adjacent to the termination of fillet welds connecting
transverse elo@ledi® to webs and box flanges is assumed to be a Category E detail for transverse
bending. For @ategory E fatigue detail, (AF)ty = 4.5 ksi, and therefore:

(AF ) = 4Wksi >0 =298 ksi OK (Ratio = 0.662)

The fatigue longitudinal warping stress range at the top and bottom corners of the tub section due
to cross section distortion can be computed as follows:

o4 = T e DGBGB Eq. (A10)
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where:

Cw = BEF factor for determining the distortional longitudinal stress from DGBGB
Figure A9 (see Figure 16)

distance along the transverse vertical axis of the tub section from the neutral axis
to the point under consideration

<
I

Obtain C,, from the graph shown in Figure 16, where g = 28.3 and ¢ =0.64. C,, is
approximately 0.55. Therefore, using the short-term composite section groperties with the
transformed deck at Section G2-2 (see

Table 13), the factored distortional longitudinal stresses are:

. _ (0.55 )(17.23 ) (729 (12

aw ))= 025 ksi
M-I (833,768 )(0.00327 ) (120 )

(0.55 )(60.77 )

S . = (12
ST (833,768 )(0.00327 ) (120 ) ‘

10

5.0

ety | | 2w

- TTTTTT i//mo .
<1000 |
ETTH
0.1 B W URE
01 05 O..T 05 1.0
CW

Figure 16 Concentrated Torque at Mid-panel on Continuous Beam — Normal Distortional
Warping Stress at Mid-panel (DGBGB Table A9 [11])
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The distortional longitudinal warping stress ranges at the top and the bottom of the tub section
are considered in checking the fatigue resistance of the base metal at the connection plate welds.
At Section G2-2, it is necessary to check the fatigue resistance at the top flange for the Category
C' fatigue detail previously discussed, due to the combined effects of major-axis bending and the
distortional longitudinal warping stress.

v(Af )= v(Af )poie + Ouy 1or = 041 ksi + 025 ksi = 0.66 ksi

v(Af )= 0.66 ksi < (AF) =12.0 ksi OK  (Ratio =0.055)

7.10 Girder Check: Section G2-2, Strength Limit State (Article 6.11.6)
7.10.1 Flexure (Article 6.11.6.2)
$6.2.3 directs

t the provision of
ndix B allowed.

For composite sections in negative flexure at the strength limi
the Engineer to Article 6.11.8. Furthermore, Article 6.11.6.
Appendix A shall not apply, nor is redistribution of negativ

At the strength limit state, the top flanges in‘nsio contin cd by the concrete deck,
shall satisfy:

£ <¢.F Eq. (6.11.8.1.2-1)

bu f = nt

where F,; 1s the nominal flexural r
Article 6.11.8.3.

bottdm flange determined as specified in

At the strength limit state, tub M#nges (bo nges) in compression shall satisfy:

£, <¢.F, Eq. (6.11.8.1.1-1)

Where F
Article 6.

ural resistance of the bottom flange determined as specified in

The unfactor ents at Section G2-2 from the analysis are shown below (see Table
oment includes the centrifugal force and dynamic load allowance effects.

ite Dead Load: Mpcr  =-15,426 kip-ft
Composite Dead Load: Mpcz  =-1,923 kip-ft
Future Wearing Surface Dead Load: Mpw  =-2,550 kip-ft
Live Load (incl. IM and CF): Mipam =-8,127 kip-ft

Compute the factored flange flexural stresses at Section G2-2 for the Strength I limit state,
without consideration of flange lateral bending. For loads applied to the composite section,
cracked section properties are used to compute the major-axis bending stresses in accordance
with Article 4.5.2.2. Shear lag need not be considered since the box flange (bottom flange) does
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not exceed one-fifth of the span of the bridge (Article C6.11.1.1). Therefore, major-axis bending
stress is assumed to be uniform across the flange because shear lag need not be considered.
Also, the longitudinal warping stress due to cross sectional distortion does not need to be
considered at the strength limit state, in accordance with Article 6.11.1.1. As discussed
previously, the n factor is taken equal to 1.0 in this example. Therefore:

For Strength I:
Top Flange:
[1.25( —15,426) 1.25( —1,9232) 1.5( —=2,550)  1.75( -8,1
£,, =10 + + + 44 .41 ksi
L 10,057 10,654 10,654 11,8
Bottom Flange:

r1.25( —15,426) 1.25( -1,923) 1.5( —2,550)
f,, =10 + +
L 11,316 11,447 11,447

2 = —41.60 ksi

In accordance with Article 6.11.1.1, the eff(’ of
shall be considered in horizontally curved bridgd@a The pute the factored St. Venant
torsional shear stress, f,, in the bottom flange the Strem®th I load combination. f, is
determined by dividing the St. Vegant torgg ear [ f=T/(2A,) ] by the thickness of the
bottom flange:

and St. Venant torsional shear

Eq. (6.11.3.2-5)

The unfactoro@M@rques at Section G2-2 obtained from the analysis are shown below (see Table
| moment includes the centrifugal force and dynamic load allowance effects.
The positive valil, torques are used in the calculations that follow as the total of the positive
torques governs over the absolute total of the negative torques.

Noncomposite Dead Load: Tpci =36 kip-ft + (-33 kip-ft) = 3 kip-ft
Composite Dead Load: Tpcx =192 kip-ft
Future Wearing Surface Dead Load: Tpw =255 kip-ft
Live Load (incl. IM and CF): Triom =980 kip-ft
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Article C6.11.1.1 indicates that for torques applied to the noncomposite section, A, is to be
computed for the noncomposite section. Since the top lateral bracing in this example is attached
to the top flange, the vertical depth can be calculated as the distance between the mid-thicknesses
of the top and bottom flanges. Furthermore, for torques applied to the composite section, A, is to
be computed for the composite section using the depth from the mid-thickness of the bottom
flange to the mid-thickness of the concrete deck. In this example, the height of the deck haunch
is considered.

Compute the enclosed area of the noncomposite tub section, A, nc.

2

+ 78 +
2 L2 2

o_NC

[120 + (83 - 2(1))](3.00 1.50

) = 8,065 in.
)

Compute the enclosed area of the composite tub section, A, c.

_ (120 + (83 - 2(1))]( 1.50 950 )

78 + + 4.00 +
2 L 2 2 )

=87

o C

Compute the factored Strength I St. Venan

‘rsio shear @licess in the bottom flange of the
noncomposite section:

0) (125 )(3)(12)

2 (8,065 )(1.50 )

Compute the factored Strength [
composite section:

shear stress in the bottom flange of the

(1.75 )(980 )](12)

50 )

.50 )(255

=1.063 ksi

Therefore{gh al factore ngth 1 St. Venant torsional shear stress is computed as:

According to A@licle 6.11.1.1, the St. Venant torsional shear stress in box flanges (bottom flange
in this tub girdelgllue to factored loads at the strength limit state shall not exceed the factored
torsional shear resistance of the flange, F,,, taken as:

F_=0.75¢, —= Eq. (6.11.1.1-1)
" )

where:

¢, = resistance factor for shear specified in Article 6.5.4.2
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Therefore:

50
F_=075(1.0)—==121.65 ksi > f =107 ksi OK

A

7.10.2 Top Flange

Calculate the nominal flexural resistance of the top flange in tension, F,, N@accordance with

Article 6.11.8.3.

F =R F

For a homogenous girder, Ry, is equal to 1.0 (Article 6.10.1.10.1
F_=(1.0)(50.0 )=50.0 ksi
For Strength I:

f<¢,F Eq. (6.11.8.1.2-1)

nt

f, =44 .41 ksi < ¢, F =

bu

K  (Ratio = 0.888)

7.10.3 Bottom Flange

Calculate the nominal flexyral@&si the bottom flange in compression, Fy, in accordance
longitudinally stiffened at this location, with a single

Eq. (6.11.8.2.2-4)

larger of the width of the flange between the longitudinal flange stiffeners
or the distance from a web to the nearest longitudinal flange stiffener.

Since the longitudinal stiffener is at the center of the bottom flange, w is the distance from the
longitudinal stiffener to the centerline of the web.
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Calculate the first limiting slenderness ratio:

kE
Rl
F
yc
where:
0.57
R, =
[ 2 e
1] 2 f, |
f|A+ A" +4] — — |
2L F kg |
and where:

coefficient for uniform normal stresg, k, s

. ! q. (6.11.8.2.2-5)
Per Article 6.11.8.2.3, since a single bottom ﬂan% 1S , N =1 and the plate-buckling
ak TR

Eq. (6.11.8.2.3-1)

1

81 3
k: S
3
Wt

and, the plate-buckling cgl@ficTGiit for she@l¥stress, ks, shall be taken as:

1
3

Eq. (6.11.8.2.3-3)

where:
f, = St. Venant torsional shear stress in the flange due to factored loads
n = number of equally spaced longitudinal flange stiffeners
k = plate-buckling coefficient for uniform normal stress, 1.0 <k <4.0
ks = plate-buckling coefficient for shear stress
Is = moment of inertia of a single longitudinal flange stiffener about an axis parallel to

the flange and taken at the base of the stiffener
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Structural tees are efficient shapes for longitudinal stiffeners because they provide a high ratio of
stiffness to cross-sectional area. For the WT 8 x 28.5 stiffener, I, = 48.7 in.4, A =18.39 in.z, and
the elastic neutral axis (N.A.) is 6.28 in. from the tip of the stem. Therefore, I is computed as:

4

I, =487 + (839 )(6.28 )" =379.6 in

Compute the A term:

Since Ar is greaf®r than 23.01 (Af = 27.0), it is necessary to compute the second limiting
slenderness ratio:
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where:

R, - : Eq. (6.11.8.2.2-9)

and where:

F, o =(A-04)F <F

yr yw

F_=1(0.999 — 0.4 )(50)=29.95 ksi < 50.0 ksi
yr

Therefore,

1.23

1 |r29.95 +\/(29.95 Y
12 | 500 L 500 )

kE
R, [—=1.23
F

kE
F.
ye

Since Af > R , but Af

Eq. (6.11.8.2.2-2)

|
|
L

The hybrid factoi§Ry, is equal to 1.0, per Article 6.10.1.10.1.

Determine the web load-shedding factor, R,. First, compute the depth of the web in
compression, D., due to the Strength I factored loads, in accordance with the provisions of
Article D6.3.1. These provisions state that for composite sections in negative flexure, D. is
computed for the section consisting of the steel girder plus the longitudinal deck reinforcement.
For this example, D, is calculated using the short-term (n) section property computations shown
in Table 15.
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Therefore, compute D, along the inclined web:

2

1
= 4131 n

D, =(4158 -1.50) -
4

According to the provisions of Article 6.10.1.10.2:

2D, 2(41.31)

= =146 .9
t, 0.5625
E 29,000
A, =57 |—=57 =137 .3
F 50
yc
. 2D,
Since > _ , calculate Ry, as follows:

Eq. (6.10.1.10.2-3)

a 2D |
R, =1- -k, 1.0
1200 + 300a t,

\

where,
Qo Det 201.31)(0562 373 Eq. (6.10.1.10.2-5)
b, t, (83.0)
Therefore,
73 31) \
R ~137.3=0.997 <10
1200 + 373 )\ 0.5625 )

al compressive resistance, F;, of the bottom box flange:

[ ( [ ( 40.5 50.0 ﬂ
| | | 1.23 - |
F = (0.997 )(1.0)80 .o)I 0.999 —|0.99 — ﬂ]ll ~sin | EI 150 V(2.81)(29.000 ) I |
| (1.0)(50.0) ) I 2 1.23 - 0.57 I
L [ L J

F =1(0.997 )(1.0 )(50.0 )[0.988 |= 49.25 ksi

nc

17
|
3
N
/]
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Checking compliance with Eq. (6.11.8.1.1-1):

fo. <0.F, Eq. (6.11.8.1.1-1)
For Strength I:
£, =|-41.60 ksi|<¢ F =(1.00)(49.25 )=49.25 ksi OK  (Ratio = 0.845)

Article C6.11.8.1.1 states that in general, bottom box flanges at inter{@@apier sections are
subjected to biaxial stresses due to major-axis bending of the tub section and
of the internal diaphragm over the bearing sole plate. The bottom flange is4i#S&%@jcct to shear
stresses due to the internal diaphragm vertical shear and, in cases i ds to be
considered, the St. Venant torsional shear. For cases where the shear stres end
the internal diaphragm are deemed significant, Article C6.11.8.1 losme Rat théfollowing

equation be used to check the combined stress state in the box fla

2 2 2
\/fbu — £y, fy, +f,, +3(f, +f,) <¢ R R F_

where: ‘

fou = longitudinal stress due to factore ads at section under consideration
calculated without lon inal warping (ksi)

(C6.11.8.1.1-1)

fiy = stress in the flange 1o caused by major-axis bending of the
internal diaphragm ove 1 plate (ksi)
fg = shear stress in the ed by the internal diaphragm vertical shear due to

rmined as specified in Article 6.10.1.10.2
pecified in Article 6.10.1.10.1

forces in a tU@EEa@On supported on a single bearing is likely to be more significant and should

tub girder bottoj@lflange may be considered effective with the internal diaphragm for computing
the stress in the D@ flange (bottom flange in this tub girder) caused by major-axis bending of the
internal diaphragm over the bearing sole plate. Furthermore, if an access hole is provided within
the internal diaphragm, the hole should be considered in calculating the section properties of the
effective diaphragm section.

From previous calculations, the total factored St. Venant torsional shear stress in the bottom
flange, f,, 1s equal to 1.07 ksi.
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To estimate the shear stress in the bottom flange due to the internal diaphragm shear, a 1 in. by
12 in. top flange for the diaphragm is assumed. The diaphragm web is assumed to be 78 inches
deep and 1 inch thick, and an access hole is not provided in the web. As specified in Article
C6.11.8.1.1, a box flange width equal to 6 times its thickness may be considered effective with
the internal diaphragm. Therefore:

b =6(1.50 )= 9.0 in.

bf EFF

Therefore, the effective bottom flange of the internal diaphragm is 9.0 1
thickness of 1.50 inches. The thickness of the effective bottom flange of the
is the same as the thickness of the tub girder bottom flange.

From separate calculations not shown here, the moment of inertia of
diaphragm is 79,565 in.*, and the neutral axis is located 39.89 in. aboye
flange. Calculations associated with the design of the internal dj
that the total factored vertical component of the diaphragm shea
in the tub girder bottom flange, fy, caused by the interpgl d ical shear due to
factored loads is approximated as:

PoYQ \ g Eq. (C6.11.8.1.1-2)

d
It,

where:
V = vertical shear in the in 1 due to flexure plus St. Venant torsion
(kip)
Q = first moment o i the effective box-flange area about the neutral
axis of the effe 1 iaphragm (in.”)
I tive internal diaphragm section (in.")
The first i f one-half the effective box-flange area about the neutral axis of the
effective |
Q
Therefore,

\Y% 1,406 )(264.2
f o= Q:( X ):3.11 ksi
It (79,565 )(1.50 )

f

Only one-half of the first moment of inertia, Q, and the thickness of the effective bottom flange,
ts, are used in this calculation due to the fact that in this particular case the horizontal component
of the transverse shearing stress is required.
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The factored longitudinal stress in the tub girder bottom flange, fy,, resulting from major-axis
bending was computed previously as -41.60 ksi. Also, Ry is equal to 1.0, and Ry, was computed
in previous computations and is equal to 0.997.

Checking compliance with Eq. (C6.11.8.1.1-1):

\/(— 41.60)° - (- 41.60)(0)+ (0)" +3(3.11 +1.07 )" = 4223 ksi

4223ksi < ¢ R R F_=(10)0997 )(1.0)(50)=4985 ksi ~OK (R =0.847)

7.10.3.1 Cross-section Distortion Stresses

In accordance with Article 6.11.1.1, transverse bending stress due to c [WStortion
shall be considered at the strength limit state. The transverse bg g i g0 factored
loads shall not exceed 20.0 ksi at the strength limit state. Long Farping stresses due to

As shown previously in the fatigue computations for Sectio
range at the top or bottom corners of the tub ‘ion

verse bending stress

1
c,=C F, p—T
2a

DGBGB Eq. (A8)

The same values computed under th
state, thus C; is equal to 0.12, Fq4 1
120 in. T represents the total f;

ations may be used at the strength limit
is equal to 0.00327 in.”', and a is equal to
ed torque, and is computed as follows:

For STRENGTH I:

T=1253)+12 )+ 1.50 (255 )+ 1.75 (980 )= 2,341 kip - fi

Therefore, Wk ansv. bending stress due to cross-section distortion is computed as:

(208 )(0.00327 ) (2,341 (12 )) = 9.55 ksi < 20.0 ksi OK

2(120 )
7.10.4 Shear (Article 6.11.6.3)

Article 6.11.6.3 invokes the provision of Article 6.11.9 to determine the shear resistance at the
strength limit state. Article 6.11.9 further directs the Engineer to the provision of Article 6.10.9
for determining the factored shear resistance of a single web. For the case of inclined webs, D,
shall be taken as the depth of the web measured along the slope. The factored shear load in the
inclined web shall be taken as:
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v, o= —t Eq. (6.11.9-1)

where, V, is the shear due to factored loads on one inclined web, and 6 is the angle of inclination
of the web plate. For tub sections, especially those in horizontally curved bridges, St. Venant
torsional shear must be considered in the design of the webs. The total shear in one web is
greater than the shear in the other web at the same section since the torsional shear is of opposite
sign in the two webs. The critical shear should be the maximum combination of factored shear
due to major-axis bending and the St. Venant torsional shear. For practi , both webs are
designed for the critical shear.

At the strength limit state, webs must satisfy the following:

¢, = resistance factor for shear = 1.0 (Article 6.5.4
V., = nominal shear resistance detegined i
for unstiffened and stiffened wébs,ges
V, = V, = shear in a single web at t

loads.

in Articles 6.10.9.2 and 6.10.9.3

ction onsideration due to factored

The unfactored shears at Section G23 i he Malysis are shown below (see Table 2).
The unfactored shears are vertical she mmation of the shear due to major-axis
bending and St. Venant torsion i critical web. The live load moment includes the
centrifugal force and dynamic . The positive value shears are used in the

VDC] =232 klp

VDCZ =44 kip
ead Load: Vpw =58 kip
Live d CF) VLLHM =160 klp

factored shear af\@llle interior pier in the inclined web is:

1.0 [1.25( 232 + 44) + 1.5(58) + 1.75(160
_ 10 [1.25( ) +1.558) VN B
cos (14.036 °)

ui

7.104.1 Interior Panel (Article 6.10.9.3.2)

Article 6.10.9.1 stipulates that the transverse stiffener spacing for interior panels without a
longitudinal stiffener shall not exceed 3D = 3(80.40) = 241.2 inches. For the first panel on each
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side of the interior support, a transverse stiffener spacing of 62 inches is assumed for this design
example, satisfying the 3D requirement.

For interior panels of girders with the section along the entire panel proportioned such that:

2D 25 Eq. (6.10.9.3.2-1)

<
(b t, +b,t,)

e

(e}
[ee}
3
~
—
|
(@)
~

in which:

V, =058F Dt Eq. (6.10.9.3.2-3)

P
where:

d, = transverse stiffener spaci
nominal shear reg eb panel (kip)

k=54 s 34 Eq. (6.10.9.3.2-7)

Since:
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=1429 >140 |— =140 ;| —— =123 5
0.5625 F 50

yw

D 80.4 Ek 29,000(13.  41)
t

1.57 Ek
C- {—J Eq. (6.10.9.3.2-6)

1.57 (29,000(13. 41)}
(1429 )" { 50

C = = 0.598

V, is the plastic shear force and is calculated as follows:

V =058 F_ Dt
P yw w

V., =058 (500 )(80.40 )(0.5625 )=1,312 kips

Therefore, ‘

|
|
v, = (1312 )I 0.598 +
|
Checking compliance wi

OK (Ratio = 0.639)

3 al flange stiffener is used on the bottom flange of the tub girders in the
negative momd@lregions. The longitudinal stiffeners are terminated at the bolted field splices at
each end of fic[@ections 2 and 4. By terminating the longitudinal stiffener at the bolted field
splices, it is not M@Cessary to consider fatigue at the terminus of the stiffener. The bottom flange
splice plates inside the tub girder must be designed and fabricated to permit the longitudinal
stiffener to extend to the free edge of the flange, where the longitudinal stress is zero.

A single WT 8x28.5 is utilized for the longitudinal stiffener with the stem welded to the bottom
flange, and it is placed at the centerline of the bottom flange. Per Article 6.11.11.2, longitudinal
compression flange stiffeners on tub girder bottom flanges (box flanges) are to be equally spaced
across the width of the flange. Furthermore, the yield strength of the longitudinal stiffener must
not be less than the yield strength of the flanges to which they are attached.
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The projecting width, bj, of the longitudinal flange stiffener must satisfy Eq. (6.11.11.2-1):

bo<048 t, | Eq. (6.11.11.2-1)
F.
where:
ts = thickness of the projecting longitudinal stiffener element (in.

In the case of a structural tee, t5 is taken as the flange thickness of the st
half-flange would buckle similarly to a single plate connected to the
projecting width, b;, of structural tees shall be taken as on-half the
Therefore,

g since each

29,000
b, <048 (0.715) =827 i
50
7.12 %
b, =——=356 in <827 i 23% W OK
2

The moment of inertia, I, of eachgtiffe
base of the stiffener shall satisfy:

an parallel to the flange and taken at the

Eq. (6.11.11.2-2)

where:

Calculate the momfient of inertia of the stiffener, I, about the base of the stiffener:

I =1, + Ad* = 48.7 + (8.39) (8.22 — 1.94)* = 379.6 in*
Per Article C6.11.11.2, the actual longitudinal flange stiffener moment of inertia, I, used in
determining the plate-buckling coefficient for uniform normal stress, k, from either Eq.

(6.11.8.2.3-1) or Eq. (6.11.8.2.3-2), as applicable, automatically satisfies Eq. (6.11.11.2-2).
Alternatively, for preliminary sizing of the stiffener for example, a value of k can be assumed in
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lieu of Eq. (6.11.8.2.3-1) or Eq. (6.11.8.2.3-2), but a range of 2.0 to 4.0 should generally apply.
For completeness, check Eq. (6.11.11.2-2), where k was previously calculated as 2.81:

4

379.6 in ' > 0.125(2.81 )3{8—1}(15) *=3791 i’ OK
2

Since Eq. (6.11.11.2-1) and Eq. (6.11.11.2-2) are satisfied, the WT 8x25 is acceptable for the
longitudinal bottom flange stiffener.

7.12 Internal Pier Diaphragm Design

considerations for internal and external cross-frames and diaphragms. i hragms
are subject to major-axis bending over the bearing sole plates in_additi 2l  Article

i ' e strength
' ) which is a yield
by two bearings,
diaphragms, fyy, is

11m1t state not exceed the compressive resistance given by Eq
criterion for combined stress. In this example, each tub
therefore, per Article C6.11.8.1.1, the major-axis bending s
typically small and can be neglected. ‘

Example calculations are demonstrated for th:
supports (Girder Section G2-2). A 1.0 inch thick
diaphragm web at this location. Fi

e 50 stee
of the internal diaphragm.

1"x12"

_—2-1"x11" BRG
STIFFENERS (TYP)

A
12"T 28 1/2= 281/2" | 12"

. 401/2" - 40172

Figure 17 Sketch of the Internal Diaphragm and Bearing Locations
First, summarize the maximum vertical shears and torsional moments acting on the internal

diaphragm. The unfactored shears are taken from Table 2, and most of the unfactored toques are
taken from Table 6.
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The maximum unfactored vertical shears acting on the internal diaphragm, using the critical tub
girder web are shown below. The unfactored vertical shears are due to the combined effects of
bending and St. Venant torsion in the critical tub girder web. Therefore, it is necessary to
separate out the shears due to bending and St. Venant torsion in computations that follow later in
this section.

The maximum unfactored vertical shears in the critical tub girder web, due to tub girder flexure
and St. Venant torsion, are:

Steel Dead Load: Vpei-steeL = 47 + |-46| = 93 kips
Concrete Deck Dead Load: Vbci-cone = 185+ |-185| =37
Composite Dead Load: Vpca =44+ |-41| = 85 kips
Future Wearing Surface Dead Load: Vpw =58 +|-55| =113 kip
Live Load (incl. IM and CF): Vitam =160 +|-155 i

The maximum unfactored torques acting on the internal diaphra

Steel Dead Load: Tbci-SsTEEL = |- 3 -ft
Concrete Dead Load: ’ ; 3| =81 kip-ft
Composite Dead Load: DC =341 kip-ft
Future Wearing Surface Dead Load: Tpw =452 kip-ft
Live Load (incl. IM and CF): 0 + |-425| = 1405 kip-ft

For computing the Live Load torqu
the largest torsional reaction at the
diaphragm.

corfcurrent torsions are used that produce
e largest torque acting on the internal

Compute the maximum fagtor in the diaphragm web. The vertical shear acting on
aximum shear in the internal diaphragm. First, it is
tub girder flexure (bending), Vy, and the shears due to
St. Venan maximum unfactored vertical shears above include the web shear

The calculatiorl@lin this section check the combined principal stresses in the internal diaphragm
web and the shd@in the internal diaphragm web. To perform these checks it is necessary to
separately consid€r the shear in the internal diaphragm for tub girder flexure (bending) and the
shear due to torsion.

7.12.1.1 Noncomposite Shear Force

The sum of the total noncomposite Strength I factored shear is:

Vier = 1.25 (93 +370) = 579 kips
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To compute the shear due to torsion, it is necessary to compute the shear flow in the
noncomposite tub girder section. The enclosed area of the noncomposite tub section, A, nc, was
computed in previous calculations as 8,065 in>. The factored shear flow in the noncomposite
section is computed as:

f, =— Eq. (C6.11.1.1-1)
2A,
where:
T = internal torque due to factored loads (kip-in.)
A, = enclosed area within the box section (in.?)
- T 125(58+81)12) 0.129 kip/in

2A 2(8,065)

Note that the internal factored torque is equal to 173.8 kip-ft}

To obtain the factored St. Venant shear, Vr, n?lt' ly
girder web along the incline:

shear flow, by depth of the tub

V1=0.129 (80.40) = 10.3

The vertical shear in th
by subtr.

hragm due to tub girder flexure alone and noncomposite loads
the St. Venant torsional component from the total noncomposite

9 kips

Figure 18 provig@h an illustration of the above calculation.
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173.8 kip-ft

_é’

s » 8
wn wn

Vertical shear in critical tub girder web In-plane shear in tub girder web due to Vertical shear in tub girder web due to

due to tub girder flexure and St. Venant St. Venant torsion tub girder flexure

Torsion
Figure 18 Illustration for the computation of the shear in the internal ragms due to
St. Venant torsion and tub girder flexure
7.12.1.2 Composite Shear Force

The sum of the total composite Strength I factored shear is:
Vpcapw+ar+n = 1.25 (85) + 1.5 (113) +1.75 (315) = 827

The enclosed area of the composite tub section, A, c, was vious calculations as

8,794 i in®. The factored shear flow in the con‘sne

T [1.25341)  +15452) +1.75(, 1(12)
2A

o

= 2.43 kip/in

(8,794

To obtain the factored St. Venant sh
web along the incline:

the factored shear flow, by depth of the

Vi = 2.43 (80.40) = 1988 kips

The vertical compone

The vertical s in the diaphragm web due to tub girder flexure alone and composite loads is
then computed @ subtracting the St. Venant torsional component from the total composite shear:

V, =827 ¥190 = 637 kips
7.12.1.3 Total Factored Shear Force

The total factored shear stress in the diaphragm web due to torsion is calculated by dividing the
shear flows by the thickness of the web:
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0.129 2.43
= +

1.0 in. 1.0 in.

)

v/T

= 2.56 ksi

The average Strength I factored shear stress in the diaphragm web due to tub girder flexure
(bending) is calculated by dividing the total factored shear by the area of the web:

569 + 637
(f,), =————=1546 ksi
78(1.0)
7.12.1.4 Check of Internal Diaphragm Web
As discussed previously, for a tub girder supported on two bearings, the @@hdi (fe8scs in the
plane of the internal diaphragm due to vertical bending of the diaphragm g sole
plates are relatively small and will be neglected in this example fQissmmaplic @fub girder
supported on a single bearing, the effects of the bending stresse > diaphragm
are likely to be more significant and should be considered. As §f icle C6.11.8.1.1 a
width of the bottom (box) flange equal to 6 times the thic A C ered effective with

the diaphragm in resisting in-plane bending.

Therefore, for this example, since bendin&n th he diaphragm is ignored, the
maximum principal stress is simply equal to the facto

fy =)+ (f)p =2.56 +15
The combined principal stresses in th to factored loads are checked using the

general form of the Huber-v i ncky yield criterion, which is similar to Eq.
(C6.11.8.1.1-1). The general f von Mises-Hencky yield criterion is:

where o

There is a major¥Xis bending moment that must be carried by the internal diaphragm, resulting
from the fact that the web is cantilevered out from the bearing (see Figure 17). Assuming that
the vertical shear force acts at the mid-depth of the web, the internal diaphragm moment at the
centerline of the bearing is computed as:

Mp = (569 kips + 637 kips) (12.0 in. + 9.75 in.) = 26,231 kip-in.

It was stated earlier in these calculations that the moment of inertia of the effective internal
diaphragm is 79,565 in.*, and the neutral axis is located 39.89 in. above the bottom of the bottom
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flange. The bottom flange thickness is equal to the bottom flange thickness of the tub girder,
which is 1.50 inches. Therefore, the major-axis bending stress, oy in the internal diaphragm web
is computed as:

M ¢ (26231 )(39.89 - 1.50 )

6. = = =12 .66 ksi
I 79,565

G, is equal to zero because there are no loads applied that cause stress in vertical direction in the
internal diaphragm web.

Therefore, the principal stresses are computed as:

(12.66+0W (12.66—0\2 , ,
o, =| =& || ZE——] 41802 * = +25.43 ksi
N 2 J N 2 )

Check the combined principal stress using the Huber-von criterion:

yie

\/25 437 — (2543)( —25.43) + (=25 .43‘: 44 = 50.0 ksi OK (Ratio=0.881)

Next, check the shear resistance of the internal ragm ompare to the factored shear
force. Compute the shear resistange accoidmms to e 6.11.9 which specifies the use of the
provision of Article 6.1.9 for I-gir u no wn here indicate that C = 1.0.

Eq. (6.10.9.1-1)
Eq. (6.10.9.2-1)

0)  =2,262 kips Eq. (6.10.9.2-2)

639 = 1208 kips < ¢ V = (1.0)226 2)=2,262 kips OK (Ratio 0.534)

7.12.2 Bearing Stiffeners

Bearing stiffeners are placed on each side of the web of the internal diaphragm at each bearing
location. The design of the Girder G2 bearing stiffeners at Pier 1 (Section G2-2) is illustrated in
this section. It is assumed that the bearings at Pier 1 are fixed, thus there is no expansion casing
eccentric loading on the bearing stiffeners that are attached to the internal diaphragm. According
to Article 6.11.11.1, bearing stiffeners attached to the internal diaphragms are to be designed
using the provisions of Article 6.10.11.2.4b applied to the diaphragm rather than the girder web.
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Bearing stiffeners must extend the full depth of the web and as closely as practical to the outer
edges of the flanges. Each stiffener must be either milled to bear against the flange through
which it receives its load or attached to that flange by a full penetration groove weld. Typical
practice is for the bearing stiffeners to be milled to bear plus fillet welded to the appropriate
flange. Full penetration groove welds are costly and often result in welding deformation of the
flange.

The unfactored reactions are as shown below for the left and right bearings at Pier 1, Girder G2.
These results are directly from the three-dimensional analysis.

Left Bearing:
Steel Dead Load: Rpceisteer = 79 kips
Concrete Deck Dead Load: Rpci-cone =238 kips
Composite Dead Load: Rpcz =85 kips

Future Wearing Surface Dead Load: Rpw =113 kips
Live Load (incl. IM and CF): Ripsmm =294 kips

Right Bearing:
Steel Dead Load:
Concrete Deck Dead Load:
Composite Dead Load:
Future Wearing Surface Dead Load;
Live Load (incl. IM and C

1)+ 15) + 1.75 (287) = 1,117 kips

The factorgs 1 eft bearing is larger, and therefore controls. The bearing stiffeners
are assunGel e e 2yl ss of 50 ksi, and are 1 in. by 11 in. plates. As shown in Figure
17, there is iy iffend®on each side of the internal diaphragm web, and therefore two at

The width, by, e projecting stiffener element must satisfy:

b, <048 t | Eq. (6.10.11.2.2-1)
F

ys

E /29,000
b, =110 in <048 t |[— =048 (1.0) =11.6 in OK
F 50
ys
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7.12.2.1 Bearing Resistance

According to Article 6.10.11.2.3, the factored bearing resistance for the fitted ends of bearing
stiffeners is taken as:

(R,)=6,(R,), Eq. (6.10.11.2.3-1)

where:

Op = resistance factor for bearing specified in Article 6.5.4.2 (¢y
(Rsp)n = nominal bearing resistance for fitted ends of bearing stiffengas

and:
(R,) =1.4A wEo

where:

A,n = area of the projecting elements of the stiffen@out web-to-flange fillet

welds but not beyond the edge gf the
Fys = specified minimum yield stren& of

Assuming a 1 inch stiffener clip, compute A, as fo
A =2(11-1)1.00)=20.0 i

pn

at a single bearing is computed as:

The factored bearing r feners at a single bearing is computed as:
ips >R =187 kips OK
7.12.2.2 Resistance

Determine the | resistance of the bearing stiffener according to Article 6.10.11.2.4. This
article directs thq@ngineer to Article 6.9.2.1 for calculation of the factored axial resistance, P..
The yield strength is Fys, the radius of gyration is computed about the midthickness of the web,
and the effective length is 0.75 times the web depth (K¢=0.75D).

P =¢.P, Eq. (6.9.2.1-1)

where: P, = nominal compressive resistance determined using the provisions of Article 6.9.4
¢. = resistance factor for compression as specified in Article 6.5.4.2 (¢. = 0.90)
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As indicated in Article 6.9.4.1.1, P, is the smallest value of the applicable modes of buckling,
and in the case of bearing stiffeners, torsional buckling and flexural-torsional buckling are not
applicable. Therefore, P, is computed for flexural buckling only.

To compute Py, first compute P, and P,. P. is the elastic critical buckling resistance determined
as specified in Article 6.9.4.1.2 for flexural buckling. P, is the equivalent nominal yield
resistance equal to QFyA,, where Q is the slender element reduction factor, taken equal to 1.0 for
bearing stiffeners per Article 6.9.4.1.1:

n’E
P =

2 g
K/
rs

In accordance with Article 6.10.11.2.4, the effective length, KZ, §

K =0.75D = 0.75(80.40) = 60.3 in.
Compute the radius of gyration about the mi(‘ckn the

IS

A s
According to the provisions of Article stiffeners welded to the web, a portion of
the web shall be included as pa yve column section. For stiffeners consisting of two
plates welded to the web, the 1 ction shall consist of the two stiffener elements,
plus a centrally located stri ing 9t,, on each side of the outer projecting elements
of the group. The area o of the effective section is computed as follows:

Next, compute 8 moment of inertia of the effective section about the centerline of the
diaphragm of the web, conservatively using the stiffeners only:

[ ]
I=2| 1—(1.0)(11 0) +11 .0(11 0 +ﬂw | = 1,014 in. *
| 12 L2 2 )
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Compute the radius of gyration:

The elastic critical buckling resistance is computed as follows:

* (29,000
P = Lz)(m .0)= 79,663 kips

60 .3

| 5.03 )

The equivalent nominal yield resistance is computed as follows, with A; usg@ for A,:

P =QF A, =(1.0)(50)(40.0)= 2,000 kips

Since

P. 79,663
— = =39.8>0.44 ,
P 2,000

the nominal compressive resistance,is com

Eq. (6.9.4.1.1-1)

The factord [ i ce of the bearing stiffeners is computed as follows:
0.90 (1,979 ) = 1,781 kips

P, =1,1SNSkips <P =1,781 kips OK (Ratio =0.666)

The 1.0 in. by 11.0 in. bearing stiffeners selected satisfy the requirements for design.

7.13 Top Flange Lateral Bracing Design

Top flanges of tub girders should be braced so that the section acts as pseudo-box for
noncomposite loads applied before the concrete deck hardens or is made composite. Herein,
calculations demonstrate the design of the top flange single diagonal bracing member in Span 1

118



of Girder G2 in the first bay adjacent to the abutment for constructibility. However, top flange
bracing must be designed to satisfy constructibility as well as the strength limit state for the final
condition. In many cases, the factored force during construction may govern over the factored
forces in the final condition.

Article 6.11.1 specifies that the top lateral bracing for tub girders must satisfy the provisions of
Article 6.7.5. The bracing is designed according to the provision of Articles 6.8 and 6.9 for
tension and compression, respectively. Wind lateral loading, and the lateral force caused by
deck overhang brackets, are neglected in this design example.

The unfactored axial force in the diagonal bracing member in the first bay o 1 of Girder
G2 are obtained from the three-dimensional analysis and are as follows:

Steel Dead Load: Psteer =-13 kip
Deck Cast #1 Dead Load: Pcone =-100 kip

ring construction,
all not be taken to

In accordance with Article 3.4.2.1, when investigating Strength
load factors for the weight of the structure and appurtenan
be less than 1.25. Therefore, the factored axial load is comp§d as®

DW,

Py = Paxiat = 1.25 [-13 + (-100)] = -141 Xipg(

Compute the unbraced length of the top fla cing member, Ly:
Tub width at the top flanges
Top flange width = 16 in.

Clear distance between t es 0—-16=104in.
Spacing of top flange 14#ral braci 3 ft=196in.

A structu
bolted to t

Check buckling about the x-axis as this is the governing condition. The eccentricity of the
connection to the center of gravity of the structural tee causes a moment on the member. The
moment due to eccentricity is computed as:

Mux = Paxial y = (141) (1.91) = 269 kip-in.

Since the structural tee is subjected to axial compression and flexure, it is necessary to check the
combined effects of axial compression and flexure, in accordance with Article 6.9.2.2.
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First, check the limiting slenderness ratio for secondary members in compression, as specified in
Article 6.9.3. The effective length factor, K, as specified in Article 4.6.2.5, for bolted
connections at both ends is 0.75.

K¢ (0.75)(222)
r, 2.56

= 65.0 < 140 OK

Determine if the WT 9x48.5 is a nonslender member, in accordance with AR

k = plate buckling coefficient as specified in Tablg 6.
b = width of plate as specified in Table 6.9.4.2. 1
t = plate thickness (in.)

1 for stems of rolled tees. The
ess, t, is for that of the stem.

The plate buckling coefficient is taken as 0.75 from Ta
width, b, is taken as the full depth of the tee se and t
Check Eq. (6.9.4.2-1):

b 9.30 E
— = =17.4<k |—=0.75
t 0.535 F,

Compute sistance in accordance with Article 6.9.2.1, where the factored
resistance
Eq. (6.9.2.1-1)
where:
¢, = resistance factor for compression as specified in Article 6.5.4.2 (¢. = 0.90)
P, = nominal compressive resistance as specified in Article 6.9.4 or 6.9.5, as applicable

(kip)

Compute the nominal compressive resistance, P, in accordance with Article 6.9.4.1.1. In order
to determine which equation to use to compute the nominal compressive resistance, it is
necessary to compute the elastic critical buckling resistance, P, and the equivalent nominal yield
resistance, P,
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The elastic critical buckling resistance, P, is specified in Article 6.9.4.1.2 for flexural buckling,
and specified in Article 6.9.4.1.3 for flexural-torsional buckling. In accordance with Table
6.9.4.1.1-1, flexural buckling and flexural-torsional buckling must be considered to determine
the compressive resistance of structural tees. Separate calculations, not provided here, show that
flexural buckling governs the particular case of this lateral bracing member. The computation of
P. for the flexural buckling resistance is illustrated herein.

Compute the elastic critical buckling resistance, P, based on flexural buclgding, in accordance
with Article 6.9.4.1.2:

n E
P = —A,
a
T
where:
Ag = gross cross-sectional area of the member (in.
K = effective length factor in the ]‘16 0 klingW@etermined as specified in Article
4.6.2.5
¢ = unbraced length in the plane of bu
rs = radius of gyration about the s the plane of buckling (in.)

The elastic critical buckling resistanc

? (29,000
P = M(m.z )

; 62 kips
(65.0 )

The equivalent nominddield res o, 1s computed in accordance with Article 6.9.4.1.1 as

follows:

where:
er element reduction factor determined as specified in Article 6.9.4.2.

Q =s

As stated previously, since Eq. (6.9.4.2-1) is satisfied, Q can be taken as 1.0. Therefore, the
nominal yield resistance, P,, is computed as:

P = (1.0 )(50 )(14.2 ) = 710 kips

Per Article 6.9.4.1.1, check the result of P, / P,:
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P, 962
— = =1.35
P 710

Since P, / P, is greater than 0.44, the nominal compressive resistance, P,, is computed in
accordance with Eq. (6.9.4.1.1-1).

Eq. (6.9.4.1.1-1)

[ (191
P =10658 "/ [(710 )= 521 kips

] J

Compute the factored compressive resistance, P, in accordance

@ :

2 (6.9.2.1-1)

P =¢ P =(090 )(521 )= 469 kips

ing the provisions of Article
rticle 6.12.2.2.4 for structural

Determine the factored flexural resistance ‘out ek N
6.12.1.2 for miscellaneous flexural members, spec

tees.

M n
= resista ctor as specified in Article 6.5.4.2 (o= 1.0)
M, .= nominal ral resistance specified in Articles 6.12.2.2 or 6.12.2.3, as applicable
iD-1n.)

The factored flexural resistance,

M -, Eq. (6.12.1.2.1-1)

In accorda ’ .12.2.2.4, the nominal flexural resistance shall be taken as the
smallest valut d on yielding, lateral torsional buckling, or local buckling of the elements, as

inal flexural resistance is given as:

M =M, =F2Z, Eq. (6.12.2.2.4-1)

M, = plastic moment (kip-in.)
F, = specified minimum yield strength (ksi)
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Zy = plastic section modulus about the x-axis (in.*)

Also per Article 6.12.2.2.4, M, in Eq. (6.12.2.2.4-1) is limited to 1.6M, for stems in tension, and
M, for stems in compression, where My is the yield moment based on the distance to the tip of
the stem. Determine if the tip of the stem is in compression or tension:

P M,  —141 269 , .
= + = + =113 ksi (tension)
A S 142 127

Therefore, the nominal flexural resistance shall be limited to 1.6M,. Th minal flexural

resistance for yielding is computed as:

M, =F Z_ =(50)(226 )=11130 kip —in
1.6M  =1.6F S =1.6(50)(127 )=1016 kip —in (gov
M _ =1016 ki —in (for yielding)

For lateral torsional buckling, the nominal ﬂ*al r be taken as:

Moo=V \ Eq. (6.12.2.2.4-2)
in which:
d /Iy
B=+2.3—,/—
L, \J

Eq. (6.12.2.2.4-3)

where:
d ection (in.)
G of elasticity for steel = 0.385E (ksi)
Iy fent of inertia about the y-axis (in.4)
J Venant torsional shear constant (in.*)
Ly aced length (in.)

The plus sign for B in Eq. (6.12.2.2.4-3) applies when the stem is in tension, and the minus sign
applies when the stem is in compression anywhere along the length of the unbraced length.
Therefore, the term B is computed as:

9.30 \ | 100
B =+2.3 — |.|]—— = 0.567
(222 JV2.92
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The lateral torsional buckling resistance is then computed as:

n\/(29,000 )(100 )(11,200 )(2.92 ) ;
M, = [0.567 + V1 + 0.567 ]: 7481 kip —in > M

222

Therefore, the nominal flexural resistance for lateral torsional buckling is taken as:

M, =M =1130 kip —in

Since the flange is in compression, flange local buckling must also be con
6.12.2.2.4. First check if the flange slenderness, As, exceeds the limiti
compact flange, Apr. If Ayris not exceeded, flange local buckling does not 1

ed per Article
ess for a
ked.

ed to be @

q. (6.12.2.2.4-5)

A, =638 <A =9.15

f

Given that As < Apy, local flange b i ee be checked. Also, because the stem
is in tension, local buckling of the ste be investigated.

Thus, the nominal flexural resi tee section is governed by yielding, and is equal
to 1,016 kip-in. Compute the sistance, M, as follows:

Eq. (6.12.1.2.1-1)

Check th&ge
determine
compressive

ression and flexure per Article 6.9.2.2. First, it is necessary to
tored axial compressive load, P,, divided by the factored

Pu
Pr

Since the above ratio is greater than 0.2, Eq. (6.9.2.2-2) shall be used to check the combined
axial compression and flexure, noting that there is no bending about the y-axis.

P . M
LT ﬂ[ & ] <10 Eq. (6.9.2.2-2)
P 90| M_
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where:

M,x = factored flexural moment about the x-axis (kip-in.)
M,x = factored flexural resistance (kip-in.)

Checking Eq. (6.9.2.2-2):

P 8.0( M - 141 s.o( 269 )
—_ | —= :| |+— =0.54 <1.0 OK
P 9.0(M 469 9.0 { 1,016 )

The WT 9x48.5 as the top flange diagonal bracing member in Span 1 of 4§ R in the first
bay adjacent to the abutment satisfies the interaction ratio for combined ion and
flexure for constructibility loading. Design checks would be performed fo@a
bracing members, investigating both tension and compression cons ghailit

7.14 Bolted Field Splice Design

This section will show the design of a bolted field splice,
Article 6.13.6. The design computations willde illugtrated
(see Figure 9). First, single bolt capacities ar
shear resistance (Article 6.13.2.7), and the beari

plice #1 on Girder G2
esistance (Article 6.13.2.8) and
e connected material (Article

strength limit state.

r ASTM A325 bolts. Table 6.13.2.4.2-1

All bolts used in the field splice are 0.
i inch diameter bolt is 0.9375 inch. The

shows that a standard hole dia

0.5 inch gap ed between the edges of the field pieces at this splice location.
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Figure 21 Bolt Patteil for the Wheb Field Splice, shown along the web slope

Unfactored analysis r
flange latergl bending m

ajor-axis bending moments, torques, shears, and top
ts at Field Splice #1 on Girder G2 are summarized in Table 16.

Table is Results for the Design of Field Splice #1 on Girder G2

factored Demands at G2 Field Splice 1
Dead Load LL+

DClgree. | DCleone | DCleass | DC2 DW Pos. Neg.
Moment (ki 462 1941 2749 326 428 5221 -3080
Torque (kip-ft) -36 -125 -188 -58 -76 346 -517

Top Flange Lateral
Mpomeni (Kip-ft) -1 -7 -15 n/a n/a n/a n/a
Shear (kips) -17 -69 -61 -12 -16 36 -85

Note:  Reported shears are the vertical shears and are for major-axis bending plus torsion in the critical
tub girder web.
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Per Article C6.13.6.1.4a, for a flexural member, it is recommended that the smaller section at the
point of the splice be taken as the side of the splice that has the smaller calculated moment of
inertia for the noncomposite section. Therefore, girder section properties at Field Splice #1 on
Girder G2 should be taken as those computed previously for the design Section G2-1 illustrated
in this design example, as it is the smaller section at this splice location. Reference the tables
and computations provided in Section 7.2 of this design example.

Furthermore, in accordance with Article 6.13.6.1.4a, the flexural stresses due to the factored
loads at the strength limit state and for checking slip of bolted connectiong at the point of the
splice shall be determined using gross section properties.

In accordance with Article C6.13.6.1.4c, for horizontally curved tub giy t. Venant
torsional shear must be considered in the design of bottom flange splices te
St. Venant torsional shears are typically neglected in the top flanges of
flanges are continuously braced. St. Venant torsional shears in thg
in the design of the top flange splice in this design example, as t

7.14.1 Bolt Resistance for the Service Limit State and st

R, o bolt at the SERVICE II load

For slip-critical connections, the factored "stan
combination is taken as:

R, =R, Eq. (6.13.2.2-1)

where:

R, = the nominal resis ed in Article 6.13.2.8

The nominal slip resistancgof@ibolt in a b-critical connection shall be taken as:

R, Eq. (6.13.2.8-1)
where:

N; planes per bolt

Py imum required bolt tension specified in Table 6.13.2.8-1

Kn size factor specified in Table 6.13.2.8-2

Ky = ce condition factor specified in Table 6.13.2.8-3

For this design example:
e 2 slip planes are provided as there are two splice plates on each side of the girder
element, thus N; equals 2
e Per Table 6.13.2.8-1, for 0.875 inch diameter A325 bolt, P, is equal to 39 kips
e Per Table 6.13.2.8-2, for a standard size hole, K}, is equal to 1.00
e Per Table 6.13.2.8-3, for Class B surface conditions, K is equal to 0.50
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Therefore, the factored resistance for service and constructibility checks is:
R =R _=(1.0)0.50)(2)(39) = 39 kips/bolt
7.14.2 Bolt Resistance for the Strength Limit State

The factored resistance, R;, of a bolted connection at the strength limit state shall be taken as

R; = ¢R, Eq. (6.13.2.2-2)
where:

¢ = resistance factor for bolts specified in Article 6.5.4.2
Article 6.13.6.1.4a states that the factored flexural resistance of 8 oint of the

splice at the strength limit state must satisfy the applicable pro
relates to flexure. The girder satisfies the applicable provy
location; however, the checks at this particular location are

7.14.2.1 Bolt Shear Resistance ‘

The nominal shear resistance, R;, of a high-strengt
are excluded from the shear plane 4 ollo

t at the sfrength limit state where threads

R =048A F, N_ Eq. (6.13.2.7-1)

the nominal diameter
¢ strength of the bolt per Article 6.4.3

The factored shear resistance, R,, of a high-strength bolt at the strength limit state is computed in
accordance with:

Rr = d)sRn Eq (61322-2)

where:
¢s = shear resistance factor for bolts in shear from Article 6.5.4.2 (¢s = 0.80)
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Therefore, the factored shear resistance is:
R, = (0.80)(69.2) = 55.4 kips/bolt
7.14.2.2 Bearing Resistance on Connected Material

The nominal bearing resistance of interior and end bolt holes at the strength limit, R,, is taken as
one of the following two terms, depending on the bolt clear distance and the glear end distance.

(1) With bolts spaced at a clear distance between holes not less than 2.0dS@ld with a clear

end distance not less than 2.0d:
R = 2.44dF

(2) If either the clear distance between holes is less than 2.0 aggend distance is less

than 2.0d:

R, =120 iF, (6.13.2.9-2)

where:
d = nominal diameter o
t = thickness of the con
F, = tensile strength of the ¢ specified in Table 6.4.1-1 (ksi)
L. = clear distance bet r betweeén the holed and the end of the member in

In the case of the web, 2.0 inches. For simplicity, assume the bolt hole
diameter 1s 1 inch, creagi nce of 1.5 inches, which is less than 2.0d. Therefore,
Eq. (6.13.2.9-2) applie strength of the girder and splice plates in this design
i ervati n as 65 ksi. The nominal bearing resistance for the end row of
bolts in thd
R, =} (0.5625)(65) = 65.81 kips/bolt
The factored befllng resistance, R,, is computed as:
R; = dpbRy Eq. (6.13.2.2-2)

where:

dop = shear resistance factor for bolts bearing on material from Article 6.5.4.2
(¢ob = 0.80)

Therefore, the factored bearing resistance is:
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R, = dyR,, = (0.80)(65.81) = 52.65 kips/bolt

The bearing resistance above is computed for the thinnest element, the web, but it can
conservatively be used for the flanges as well, as the web thickness is less than the flange
thickness. Alternatively, the bearing resistance for the flange elements can be computed as well.

For interior rows of bolts, Eq. (6.13.2.9-1) applies, and the nominal bolt resistance is computed
as:

R, = 2.4dtF,

Ry, =2.4(0.875)(0.5625)(65) = 76.78 kips/bolt
Therefore, the factored bearing resistance is:

R, = ¢ppRn = (0.80)(76.78) = 61.42 kips/bolt

Again, the bearing resistance above is computed for the t est ., the web, but it can
conservatively be used for the flanges as well‘
7.14.3 Constructibility Checks
According to Article 6.13.6.1.4a, portioned to prevent slip during the
ete'deck. Article 6.13.6.1.4c requires that
lateral bending effects be considered 1 curved girder splices. Therefore, flange
lateral bending must be consi flanges of tub girders prior to hardening of the
concrete deck, as the top flan aced in this situation. To account for the effects
of flange lateral bending bolts will be designed for the combined effects of
tic vector method. The shear on the bolts is caused
by the flange force ca erage major-axis bending stress in the flange, and the
moment ORRRe i by the flange lateral bending.

larger positive major-axis moment at the splice location than
moment cauSgsl the entire concrete deck is placed at one time. Therefore, for this
field splice, p@M®Tm the constructibility checks for the loading case of steel self-weight plus
concrete deck \@&st #1. For constructibility, the dead load factor is 1.25 according to the
provisions of Arig@le 3.4.2.

In accordance with Article C6.13.6.1.4c, longitudinal warping stresses due to cross-section
distortion are to be considered when checking the slip resistance of the bolts for constructibility
and at the service limit state for flange splices in horizontally curved tub-girder bridges. The
internal cross frame spacing in the region of the splice is approximately 16.0 feet. An
examination of the longitudinal warping stresses at the top of the tub girder for constructibility
and the service limit state for this internal cross frame spacing (according to calculations similar
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to those illustrated for design Section G2-1) indicates that these longitudinal stresses are
negligible in this case and will be ignored in calculations provided herein.

7.14.3.1 Constructibility Check of Top Flange Splice Bolts
To check constructibility of the top flange, first compute the polar moment of inertia of the top

flange bolt pattern, shown in Figure 19. The bolt pattern consists of the 12 bolts in the flange on
one side of the connection. The polar moment of inertia, I, is computed as:

1 =[203)3.0° +6.0")+2(4)3.0°)]=342in°

p

Compute the total unfactored major-axis bending moment due to vertig MEhthe total
unfactored flange lateral moment from the analysis results provided in :
concrete for Cast #1 (DClgrggr + DClcasti):

Major-axis bending moment = 462 + 2,749 = 3,211 kip-
Top flange lateral bending moment = -1 + (-15) =-1
n 1 of Girder 2 are used to
er of the two girder sections

ast me section properties as those computed
red major-axis bending stresses at the

As discussed previously, the section prope’es 0
compute the bending stresses since Field Secti ist
connected by the splice. This splice locatio
for design Section G2-1. The Co cti

fo=—(125) : 1098 ksi
Compute the factore i nge using the major-axis bending stress at the mid-

thickness the flange. i ored flange stress by the gross section of the flange to

Compute the
dividing the fac

ored longitudinal force in each bolt resulting from the major-axis bending, by
ed flange force by the number of bolts on one side of the splice:

176 |
F = =14.67 kips/bolt

Long vert
12

Compute the factored longitudinal component of force in the critical bolt due to the flange lateral
moment, noting that the transverse distance from the centroid of the bolt group to the critical bolt
1s 6.0 inches:
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- 16](12 )(6.0) .
FLong lat (125 )T: 4.21 klpS/bOlt

Therefore, the total factored longitudinal force in the critical bolt is computed as:

F =14 .67 + 4.21 = 18 .88 kips/bolt

Long tot

Compute the factored transverse component of force in the critical bolt due to the flange lateral
moment, noting that the longitudinal distance from the centroid of the bol up to the critical
bolt is 3.0 inches:

- 16](12)(3.0 )
F,.. =(1.25)———— =211 kips/olt
342

Compute the resultant force on the critical bolt:

R =YF=+18.887+2.11" =19.00 kips/bolt

u

Check that the factored resultant force ong r1
resistance of one bolt, R;, calculated previously

R, =19.00 kips/bolt <R, =
7.14.3.2 Constructibility Chec ge Splice Bolts

To check constructibility of t
bottom flange bolt pattern, shi . The bolt pattern consists of the 40 bolts in the

lar moment of inertia, I, is computed as:

ag@pd major-axis bending moment due to vertical loads, and the
unfactored to om the analysis results provided in Table 16 for steel plus concrete for Cast
#1 (DClsteeL WRClcast):

Major-axi§bending moment = 462 + 2,749 = 3,211 kip-ft

Torque = -36 + (-188) = -224 kip-ft

As discussed previously, the section properties of Field Section 1 of Girder 2 are used to
compute the bending stresses since Field Section 1 is the smaller of the two girder sections
connected by the splice. This splice location has the same section properties as those computed
for design Section G2-1. The Construction Strength I factored major-axis bending stresses at the
mid-thickness of the bottom flange is computed as:
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(3,211 (12 )(36.86 - 0.62512 )W
L 185,384 )

f,, =(25)

=9.50 ksi

Compute the factored force in the bottom flange using the average major-axis bending stress at
the mid-thickness of the flange. Multiply the factored flange stress by the gross section of the
flange to check for slip.

Fooc = (-9.50)(83.0)(0.625) = 493 kips

The bottom flange splice bolts should be design for the combined effects o
shear and major-axis bending moment. The enclosed area of the noncomp
previously computed to be 7,921in.” in the constructibility check of the bo
G2-1. The unfactored St. Venant torsional shear in the bottom flanggss

T - 224 |(12)
b =

= . (81)=13.7 kips
2A 2(7921 )

Because the St. Venant torsional shear is as‘led
produces a lateral moment on the bottom flan
factored lateral moment on the bolt group, comput

centerline of the field splice, it
each side of the splice. The
d of the bolt group is:

bolt
the cen

Compute the factored longit f force in the critical bolt due to the lateral
moment in the bottom flange i e transverse distance from the centroid of the bolt

Floe vt = =12.33 kips/bolt

Therefore, the total factored longitudinal force in the critical bolt is computed as:

F =0.14 +12 .33 =12 .47 kips/bolt

Long tot
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Compute the factored transverse component of force in the critical bolt due to the lateral moment
in the bottom flange, noting that the longitudinal distance from the centroid of the bolt group to
the critical bolt is 2.25 inches:

l61.7)(2.25 )
5 )———— = 0.01 kips/bolt

19,859
Compute the factored transverse force in each bolt resulting from the St. Venant torsional shear

force by dividing the shear force by the number of bolts on one sid the splice, and
multiplying by the 1.25 load factor:

13.7
F = (1.25)—— = 0.43 kips/bolt

Trans  Shear
40

Therefore, the total factored transverse force in the critical bolt 1

= 0.0l + 0.43 = 0.44 kips/bolt

Trans  tot

Compute the resultant force on the critical bo‘

R, =XF= \/12.47 > +0.447 =12 .48 kips/olt

It, Ry is less than the factored slip

inch diameter bolts spaced vertically at 3.75 inches is designed for
olts on each side of the connection, and the pattern is previously

First, compute @@ polar moment of inertia of the web bolt group about the centroid of the bolt
group on one sid@0f the splice using Eq. (C6.13.6.1.4b-3):

nmpe,q , 2 2
I = (> = 1)+ g’ (m* =1)] Eq. (C6.13.6.1.4b-3)
12
where:
n = number of bolts in one vertical row
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m = number of vertical rows of bolts
= vertical pitch (in.)
horizontal pitch (in.)

gq @«
|

Therefore the web bolt group polar moment is computed as:

(20)(2

= —)[3.75 "(20° = 1)+3.00 *(2° - 1)]=18793 in

4
p

12
Compute the total unfactored shear at the splice (flexure plus torsional shear e critical web)
from the analysis results provided in Table 16 for steel plus concrete for DClgtEprL +

DClcast):
Shear =-17 + (-61) = -78 kips

Therefore, using the Construction Strength I load factor for deag .24 the factored shear
is:

V = (1.25) (-78) = 97.5 kips

f the

Compute the moment, M,, due to the eccentrici hear about the centroid of the

connection (refer to the web bolt pattern in Figure

Determine the portion of the
horizontal force resultant i sing the equations provided in Article C6.13.6.1.4b.
M.~ and H,, are assu i t the middepth of the web. The factored bending
stresses at the mid-thi bottom flanges for Steel plus Cast #1 were previously
computed gs follows:

f; = maximum factored major-axis bending stress for constructibility loading at the
mid-thickness of the flange under consideration for the smaller section at the point
of the splice; positive for tension, negative for compression (ksi) (see Article
C6.13.6.1.4b)

fos = factored major-axis bending stress for constructibility loading at the mid-
thickness of the other flange at the point of the splice with f; in the flange under
consideration; positive for tension, negative for compression (ksi) (see Article
C6.13.6.1.4b)
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Using the factored flexural stresses, use the following equations to compute a suggested design
moment, My, and a design horizontal resultant, H,,, that will be applied at the mid-depth of the
web for designing the web splice plates and their connections:

t. D’
= ‘R hFcf -R cof fncf
12

Eq. (C6.13.6.1.4b-1)

where:

tw

D web depth of the smaller section at the point of thg
Ry = hybrid factor specified in Article 6.10.1.10.1, and
R = for checking slip resistance, this ratio is tak
F.s = f,, per Article C6.13.6.1.4b

fact = fos, per Article C6.13.6.1.4b ‘

) in this example
C6.13.6.1.4b.

M,w a re computed as:

Therefore, using the vertical web depth of 78 inc

t D 1
M, =——R,f -R 98 )= 1.0 (9.50 )|(—W=487 Kip — f
12 (12 )
t D
H =—I(R,f +R (1.0 (- 1098 )+ 1.0 (9.50 ))= —32.5 kips
2

The total factored m

vertical shear, M,, and oment computed by Eq. (C6.13.6.1.4b-1), Myy:

Compute the d force 1n each bolt resulting from the vertical shear, by dividing the factored
shear by the n er of bolts on one side of the splice:

Fyw == 244 Kkips/olt
40

However, the above bolt force, Fshear vert, 18 1n the vertical plane, and must be resolved to the
inclined plane of the web. Therefore, the in-plane bolt force is computed as:

F Shearvert 2 B 44

F, = = = 2.52 kips/bolt
cos ()  cos (14 .04 °)
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Compute the in-plane factored force in each bolt resulting from the horizontal force resultant, by
dividing the factored resultant by the number of bolts on one side of the splice:

|- 32.5]
F. = = 0.81 kips/bolt
40

Compute the in-plane factored vertical component of force in the critical bolt due to the total
factored moment on the splice, noting that the horizontal distance from th¢@entroid of the bolt
group to the critical bolt is 1.5 inches:

- M wlx( 1 ]: (518 )(12 )(1.5 )[ 1 ]: 0.51 kipsbol
I cos (0) cos (

18,793 14.04 °)

Compute the in-plane factored horizontal component of force il al bolt due to the total
factored moment on the splice, noting that the vertical digtand@hfig ntroid of the bolt
group to the critical bolt is 35.625 inches:

M 518 )(12 )(35.625
F_ = ‘°‘y:( (2 )( ):11.,1(' /bo

Mh
I 18,793

p

12.95 kips/bolt

Check that the facto n the critical bolt, R, is less than the factored slip
resistance @fone bolt, R ulated previously as 39 kips/bolt:

7.14.4 Servicgli@hit State
According to th§@@rovisions of Article 6.13.6.1.4c, bolted connections for flange splices shall be
designed as slip-8fitical connections for the flange design force. As a minimum, for checking
slip of the flange splice bolts, the design force for the flange under consideration must be taken
as the Service II design stress, Fs, times the smaller gross flange area on either side of the splice.
F, 1s calculated as follows:

F. - Eq. (6.13.6.1.4¢-5)

fs
Rh
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where:

f; = maximum flexural stress due to Load Combination Service II at the mid-thickness
of the flange under consideration for the smaller section at the point of the splice
(ksi)

Ry = hybrid factor specified in Article 6.10.1.10.1, and is equal to 1.0 in this example

Compute the flexural stresses for the top and bottom flanges at the mid-thickness of the flange,
for both the negative and positive live load bending cases and using the doad factors for the

Service 1l load combination from Table 3.4.1-1.

Positive live load bending case

[1.0(462 + 1,941 )(42.27) 1.0(326 + 428 )(24.10) 1.30(5,221

£ =~ + +
S, top 1g
L 185 ,384 352,505

99 ksi (C)

[1.0(462 +1,941 )(36.55) 1.0(326 + 428 )(54.72)

£t = + +
s, bot flg
L 185 ,384 352,505

(12)=18.73 ksi (T)

Negative live load bending case

Note that the flange stresses load bending cases are computed
conservatively, assuming that the d beN@ing moments act on the steel section
only, and contribution from the lon ment, or concrete deck if applicable, is

ignored. Furthermore, to maximij e stress Yor negative live load bending, the bending

)(24.10) 1.30 (- 3,080 )(42.27 )]
+
352,505 185 ,384

(12)=4.11 ksi (T)

1.0(326 )(54.72 ) . 1.30 (3,080 )(36 .55 )}(12 )= -3.18 ksi (C)

352,505 185,384

The above calclifitions of factored flange stress show that the positive live load bending case
governs at this fidll splice for the Service Limit State. The positive live load bending will be the
only case considered in the Service Limit State check of the flange field splice bolts.

In accordance with Article C6.13.6.1.4c, longitudinal warping stresses due to cross-section
distortion are to be considered when checking the slip resistance of the bolts for constructibility
and at the service limit state for flange splices in horizontally curved tub-girder bridges. The
internal cross frame spacing in the region of the splice is approximately 16.0 feet. An
examination of the longitudinal warping stresses at the top of the tub girder for constructibility
and the service limit state for this internal cross frame spacing (according to calculations similar
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to those illustrated for design Section G2-1) indicates that these longitudinal stresses are
negligible in this case and will be ignored in calculations provided herein.

7.14.4.1 Service Limit State Check of Top Flange Splice Bolts

Compute the Service II factored flange lateral moment from the analysis results provided in
Table 16 for the noncomposite loads only (DClsrggr + DClcone). Other loads do not need to be
considered as the deck is hardened for those loading conditions, and thus the flange is considered
as continuously braced.

Top flange lateral bending moment = 1.0 [-1 + (-7)] = -8 kip-ft

Compute the factored longitudinal component of force in the critical bd actored
flange lateral moment, noting that the transverse distance from the centrof oup to
the critical bolt is 6.0 inches, and the polar moment of inertj
previously computed as 342 in.%

) |- 8|12 )(6.0 )

FLong lat 342

= 1.68 kips/bolt

Compute the factored transverse component of fi in
lateral moment, noting that the longitudinal dista rom the
critical bolt is 3.0 inches:

bolt due to the factored flange
troid of the bolt group to the

Compute the factored force i sing the major-axis bending stress at the mid-
thickness of the flange. red flange stress by the gross area of the flange to
check for slip.

Compute ths
dividing the ¥ d flange force by the number of bolts on one side of the splice:

144 |
=12.00 kips/bolt
12

Therefore, the total factored longitudinal force in the critical bolt is computed as:

F =12.00 +1.68 =13 .68 kips/bolt

Long tot

Compute the resultant force on the critical bolt:
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R =XF-= V13687 + 0.84 7 = 13.71 kipsibok

Check that the factored resultant force on the critical bolt, R, is less than the factored slip
resistance of one bolt, R;, calculated previously as 39 kips/bolt:

R, =13.71 kips/bolt < R, =39 kips/bolt OK

7.14.4.2 Service Limit State Check of Bottom Flange Splice Bolts

Compute the Service II factored noncomposite and composite unfactore
analysis results provided in Table 16. The negative live load torque is use
the positive live load torque.

Factored Noncomposite Torque = 1.0[-36 + (-125)] =-161
Factored Composite Torque = 1.0[-58 + (-76)] + 1.30[-5
ects of St. Venant

the noncomposite tub
ed St. Venant torsional shear in

The bottom flange splice bolts should be designed for
torsional shear and major-axis bending momgent. The enc
girder, A,, was previously computed to be 7, i

the bottom flange due to noncomposite loads is

VNC bot g bf =
2A 2(7,921

The enclosed area of the com A,, was previously computed to be 8,750 in.”.
The factored St. Venant tor i bottom flange due to noncomposite loads is
computed as:

produces a | moment on the bottom flange bolt group on each side of the splice. The
factored latera ment on the bolt group, computed at the centroid of the bolt group is:

45 45
9.9 + 44.8 )( + L 246 .2 kip - in.

M _—
L2 2 )

LAT :(

Compute the factored longitudinal component of force in the critical bolt due to the factored
lateral moment in the bottom flange, noting that the transverse distance from the centroid of the
bolt group to the critical bolt is 36.25 inches:
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246 .2|(36.25 )

Long lat

= 0.45 kips/bolt
19,859

Compute the factored transverse component of force in the critical bolt due to the factored lateral
moment in the bottom flange, noting that the longitudinal distance from the centroid of the bolt
group to the critical bolt is 2.25 inches:

246 .2|(2.25 )

Trans  lat

= 0.03 kips/bolt
19,859

1s be
jc gross §

Compute the factored force in the bottom flange using the average major
the mid-thickness of the flange. Multiply the factored flange stress by
flange to check for slip.

o stress at
a of the

Fooc = (18.73)(83.0)(0.625) = 972 kips

Compute the factored longitudinal force in each bolt resul fi he r-axis bending, by
dividing the factored flange force by the number of bolts on side splice:

972
= —— = 24.30 kips/bolt
40

Long vert

Therefore, the total factored longit cri bolt is computed as:

=0.45+24.30 =2

Long tot

Therefore, t ansverse force in the critical bolt is computed as:

.37 +0.03 =1.40 kips/bolt

Trans  tot

Compute the resultant force on the critical bolt:

R, Y Fo~24.75%+1.40° =24 79 kips/bolt

Check that the factored resultant force on the critical bolt, R, is less than the factored slip
resistance of one bolt, R,, calculated previously as 39 kips/bolt:

142



Ry = 24.79 kips/bolt < R, = 39 kips/bolt OK
7.144.3 Service Limit State Check of Web Splice Bolts

According to the provisions of Article 6.13.6.1.4b, bolted connections for web splices shall be
designed as slip-critical connections for the maximum resultant bolt design force. As a
minimum, for checking slip of the web splice bolts, the design shear shall be taken as the shear at
the point of splice under Load Combination Service II, as specified in Table 3.4.1-1.
Calculations for the Service Limit State check of the web bolts are not provided herein, but
would be similar to those carried out for the Constructibility check a ould use loads

web splice bolts are satisfactory for the Service Limit State.
7.14.5 Strength Limit State
specified in

e designed for the
89l resistance of the

Bolted splices are designed at the strength limit state to satisf]
Article 6.13.1. In basic terms, Article 6.13.1 indicates that a
larger of (a) the average of the factored applied stress
member or (b) 75 percent of the factored resistance of the m

At the strength limit state, splice plates and %i
proportioned to provide a minimum resistance ta
flange area, A., on either side of the splice,

the controlling flange shall be
stress, F.g, times the effective

Eq. (6.13.6.1.4¢-1)

in which:

Ae effective of the tlange (in.%). For compression flanges, A., shall be taken as
the flange A,. For tension flanges, A, shall be taken as:

Eq. (6.13.6.1.4¢-2)

f.r = maximum flexural stress due to factored loads at the mid-thickness of the
controlling flange at the point of the splice (ksi)
Ry = hybrid factor specified in Article 6.10.1.10.1; for this example is equal to 1.0.

o = 1.0, except a lower value equal to (F,/Fyr) may be used for flanges where F,, is less
than Fyr.

¢r = resistance factor for flexure specified in Article 6.5.4.2 (¢s=1.0)

F, = nominal flexural resistance of the flange (ksi)
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Fyr = specified minimum yield strength of the flange (ksi)

¢, = resistance factor for fracture of tension members specified in Article 6.5.4.2
(¢u = 0.80)
¢y = resistance factor for yielding of tension members specified in Article 6.5.4.2
(¢y = 0.95)
A, = net area of the tension flange determined as specified in Article 6.8.3 (in.?)
F, = specified minimum tensile strength of the tension flange determined as specified

in Table 6.4.1-1 (ksi)
Fy. = specified minimum yield strength of the tension flange (ksi)

point of the splice, whichever flange has the maximum ratio of the elasti
mid-thickness due to factored loads for the loading condition under inves
flexural resistance. The other flange is termed the noncontrolling flangt
reversal, the splice must be checked independently for both positi

proportioned to provide a minimum resistance taken as th
effective flange area, A., on either side of the splice, where

F_. =R, >0.75 a¢ F Eq. (6.13.6.1.4c-3)
R h
where:
Rer the absolute valu F.rto f.s for the controlling flange
foer = flexural stress ds at the mid-thickness of the noncontrolling
flange at th. e concurrent with f.¢ (ksi)

icle 6.10.1.10.1; for this example is equal to 1.0.

flange, foX e i positive live load bending cases and using the load factors for
the Strengt Biaati om Table 3.4.1-1.

. 03 )(42.27) [1.25(326 )+1.5(428 )](24.10) 1.75(5,221 )(10.57 )1(12)
s, to] =~ + +
vt L 185 ,384 352,505 478 ,009 J

= —11.50 ksi (C)

s, top fig

[1.25(2,403 )(36.55) [1.25(326 )+1.5(428 )](54.72) 1.75(5,221 )(68 .25 )1(12)
. bot = + +
i L 185 ,384 352,505 478 ,009 J
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£ =24.72 ksi (T)

s,bot flg

Negative live load bending case

Note that the flange stresses for the negative live load bending cases are computed
conservatively, assuming that the negative live load bending moments act on the steel section
only, and contribution from the longitudinal reinforcement is ignored. Furthermore, to maximize
the flange stress for negative live load bending, the bending moment due W is ignored as
well, since it is the opposite sign of the negative live load moment and DW uture loading.
The minimum load factor for dead load, 0.9, per Table 3.4.1-1 is used in order to
maximize the negative live load effects.

[0.90(2,403 )(42.27) 0.90(326 )(24.10) 1.75(- 3,080 )(4
- + +

fs,top fig =
185 ,384 352,505 185 ,384
£,y = 8-59 ksi (T)
[0.90 (2,403 )(36.55) 0.90 (326 )(54.72 ) £AT5 (-3¢ 55) 1

fs bot fig = + + (12 )

’ 185 ,384 352,505 185 ,384 J
foooge = —7-09 ksi (C)
Per Article 6.13.6.1.4c, in are al, such as this field splice, the splice must be

independently checked for bo

In accordance with
distortion in horizonta
and bottog goes at the

ers can be ignored when checking the splices in the top
th limit state.

e Strength Limit State Design Forces
Compute the &

subsequent co
effective top flany

ctive flange area, A., of the top and bottom flanges, as these will be used in
Since the top flange is in compression, per Article 6.1.6.1.4c, the
area 1s equal to the gross area of the flange, A,:

Actop fig = Ag = (16.0)(1.0) = 16.0 in.”

The bottom flange is in tension, therefore the effective area of the flange must consider the net
area of the flange, A,, and be computed in accordance with Eq. (6.13.6.1.4¢c-2):
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A =[¢“F" JAH <A Eq. (6.13.6.1.4c-2)
q)yFyt

The net area of the bottom flange is computed in accordance with Article 6.8.3, which states that
the net area, A, of an element is the product of the thickness of the element and its smallest net
width. The width of each standard bolt hole shall be taken as the nominal diameter of the hole.
Therefore, the net area of the bottom flange at the location of the splice is computed as:

Anpot fig = [83.0 — 20 (0.875 + 0.0625)](0.625) = 40.1 in.?

The effective area of the bottom flange is then computed as:

A = [mJAn = {((O'Sﬂ}(ml )=439 in <A

o, F, 0.95 )(50 )

A =439 i’

e, bot fig

For the positive live load bending case, the gantrolld is bottom flange since it has the
largest ratio of the flexural stress to the correggon iliG@ flange stress. Therefore, the
design stress, F.g, is computed in accordance with 6.13.6. 1):

F_ =075 a¢ F

of £yt

side of the sf} 201 the smaller flange is used to ensure that the design force does not
exceed the str§@@h of the smaller flange. In this case, the effective flange areas are the same on
both sides of th@@8plice. The minimum design force, P, is computed as:

Per=Fer AGpot fig = (37.50) (43.9) = 1,646 kips (T)
For the positive live load bending case, the minimum design stress for the noncontrolling flange

(top flange), F,.f, is computed in accordance with Eq. (6.13.6.1.4¢-3). First, it is necessary to
compute Ry, the absolute value of the ratio of F¢ to f.¢ for the controlling flange:
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F . =075 a¢ F =075 (1.0)(1.0 )(50 ) = 37.50 ksi

Therefore, F,s shall be taken as 37.50 ksi.

ntrolling
rea, A., on
nt the design force
ange areas are the

For the positive live load bending case, the minimum design fg
flange (top flange), Py, is taken equal to Fy.r times the smal
either side of the splice. The area of the smaller flange is use
does not exceed the strength of the smaller flange. In this
same on both sides of the splice. The minimum design forc

Puct = Fucr Acop fig = (37.50) (16.0) = @k' S
7.14.5.2 Negative Flexure Strength Design Forces
Compute the effective flange area, d b8ftom flanges, as these will be used in
subsequent computations. Since the b 0 compression, per Article 6.1.6.1.4c, the
effective bottom flange area is e ss area of the flange, Ay:

Ae,bot flg = Ag =

The top flange is in t

of the flangg, A,, and be uted in accordance with Eq. (6.13.6.1.4c-2):

Eq. (6.13.6.1.4¢-2)

The net area of Wil top flange is computed in accordance with Article 6.8.3. The width of each
standard bolt hol§8hall be taken as the nominal diameter of the hole. Therefore, the net area of
the top flange at the location of the splice is computed as:

Anjop fig=[16 —4 (0.875 + 0.0625)](1.0) = 12.25 in.

The effective area of the top flange is then computed as:
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A, :[d)“F“ JA ={M](12.25 )=13.41in. " <A =(16.0)(1.00 )=16.0n. °
e o, F, ) " (095 )(50) ¢

A =13.41 i °

e, top fig

For the negative live load bending case, the controlling flange is top flange since it has the
largest ratio of the flexural stress to the corresponding critical flange stress. Therefore, the
design stress, F.g, is computed in accordance with Eq. (6.13.6.1.4c-1):

f,
—|+a¢ F

£ yf

+ (1.0 )(1.0 )(50 )
1.0

F. = = =29.30 ksi
2 2

F, =075 a¢ F, =075 (1.0 )(1.0 (50 ) = 37.50 ksi

cf

Therefore, Fs shall be taken as 37.50 ksi.

For the negative live load bending case, the@ni
(top flange), Py, is taken equal to F.¢ times the s

rce from the controlling flange
ange area, A., on either side of
design force does not exceed
the strength of the smaller flange. In this tive flange areas are the same on both

sides of the splice. The minimum

For the negative live load ben
(bottom flange), Fps, is €
compute Ry, the absol

nce with Eq. (6.13.6.1.4¢-3). First, it is necessary to
f F¢r to fr for the controlling flange:

Compute Fr cordance with Eq. (6.13.6.1.4¢-3):

09
‘z 30.98 ksi

F . =075 a¢ F =075 (1.0 )(1.0 )(50 ) = 37.50 ksi

cf

Therefore, F.r shall be taken as 37.50 ksi.
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For the negative live load bending case, the minimum design force from the noncontrolling
flange (bottom flange), Py, is taken equal to F,.r times the smaller effective flange area, A., on
either side of the splice. The area of the smaller flange is used to ensure that the design force
does not exceed the strength of the smaller flange. In this case, the effective flange areas are the
same on both sides of the splice. The minimum design force, P, is computed as:

Puct = Fuer Acpot fig = (37.50) (51.88) = 1,946 kips (C)

7.145.3 Summary of Flexure Strength Limit State Design Forces

A summary of factored design forces for the bottom and top flange splices at
state are as follows:

trength limit

Top Flange: Puer = 600 kips (C)
Ps 503 kips (T)

Bottom Flange: P = 1,646 kips (T)
Pocr 1,946 kips (C)

7.145.4 Strength Limit State Check ‘I’op ge SRlice Bolts

St. Venant torsional shear is not considered in the girders. The composite deck
is assumed to resist the majority of the torsi ting on the top of the tub girder once the
section is closed. Flange lateral in is also not considered after the deck

Since a fill plate Ts not required for the top flange splice, no reduction in the bolt design shear
resistance is required per Article 6.13.6.1.5.

7.145.5 Strength Limit State Check of Bottom Flange Splice Bolts
Determine the St. Venant torsional shear in the bottom flange of tub girder at the strength limit

state. As discussed previously, the longitudinal warping stresses do not need to be considered in
the design of bolted box flange splices (bottom flange of tub) at the strength limit state.
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Compute the Strength I factored noncomposite and composite torque from the analysis results
provided in Table 16. The negative live load torque is used, as it controls over the positive live
load torque.

Factored Noncomposite Torque = 1.25[-36 + (-125)] = -201 kip-ft
Factored Composite Torque = 1.25(-58) + 1.5(-76) + 1.75(-517) = -1,091 kip-ft
The enclosed area of the noncomposite tub girder, A,, is previously compuged to be 7,921 in.”.

The factored St. Venant torsional shear in the bottom flange due to no posite loads is
computed as:

T |- 201 [(12)
Ve bor 1z = b, = (81)=12.3 kips
2A | 2(7,921 )

The enclosed area of the composite tub girder, A,, is previousl e 8,750 in.?. The
factored St. Venant torsional shear in the bottom flange ducgl n i s is computed as:

T |- 1,001 |(12) ’
Y = b, = (81) ="89”6 ki

oA T 2(8,750 )

o

Therefore, the total St. Venant torsj centerline of the splice is computed as:

Because the St. Venant torsio
produces a lateral moment o
factored lateral moment

ed to act at the centerline of the field splice, it
e bolt group on each side of the splice. The
mputed at the centroid of the bolt group is:

* to factored loads does not need to be multiplied by the factor, R.s, when
pment in the splice due to the torsional shear.

torsional shed
computing the

Compute the fac®red longitudinal component of force in the critical bolt due to the factored
lateral moment in the bottom flange, noting that the transverse distance from the centroid of the
bolt group to the critical bolt is 36.25 inches, and the polar moment of inertia of the bolt group,
I,, was previously computed as 19,859 in.%:

328 .1|(36.25 )

Long lat

F = 0.60 kips/bolt

19,859

150



Compute the factored transverse component of force in the critical bolt due to the factored lateral
moment in the bottom flange, noting that the longitudinal distance from the centroid of the bolt
group to the critical bolt is 2.25 inches:

328 .1](2.25 )

Trans  lat

= 0.04 kips/bolt
19,859

Therefore, compute the factored longitudinal force in each bolt resulting from the major-axis
bending, by dividing the governing design flange force, by the number of befllson one side of the
splice:

F = =

bot fig bolt

=0.60 + 48 .65 = 49 .25 kips/bolt

Long tot

Compute the factored transverse force in @gh b esult@il from the factored St. Venant
torsional shear force by dividing the shear force hgthe olts on one side of the splice:

F = —~ = 1.82 kip

Trans ~ Shear

=1.82+0.04 =

Trans  tot

Compute the resultant

2

R . 86 ~ = 49 .29 kips/bolt

Check that t orce, Ry is less than the factored shear resistance of one bolt, R,,
calculated pre\@#sly as 55.4 kips/bolt:
Ry =49.28Kips/bolt < R, = 55.4 kips/bolt OK

Since a fill plate is not required for the bottom flange splice, no reduction in the bolt design shear
resistance is required per Article 6.13.6.1.5.

7.145.6 Strength Limit State Check of Web Splice Bolts

Per Article 6.13.6.1.4b, web splice plates and their connections are to be designed for shear, the
moment due to the eccentricity of the shear at the point of the splice, and the portion of the
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flexural moment assumed to be resisted by the web at the point of the splice. Additionally, for
horizontally curved tub girders, the shear shall be taken as the sum of the flexural and St. Venant
torsional shear in the web. Also, for inclined webs, the web splice and connections shall be
designed for the component of shear in the plane of the web.

For this design example, only the positive live load bending case will be used to illustrate the
check of the web splice for the strength limit state.

As a minimum, at the strength limit state, the design shear, V,, shall be takea as follows:

IfVy<0.5 ¢y Vy, then:
Vuw = 1.5V, NLb-1)

Otherwise:

(6.13.6.1.4b-2)

¢y = resistance factor for shear specific 1 icle 6.5.4% (¢, = 1.0)
V, = shear due to factoredaloadi the splice (kip)
V, = nominal shear resist s sp@@ified in Articles 6.10.9.2 and 6.10.9.3
for unstiffened and sti
Determine the vertical design web splice design according to the provisions of

Article 6.13.6.1.4b.

+ (-12)] + 1.5 (-16) + 1.75 (-85)| = 295 kips
in the plane of the web.

295
V, = —————=1304 kips
cos (14.04 °)

Compute the nominal shear resistance of the 0.5625 inch thick web at the splice according to the
provision of Articles 6.10.9.2 and 6.10.9.3 for unstiffened and stiffened webs, respectively.
However, for this design example, separate calculations indicate that transverse stiffeners are
required for this web thickness, therefore Article 6.10.9.3 is employed. A stiffener spacing equal
to the internal cross frame spacing used on Girder G2 is assumed, where d, = 196 inches.
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It is necessary to compute the nominal shear resistance, V,, in order to determine the appropriate
design shear, V.. The nominal shear resistance of an interior web panel is computed in
accordance with Article 6.10.9.3.2. First, determine if Eq. (6.10.9.3.2-1) is satisfied.

P Eq. (6.10.9.3.2-1)
(b t, +b,t,)

£t

2Dt 2(80 .40 )(0.5625
= = ( )( ) =133 <2.5

(byt, +b,t,) ((83)0.625)+ (16 )(1.0))

Since Eq. (6.10.9.3.2-1) is satisfied, the nominal shear resistance, V,,
accordance with Eq. (6.10.9.3.2-2).

outed in

V, =V |C+ 7(6.10.9.3.2-2)
where:

Vi nominal shear resista

VvV, =

C = ratio of shear-bu

d, = transverse stiffi

The plastic shear force,
0.58 Fyy D Eq. (6.10.9.2.2-3)

e used to compute the ratio of shear-buckling resistance to the

k=54 s Eq. (6.10.9.3.2-7)
( W 196 )
\D ) \ 80 .40
Since:
D 80.4 Ek 29,000(5.8 4)
— = =1429 >140 |— =140 ,|[——— =81
t, 0.5625 F 50

yw
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1.57 Ek
C- {—J Eq. (6.10.9.3.2-6)

1.57 (29,000(5.8 4”
(1429 )" \ 50 )

C = = 0.260

V,, is the plastic shear force and is calculated as follows:

V =058 F_ Dt
p yw w
V, =058 (50.0 )(80.40 )(0.5625 )=1312 kips

Therefore,

|
|
|
= (1312 ) 0.260 +

|

Checking compliance with Eq. (6.10.9.

kips

|

0.87(1 - 0.260) *
| =
|

(196.0 Y
1+

OK

he design shear, V, can be computed in accordance

Eq. (6.13.6.1.4b-1)

=143 kip - fi

Determine the portion of the design moment resisted by the web, M,, and the design horizontal
force resultant in the web, Hyy, according to the provision of Article C6.13.6.1.4b. My, and Hyy,
are applied at the mid-depth of the web. Separate calculations, not shown, indicate that the
positive live load bending case controls the design of the web splice.
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As computed previously for the positive live load bending case:

for = 24.72 ksi
Fee = 37.50 ksi
fher = -11.50 ksi
Ref 1.52

Using the above values, use the following equations to compute a sugge
M., and a design horizontal resultant, Hy,, that will be applied at the mid-
designing their connections:

ed design moment,
of the web for

t D’
Muw = 12 ‘RhFcf -R

fncf |

cf

0.5625 )(78.0 )’ 1
M = ( (750 ) (1.0)(37.50 )~ (1.52 )(~ 11 .50 )|f W
12 J
t D
H, =——(R,F, +R ) Eq. (C6.13.6.1.4b-2)
2
H = M[(I.O 1.50 439 kips
2
The total factored moment applj b splice is the sum of the moment caused by the
vertical shear, My, and the mo Eq. (C6.13.6.1.4b-1), Myy:

Mtot = MUV + Mu 4 = 50 klp-ft

Compute the factored o
shear by r of bo

in each bolt resulting from the vertical shear, by dividing the factored
one side of the splice:

inclined plane of the web. Therefore, the in-plane bolt force is computed as:

Shearvert 11 ’40 .
F. = = =11.75 kips/bolt
cos (6)  cos (14.04°)

Compute the in-plane factored force in each bolt resulting from the horizontal force resultant,
Huw, by dividing the factored resultant by the number of bolts on one side of the splice:
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F, = ——=——=10.98 kips/bolt

Compute the in-plane factored vertical component of force in the critical bolt due to the total
factored moment on the splice, noting that the horizontal distance from the centroid of the bolt
group to the critical bolt is 1.5 inches:

o MaX [ 1 J: (1,450 )(12 )(1.5 )( 1
I

My = 1.43 kips/bolt
cos (0) 18,793 cos (14 .04 °)

Compute the in-plane factored horizontal component of force in the criticg 48to the total
factored moment on the splice, noting that the vertical distance from t
group to the critical bolt is 35.625 inches:

M 1,450 )(12 )(35.625
g y _ | )12 )( )_ 32 .98 kips/bolt
I 18,793

p

Compute the resultant in-plane force on the c%cal balt:

R, :Fr:\/(FS+FMV ) +(F, +F, )

olt

As specified in Article C6.13.6.1.4c¢, if the combined area of the inner splice plates is within 10
percent of the area of the outside plate, then both the inner and outer plates may be designed for
one-half of the flange design force. Such is the case for this top flange splice. Also, since this
10 percent provision is satisfied, double shear can be assumed in designing the connections. If
the areas differ by more than 10 percent, the design force in each splice plate and its connection
at the strength limit state should be determined by multiplying the flange design force by the

156



ratio of the area of the splice plate under consideration to the total area of the inner and outer
splice plates. In this case, the shear resistance of the connection would be checked for the
maximum calculated splice plate force acting on a single shear plane.

Article 6.13.5.2 specifies that the splice plates in tension at the strength limit state are to be
investigated for yielding on the gross section, fracture on the net section, and block shear rupture.
Article 6.13.6.1.4¢ specifies that the design force for splice plates subjected to compression shall
not exceed the factored resistance, R;, in compression taken as:

R, = d)c Fy Aq
where:
¢d. = resistance factor for compression specific in Article 6.5.4.2
F, = specified minimum yield strength of the splice plat
As = gross area of the splice plate (in.?)

Flange lateral bending is ignored for the top flange spli at th
because the flange is continuously braced by the hardened
shears are also typically ignored in the desig th
continuously braced by the hardened concrete de
of torsional shear acting on the top of the tub gir

considered in the design of the top fla

rength limit states
St. Venant torsional
of tub girders once the flange is
assumed to resist the majority
Venant torsional shear is not
Lastly, as discussed previously,
can be ignored at the strength limit

For the positive live load be top flange is the noncontrolling flange and is
subjected to compression. T ]
factored compressive resigi@n i ted per Eq. (C6.13.6.1.4c-4):

R; = ¢ Fy As Eq. (C6.13.6.1.4c-4)

600
50 )(0.5 )(16.0 ) = 360 kips > =300 kips OK
For the two inne\@®p flange splice plates:
600
R, =(0.90 )(50)(2)(0.625 )(6.0 )= 338 kips > —— = 300 kips OK
2

For the negative live load bending case, the top flange is the controlling flange and is subjected
to tension. The total design force was previously computed as 503 kips. Per Article 6.8.2.1, the
factored tensile resistance of the splice plates, P;, is taken as the lesser of the following two
equations:
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P. =y Puy =0y Fy A, Eq. (6.8.2.1-1)
P, = ¢u P = ¢u Fu Ay Rp U Eq (6821-2)
where:

= nominal tensile resistance for yielding in the gross section (kip)

specified minimum yield strength (ksi)

= gross cross-sectional area of the member (in.?)

= tensile strength (ksi)

= net area of the member as specified in Article 6.8.3 (in.?), Rt be taken

greater than 85 percent of the gross area of the splice plate p icle Gl 5.2

reduction factor for holes taken equal to 0.90 for bolt holes gl ze and

1.0 for bolt holes drilled full size or subpunch Q e; 1.0 is

assumed for this design example

U = reduction factor for shear lag, to be taken as
6.13.5.2

¢y = resistance factor for yielding of tension me
(4y = 0.95)

¢, = resistance factor for fracture of te

(¢u=1.0)

o
«
I

& 2

s

e
[

plig@ plates per Article

ed in Article 6.5.4.2

hon m specified in Article 6.5.4.2

Compute the net area, A, for the o

Outer splice plate:

A, =[160 - 4(0.875 + 0.062 :

< 085A =085 (16.0 )(0.50 )= 6.8 in.

Inner splice plates:
A, =2[60 -2(08

2 2

=5.16 in. ~ < 0.85A _ =085 (2)(6.0 )(0.625 )= 6.4 in.

g

0.0625

Compute tensil istance of the outer splice plate:

Compute the factored tensile resistance of the inner splice plates:
P.= ¢y Poy = ¢y Fy Ay =0.95 (50) (2) (6.0) (0.625) = 356 kips
Pr= ¢y P = ¢y Fu Ay Ry U=0.80 (65) (5.16) (1.0) (1.0) = 268 kips

Check that the minimum resistance provided by the splice plates, 268 kips, is more than one-half
the design force:
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503
P =268 kips > —— = 252 kips OK
2

7.145.8 Strength Limit State Check of Top Flange Splice Plates - Bearing

Check the bearing of the bolts on the connected material at the strength limit state, for the design
force of 600 kips in the top flange. The design bearing resistance, R, is computed in accordance
with Article 6.13.2.9. Check the outer splice plate as it is thinner than the inggr plates, and check
the top flange of the girder itself.

For the outer plate, calculate the clear distance between holes and the cl@# stance and
compare to 2.0d (d = bolt diameter) to determine the equation to be used bearing
resistance.

The center-to-center distance between the bolts in the direction @ i3¢3.0 1n. Therefore:
Clear distance between holes = 3.0 — 0.9375 =2.06

istance is assumed to be 1.5 in.

For the four bolts adjacent to the end of the s’ce p
end of the splice plate is:

Therefore, the clear distance between the edge ofgle ho

Clear end distance = 1.5 - 0,9375 /

eter bolt. Since the clear end distance is
the nominal bearing resistance, Ry:

Eq. (6.13.2.2-2)

ar resistance factor for bolts bearing on material from Article 6.5.4.2
=0.80)

Therefore, for the outer splice plate, the factored bearing resistance at single bolt hole is:
R, = ¢ppRp = (0.80)(40.2) = 32.2 kips/bolt
For the outer plate, the factored bearing resistance for the connection is computed by multiplying

the single bolt hole resistance by the number of bolts in the connection. Check this total
resistance against the force in the outer plate, which is one-half of the design force of 600 kips:
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600
P = (12 bolts )(32.2 kipsbolt )= 386 kips >

= 300 kips OK

For the girder top flange itself, calculate the clear distance between holes and the clear end
distance and compare to 2.0d to determine the equation to be used to compute the bearing
resistance.

The center-to-center distance between the bolts in the direction of the force is 3.0 in. Therefore:

Clear distance between holes = 3.0 — 0.9375 = 2.06 in.

For the four bolts adjacent to the end of the girder at the splice, the end dis
assumed to be 1.5 in. (actual end distance is 3.0 in. per Figure 19). There
between the edge of the holes and the edge of the girder is:

distance

Clear end distance = 1.5 -0.9375/2 =1.03 in.

ear end distance is
resistance, R,:

The value of 2d is equal to 1.75 in. for a 7/8 inch diamete ce th

less than 2.0d, Eq. (6.13.2.9-2) is to be used to compute the
Ry=1.2L.tF,=1.2(1.03)(1.0)(65) = 80 Akips

Therefore, for the girder top flange the fac ear esistance at single bolt hole is:

For the top flange, the factore ce for the connection is compute by multiplying
the single bolt hole resistan
resistance against the for

P = (12 bolts)

Since the inner splice plate must be partially split to accommodate the longitudinal stiffener on
the Field Section 2 side of the splice, as shown in Figure 20, the plate is conservatively treated as
two separate plates in the subsequent calculations although this is physically not the case. The
combined area of the inner splice plates is within 10 percent of the area of the outside plate,
therefore the inner and outer plates may be designed for one-half of the flange design force.
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For the positive live load bending case, the bottom flange is the controlling flange with a design
force of 1,646 kips in tension. For the negative live load bending case, the bottom flange is the
noncontrolling flange with a design force of 1,946 kips in compression. The St. Venant torsional
shear was computed previously for the bottom flange bolt design at the strength limit state. The
factored moment resulting form the eccentricity of the torsional shear on the bolt group was
computed as 328.1 kip-in.

Flange splice plates subject to compression at the strength limit state are checked for yielding on
the gross section at the strength limit state, in accordance with Eq. (C6.13.64l.4c-4). In the case
of the bottom flange, the flange should be checked for the combined app tress due to the
flange design compression force and lateral bending caused by eccentricity of ¢ rsional shear.
For yielding of the bottom flange splice plates, the total combined stress o plates can
be computed as:

Design  Force M LAT

A

fbot ig ()

SPL, g S SPL, g
where:
Agpr g = gross cross-sectional area ofﬁ: S

MpaT = moment resulting from eccentri
Ssprg = gross lateral section modulus of th

1 shear (kip-in.)
ice plates (in.>)

The gross area of the bottom flange

A = (0375 )(75.5 )+

SPL, g

The gross lateral section r and inner splice plates is computed as:

(0375 )(36.75 )’ + 2(0375 )(36.75 )(19375 )

3

=713 i
75.5

2

— 4+ = 35.3 ksi
559 713

fbot fig (©

Check that the total combined stress is less than the factored compressive resistance in terms of
stress, per Eq. (C6.13.6.1.4c-4):

f =353 ksi < ¢ F =(090 )(50)=45.0 ksi OK

bot fig (O)

161



Flange splice plates subject to tension at the strength limit state are investigated for yielding on
the gross section and fracture on the net section. First, check yielding on the gross section for the
tension design force. Compute the total combined stress on the splice plates as:

_ PDesign Force n M LAT _ 19646 i 3281 -29009 k51
A S 55.9 713

SPL, g SPL

fbot fig (T), yield

Check that the total combined stress is less than the factored tension resistance in terms of stress,
per Eq. (C6.8.2.1-1):

=29.9ksi <¢ F =(095)(50)=475 ksi OK

fbot fig (T), yield

For fracture on the net section, the combined stress in the bottom flangd can be
computed as:

Design Force M LAT
+

fbm fg (T), fac A o S o
where: ‘
AspLn = net cross-sectional area of t ic tes (in.”)
SspLn = net lateral sectio i tes (in.4)
The net cross section areas of the outer i plates are computed as:

2

Outer plate: A

SPL. n |

2

Inner plates: 0.875 + 0.0625 )](0.375 )= 20.53 in.

1.28 +20.53 = 4181 i~

According t > for splice plates subjected to tension, A, must not exceed 0.85A,.
Verify that is sfied:

Outer pl = 2128 in ° <085 (755 )(0.375 )= 2407 in ° OK

Inner plates: A, , =2053 i’ <085 (2)(36.75 )(0.375 )= 2343 in ’ OK

Total: A = 4181 in. ® <2407 + 2343 =475 i ° OK

SPL, n

The net lateral section modulus of the outer and inner splice plates, Ssprn, can be computed as
follows:
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where:

Ispy = gross lateral moment of inertia of the splice plates (in.%)
= area of a single bolt hole (in.?)

distance from center of bolt hole to lateral neutral axis (in.)
c = distance from lateral neutral axis to edge of splice plates (in,

Z
|

o
|

1
12

Top, = (LW(O.WS )75.5 ) + 2[[ )(19.375

\0375 (36.75 ) + (0375 )(36.75
\12 ) J

N b
> A,d’ =2(0.375 )(0.9375 )2.5° + 6.25° +10.0° + 257
i=1
+25° +28.75° +32.5
Ny
> A,d] =3,455 i’ ‘
i=1
Therefore, Sspr.n, 1s computed as:
S 26,898 — 3,455
SPL, n 75.5 -
2
The combined stress in t 01 checking fracture, is then computed as:
1,646 328.1
f = + =39.9 ksi
oL . 4181 621
Check that t d stress is less than the factored tension resistance for fracture, in

39.9 ksi < ¢ F R U =(080)(65)(1.0)1.0)=52.0ksi OK

fbnt fig (T), frac

7.14.5.10 Strength Limit State Check of Bottom Flange Splice Plates - Bearing

Check the bearing of the bolts on the connected material at the strength limit state, for the design
force of 1,946 kips in the bottom flange. The design bearing resistance, R,, is computed in
accordance with Article 6.13.2.9. Check the outer splice plate as it is the same thickness as the
inner plates, and check the bottom flange of the girder itself.
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For the outer plate, calculate the clear distance between holes and the clear end distance and
compare to 2.0d (d = bolt diameter) to determine the equation to be used to compute the bearing
resistance.

The center-to-center distance between the bolts in the direction of the force is 4.5 in. Therefore:
Clear distance between holes =4.5 — 0.9375 =3.56 in.

For the 20 bolts adjacent to the end of the splice plate, the end distance is g

umed to be 1.5 in.
Therefore, the clear distance between the edge of the holes and the end of th\gli

ce plate is:

Clear end distance = 1.5 -0.9375/2 =1.03 in.

The value of 2d is equal to 1.75 in. for a 7/8 inch diameter bolt. Since thd
less than 2.0d, Eq. (6.13.2.9-2) is to be used to compute the nomi i

car end ance 1is
Ry=12L.tF,=1.2(1.03)(0.375)(65) = 30.1 kips/bolt
The factored bearing resistance, R;, is computed as:
R; = ¢wbRy Eq. (6.13.2.2-2)

where:

d»p, = shear resistance factor on material from Article 6.5.4.2

(¢op = 0.80)

Therefore, for the outer splice earing resistance at single bolt hole is:

4.1 /bolt

For the o d bearing resistance for the connection is computed by multiplying
the single the number of bolts on one side of the connection. Check this
total resista orce in the outer plate, which is one-half of the design force of 1,946
kips:

1,946
s )(24.1 kipshbolt )= 964 kips = = 973 Kkips Say OK
y

The factored bearing resistance of the outer and inner plates can be increased by slightly
increasing the clear end distance of the bolts adjacent to the end of the splice plate. For example,
if the end distance is increased from 1.5 in. to 1.75 in., the clear end distance (L.) is 1.28 in., and
R; 1s 30.0 kips/bolt, resulting in a total connection factored bearing resistance of 1,200 kips.
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For the girder bottom flange itself, calculate the clear distance between holes and the clear end
distance and compare to 2.0d to determine the equation to be used to compute the bearing
resistance.

The center-to-center distance between the bolts in the direction of the force is 4.5 in. Therefore:
Clear distance between holes = 4.5 — 0.9375 =3.56 in.
For the 20 bolts adjacent to the end of the girder at the splice, the end diggance is 2.0 in. (see

Figure 20). Therefore, the clear distance between the edge of the holes and ge of the girder
is:

Clear end distance = 2.0 — 0.9375/2 =1.53 in.

The value of 2d is equal to 1.75 in. for a 7/8 inch diameter bolt. S hc istance is
less than 2.0d, Eq. (6.13.2.9-2) is to be used to compute the nom i

R, = 1.2 Lot Fy = 1.2(1.53)(0.625)(65) = 74.6 kips/

Therefore, for the girder bottom flange, the f@red ing r&@stance at single bolt hole is:

R, = dupRy = (0.8)(74.6) = 59.7 kips/bolt

For the bottom flange, the fact ista or the connection is computed by
multiplying the single bolt hole resis ber Of bolts on one side of the connection.
Check this total resistance against the e bottom flange, which is equal to 1,945
kips:

P, = (40 bolts)(59.

olt) = 2388 kips > 1,946 kips OK

k of Web Splice Plates

\[C 0

shear at thogp . 0 the same loading condition. Article 6.13.6.1.4b states that the
¥'the lesser of the factored shear resistance of the web splice plates

C 6 13.4 (shear yielding and shear rupture), or the factored shear resistance of

ates specified in Article 6.13.5.3 (block shear rupture). Also, at the strength

limit state, the C@lbined flexural and axial stress in the web splice plates shall not exceed the

specified minimuf yield strength of the splice plates times the resistance factor, ¢, specified in

Article 6.5.4.2.

specified in A

Article 6.13.6.1.4b also specifies that for all limit states for tub sections in horizontally curved
bridges, the shear due to factored loads is to be taken as the sum of the flexural and St. Venant
torsional shears in the web subjected to additive shears. For tub girders with inclined webs, the
web splice shall be design for the component of vertical shear in the plane of the web.
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Furthermore, webs shall be spliced symmetrically by plates on each side of the web, and the
splice plates shall extend as near as practical for the full depth of the web between the flanges.

Therefore, the following web splice plates are used:
Web plates: Two - 0.375 in. by 75.25 in. deep plates, Grade 50 steel

For this design example, only the positive live load bending case will be used to illustrate the
check of the web splice for the strength limit state.

First, check the flexural yielding on the gross section of the web splice
moments and design horizontal force were previously computed as:

The design

M,, = 143 kip-ft [moment resulting from eccentricity of flexural
Muw = 1,307 kip-ft [design moment per Eq. (C6.13.6.1.44
Hy,w = 439 kips [design horizontal force per Eq. (C6.13
The maximum combined flexural and axial stress in the wel§@pli ates is@@mputed by:
M M H
fweb — uv + uw + uw ‘
S SPL g A SPL g

3

The combined imum stress in the web splice plates for the positive live load bending case is
computed as:

M _ +M H (143 +1,307 )(12) 439

f uv uw uw

- + = + = 3390 ksi
S A 666.2 56.4

SPL, g SPL, g

Check that the combined flexural and axial stress in the web splice plates does not exceed the

specified minimum yield strength of the splice plates times the resistance factor, ¢, specified in
Article 6.5.4.2:
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f, =3390 ksi <¢ F =(1.0)(50)=50 ksi OK

eb

Check for shear yielding on the gross section of the web splice plates due to the in-plane design
shear. The in-plane design shear force, V,,, was previously computed as 456 kips. In
accordance with Article 6.13.5.3, the shear yielding factored resistance of the connection element
shall be taken as:

R =¢,6 058 F A

where:
¢, = resistance factor for shear as specified in Article 6.5.4.2
F, = specified minimum yield strength of the connectigg
A,, = gross area of the connection element subject to §

Therefore, the shear yielding factored resistance is comput

R =¢, 058 F A =(1.0)058 )(50 )(‘ )=

The in-plane shear design force is checked agains hear y1 g factored resistance:

V,, =456 kips <R =1636

splice plates due to the in-plane design
the shear rupture factored resistance of the

Check for shear rupture on the
shear. In accordance with
connection elements shall be t

R Eq. (6.13.5.3-2)
where:
dvu tor for shear rupture of connection elements as specified in Article
n.4.2 (¢Vu = 080)

R, duction factor for holes taken equal to 0.90 for bolt holes punched full size

1.0 for bolt holes drilled full size or subpunched and reamed to size. 1.0 is
ed in this example.
Fu = ultimate tensile strength of the connection elements (ksi)
A,n = net area of the connection element subject to shear (in.%)

Therefore, the shear rupture factored resistance is computed as:

R =¢,058 R _F A _=(080)058 )(1.0)(65)564 -2(20)(0.375)(0.9375 )]=1,277 kips
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Check that the in-plane shear design force is less than the shear rupture factored resistance:

V., =456 kips <R _=1277 kips OK

uw

7.145.12 Strength Limit State Check of Web Splice — Bearing on Girder Web

Similar to the flange splices, it is necessary to check the bearing resistance of the web splice
plate bolt holes at the strength limit state. The calculation herein will simply use bolt forces and
factored resistance computed previously within this design example.

icr to be 45.9
bolts was

The maximum resultant in-plane force on the extreme bolt, R,, was comput
kips. The factored resistance for bearing on the girder web in the end
previously computed as 52.65 kips. Therefore:

R, =45.9 kips < ¢pppR,, = 52.65 kips/bolt OK

Note that the web thickness is 0.5625 in., which is less th ickili@ss of the two web
splice plates (2 times 0.375 in. = 0.75 in.). Therefore, beari irdei b governs as it has
the smaller thickness.

7.14.5.13 Strength Limit State Check of — Block Shear

Sp
In accordance with Article 6.13.4, splic
ensure adequate connection mat i
connection. The connection shall be
member and connection plates,

ed to tension shall be investigated to
lop the factored resistance of the
nsidering all possible failure planes in the
1 include those that are parallel and
parallel to the applied force shall be considered
to resist only shear stresses. cular to the applied force shall be considered to

resist only tension stresse,

dps = resistance for block shear failure as specified in Article 6.5.4.2 (¢ps = 0.80)

R, = reduction factor for holes taken equal to 0.90 for bolt holes punched full size
and 1.0 for bolt holes drilled full size or subpunched and reamed to size. 1.0 is
used in this example.

F, = specified minimum tensile strength of the connected material (ksi)

Ay = net area along the plane resisting shear stress (in.%)
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A,; = gross area along the plane resisting shear stress (in.%)

Ups = reduction factor for block shear rupture resistance taken equal to 0.50 when
tension stress is non-uniform and 1.0 when the tension stress is uniform
Aw = net area along the plane resisting tension stress (in.%)

First, compute the area terms, based on the block shear failure planes:

2

A =2(75.25)(0.375 )= 56.44 in.

vg

2

A =2[71.25 + 2 - 20.5(0.875 + 0.0625 )](0.375 )= 40.52 in.

2

A =2[3+1.5-1.5(0.875 +0.0625 )](0.375 )= 2.32 in.

tn

Compute the factored resistance as follows:

R, =0.80(1.0)[0.58 (65 )(40 .52 )+ (1.0)(65 )(2.32 )] = 1,34

1

R, =0.80(1.0)[0.58 (50 )(56 .44 )+ 1.0(65 )(2.32 )] = 1,430

2

V., =456 kips <R =1343 kips @)
Similar calculations to those illusggated
block shear resistance for the top
design forces. Calculations demonst
flange splice plates are not provid

th b splice plates show that the factored
c spN@ plates is not exceeded by the flange
hear rupture check of the top and bottom
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8.0 SUMMARY OF DESIGN CHECKS AND PERFORMANCE RATIOS

The results for this design example at each limit state are summarized below for the maximum
positive moment and maximum negative moment locations. The results for each limit state are
expressed in terms of a performance ratio, defined as the ratio of a calculated value due to

applied loads to the corresponding resistance.

Maximum Positive Moment Region, Span 1 (Section G2-1)
Constructibility
Flexure (Strength I)
Eq. (6.10.3.2.1-2) — Top Flange
Eq. (6.10.3.2.1-3) — Top Flange
Eq. (6.11.3.2-3) — Bottom Flange

Service Limit State
No checks required in this design example

Fatigue Limit State
Flexure (Fatigue I)
Eq. (6.6.1.2.2-1) — Bottom Fla@:

Strength Limit State
Ductility Requirement — Eq. (6.10.7.3-
Flexure (Strength I)
Eq. (6.11.7.2.1-1) -
Eq. (6.11.7.2.2-5) — Bot
Article 6.11.7.2.1 eck Stresses

Interior Support, Maximum
Constructibility

gative "N@@ment (Section G2-2)

Fatigue Limit State
Flexure (Fatigue I)
Eq. (6.6.1.2.2-1) — Top Flange
Cross-section distortional stresses — Bottom Flange

Strength Limit State
Flexure (Strength I)
Eq. (6.11.8.1.2-1) — Top Flange

0.507
0.802
0.417

0.559
0.414
0.217

0.792

0.055
0.662

0.888
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Eq. (6.11.8.1.1-1) — Bottom Flange
Eq. (C6.11.8.1.1-1) — Bottom Flange
Article 6.11.1.1
Bottom Flange cross-section distortional stresses
Shear (Strength I) — Eq. (6.10.9.1-1)

‘N
\
™

0.845
0.847

0.484
0.639
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