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FOREWORD

It took an act of Congress to provide funding for the development of this comprehensive
handbook in steel bridge design. This handbook covers a full range of topics and design
examples to provide bridge engineers with the information needed to make knowledgeable
decisions regarding the selection, design, fabrication, and construction of steel bridges. The
handbook is based on the Fifth Edition, including the 2010 Interims, of the AASHTO LRFD
Bridge Design Specifications. The hard work of the National Steel Bridge Alliance (NSBA) and
prime consultant, HDR Engineering and their sub-consultants in producing tlis handbook is
gratefully acknowledged. This is the culmination of seven years of effort be ing in 2005.

The new Steel Bridge Design Handbook is divided into several topics and les as
follows:

Bridge Steels and Their Properties
Bridge Fabrication

Steel Bridge Shop Drawings

Structural Behavior

Selecting the Right Bridge Type

Stringer Bridges ‘
Loads and Combinations
Structural Analysis
Redundancy

Limit States

Design for Constructibility
Design for Fatigue
Bracing System Desig
Splice Design
Bearings
Substructure

ridges

Ce-span Continuous Straight [-Girder Bridge

‘ : Two-span Continuous Straight I-Girder Bridge

Design e : Two-span Continuous Straight Wide-Flange Beam Bridge
: Three-span Continuous Straight Tub-Girder Bridge
Design Example: Three-span Continuous Curved I-Girder Beam Bridge
Design Example: Three-span Continuous Curved Tub-Girder Bridge

These topics and design examples are published separately for ease of use, and available for free
download at the NSBA and FHWA websites: http://www.steelbridges.org, and
http://www.thwa.dot.gov/bridge, respectively.



http://www.fhwa.dot.gov/bridge/
http://www.steelbridges.org/

The contributions and constructive review comments during the preparation of the handbook
from many engineering processionals are very much appreciated. The readers are encouraged to
submit ideas and suggestions for enhancements of future edition of the handbook to Myint Lwin
at the following address: Federal Highway Administration, 1200 New Jersey Avenue, S.E.,
Washington, DC 20590.




1.0 INTRODUCTION

The behavior of steel structures is an intricate and fascinating topic. This module is intended to
serve as a guide to the AASHTO (2010) Load and Resistance Factor Design (LRFD)
Specifications, 5™ Edition with 2010 Interims, and their representation of the behavior of steel
bridge systems and members. The module focuses on the structural form and function of bridge
systems and members, with emphasis on strength limit states. Where relevant, recent advances in
the AISC (2010) Specification for Structural Steel Buildings as well as findings from research
developments are discussed in addition to the AASHTO provisions.

resist, the corresponding load models implemented by the AAS
these actions, and the analysis of the structural systems to predicfihe g sponses and the

individual component requirements. The Steel Bridge Desi les titled Loads
and Load Combinations addresses the AASHTO (2010) loa module titled
Sytructural Analysis discusses methods of anglsis. ice ar@fatigue limit states, redundancy

modules. In addition, the
r splices, bearings, decks and

and fracture control, and constructability are addrgsse
design of cross-frames and diaphragms and their
substructure units are addressed separately.

Many of the words of J.A.L. Wadell engteer and teacher of the early 20"
century, are still very relevant to the de ctures today. Principle V in Wadell’s
Chapter XV on “First Principle 1 which he refers to as “the most important

Yet Written, and there Probably Never Will be Any,
ake a Complete Design for an Important Bridge

last statci@@nt incorrect.”
Certainly, the AASHTO LRFD Specifications (2010) have also done their best in this regard.
Nevertheless, there are numerous areas where a broad understanding of the fundamental
behavior of structures is key to the proper interpretation, application, and where necessary,
extension of the AASHTO provisions. This module aims to aid the Engineer in reviewing and
understanding the essential principles of steel system and member strength behavior and design.



2.0 BEHAVIOR AND STRUCTURE TYPES

There are many ways to classify steel highway bridges. Classification of bridge systems in terms
of maximum achievable span lengths is possibly the most relevant pertaining to fundamentals of
the structural behavior. Steel highway bridges range from minor structures spanning only a few
feet over creeks or streams to major technical achievements with spans larger than 4000 feet that
define the geographic regions in which they are located. For bridges with spans ranging up to
about 400 feet, stringer systems are very common. These types of structures are very important
since they constitute the majority of the highway bridges within the nation’s gransportation
system. These types of bridges are discussed first, followed by other system are viable at
longer span lengths. (Note that here and throughout this module, the section nyR
module is not included in the citation of any equations, when the citation is e same
section as the reference.)

2.1 Rolled I-Section Stringer Systems

minor role in the overall cost and competltlveness relatlve to

simplicity, standardization, and speed of des:? fabrg Very and constructlon AISI
(2000) has developed short-span bridge plans dress these considerations. For
the shortest spans, the primary structural member bridges are typically simple-
span rolled I-beams. Both composite and n eck systems are common in these types
of bridges.

considerations in simple-span he ratio of the span length, L, to the total
structural section depth, D ly L/Diota1 = 25. These limits may be extended by

simple-spans for dead load that are subsequently
(Talbot 2005), making the I-beams integral with the substructure
e of rigid-frame bridges in which major structural elements of
the superstt i f the substructure are steel I-sections (Heins and Firmage
ications to the structural system are possible such as the use of
negative moment regions and/or longitudinal post-tensioning (Troitsky 1990,
Xanthakos 199 However, these modifications have only a minor influence on the structure
stiffness and d pic characteristics, and their cost may often outweigh their benefits.
Generally, one ca¥ achieve the largest overall stiffness for a minimum constant depth by using
composite continuous spans with integral piers, and by applying AASHTO (2010) Appendix B6
to allow for minor inelastic redistribution of the interior pier moments. Nevertheless, L/Diotal
values larger than about 35 are exceedingly difficult to achieve in stringer-type systems by any
of the above measures. Also, as discussed in Stringer Bridge module, where the depths are not
limited due to clearance restrictions, etc., often the greatest economy can be achieved by using
sections that are deeper than suggested by the above maximum L/Dyotg limits.

cover plates \



2.2 General I-Section Stringer Systems
2.2.1 Overview

Welded plate I-girders become an attractive option at span lengths within the upper range
applicable for rolled I-beams. Furthermore, depending on the costs of welded I-section
fabrication versus the production costs of rolled I-shapes, welded I-section members can be cost-
effective at smaller span lengths. Figure 1 shows a typical composite rolled I-beam or welded I-
girder bridge cross-section. In this system, the I-sections are spaced such thagthe deck spans
between them. The I-section members are referred to generally as girders in
discussions.

mles AASHTO (2010) does not ex 1101t1y of empirical design to straight bridges
cing in the end zones if the skew
rufent in some cases with horizontally
curved bridges. The slab empirical desi for beneficial arching action in

d for cast-in-place slabs up to approximately 13.5
feet spacing between the girde ratio of the girder spacing to the slab

thickness of S/t; = 18, am

systems also are capable of spanning a large S with

relatively er spacing potentially eliminates one or more extra girder lines and
the corresf nd bearings, and also tends to give a more efficient structural
system. Th iveWoads are positioned to produce the maximum response in each
girder, but t y produce the maximum effects in all the girders at a given bridge

taneously. With wider girder spacing, the sum of the girder resistances in a
-section will tend to be closer to the total required live load capacity for the
various positionSg@ the live load. Trade-offs associated with wider girder spacing include
increases in deck Yhickness, and reinforcing and forming costs (which are typically offset by
reduced labor costs). Also, future staged redecking considerations may influence how many
girders may be removed from the cross-section. Cross-frame forces tend to be larger with wider
girder spacing, due to larger differential live loads and live load deflections of the girders, as well
as larger stiffness of the cross-frames relative to the slab. Interestingly, the design efficiency
associated with wider spacing in ordinary stringer bridges is no longer impacted by the
approximation of slab shear lag effects by effective width rules. This consideration is discussed
below.

cross-section
given bridge ¢



reduce the magnitude of the flexural stresses ‘h
The prior slab effective width rules limited the slglcon
situations with wider girder spacing.

The 2008 interims of Article 4.6.2: i AASHTO (2010), replaced the
ibutary width perpendicular to the axis of
the member. The new provisions are app ncrete deck slabs in composite or
monolithic construction, excep b effective width requirements are retained for
segmental concrete box and si ce box beams, orthotropic steel decks, and for
transverse floor beams a . In negative moment regions, the new simplified
rule is based on the us -cracked section for cross-section level resistance
calculations under bot th loading conditions. However, for the structural
analysis, icle 6.10.1.5 states that the concrete deck is to be assumed fully
effective i

uence on the design calculations relative to the physical bridge response in
the above permit§@8 situations. The research by Chen et al. (2005) demonstrated that there is no
significant relationship between the slab effective width and the slab thickness within the
practical ranges of the deck proportions in ordinary stringer bridge systems, as implied by
previous Specifications.

Similar to rolled I-beam bridges, the structural efficiency of welded I-girder bridges can be
improved substantially by establishing continuity between the various components or sub-
systems. Also, welded I-girder cross-section proportions are typically changed at field splice
locations or at the limits of available plate lengths. The use of cross-section transitions at other



locations may or may not be cost effective depending on the specifics of the bridge and the
economics of welding and inspecting a splice compared to the cost of extending a thicker plate.
The Steel Bridge Design Handbook module titled Stringer Bridges discusses these considerations
in detail. Variable web depth members with haunches over the interior supports may be used in
continuous spans, thus following the shape of the elastic moment envelopes more closely. Hall
(1992) indicates that haunched composite girders are usually advantageous for spans in excess of
250 feet, when the depth is limited in a portion of the span, or when a decrease in the positive
moments reduces critical fatigue stresses. Current rules of thumb place this limit at 350 to 400
feet (Pfeifer 2006). Up to these span lengths, AASHTO (2010) Appendix B6gan be used to
design the lightest straight I-girder bridges with limited skews using prismat tions between
the field splice locations.
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Figure 3 Typical composﬁl- I

!

ger system.

Figur,

W

Figure 5 Two-girder system with cross-girders.

WO- em with floor beams and stringers.

At spans exceeding about 250 feet, the I-girders in a bridge cross-section such as the one shown
in Figure 1 need to be spaced relatively close together compared to their depths for the deck to
span efficiently between the girders while keeping its thickness low to minimize the dead weight.
In these cases, it may be attractive to use a girder-substringer system such as in Figure 3. In this
type of system, shallower rolled I-section substringers are framed over the top of the cross-



frames to support the deck. Both the main girders and the substringers may be designed
compositely. In addition, it is advantageous for the substringers to be continuous over two or
more of their supports.

For larger spans, the Engineer may consider using multiple substringers between each of the
main girders. This eventually leads to the consideration of two-girder systems with floor beams
and stringers, as shown in Figure 4. A two-girder system with cross-girders (Figure 5) is another
option (Brown 1992). In this system, the bridge deck spans longitudinally between the cross-
girders. As such, the deck must be designed for the combined loading due to ghe local bending

span in two-way action between the main girders and the c
worth considering. Another significant factor in designs suc
Figure 5 is that two-girder systems are often § i i onredundant, and thus fracture

critical. Nevertheless, fractures have occurred Tn bers of a number of two-girder
bridges in the past without precipitating the colla
al. 1977). Redundancy considerations and fj | are discussed in detail in the Steel
Bridge Design Handbook module

I-girder bridges typically become less p above about 400 feet. Economical main
I-girders at these span lengths t tively narrow flanges compared to their web
depths. As such, the girders ar respect to lateral-torsional buckling. Also, the
flange thicknesses start to i in@ly large, particularly for the bottom flanges in

composite [-girders, and a composite slab becomes a smaller fraction of the
overall stiffness and r ary members. In addition, field splices must be located
in high mq than at points of contraflexure in these longer spans. Nevertheless,

el (HPS) has allowed maximum economical span lengths to

less than the lak@&st practical spans for welded I-girders, significant site and highway geometry
restrictions ofte d to demands for complex bridge geometries. These include horizontally
curved alignment®, bifurcated structures, splayed girder arrangements, stacked roadways,
unequal spans and/or significant support skew. Figure 6 shows one example of a complex

framing plan for a highway exit ramp.
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2.2.2 Fundamental Behavior of I-Section Stringer Systems

An obvious behavioral characteristic of I-section members, but one that is g
their efficiency in major-axis bending. For welded I-girders, a single relati
for efficient transfer of shear forces while the flanges, located at the to@aea

Straight composite I-girder bridges without skew behave largely,
symmetric [-girders with a large top flange when the bridged
major-axis bending. However, individual I-section member
axis bending and in torsion. As such, they nee&o be braced yaiaphragms or cross-
frames, or alternatively in the final constructe top flange needs to be
embedded in or compositely connected to the sla 0sl1 ing regions, to achieve
adequate strength with respect to lateral-torsional bughling.

inantly to overall
tficient in weak-

In horizontally curved and/or skew s commonly subjected to significant
torsion. Figure 7 shows the resultant o ad, W, and the resultant of the
corresponding total vertical end or a simply-supported horizontally curved bridge
with radial supports. If the res
cross-section at the end suppo
for equilibrium. These to,
farther away from the gl
girders.

set¥e that additional end torques, T, are necessary
ertical reactions on the outside girders (the ones

Figure 7 Plan view illustrating the required resultants for the reactions due to dead load at
the ends of a simply-supported horizontally-curved bridge with radial supports.

The internal torsional resistance of horizontally curved I-girder bridges is developed
predominantly via the transfer of vertical shear forces between the girders by the cross-frames
and the slab as shown in Figure 8. These vertical shears, referred to traditionally as V-loads
(NSBA 1996), increase the downward forces on the outside I-girders and offset the applied
vertical loads on the inside I-girders. This increases the major-axis bending moments and end



reactions on the outside girders and decreases them on the inside girders. The overall internal
torque on the structure at any bridge cross-section is developed predominantly by the differences
in the girder shears across the width of the structure. The couples generated by the V-loads on
each of the individual girder free-body diagrams of Figure 8 also resist the tendency of the I-
girders to twist about their individual axes relative to the overall torsional rotation of the bridge
cross-section.

—_— —_ —_
i i }
|

|
‘V1 ‘VZ'V1 vV2-V3

Center of curvature ----»

Figure 8 Transfer of vertical shear forces due to torsion (V-
the slab in a curved bri

In continuous-span curved I-girder bridges, the portion of th.
outside girders due to the downward V—loads‘l b i
the transfer of the associated hogging moments
Conversely, upward V-loads on the inside girders
inside girders of shorter adjacent s
supports.

jor- Pending moments in the
horter adjacent spans, due to
orts into the adjacent spans.
onal positive moments in the
al continuity across the interior

ak in torsion, curved I-girders must be
tively close intervals along their lengths to avoid
having large torsional stresses i en these brace points. Therefore, the cross-
frames are essential (pri horizontally curved I-girder bridges. They are
essential not only to tr. the V-loads between the I-girders but also they
[-girders.

Since individual I-girders are relati

For cross- ry to ensure adequate stiffness and bending resistance in
completed ¢ irder torsional responses are dominated generally by
nonuniform on. Warping torsion is tied to the lateral bending of the I-section
flanges in opp directions due to the twisting of the member. Figure 9 illustrates the idealized

case of a cantilq@@r [-beam subjected to end torque. The warping torque is developed by the
shear forces asso@®ted with the flange lateral bending moments developed at the fixed end,
where warping is restrained. These forces are labeled as H, in the figure. Figure 10 shows a
simplified model for calculation of the flange lateral bending stresses on a curved I-girder
subjected to uniform major-axis bending moment. Twisting of the member is assumed restrained
at the cross-frame locations in this analysis; the focus is on the localized twisting of the member
between the cross-frame locations. The horizontal curvature induces a radial loading effect on
each of the flanges as shown in the figure. This radial loading effect in turn gives a maximum
first-order elastic lateral bending stress of approximately

10



f,=05 221, (2.2.2-1)

in the flanges (White et al. 2001) where Ly, is the unsupported length between the cross-frames, by
is the width of the flange under consideration, R is the horizontal radius of curvature of the I-
girder, Ly/R is the subtended angle between the cross-frame locations, and fy is the flange stress
due to major-axis bending. In traditional practice, the coefficient 0.5 often is increased to 0.6 in
Eq. (1) to compensate for the simplifying assumptions utilized in the derivation. AASHTO

(2010) Article C4.6.1.2.4b gives the expression for M, corresponding to Eq.

M, H,

(

equal to the maximum .1 permitted by AASHTO (2010) Article 6.7.4.2 for

curved I-g nal constructed condition, then one can see that Ly/bs must be
limited to @ , 10 0.3fp. At Ly/R = 0.05, the corresponding value of Ly/bs
increases to 0.3f, is suggested as a target for preliminary design in the
Commentary

11



Top flange lateral bending moments (M,)

T

qLe/12 \ qLs>/24 ’ qLs/12

Cross-frame

\/ reaction (typ.)

h = distance between flange centroids
L, = unbraced length between cross-frames
R = horizontal radius of curvature

Maximum flange lateral bendi

M, qL2/12

‘s, Ab/6

ateral bending can be induced due to wind loads acting laterally on the bridge,
o placement of the slab. In this latter case, it is sometimes beneficial to provide
lateral bracing ing@lne or a few unbraced lengths adjacent to the piers and abutments, as shown in
Figure 11, to redu€e the span of the I-girders in weak-axis lateral bending. AASHTO (2010)
Article C6.7.5.2 recommends this practice, and suggests that this type of bracing should be
considered in general to help prevent relative horizontal movement of the girders in spans larger
than 200 feet. Heins et al. (1982) have shown that there is rarely a need for bottom flange wind
bracing on I-girder bridges in the final constructed condition when full-depth cross-frames are
used. Shorter span bridges can be designed efficiently and economically without the use of
flange lateral bracing.

12



Figure 11 Use of lateral bracing within a few unbraced lengths adjacggt to supports to
reduce I-girder lateral bending stresses due to wind.

Article C6.7.5.2 recommends that when flange lateral bracing is employed, #§8
near the top flange of the I-girders. Otherwise, the bracing acts with the deq

for significant live-load effects. The structural response of the comy ylo, aflfis more
efficient when the bracing is placed near the bottom flange, but t

Skewed cross-frames or diaphragms deform negligibly in th en the girders
experience major-axis bending rotations. Ratl@g, at t ingllines, these components tend to
rotate about their own skewed axis and/or wa ue to the girder rotations, as

1 rotation of the girders

bearing-line cross frames or diaphra right (non-skewed) intermediate cross-
frames in skewed bridges connect to th ent points along their spans. As a result,

(Coletti and Yadlosky 2005). lane stiffness of the cross-frames relative to
the resistance of the girdergto 1 ispildcement at the cross-frame connections, the

es within the span) tend to rotate about an axis
parallel to the longitu
the overal

13



\% Girder major-axis bending rotation

Girder bottom flange lateral deflection
due to compatibility with diaphragm

Deflection at bottom of cross-frame due

to girder major-axis bending rotation [ Girder top flange longitudinal deflection

due to major-axis bending rotation
Girder

deflection due to major-axis

Girder bottom flange longitudinal
bending rotation

Deflection at top of ¢

-
|
|_ girder major-axis be

Cross-frame or diaphragm
Girder top flange Iz

Figure 12 Plan view of deflections at the bottom and t
frames at a bearing line, forcing a coupling between
rotation gf the girders.

ragms or cross-
g and torsional

When one end of a cross-frame line is close to th i while the other end frames

which case AASHTO (2010) requir ross-frames must be perpendicular
to the girders, the cross-frame member duced, at the expense of larger flange

lateral bending in the I-girders, b e cross-frames that frame into the girders closest
to the supports or by using sta
reducing the cross-frame me
of cross-frames, is to us
subsequently in Secti

supports, as well as to eliminate a large number
cepts. The use of lean-on bracing is discussed

14



Girder 1

Girder 2

Figure 13 Cross-frame, bridge cross-section, and girder, otations due to
differential girder displacements in skewed bridges (Cd ) losky 2005).

Skew angle 6 > 20°

(a) Conti lines across the bridge

(b) Staggered cross-frames

Figure 14 U
embers near the supports in skewed I-girder bridges.

f staggered cross-frames to reduce the forces attracted to the cross-frame

15



2.2.3 Integral Piers and Abutments

The use of integral piers allows the Engineer to remove skewed interior support conditions by
moving the pier cap up into the superstructure and using a single column pier as shown in Figure
15 or a straddle bent as shown in Figure 16. Continuity of the cap with the pier as shown in
Figure 15 maximizes the pier column efficiency by approximately halving the longitudinal
moments compared to conventional cantilever columns. Furthermore, integral pier caps help
satisfy vertical clearance requirements and improve the design aesthetics. AQu-Hawash et al.
(2005) suggest that redundancy requirements at integral steel pier caps can b&@atisfied by using
twin HPS I-girders.

In addition, jointless bridge decks and integral abutments are used commo states
for steel stringer-type bridges having maximum total lengths from 250 up 3

(Wasserman 1987; Wasserman and Walker 1996). In these bridge ed in the
abutments at the ends of the structure, thus eliminating joints tha d damage

foundation, and are assumed unrestrained in the design of't , caligure 17 shows a

typical integral abutment detail for a steel I-girder bridge. V ¢ utilized by
different organizations to accommodate the t al w1th0ut causing damage to the
substructure or superstructure. These include: (a) ki e length, skew and/or

mpacted backfill, (¢)

(d) limiting the foundations to a sing ileS; (e) specifying the pile type and
requiring a minimum pile length, (f) ort i —piles such that they are subj ected to

o

abutment to limit the moment
to the superstructure with rotation of the approach slab at the abutment, to
and (1) provision of an expansion joint at the
WA 1980; Wasserman 1987; Wasserman and

. Yannotti et al. 2005).

roadway end of the ap
Walker 1996: Weakley

16



Figure 16, Straddle bé

with integral steel pier caps (Abu-Hawash et al. 2005) (courtesy
a DOT, HDR Engineering, and NSBA).

17



In cases involving longer bridges, larger skew angles, abutments resting on rock, massive
cantilever abutments, etc., where the foundation is less likely to accommodate the required
movements, semi-integral abutments are a second option to eliminate deck joints. In this case,
the girders typically are integral with the backwall, but the required movements are
accommodated by separating the backwall from the abutment stem, as shown in Figure 18. In
semi-integral abutments, the girders are seated on expansion bearings.

2.2.4 Temperature Movements

In bridges where expansion joints are required, orientation of the bearings toWgd a fixed point

bridges, this is accomplished by orienting the bearings to permit expansion g ord that

runs from the ﬁxed point to the bearing element under consideration as shg

requirements for consideration of these thermal effects but the cg
indicates that these effects may be neglected at the discretion of 3 ' her for cases such
as multi-beam bridges, where experience has indicated suc

consideration.

18
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Poellot (1997) describes one variation oach used by the Pennsylvania DOT. In
this approach, an interior supportd ous-spar? unit is fixed in the tangential direction but
is freed to move radially. The 1 xed in the radial direction and are freed to move
tangentially. Other interior be i as “floating,” or free to move in all directions.
Both the above chord m lvania method are essentially statically determinate
and therefore do not d to uniform temperature change. The Pennsylvania

Chord lines & direction of movement

Guide bars and slotted holes for expansion
bearings shall be oriented parallel to the
direction of movement

Figure 19 Bearing orientation to accommodate thermal movement on a horizontally
curved alignment (NSBA 2004).
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2.3 Box-Section Stringer System

For bridges subjected to significant torsion, box-girders provide a more efficient usage of
material. Because of their significant torsional stiffness, box girders are also better suited for
cantilevering during construction and generally exhibit smaller deflections during erection
handling. Curved I-girders typically must be connected with cross-frames to ensure their
stability, but they are more easily deformed to fit up with the other deflected portions of the
partially completed structure during erection.

Box girders resist torsion predominantly by uniform or St. Venant torsional
act circumferentially around their closed cross-section periphery as shown in
practical bridge box cross-sections, the warping constant is essentially zero
warping stresses associated with the thin-walled beam theory response are
distortion of the cross-sectional shape in box girders leads to important pla

stresses that

Flexure

Normal stresses:

—_———— e

Figure 20 Stresses in a single box girder subjected to an eccentric load.

Box girders are also an efficient option in bridges requiring shallow section depths. Their flanges
can be made much wider than in I-girders of comparable depth, thus avoiding the need for
inordinately thick flanges with shallow-depth I-girders. Although AASHTO (2010) Article
2.5.2.6.3 does not suggest optional L/D limits for steel box-girder bridges, it does suggest a

21



maximum limit of L/D = 40 for continuous-span adjacent box beams in prestressed concrete.
This limit also appears to be a reasonable maximum for continuous-span steel boxes. However,
box girder web depths usually should not be less than 5 feet to facilitate fabrication and
inspection (Hall 1997; Kase 1997). Also, Article 2.5.2.6.3 suggests that girder depths generally
should be larger in curved bridges to help control relative girder deflections. Due to these
requirements, steel box girders are used mostly for spans larger than 125 to 150 feet.

Box girders are somewhat less efficient than I-girders in shorter spans having relatively small
torsion and/or liberal depth requirements, essentially because they have two webs. Furthermore,

supports.”

The torsional equilibrium of box-girder bridges is less dependen

moments across the bridge width caused by th& oygera i the transfer of the V-loads in
I-girder bridges. In fact, bridges supporting a roa r dual traffic lanes often can
be supported by a single box, assuming that fracture critical) member
considerations are addressed. Box in resisting the torsion in curved
bridges without the need for interacti rs thfough a system of external diaphragms
and cross-frames. As a result, intermedr s-frames often can and should be
avoided. However, the Enginee or differential displacements between girders
during construction. For exam xternal cross-frames may be beneficial in
limiting the differential di partial width slab pours. If a pair of bearings is

s they are needed to support an expansion joint at end
quires external cross-frames or diaphragms at end supports to

e 21) are the most common type of steel box cross-section in US bridge
construction. Thglise of closed-box sections, i.e., sections with a wide steel plate for both the
bottom and top fl&hges, is rare due to costs associated with safety requirements for working
inside of these types of sections. AASHTO (2010) requires that tub girders must be constructed
with a full-length top lateral bracing system with one exception — straight tub girders in which
the stability of the top flanges between the diaphragms and the overall global stability of the
bridge are investigated using the Engineer’s assumed construction sequence. Prior to the
composite concrete deck becoming effective, girder lengths that do not have a top lateral bracing
system are open sections with a shear center located below the bottom flange (see Figure 22). As
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such, they exhibit significant torsional warping stresses and deformations, and their overall
lateral torsional buckling resistance is substantially reduced.

W ‘ a

T T

Figure 21 Representative tub-girder bridge cross-sectio

Rotation of cross-section Distribution of
due to torsion warping stresses

@

Shear Center .

Figure 22 Shear center locatio 0 nt jonal deformations for a tub girder
section that doe ave a lanQe bracing system.
The top lateral bracing system 1 ges participates with the girder top flanges in
resisting major-axis flexure. F 9) provide equations for estimating the
corresponding bracing megabe overall girder flexure. The forces in the lateral
bracing system tend to ck casting sequence. As such, if these members are
optimized based on an quence, it is imperative that the casting sequence be

shown on jhe ASHTO (2010) Article C6.7.5.3 indicates that field tests have
shown tha@i atl ttracted to the top lateral system are negligible after composite

0t the top lateral bracing system in resisting the overall flexure also can induce
bending stresses in tub-girder top flanges during construction. Alternating
Warren type sinq@diagonal lateral bracing systems tend to produce the largest flange lateral
bending stresses. In curved bridges, the bracing member forces and top flange lateral bending
stresses can be mitigated by the use of a Pratt type configuration for the top lateral bracing (see
AASHTO (2010) Article C6.7.5.3). The bracing members are oriented based on the sign of the
torque, such that the forces induced in these members due to torsion offset their compressive or
tensile forces caused by overall flexure.

significant late

Prior to the deck being made composite, lateral bending also occurs in discretely-braced top
flanges of tub sections with inclined webs, due to distributed lateral loads transmitted from the
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webs. These loads come from changes in the web flexural and St. Venant torsional shears per
unit length along the members. In terms of elementary beam theory, this is similar to p = dV/dx,
where p is the transverse distributed load per unit length, V is the internal shear force and X is the
position along the member length. Other sources of significant top flange lateral bending are the
same as for [-section members. During construction, prior to the slab being made composite,
flange lateral bending stresses due to horizontal curvature as well as due to eccentric concrete
deck overhang loads acting on cantilever forming brackets are of particular importance.

Steel box girders with a normal density concrete deck are efficient up to abowt 500 to 700 feet
span lengths. Beyond these lengths, the dead weight of the structure becomeSNg@gre and more
significant, and the use of an orthotropic steel deck is common. Also, other st

spans are cantllevered an additional 100 feet into the adjacent SPj .
achieves its record span by the use of slanted leg supports, reduc - S8bending moments

by arch action. : :

Figure 23 @ -Silva Bridge in Rio de Janeiro, Brazil, second-longest box-girder span,

980 ft (courtesy of www.structurae.de)
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Figure 24 Costa-e-Silva Bridge side elevgkion crossgRction
(1992) and Wolch

adapted from Ito et al.

Figure 25 Sfal@sa Bridge in Calabria, Italy, longest box-girder span, 1230 ft (courtesy of
www.structurae.de)

2.4 Truss Bridges

In all of the above bridge types, the structure tends to conform to the roadway and supports it
from underneath. Through-girder bridges have been constructed in the past, but these systems are
relatively inefficient since the deck cannot be used compositely. Also, all of the above structures
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generally support their loads primarily by stringer bending actions. In addition, the stringers have
solid webs that frame between their flange elements.

As the largest spans discussed in the above sections are approached, the Engineer must consider
alternative arrangements that involve “open” webs, greater overall depth, and components that
are primarily loaded in tension or compression. The use of high-strength elements becomes
particularly beneficial for these systems, due to their larger depth, longer spans, higher dead-to-
live load ratios and smaller live-to-dead load stresses. Furthermore, the roadway may be located
above w1th1n and or below the structural system, and the roadway geometry, nds to be

course for smaller span lengths, where stringer systems are viable, for varig
functional reasons (e.g., maximizing clearance below the roadway). Also, 1

various combinations of the different structural systems may be usg ger-span
structural systems, e.g., use of bottom flange bracing on an [-gird@# bridg Tiplish pseudo-
box action, use of trussed arches, or use of I-girders, box-girders < Jeck systems and

stiffening elements in cable-stayed and suspension bridges. glddressed briefly in
this section, followed by arch and cable-supported systems i

s via their light weight due to
triangulation and the primary action of their mem n and compression. Modern

highway truss bridges are predominantly ei

portion of the main span that is susp
bridges include deck trusses, half-thou

ints. Typical configurations of truss
ough trusses, based on the location of the

roadway with respect to the dep re. The Ikitsuki Ohashi Bridge in Nagasaki

Japan (Figure 26) holds the re a continuous truss bridge (1300 feet) while the
Quebec Bridge in Quebec 7) has the longest cantilever span at 1800 feet

Truss bridges behave ox structures when there are four planes capable of
resisting sh rtals participate significantly in transferring lateral loads to the
bearings embers are typically H, channel, or box-sections. AASHTO
(2010) Artt he members to be symmetrical about the plane of the truss. The

points, and th: yre must be considered as a column with elastic lateral supports at these
locations. In dS@Rtrusses, the slab provides the dual function of supporting the live loads as well
as bracing the togihords of the truss. A concrete deck can be made to act compositely with a
deck truss, thus a®hieving additional structural efficiency. Also, closed-section compression

chords can be filled with concrete to increase their efficiency.

26



Figure 26 Ikitsuki Ohashi Bridge, Nagasaki, Japan, longest-span con bridge,
1300 ft main span (www.sight-seeing.japan.com)

N

Figure 27 Quebec Bridge in Quebt
main spa

Trusses are an ideal system to becent advances in high-performance steels
(HPS): high strength, hig ess, and @hproved weldability. For example, a triangular bridge

oughness and/or post-tensioning (see Figure 28).

het al. (2006) and to Kulicki (2000) for detailed discussions of
truss bridges.
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using a single
NTB).

Arches are one of the most beautiful and expressi s. The arch form reduces the
bending moments in the superstructure and resists axial compression in the arch
ribs, which are the distinctive prim, cture. This compression must be
balanced either by large horizontal pring lines or by a tension tie
between the ends of the arch. Arches oundations to provide these horizontal

thrusts are typically referred to as wherea¥arches in which the thrusts are developed
through tie members are referr i s. In addition, arch bridges may be classified as
deck, through or half-though.
through type. However, and tied @iches may be constructed with the deck at an
intermediate elevation 1 ne and the crown, resulting in a half-through arch.
This would occur for e dation needs to be located above the high-water
elevation 4Sifiacariable fo tion conditions require location of the abutments at a specific

elevation

The arch rib
truss-ribbed o

er a truss or a girder. Accordingly, arch bridges are referred to as
1d-ribbed. Another classification pertains to the articulation of the arch: fixed,
two-hinged, or §illee-hinged. A fixed arch is designed based on complete rotational fixity at its
supports. If the s§@h is continuous but free to rotate at is ends, the structure is a two-hinged arch.
Tied arches are practically always two-hinged. In some cases, e.g., during construction, a hinge
is located at the crown in addition to the end supports. For instance, the top chord in a trussed
arch rib may be closed at the crown to complete the erection of the structure. If the axis of the
bottom chord follows the load-thrust line for the three-hinged condition, there is zero stress in the
top chord and web system. The top chord and the web are stressed only under loads applied after
the closure. Therefore, they can be made relatively light and the bottom chord of the rib becomes
the main load-carrying member (Wright and Bunner 2006). Solid rib arches are often designed
using boxes, to improve their lateral stability. These members may be fabricated with a constant
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or a variable depth. Concrete-filled high-strength steel box sections can be particularly
advantageous as arch ribs. The light high-strength steel box section greatly facilitates the
construction of the rib, and serves to reduce the overall rib weight, while the concrete in-fill
significantly enhances its compressive strength as well as the completed system stiffness.

In a tied arch, the tension tie is typically a plate or box girder. If the tie is relatively stiff in
bending compared to the arch rib, it will carry a substantial portion of the live loads. Conversely,
if the arch rib is stiff in bending relative to the tie, it will support a larger share of the live loads.
Since the contribution of each of these elements to the live load resistance dggends on their
relative stiffness, it is possible to optimize their sizes based on aesthetics and ost. A shallow

redundancy. The longitudinal tension can be minimized in
connection to the girders using a closure pour after the majo
(Cassity et al. 2003). The above modificatio i
girders in resisting the live load. Tied arches t ignificant variations in length
of the tie under different load conditions. As such provide deck joints at
1ntermed1ate pos1t10ns along the bridge len 005) discusses a design in which the

Most through or half-through i structed with two arch ribs that are each
located within a vertical p arch ribs are sometimes inclined inwards toward
his can also lead to some economy in the design of
ew bridges have been constructed with only one rib
and with rgadways canti ed on each side of the rib. In this case, both the arch rib and the
deck systd R ble torsional and lateral rigidity.

ed sections are used typically for the hangers in tied arch bridges.
D 1rders and the arch rib is reduced generally by shorter spacing of the hangers.
have been used in some tied arch bridges. These types of hangers participate in
transferring vert\@@l shear forces and tend to reduce the bending moments in the arch ribs and tie

girders.

Both the in-plane and out-of-plane stability of arch ribs are essential considerations. AASHTO
(2010) provides limited guidance with respect to the stability design of these components. Article
4.5.3.2.2c of AASHTO (2010) gives in-plane effective length factors for use in beam-column
moment amplification equations for three-hinge, two-hinged and fixed arches. It is inferred that
these effective length factors also may be utilized with the AASHTO column strength equations
in determining the axial resistance of prismatic solid-rib arches. AASHTO also requires that
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refined methods of analysis for arches, if used, shall include second-order effects. (AASHTO
(2010) defines refined methods of analysis as methods that consider the entire superstructure as
an integral unit and provide directly the system and component deflections and actions.) The
above approximate AASHTO equations do not account for any vertical restraint from the deck.
Where such restraint exists, refined analysis methods will give larger buckling loads and smaller
moment amplification.

For checking stability in the lateral direction, the effective length may be taken as the distance
between the rib bracing points when a lateral bracing system of adequate stiffaess is provided.

Slant-legged rigid-frame bridges such as the one shown in Figure 29 are es
arch form. In this type of bridge, the primary I-girders in the center span fu

arch bridge (1800 feet). This structure is a twghhing h arch with a steel box girder
rib and an orthotropic deck on floor beams and loggi irders.

The New River Gorge Bridge in West Virgizi
in the United States (1700 feet). THg@st
The reader is referred to Wright and B or (20009@RetzoYd (2005) and Xanthakos (1994) for

detailed discussions of various attributeS@ithe desigWgpf arch bridges. Heins and Firmage (1979)
discuss the design of slant-leggcdiiig@-frafNg@bighway bridges.

) is the longest span steel arch bridge
ed deck-type arch with a trussed rib.

Figure 29 Slant-legged rigid-frame bridge (courtesy of HDR Engineering, Inc.)
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Figure 30 LuPu Bridge in Shanghai, China, longest span steel arch, #80

www.structurae.de).

tesy of

Figure 31 LuPu By

Figure 32 New River Gorge Bridge in West Virginia, longest span steel arch in the United
States, 1700 ft (courtesy of HDR Engineering, Inc.)
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2.6 Cable-Supported Bridges
2.6.1 General

The lightness and overall structural efficiency of cable-supported structures are readily apparent
even to non-engineers. The two major classes of cable-supported bridges are suspension and
cable-stayed. The fundamental difference between these bridge types is the manner in which the
deck system is supported by the cables. In suspension bridges, the deck system is supported at
relatively short intervals by vertical suspenders, which in turn, are supported &y the main cables
(see Figure 33a). Furthermore, the main cables are relatively flexible since tiggare form-active;

loadings. Conversely, in cable-stayed bridges, the deck system is supported om the
towers by relatively straight cables (Figure 33b). This results in a stiff elast he deck
by the cable system compared to typlcal suspens10n bridges. The suspens1o 0 be

Ong est bridge
spans, where the dead load stresses become more and more dom il § ely, cable-stayed

stems, (a) suspension and (b) cable-stayed (reprinted
ermission from Podolny and Scalzi).

Figure 33 Cable sus
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Figure 34 Akashi Kaikyo Bridge, Iogzcst suspensio@ispan eas#1t) (courtesy of

WWW.S tu BIC ).

in Japarne@trently has the longest
cently, the world’s longest cable-

¢ ON@pichi-Imabari Route in Japan. The
rleston, South Carolina, has the longest

The Akashi Kaikyo Bridge on the Kobe-Naruto R
suspension span at 6530 feet (Figurg 34),
stayed span was 2920 feet in the
Cooper River Bridge between Mount
cable-stayed span in the United St.

system. The deck system consists of an orthotropic steel
5 feet deep, accommodating six traffic lanes.

span continuous bridg
box girde feet wide
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(a) Aerial view

(c) Installation of edge girder showing cable
anchorage and studs for develogment of,
composite concrete deck

0 (d) Placement of a precast concrete deck panel
Figure 353 _Cooper R ridge, longest cable-stayed span in the USA (1550 ft) (courtesy
South Carolina DOT).

Longer span F Jin. plated for both of the above system types; however, for larger
span lengths, reasing fraction of the allowable cable stresses is taken up by dead load.
Also, the effici@licy of the stays in cable-stayed bridges is reduced more and more by the sag
under their self W@ight as the length of the stays is increased. The Akashi Kaikyo Bridge utilizes
cables with a tensWe strength of 260 ksi. Higher strength and/or lighter cables will be needed to
achieve significantly longer spans in the future.

2.6.2 Suspension Bridges

Most suspension bridges utilize stiffening box girders or trusses at the deck level to ensure
aerodynamic stability of the structure as well as to limit the local live load deformations in the
deck system and to distribute these loads among the vertical suspenders. The bridge towers
transfer a large vertical compression from the main cables to the foundation, and act as lateral
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supports for the cables and the deck system. The main cables are tied externally to massive
anchorages at the ends of the structure in most suspension bridges. However, for moderate spans,
the ends of the main cables can be attached to the stiffening system, in which case the structure is
self-anchored. If net uplift occurs at the end supports, a tie-down system is necessary.

........

(courtesy of New
Jersey DOT).

are relatively short or are not
ions of the main cables from
d to as straight backstays.
erally it is difficult to resist the

pve loads; due to the bending of the

Suspension bridges usually have three spans.‘wn

required, a single suspended span may be used. Igshi
the towers to the anchorages are essentially straigh
Two- or four-span suspension brid

The center and side spans of s are usually simply supported. The stiffening
girder or truss is sometimes mgle contin educe the difference in slopes occurring
between the adjacent spa isesults in relatively large bending stresses at the
ffening elements, except for short spans, because of
oxes and trusses. Typical span-to-depth ratios for

ge from about 1/60 to 1/70 of the main span (Podolny and

Most suspen ze vertical suspender cables. However, inclined suspender cables
have been usc@lf some cases. Inclined cables are capable of transferring vertical loads by truss
action between Wik main cables and the stiffening truss or girder.

Typical suspension bridge towers are portal frames. The towers must have a minimum width in
the direction of the spans sufficient to provide stability, but the width also must be sufficient at
their top to support the cable saddles. Most suspension bridges have their cables fixed at the top
of the towers. The towers in longer span bridges generally have fixed bases, but rockers can be
used at the base for short spans. Because of the tower relative slenderness, the bending stresses in
the towers due to longitudinal deflections at the tower tops are relatively small.
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The main cables in modern long-span suspension bridges usually consist of high-strength parallel
wire strands. However, helical-strand type cables are used in many small to moderate-length
suspension bridges. The strength and modulus of elasticity of these types of cables are reduced
by a factor of about one-eighth due to the helical placement of the strands.

Suspension bridges generally require the use of deflection theory, or geometric nonlinear
analysis, for the calculation of load effects. Use of linear elastic theory results in an
overestimation of the system stresses and deflections.

2.6.3 Cable-Stayed Bridges

The deck system in cable-stayed bridges acts as a continuous girder over thg jers, but
with additional intermediate elastic, but relatively stiff, supports at the ancli@i Ty O

stay cables. Typical depths of the deck system range from 1/60 to 1/80 of ti¥ and
Goodyear 2006). The cables induce compressive forces within the ly, the
deck is designed to participate with the girders in supporting theg structure is
usually a closed or self-anchored system.

The designer has a wide range of attributes at his or her dispQgal th Il e the behavior of

and arrangement of the spans,
number of stays, the type of

cable-stayed bridge structural systems. Thes?lud
the number and orientation of the cable-stay plan
cable, the type of deck system and the constructio

Although three-span arrangement igure 33b, Figure 35a and Figure 36

are the most efficient, two-span layo i re ¥/are also feasible for cable-stayed
bridges. It is usually desirable to ancho the side spans of the bridge. However, if
the side-span is relatively short, he stay cables may be tied to an independent

anchorage in the ground. Thre
length and two equal side ommon (see Figure 33b). The cables tied to the end

anchor spans attract larger forces than the cables

these structures can be improved by tying the tower tops

, . (Figure 38a), tying the tower tops to the girder and tower
at the adjacent towers (Figure 38b), adding additional tie-down piers at the
re 38c) or adding crossing cables at the midspans (Figure 38d) (Tang 2000).

intersection p§
span centers (
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mmmr

Figure 37 Representative two-span cable-stayed bridge sy@gm.

id large tower bending moments in cable-stayed bridge systems
ore than three spans (Tang 2000).

stays (Figure 39) is aesthetically pleasing and halves the number of
e towers. However, this requires the use of a torsionally stiff deck system.
Conversely, thd@lse of two planes of stays at the edges of the superstructure permits the use of
torsionally flexiq@\I-girders (see Figure 35), although the use of box girders can be
advantageous withl two-plane systems in certain bridges. The two-plane system can be oriented
vertically or twin inclined planes can be connected from the edge of the deck to either an A or
inverted Y tower. Inclined stays increase the torsional stiffness of the overall structural system.

required shaft
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(a) Overall view (b) Deck svste
Figure 39 Duisberg-Neuenkamp Bridge, Duisberg, Germany, 3-span cg

the radial pattern
wers and gives

spaced roughly equally over the height of the towers (Figure 40
is the most efficient, since it avoids placing primary bendin
the largest angle between the stays and the deck. Also, this
cable to support the full unbalanced component of force fro
arrangement complicates the detailing at the t‘of t
significant bending in the tower unless every bac
pier. It is less efficient structurally, but it is easier
satisfactory compromise between t

es. However, this
harp pattern induces

ored to the ground or above a
i-harp pattern is often a

wing fixing of individual cables at the

(b) semi-harp pattern

Figure 40 Alternative stay layouts, (a) harp pattern and (b) semi-harp pattern

Either spiral or parallel wire strand may be used for the stays in cable-stayed bridges. Spiral
strand is easier to handle during construction, but has a reduced elastic modulus that depends on
the lay length of the spiral. Stays composed of prestressing steels are the most prevalent in recent
cable-stayed bridge construction. The pitch of the twisted wires in common seven-wire
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prestressing strand is relatively long, and therefore the stiffness of the strand is close to that of
straight-wire strand and the breaking strength is somewhat larger. The number of strands
assembled into the stay cables varies depending on the design force. One of the key
considerations in the development of the end sockets or anchorages for cable stays is the fatigue
resistance. A number of systems are available that accommodate parallel prestressing strands.

Cable-stayed bridges are highly redundant structures. One important concept of cable-stayed
bridge design is the freedom to assign a desired value of force to every unknown in the
indeterminate structure. Therefore, the bending moments and forces under thg dead load
condition can be determined solely based on static equilibrium. There are an ite number of
combinations of dead load conditions for a given cable-stayed bridge. The En
the one that gives the most advantageous distribution of stresses throughou
the other loads are combined with the dead load.

The construction process must reproduce the selected dead load cog
bridge, the construction stage analysis, which checks the stressesf@iid defd
at every stage of the construction, starts from the selected final c@idit orks backwards
to determine the no-load geometry of all the structural com ts. H n composite

structures, creep and shrinkage effects also must be account
starting from the beginning of the constructic‘

For moderate-span cable-stayed bridges, compost
steel decks are used typically in longer spa ead weight is at a more serious

essential when torsional stiffness is rogRiled. 10n stress in the deck system tends to
increase proportionally with the span le spans, the cross-section of the deck

High-performance steel i i the longitudinal girders in cable-stayed bridges.
The global moments a dinal girders can be reduced by making the girders
smaller andamore flexibl the use of higher yield strengths, while influencing the overall

£ ntageous since they can be erected more easﬂy in a limited number of pieces.
The behavior ofke bridge differs depending on whether the towers are fixed or pinned at their
base. Base fixit reases the moments in the towers significantly, but increases the overall
ture. Steel towers generally must be designed for overall and local stability.
The tower members typically have a variable cross-section depth, width and plate thickness over
their height and are subjected to combined axial compression and biaxial bending moment. In
addition, they are supported elastically by the cables and in some cases by the deck system.
Therefore, it is most appropriate to design these members using a refined stability analysis.

Tang (1976) considers the elastic buckling of the flexible deck system in cable-stayed bridges.
He shows that the buckling load is influenced more by the axial stiffness of the cables than the
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flexural stiffness of the deck system. Even if the stiffness of the deck system is neglected, the
buckling load is typically much larger than the actual loads on the bridge. Model tests (Walther
et al. 1999) on cable-stayed bridges with slender concrete decks and closely spaced cables have
confirmed that the deck system usually is not critical with respect to buckling. However, the
ultimate load capacity of the Tatara Bridge (2920 feet main span) is governed by buckling of its
steel box girders. A loading test was conducted on a 1/50 scale model to verify the accuracy of
the analysis and to confirm the structural capacity on this bridge (HSBA 2005).

In contrast to suspension bridge structural systems, the second-order effects @n the internal forces
and system deflections tend to be significant only in longer-span cable-staycO{@idges.

generally increased due to the second-order effects. This is opposite from t a9y
suspension bridges. The geometric nonlinearity of cable-stayed bridges is § ch that
a first-order analysis is sufficient in many cases. When second-order effect{gic expect@W0 be
more significant, they may be accounted for by first conducting a lj ] i
nominal geometry to determine the deflections, using these defle, ise the geometry,
and finally conducting a second linear analysis using the revised b cable stiffnesses
are a nonlinear function of the cable tension, due to the sag der their self-
weight. AASHTO (2010) gives the following equation for thffec ftaneous elastic
modulus of stay cables ‘

(2.6.3-1)
(AASHTO 4.6.3.7-1)

Evoo = E/{ 1+ EAW? cos’ ar/12H’}

Where
E = modulus of elasticity c
A = cross-sectional arc@bf the ca
W = cable total ht
o e between hord of the cable and the horizontal

H = pent of the cable force
Note that in th§@ove equation, and throughout this module, the AASHTO number is denoted
“AASHTO” an@@rovided for any equations defined explicitly in the AASHTO (2010)

Specifications. F§example, Eq. (1) above is AASHTO Eq. 4.6.3.7-1. (Note that here and
throughout this module, the section number of the module is not included in the citation of any
equations, when the citation is located in the same section as the reference.)

The reader is referred to Podolny and Goodyear (2006), Walther et al. (1999), ASCE (1992),

Troitsky (1988) and Podolny and Scalzi (1986) for detailed discussions pertaining to the
behavior and design of cable-supported bridges.
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3.0 ELASTIC SYSTEM ANALYSIS, INELASTIC COMPONENT RESISTANCES

The load and resistance factor design approach implemented in AASHTO (2010) uses the
general form

ZMivi Qi< Ry (3-1)
(AASHTO 3.4.1-1)

for assessment of the adequacy of the structure. The left-hand side of this equation represents a
given design load effect, typically calculated by analysis. The right-hand sidS@@gresents the

the left- and right-hand sides of Eq. (1) can be referred to as the required a gble design
strengths respectively. A selected component is adequate for a given limit § i

The design load effect or required strength is determined as the larg | S sums
(or combinations) of appropriate nominal load effects, Qj, multipli d factors nj and y;.
iabili cdin sociated with each

of the nominal loads for a given load combination. The vart ons account
generally for a maximum lifetime event for a certain loading Propriate arbitrary
point in time values of other loadings. On the&ht g- (1), the ¢ terms are

resistance factors, which account for the variabiliggs unc d consequences of failure

associated with different limit states. The paramet i increas decrease the nominal loads
based on broad considerations of t and operational importance of the
structure.

With the exception of inelastic redjstri i tion moments in specific types of

continuous-span stringer bridg
earthquake, ice loads, collisio
(2010) specifies the use o

cles and certain hydraulic events), AASHTO
nalysis for calculation of the design load effects.
g. (1) are based in general on inelastic behavior of
the structural compone stringers, the concrete section is assumed fully
effective yufie ive bending for calculation of the internal forces and moments (in
the struct
strength 11Nl } ent inconsistencies are explicitly addressed in several locations
within the '
C6.10.6.2.1.
nonlinearity on

Ply put the Engineer is allowed to neglect the 1nﬂuence of all material

p distribution of forces and moments within the structure up to the limit of
resistance of the W@st critical component. Neglected effects include residual stresses in the steel,
concrete cracking, and various stress contributions that are considered incidental. Numerous
physical tests indicate that this approximation is acceptable. It is assumed that the resistance of
the complete structure is reached when the left and right-hand sides of Eq. (1) are equal for the
most critically loaded component. As explained in Article 1.3.2.4 of AASHTO (2010), multi-
stringer bridges usually have substantial additional reserve capacity beyond this resistance level.
This is because the live load cannot be positioned to maximize the force effects on all parts of the
bridge cross-section simultaneously. However, this reserve capacity is not necessary to justify
the above elastic analysis assumptions.
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There are three situations in steel design where AASHTO (2010) implements specific restrictions
to ensure the validity of the above elastic analysis-design approach:

1. For continuous-span girders that are composite in positive bending, AASHTO Article
6.10.7.1 limits the moment capacity to

M, = 1.3RyMy (3-2)
(AASHTO 6.10.7.1.2-3)

skew must be less than 10 degrees and the ratio of the latg g
compression flange width, Lp/bs, at the pier sections mus 20010 ately 10 or less in
addition to other requirements for the use of Appen . i s-span box

girders are required to satisfy Eq. (2) or more restrictig@ lim1% 1on (2) guards
against significant partial yielding of ?cro i er a relatively large length
within the positive moment region, where ams and envelopes are

ositive moments to pier

effective in tension and comp i slightly conservative estimate of the
true pier section moments, assu s-sections remain fully elastic in the

2. For curved I-girderbri mposite sections in positive bending are required to
be considered as @s. Furthermore, the use of AASHTO (2010)

(3-3)

and My, is®he nominal yield moment capacity with respect to the compression flange.
These restrictions are due to the limited data on the influence of partial cross-section
yielding on the distribution of forces and moments within curved I-girder bridges.

Beshah and Wright (2010) and Jung and White (2010) provide extensive results from a
full-scale curved composite I-girder bridge test as well as parametric extensions of these
test results using refined inelastic finite element analysis. All cases considered indicate
that the influence of partial yielding on the internal forces and moments is small in
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curved I-girder bridges up to the limit of resistance of the most critical bridge component
based on the plastic moment My, with a reduction for flange lateral bending effects.
However, the majority of these studies focus solely on simple-span bridges. Further
studies are needed to address the influence of partial cross-section yielding on
continuous-span curved I-girder bridges. The benefits of designing positive moment
sections using the plastic moment resistance M or Eq. (2) can be significant, although
AASHTO Article 6.10.7.1.2 specifies a reduction relative to M, based on ductility
considerations (see Section 5.3.3 of this module). No studies have been conducted to date
(2010) that address the potential use of a Eq. (2) or other plastic momgnt-based resistance

formulas for curved composite box girders in positive bending.

The Engineer should note that the resistance equations for curved I-
based generally on some partial cross-section yielding at the calculd
resistance. However, Eq. (2) and other M-based resistance equatio
development of a larger extent of yielding.

3. The maximum compression stress in the concrete deck i 0 ‘. under all

strength loading conditions for noncompact compo ns angiox-sections in
positive bending (see Sections 5.3.3.1 and 5.3.4 of th definition of a
noncompact composite I-section). Thighiimit j uire ensure linear behavior of the

concrete. Furthermore, Article C6.10.1°

0) recommends against the
tuations where this limit can

potentially be exceeded. Unshored ¢ §s considered generally more economical.

on the influence of concrete nse 0t shored composite [-girders
subjected to large dead load.

In addition to the above restri
separate noncomposite strggse

the structure due to self weight and other loadings

e C6.10.1.1.1a, there is limited data

before composite action 1 as the short and long-term stresses generated in the

hree different loading conditions may not be added for

the purposgaaf calculatin sses, and superposition (based on small-deflection theory) cannot

be applie g 2 i struction processes that include changes in the stiffness of the

structure. cts are considered by use of a modular ratio of 3n, where n =
Es/Ec 1s the fle composite section for short term loading. Finally, Article
6.10.1.7 of A O (2010) implements specific slab reinforcing steel requirements for regions

to ensure distrib
assumption of tak¥hg the concrete as fully effective in tension for calculation of the elastic
internal forces and moments.

ive flexure. These requirements are intended to control concrete cracking, i.e.,
d cracking with small crack widths. This helps ensure the validity of the

AASHTO (2010) Article C4.5.3.1 states that small-deflection theory, or a geometrically linear or
first-order analysis, is usually adequate for stringer-type bridges. The terms first-order analysis,

geometrically linear analysis or small-deflection theory all indicate that equilibrium of the

structure is considered on the undeflected geometry. Article C4.5.3.1 also indicates that bridges

that resist loads by a couple whose tensile and compressive forces remain essentially in fixed
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positions relative to each other while the bridge deflects, such as trusses and tied arches, tend to
be insensitive to deformations. However, the internal forces and bending moments can be
influenced significantly by second-order effects in structures with members or components
subjected to significant axial compression relative to their elastic buckling resistance. Also, the
internal forces in form-active structures, such as suspension bridges, are influenced significantly
by these effects.

In some stringer-type bridges, construction deflections and stresses (prior to the completion of
the full structure) may be influenced significantly by second-order effects. Far example, the

sensitive to these effects (Jung and White 2010; Chang and White 2010). The ifllence of

second-order effects on the flange lateral bending stresses can be significan @bt or curved
fascia I-girders subjected to eccentric concrete deck overhang loads acting - i
brackets. In these cases, an approximate second-order analysis consisting of

The term second-order analysis indicates that equilibrium is
of the structure. The second-order effects are ¢ ch i
internal moments, relative to those estimated 1fo sis, due to considering
equilibrium on the deflected geometry. First-orde ient generally for calculation
of live load effects on all stringer-type bridggsai al constructed configuration.

eflections, internal forces and

The component resistance equations 0), dnd the strength limit states checks
represented by Eq. (1), are based on the the second-order elastic internal stresses
on the initially perfect structure on of geometric imperfections), are calculated

with sufficient accuracy in cas ts are important. That is, initial geometric
imperfections within fabriggti tolerances do not need to be considered in the
ition to the effects of initial residual stresses within

oxes under strength loading conditions, and St. Venant
torsional sh )Ction members.

Article C6.7.2 GBAASHTO (2010) states that the Engineer may need to consider the potential for
problematic loc
curved I-girder bi¥dges when the cross-frames are detailed such that they fit up with the I-girders
in an idealized web-plumb position under the steel or total dead load. This article states further,
“The decision as to when these stresses should be evaluated is currently a matter of engineering
judgment. It is anticipated that these stresses will be of little consequence in the vast majority of
cases ...” Chang and White (2010) have developed and applied prototype tools that permit the
precise calculation of erection stresses and deflections in curved I-girder bridges. Their results
support the above statement, although one of their examples illustrates a curved I-girder bridge
where consideration of lack-of-fit and second-order effects is important.
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Many of the provisions in AASHTO (2010) Chapter 4 address the appropriate assumptions and
limits for the use of approximate analysis methods. The approximate analysis of stringer-type
bridges using line-girder models receives substantial attention in this chapter. AASHTO Article
4.1 states:

“The primary objective in the use of more sophisticated methods of analysis is to obtain a
better understanding of the structural behavior. Such improved understanding may often,
but not always, lead to the potential for saving material.... With rapidly improving
computing technology, the more refined and complex methods of analysig are expected to
become commonplace. Hence, this section addresses the assumptions and@@mitations of
such methods. It is important that the Engineer understand the method emp]8
associated limitations.”

One of the limitations of general second-order elastic analysis methods is tiX
the effects from separate loading types is not valid. With these metk )
must be analyzed for each load combination and load placement
simplifications and approximations allow for limited superpositi
example, for a curved I-girder bridge that is sensitive to se
condition but insensitive to these effects after the structure is

psults. For
its noncomposite

analysis can be employed to determine the deglil loa ction stresses. The results from
a first-order geometrically linear analysis can Be ed to these stresses for
evaluation of the composite structure (Jung and and White 2010). For
suspension bridges, Podolny and Goodyear s commonly employed approximate

linearized solutions that allow the
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4.0 OVERALL SYSTEM BUCKLING VERSUS INDIVIDUAL MEMBER BUCKLING
4.1 Key Concepts

One question that has been raised by numerous organizations in the recent past is what type of
analysis and/or AASHTO provision checks are sufficient to assess the overall stability of a
bridge structural system during construction. For instance, what constitutes a sufficient check of
the overall stability of a straight tub girder that does not have a full-length top lateral bracing
system? At issue is the fact that in most cases, the overall stability of stringegatype bridges is
cen the cross-

overall elastic buckling of individual tub-girders with no to
accurately, for the case of uniform bending (Cp, = 1), by the
symmetric open-section member. This solutlvnay

2 2
Mcrzﬂ EU{&JF\/(&j +&[1+ J 4-1)

L 2 2
(White and Jung 2003b), where Bx and ly the coefficient of monosymmetry and
the warping constant for the crq, e constants are determined from thin-walled
open-section beam theory, e.g 68) and Heins (1975). The properties ly and J
are the moment of inertia bout the axis orthogonal to the axis of bending and
the St. Venant torsiona igfic overall span length. Yura and Widianto (2005) also

illustrate that modifie hich account for the influence of pre-buckling
displacemg \ttle practlcal significance because of necessary stress and deflection
limits. In 3

have top-fla girders designed w1th a full-length top lateral bracing system

i TO (2010) requirements do not need to be checked for overall lateral-

In addition, it should be noted that this equation applies to both straight and
curved tub-girde{@Similar to the fact that the in-plane elastic flexural buckling of a beam-
column is relatively insensitive to the applied bending moments (McGuire 1968), the overall
elastic buckling load of structural members generally is insensitive to horizontal curvature.

torsional buckl
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Figure 41 Dual-girder subassembly composed of two equal-size do etric I-
girders
Yura and Widianto (2005) and Yura et al. (2008) also show that tw sl SO can
be susceptible to overall lateral-torsional buckling in some cases he s tween the

girders is small relative to the span length. That is, their equatio some cases, the
stability of two I-girder assemblies connected together by ¢ governed by
overall buckling rather than by buckling of the individual I-g@iers Wghmes@Phe cross-frame
locations. The elastic critical moment of the siply-s ubly-symmetric two-girder
system shown in Figure 41 is obtained for theﬁz 0 ding simply by substituting Iy
=2ly0, J=2J, and Cy, = 2lyo (N/2)* + 2140 (S/2)° i
Timoshenko and Gere (1961),

V4 7EY
Mcr :E\/EIYGJ +(Tj Iwa (4-2)
Where
Jo
Iyo
The above tained from thin-walled open-section beam theory for the
equal-size d e two-1-girder cross-section which gives
f‘ 7EY
M, =S I) Lo (1,00” +1,,87) (4-3)

By retaining only the Iy, term from Eq. (3), Yura and Widianto (2005) and Yura et al. (2008)
obtain the following simplified expression, which is typically only a few percent conservative:

I (4-4)
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In many two-girder cases, M from Eq. (4) will be smaller than the elastic buckling capacity of
the girder unbraced lengths between the cross-frames. That is, the lateral-torsional buckling
strength of two I-girders, connected together by cross-frames for handling as a single unit during
erection, is governed by overall buckling of the assembly, not by the buckling of the members
between the brace points. This can be demonstrated by considering the conditions that make Mc,
from Eq. (4) smaller than the following simplified form of the elastic critical moment for lateral-
torsional buckling of the doubly-symmetric I-section members between the cross-frames:

7’El ol
cr = Ltz)
(4-5)
After some algebraic manipulation, one can observe that the buckling of th as a
system is more critical when
LY _h [l
L) s\,
(4-6)

Furthermore, if one substitutes the approximations ly, = bt d I3 /2 into Eq. (6), this
equation simplifies to

fb fb
b 062 or Lecog ol
L S L

The Engineer may note that Eq. (7) is ption of uniform bending throughout
the span length L. If one conside 1
overall buckling of the system
between the critical cross-fra

(4-7)

buckling moment is smaller than the moment at the buckling of the
ween the cross-frames.

d ination of whether system buckling or buckling of the girders
sd¥tames governs for two example cases based on Eq. (7). The plot on the left
shows the Ly/L\@linit versus the girder depth-to-flange width ratio h/bs for two equal-size doubly-
symmetric girdo@@Awith a spacing-to-depth ratio S/h of 2. The plot on the right shows the Lp/L
limit versus S/h t§two equal-size doubly-symmetric girders with h/b; = 3. Suppose that the
girders have five equally spaced unbraced lengths, or four internal cross-frames, such that L,/L =
0.2. The plot on the left shows that the buckling of the twin-girder system with S/h = 2 is more
critical than that of the individual girders when h/b; is smaller than about 4.5. The plot on the
right shows that the buckling of the twin-girder system with h/b;s = 3 is more critical than that of
the individual girders when S/h is less than about 3.0.

between the &

48



05 Sh=2 05
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hib;i=3

Buckling between cross-frames

. . . is more critical
Buckling between cross-frames is more critical

0.3 1 0.3 1
Lo /L f Ly /L
0.2 } 0.2 1 i

0.1 1 Buckling of twin-girder system is more critical 0.1 4 Buckling of twin-girder system is more critical

Figure 42 Example determination of whether system buckling or bud
between the cross-frames governs for two equal-size doub g8

expressions show that in some cases, system buckling of th
than the buckling of the individual I-girder unbraced length
buckling capacity of two equal-size singly-s etrig I-girde
similar to the development of Egs. (3) and (4)¥y us
inertia, and moment gradient effects can be appr ing a Cy, factor (Yura et al.
2008).

Bridge I-section members are com ., they have cross-section

transitions), they are subjected to non- oment along their lengths, and I-girder
pairs are not necessarily compos ize [-section members. Nevertheless, the above are
useful base equations that are
relative to the common designl buckling of the girders between the brace points.

losely-spaced, narrow-flange I-section members,

the Engineer should ¢ ned buckling analysis to check the lateral-torsional
buckling cgpacity of gir ssemblies during construction. If the governing elastic buckling load
is suffici e applied loads, then neither local nor global stability is an issue.

bridges by utilizifg lean-on bracing concepts (Helwig et al. 2005; Herman et al. 2005). Using
these concepts, multiple I-girders can be braced by a single cross-frame, given that they are tied
to the cross-frame by top and bottom struts as shown in Figure 43. This approach can be
particularly useful to eliminate cross-frames that may otherwise attract large forces, and to
reduce the I-girder flange lateral bending stresses, in skewed I-girder bridges. Such a case is
illustrated in Figure 44, which illustrates the cross-frame placement in a two-span TxDOT proof-
of-concept bridge as presented by Helwig et al. (2005) and Herman et al. (2005). In this design,
the individual I-girders tend to respond in a fashion closer to that of a non-skewed bridge. The
top and bottom struts across the width of the bridge work with the bents containing cross-frame
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diagonals provide lateral stability to all of the girders. However, the bents containing only top
and bottom struts and no diagonals rake due to differential girder vertical displacements (i.e., the
top and bottom struts rotate relative to the girder cross-sections in the plane of the bents), thus
reducing the twisting of the girders and avoiding the development of large cross-frame forces.

| T 11L ]

f hId \ J|L f ]
Cross-Frame Lean-on bracing provided
by top and bottom struts

Figure 43 A single cross-frame bridge cross-section showing multiple 8§ ed by a
single cross-frame

Equations (4-4) and (4-7), or related equations for singly- symme rsaare not valid for
bridges that utilize lean-on bracing concepts. The cross-fra cations must be
designed to provide overall lateral and lateral-torsional stab al system at all

stages of the erection process. Helwig et al. (2005) and Herm! provide equations

for estimating the bracing stiffness and force €@uir stablhty effects. Refined
analysis tools can be valuable for checking the oyggall s his type of bridge during
various stages of construction.

In the design shown in Figure 44, lac ross the entire width of the bridge at
the supports. Also, a pair of cross-fra 1 the mid-width of the bridge near the mid-
dle of each span. Furthermore, at |
girders, several additional cros ted near the field splice locations, and a few
additional cross-frames are pr i ifferential deflection between adjacent girders
during the slab casting. T to Helwig et al. (2005) or Herman et al. (2005) for
i e total number of intermediate cross-frames is
reduced from 128 to 3 or all of these factors. The authors suggest that a larger
' be used in broader implementation of the lean-on bracing
being flexibility for the erector to select various sequences of
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ground F.S.\

- "
X X K R 3

*;\" i &

ich yielding occurs due to residual
is larger than Fy,, an inelastic system

stress effects. When the elastic critical

buckling should be considered ugs alized equations discussed subsequently in Section
5.3.6 of this module. These sit i occur in practical stringer bridge. The structure
in its final constructed confi i i ically be such that its member strengths are not
governed by an overall ling m@@e, and for the structure at critical intermediate stages

during construction, t erally be small enough such that the structure is not

important, it is S@@ected that it will be important only during construction.

For large arch and cable-supported bridges, detailed three-dimensional finite element analyses of
the overall structure including geometric and material nonlinearity, residual stresses and
geometric imperfections may be desirable for assessment of the overall response at strength load
levels. This type of analysis may be conducted with a number of the most sophisticated
commercially available software packages. Detailed elastic finite element analysis of these types
of structures is commonly employed for evaluation of component stresses at a minimum (Ito et
al. 1992). However, it must always be recognized that good design of bridges is not achieved
simply by running computer programs. Computer software should be considered as only one of
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many essential design tools. Also, the Engineer should always keep in mind the famous words of
Professor Hardy Cross (1952),

“...strength is essential and otherwise unimportant.

Various sources aid the engineer in determining strength. No one of them is more
important than another. Analyses, tests, experience and such intuitive common sense as
may be personally developed about structural stability; these are all helpful, but they can
also be dangerously misleading. Evidence from the four sources rarelg agrees completely.
Great engineers are those who can weigh this evidence and arrive at g@asonable answer
through judgment as to its dependability....

The important point here is that some types of planning, designing iN@mting can
be put on an assembly line and some types can be put on an assemb gk ‘
brains only, but much of the most important work cannot b
standardized formulas or rigid methods.

In general the objectives are flexibility of design an of cotruction....

ss restricted to two-dimensional
ibrations. They need much

ey need to reappraise

...Men must learn to think more clear?
design. They must pay more attention

more information on the properties of ma
seriously the importance of durabili{yzm”
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5.0 MEMBER BEHAVIOR AND DESIGN STRENGTH

5.1 Tension Members

5.1.1 Rolled or Built-Up Tension Members

The strength of rolled section tension members, or tension members built up from rolled sections
and/or steel plates, is governed by the most critical of the following limit states:

The last three are considered as connection limit s by AA
within the scope of this module. T
Specification. However, the first t
addressed in Article 6.8. The tension

Where

Where

Overall tension yielding of the member along its length,

Tension fracture of the member across a net section (referred to by
tension rupture),

Block shear rupture along a shear failure path or paths co
tension failure path at the end connections,
od

Failure of the connecting bolts or welds in one of a r

Failure of the connecting elements su@s g splice plates.

(2010) and hence are not
icle 6.13 of the AASHTO

e is given by the equation

(5.1.1-1)
(AASHTO 6.8.2.1-1)

dy Pry =0.95 Fy Aq

pecified mi@Rum yield strength and

Aq -sect | area of the member,

¢u Pru = 0% (5.1.1-2)
(AASHTO 6.8.2.1-2)
Fu = ultimate tensile strength
An = member net area

conS@sred as member limit states and are
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Rp = reduction factor for holes, taken equal to 0.90 for bolt holes punched full size and 1.0
for bolt holes drilled fill size or subpunched and reamed to size
U = shear lag factor

Although ductile steel members loaded in axial tension can generally resist a force greater than
the product of their gross area and the specified minimum yield stress, substantial elongation due
to yielding throughout the gross area along the member length can precipitate the failure of the
structural system of which the member is a part. Therefore, overall yielding gf the gross area is
considered as a strength limit state.

On the other hand, depending on the mechanical properties of the steel (the

does not constitute a limit state of practical significance.

If fastener holes are located at some position along the mem
holes also must be checked in general for ten?‘ fra
However, AASHTO (2010) indicates appropriately th. er than typical fastener holes
shall be deducted from the gross area rather than
and perforations in built-up members. In ot se locations are designed for general
yielding over their net area.

The net area for the tension fracture che sed generally as:

A, = Aq — area lost due g@holes (5.1.1-3)
Therefore, for fully wel onNgltions out any plug or slot welds, A, = Aq. In cases with
plug or slot welds, the hole for the weld is handled in the same fashion as a

ements without any stagger, Eq. (3) becomes:

(5.1.1-4)

tive width deducted for a given hole, equal to the nominal diameter or width of
ole perpendicular to the tension direction.

T = thickness of the plate at the hole.
Although AISC (2010) adds an additional 1/16 in to the nominal diameter in its calculation of d,

to account in general for potential damage due to the fabrication of the hole, AASHTO (2010)
does not. In the AASHTO provisions, the influence of damage around the hole is included, for
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bolt holes punched full size, by the using Ry = 0.9. No net area reduction is taken for bolt holes
drilled full size or subpunched and reamed to size.

The summation in Eq. (4) is over all of the holes located across a potential transverse fracture

path through all of the components of the member cross-section. For staggered hole
arrangements, the net area is given by:

An=Ag—Z det + 2 (s7/4g) t (5.1.1-5)

where:
s = longitudinal center-to-center spacing (pitch) between two congyée
g = transverse center-to-center spacing (gage) between the hole g@
t = plate thickness along a given diagonal.
The second summation is over each diagonal in a potential ture through a chain

of holes across all the member components

For angles, channels, boxes, etc. where the dia%) path goes around a corner
from one to another plate, the gage g is the transv een the adjacent holes along
the mid-thickness of the plates. That is, the etermined by imagining that the plates

is taken as the one that gives the sma : corresponding fracture path can be either
a straight or a zigzag transverse line.

straight or zigzag transver; ough a set of holes. AASHTO (2010) indicates that
jon 1 ained by subtracting the force removed by each bolt
, 1.e., closer to the mid-length of the member, from

t+3(s?/4g)] toat (5.1.1-6)
nr
where:
Notar = total number of bolts in the connection
N, = remaining number of bolts after deducting the number ahead of the fracture path

McGuire (1968) provides extensive discussion of the “s?/4g” rule for estimating the effect of
zigzag paths on the tension fracture resistance. Although other approaches exist that have a
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stronger theoretical basis, the corresponding equations are more complex without any significant
improvement in accuracy.

As noted in the definitions just after Eq. (2), U accounts for the shear lag effects associated with
the end connection geometry. If a line of fastener holes is placed across the cross-section of a
member at some location within the member length, but no bolts or welds that transmit tension
force to the member are located in these holes, U = 1. Also, if the tension force is transmitted
directly to every component plate of a member cross-section by bolts or welds, U = 1. However,
if some of the components are unconnected at the member ends, the critical get section may not

be fully effective.

56



Table 1 gives the recommended values and equations for U in AASHTO (2010). AASTHO
(2010) Article 6.8.2.2 also states that for members composed of more than one plate element, the
calculated value of U should not be taken less than the ratio of the gross area of the connected
element(s) to the member gross area.

‘N
\
™
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Table 1 Recommended AASHTO (2010) values and equations for the shear lag factor U.

Case

Description of Element

Shear Lag Factor, U

Example

1

All tension members where the tension
load is transmitted directly to each of
cross-sectional selements by fasteners or
welds. {excent as in Cases 3, 4, 5 and 6)

U=10

All tensicn members, except plates and
HSS, where the tension load is trans-
mitied to some but not all of the cross-
sectional elements by fasteners or longitu-
dinal welds (Aiternatively, for W, M, S and
HP, Case 7 may be used.)

U=1_%

All tersicn members where the tension
load is transmitted by transverse welds
0 some but not all of the cross-sectional
elements.

t=1.0

and
» = area of the dir
connected ele

Piates where the tension load is transmit-
ted by longitudinal welds only.

| =2w.. . U=

Round HSS with a single concentric gus-
set plate ‘

Rectangular HSS

ge
nacted with 3 or
cre fasteners per
in direction of
x inading

bf = 2/3d...U=0.90
by <2/3d...U=0.85

mitted {0 be used)  yor line in the direc-

tion of loading

with web connected U=070 —
with 4 or more fas-
teners in the direc-
tion of loading
8 | SingleV¥ngles with 4 or moie fas- U=12080 —
{If U is calculated| teners per line in di-
per Case 2, the|rection of loading
larger value is per- with 2 or 3 fasteners U =060 —

| = length of connection, in. (mm); w = plate width, in. (mm}; ¥ = connection eccentricity, in. (mm); B = overali
width of rectangular HSS member, measurad 80 degrees to the plane of the connection, in. (mm}; H = pverall
height of rectangular HSS member, measured in the plane of the connection, in. {mm)
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These AASHTO provisions are adapted from similar provisions in AISC (2005) and are based on
the research by Munse and Chesson (1963), Easterling and Gonzales (1993) and Cheng and
Kulak (2000).

The AISC (2010) provisions for the shear lag reduction factor U include the above rule for the
limit on the minimum U value, and they address a few additional refinements not included in the
AISC (2005) and AASHTO (2010) provisions: (1) both single and double angles are included in
Case 8 in Table 1, (2) for the case of single angles with fewer than three fasteners per line in the
direction of the loading, Case 2 of Table 1 is recommended, and (3) the provjgions state
explicitly that the above limit on the minimum U value does not apply to clo$ ections, such as
HSS, nor to plates.

AASHTO (2010) specifies limits on the slenderness ratio L/r for rolled and
members to ensure adequate performance, where L is the member unsuppor

L/r is limited to 140, for main members not subject to stress revefS g lymited to 200, and
for bracing members, L/r is limited to 240. For tension members , d plates or tie

i .) are specified in
AASHTO (2010) Article 6.8.5 or are provided in the comme’
AISC (2005) and AASHTO (2002). ‘

5.1.2 Eyebars and Pin-Connected Plates

AASHTO (2010) Article 6.8.6 sp istance of eyebars is given by Eq.
(5.1.1-1) based on the area of the bo ades dTmensional requirements to ensure that
tension fracture will not occur. Figure d several additional dimensional

AISC (2010) that are believed to be intended,
e requirements in Figure 45 are based largely
on judgment and traditiongl ru that have evolved over many years. McGuire (1968)
points out that the behay in-connected plates differs somewhat from that of

ship to theory and experimental studies. The in-plane bending
deformati QRS 1 jns tend to be larger around the large pin hole compared to typical
local defort C

AASHTO (20
(5.1.1-1) and (’

Article 6.8.7 requires that pin-connected plates shall be designed using Eqgs.
1-2) with U = 1.0. Pin-connected plates are defined as members in which “pin-
plates” may be a@@@ched to a main plate by bolts or welds to increase the thickness near the pin.
AASHTO require® that the pin plates, if used, should be arranged to minimize the load
eccentricity, and that they must be attached to the main plate by sufficient welds or bolts to
transmit the pin bearing forces from the pin-plates to the main plate. The combination of the
main and pin plates must be checked for net section fracture at the pin hole. Also, the main plate
and pin plates must be checked for fracture across their individual net sections at the attachments
of the pin plates to the main plate, considering the force transfer between the plates. In addition,
AASHTO specifies a bearing resistance on the projected area of the pin, A, = ty dp or t, dp, of
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PoPn = 1.0 Ay Fy (5.1.2-1)
(AASHTO 6.8.7.2-1)

for each of the plates, where Fy is the specified minimum yield strength of the plate. Figure 46
summarizes additional requirements for a specific pin-connected plate with two equal size pin
plates bolted on each side of the main plate, a width of the pin plates equal to the width of the
main plate, W, and an end distance from the pin to the end of the pin plates equal to that of the
main member, a. These requirements, combined with the above tension yielding, tension fracture
and plate bearing checks, are intended to ensure acceptable behavior of the ags

edge of the pin-plates parallel to the direction of the load should be essentis
side of the pin to ensure good performance (hence the dimension labeled “

the localized effects of the pin are diminished at the critical net s e tension fracture

check of the main plate.

(11) Eyebars of a set shall be sym. about central plane of
member & as parallel as practical

(2) 0. (12) Eyebars shall be restrained against lateral movement on

(3) the pins and lateral distortion

(4) (13) Adjacent bars in the same panel shall be separated by

(5) at least 0.5 in; Ring shaped spacers shall be provided

(6) to fill gaps between adjacent eyebars on a pin

(7) dn — dp <1 (14) Intersecting diagonal bars that are not sufficiently spaced
)

(8) dn < 5t for steels with F, > 70 ksi to clear each other at all times shall be clamped together
at the intersection

9)a=b (AISC 2010)

(10) d, > 0.875 w (AISC 2010)

Figure 45 Dimensional requirements for eyebars specified to ensure good member
performance and development of the full yield capacity of an eyebar.
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AASHTO (2010) states that pin-connected plates should be avoided wherever possible. AISC
(2010) indicates that pin-connected plates are not recommended when there is sufficient
variation in live loading to cause wearing of the pins in the holes. McGuire (1968) points out that
pin-connected plates and eyebars were common in the nineteenth century, when they were more
economical and faster to erect than hand-riveted construction, and when Engineers were often
concerned with minimizing secondary stresses. Also, he indicates that given current knowledge
about secondary stresses, and when they are or are not important, there is less concern in modern
design about their minimization in all structures. Consequently, trusses having all or most joints

pinned have largely disappeared.
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(1) Thickness (t) need not be uniform, i.e., the main plate may be reinforce ity of the pin hole

(2) The pin plates, if used, shall be arranged to minimize the load eccentrici

(3) The pin plates, if used, shall be attached to the main plate by sufficient we smit the bearing
forces from the pin plates to the main plate

(4) Transverse net area requirement, to ensure against tensil

of the pin hole:
(o).
oo

e section through the centerline

(6) The pin hole shall be cente
(7) dn — dp < 1/321in

(8) dn < 5 (2t, + ty,) for stee
(

(

(

yw<38

)
)
)
9) 2t, + tm
0
1) Pin-con

Figure 46 Red
plate bearing, fC
pin plates = w, a and e of main plate) bolted on each side of the main plate.

5.1.3 Strands

AASHTO (2010) references three types of strand commonly used in bridge construction:

e Uncoated seven-wire stress-relieved strand for prestressed concrete (also used for stay

cables and for prestressing of steel members), ASTM A416,

ements in addition to the checks of tension yielding, tension fracture and
a specific pin connected plate with two equal size pin plates (w, a and e of
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e Zinc-coated parallel and helical wire structural strand, ASTM A586, and
e Zinc-coated steel structural wire rope, ASTM A603.

The latter two strand types are referred to generally as bridge strand. Bridge strand is not used for
major cable-stayed bridges or for prestressing steel, generally due to its lower stiffness.

However, structural strand and structural wire rope are used for hangers in arch and suspension
bridges.

core composed of either a strand or another rope. Both of these bridge stra ally
prestretched by the manufacturer to remove the permanent “constructional P

result, under working loads, the elongation of the strand is
calculated using the elastic moduli given in Table 2. These i cd relative to that of
the base material due to the helical geometry @lithe zinc coating. The wires tend to
straighten when subjected to tension. Also, the'st due to the helical geometry.
The breaking strengths of Grade 1 structural stran ith Class A zinc coating are
approximately 190 to 200 ksi based on the area. The breaking strength of Grade 2
structural strand with Class A zinc‘@@ati i
gross metallic area of the strand.

Table 2 Effective minimum ¢ f prestretched structural strand and structural

; ASTM 1998).
Minimum Modulus (ksi)
Class A Coating”
%5102 /16 24,000
2 °/ and larger 23,000
*s to 4 20,000

eight of zinc-coated outer wires, reduce minimum modulus by 1000 ksi

Seven-wire preSg@ilgssing strand has a straight core wire surrounded by a single layer of six
helically-placed r wires with a uniform pitch of not less than 12 and not more than 16 times
the nominal diameter of the strand. This pitch is longer than that of bridge strand such that the
elastic stiffness is essentially the same as that of the base material. AASHTO (2010) specifies E
= 28,500 ksi for seven-wire strand. ASTM 416 covers two types of seven-wire strand: low-
relaxation and stress-relieved (normal relaxation). AASHTO (2010) and ASTM 416 both state
that low-relaxation strand shall be regarded as the standard type, and that stress-relieved (normal-
relaxation) strand will not be furnished unless specifically ordered, or by arrangement between
the purchaser and supplier. Low-relaxation strand is produced by a combined process of low-
temperature heat treatment and high tension. Seven-wire strand is produced with nominal
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breaking or ultimate strengths F, of both 250 ksi and 270 ksi on the nominal area of the strand
(smaller than the area based on the nominal diameter). The minimum yield strength Fy of low
relaxation strand is 90 % of F,, measured at 1% extension under load. Both seven-wire and
bridge strand exhibit a gradual (non-sharp) yield response.

AASHTO (2010) does not specify a procedure for design of bridge strands or cables composed

of seven-wire strand. In past practice, bridge strands were checked against working loads using a
factor of safety of 3 to 4 with respect to their breaking strength (Podolny and Scalzi 1986, Wright
and Bunner 2006). Cables composed of seven-wire strand were commonly clag i

noncomposite steel construction. The design calculations for prestressed st
based largely on the same fundamental principles of equilibrium and strain

for consideration of the stability of the structural steel elements.
elastic shortening and long-term shrinkage and creep of the concite 2 eral different in
structural steel applications. The reader is referred to Troitsi@A(19 ed discussion of
the design of prestressed steel bridges.

L 4

5.2 Compression Members

5.2.1 Base Column Strength Equations

AASHTO (2010) and AISC (2010) e tht following single column-curve
equations to characterize the nominal a all types of steel and composite steel-
concrete members to concentric al compression:

(5.2.1-1a)

(A T0 6.9.4.1-1 & 6.9.5.1-1, AISC E3-1 & E3-2, E7-1 & E7-2 & 12-2)

(the numbe S 1ed by AISC (2005) is preceded by the word “AISC” followed
by the equat ) 0.877 P, for P./P, < 0.44, where P, is the elastic or effective

A =F A (5.2.1-2)
(AASHTO 6.9.4.1.2-1, AISC E3-4)

for flexural buckling about either the major or minor principal axis of the cross-section, and Py is
the effective cross-section or stub-column yield strength. That is, P, is the strength in the limit of
zero length (KL = 0). For a homogeneous prismatic steel member in which none of the cross-
section plates are classified as slender, P, is the full yield capacity given by:
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Po=Py=Fy A (5.2.1-3)

Equations (1) are expressed in various specific forms in the AASHTO and AISC Specifications.
The format shown here allows for a unified discussion of all the different column strength
calculations. For flexural buckling of a homogeneous prismatic member, the square root of Po/Pe
is the member normalized slenderness parameter

5:(&} 5 (5.2.1-4)
P, r J=\VE

( TO 6.9.5.1-3)

The other terms in Equations (1) through (4) are defined as follows:

Ay = gross area of the cross-section,
E = steel elastic modulus, taken equal to 29,000 ksi,
Fy = column minimum specified yield strength,
| = moment of inertia of the cross*ctio tha@rincipal axis normal to the plane of
buckling,

r = radius of gyration i ormal to the plane of bucking = (I/A,)",

K

[
o
a’
(@]
=t
Ll
2
o
—
[¢]
=

0q
-
=
&
(@]
-t
o
=

Equations (1a) and (1b) repres
respectively, as illustrated in

lastic and elastic column buckling resistances
fboth KL/r and (P, / P.)*”. Although these
s of the column effective slenderness ratio KL/r, the

define the resistance of es of steel and composite steel concrete columns, including cases
where Pe D tates other than flexural buckling. Furthermore, this form is
applied in

SSRC column
equivalent simply

e 2P, which is based on a mean initial out-of-straightness of 1/1470 of the
Bupported column length KL (Ziemian 2010) (see Figure 47).
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Figure 47 AASHTO (2010) and AISC (ZOQ co h curve in terms of both KL/r
and (P,/P.)’° versus the SSRC multiple colu nd 3P (Galambos 1998) and
the theoretical elastic buckling stren s with Fy = 50 ksi

n resistances for various column

types. This is evidenced by the differe C curves 1P, 2P and 3P in Figure 47.

Table 3 summarizes the recomme of these Yhultiple column curves for a range of steel
column cross-sections. One ca
average for lightweight sectio
bending for I-shapes. Th
buckling about the mi

gths and buckling about the major-axis of
r for heavy sections, low yield strengths, and

-shapes built-up from universal mill plate with F, <50
k51 for mag 1 Fy < 60 ksi for minor-axis buckling. Welded built-up shapes are

= versal mill plates; furthermore, the minimum yield strength is
onstruction. Therefore, the resistances of all practical columns in
0y column curves 1P and 2P, with 2P being the appropriate curve
¥lumn types. AASHTO (2010) applies a resistance factor of ¢, = 0.9 to Egs.
(5.2.1-1) for all\@kes of steel and composite steel-concrete columns, versus ¢ = 0.75 for concrete
columns. This is @nsistent with the use of the single column curve Eqgs. (5.2.1-1) and the use of
the same resistance factor for steel and composite steel-concrete columns in AISC (1999). AISC
(2005) and (2010) use a substantially smaller ¢ factor in their provisions for composite steel-
concrete columns along with a more accurate but more liberal calculation of the nominal
resistance P,. AISC (2005) and (2010) also have increased their ¢. factor slightly for steel
columns in recognition of the fact that column curve 3P is no longer applicable for new steel
construction.

usually 50 K
new constru
for most of thd
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Table 3 Recommended SSRC column curves for various types of steel cross-sections,
adapted from (Ziemian 2010).

Specified Minimum Yield Strength Fy
Cross-section type AXiS.Of (ksi)
Bending oy 37 to 50 to 60 to =90
- 49 59 89 —
Light and medium Major 2 1 1
Hot-rolled Weight sections Minor 2 1
W-shapes Heavy sections Major 3 2
(flange thickness > 2 in) | Minor 3 2
Welded Flame-cut plates M?J or 2 !
. Minor 2 1
Built-up . . Major 3 2
H-shapes Universal mill plates Minor 3 ) 5
Welded Flame-cut and Major 2 1 1
Box Shapes Universal mill plates Minor 2 1 1
ajor 2 2
Square and Cold-formed &nor 2 2 2
Rect. Tubes Hot-formed and cold- M 1 1 1
formed heat-treated Mino 1 1 1
Circular Cold-form 2 2 2 2
Tubes Hot-forme 1 1 1 1

for cases
full (i.e.,
sign values
into account
or perfectly u
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Table 4 Approximate values of effective length factor K for cases where the rotational
and/or translational end restraints are either nominally fixed or nonexistent (reprinted
with permission from AISC (2010)).

®)
)
Y

/

Buckled shape of column

|
|
is shown by dashed line 'L\

Theoretical K value

Recommended K value
when ideal conditions 0.65 0.80 1.2
are approximated

Rotation fixed, Tra

? Rotation free, Trand
End condition code *
@ otatiol Tia

In numerous other cases, K values ba n established practice. For instance,
Ziemian (2010) recommends the use 0 lane buckling of web members in bridge
trusses. This is because the positi i d that pfoduces the maximum force a given web

member typically causes less t 1
adjacent members are able to
(2010) allows a more lib
welded end connectio

onal restraint. In lieu of analysis, AASHTO
5 for any truss or frame member that has bolted or

uggested. One can observe from Table 4 that K =0.75
y rigid end rotational restraints. Thus, it would appear that this
relatively light web members compared to the truss chords.
for in-plane buckling of an interior panel of the compression

0L ch truss when a substantial knee brace is provided in the cross-frames at both
chords and at onl§@®ne chord respectively. When the cross-frames depend only on their flexural
stiffness and frame action to resist sidesway, K is greater than one for the web compression
members in the out-of-plane direction. Also, in these cases, the compression chord has a K
greater than one. The K factor is greater than one in general for the compression chord of pony
trusses and half-through trusses. The reader is referred to Ziemian (2010) and Johnston (1976)
for further discussion of appropriate K calculations in these cases.

In many situations where rotational restraint exists at the ends of a single bridge column or at the
ends of the columns in a bridge frame, e.g. pier columns integral with bridge girders, the
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traditional sidesway inhibited or sidesway uninhibited alignment charts (AASHTO 2010; AISC
2010; Kavanagh 1962) provide acceptable solutions for K. However, it is essential to recognize
that the alignment charts are based on idealized assumptions that in certain cases make their
application invalid. The commentary to Appendix 7 of AISC (2010) discusses these assumptions
in detail and provides a number of modifications to the alignment chart procedures that extend
their range of applicability. AASHTO (2010) Article C4.6.2.5 gives closed form equations that
provide a close fit to the base sidesway inhibited and sidesway uninhibited alignment charts. The
AISC (2010) modifications also must be applied in general in the use of these equations.

As noted previously in Section 2.5 of this module, AASHTO (2010) Article *
suggested effective length factors for in-plane buckling of arches. These values ¥
for a fixed arch with a small rise-to-span ratio to 1.16 for two- or three-hinggd’a
large rise-to-span ratio. These values are applied to one-half of the total arqiié arch rib.
For checking stability in the out-of-plane direction, the effective length KL

.2.2¢ provides
ge from 0.70

nonuniform compression and/or nonuniform cross-section p iC e length of an arch.
In trusses, frames and arches where a reﬁneda*a to assess the stability, it is
tic buckling load, Pe, than
back-calculate an equivalent pinned-ended this case, P in Egs. (5.2.1-1) is simply
the axial load in a given member ipi i of the structure or subassembly
considered in the buckling analysis. .2.1-1) is also essential for the

resistances of certain types of ction 5.2.3 of this module). Also, all of the above
K factor considerations pertai uckling. In several of the following sections,
KL is taken as an “equival ting for attributes other than just the flexural

AASHTO A 9% .3 and AISC (2010) Section E4 give the applicable resistance

) Tog@re susceptible to torsional or torsional-flexural buckling. These
Py-symmetric members such as double angles and tees, and built-up members
such as colum ith cruciform cross-sections and/or with relatively thin cross-section plate
elements. As not@@in the previous section, all the AISC (2010) and AASHTO (2010) column
resistance calculafons use Egs. (5.2.1-1); however, the calculation of P, is different than in the
previous section.

include some

5.2.3.1 Torsional buckling of doubly-symmetric cross-sections
Doubly-symmetric cross-section members that are relatively weak in torsion, e.g., cruciform

columns or columns that are braced but are not sufficiently restrained against twisting at a
number of their brace points, can fail by a buckling mode involving a pure twisting about the
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axis of the member (see Figure 48). In these cases, the elastic torsional buckling load may be
expressed as

2
pop | TEC | A (5.2.3-1)
(KL,) l+1

X y

(AASHTO 6.9.4.1.3-1, AISC E4-4)
where

Cw = warping constant for the cross-section, equal to zero for a cruc section,

KL, = effective length for torsional buckling,
G = steel shear modulus, taken as 11,200 ksi,
J = St. Venant torsional constant for the cross-sectio

Ix and Iy = moments of inertia about the major and min
respectively. ‘

locations where the m i gainst twisting. For the case of a cantilever column

fully restr. ing and warping at one end and with the other end free, KL, = 2L.
For a men{ig e twisti d warping are fully restrained at each of its ends, KL, = 0.5L.
(Note that unification of the different symbols used for these terms in
AISC (2010 010); in this module, the subscripts X, Y, or Z are placed at the end

tive length symbol, KL, to indicate the effective lengths for flexural buckling
M) or minor (Y) principal axes of the section, or torsional buckling about the
longitudinal z ax{@of the member.)

Doubly-symmetric compression members can fail either by flexural buckling about one of the
cross-section principal axes, or by torsional buckling. However, torsional buckling rarely
governs except for members such as cruciforms. Torsional buckling never needs to be considered
for doubly-symmetric I-section members that satisfy the AASHTO Article 6.10.2 proportion
limits, unless KL; is significantly larger than the weak-axis flexural buckling effective length,
KLy. Generally, Py,/Pny (the ratio of the nominal column strengths using Eq. (1) with KLy rather
than Eq. (3) for calculation of P¢) is smaller for smaller D/by, larger b¢/t, larger D/t and larger
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Po/Aq. Based on D/bs = 1, b/ts = 24, D/t, =192 (corresponding to ti/t, = 8) and Po/Ag = 100 ksi as
the worst-case combined cross-section parameters, the smallest value of Py,/Ppy is still only 0.974
at KL,/ry =37, assuming KL, = KLy. That is, torsional buckling leads to a maximum reduction of
only 2.6 percent for all practical doubly-symmetric I-shapes. The consideration of end-restraint
effects (if they are accounted for at all) in the calculation of the column buckling loads is not
anywhere near this precise. Also, Pn/Pny increases rapidly with increases in D/b.

5.2.3.2 Flexural or torsional-flexural buckling of singly-symmetric cross-sections

Compression members with singly-symmetric cross-sections, where the y-a taken as the
axis of symmetry, either can fail by flexural buckling about the X-axis or by tor
with flexure about the y-axis. The elastic torsional-flexural buckling load f

members is given by the expression

Py +F. MOICH
P=PFux= > 1- l_y—2
2H (Py+R)

4

(5.2.3-2)

A O .1.3-2, AISC E4-5)

where
_TEl,  nE A
UKL (KL, /)

(5.2.3-3)
(AASHTO 6.9.4.1.3-4, AISC E4-8)

5 :[n EC, +GJ} (5.2.3-4)

ez (KLZ )2

(AASHTO 6.9.4.1.3-5, AISC E4-9)
(5.2.3-5)

(AASHTO 6.9.4.1.3-3, AISC E4-10)

ve len or flexural buckling about the y-axis (the axis of symmetry of the

0ss-section warping constant, equal to zero for cross-sections where the
ymponent plates are all joined at a single common point, e.g., tee sections,

Yo = distance along the y-axis between the shear center and the cross-section centroid,
§ = polarradius of gyration about the shear center
()
I, +1
=y, + A - (5.2.3-6)

(AASHTO 6.9.4.1.3-6, AISC E4-11)
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The governing column strength, Py, is obtained by substituting the smaller value of Perg (which
is always smaller than Pey) or Pe (flexural buckling about the X-axis) into Egs. (5.2.1-1).

As noted above, Perris generally smaller than Pey. However, the flanges of singly-symmetric I-
sections often have equal widths (only the flange thicknesses differ). Therefore, for these types
of member, Y, tends to be relatively small and the influence of the smaller Perg on P, is always
less than 4 % as long as

KL, <KLy and 0.67 <tultp < 1.5

largest reduction in Py, due to the smaller Pere occurs for b/t = 24, D/bs= 6
100 ksi, KLy/ry = 114 and KL, = KLy (smaller D/ty, gives a larger reduction
causes t/ty < 1). Therefore, if the above limit is satisfied, torsional-flexural

small differences in the flange widths. This is because the la
varies with by, and hence only minor changesgg the
shift in the cross-section shear center relative t0 t

e widths result in a significant
hift in the cross-section shear

center is similar to the shift in the centroid due to i nge thickness; however, the
shift in the shear center is significantly diff: shift in the centroid due to changes in
the flange width. Therefore, there simple way to exclude the need to

consider torsional-flexural buckling ers with unequal flange widths.

is of symmetry, the failure mode under axial
ed with flexure about both the X and y axes. In this
g cubic equation

—P:(Pe—Pey)[X_—‘J] —P:(Pe—Pex)(%J =0 (5239

rO (o}

(AASHTO 6.9.4.1.3-7, AISC E4-6)
where

(5.2.3-10)

(AASHTO 6.9.4.1.3-8, AISC E4-7)
Pey 1s as defined in Eq. (3),

2
P - V EC)V; +GJJL (5.2.3-11)
K,L

z

(AASHTO 6.9.4.1.3-5, AISC E4-9)
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=X 4y, + (5.2.3-12)

(AASHTO 6.9.4.1.3-9, AISC E4-11)
And

Xo, Yo = X and Y coordinates of the shear center with respect to the cross-section centroid.

As noted previously, once the elastic buckling load, Pe, is calculated, it is substituted into Egs.
(5.2.1-1) to determine the nominal elastic or inelastic column buckling resis

5.2.3.4 Special handling of double-angles and tees with non-slender ele
(2010)

cases, gives a slightly more liberal estimate of the capacity. For {
calculated as

baltypes, Pe; 1s

_GJ

P, == (5.2.3-13)
(AISC E4-3)
which is simply Eq. (4) with Cy, = is ated using Eqgs. (5.2.1-1) based on the

flexural buckling mode about the
flexural buckling is determined by s
gives:

inal column strength for torsional-
yrectly into Eq. (2) in place of Pgy. This

p [P tF (5.2.3-14)
nTF — 27H il
(AISC E4-2)
The governfii » Roth¥s then taken as the smaller value of Py (flexural buckling about
the x-axis) a by twisting and combined bending about the y-axis). AISC (2010)

buckling resistd

The reader should’note that all of the previous equations are based on a “mapping” of the
theoretical elastic buckling resistance, Pe, to the nominal column buckling resistance, Py, using
Egs. (5.2.1-1). Equation (14) deviates from this pattern by assuming that the torsional buckling
contribution to the resistance, Py, 1s always elastic for these member types (i.e., Pn; = Pe; in Eq.
(14)). Interestingly, Eq. (14) does not necessarily give a larger calculated resistance Pyre than the
above direct “mapping” of Perr to Py, using Eqs. (5.2.1-1). This is due to subtle aspects of the
algebra associated with the different equations and the conversion of the elastic buckling load to
the inelastic column resistance.
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AASHTO (2010) does not specify Egs. (13) and (14) for the above member types. Rather, it uses
the general mapping of the elastic buckling resistance to the nominal buckling resistance given
by Egs. (5.2.1-1) for all types of steel and composite steel concrete members. Given the limited
test data on which Eqgs. (13) and (14) are based, it was felt that the use of this separate set of
equations was not justified.

The commentary to Chapter E of AISC (2005) (Table C-E4.2) indicates that torsional-flexural
buckling can be neglected in tee-section members having non-slender cross-section elements
when by/d > 0.5 and ti/t,, > 1.10 for rolled tees and 1.25 for built-up tees. Integestingly, these

many tee section members at intermediate to long unbraced lengt
commentary no longer includes this table in view of the fact that
calculated for tee-section members. This is consistent with the fi c qual-width flange
I-section members discussed previously in Section 5.2.3.2 i

5.2.3.5 Special handling of single angle cor‘essi
AISC (2010)

Single angle compression members are use as cross-frame and lateral-bracing

HTO (2010) provide highly
ingle%angle web members subjected to axial
compression. These provisions define a i derness (KL/r) for use with Egs. (5.2.1-

2. same leg at each of its ends,

3. welded or use a minimum of two bolts,

4 Pjected to any transverse loads, and

5 pveb members in trusses, all adjacent web members are attached to the same

For these types of single-angle members, the equivalent KL/r accounts for the effects of end
eccentricities, and the member may be proportioned using Egs. (5.2.1-1) and (5.2.1-2) as if it
were a concentrically compressed strut subjected solely to flexural buckling. The equivalent KL/r
expressions also presume significant end rotational restraint about the Y-axis shown in Figure 49,
where the Y-axis is perpendicular to the connected leg and to the gusset or the plate component
of another member to which the angle is connected. This leads to the angle member tending to
buckle primarily about the X-axis. As such, r is taken as the rx for the angle for bending about an
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axis parallel to the connected leg. It is not taken as the minimum r = r; about the angle minor
principal axis. In addition, it should be noted that a capital X is used here because, for an unequal
leg angle, the X axis can be either the X or y axis of the angle shown in property tables, depending
on which of the legs is the connected one.

Y /— Gusset Plate
I |

! p, |

X -~ X
X-axis is parallel to
plane of gusset

)y

Figure 49 Single-angle cross-section and definition of geomg dized by the AISC
(2010) and AASHTO (2010) equivalent KL/g& i

P
/////////

A

Y

est end corV@iilions associated with the recommended equivalent KL/r equations

for single angle struts.

AISC (2010W@ovig v s of equations for the equivalent KL/r, one based on the assumption
nal restralnt about the X and Y axes in Figure 49 and the other based on tests
having close tofle knife-edge end conditions shown in Figure 50 (but with less than rigid Y-axis
restraint and cori@liering some minor X-axis restraint). The more optimistic equations, which
assume substantiX- and Y-axis end restraint, are essentially equivalent to the ASCE 10-97
(ASCE 2000) equations for equal-leg angles in latticed transmission towers. These equations are
classified by AISC (2010) as being applicable for “web members of box or space trusses.” The
less optimistic equations are classified by AISC (2010) as being applicable for “web members of
planar trusses.” Based on the data presented by Lutz (2006), these equations are considered
applicable for all types of single angles commonly employed in bridge cross-frames and lateral
bracing systems. These equations are as follows.
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For equal-leg angles, and unequal-leg angles connected through the longer leg,

KL 7240755 when 0<-E <80 (5.2.3-15a)
r r, r,
(AASHTO 6.9.4.4-1, AISC E5-1)
and
KL 3541255 when L5380 (5.2.3-15b)
r r ry
(AASHTO 6@ .4-2, AISC ES-2)
where L is the length of the member between the end-connection work pointg ended that
the design should not be used in any case where the maximum value of KL ) is
greater than 200.

For unequal-leg angles with the ratio of the leg widths less than
shorter leg,

2
&=72+0.75£+4{[%j —1} when OSLSSO 5.2.3-16a
r

I I

S

SHTO 6.9.4.4-3, AISC E5-1)
and

5.2.3-16b

N——

r)( S

&232+1.25£+4[(&
r b

(AASHTO 6.9.4.4-4, AISC E5-2)

the lon
otbeu

where b, and bs are the widths
is intended that the desig

orter legs respectively, and as in Eq. (15b), it
if the equivalent KL/r is greater than 200 in Eq.

geometric
longer leg, I wpaller r value about the angle’s geometric axes, typically listed as

quations (16) account for the fact that the strength is enhanced by

buckling axis to\@& closer to the z-axis of the angle (Lutz 2006). The limit of b /bs < 1.7 is based
on the limits of ti§Pavailable experimental tests.

Lutz (2006) obtains a mean professional bias factor for the above equations of Pp/Prax = 0.998
with a coefficient of variation of 0.109 relative to single-angle tests approximating the knife-edge
end conditions shown in Figure 50. In addition, Lutz (2006) shows a representative equal-leg
angle example in which the above equations give results close to those obtained using the more
generally applicable approach of treating the single-angle as a beam-column under specific
conditions. The more general procedure requires the use of Eq. (9), the calculation of moments
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based on assumed end eccentricities, the calculation of single-angle moment capacities, and
beam-column interaction checks. The two approaches are roughly equivalent when:

1. The end eccentricity ex (normal to the X-axis) is taken as Y + /2,

2. The end eccentricity ey is taken as the value necessary to theoretically achieve uniform
stress along the connected leg,

3. The effective length for buckling about the X-axis (parallel to the co
with Kx = 1.0, and

ected leg) is taken

4. The effective length for buckling about the Y-axis is calculated as K tz (1992)
gives a procedure for calculating this effective length factor).

Eurocode 3 (CEN 1993) and in the British Standard BS5950 (194 g procedure
gives results that are very close to the AISC space truss equation , but is more
optimistic than the AISC space-truss provisions for smaller . Thed#S5950 equations

fall below the European and British prediction
that is 21 and 44 percent below these predictions

strength QFy, where Q is the AISC ( accOunting for local buckling effects (see
Section 5.2.4 of this module). The AIS tons are believed to provide adequate

quations, listed at the beginning of this section, is

y Woolcock and Kitipornchai (1986). These

angle web members in trusses have less theoretical capacity when
opposite sides as opposed to connecting the members all on the
s. This is apparently due to the shear transfer within a Warren-
@@Gonals in alternating tension and compression, and the additive

g of compression in one web diagonal with tension in the other adjacent web

same side O
type truss s
eccentricity e
diagonal.

With the exceptiofi of “X” bracing in cross-frames or lateral bracing systems, single-angle
members typically are all connected on the same side at their end connections (NSBA 2006).
Nevertheless, it is common in some bridge applications to have both diagonals in compression at
a joint in a Warren truss. This can occur for example when a Warren truss is used for the top
lateral bracing system in a box girder. In this case, the compression in the two adjacent diagonals
would cause an additive detrimental eccentric loading effect if both members are connected on
the same side. That is, depending on the specific loads being transferred at the bracing
connections, connecting the angles on the same side could be detrimental or beneficial.
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Upon looking at the fifth restriction more broadly, considering the potential restraints from
typical single-angle connection details in steel bridge cross-frames and lateral-bracing systems, it
is suggested that the approximate knife-edge boundary conditions about the X-axis, upon which
Egs. (15) and (16) are based, are an acceptable approximation for calculation of the single-angle
capacities for any configuration of cross-frames or flange level lateral bracing in steel bridge
applications. The approximate knife-edge boundary conditions are judged typically to be more
detrimental to the angle member strengths than the physical end conditions for these members.

The special case of “X” bracing systems merits some further discussion. In cgses where one
diagonal is in tension, and if this member has a force of not less than 20 % oIN@lg force in the

considered as a braced point for out-of-plane buckling. It would appear tha
might be applied with Egs. (15) and (16). However, this approach needs va
single bolt is used to connect the angles at the cross-over point, the restrain

El-Tayem and Goel (1986) have studied the X-bracing probl
tension member are equally loaded and the c?ecti
both theoretical and experimental investigatiorfs.
cross-bracing systems made of equal-leg single-a
effect of end eccentricity, using a KL in Eq, . al to 85 % of the half-length of the
compression diagonal and using t i i taken about the minor principal axis
of the angle cross-section.

d. Their research has involved
t the compression diagonal of

5.2.4 Columns with Slender S

5.2.4.1 Width-to-thicknegs lifgits to pre
compression

t local buckling under uniform axial

Slender crg 1 s are plates that are unable to develop their full nominal yield

) ssion because of local buckling. The solid curve in Figure 51
AISC (2010) local buckling strength. For an average applied
flominal local buckling resistance is quantified by the classical

2
7’ EK, _ 0.90EI§C (5.2.4-1)
2(0-v*)(b/t)”  (b/t)

(AASHTO 6.9.4.2.2-8,6.9.4.2.2-6,6.9.4.2.2-4 & 6.9.4.2.2-2, AISC E7-9, E7-15, E7-12 & E7-6)

Where

x
o
Il

plate local buckling coefficient

= Poisson’s ratio for steel (0.3)

<
|
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b/t = relevant width-to-thickness ratio.

! A\
i . St Representative postbuckling
0.8 Inelastic _—" ¥ J . resistance (stiffened plates)
buckling AN
0.67 xS~ r/
. BN\ -
0.6 N -
Foel Fy \\
- \\
0.4 o
~
Elastic N
0.2 - buckling
0
0

conditions. Rather, a k. value is im
explicit and implicit K values are disc
the underlying assumed behavior,

For plates that are stocky eno
buckling resistance is de
points A and B. The wj
setting Eq. (1) equal to

apMhied stress levels larger than 2F,/3, the local
ne inelastic buckling curve between the two anchor

b/t

For a perfectly plate with zero residual stress, Fe, > Fy for a width-to-thickness ratio of

b/t<0.95 (5.2.4-3)

However, due to residual stresses and geometric imperfections, a smaller value of b/t is required

nominally to develop an average applied stress of P/A; = F,, = Fy. The AISC (2010) and
AASHTO (2010) provisions assume that a plate can develop its nominal full yield strength in
uniform axial compression when
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b/t SV =0.64 EFk° J (5.2.4-4)
y

(AASHTO 6.9.4.2-1 & 6.9.4.2-2, AISC Table B4.1)

which corresponds to Fe, > 2.20 Fy. That is, the abscissa of anchor point A is given by Eq. (4)

and the ordinate is F,, = Fy. Equation (4) is the same form as Eq. (6.9.4.2-2) in the AASHTO
Specification, which applies to flanges of built-up I-sections. AASHTO uses this general form

for these element types, but defines another parameter k = 0.64 JE in its Eq

address all other cross-section elements. Equation (4) also is identical to the fOf
maximum b/t at which the AISI (2001) Specification for Design of Cold-Forg

AISI (2001) Egs. (B2.1-1) & (B2.1-4)).

The AASHTO (2010) k; values corresponding to Anchor Point A
Table 6 along with the definitions of b. These values and definiti
(2010) Article 6.9.4.2. AASHTO (2010) recently has adopt
to plates supported along one longitudinal edge as “unstiffe ate
longitudinal edges as “stiffened.” The same values and defint cumized in AISC (2010)
with the exception that AISC (2010) uses: 3

on AASHTO
ology of referring

tes (Case 8 in Table B4.1a of
(Case 6 in Table B4.1a), compared to
5.4 for webs (Case 6 of Table 6).

(1) ke = 5.4 for rectangular box sections with uneq
AISC (2010)) and k; = 4.8 for boxegof unj i
ke = 4.8 for box section flanges (Ca

le B4.1a and k; = 4.8 for other cover
4.8 for non-perforated cover plates (Case 5 of
8 of Table 6).

(2) ke = 5.4 for flange cover plate
plates (Case 8 of Table B4.1a)
Table 6) and 8.4 for perforate

sections (Case 6 of AISC Table B4.1a), but with b
defined as the clear dis ¢ adjacent plates or the distance between the edge
support inside ¢ radius on each side, compared to k. = 7.1 (Case 8 of Table 6) but
with b de the face).
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Table 5 AASHTO (2010) values for the plate local buckling coefficient, k., plates supported
along one edge (defined as “unstiffened” elements).

Case Plate Description K. b
4/{D/t, <
1 | Flanges of built-up I-sections 0.76 ¢ Half flange width
>0.35
Half-fl idth of rolled I-secti
Flanges of rolled I-, tee and * ad ¢ ange width of rolled I-sections
hannel sections; and fees
;lates rojectin ’from rolled I- * Full flange width of
2 P ) ) & 0.76 e Distance between fig and first
sections; li fbolts or we
Outstanding legs of pairs of tne ot bo W
angles in continuous contact °F u}l width of an ot
pairs of angles in ¢
3 | Stems of rolled tee sections 1.38 e Full depg
ling leg for single
4 | All other projecting elements 0.50 >s with separators
for other cases
Table 6 AASHTO (2010) values for the plate fficient, k., plates supported
along two edges (defined a
Case Plate Description b
Box section flanges: flanges, clear distance between the
-perf . .
3 | Non-perforated cover er plates, distance between lines of welds or
plates
Webs and othe ar distance betwe.en flanges minus fillet radius for
6 clements ebs of rolled I-sections
e Clear distance between edge supports for all other case
7 e Clear distance between edge supports
8 e Width of face

The use of k. 4 for box sections with unequal thickness plates in AISC (2010) appears to be
an oversight. Th{@lwvalue is considered acceptable for checking typical thinner web plates in
closed steel box s€Ctions. However, a smaller k. value is appropriate for checking the thicker
flange plates. The flange plates provide rotational restraint to the edges of the web plates, but
conversely, the web plates cannot possibly also restrain the edges of the flange plates. The
smaller AISC values of k. = 5.4 or 4.8 for perforated cover plates is a conservative
approximation. The larger value of 8.4 for perforated cover plates in AASHTO (2010) is
consistent with AISC (1999) and is based on the use of the smallest net area at the holes rather
than the gross area Ag in calculating the column resistance. The smaller value of k. = 4.8 for the

walls of rectangular tube sections is consistent with the AASHTO (2010) Case 5 provisions in
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Table 6 for box section flanges. The larger value of k. = 7.1 for tubes in Case 8 is an
approximation tied to the simpler definition of b as the full width of the face of the tube.

It is informative to compare the nominal K; values in Table 5 against the theoretical minimum K
values for elastic plate buckling shown in Figure 52. One can observe from the first case in Table
5 that the nominal k. is 0.35 for flanges of built-up I-sections with a web width-to-thickness D/t,,
> 131. This value is smaller than the theoretical k; of 0.425 for s.s. (simply-supported) - free
longitudinal edge conditions (case E of Figure 52), indicating that the flanges are assumed to be
destabilized by the local buckling of the web for these geometries. For D/t,, 928, a k. value of
0.76 is assumed for the flanges, which is intermediate between the theoretica -free and fixed-
free values of 0.425 and 1.28. These limits and the transition equation K, = 4/ I3 are based on

the studies by Johnson (1985). The specific AASHTO-AISC equation for kéli€ a sinfgliification of
Johnson’s recommendations first introduced in AISC (1989). The value of e
flanges of rolled I-, tee- and channel-section members is based on traditi

‘N
\
™
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L fixed fixed

1 A B
14 + ! fixed S.S.
| fixed

D

free

B

—-—~ Loaded edges fixed

12 -

a
S.S.

E
free

it

10 [

_ Loaded edges
simply supported

Local buckling coefficient k.
(o]
T

support
along
longitudinal
edges

Figure 52 Theor flastic plate buckling (adapted from Salmon and

Johnson (1996)).

| ke va

AISC (201 C ates stgported along only one edge as unstiffened plates. For plates

SM@nal edges, defined as stiffened plates in AISC (2010), AASHTO
m1na1 kc value of 4.8 for box-section flanges and nonperforated cover plates,
er non-perforated plates. These values lie between the theoretical k; of 4.0 for
fixed-fixed edges.

and 5.4 for all §
$.8.-8.S. and 6.9

One other important slenderness limit addressed in AASHTO (2010) Article 6.9.4.2 and AISC
(2010) Table B4.1 is the limit for the axial strength of circular tubes not to be influenced by local
buckling. This limit is

D E
Zo11= (5.2.4-5)
t F

y

(AASHTO 6.9.4.2.1-5, AISC Table 4.1a)
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where D is the outside diameter of the tube and t is the tube thickness. This limit was first used
in the 1978 AISC Allowable Stress Design Specification. Analytical buckling solutions
significantly overestimate the physical local buckling resistance of longitudinally compressed
cylinders due to imperfections in the shape and eccentricities of the load. Therefore, Eq. (5) is
based on test evidence from Sherman (1976) that local buckling will not occur for applied axial
stress up to Fy.

5.2.4.2 Compressive resistance of slender-element section members

sections with d/bs > 1.7) have slender webs under uniform axial compressio s of
a large number of WT sections and one or both legs of many of th der by
the above definitions, i.c., b/t > A, from Eq. (4). Welded I- and bg

have webs that are slender under uniform axial compression. Th@ling uld note, with the

exception of the provisions for filled composite-section me
components are classified either as slender or non-slender u

0), cross-section

AASHTO (2010) and AISC (2010). There ar: quirements for uniform axial
compression. Compactness requirements apply o xural resistances, where the
flange and web elements need to withstand larger i r local buckling not to

influence the nominal strength. AISC (201 clarified this consideration by splitting
its Table B4.1 into two separate T . ifferent approach to classification of
filled composite-section members in ddreSsed subsequently in Section 5.2.7 of
this module.

When a steel cross-section co nts, the AASHTO and AISC column
resistances are calculated gs. (5.2.1-1) by using a reduced equivalent yield
capacity P, = QPy, wher o0 as the cross-section form factor. The AISC

to determine the strength of columns with slender
ISC (1969), which emulated the 1968 AISI Specification (AISI
1968). Pr1 ) the more conservative practice of disregarding any portion of

eduction factor Q, the AASHTO and AISC Specifications handle unstiffened
s-section elements differently. Unstiffened elements are assumed to attain their
limit of resistanC@ihen they reach their nominal local buckling strength defined by the solid
curve in Figure 5F. Conversely, the resistance of stiffened elements is based on their inherent
postbuckling strength illustrated by the dashed curve in this figure. The postbuckling strength is
quantified using a plate effective width concept. The 1986 AISI Specification (AISI 1986)
adopted an effective width approach for both stiffened and unstiffened cross-section elements.
However, subsequent editions of the AISC Specifications have not adopted the updated AISI
approach. This is partly because the advantages of postbuckling strength are insignificant for all
but highly slender elements. Such dimensions are common in cold-formed columns, but are
rarely encountered in unstiffened elements of fabricated steel structures. Furthermore, the AISI
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effective width approach generally uses smaller k; values than those listed in Table 5 and Table
6. This results in more conservative predictions in a number of cases for elements with b/t values
near the AISC A, limits. This is particularly true for the local buckling resistance of tee stems,
where the AISC provisions count on substantial restraint from the flange in determining F,, (see
Case 3 of Table 5) and the elastic torsional buckling associated with Eq.(5.2.3-13) is essentially
the same as the elastic local buckling associated with Eq. (1) (McGuire 1968). Tee sections do
not appear to have been addressed specifically in the development of the AISI provisions. Also,
the internal residual stresses are different in cold-formed versus hot-rolled and fabricated steel
members.

5.2.4.3 Strength reduction Qs for members composed entirely of unstiffeneg

For columns composed entirely of unstiffened elements, AASHTO (20
calculate the column equivalent yield capacity P, = QPy by determining Q &

(2010)

Q = Qs = (Fn)min/ Fy (5.2.4-6)

SC E7-4 to E7-15)

where (Fn )min 1s the smallest local buckling stress from all o of the cross-section.
That is, the stub-column or cross-section equighent is taken as the average applied
axial stress at which the most critical unstiffened its local buckling capacity
illustrated in Figure 51 (elastic or inelastic, depen , d Fy). Interestingly, the

¢ different for anchor point B
compared to the values used for an
shown in Table 5 whereas the values
curve shown in Figure 51 are k¢ = 76 for sifigle angle legs and for tee stems
respectively. The fact that thes
edge conditions is due to the ¢
for) local plate buckling
(5.2.3-2) through (5.2.

torsional-flexural buckling (governed by Egs.
er types.

concept for postbuckled stiffened plates was first proposed by von
2). Winter (1947) subsequently modified von Karman’s equation to provide a
transition betwJ@l the strength of very slender elements and stockier elements shown to be fully
effective in tests.\@dditional testing (Winter 1970) led to further modification to the following
general form utilized in the AISI (1968) Specification, written in a strength format:

Karman et al.
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b, =190t S [1-9415 B\ forBoi09 |E (5.2.4-7)
f1 o 7 " f

However, for the specific case of flanges of square and rectangular sections of uniform thickness,
AISI (1968) used the equation

b, =190t |5 [1-9378 B\ forRoi3g B (5.2.4-8)
f1 o T " f

postbuckling strength. These equations give the effective width of the re ess blocks
be over which the maximum edge stress f can be assumed to act uniforml Qe same
total force as the actual stresses acting over the full width of the .

due to the postbuckling deformations. Generally, b, is larger for
f. That is, the buckles are less developed and a larger portiog of i is@lfective for smaller
f. As the axial load is increased and f increases, the plat ing d@formations become
larger, the average stresses within the middle of the plate relative to the edge
stress, and be becomes smaller. The largestq@tents buckling resistance is obtained

nominally when the edge stress f reaches Fy. \

Supported
edge

=
(X

=t
o

Supported

Supported
edge

Figure 53 Representative physical average (through thickness) stress distribution across
the width of a postbuckled stiffened plate (i.e., both edges supported transversely) versus
idealized equivalent stress distribution acting on the plate effective width b.
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AISC (1969) adopted Eq. (8) (in an allowable stress format) for flanges of square and rectangular
sections of uniform thickness. Furthermore, it specified

b, =190t |5 1-9332 [E 1y torBoiag [ (5.2.4-9)
Tl o \T " i

for other stiffened elements, which is a further liberalization of Egs. (7) and (8). This was an
enhancement intended to obtain a better fit to test results for cases “where appreciable torsional
restraint is provided, as for example the web of an I-shaped column” (AISC4BE9). These
equations are based implicitly on corresponding K. values similar to those listclgm Table 5 and
Table 6, and E = 29,500 ksi.

The AASHTO (2010) Specification uses the following modified forms of K

b, =192t |5 [1-938 [E <y torBsia0 |E
T b t f

for flanges of square and rectangular box seci@ps orgmiform Mickness, all the plate components
of square and rectangular hollow structural sectiq nperforated cover plates, and

b, =192t |5 12934 |E
T b/t\f

for all other uniformly compre ed elements. The modifications in these
equations reflect the fact that ksi in Egs. (7) through (9), consistent with
design practice for cold- s E =29,000 ksi is used with Egs. (10) and (11).

(5.2.4-10)

6.9. -10, AISC E7-18)

(5.2.4-11)

(AASHTO 6.9.4.2.2-11, AISC E7-17)

For calcula Ll ngth, the stiffened element edge stress f in the above equations
is determine

f=P, (5.2.4-12)

where

Ace = effective area of the stiffened elements plus the gross area of unstiffened elements
=QaAg=Ay—Z (b—be)t (5.2.4-13)

Pn = nominal axial capacity of the column, obtained from Eqs. (5.2.1-1) using
= QsFyQaAg = QsQa FyAg = Q FyAq (5.2.4-14)
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For a stub-column (KL = 0), f = P / Aett = Po / Actt = QsFy Qalg / QaAg = QsFy = (Fn,)min, the local
buckling strength of the most critical unstiffened cross-section element. If none of the
unstiffened cross-section elements are slender, or if the cross-section does not contain any
unstiffened elements, f = F, for this case. However, for a finite length column, P, is generally
smaller than P, and thus f is generally smaller than (F,,)min. In this case, a rigorous application of
the above equations requires iteration since f is a function of P, via Eq. (12), the stiffened
element effective width be given by Eq. (10) or (11) is a nonlinear function of f, Q, depends on
be, Po depends on Q, via Eq. (14), and P, depends on P, via Egs. (5.2.1-1). After substituting the
applicable equations into Eq. (12) and simplifying, one obtains

P

f=QF, [0.6585J for P, > 0.44P, (5.2.4-15)

As noted above, the effective width be is generally smaller for largg
slender elements other than the plate components of square and g of uniform
thickness, AISC (2010) sets Qs and Q, equal to 1.0 in Eq. (15) td
iterative. This gives simply

f=Fnq-1)=Pno-1/Aq (5.2.4-1‘

This results in a larger (more liberal ) "¢ han determined iteratively using Eq.
(15) for f, and thus a larger (more libera i column resistance Pp.

uires an iterative solution. However, AISC suggests
a user note. The use of Eq. (16) for slender-element

calculatio i ess square box section with b/t = 150 and Fy = 50 ksi, where Qs
=1 (since t i d elements). The factor Q = Q is taken equal to be/b to simplify
this figure, neglecting the difference between b and the out-to-out
. Also, the AISC (2010) results are compared to the AISI (2001) unified
uations in the figure, but using k. = 4.8 rather than the AISI (2001) k; value of
4.0. For KL/r <\ and 64 respectively, the iterative and non-iterative AISC calculations give a
smaller column #sistance P, than the AISI-based solution. However, for larger slenderness
values, the AISI-based solution gives smaller column strengths. The AISC solution using f = Fy
matches more closely with the AISI-based solution.

effective width
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0.1 4| == AISC (2010) Q method, iterative solution
0.05 4 = AISC (2010) Q method with f = F,
AISI (2001) unified b, method w/ k. = 4.8
0 ‘ ; ;
0 50 100 150

KL/r

e AlSI
D K. = 4.8 rather

(2001) unified effective width approach, using the larger A
i D and F, = 50 ksi.

than the AISI k. = 4.0, uniform-thickness square box se

ic -
column buckling at KL/r = 211

ethod, iterative solution
ethod with f = Fy

100 150 200

KL/r
Figure (= Qa = be/b) as a function of the column slenderness for the
-thlckness square box section with b/t = 150 and F, = 50 ksi.

The reason for tR@smaller AISI-based resistances for larger KL/r can be explained with the help
of Figure 55. TheWMAISC Q factor approach uses P, = QsFy QaAq (= Fy QaAq for a box section) as
an equivalent cross-section yield capacity, and then assumes that the value of P, /P, is given by
Egs. (5.2.1-1) for all values of the column slenderness (Po/P.)", or KL/r given by Eq. (5.2.1-4).
For Pe < 0.44 P,, the elastic buckling equation (Eq. (5.2.1-1b)) governs, and thus the column
resistance is independent of Po,. However, Figure 55 shows that Q from both the iterative and the
non-iterative AISC procedures is still significantly less than one for the example box column at
the idealized transition from inelastic to elastic column buckling. That is, local buckling should
still be having a significant effect on the column resistance at the inelastic-to-elastic buckling
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transition point in the example, but the Q factor method does not recognize this fact. The AISI-
based solution resolves this anomaly by calculating the column resistance as

Pn = Fn Aert (5.2.4-17)
(AISI C4-1)

where F, is the average compressive axial stress Py/Aq obtained from Eqgs. (5.2.1-1), without
accounting for local buckling effects, and Ae is the total effective area of the stiffened and
unstiffened cross-section elements. (AISI (2001) equation numbers are preceded by the word
“AISI” followed by the equation number.) The AISI-based Aef is significant s than Ag at the
larger KL/r values in Figure 54 and Figure 55.

The differences between the AISC (2010) and the AISI-based solutions ard
illustrated by Figure 54 for typical I-sections with slender webs and for bo

be limited to b/t < 100 for square and rectangular box sections t
stiffeners. They indicate that the AISC (2010) approach is suffic
(i.e., plates supported along their two longitudinal edges) (

stlffeners up to b/t = 150. Also, White et al. (2006) 1nd1cate t ise of f=QsFyin
Egs. (10) and (11) provides a more represent?e ca, he true resistance in all cases.
The “bulge” in the column curve obtained by Usi of f for longer columns,
illustrated by the iterative AISC (2010) solution the n: ative f = Fy solution in Figure

54, does not appear to be justified.

The above discussions apply only to theCffective widths, be, for stiffened
elements and the corresponding cross-s 1, Qa. The calculation of the form factor
Qs by Eq. (6) for slender unstiff ents is generally adequate to conservative (Whlte

et al. 2006). Based on the abo
cases for calculation of the eff@8ti i in Eqs. (10) and (11). AASHTO (2010) adopts these

o reduction in the theoretical elastic buckling resistance, Pe, due to
AISC (2010) Q factor or the AIST (2001) unified effective width
that Eq. (17) gives a sufficient approximation of experimental

A SaP an iterative procedure where Pe is calculated using an effective
moment of ing «ff, based on the AISI unified plate effective widths, be. Therefore,
as shifts in the cross-section effective centroid and shear center with changes
in be are neglect§@in both the AISC (2010) and AISI (2001) methods.

5.2.4.5 Axial capacity of hybrid slender-web girders

For girders subjected predominantly to flexural loading, the most economical use of high-
performance steels often involves one or two high-performance steel (HPS) flanges combined
with a lower strength web. As noted at the beginning of Section 5.2.4 of this module, the webs of
girders designed predominantly for flexure are practically always classified as slender elements
under uniform axial compression according to Eq. (4). Although the use of homogeneous
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sections is most appropriate for members that resist substantial axial compression, hybrid
slender-web girders are still acceptable when the axial loads are small. In these cases, the axial
capacity ¢:P, may be calculated by using the largest effective flange yield strength QsFys for f in
Eq. (11) to determine the web effective width be, but using the actual web yield strength, Fyy,
with be in determining P,. This accounts approximately for the level of strain in the web at the
strength limit under uniform axial compression. In the unusual case that the web has a larger
yield strength than the flanges, Fy should be taken equal to Fy in calculating ¢.Py. If the flanges
have different yield strengths, the smaller Fy value should be used for both flanges in
determining ¢.P,. These are conservative approximations of the complex bejgvior associated
with the post-buckled state of the web plate as well as shifts in the effective ¢ id and shear
center of the cross-section as the true strength limit is approached.

5.2.4.6 Local buckling criteria for solid-web arch ribs

AASHTO (2010) Article 6.14.4.2 limits the web slenderness of sol
longitudinal stiffeners to

D5 F
tW fa
\ 2 (AASHTO 6.14.4.2-1)

where f, is the maximum axial stress along the l¢ tion under the factored loads.
One can observe that this equation is based . ith Fy replaced by f, and with k¢ = 4.0,
the theoretical minimum plate buc

(5.2.4-18)

(5.2.4-19)
(AASHTO 6.14.4.2-2)
and
(5.2.4-20)
(AASHTO 6.14.4.3-2)
respectively fa + fy is the maximum combined stress due to axial load plus flexure along
the length of th@lox section under the factored loads, including second-order amplification.

These equations based on Eq. (4) with Fy replaced by f, + fy/3 or fa + f, (with both stress
quantities taken a¥ positive values), and with k; = 0.42, which is essentially the coefficient for
plate buckling under uniform axial compression with S.S. - free edge conditions. The value fy/3 is
the flexural stress at the depth of the stiffeners for the case of two uniformly-spaced longitudinal
stiffeners, which is the largest number of web longitudinal stiffeners considered in Article
6.14.4.2. The width-to-thickness ratio of the rib flanges is limited to
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(5.2.4-21)

(AASHTO 6.14.4.3-1)

for the width between webs. For f; + f, = Fy, this equation is approximately equal to the AISC
(2010) compact flange limit for rectangular box sections, which is somewhat more restrictive
than Eq. (4) with k; = 4.0. Flange compactness limits are discussed in Sections 5.3.5 and 5.4.9 of
this module.

For arch ribs with one or two web longitudinal stiffeners, AASHTO (2010) A
increases the coefficient in Eq. (18) from 1.25 to 1.88 and 2.51 respectively il
minimum requirements for the moment of inertia of the stiffeners, ls, wherdll i bout an
axis parallel to the face of the web at the base of the stiffeners. With f; takc{ii
provisions ensure conservatively that the axial resistance Py, is not afieste

This statement is based on a detailed analysis of worst-case box ) #Wsatisfy the
AASHTO requirements, using the procedures in AISI (2001).

All of the above limits preclude local buckling in solid we at th@factored load levels,
i.e., under the applied stresses f; and fy. Equations (2 but do not necessarily,
preclude local buckling of the flanges at the a acity limits ¢.P, and oM, used
in the AASHTO (2010) axial force-moment i jons (see Section 5.6 of this

to ¢cPn, since fa= Py/Ag in Eq. (1 i aller than ¢:Pn/Ag. Also, they do not
preclude web local buckling under o th®¢:M, of a box rib (see Section 5.5.3).

As such, if P, and M, are calculated fo cting local buckling effects, which is the
intended practice demonstrated Bunner (2006), it is suggested that a linear axial-
force moment interaction eq sed rather than the AASHTO (2010) bilinear

interaction equation. The
the calculation of Py, usi

- AISC (2010) bilinear interaction curve is based on
tate of uniform axial compression with P, = P,. The

in Section

5.2.5 Built-u mns Composed of Two or More Shapes

AASHTO (201 rticle 6.9.4.3 addresses the design of built-up columns composed of two or
more shapes. The®¢ member types include closely-spaced back-to-back angles attached by
intermittent bolted or welded filler plates or boxed channels (Figure 56a) as well as large
compression members with flange components that are spaced widely apart. In the latter case,
the flange components may be connected together by perforated cover plates, lacing with flat
bars, angles, channels or other shapes, or batten plates as shown in Figure 56b.

The strength behavior of the above types of members differs from the previously discussed cases
due to the influence of shear deformations or displacements between the connected shapes. The
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shear deformations reduce the member buckling capacity and induce stresses in the elements that
connect the shapes together.

Box columns with perforated cover plates designed to Specification rules do not require any
strength reduction or other special considerations for shear effects. In new bridge construction,
perforated cover plates are likely to be used rather than laced or battened columns. Conversely,
the member buckling resistance can be reduced significantly for laced or battened members, with
the largest reductions occurring for battened columns.

AASHTO Article 6.9.4.3.2 gives an equation for the shear force due to colurigstability effects,
which perforated cover plates must be designed for in addition to the shear forc® factored
loads. Article 6.8.5.2 provides additional dimensional requirements for perfgi# es that

ensure adequate member performance.

In built-up members other than box columns with perforated cove
or displacements between the connected shapes has a significant
member axial capacity. In all cases, the end connections must be
the relative longitudinal slip displacement between the con

the built-up member is to be effective as a structural membe i On is the dominant
contributor to making the connected shapes a‘o er, the compressive strength is
also affected to some extent by the shear restraint gro intermediate connectors.

AASHTO (2010) and AISC (2010) both pr s for a modified slenderness ratio that

accounts for the effect of shear de ati rs between closely-spaced shapes.
Article 6.9.4.3.1 of AASHTO (2010 uation for members with
intermediate connectors that are welde ed bolted:

RO

(5.2.5-1)

(AASHTO 6.9.4.3.1-1)
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Figure 56 Types of built-u columns with closely-spaced components and (b)

ely-spaced components.

odified slenderness ratio accounting for shear deformation effects,

distance between connectors,

radius of gyration of an individual component relative to its centroidal axis
parallel to the axis of buckling,

separation ratio = h/2rj,, and
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H = distance between the centroids of the individual components perpendicular to
the axis of buckling.

This equation is that same as Eq. (E6-2) in the previous AISC (2005) Specification. Given the
above modified slenderness ratio (KL/r)ny, the ratio Po/Pe is determined from Eq. (5.2.1-4) and
then substituted into Egs. (5.2.1-1) to determine the nominal column capacity. The buckling
capacity about the y-axis of the two channel sections shown in Figure 56a, attached either toe-to-
toe or back-to-back at the spacing a, is determined in this fashion. The strength of thlS type of
column is governed either by flexural buckling about the y- ax1s mcludmg thg

not include any reduction for shearing deformation effects. In the case of bg
angles such as in Figure 56a, (KL/ Nm is used in place of (KL/ My in determi

predictions relative to test results for fully—te:?
spaced individual components, i.e., members stic s or double-channels The new
AISC equation is based on the research by Sato a

. bon that it considers applicable for
riveted connectors on existing bridge ;s addpted from an AISC (2005 and 2010)

from Zandonini (1985). The en r must be connected rigidly, such as attained by
welding, fully-tensioned bolti i

AISC (201
built-up co
bolt resistancd

ote that it is acceptable to design a bolted end connection of a
for the full compressive load with the bolts acting in shear and the
Ked on bearing values. The implication is that connections designed in this way
are sufficient tOficevent slip between the components at the member ends. It is emphasized that
the prevention of@ip is necessary for the structural efficiency of the built-up member and for the
validity of the coi¥esponding AASHTO (2010) and AISC (2010) resistance equations.

Lastly, an essential requirement for built-up members composed of two or more shapes is that
the minimum a/r; of each component shape between the connectors, lacing or batten plates must
be less than or equal to 3/4 the governing L/r of the built-up member as a whole, where r; is the
least radius of gyration of a component part. Duan et al. (2002) studied the effect of larger a
values theoretically, and concluded that a wider spacing makes the built-up member susceptible
to further reductions in the axial capacity due to interaction between the buckling of the
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component members within the length a between the intermediate elements and the buckling of
the entire member over its full length L.

Neither AASHTO (2010) nor AISC (2010) address the influence of the strain energy developed
in lacing or batten plates on the column capacity. Equation (1) is a refinement and generalization
of an equation that Bleich (1952) derived for battened columns neglecting the energy due to local
bending of the battened plates, but assuming zero shearing deformation of the end tie plates.
Aslani and Goel (1991) summarize the theoretical development of this equation and show that it
gives accurate to slightly conservative predictions of experimental results fogdouble-angle
braces. However, their derivation is general, and they suggest that it is also afS§@illacable to built-up
columns with widely-spaced components.

(1) for battened members. However, the alternate formulati i22010) tend to give
larger capacities than Eq. (1) for laced columns.

5.2.6 Columns with Tapered and/or Steppgs tio
Force

onuniform Internal Axial

Kaehler et al. (2010) detail a proc
prismatic or nonprismatic steel mem
along their length. For these types of m

e compressive resistance of general
constant or nonconstant internal axial force
enient to work directly with the

following concise form for the ac tio Py/¢P, associated with Egs. (5.2.1-1):
o lp0 0.658 g Yo =0 (5.2.6-1a)
A
‘ or PoYo < 0.44 (5.2.6-1b)
oad 2% given cross-section due to the factored loadings, ¢Py is the
en resistance,
P
=— 5.2.6-2
Po P y ( )
is the ratio of the factored axial load Py to the stub-column strength P,, and
P F
—_e__e 5.2.6-3
- ( )
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is the ratio of the member elastic buckling resistance, Pe, to the factored (i.e., the required) axial
load, P,. As noted previously, the stub-column strength, Py, is equal to FyAq for cross-sections
that do not have slender elements, and it is equal to QFyAg = QsQa FyAg = QsFy QaAq for slender
element cross-sections. The term p, also may be considered as the ratio of the average required
cross-section axial stress f, = Py/Aq to the cross-section effective yield stress, QFy, as shown by
the second equality in Eq. (2). Furthermore, the term Fe = Pc/Aq is the cross-section average axial
stress at incipient elastic buckling, and y. may be considered as the ratio of this elastic buckling
stress to the average required axial stress, fa = Py/Ag, as shown by the second equality in Eq. (3).

The calculations for a general nonprismatic member subjected to nonconstan™g@liernal axial force

thus scaling the internal values of Py, until elastic buckling of thg
Kaehler et al. (2010) discuss various methods for calculatinggthe ¢ for @@neral members
and frames.

For the more common situation where nomil’yiel long a portion of the member
length (due to the applied load plus initial residu
. (1981) and White and Kim
(2006) demonstrate that the axial cggacity, ay be calculated adequately for this
case by mapping the nonprismatic ber to an equivalent prismatic
member that has:

1. The same y,, and

2. A po equal to the e value g the entire length of the physical member, po max-

97



Ye =Pe/ Py

Sam

Po.max = Pu/ Po.min

P, /l\ Yielded Zone /I\

(Typ.) P,

Figure 57 Conceptual mapping of a tapered-web I-seci cted to constant

axial compression to an equivalent pr

ber subjected to constant

Figure 57 illustrates this approach for a taper’)ve
i i i i i as the same nominal extent of

yielding along its entlre length that the nonpr1smat1 t its most highly stressed

cross-section. For cases where the ss-section (the one with pomax) 18
located at a brace point, this approx i rvative. However, in situations
where pomax Occurs at a cross- sectlon unsupported length (for example if

Po.max OCCUTS at the smaller cross. ection transition within the unsupported length),

slender plate elements, P, is determined using Eq. (5.2.4-14),
determmed using f = QSFy in Eqs (5.2.4-10) or (5.2.4-11), and Qs

member 18

3. Determine the minimum ratio of the elastic buckling load to the factored axial load for
the member

Ye.min = MiN (Yex, Yey, YeTF) (5.2.6-4)
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4. as appropriate, where yex is the critical load ratio for elastic flexural buckling about the
major axis of the cross-section, yey is the critical load ratio for elastic flexural buckling
about the minor axis, and yerr 1S the critical load ratio for elastic torsional or torsional-
flexural buckling.

5. Substitute pomax and e min for po and ye in Egs. (1) to determine the axial capacity ratio
Pu/oPn.

Kaehler et al. (2010) detail a more complex procedure for I-section memberglhat utilize the
AISC (2010) approach from Eq. (5.2.4-16) for calculation of f. This approach
recommended. The above recommended procedure simply calculates Q basedqas QsFy at the
various member cross-sections. In addition to its relative simplicity, this ap,
accurate (see Section 5.2.4 of this module). In cases where the member is d

rather than axial loading, the effect on the final beam-column resistance is t¥
5.2.7 Composite Columns
5.2.7.1 AASHTO (2010) - AISC (1999) approach

AASHTO (2010) uses the AISC (1999) LRF‘pe i
compressive resistance of concrete-filled section
approach, developed based on the work of SSRC
column strength curve given by E
section,Ag = A, and a modified yie
gyration, 'y, to account for the effect
modifications are as follows:

SRC 1979), uses the steel
.1-4) with the area of the steel
of elasticity, En, and radius of

Fn =F, +CF AS+c

1" yrs

(5.2.7-1)

2

(AASHTO 6.9.5.1-4, AISC 1999 12-1)
(5.2.7-2)

A

+C,E, —

(AASHTO 6.9.5.1-5, AISC 1999 12-2)

Mm= g (5.2.7-3)
where
A:. = area¥f the concrete,
A = area of the continuous longitudinal reinforcing steel bars,
As = area of the encased steel section or the steel tube,
E = modulus of elasticity of the steel (29,000 ksi)
Ec. = short-term modulus of elasticity of the concrete,
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Fy = specified minimum yield strength of the steel section or tube,

Fyrs = specified minimum yield strength of the longitudinal reinforcing steel,
f; _ specified minimum 28-day compressive strength of the concrete,
rs = radius of gyration of the steel section or tube in the direction of buckling, and

B = overall width of the composite section in the plane of bending

In addition, it should be noted that the AISC equation numbers in this sub-sg
the AISC (1999) Specification. The coefficients ¢; and ¢, account for the ¢
reinforcing steel and concrete to the stub—column strength P, whereas the

Po = Fany As (5.2.7-4)
and
2
P =" En_ (5.2.7-5)
(KL/r,)

(AASHTO 6.9.6.1-6)

For encased sections, AASHTO (2

(5.2.7-6)

=0.7,co=0.6and c; = 2.7-
whereas for filled sections,
Ci = 10, C = nd C3 (527-7)

If present ed sectio

reinforcing steel is always supported sufficiently such that it can
. However, for encased sections, a reduced c; value is
employed td ptential spalling of the concrete, leaving the steel bars exposed.

confinement aWg@llable in filled sections. However, for encased sections, the ACI (1977)
reduction to 70 %@t the capacity for components relying on unconfined concrete was applied,
i.e., C; = 0.7(0.85Y= 0.6. For the stiffness coefficient c3, SSRC (1979) adopted the ACI (1977)
recommendations. For confined concrete, ACI (1977) recommended using only 40 % of the
initial stiffness of the concrete, whereas for unconfined concrete, only 20 % was used (hence ¢c; =
0.2 for encased sections and 0.4 for filled sections).

For the modified radius of gyration, Iy, SSRC (1979) noted that in members where the steel
section provides the majority of the flexural resistance, the radius of gyration of the steel section,
Is, is appropriate, while if the concrete portion of the section provides the majority of the flexural
resistance, the radius of gyration of the concrete section is appropriate. Therefore, the larger of
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these two values was selected, with 0.3B; being the radius of gyration of a square concrete cross-
section (i.e., a square column is implicitly assumed in this development).

The AASHTO (2010) - AISC (1999) provisions are applicable only for members in which the
area of the steel section, A, is greater than 4 % of the total composite section. For smaller As, the
member must be designed as a reinforced concrete column. There is typically a significant
discontinuity in the strength predicted by handling the member as a composite steel column
versus a reinforced concrete column at this limit. Furthermore, the values for Fyrs and Fy used in
calculating the resistance are restricted to 60 ksi. This is because the concretgastiffness reduces
significantly at strains near 0.2 percent, and thus the concrete is considered p8
ineffective in stabilizing the steel for larger yield strengths. Concrete strengths NSl 8 ksi are

time of the original developments. Concrete strengths f, > 3 ksi are requi
quality concrete. A number of requirements are specified for the longjtudi

section. For rectangular filled sections, b/t is limited to 1.7(E / F
sections, D/t is limited to 2.8(E / F y)0'5 to ensure that the ste V' fore the concrete
crushes or significant local buckling occurs. These limits ar: ame AASHTO (2010)

Article 6.9.4.1 limits for noncomposite rectaraular and circu

5.2.7.2 AISC (2005) and (2010) approach

AISC (2005) provides substantiall dur r calculating the resistance of encased
and filled composite columns. The i er, more accurate resistances, and
reduce the differences between the A pon provisions. The corresponding AISC
(2010) provisions are essentially (2005) for encased composite columns;
een implemented in AISC (2010) for filled
(2005). The procedures are generally

t of variation with respect to test data (Leon and

in the ¢ factor relative to that used in AISC (1999).

composite columns that were
conservative, but still ha
Aho 2002). This resul{g

(5.2.7-8)
(AISC 12-4)

(5.2.7-9)

(AISC 12-9b)

for compact filled sections, where C, = 0.85 and 0.95 for rectangular and circular sections
respectively. These equations recognize the full development of the continuous reinforcing bars
for encased columns, and they account for the confinement effects on the concrete strength and
the compatibility of the concrete and reinforcing steel strains in circular filled sections.
Furthermore, the equivalent member elastic buckling load is calculated directly as
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) = (KLY (5.2.7-10)
(AISC 12-5)
where
Eley = Els+ C/Elg + C.Ecl¢ (5.2.7-11)
(AISC 12-6 & 12-
12)
Is = moment of inertia of the steel section about the axis of
buckling,
s = moment of inertia of the reinforcing bars about the axis of
buckling,
Ic = moment of inertia of the concrete section about the axis of
buckling,
Cr = 0.5 for encased sections and 1.0 for filled sections,

C.=0.1+ 2[ A JS 0.3 for encased sections, (5.2.7-12)
A+A
(AISC 12-7)
0.6+ 2L A Js 09 for flled sectic® (5.2.7-13)
A+A

(AISC 12-13)

In addition to the above, the AISC e upon the AISC (2005) provisions
for filled sections by addressing the re pal resistance for more slender HSS or
box sections of uniform thickne der circular hollow sections. AISC (2010) Chapter

ions of uniform thickness, the compactness limit,
d-section equations, is

b (5.2.7-14a)
and for filled r sections, the corresponding compactness limit is
E
D/ts{k .15F—J (5.2.7-14b)
y

AISC (2005) restricts the usage of its equations to the above limits, whereas AISC (2010)
introduces the classification of compact, noncompact and slender steel elements in filled
composite sections and provides additional equations that quantify the reduced axial resistance
for sections where some of the steel elements are not compact. Although the same names are
used, the implications of the AISC (2010) classification of filled composite sections are
fundamentally different than the AISC (2010) and AASHTO (2010) classification of the steel
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elements as compact, noncompact and slender in other cross-section types. In quantifying the
axial resistance of filled composite section members:

“Compact” indicates that the section is able to develop a maximum “plateau” resistance of the
concrete and reinforcing steel, including the influence of confinement from the steel section,

e “Noncompact” indicates that the steel section has sufficient thickness such that it can
fully yield in the longitudinal direction, but it cannot adequately confine the concrete
infill after it reaches 0.70f;', at which point the concrete starts ungergoing significant
inelastic deformations and volumetric dilation (pushing against tf all of the steel
section).

e “Compact” indicates that the section can develop it 1 ent capacity, My, in
flexure,

e “Noncompact” indicates that the section ment capacity greater than the
nominal first-yield moment of the sectio e tension flange reaches first
yielding, or greater than the;mome g to a maximum concrete compressive
stress of 0.70f.', but loc i te confinement of the concrete in

e “Slender” means that t nce of the member is limited to the smaller value
of the first yield mom n flange reaches first yielding and the moment
corresponding to the concrete and a maximum compressive stress of

developing moments larger than the nominal first yield flexural resistance in compression
including residual stress effects, i.e., Myr = FySy, and

e With the exception of the AASHTO (2010) provisions for composite sections in positive

flexure, a cross-section with “slender” compression elements has its strength generally
limited by local buckling of compression elements prior to reaching My;.
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e In the AASHTO (2010) provisions for composite sections in positive flexure, a
“noncompact section” is one in which the maximum potential flexural resistance is limited
to a compression flange stress of RyRnFyc, corresponding to nominal yielding of the steel
compression flange, neglecting residual stress effects but including the influence of load
shedding from a slender and/or hybrid web, or a tension flange stress of RnFy. For these
sections, the reasons for limiting the maximum resistance to the above values include
yield strength of the steel larger than 70 ksi, web slenderness, and/or limiting potential
inelastic redistribution in curved bridge structural systems (see Sections 5.3.3 and 5.3.4 of
this module).

e In the AASHTO (2010) provisions for composite sections in positive a “compact
section” is one in which the maximum potential flexural resista ull plastic
moment of the composite section (see Section 5.3.3).

The AISC (2005) and (2010) provisions for composite columns arg : as small
as 1 %. Furthermore, the specified minimum yield strength of thg steel and reinforcing
bars is increased to 75 ksi. The provisions are extended to copcrd b to f, =10 ksi
for normal weight concrete. Also, the required area for the t cased sections is
increased slightly relative to AISC (1999), from 0.007 to 0.0 g spacing, and a
minimum reinforcement ratio for continuous 4@hgit bars W these sections is relaxed
slightly from 0.007 to 0.004. However, a minim ous longitudinal bars is
required in encased columns. In addition, the abo
studies of doubly-symmetric compgsi
(2010) provides guidelines for the
symmetric cross-sections.

AISC (2010) specifies detailed nsfer to the composite cross-section in encased

In some siifii girders designed compositely with a concrete deck are subjected
to combing : i pression. This occurs for instance in a cable-stayed bridge

by the movem@§ permitted at integral abutments or deck joints. AASHTO (2010) Articles
C6.10.6.2.1 and@@6.11.6.2.1 allow the Engineer to neglect a concentrically-applied axial force Py
in all types of I- 3l box-girder members whenever P,/¢:Pp is less than 0.1. However, for
Pu/dcPn > 0.1, I- and box-girders must be checked in general as beam-columns. Any moments
generated about the effective centroidal axis, due to eccentric application of axial loads, must be
considered. An appropriate calculation of this effective axis is suggested below. Bending
moments due to transverse loads and eccentricity of the applied axial loads are addressed
separately in the flexural resistance calculations (see Sections 5.3.3 through 5.3.7 and 5.4.6
through 5.4.12 of this module).
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In all of the above cases, the Engineer needs to calculate ¢.P,, for the composite girder. AISC
(2010) provides substantial guidelines regarding the calculation of the resistance of flexural
members subjected to combined axial load in the Commentary to its Section I7. However, this
discussion is primarily directed at the calculation of the strength of collector components in
building floor systems. Neither AASHTO (2010) nor AISC (2005) provide specific guidelines
for this calculation, although the commentary of AISC (2005) does provide the following broad
guidance in the context of composite I-section members:

“Adequate means to transmit axial loading to and from the steel sggtion should be
provided. Where shear connectors are used, the top flanges may be consTé@he
compressive loading at the shear connector locations.... For load combing{¥8s resulting
in compressive loading of the lower flange, length effects between bracgp

considered. Inflection points should not be considered as braced p
buckling of the unbraced flange.”

Specifically, the axial compressive resistance of a composite [-gif@e ooverned either by
flexural buckling about the major axis of bending, or by torsiona e steel I-section

using Eq. (11) for Ele, with C. taken equal t(?e \4 lied in the AASHTO (2010) -
AISC (1999) composite column provisions, thén calculate Pe. Since the
composite cross-section is singly-symmetric, the to determine its effective

centroidal axis for calculation of the separa i s to the effective moment of inertia, lg.

a modular ratio of n/0.2 should be used slab. The contribution of the longitudinal
ite small compared to the other terms, and thus it is
. e judgment must be used in selecting the

Egs. (4) and (11). Chen et al. (2005) suggest a
11 width for regions away from the towers and 70
owers in cable-stayed bridges with two edge girders,
two pylon a configuration with two planes of cables, a relatively thin concrete

suggested that this term shoul
effective width of the slab

2
PeT{“E . )+GJ} S S (5.2.7-14)
L, re+r, +a
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Figure 58 Cross-section displacements and relevant cross-sg engionstor torsional

where C,, is the warping constant of the steel section, as and ces from the shear
center and centroid of the steel cross-section ?he fi axis

the length between the locations where the cross-ggcti ed from twisting (Timoshenko
and Gere 1961; Bleich 1952). Figure 58 shows th i re the bottom flange is larger

and as > ac. Equation (14) gives a substanti kling load than obtained based on the
flexural buckling of the unrestrain about its minor principal axis.
Equation (14) neglects the torsional res provided by the deck to the steel I-
section member. The effect of t duced substantially in many cases due to web

distortion. Torsional restraint
1.e., Lp is the spacing betwgen

es. Equation (14) also neglects the axial force
astic torsional buckling of the steel section.

calculating the effective width of the web. Since the top flange is connected compositely to the
deck, it should always be considered as a nonslender element (i.e., Qs = 1). For hybrid composite
I-girders, the As(QFy) term in Eq. (15a) should be determined as discussed previously in Section
5.2.4. The exception to the use of Eq. (15a) is that, when calculating the ratio Po/P, for the
torsional buckling limit state, P should be taken as Per from Eq. (14) and P, should be
determined as

Po = As(QFy) (5.2.7-15b)
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This accounts for the fact that Pet does not include any axial force contribution from the deck.

Procedures similar to the above can be used to obtain P, and P, for a composite box girder.
However, torsional buckling is not a consideration for these members. Therefore, P, may be
calculated based solely on flexural buckling about a horizontal axis through the effective
centroid. This elastic buckling load usually will be quite large, and therefore P, will be
approximately equal to P,.

The AISC (2005) commentary also discusses the potential need for a larger

mber of shear
connectors for axial load transfer and added flexure. However, this statement<@h

the context of

combined axial loading and compression. Thus, no special detailing of the &
necessary beyond that required by AASHTO (2010) Chapter 9.

Equation (14) also can be used to calculate the compressive resi nofl@bmposite [-girders
when the top flange is embedded in the concrete deck. The em would be

checked for flexural buckling about their major axis of bend i esponding KL/r to
determine Pe, and using Eq. (14) to calculate ‘: P ing to torsional buckling about
an enforced axis of rotation at the top flange.

5.3 I-Section Flexural Members

5.3.1 Introduction

ices A6 through D6 provisions for I-section
flexure are central to the beha any of the bridge structural systems discussed
in Section 2 of this modul rge number of [-beam and I-girder stringer bridges
used in highway constru: i#Pns have possibly the greatest overall impact of all

i espect to steel bridge construction. Furthermore, a

0) Article 6.11 rules for box-girder design utilize or parallel

ptually with just a few figures. However, numerous parameters must be
considered for Y& wide range of I-section members utilized in design practice. Section 5.3.2 of
this module init1 the discussion of I-section flexural members by outlining basic
proportioning lim¥s defined in AASHTO (2010) Article 6.10.2. Sections 5.3.3 and 5.3.4 then
provide an overview of the AASHTO (2010) Article 6.10.7 provisions for composite members in
positive major-axis bending. Most of the details for design of I-section members fall under the
category of composite members in negative bending and noncomposite members. Section 5.3.5
outlines the key concepts and the basics of the calculations for the various design parameters
pertaining to major-axis bending of these member types. All of the discussions of Sections 5.3.3
through 5.3.5 focus on prismatic member unbraced lengths. Section 5.3.6 explains how the
prismatic member rules are generalized to handle variable web depth I-section members and/or I-

be explained &
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section members with cross-section transitions along their lengths. Section 5.3.7 then addresses
the handling of combined major-axis bending, torsion and minor-axis bending in AASHTO
(2010). Finally, Section 5.3.8 discusses the shear strength of I-section members, Section 5.3.9
addresses the strength of shear connectors for composite construction, and Section 5.3.10
discusses various “secondary” limit states such as web crippling and web yielding due to
concentrated transverse loads.

5.3.2 Proportioning Limits

nomical and

gs provide

.1 requires
pitation

AASHTO (2010) Article 6.10.2 provides basic rules targeted at ensuring the
practical proportioning of I-section members in preliminary design. Also, these ¥
practical bounds on which the flexural resistance provisions are based. Artig
that webs without longitudinal stiffeners shall satisfy the following depth-t

D/ty <150 (5.3.2-1)
06.10.2.1.1-1)
This limit helps ensure ease of handling, permits simplifica 0 stancgi@hlculations for
composite members (discussed subsequently in Section 5.3. thi , and helps ensure
adequate performance with respect to web di iongaduced Kligue for members that do not

have web longitudinal stiffeners. For longitudihally-st tion members, Article

6.10.2.1.2 requires

D/ty <300 (5.3.2-2)
(AASHTO 6.10.2.1.2-1)
Equation (2) is simply a practic on the slenderness of webs with longitudinal
stiffeners. I-girders with largey re susceptible to secondary limit states such as
transverse web crippling. imits are expressed in terms of the total web depth

to thickness, for ease of

(5.3.2-3)
(AASHTO 6.10.2.2-1)

This limit is targ@id predominantly at ensuring that the flanges of I-girders will not distort
excessively whenWhey are welded to the web. However, it also allows for some simplification of
the flange local buckling resistance equations in AASHTO (2010) as discussed subsequently in
Section 5.3.5. Article 6.10.2.2 also specifies

br > D/6 (5.3.2-4)
(AASHTO 6.10.2.2-2)

tr>1.1t, (5.3.2-5)
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(AASHTO 6.10.2.2-3)
and

0.1 </l < 10 (5.3.2-6)
(AASHTO 6.10.2.2-4)

where |y and ly; are the moments of inertia about the plane of the web for the compression and
tension flanges respectively. Few I-section member tests have been conducted with depths D
larger than 6b;. Furthermore, a number of the available tests for deep narrowglange members

significant reductions in their flexural resistance due to lateral-torsional bud C
requires that the flange thicknesses must be slightly larger than theg ickNg8nes udPridec 1-
section members. There is evidence of acceptable performance of @' embe

construction. The combination of Egs. (2) and (3) restricts thgati -flange area for
either flange, Aw/Ar = Dty/bst;, to a maximu lue , Eq. (6) ensures efficient
relative flange proportions and prevents the us€ ofaext symmetric [-sections that may
be difficult to handle during construction and for n member flexural resistance
equations are generally not valid.

Article C6.10.3.4 recommends one a
constructability, that deserves mention 1
This article suggests

the fninimum flange width, pertaining to
general [-section proportioning limits.

bre > L/85 (5.3.2-7)

(AASHTO C6.10.3.4-1)
of a shipping piece. This limit helps alleviate potential problems
the girder compression flange during fabrication, shipping and
5.3.3 Comp mposite Sections in Positive Flexure

5.3.3.1 Section sification

AASHTO (2010) Article 6.10.6.2.3 defines composite sections in positive bending as compact
sections when:

e The specified minimum yield strengths of all the flanges do not exceed 70 ksi
e D/t <150

e 2D,/t,<3.76/E/F, (5.3.3-1)
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(AASHTO 6.10.6.2.2-1, AISC Section 13.2a)
and

e The bridge is straight (no horizontal curvature or kinked (chorded) continuous geometry).

bs

P = | '« — Pr P

I [:7 777777777777 - — D, J‘**Prb ° D
S — E——c« P __Y
te b e | 3Pl | Fe ~—p, PNA

t—= C ] P

bending. Cases for plastic neutral axis (PNA) in concr
P, concrete deck at P,; and concrete deck a

This means that the fully-plastic cross-sectior&o e
base for the member resistance calculations. The
potential crushing of the deck concrete prior the calculated flexural resistance. For Fy

=70 ksi, the yield strain of the ste ightly beyond the level of strain
corresponding to the peak compresst i ck concrete. For Fy = 100 ksi, the
yield strain of the steel is 0.0034, whic yond the nominal concrete crushing
strain. The second limit is the E iction on the web width-to-thickness ratio beyond

deeper and are typically used 1 with corresponding larger dead load stresses, they
large web slenderness values may result in

the steel s G

the web, th city M, often is not significantly larger than the yield moment

My (or the yi gl mafip€ ptied for hybrid web effects, RnMy). The third limit is the AASHTO

(2010) - AISCEEBY0) web compactness limit corresponding to the plastic depth of web in

compression, g in Figure 59. Webs more slender than this limit are nominally unable to

develop the larg@laelastic strains necessary for the cross-section to reach its plastic moment My.

The fourth limit @S been discussed previously in Section 3 of this module. The above four limits

are simple restrictions intended to limit the use of the plastic cross-section model of Figure 59 to

designs where it is supported by test data. Future research may lead to some relaxation of a
number of these limits.

5.3.3.2 Flexural resistance

The base model shown in Figure 59 is the same as the Whitney rectangular stress block model
used in reinforced concrete design except that the concrete rectangular stress block is always
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taken as the full depth in compression above the plastic neutral axis (PNA) rather than a fraction
of this depth. This simplification generally results in a negligible or only a slight increase of the
calculated plastic moment. The effective width of the concrete slab is assumed to be stressed in
compression at 0.85f;', and all the reinforcing and structural steel elements are assumed to be
stressed at their yield strengths Fy. AASHTO (2010) Article D6.1 gives equations for the PNA
location and the corresponding M, for all potential PNA positions in the slab or in the steel I-
section. These equations are based simply on equilibrium of the fully-plastic stress distributions
and the assumption of zero axial force. The concrete within the haunch over the girder flanges is
neglected in the AASHTO (2010) equations for purposes of simplicity. Howgver, the nominal
height of the haunch is included. The reader is referred to Article D6.1 for th ailed equations.
AASHTO (2010) Article 6.10.7.1.2 does not necessarily use the full plastic mg
nominal flexural resistance for compact composite sections in positive bendi
specifies

Mn = Mp (5.3.3'2)
10.7.1.2-1)
when Dy < 0.1Dy, where Dy, 1s the depth of the plastic neutr i the of the deck (see

Figure 59) and D is the total depth of the composite section.

specifies ‘

(5.3.3-3)
(AASHTO 6.10.7.1.2-2)

The AASHTO (2010) resistance fact = I70 for all types of composite and
noncomposite members.

recommended by Wittry
resistance determined f

e in the margin of safety, relative to the theoretical
ility analysis at crushing of the deck concrete,
pproximately 1.3 at Dy/D; = 0.42. Strain-compatibility
actical composite sections indicate only a slight decrease in the

(5.3.3-4)
(AASHTO 6.10.7.3-1)

to ensure significant yielding of the bottom flange prior to reaching the nominal crushing strain
at the top of the deck. This limit is consistent with the former maximum reinforcement limit for

concrete design given in AASHTO (2004) Article 5.7.3.3.

In addition to the above equations, AASHTO (2010) Article 6.10.7.1.2 limits the nominal
flexural resistance to that given by Eq. (2) in continuous-span beams where the adjacent pier
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sections are not detailed to accommodate significant inelastic moment redistribution. The reader
is referred to Section 3 of this module for discussion of this limit.

AASHTO (2010) generally requires that the separate effects of noncomposite, short-term
composite and long-term composite loadings shall be considered in calculating the nominal
flexural resistance. However, for compact composite sections in positive bending, the effect of
these different types of loadings on the flexural stresses and on partial yielding of the cross-
section need not be considered. Since these cross-section types are able to sustain inelastic
curvatures sufficient to develop their nominal full plastic moment, the effect gf the different

loadings typically will have some effect on the distribution of the moments
structure.

5.3.3.3 Handling of creep and shrinkage effects

tructure cause the
and increase the
es the influence of creep on the

Stresses in the concrete deck due to permanent loads acting
concrete to creep. The effect of creep is to relieve the stresse
stresses in the steel. AASHTO (2010) Articl 0.1
steel stresses in a reasonable but approximate Tashdon e times the modular ratio, 3n
= 3E4/E., when transforming the elastic concrete 1 alent steel section for
analysis of the effects of permanent loads o composite bridges. Oehlers and

posi

Bradford (1999) discuss the accur imation. AASHTO (2010) Article
6.10.1.1.1d requires the conservative erm'modular ratio n = E¢/E. for calculation
of longitudinal flexural stresses in the c | permanent and transient loads. This is
important primarily for determi icient longitudinal reinforcement should be
provided in the concrete deck (e.g., see AASHTO Articles 6.10.3.2.4 and
6.10.1.7).

Concrete slab shrinka
several mq

o has on the detailed structural behavior. During the first

tion, the slab shrinks. In simple-span structures, this induces tensile

stresses in the top flanges of the steel [-sections and tensile

e steel I-sections. Tests have indicated that the unit shrinkage
ooaprs (1.e., the shrinkage strain adjusted for long-term relaxation

en equal to 0.0002 (Viest et al. 1958). The corresponding stresses may be

ely by assuming that the shrinkage does not cause cracking. The steel stresses

in straight simp[@8pans may be approximated by considering the composite cross-section as an

eccentrically load€d column with a load of 0.0002E:nA; applied at the centroid of the slab and

using n = E¢/E; (Viest et al. 1958).

effects) may B
computed adeq

The shrinkage stresses in the concrete deck for simple spans, and in the positive moment regions
of continuous spans, are counteracted by the composite dead and live load stresses. Furthermore,
compact composite I-section members in positive bending develop maximum strengths that
involve significant yielding and inelastic redistribution of the cross-section stresses. The steel
section in noncompact composite members in positive bending (addressed in the next section)
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tends to be larger relative to the concrete slab, and hence the influence of the loading
0.0002E¢nA. is smaller. Also, any strength beyond first yielding of the steel section is neglected
in noncompact composite I-section members. Therefore, AASHTO (2010) neglects the
additional incidental compression in the top of the steel I-sections in positive bending regions in
all cases with one exception discussed below. In the negative moment regions of continuous
beams, the slab concrete is neglected in all cases in determining the member flexural resistance.
Also, due to minor slip at the shear connectors between the slab and the steel girders and minor
cracking in the slab, the shrinkage forces are not likely to be fully effective. Hence, AASHTO
(2010), with one exception, considers that the shrinkage stresses are not an igaportant factor with
respect to strength for all types of composite sections in negative bending.

The exception to the above simplifications is addressed in AASHTO (2010
composite girders where the slab is longitudinally post-tensioned. In this c4
provisions indicate that the effect of shrinkage and long-term creep around

the life of the bridge. This article also states that the contributio 0 ’
closure pours between precast deck panels that have been aged t@iked cBhrinkage and creep
may need evaluation. AASHTO (2010) Article C6.10.1.1.1 '

construction where close tolerances on the final girder camb
of creep effects may not be appropriate. Refig@d analgsis of s
important in other types of structures requiring ¢
supporting elevated tracks for maglev trains (Fra
points out that general creep and shrinkage
due to temperature gradient throu

, the above handling
age effects also may be

girder cambers, e.g., in spans
4.6.6 of AASHTO (2010)

AASHTO (2010) classifies co i j positive bending as noncompact sections when
any of the limits listed in Sgct 3. is module are violated. The flexural resistance of
these section types is de elastically computed compression and tension
flange stresses to

(5.3.4-1)
(AASHTO 6.10.7.2.2-1)

and

(5.3.4-2)
(AASHTO 6.10.7.2.2-2)

respectively, where Ry is the web load-shedding strength reduction factor specified in AASHTO
Article 6.10.1.10.2 and Ry, is the hybrid web strength reduction factor specified in AASHTO
Article 6.10.1.10.1. These factors are discussed further in Section 5.3.5 of this module.
AASHTO (2010) specifies the resistance of these types of sections in terms of the elastically
computed flange stresses, rather than the stress-resultant moments, for the following reasons:
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1. The separate effects of noncomposite, short-term composite and long-term composite
loadings are considered explicitly in the strength assessment of these section types. For
noncompact sections, the moments due to the above separate loading effects cannot be
added together to determine the overall effect. The only rational way to address the
separate loading effects is to consider the elastic cross-section stresses directly.

2. Bridge cross-sections such as those shown in Figure 3 through Figure 5 are more likely in
longer-span structures where it may be desirable to violate one or more of the limits
stated in Section 5.3.3. In these cases, the appropriate slab effective wadth for use with
the main girders and/or with the secondary stringers potentially can bS§@gtermined more

moment format for the cross-section resistances requires further pro
assumptions about the effective width of the deck that acts i
steel members.

For compact composite sections in positive bending, the fl
larger than the yield moment capacity of the cross-section. Al
expressed in terms of elastically computed flafige str:
corresponding flange yield stress. Furthermore; a of Section 5.3.3, the elastic
stresses are generally redistributed by inelastic de strength limit is approached
in compact section members. Therefore, for tion members, the resistances are
expressed more naturally in terms

is nominally linear. AASHTO
checking for all types of ugsh construction, although it explicitly required that the
rete deck should be limited to 0.6f;' in shored
composite noncompa i bjected to positive bending, to ensure linear behavior
of the con . 10) requires this check for all types of construction, and provides

guidance g8 0 ases where this limit is apt to control.

In AASHTO (20M), the flexural resistance of all types of composite [-section members in
negative flexure, and of all types of noncomposite I-section members, is governed by the most
critical of the three following limit states:

e Lateral-torsional buckling (LTB),

e Compression flange local buckling (FLB), and
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e Tension flange yielding (TFY).

All of the AASHTO (2010) LTB and FLB resistance equations are based consistently on the
logic of identifying the two anchor points shown in Figure 60 for the case of uniform major-axis
bending. Anchor point 1 is located at the unbraced length L, = L, for LTB or flange slenderness
bre/2tie = Ayt for FLB corresponding to development of the maximum potential flexural resistance,
labeled as Fryax or Mpyax in the figure. Anchor point 2 is located at the length L, or flange
slenderness A at which the elastic LTB or FLB resistances are equal to RyFyr in terms of stress
or RyFyrSyc in terms of moment. The term Fy, is the nominal compression flagige stress at the
onset of significant yielding including residual stress effects, and Ry is the wctiga

strength reduction factor (equal to 1.0 for sections with compact or noncomps ). In most
cases, Fy is taken equal to 0.7Fc. The inelastic FLB and LTB resistances a d simply
and accurately by linear interpolation between the above two anchor points bt/ 215

See Art. D6.4.1

&DS4.2 :
Fne OF Mnc | Anchor Point 1 bendlng
ance under
Fmax or M max

RpFyror
Rbeerc ‘ 2
\\ \g o | g §
€SS ES
s !52
slender g2 =8
o |Eg | 5¢&
(elastic buckling) | 'E x| x
2 °
Ly or A KLp or bi/2ts
Figure 60 of fl local buckling (FLB) and lateral-torsional buckling (LTB)

C osite I-section members in negative bending and noncomposite
members (reprinted with permission from AASHTO (2004)).

For unbraced leN@hs subjected to moment gradient, the calculated LTB resistance is modified by
the factor Cy, as i[§strated by the dashed line in Figure 60. In these cases, the uniform bending
elastic and inelastic LTB strengths are simply scaled by Cp, with the exception that the resistance
is capped by Fmax or Mimax. The FLB resistance for moment gradient cases is the same as that for
uniform major-axis bending, neglecting the relatively minor influence of moment gradient on the
FLB strengths.

AASHTO (2010) Article C6.10.8.2.3 indicates that for rehabilitation design or in extraordinary

circumstances, the Engineer may consider modifying Ly in Figure 60 by an elastic effective
length factor (K) for lateral torsional buckling. However, in most design situations, common
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practice is to take Ly, as the actual unsupported length between the brace points corresponding to
the compression flange-level bracing and/or the diaphragm or cross-frame locations. Article
C6.10.8.2.3 recommends a simple hand method from Galambos (1998) and Nethercot and
Trahair (1976) for determining LTB effective length factors K in cases where some additional
calculation effort is merited. Ziemian (2010) also outlines this method. The application of this
procedure to prismatic I-section members is explained in Section 5.3.5 of this module, after
discussion of the more fundamental parameters illustrated in Figure 60.

The TFY flexural resistance addresses the general yielding of the tension flagge as the name
implies. However, depending on the slenderness of the web, the TFY resistal an be larger
than just the moment corresponding to nominal first yielding of the tension flanS@I'his aspect is
addressed in more detail in Section 5.3.5.

The governing flexural resistance is generally taken as the smaller of the va!
independently for each of the above idealized flexural limit states.

resistance, Fmax or Mmax, in uniform bendmg,? at th LB or TFY resistances are not
smaller. The uniform bending resistance for no lengths is reduced relative to
Fmax or Mmax due to inelastic LTB. Lastly, for sle ths in uniform bending, the

LTB resistance is defined by the correspon it 1
important to note that the LTB rest
(i.e., nonuniform bending along the eascd significantly due to the moment
gradient effects. As such, Fax or Miax
compact limit L. Thus, it is un
cross-frames to enforce L, < L

Similar to the above dis ns with compact compression flanges are able to
oncompact compression flanges have their flexural
FLB, and cross-sections with slender flanges have their flexural
B, assuming that the LTB or TFY resistances are not smaller.
ot explicitly provide any elastic FLB equations. This is

Mt b/2t:< 12 in Article 6.10.2.2 (Eq. 5.3.2-3) precludes elastic FLB
on members with Fyc <90 ksi. AASHTO (2010) simply uses its inelastic FLB
expressions int§@he elastic FLB range for the minor extent that by/2t; can potentially exceed At
for Fyc > 90 ksi. Wi

Also, as discussed in the following, the webs in [-section members are defined as either compact,
noncompact or slender under flexure. The maximum potential resistance Mmax s equal to the
plastic moment capacity My, for members with a compact web. However, the most economical
welded composite I-girders in negative bending, and welded noncomposite I-girders in positive
or negative bending, rarely have compact webs. In fact, welded I-section webs are often slender
under flexural compression. The Myax of slender web members is generally smaller than the
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compression flange yield moment My due to web bend buckling and shedding of load to the
compression flange. The detailed influences of the web slenderness on Myax are discussed in
Section 5.3.5 of this module.

All of the above definitions or classifications focus on separate member characteristics, i.e., the
unbraced length or LTB slenderness, the compression flange slenderness and the web
slenderness. This is slightly different from the classification of composite I-section members in
positive flexure, where the entire cross-section is defined as either compact or noncompact. It is
also somewhat different from prior AASHTO Specifications, which focused gn the classification
of entire cross-sections. The AASHTO (2010) emphasis on these separate mSgiae
characteristics is consistent with the approaches in AISC (1999, 2005 and 20108

The main LTB and FLB provisions in AASHTO (2010) Article 6.10.8.2 sp
resistances in terms of elastically computed compression flange stresses. A
this article are targeted specifically at the capacity of slender-web
Engineer is allowed to use these equations conservatively for all J88 ) [types as a
simplification. This simplification recognizes the fact that, with
members, bridge [-sections predominantly have slender or 1 ;
Appendix A6 of AASHTO (2010) specifies comparable and atlons for I-sectlon
members in negative bending and noncompoge I- s rs that have noncompact or

compact webs. The Appendix A6 equations ar¢ a of the equations in Article

6.10.8.2, and with minor exceptions, are fundame
noncompact- and compact-web noncomposj
(2010) Articles C6.10.6.2.3 and C

embers in AISC (2010). AASHTO

e Engineer should give strong

r [-sections with compact or nearly
compact webs in straight bridges. In ad TO (2010) equations in Article 6.10.8.2

equations for slender-web I-se ite (2008) details the minor differences

between the AASHTO (2Q O) 10) provisions. Several of the most significant of
these differences are out g Sections

The Appenp re expressed in terms of the section bending moment. The rationale
for use o t in Article 6.10.8.2 and the moment format in Appendix A6 is

sed in Section 5.3.4 of this module for noncompact and
compact co ¢ 8 1n positive bending.

The coordinate the anchor points shown in Figure 60 are (L, Mmax) and (Lr, RoFyrSyc) for
LTB and (Ayf, and (A, RpFyrSyc) for FLB in terms of the bending moment. The specific
terms associated With these anchor points are discussed in detail in the following Sections. Also,
since the noncompact bracing limit, L, and the noncompact compression flange slenderness
limit, A, are associated with the theoretical elastic buckling equations, the base elastic buckling
formulas are also presented. The following discussions are targeted at providing an overall
conceptual understanding of the AASHTO (2010) flexural resistance calculations. AASHTO
(2010) Appendix C6 provides detailed flowcharts that capture the complete application of the
flexural design provisions for I-section members. The Engineer is encouraged to consult these
flowcharts for an efficient organization of the corresponding calculations. White (2008) gives
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similar flowcharts that emphasize the unified nature of the AASHTO (2010) Article 6.10.8 and
Appendix A6 equations.

5.3.5.2 Maximum potential flexural resistance, M,,, or F,x
5.3.5.2.1 Compact- and noncompact-web sections

As noted in the above, Mnay 1s equal to the cross-section plastic moment capacity M, for
members with compact webs. However, for members with noncompact or slgnder webs, the
ordinate of Anchor Point 1, Mmnax or Fmax, decreases as a function of the web derness 2D/t
For noncompact-web members, Mmax decreases linearly as a function of 2D/t
compact- and noncompact-web limits Apy and Any, as shown in Figure 61. T, apact-web
limit is given by the equation

B =57 /E
Fe

This limit is the value of 2D./t,, at which an I-ggction js nomi
or a compression flange yield stress Fpax = R&, i

flexure, referred to as web bend buckling. The th
discussed subsequently in Section 5.3.10 of this mo
web limit as

(5.3.5-1)

(AASHTO 6.10.6.2.3-1, A6. .2.2-38A1SC Table B4.1b)

y able evelop Mmax = RnMye,
onset of local web buckling in
nd to this equation is

. AASHTO (2010) defines the compact-

(5.3.5-2)

(AASHTO A6.2.2-6 & 6.2.1-2, AISC Table B4.1b)

er demands on the web required to develop the cross-section
ric cross-sections. The term D¢/Dep in the numerator converts
this equatio tunde@ntal form associated with the plastic depth of the web in

o the form associated with the elastic depth of the web in compression, D.

so that a consistent web slenderness parameter, 2D./ty, may be employed for
the linear interp@@ion between the anchor points (Apw, Mp) and (A, RnMyc) in Figure 61. For a
homogeneous dowbly-symmetric I-section with D¢/D¢p, = 1.0 and an assumed Mp/My=1.12, Eq.
(2) reduces to the limit in Eq. (5.3.3-1). The requirement of Apwic) < Arw in Eq. (2) conservatively
defines the compact-web limit as Apwpc) = Anw for singly-symmetric sections with proportions
such that the section is classified as slender based on the elastic depth of the web in compression
and Eq. (1), but as compact based on the plastic depth of the web in compression D¢, and the
fundamental form of Eq. (2) with the ratio D¢/D¢p removed from its numerator. This type of
cross-section is possible in negative bending regions of continuous-span I-girders having a
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significantly larger bottom compression flange. White (2008) shows a practical cross-section for
Wthh kpw(Dc) = 7\4’\/\/.
Mmax

Mp

|~y
| 1\
|

RMe F——————————FL -} ——_=>

RthMyc

not always
Rpc > Rh)

—~~

|
|
|
|
|
I usually but
|
|
I
|
|
|

Compact Noncompact Slender

Apw(Dc)

Figure 61 Variation of My for FLB and LTB versus ness Ay = 2D/t
The linear interpolation between (Apw, Mmax Zﬁp
represented by the web plastification factor, Ry, 1
parameter is simply equal to the cross-secti

RnMyc) shown in Figure 61 is
) (and in AISC (2010)). This
r, Mp/Myc, for a compact-web section. It
Wearly between Mp/Myc and Ry, for
noncompact-web sections. One shou redter than one in most situations for
girders with noncompact webs. Howeve ater than M, for some extreme singly-
pression and a neutral axis close to the
compression flange (this is be
calculation of My¢). In th

For 2D/t
shown in Fi
or Fmax due to
bend buckling
reduction factor

2D
R, = w 4 <1.0 (5.3.5-3)
1200 +300a,,

ding of flexural stresses to the compression flange associated with the post-
onse of the web. The base AASHTO (2010) web load-shedding strength
ritten as

(AASHTO 6.10.1.10.2-3, AISC F5-6)
where ayc = 2Dctw/Arc and Ay is the area of the compression flange (including cover plates, etc. as

applicable). This equation is the more general and accurate form of two equations developed by
Basler and Thurlimann (1961). For composite sections in negative bending, AASHTO (2010)
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Article 6.10.1.10.2 specifies the use of the depth of the web in compression D, for the section
consisting of the steel girder plus the longitudinal deck reinforcement within the slab effective
width in determining Ry, by Eq. (3).

If a more refined calculation is desired for Rp, AASHTO (2010) Article C6.10.1.10.2 suggests
the use of Fne1 for Fyc in the Ay term of Eq. (3), where Fpe; 1s the smaller of:

1.The nominal flexural resistance of the compression flange Fn. computed assuming Ry, and
Ry are both equal to one, or

smaller than the actual R, corresponding to the maximum
importantly, this practice can lead to subsequent difficulties
resistance becomes a function of the applied
of the calculated flexural resistance on the applie ossible to mitigate subsequent
load rating difficulties. The calculation of D in g. (3) for composite sections
in negative bending is another area where a f the resistance on the applied loading

has been eliminated. Since transv I
differences in Ry based on the simple Fnct in the Ay term of Eq. (3) are typically
only a few percent for these member t 1
for routine practice.

0) has eliminated dependencies

AASHTO (2010) Article
approximates the benefj

separate equation for ay, that conservatively
crete composite deck for calculation of Ry in

¢ bending. AASHTO (2010) Article C6.10.1.10.2
ual to one for composite sections in positive bending that satisty

posite longltudlnally-stlffened sections in positive bending, which are

d as noncompact sections based on the second requirement listed in Section
5.3.3(A) of this Nl@dule, will sometimes have Ry values smaller than 1.0.

The calculation of Ry, for longitudinally-stiffened sections in AASHTO (2010) hinges on an
explicit check of whether web bend buckling is prevented up to the development of the
compression flange yield strength Fyc. Longitudinally-stiffened sections that satisfy the limit

t9s095 Ek (5.3.5-4)

w yc

(AASHTO 6.10.1.10.2-1)
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where K is the local bend-buckling coefficient for webs with longitudinal stiffeners specified in
Article 6.10.1.9.2, are able to develop the compression flange yield strength prior to nominal
web bend buckling. In these cases, Ry, is specified equal to 1.0. However, for longitudinally-
stiffened sections that exhibit bend buckling at smaller compression flange stress levels, R, must
be calculated from Eq. (3). Equation (3) does not account for any influence of the longitudinal
stiffeners on the load shedding from the post-buckled longitudinally-stiffened web. This is
because the AASHTO (2010) Article 6.10.11.3 requirements for longitudinal stiffeners only
target the development of the web bend buckling resistance. The longitudinal stiffener
requirements generally are not sufficient to hold a line of near zero lateral deflection in a post-
buckled web plate. The AASHTO (2010) approach of not including any infl e of the

sections to the web bend buckling resistance, is overly conservative relative
practice. AISC (2010) does not address the design of longitudinall

5.3.5.2.3 Hybrid-web strength reduction factor

As noted above, the term Rp, is the hybrid web strength redu fa factor accounts for
the reduced contribution of the web to the noyal ance at the first yielding of any
flange element, due to earlier yielding of a lower eb. In AASHTO (2010), this
factor is defined by the single equation,

R, _12+8Gp-p") (5.3.5-5)
12+28

(AASHTO 6.10.1.10.1-1)

for all types of composite and @@ncomposg bers, where

(AASHTO 6.10.1.10.1-2)

p
At area and the area of any cover plates on the side of the neutral axis
ponding to Dy. For composite sections in negative bending, the area of the
dinal reinforcement may be included in calculating As, for the top flange.

D, = larger of the distances from the elastic neutral axis of the cross-section to the inside
face of either flange. For sections where the neutral axis is at the mid-depth of the
web, the distance from the neutral axis to the inside face of the flange on the side of
the neutral axis where yielding occurs first.

fn = for sections where yielding occurs first in the flange, a cover plate or the

longitudinal reinforcement on the side of the neutral axis corresponding to Dy, the
largest of the specified minimum yield strengths of each component included in the
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calculation of As,. Otherwise, the largest of the elastic stresses in the flange, cover
plate or longitudinal reinforcement on the side of the neutral axis corresponding to
D, at first yield on the opposite side of the neutral axis.

These definitions account for all possible combinations associated with different positions of the
elastic neutral axis and different yield strengths of the top and bottom flange elements. Equation
(5) is adapted from a fundamental strength reduction equation, originally derived for doubly-
symmetric [-sections (ASCE 1968; Schilling 1968; Frost and Schilling 1964), to handle singly-
symmetric and composite sections. This is accomplished by focusing on the 'de of the neutral
axis where yielding occurs first. This side of the neutral axis has the most ex

prior to first yielding of any flange element. All of the flange elements on this of the neutral
axis are conservatively assumed to be located at the edge of the web. The oy tion is
also adapted by assuming that the shift in the neutral axis due to the onset g 1S
neghglble These assumptlons are 51m11ar to those used in the development

determine Ry, directly from an iterative strain-compatibility a
computed Ry, values from Eq. (5) are typicallvose ﬁned calculation will typically
provide little benefit.

5.3.5.2.4 Other considerations
For sections with 2D¢/ty < Arw, AAS

restrictions on the use of Mpax values la
of noncomposite I-sections is s

.10.6.2.3 and A6.1 apply two

Fmax > RnFyc). If the compression flange
ller than the tension flange such that

lye / 1yt < 0.3 (5.3.5-7)
(AASHTO 6.10.6.2.3-2 & A6.1-2)

culate the flexural resistance conservatively based on the slender-
e 6.10.8. This restriction guards against the use of extremely

. nalytical studies indicate a significant loss in the influence of
the St. Vena @ty GJ on the LTB resistance due to cross-section distortion. If the

1 thickness, this limit is equivalent to by < 0.67bg. AISC (2010) requires the
use of J = 0 in §#8 calculation of L, and the elastic LTB resistance for singly-symmetric I-
sections that sati§llk Eq. (7), but expressed as ly¢/l, < 0.23; otherwise, AISC (2010) permits the
calculation of M,% as shown in Figure 61 for compact- and noncompact-web members. Based
on the results from White and Jung (2007), the AASHTO restriction is considered more prudent.
Also, AASHTO Article 6.10.6.2.3 requires the use of the slender-web member equations and
disallows the use of Appendix A6 for all bridges with kinked (chorded) continuous or
horizontally curved segments. As noted previously in Section 3 of this module, this restriction is
based on the limited information about the influence of cross-section partial yielding on the
response of curved bridge structural systems. The component studies on which the AASHTO
(2010) curved I-girder resistances are based (White and Jung 2008; White and Kim 2008; White
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et al. 2008) fully support the use of Appendix A6 as well as Article 6.10.7.1 for composite and
noncomposite curved I-girders. The studies by Beshah and Wright (2010) and Jung and White
(2010) support the use of these Articles for curved I-girder bridges. However, as noted in Section
3, further studies are needed to address the influence of partial cross-section yielding on
continuous-span curved [-girder bridges.

5.3.5.3 Tension flange yielding (TFY) resistance

Mhn(rey)
Mp |
ﬁ\
RiMy [-————————— = —f === .
|
: RoMye
|| (usually but |
I not always |
| Rpt > Rh) I
|
|
|
|
Compact Slender
Arw 2Dty
Figure 62 Variation of the tensi i ( ) resistance Mn(TFY) versus the
2D¢/ty.

Prior to considering the other
definition of the AASHTQg?2 tance. The AASHTO TFY resistance varies with the
web slenderness in a fas i ariation of Mnax and Fnax. However, the Ry factor is
not applied in determi nce of slender-web sections since the tension flange
stress 1s ng@increased si antly by the shedding of the web compressive stresses (Basler and

Thurlima 10 strates the variation of the TFY resistance as a function of the
web slendeik % (2010) Article 6.8.10.3 defines the TFY resistance of slender-
web sections g a@1ist yielding of the tension flange reduced by any hybrid web
effects, RnFyt s of the tension flange stress, or RnFy:Syt = RnMy in terms of the member
bending momeR@However, Articles A6.2 and A6.3 define a TFY resistance that varies linearly
from RnMy; to th§ection plastic moment Mp, as the web slenderness 2D/t varies from Apy to
Apw(De)- Finally, fof compact-web sections, the TFY resistance is equal to Mp.

Similar to the web plastification factor Rpc used in defining Mmayx for LTB and FLB of
noncompact- and compact-web I-section members, AASHTO (2010) specifies a web
plastification factor Ry that corresponds to the TFY limit state. Similar to Rpe, Ryt 1s simply equal
to the cross-section shape factor Mp/My; for compact-web sections, and it may be considered as
an effective shape factor for noncompact-web sections. Also, similar to Ry, Rpt can be less than
one for extremely monosymmetric I-sections, basically sections that have a significantly larger
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tension flange causing the neutral axis to be very close to the tension flange (in these sections,
Myt can be greater then My due to the neglect of earlier yielding in compression). However, in
these cases, Rpc will be greater than Ry and the LTB or FLB resistance equations will usually
govern.

For sections in which My > My, TFY never governs and does not need to be checked.

5.3.5.4 Compact bracing limit, L,

AASHTO (2010) specifies the equation

L, =1.0r, ,E
F

as the compact bracing limit for all types of composite I-section
and for all types of noncomposite I-section members. This
analysis of experimental data by Yu and Sause (2002), Whi
Kim (2008). These studies demonstrate that t@nela tic LT

accurately using this single equation, with no Wriatf nction of web slenderness,
etc. other than via the radius of gyration r;, combf ble expressions for Mpax or
Fmax discussed in Section 5.3.5 of this module. The Y@@hius of gyration in Eq. (8) can be calculated
in all cases using the equation

extensive
and White and

(5.3.5-9)

(ASHTO 6.10.8.2.3-9 & A6.3.3-10)

the cross-sectioN@kaxis, I'yc, and the radius of gyration of the complete cross-section about its y
axis, ry. The radif§Pof gyration Iy is in general not appropriate because it neglects the
destabilizing effect of the web compression. Also, the radius of gyration ry is not appropriate for
singly-symmetric and composite [-section members since it does not properly account for the
influence of the cross-section monosymmetry on the LTB response. The radius of gyration Iy
provides the best overall characterization for all I-section types not only within the context of Eq.
(8), but also within the elastic LTB calculations discussed in Section 5.3.5 of this module. This
statement is based on the simplicity of the equations as well as the accuracy of the predictions
relative to experimental and refined analytical resistances.
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Equation (8) generally gives somewhat smaller L, values than in prior AISC and AASHTO
Specifications. However, for slender-web members, if Eq. (8) is substituted into the original
CRC based expression for the LTB resistance suggested by Basler and Thurlimann (1961) and
summarized by Cooper et al. (1978), a strength of 0.97My is obtained for members with R, and
Rh equal to one. If Ly/ri from Eq. (8) is substituted as an equivalent slenderness ratio into the
column strength Eqgs. (5.2.1-4) and (5.2.1-1a), a resistance of 0.96My is obtained.

The more liberal L, equations in previous AASHTO and AISC Specifications are based largely
on the studies by Yura et al. (1978), where the L, limit

300r,
L, =2 —1.76r, |-= (5.3.5-10)
VR s
was recommended for doubly-symmetric steel I-section members wj .
compact flanges. However, the original study by Galambos and 0 mended

240r, E

L, = =1.41r, |—
P E y

Fre
for these member types. Table 1 of Yura et al. (1
on predictions of experimental results as in Galam
(1978) propose different L, equatiogs. Th
Yura et al. (1978) Table 1 is Eq. (
rolled wide-flange sections. Therefor

fE

ed

(5.3.5-11)
) re me resistance factors ¢ based
nd Rav (1976), although Yura et al.

ession corresponding to the ¢ factors in
r./ry ranges from 1.12 to 1.28 for
g. (11) may be expressed as

Cooper et al. (1978) s

(5.3.5-13)

(5.3.5-14)

for slender-web I-section members (referred to as plate girders) in AISC (1986), apparently to
match the coefficient in Eq. (10) and to produce comparable compactly-braced results to the
AISC (1978) Allowable Stress Design (ASD) equations. AISC (1986) also specified Eq. (10) for
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singly-symmetric I-section members, but AISC (1993 & 1999) subsequently changed the L, limit
for these members to

E
L, =1.76r, /E (5.3.5-15)

As discussed by White and Jung (2003b), ryc can be substantially larger than ry and ry. Therefore,
Eq. (15) liberalizes the AISC (1993 & 1999) L, equations for singly-symmetric I-section

members even further. The prior AASHTO equations for L, were largely ad€@ie
using the coefficient of 1.76 but with radii of gyration that in some cases differG@rom the AISC
equations.

White and Jung (2008) show that Eq. (8) with a coefficient of 1.1 gives an
reliability index throughout the compactly- and noncompactly-bracedgsg

approximately one percent). AISC (2010) uses Eq. (8) with ghcod except for

ctadfiPd from AISC
(1986, 1993 & 1999). White and Chang (2007 show that Eq. ith"acoefficient of 1.1 gives
resistances are that are larger than the traditio s for most compact-web I-
section members. The maximum difference in th Eq. (10) versus Eq. (8) with
a coefficient of 1.1 is approximately six percent.

C (2010) Mye

Test Results

1 2 3 4
KL, (Fo/E)*° /1, (K =0.66 & 0.91)

Figure 63 Co rison of rolled beam I-section uniform bending test results from Dux and

Kitipornchai (1383) and Wong-Chung and Kitipornchai (1987) to the AASHTO (2010) and

AISC (2010) flexural resistances (Fyc = 41.3 and 42.5 ksi, LTB effective length factors K =
0.66 and 0.91).

Figure 63 compares the predictions by AASHTO (2010) and AISC (2010) for a set of rolled I-
beam tests in uniform bending conducted by Dux and Kitipornchai (1983) and Wong-Chung and
Kitipornchai (1987). Figure 64 shows the AASHTO and AISC predictions for a suite of
noncompact-web member tests in uniform bending conducted by Richter (1998). The unbraced
lengths Lb are modified using the Nethercot and Trahair (1976) effective length factor K

126



(discussed subsequently in Section 5.3.5 of this module) for the Dux and Kitipornchai (1983) and
Wong-Chung and Kitipornchai (1987) tests. The Nethercot and Trahair (1976) K factors are
equal to 1.0 in all cases for the Richter (1998) tests.

1.2
1.0

0.8 X
0.6 \‘\\K

—— AASHTO (2010) Mp¢

M/Mp

0.4 ———— AISC (2010) My¢

0.2 X Test Results

0.0 ‘ ‘
0 1 2
(Fye /E)°KLo/ 1¢ (K = 1)

Figure 64 Comparison of compact-flange noncompact-
uniform bending, from Richter (1998), to the AASHT
resistances (bs/2t;. = 8.0 t0 8.1, R/t,, =

Equation (8) provides the best combination of si
section members) and accuracy (near uniformj
compactly- and noncompactly-bra
differences in the results using the v
exception of the application of Eq. (15
Eq. (8) facilitates the assessment

p are relatively small with the

tric I-section members. The use of r; in
posite I-section members subjected to negative
ics of the portion of the cross-section subjected
to flexural compression.

5.3.5.5 Compact flan

(5.3.5-16)
(AASHTO 6.10.8.2.2-4 & A6.3.2-4, AISC Table B4.1b)
for all types of I-section members. This equation is identical to the compact-flange limit in AISC
(1989 & 1999) and is based largely on the original research by Lukey et al. (1969) as well as the
subsequent studies by Johnson (1985).

5.3.5.6 Compression flange stress at the nominal onset of inelastic buckling, F,,

AASHTO (2010) specifies Fyr = 0.7F with the exception of (1) highly monosymmetric
compact-web and noncompact-web cross-sections with the larger flange in compression, where
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the neutral axis is so close to the compression flange that nominal tension flange yielding occurs
prior to reaching a stress of 0.7Fyc at the compression flange and (2) hybrid web members in
general where Fyy < 0.7Fyc. To address these cases, AASHTO (2010) Articles A6.3.2 and A6.3.3
specify

F.r :minLOJch, F %, FYWJZO.SFyC (5.3.5-17)

XC

The product FySy in the second term of this equation is the moment corresp@@ling to nominal
yielding at the tension flange. This value, divided by the section modulus to th&{@ i
flange, Sy, is the compression flange stress corresponding to the onset of nog plding at the
tension flange. The third term interprets the web yield stress as the limit co
onset of significant inelastic stability effects for hybrid sections with unusu!
Fyw relative to Fyc. In extreme cases where FySyi/Syc or Fyy is less th (2010)
uses a minimum value of Fy, = 0.5Fc.

For slender-web members, AASHTO (2010) Article 6.10.8 Asp

F, =min(0.7F,, F,, ) >0.5F, TS (5.3.5-18)
That is, the second-term in Eq. (17) is not conside i cation is possible because the
TFY resistance of slender-web members is nominal first yielding of the tension

ince the TFY resistance for compact-
hMyt, Eq. (17) is necessary to avoid
significant violation of the assumption 0O 1 r behavior when using the AASHTO

The AASH TB resistances are based on a single equation applicable for all
embers. This equation gives the exact beam-theory solution for LTB of
I-section members, and it gives an accurate to somewhat conservative
approximation ingly-symmetric noncomposite members and composite members in negative
bending (White afid Jung 2003 a & b; White 2008). This equation may be written in terms of the
compression flange flexural stress as

n’E 0.078
Fcr = I:e4LTB :Cb (I—b/rt)2 I+ X2 (Lb/rt)z (535_19)

(AASHTO A6.3.3-8, AISC F2-4 & F4-5)

where
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X2 = (5.3.5-20)

It is approximately the radius of gyration of the compression flange plus one-third of the area of
the web in compression, Sy is the elastic section modulus to the compression flange, h is the
distance between the centroids of the flange elements, and J is the St. Venant torsion constant of
the steel I-section. Equation (20) is a simple ratio of the bending and torsional efficiencies of the
cross-section. For a doubly-symmetric I-section, X? = 21,/J. This parameter ranges from 13 to
2500 for the complete set of ASTM A6 W shapes.

with J taken equal to zero, by the web load shedding parameter Ry, to obtait
stress at elastic LTB, i.e., For = RyFeL18. The notation Fe  1g is used in this

The radius of gyration I may be calculated exactly as

o (chw)l/4 ‘

t 1/2
Sy

(5.3.5-21)

(AISC F2-7)

for doubly-symmetric I-sections (
refers to the corresponding radius of g
singly-symmetric I-section me
rectangular flange I-section as

32). KISC (2010) gives this equation, but
oid its potential erroneous use for

(5.3.5-22)

(AASHTO C6.10.8.2.3-1, AISC F4-10)

where d is th
of the web-to-

depth of the member, D is the depth of the web, and Agsjjiet 1s the area of each
e fillets (White and Jung 2003a). (Note that Agijet is generally taken equal to
zero for welded ction members.) If one assumes d = h = D and Asijet = 0, Eq. (22) reduces to
Eq. (9) which is pCcisely the equation for the radius of gyration of the compression flange plus
one-third of the depth of the web in compression. Equation (22) gives results that are within one
percent of the exact Eq. (21) for all rolled I-sections. Due to compensating effects within the
approximation of Eq. (22) by Eq. (9), Eq. (9) also tends to give an accurate but slightly
conservative approximation of Eq. (21) for general doubly-symmetric I-shapes.

For column-type I-sections with D/bs. = 1, D/t less than about 50 and compact flanges, the

second term under the radical in Eq. (19) tends to be significantly larger than one. As such, it
would be quite uneconomical to discount this major contribution to the resistance to obtain a
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simpler form for Eq. (19). However, in situations involving beam- or girder-type I-sections with
D/by greater than about two and by/2ts; near the compact-flange limit Ay or larger, the
contribution from the second term in Eq. (19) is relatively small (White and Jung 2003a).

For slender-web members, the contribution from the radical in Eq. (19) is neglected altogether,
due to the reduction in the effective St. Venant torsional stiffness associated with web
distortional flexibility (i.e., the deformation of the web into an S shape upon twisting of the
cross-section, and the corresponding reduction in the twist rotation of the flanges) (White and
Jung 2007). In this case, Eq. (19) reduces to the form

°E
Foirs =Gy NG (5.3.5-23)
t

(AASHTO 6. F5-4)

by the web load shedding strength reduction factor, Ry, to obtai
resistance in terms of the compression flange stress for sle

5.3.5.8 Noncompact bracing limit, L, ‘

The noncompact bracing limit L, is obtained by i lastic LTB resistance for

uniform bending (Cp = 1) to the compression flang ss at the fominal onset of yielding, Fyr.
Equation (19) results in the followag succd
spacing,

(5.3.5-24)
(AASHTO A6.3.3-5, AISC F2-6 & F4-8)

applicable for all types mpact- and noncompact-web [-section members, whereas Eq. (23)

(5.3.5-25)
(AASHTO 6.10.8.2.3-5, AISC F5-5)

White and Jung (Z003b) give a closed-form alternative expression to Eq. (24) for compact- and
noncompact-web singly-symmetric I-sections, based on the rigorous application of open-section
thin-walled beam theory. Unfortunately, this equation is significantly longer than Eq. (24). Also,
due to the larger effects of web distortion in singly-symmetric members, the rigorous beam-
theory equation does not necessarily give a better representation of the physical buckling
resistance (White and Jung 2007).
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5.3.5.9 Elastic FLB stress, £,

The elastic plate local buckling equation defined previously by Eq. (5.2.4-1) is also the base
equation for the I-section FLB resistances in AASHTO (2010). Furthermore, the FLB
coefficients k; defined by Cases 1 and 2 of Table 5 are employed for noncompact- and compact-
web built-up and rolled I-sections in flexure. However, for slender-web I-section members,
Article 6.10.8.2.2 implicitly assumes k. = 0.35 as an accurate to conservative simplification. As
noted in Section 5.2.4 of this module, the FLB coefficient for simply-supported edge conditions
at the web-flange juncture is k. = 0.43. Therefore, smaller values of k; indicagg that the web is
tending to destabilize the flange. The equation for k¢ in Case 1 of Table 5 wa
originally by equating the results from the AISC LRFD (1993) resistance equaiito measured

experimental test results. Case 1 of Table 5 may be considered ag
approximate lower-bound value for the FLB coefficient for gene

5.3.5.10 Noncompact flange slenderness limit, A ,r

limit At is obtained by
ssion flange stress at the

Similar to the calculation of L;, the noncompact
equating the elastic FLB stress given by Eq. (5.2.
nominal onset of yielding, Fy,. The gesulti

2y =0.95 [ E/F, (5.3.5-26)

(AASHTO A6.3.2-4, AISC Table B4.1a)

By substituting the implicitly 8&umed vaf@ig of X; = 0.35 into this equation, one obtains

Ay =0.56,[E/F,, (5.3.5-27)

(AASHTO 6.10.8.2.2-5)

for the nond erness limit within the main AASHTO (2010) provisions.

5.3.5.11 pbment gradient modifier, C}

As illustrated prdg@pously in Figure 60, the effect of any variation in the moment along the
unbraced length is accounted for in AASHTO (2010) and AISC (2010) via the moment gradient
modifier Cy. The C, modifier has a base value of 1.0 when the moment and the corresponding
compression flange major-axis bending stresses are uniform along the length between the brace
points. Furthermore, C, may be conservatively taken equal to 1.0 for all cases, with the exception
of:

e Situations involving significant top flange loading either on unbraced cantilevers or on
members with no intermediate bracing in the entire span, and
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e General unbraced cantilevers with less than essentially rigid warping restraint at their
fixed end due to flexible end connections or continuity with a flexible back-span
(Ziemian 2010).

(For cases involving flexure in members other than in horizontal (i.e., in-plan) framing, the “top”
flange may be considered as the flange opposite to the direction of the applied loads causing the
major-axis bending, assuming that all the applied loads are in the same direction. Also, the
“vertical” supports may be taken as the supports corresponding to the reactions associated with
major-axis bending.)

Whenever both ends of a cantilevered girder are prevented from twisting (b -frames or
diaphragms), the behavior is effectively the same as that of an ordinary sp

supports and twisting restrained at both ends. Therefore, if one or more inte are
provided within either an ordinary span or a cantilever span in wh ted from

twisting, load height effects do not need to be considered in the g . Helwig et al.
(1997) discuss mitigating factors regarding load-height effects t
Cases in which the ends of a span are not prevented from tvigtin
consideration regardless of the loading and span type.

For the above “common situations,” AASHT’(
equations for Cy, both of which tend to give accu
(2010) specifies the formula

010) specify different
onservative solutions. AISC

12.5M,__

= (5.3.5-28)
25M . +3M, +4M, +

b

(AISC F1-1 & C-F1-3)

Mmax = absolute eo

absolute va

f the moment at the quarter point of the unbraced segment

= 1.0 for doubly-symmetric members

= 1.0 for singly-symmetric members subjected to single-curvature bending

2
|
= 05+ 2[%} (5.3.5-29)

y
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for singly-symmetric members subjected to reverse-curvature bending.
Conversely, AASHTO (2010) Article 6.10.8.2.3 specifies

C,=1.0 (5.3.5-30a)
(AASHTO 6.10.8.2.3-6)

for members where fnig/f> > 1 or f, =0, and

2
Cb:l]S_IDS{L+Q3f%J <23 (5.3.5-30b)

2 2

for all other common situations, where

f, = absolute value of the largest factored compressive ma ing stress at either
end of the unbraced length of the flange under ermined from the
critical moment envelope value. If the stress is the flange under
consideration at both ends of the unbged le

fmia = factored major-axis bending stress at t
under consideration, calculated from the ent envelope value that gives the largest
compression at this point if this point is never in compression,
taken as positive in compre i i

fi="1 (5.3.5-31)

(AASHTO 6.10.8.2.3-10)

when the variation in the c8@8iress bet
otherwise

en the brace points is concave in shape, and

fi = 2fmi (5.3.5-32)
(AASHTO 6.10.8.2.3-11)

fo = factore -axis bending stress at the brace point opposite to the one corresponding to
d from the moment envelope value that gives the largest compression at this
flange under consideration, or the smallest tension if this point is never in
taken as positive in compression and negative in tension.

point in
compressi
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i f/f, = - 0.375

fi=f, <0 V M‘mid Cp,=2.19

Concave flange stress envelope

f/fi,= 0.375
Cp = 1.40

_______ fmid/fZ = 075

ge stress envelope

Figure 65 Sample cases culatio the AASHTO (2010) moment gradient modifier,
m A TO (2010) Article C6.4.10.

Figure 65 le cases that illustrate the application of the AASHTO procedure
The first t cave flange stress envelope, that is, |fmig| is smaller than the
absolute va » and f,. For these cases, f; is taken equal to f, and the
application 0 same as in prior AASHTO Specifications. However, the second

a convex flange stress envelope. The prior usage of Eq. (30b) results in
ervative error in many of these cases. For example, the prior AASHTO
Specifications d use f; = 0 in the third case, resulting in C, = 1.75. The above AASHTO
(2010) equations Erfectively define f; as the ordinate of a straight line that goes from f; at the
opposite end of the unbraced length through fyig at the mid-length. This definition gives Cp, =
1.30, which is a more accurate representation of analytical solutions (Ziemian 2010). Other
sample cases are illustrated in AASHTO (2010) Article C6.4.10.

two cases inv4
significant uncQ

For reverse-curvature bending, both the AISC and AASHTO procedures require the Engineer to
check LTB considering the base resistance for uniform bending, scaled by the appropriate Cy
value for each of the member flanges. In the AISC method, one Cy, factor is calculated and
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applied to both flanges. In the AASHTO method, a separate Cy, factor is calculated using Egs.
(30) to (32) for each flange.

Figure 66 illustrates the Cy, calculations for several representative examples by both of the above
procedures. The results are compared to the exact LTB solutions for the two I-girder cross-
sections shown in Figure 67. An unbraced length-to-depth ratio of Ly/h = 12.5 (L, =75 ft) is
assumed for the first four examples, and an unbraced length-to-depth ratio of 8.0 (L, = 48 ft) is
assumed for the last example. The cross-sections shown in Figure 67 are similar in terms of
behavioral characteristics to those used by Helwig et al. (1997) in their studigs. Both cross-
sections satisfy the AASHTO (2010) Article 6.10.2 proportioning requiremeNgand, for the 150
and 144 ft continuous-span examples in Figure 66 (the fourth and fifth ones), thS8@sections are
representative of I-girder designs using the AASHTO Specifications. The si
cross-section shown in Figure 67 is a representative extreme case with ly¢/I psitive
bending), which is smaller than the Eq. (7) limit but satisfies Eq. (5.3.2-6).

‘N
\
™
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by AISC (2010) and AASHTO (2010) for several

66 Calculation of C,

Figure

representative design examples.
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tiop =1.1251in
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tr=1.5in tipot = 1.510N
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Doubly-Symmetric Girder Singly-Symmetri

Figure 67 Cross-sections used in the exa

For demonstration purposes, non-moving 10a§are a ifligure 66 such that the moment
envelopes and the moment diagrams are the sa osite members are assumed
since Eq. (28) is not applicable for composite me of noncomposite members,
the distribution of the flange stresses along t length is the same as the distribution of
the member bending moments. H mbers, the distribution of the flange

stresses and the bending moments a
site, short-term composite and long-te

fluence of the separate noncompo-
ings, and due to the different effective

The exact solutions are open-section thin-walled beam element in GT-
Sabre (Chang and Wh tions are determined by analyzing the various
unbraced lgaoths as isol egments assuming torsionally simply-supported end conditions

(i.e., the nd warping are unrestrained at the ends of the isolated unbraced

Ch exact (5.3.5-33)
where
M¢r = buckling moment corresponding to the cross-section with the largest compression stress in

the flange under consideration for any of the loadings causing non-uniform moment along

the unbraced length, and

Mcro = buckling moment corresponding to uniform compression in the flange under
consideration.
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This is the same as the calculation of Cp exact by Helwig et al. (1997). The exact Cp, values are
presented only with the AISC (2010) calculations in Figure 66, to simplify the figure. Both the
AISC and the AASHTO design values are compared to these exact solutions. The number in
parentheses after the reported design Cp values is the ratio of the design Cy, value to the relevant
Chexact- As noted above, for the reverse-curvature bending cases, one Cy, value is applied to both
flanges in the AISC procedure. The LTB strength prediction is governed by the flange that has
the smallest ratio of Cp, / Cp exact. In the AASHTO procedure, separate Cp, values are determined
for each flange in cases involving reverse curvature bending. The ratio of the predicted to exact

LTB resistance is governed by the flange that has the smallest ratio of Cp / Cige

reader is referred to Helwig et al. (1996) for examples that show that Eq. (2 gives

accurate results for singly-symmetric beams in single-curvature bending.

The AASHTO (2010) procedure involves fewer ¢
stress diagram is concave (e.g., the bottom flange
unbraced lengths of the two-span cogfiguo
simply the flange stresses at the ends of t ent under consideration. That
is, f; and f, are the same as in the tra g. (30b). In other cases, the
Engineer only needs to determine compressive flange stress, f,, and the

ples), f; and f, in Egs. (30) are

> By using Eq. (32) to define f; in these

unbraced length through fnig at
1 ificantly improved relative to the traditional usage

cases, the accuracy of E 1s

ent diagrams in reverse curvature bending and smaller values of
WK itipornchai et al. (1986) for more accurate estimates of Cy, in these
quations (30) give accurate to somewhat conservative calculations relative to
omplex equations presented by Kitipornchai et al. (1986) for linear moment

For longer unbraced lengths, nonlinear moment diagrams (i.e., transverse loading within
the unbraced length) and single-curvature bending, Eq. (28) often gives more accurate
estimates than Eqs. (30). For example, for the left-most unbraced length in the first
continuous-span example of Figure 66, Eq. (28) gives C, = 1.17 (versus Cpexact = 1.17)
while Egs. (30) give C, = 1.0. However, for the unbraced lengths in single-curvature
bending in the second continuous-span example, which still has only two internal brace
points, the C, values calculated using Eq. (30b) are essentially the same as those
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calculated using Eq. (28). Both of the design Cp calculations are only slightly
conservative compared to the exact values for the specific doubly-symmetric I-girder
considered in this study.

e For the continuous-span beam segments subjected to reverse-curvature bending, Egs. (28)
and (30b) both give accurate to somewhat conservative results for the doubly-symmetric
cross-section. However, for the singly-symmetric cross-section, Eq. (28) is quite
conservative relative to the exact elastic LTB solutions. For cases with a smaller top
flange (ly.wop/ly < 0.5), Eq. (29) gives an abrupt drop in the calculatedaCy, value regardless
of the length of the top flange subjected to compression. Also, the t¢ Ma, Mg and M¢

section in Figure 66, Eq. (28) gives a more accurate ej
equal to 1.0 (such that the C, calculation is the s
cross-section member). For the third example (the
both ends and reverse-curvature bending) the resulti
giving a ratio of the design estimate ee
rather than the ratio 0.41 shown in the fi t-most unbraced length in the
fourth example, the resulting Cp is 2. _ ot = 2.42, giving a ratio of
2.63/2.42 = 1.09. This is within the b/Ch exact ratios for the examples studied

sus Cp, top.exact — =3.14,
calculatlon 0f 2.27/3.14 =0.72

0.48. However, for more extre ture bending cases on singly-symmetric
cross-section members, here are no intermediate braces within the span,
the calculation of Ry ssary to obtain an adequate solution using Eq.
(28) (Helwig et al,

ite et al. (2001) show that the AASHTO (2010)
most critical moment envelope values as specified in the

flange under J@M§eration. For unbraced lengths subject to single-curvature negative bending or
for reverse-cur¥@ure bending in composite [-section members, Eq. (30b) is applied by focusing
solely on the bot{@n flange stresses, without the need to consider any properties of the top
flange. For compdSite sections in positive bending, AASHTO (2010) considers the compression
flange to be continuously braced. If the right-most unbraced lengths in examples 4 and 5 of
Figure 66 were composite I-girders, the Cy calculations for the bottom flange would be the same
as illustrated in the figure. No calculations would be required for the composite top flange. As
noted above, Egs. (28) and (29) are not intended for composite I-section members. Section 5.3.5
of this module discusses the overall logic and rationale behind the AASHTO (2010) LTB
calculations for composite I-girder segments in negative bending. Lastly, it is important to
recognize that in most practical design situations, even with relatively large unbraced lengths, the
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base uniform bending resistance, Fnc or Myc, shown by the solid curve in Figure 60 is often not
significantly smaller than Fyax or Mmax. For example, if Ly = Ly, Fnc is typically equal to 0.7Fc.
Therefore, for slender-web members, a Cy, value of 1/0.7 = 1.43 is sufficient to raise the flexural
resistance to Fpayx.

The discussion at the beginning of this section indicates that in unusual cases involving
significant top flange loading either on unbraced cantilevers or on members with no intermediate
bracing in the entire span, the influence of the load height must be considered. Loads applied to
the top flange cause destabilizing (tipping) effects, whereas loads applied to fhe bottom flange
enhance the member LTB resistance. When twisting of the cross-section is p
of a cantilever or ordinary span, these effects are approximated with reasonabl
equation

C, =14""C, 5-34)
where Cy, is the base moment gradient factor determined without v pad height effects
(e.g., via Eq. (28) or Egs. (30)), vy is the load height above thg mi cross-section,

e flange centroids
(Helwig et al. 1997; Ziemian 2010). Helwig et al. (1997) sho [ ition of y in Eq. (34)
as the distance from the mid-depth gives an n of the effect of the load
height. They show that if the Cy, values are deriv section shear center as the
WOwever, with the origin for y
urate representation of the Cp values
for loadings applied at the mid-de
generally gives a more accurate and 1 ate of the effects of moment gradient
relative to Egs. (30) for spans with go i

The discussion at the begj n also indicates that Cp may not necessarily be taken
equal to 1.0 in general with less than essentially rigid warping restraint at
their fixed end. Ziemia ecommended procedures for determining the buckling
load of thg s. The reader is referred to Ziemian (2010), Dowswell (2002),
Yura and NBIVAg erson and Trahair (1972) for a range of LTB solutions

applicable

5.3.5.12 er considerations specific to composite I-section members in negative
bending
The AASHTO (2010) equations discussed in the above sections provide one single consistent

representation of the FLB and LTB resistance of both noncomposite I-section members as well
as composite [-section members in negative bending. The application of these equations to
composite [-girders in negative bending is based on the following simple concept that has been
used extensively for the design of experimental tests to study the behavior in the negative
moment regions of composite beams. Numerous research studies have shown that the resistance
of composite beams in negative bending can be approximated accurately to conservatively by
using a large steel tension flange or a cover-plated tension flange. These tension flange elements
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provide a force equivalent to that developed by the slab reinforcing steel in the prototype
composite member (White and Barth 1998; Barth and White 1997; Kemp 1996; Grubb and
Carskaddan 1981 & 1979; Climenhaga and Johnson 1972). The AASHTO (2010) approach
considers the contribution to the cross-section moment from the reinforcing steel as a tension
flange element, but otherwise focuses on the compressed region of the steel I-section for the
stability assessment. The lateral and torsional restraint that the concrete deck provides to the steel
I-section is neglected. The effects of this restraint are reduced in general by web distortion, and
for typical I-girder bridges, the benefits of this restraint are judged not to be worth the additional
effort associated with the distortional buckling solution. This is because, for he majority of cases

Figure 60.

In calculating the radius of gyration r; from Eq. (9) for composite [-section
(2010) specifies that D. should be determined using the cross-sectig
section member plus the longitudinal reinforcing steel. For comp W

combined composite and noncomposite loadings. This calc
dependency of the LTB resistance on the applied loadings.

ix A6 LTB and FLB
resistances, which are written in terms of membe in general on the elastic
section modulus to the compression flange, TFY resistance depends in general on
the elastic section modulus to the jon
calculated as

Sxe = Myc/Fyc (5.3.5-35a)

and
(5.3.5-35b)
where My - ‘ section yield moments. The yield moments are in turn calculated

cle D6.2.2 that accounts for the separate influence of
oadings on the cross-section elastic stresses. The yield moment

reinforcing sted

For negative bendfng of composite I-section members with compact or noncompact webs, the
AASHTO Appendix A6 flexural resistance depends on the loading type only in the places where
the elastic section moduli, Syc or Sy, or the yield moments, Myc or My, enter into the calculations.
The composite cross-section is handled as fully cracked in the section-level calculations, and
hence the long-term and short-term section moduli are identical.

Article A6.3.3 specifies equations for Cp that parallel Egs. (30) but are written in terms of the
member moments rather than the flange stresses. This is consistent with the practice of
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neglecting the separate influence of noncomposite and composite loadings on the resistance in
the limit that the I-section web, flange and unbraced length are compact. Article C6.8.10.2.3
points out that the overall effect of the different types of loading on the Cy, calculation is
considered negligible for compact- and noncompact-web composite I-sections in negative
bending. This article also permits the use of the total moments in calculating Cy, for slender-web
members if it is felt in the judgment of the Engineer that the effect on the final calculated value
of Cy, is insignificant.

5.3.5.13 LTB effective lengths

As noted in Section 5.3.5 of this module, ordinary practice is to take Ly as the ad
length between the brace points corresponding to compression flange level k
diaphragm or cross-frame locations. That is, a LTB effective length factor

unsupported

length KLy, < Ly, for the critical segment. AASHTO (2010) allowg
place of L, to increase the calculated member LTB resistance, F

method from Galambos (1998) and Netherco
form of this procedure, which is applicable for'si
and includes the consideration of moving live loa
an analogy between the buckling of a conti
column. As such, it uses the align
critical unbraced length.

for estimating K. A generalized
symmetric [-section members
w. The method is based on

d the buckling of an end-restrained
lumns to determine a K factor for the

The suggested procedure involv,

gsociated with the buckling of the adjacent segments (should they exist) are
v v and yrr respectively. For all of these segments, the following equation

y=—oLTB (5.3.5-36)
fbu

where Fe 7 is the governing elastic LTB resistance determined using Eq. (19) for
compact- or noncompact-web members or Eq. (23) for slender-web I-section members,
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and fp, is the largest value of the compression flange stress in the segment under
consideration.

3. Calculate a stiffness ratio, a, for each of the above three segments. The stiffness ratio for
the critical segment is determined as

2(bfctfc +% Dctw)rt2

a, (5.3.5-37)
LbCI’
and the stiffness ratio for each of the adjacent “restraining” segments | ined as
1 2
n(bfctfc + Dctw)rt
o, = 3 [1—V—mj 5.3.5-38)
L, Y,

where n = 2 if the far end of the adjacent segment is,
supported (torsionally), and n = 4 if it is torsionally

it is simply-
segment has a

. 180, for cases involving
monosymmetric [-girders and reverse 8#rvat i any one of the above
segments, the area (bt + Dcty / 6) and 1y and (38) are the values
corresponding to the governing elastic L TB Yg8istance.

4. Determine the ratios G = oy, f thé@ritical segment.

5. Substitute the above G v ' idesway-inhibited column alignment chart (AISC
2010; AASHTO 2010;
previously in Section dufe, AASHTO (2010) Article C4.6.2.5 gives

close fit to the alignment chart results.

The above procedure is practical approach in that steps 1 and 2 are a by-product of the

: ere K is implicitly taken equal to 1.0 and the actual unsupported
length Ly, 18
an “add-on’
deems the add
resistance. Als§

a ign procedures that the Engineer can utilize when he or she

#l calculations to be useful to justify a more liberal calculation of the

the Engineer should note that in the special case where the adjacent unbraced
lengths are equalllli critical (e.g., if all three unsupported segments have the same length Ly, the
same cross-sectio@, each segment subjected to the same uniform bending moment and n =2 in
the adjacent segments), o,y = 0 and G = oo at each end of the critical segment. This gives K= 1.0
from the sidesway-inhibited column alignment chart. The above method is conservative because
it is based on the assumption that the largest moment-envelope values in the adjacent segments
are taken from the concurrent loadings associated with buckling of the critical unbraced length.
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0.96 Mimax  Mrmax Brace point (typ.)
0.84 Minax

0.64 Miax
0.36 Mpax

e calculation of

Figure 68 Simple-span I-girder and critical moment envelope for exa
L TB effective length factor K.

The application of the above procedure can be understood best by working
example. Consider the prismatic simple-span girder with four equally-spact
points shown in Figure 69. The middle unbraced length of this beamdsagle
since it contains the largest moment and all of the unbraced lengt . 2
above procedure, the moment envelope values for the middle unjiia adht give fig/fo > 1.
As aresult, Cp = 1.0 for this segment from Eq. (30a). The CNve lues for the
unbraced lengths adjacent to the central segment give fig/f> §. i 1/f, =0.75 using
Eq. (32). This gives, C, = 1.13 for these segmgnts from Eq. ( . ¥end segments, frig/f, =
0.56, giving f1/f, =0.12 and C, = 1.63.

matter, the Engineer could base the 1 and avoid the calculations in step
one. However, if the additional benefi re potentially significant, the Engineer
may wish to continue to step 2. Q, ellent aftributes of the suggested (Nethercot and
Trahair 1976) procedure is tha eps utilize the Cy, values that the Engineer has
already determined based on ofi

and the girder is prismatic (no section transitions) with
equal unb s tral unbraced length is the most critical one. If the applied load
level on th§gle 8 the buckling of this segment is taken as ym = 1.00, the

el at the buckling of the adjacent segments (using K= 1), are
/0.96 =1.18. (Note that one has to divide by 0.96 because at the applied
1.00, the maximum moment in the adjacent segments is only 0.96Mpax.) If o
alized to a value of 2, then

simply y, =
load level of y

o =2(1—Lj ~0301 (5.3.5-39)
118

from Eq. (38). This completes step 3. In step 4, the value of G = a/o is 2/0.301 = 6.64 at both
ends of the critical segment. Given these G values, one enters the sidesway-inhibited column
alignment chart (step 5) to obtain K = 0.94. This K factor can now be used to obtain a slightly
higher LTB resistance (roughly 13 % higher if the elastic LTB equations govern the strength) as
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well as a slightly smaller amplification of the elastic compression flange lateral bending stresses.
This is a relatively small benefit in this example. However, the benefit can be larger in some
cases.

When checking the resistance of the unbraced lengths adjacent to the critical segment, it is
essential to account for the fact that the more critical segment tends to destabilize the less critical
ones if the critical segment is assumed to be restrained such that its K is less than one. This is
addressed by calculating the K factor for the adjacent segments as

K= |Z
Y

(5.3.5-40)

where  is the load parameter at elastic buckling of the critical unbraced,
computed K< 1, i.e., .= (1/0.94)* = 1.13. Equation (40) gives K = W " =42 for the
segments adjacent to the central unbraced length in Figure 69. Ag
length factor for the adjacent segments will actually exceed 1 O
less critical ones, and the overall calculated elastic LTB ca
increased by using the above procedure.

An effective length factor of K =1 should be&e ed lengths that are not

to a smaller section may be neglected in
determining the y value for th g the transition, and the above procedure may

be used to determine the LLB

e The critical seg i djacent segments has a cross-section transition within
ding unbraced length Ly, and

The calculation §@the LTB resistances for more general cases involving stepped, variable web-
depth and other n&nprismatic I-section members is addressed in Section 5.3.6 of this module.

5.3.5.14 Inelastic redistribution of interior pier moments in continuous-span bridges
Minor yielding over the interior supports of continuous spans results in a redistribution of the
girder moments. For straight continuous-span flexural members that satisty requirements

intended to ensure adequate ductility and robustness of the girder segments adjacent to the
interior piers, AASHTO (2010) Appendix B6 may be used to calculate the redistribution
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moments at the SERVICE II and/or Strength load levels. These provisions replace the former 10
% redistribution allowance as well as former inelastic analysis procedures. They provide a
simple calculated percentage redistribution from the interior-pier sections. The calculated
redistribution moments are akin to internal moments generated by the following pre-stressing
procedure:

1. The slab is cast and/or cover plates are welded to the bottom flange of pier sections with
the interior supports jacked to an elevation higher than their final positions, and

2. The interior supports are lowered to their final positions after the con tion is complete
and the slab has attained sufficient strength.

However, the redistribution moments are generated by minor inelastic rota
over the interior supports rather than the above construction operations. Thd
are designed to exhibit ductile moment-rotation responses and to s
few passages of the maximum design loads.

Appendix B6 utilizes the elastic moment envelopes and docd@ot re any@irect use of
inelastic analysis. As such, these updated procedures are sub§@ntia r and more
streamlined than the inelastic analysis proce s of i SHTO Specifications. For the
types of bridges and girder requirements wherd t hese provisions make it

possible to potentially use prismatic sections alon of the bridge or between
field splices without requiring excess materj i ice can improve the overall fatigue
resistance and provide significant ica i e development of the Appendix B6
provisions is documented in a numb ive reports (Barker et al. 1997; Schilling et

The provisions of Appendix B ct that the compression flange slenderness,

br/2t5, and the cross-secti i are the predominant factors that influence the
ductility of the moment- 1 adequately braced interior-pier sections. As such,
these provisions appl
or slender p to D/t,, = 150, as long as the following restrictions are satisfied:

e The largest girder specified minimum yield strength in the unbraced lengths immediately
adjacent to the interior piers shall not exceed 70 ksi.

e The tension flange shall not have any holes over a distance of two times the web depth on
each side of interior pier sections from which moments are redistributed.
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e Moments shall be redistributed only from interior pier sections that have bearing
stiffeners at the interior pier sections and for which the immediately adjacent unbraced
lengths are prismatic and satisfy the requirements

2D, (o | E (5.3.5-41)
tW ch

(AASHTO B6.2.1-1)
Dep < 0.75D (5.3.5-42)
ASHTO B6.2.1-3)

(5.3.5-43)
36.2.2-2)

L s[m-o.%%J FE ‘ '3.5-44)
2 yc

ASHTO B6.2.4-1)

And
Vi < v Ver (5.3.5-45)
(AASHTO B6.2.5-1)
Where
M; = the bending moment a ith smaller moment due to the factored
loads, taken as the value envelope that produces the smallest
permissible unbraced
M, = the bending mom t with the larger moment due to the factored
loads, taken i nt envelope value,
\A e factored loads, and
Ver istance specified in AASHTO (2010) Article 6.10.2.2 for

and in AASHTO (2010) Article 6.10.2.3 for transversely-stiffened

The above limi sure that the pier sections exhibit significant ductility and limit the
application of thd@ppendix B6 procedures to designs supported by the background research.
The main provisions of Articles B6.3 and B6.4 utilize the concept of an effective plastic moment

Mpe < M, (5.3.5-46)
(AASHTO B6.5.1-3 & B6.5.2-2)

at the interior pier sections, where Mj, is the pier section flexural resistance calculated as

discussed in Section 5.3.5 of this module, and the reduction in Mg relative to My 1s based on
simplified lower-bound estimates of the pier section inelastic moment-rotation responses. The
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differences between the maximum moments from the factored elastic moment envelopes, Me,
and the effective plastic moments, Mpe, are redistributed from the pier sections to the positive
moment regions up to a maximum of 0.2Me.

5.3.6 Stepped, Variable Web Depth and Other Nonprismatic I-Section Members

Section 5.2.6 of this module outlines a generalization of the AASHTO (2010) and AISC (2010)
column resistance equations, from Kaehler et al. (2010), for handling of nonprismatic members
loaded in nonuniform axial compression. Kaehler et al. also address the genegalization of the

AASHTO (2010) and AISC (2010) flexural resistance equations to members nonprismatic
cross-section geometry. The following is a summary of the basic concepts and pi@edures from
this reference.

The equations for composite members in positive bending, discussed in Sed
of this module, as well as the FLB and TFY equations for composi
bending and noncomposite members, outlined in Section 5.3.5,
based checks. Hence, these equations may be applied directly fo
cross-section-by-cross-section basis. One determines the redliired j, or the required

flange stress, fyy, at all the cross-sections along the member 1 . fduired moments or

stresses are then compared against the corresg@gdin n design resistances. Of course,
when performing manual calculations, the Enging tify by inspection one or only
a few potentially critical sections that need to be
assessment, one would typically check the -SeC at a selected interval along the member

lengths.

In contrast to the above limit state chec tance cannot be assessed solely on a
cross-section-by-cross-section b cause the LTB resistance depends on the cross-
section properties along the e as well as the loading configuration (e.g.,
moment gradient) and the iti ., continuity with adjacent unbraced lengths). These

factors are very similar t uence the member out-of-plane resistance in axial

(5.3.6-1)

And

2. The largest ratio of the factored moment (or compression flange stress) to the section
yield strength

M f,
(M) [ 5.3.6-2
po‘max L M ye Jmax L ch Jmax ( )
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from all the cross-sections along the unbraced length.

Elastic LTB governs for unbraced lengths in which

M
LFeALTB = Vo178 Touma =Verm o J <k, (5.3.6-3a)
or
=
Fous ¢ 2 (5.3.6-3b)
Fr  Fy
where

foumax and = the required compression flange flexural stress ang
Mu.max moment at the most highly stressed cross-section,

Sxemax = elastic section modulus to the compress

YeLts = the ratio of the elastic LTB load lev

above. ‘

In this case, the nominal flexural resistance may b

jtten si

Fnc = Fcr = RbFe.LTB (536—48.)
for slender-web members or

Mic = MeL1B= SxcFeLt (5.3.6-4b)
for noncompact- or co
(The symb represent the elastic LTB resistances obtained from beam theory.
As indica inal elastic LTB resistance for slender-web members is
reduced, re p th€ory solution, by the web load-shedding factor, R,. AASHTO
(2010) denot stress by the symbol F.. The term F¢ 15 is used in this module
for consistenc the terms in the column resistance equations and to distinguish the nominal

flange LTB strd@from the beam theory LTB stress.)

Similar to the colimn buckling calculations discussed in Section 5.2.6 of this module, there is
only one ye 78 for a given unbraced length, although the compression flange stresses and the
corresponding moments vary in general from cross-section to cross-section along the member
length. The above equations give the elastic LTB resistance at the most highly stressed cross-
section. However, if Fe 18 = Ye.L18 fou and Me 18 = Ye.L.78 My Were calculated at any of the other
cross-sections, the ratio foy /Fer18 = My /Mg 18 is still the same value, 1/ e 78.
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For unbraced lengths where

S

M max

LFeALTB = Y18 fouma = Yerts = J > Fyr (5.3.6-5)
XC.max

nominal yielding occurs before the member reaches its full flexural resistance, and thus inelastic

LTB resistance governs. In this case, similar to the calculation of the inelastic column resistance

in Section 5.2.6, the inelastic LTB resistance is determined by mapping the nonprismatic

member to an equivalent prismatic member that has:

1. The same ye 18, and

2. A po equal to the above po max-

This is illustrated by Figure 69.

Same ye.1s

pO = Mu/Myc = po.max

Figure ing of a tapered-web I-section member subjected to bending

to an equivalent prismatic member.

Since the St.
resistance for
corresponding

constant J typically has little influence on the elastic LTB
Ly, Eq. (5.3.5-23) can be employed to solve for the unbraced length Ly
given Fe | 1g in uniform bending (Cp = 1). The result is

L, =7t (5.3.6-6)

This unbraced length may be equated to Eq. (5.3.5-8) to determine the following elastic critical
stress to yield stress ratio corresponding to the compact bracing condition:
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Foire 5 2 (5.3.6-7)

yc
That is, whenever Eq. (7) is satisfied, the inelastic LTB resistance corresponds to the plateau

Mnc = Mmax or Fne = Frax (5.3.6-8)

: - F, F :
illustrated in Figure 60. Furthermore, for - <2 < 7* one can substitut

yc yc
similar equation for L, = L into the AASHTO (2010) expressions describing th
interpolation between Anchor Points 1 and 2 in Figure 60 to obtain

g.(6)and a

(5.3.6-9a)

F.
Fe =RR.Fc[1- I—R =

for slender-web members and

M. =R.M, 1—[ - (5.3.6-9b)

for noncompact- and compgact-§e g (White and Kim 2006; Kaehler et al. 2010).
M
The Engineer should ¢ ratic = Me—LTB in Egs. (7) and (9) is analogous to the
yc
ratio P¢/F e n resistance equations of Section 5.2.1 of this module. Similar to
the develof Bt of this module, this ratio may be expressed as follows in terms
of the para
(5.3.6-10)

The design calculations corresponding to the above concepts start by testing the result from Eq.
(10) against the limits for the above equations, then calculating Mp; or F,c based on the
applicable of Egs. (4), (8) or (9).

Although the derivation of Egs. (7) and (9) is conducted in the context of uniform bending of

prismatic members and is based on the assumption of J = 0, these equations provide an accurate
to slightly conservative approximation of the nominal flexural resistance for all types of

151



prismatic and nonprismatic members subjected to general loading (moment gradient) conditions.
One only needs to determine the elastic LTB load ratio ye g and the maximum ratio of the
factored moment to the yield moment po max = (Mu/ Myc)max = (fou / Fyc)max- This conceptual
extension of the Specification LTB resistance equations is the same as that invoked originally by
Lee et al. (1981) in the context of AISC Allowable Stress Design.

Based on the above concepts, the LTB flexural capacity ratio foymax/ ®Fnc or My max/ ®Mpc for a
given unbraced length is determined as follows:

1. Calculate po = fou/ Fyc or My / My, at the various cross-sections along tig@abraced length.

2. Determine the maximum value of po, 1.€., Po.max-

3. Calculate the ratio of the elastic LTB load level to the factored load
web is slender at any location along the unbraced length,
= 0. (This is because the AASHTO (2010) and AISC (20
based on J = 0 for slender web members. Members
tend to exhlblt only a minor dlfference between the
8YCnificantly due to web
d1st0rt10n effects in these types of me cases with heavy flanges

(Bradford 1992; White and Jung 2007). )

4. Determine the flexural cap din most highly stressed cross-section by
substituting e 18 and Po max 4 the ing Eq. (4), Eq. (8) or Eq. (9) as
applicable based on the value 18/Myc calculated from Eq. (10). If the
web is slender at any positi e unbrac®d length under consideration, the

web members and Ry compact-web members, are calculated at the
most highly stres i e., the one corresponding to po max), but using the
t length. The parameter Ry, is taken as the smallest
oss-sections along the member length.

5. city ratio for the unbraced length under consideration as fyy max/
OFnc
(It should be n@&d that the calculation of Ry and Ry in step 4 involve conservative
simplifications. @lternatively, one can calculate Fyc/Fe 18, Ry and Ry for slender-web cross-

sections, or Fy/FgPs and Ry for noncompact- or compact-web cross-sections, separately for all
the cross-sections along the unbraced length, where F¢ g is defined as the compression flange
stress at the cross-section under consideration at incipient elastic LTB. The governing fyy/¢Fnc or
Muy/dMp 1s obtained as the largest value from all of these cross-section based checks. The
member length effects are handled properly at each cross-section via the calculation of Fe 1
considering the member loading and geometry.)

Kaehler et al. (2010) provide a range of design example calculations and discuss various
methods for determining the ratio ye 18 for different member geometries. Potentially, ye  1g can
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be calculated most reliably using software tools. Unfortunately, few analysis programs give

accurate elastic LTB solutions for singly-symmetric and/or nonprismatic members. Furthermore,
there are a number of complexities associated with the proper definition of elastic LTB models,
and most programs that have reliable capabilities for elastic LTB analysis are somewhat difficult

to use in setting up these models. Even when this state of practice is eventually improved,
Engineers will still have a need for reliable simplified approximate solutions.

The following very simple and useful approximate solution for practical unbraced lengths with

linearly-tapered web depths uses a procedure suggested by Yura and Helwiggl 996) for the

calculation of ye 1g:

1. Calculate Cy using any appropriate equation, but for C, equatio
member moments, use the stresses in the flange under consideratioy
section moments.

terms of
he Cross-

2. Estimate the elastic LTB stress at the cross-section having Mu/Myc as

I:e.LTB = Cb Fe.mid

where Femig 1S the elastic LTB stress calculated fro
equations for a prismatic member us‘the
unbraced length.

3. Calculate Fe 7g/Fyc as the ratio o
strength at the above cro cti
YeLT8 by substituting Fe 15 a

determine po max by substitutin

eLT8 to the compression flange yield

t fou/Fyc, or alternatively, determine
highly stressed cross-section into Eq. (1),
e stress and the compression flange yield

White andijg other approximate solution for unbraced lengths composed of
prismatic ] 2_sifgle cross-section transition within the unbraced length. This

1. L, using Eqgs. (5.3.5-30) and assuming that the unbraced length is prismatic.

2. Calculate
M2 as
C.7’E
F =y
e.LTB.2 Z(Lb/ru)z

e elastic LTB stress corresponding to the section with the largest end moment

(5.3.6-12)
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1 <
0.9 -
) b, 0.8 1 ¢p '
RELIL? L B
0.7 4 i
0.6 -
tp
0.5 T
0 0.2 0.4
L4/Ly
Figure 70 Ratio of elastic LTB stress at the section with the | 1 odVthe LTB
stress determined assuming that the member is prismatic e la
throughout the unbraced length (adapted from Carskaddan iN8 (1974) and Dalal
(1969)).
where It is the radius of gyration of the presaa lus one-third of the depth of

the web in compression for the cross-section M; and y is determined from
the chart shown in Figure 70. (This procedure
unbraced length under consideration, a t tht

cross-sections.)

ment occurs in the larger of the two

3. Calculate ye 18 as Fe18.2/fou. ompression flange factored stress at the

cross-section correspon

ves and foy o/ Fyc 2, where fy s is the compression
ection at the cross-section transition, Fys is the
yield stress, and Fyc is the compression flange yield
ion corresponding to M.

: the ratio Pe/(TE2E|2/ Lbz) for the stepped column shown in Figure 70. This ratio
gives a slightly C@liservative estimate of the elastic LTB resistance for a stepped I-section
member subjected to moment gradient with the larger moment applied to the larger end cross-
section. Based on the behavior illustrated in Figure 70, AASHTO (2010) Articles C6.10.8.2.3
and CA6.3.3 effectively allow transitions to a smaller cross-section to be neglected in
determining F, (or M;) for unbraced lengths having a step in the cross-section with

The parameter

o Li/Lp,<0.2,

e |/1,>0.5and
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e maximum fy, /Fyc in the unbraced length corresponding to the larger cross-section.

where L; is the length of the segment with the smaller cross-section, and I; and I, are the
individual compression flange moments of inertia about the plane of the web for the smaller and
larger flanges respectively (to be checked for both flanges). The reader is referred to Kaehler et
al. (2010) for other elastic LTB solutions.

5.3.7 Combined Major-Axis Bending, Minor-Axis Bending and Torsion

5.3.7.1 General

AASHTO (2010) Article 6.10 and its Appendices A6 and B6 provide a uni
consideration of I-girder major-axis bending, minor-axis bending and torsig

cross-bending) of the flanges as the primary response associated
members. Significant flange lateral bending may be caused b Cccalllric concrete deck
overhang loads acting on forming brackets placed along ext@ior S by the use of
discontinuous cross-frame lines in bridges with skew angles i it 20°. For the
majority of straight non-skewed bridges, fla fects tend to be the most
significant during construction and tend to be 1ns nal constructed condition.

However, for horizontally curved bridges, in add1 from the above sources,
flange lateral bending due to the curvature idered at all limit states and during
construction. The intent of the Artt rovide a straightforward approach

whenever these effects are nonnegligib fous flange lateral bending effects are
judged negligible or incidental, i educe the design of I-section members subjected
to major-axis bending alone (

The basic form of the tance equations that account for the combined
effects of major-axis b teral bending is

for members in
corresponding fl§

bich the major-axis bending resistance is expressed in terms of the
ge stress and

M. +%f,SX <M. (53.7-2)
(AASHTO 6.10.7.1.1-1, A6.1.1-1 & A6.1.2-1)

for members in which the major-axis bending resistance is expressed in terms of the bending
moment, where
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fou = the elastically-computed flange major-axis bending stress,

f, = the elastically-computed flange lateral bending stress,
¢tFn = the factored flexural resistance in terms of the flange major-axis bending stress,
My = the member major-axis bending moment,
Sx = the elastic section modulus about the major-axis of the sectionato the flange under

consideration, taken as the short-term section modulus for co
positive bending or the section modulus of the composite section$
members in negative bending, and

site members in

¢tM, = the factored flexural resistance in terms of the member majo
moment.

Equations (1) and (2) are referred to in AASHTO (2010) as the rul@8These equations
are simple, yet they do an excellent job of characterizing th@@ari rengtiimit states that can
govern the resistance of I-section members. Equations (1) an@2) a combined major-
axis and flange lateral bending effects basicabby i anges as equivalent beam-
columns.

Equation (1) is targeted specifically at checkd r-web noncomposite members, slender-
web composite members in negati act composite members in positive
bending. Also, as discussed previous 1 this*module, the resistance of I-section

members generally to f,, < ¢ Fy. In the ge lateral bending stress f, is equal to
j for major-axis bending alone. The maximum

potential value of F, is the fla f, but F, can be less than Fy; due to slender-web

bend buckling and/or hybg 1 fects, or due to compression flange lateral-torsional
(LTB) or local bucklin i

Equation checking the strength limit states of straight noncomposite
members § in negative bending that have compact or noncompact webs

referred to Se @@Is 5 3.3 through 5.3.5 of this module for definitions of the tenns slender,
noncompact an§i@ompact and for an overview of the calculation of ¢ Fnand ¢+ M. Equation (1)
may be used as a@nple conservative resistance check for all types of I-section members.
AASHTO (2010) Article 6.10 emphasizes this fact by relegating the use of Eq. (2) for straight
compact and noncompact web noncomposite members and composite members in negative
bending to its Appendix A6. The definition of Sy as the short-term modulus for composite
sections in positive bending, and as the section modulus of the composite section for composite
sections in negative bending, is a conservative simplification. This simplification is consistent
with the precedent of neglecting the influence of the different types of loading on the resistance
for compact composite members in positive bending, and with the limited dependency of the
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different loading types for compact- and noncompact-web composite members in negative
bending, as discussed previously in Sections 5.3.3 and 5.3.5 of this module.

In the application of Egs. (1) and (2), the stresses f, and fy,, and the moment M, are taken as the
largest values throughout the unbraced length when checking against the base flexural resistance
¢r Fn or ¢ M, associated with lateral-torsional buckling. This is consistent with the application of
the AASHTO and AISC interaction equations for a general beam-column subjected to combined
axial load and bending. The stress fp, in Eq. (1) and the moment M, in Eq. (2) are analogous to
the axial load in a general beam-column, and the stress f, is analogous to thedlg
bending moment. The moment M, is analogous to axial loading since it produ§@laxial stresses in
the flanges. When checking compression flange local buckling or tension flag ding, f,, fuy
and M, may be determined as the corresponding values at the cross-sectio Mderation.
Generally, Eq. (1) or (2), as applicable, must be checked for each flange, a
LTB based resistances must be checked for the compression flange i

governs.

The Engineer is permitted to use f, = 0 when checking the t
the section is composite, since the composite &b tends to re ange lateral bending.
AASHTO (2010) Article 6.10.7.2.1 requires th flexural stress shall be
checked in addition to the use of Eq. (1). Howev d construction and in unusual
cases of unshored construction discussed in the co s article, the concrete flexural
is typically much less than f.' at thedgq. (1 h li nd therefore the concrete stress check
does not govern.

(2010) Testricts the I-girder design in all cases to
ck of a comprehensive understanding of the
an®the concomitant inelastic redistribution on the
ral systems at the time that these provisions were

e valid generally for all types of I-section members

As noted above, for curved brid
the use of Eq. (1). This restricti

forces and moments in ¢
implemented. Otherwi
that satisfy the limits

(5.3.7-3)
(AASHTO 6.7.4.2-1)

within the fina
frame locations

nstructed configuration, where Ly, is the unsupported length between the cross-
R is the horizontal radius of curvature,

Lp <L, (5.3.7-4)

(AASHTO 6.7.4.2-1)

where L, is the unbraced length limit beyond which the base lateral-torsional buckling limit state
is elastic, and

f<0.6 Fy (5.3.7-5)
(AASHTO 6.10.1.6-1)
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The first of these limits is a practical upper bound for the subtended angle between the cross-
frame locations (for constant R). It ensures that the I-girder webs will not have a do/R larger than
0.1, where d, is the spacing of the transverse stiffeners. Equations (1) and (2) have been observed
to perform adequately in a number of cases with Ly/R larger than 0.2 (White et al. 2001).
However, the development of these equations as well as the validation of the AASHTO (2010)
Article 6.10.9.3 tension-field action shear strength equations for curved web panels has focused
predominantly on members designed up to the limit specified by Eq. (3). Equation (4) is a
practical upper bound for the unbraced length L, beyond which the second-order amplification of
the flange lateral bending stresses tends to be particularly severe. The reaso
discussed in Section 5.3.7 of this module.

Prior AASHTO Specifications have required Ly, to be less than 25 ft. Articlg
that this requirement has been replaced by the requirement for a rational a theless,
typical curved I-girders will not have unbraced lengths exceeding this form®

5.3.7.2 Calculation of flange lateral bending stresses

Various methods may be used for calculating the flange ela end Al stresses f .

AASHTO (2010) Article 6.10.1.6 gives simple equatlons for'\@8ti irst-order lateral
bending stresses due to the torsion associated¢@ith ature (see Eq. (2.2.1-1) and
AASHTO (2010) Article 4.6.1.2.4b), the torsion ncrete deck overhang loads

acting on cantilever forming brackets placed alon (see AASHTO (2010) Article
C6.10.3.4), and due to wind load (see AAS rticle 4.6.2.7). These equations are
based on the assumption of unbra e ends of the bridge, where the

flange is continuous with adjacent un well as equal lengths of the adjacent
segments. Based on these idealized assulg@ions, s of the unbraced lengths are effectively
te symmetry boundary conditions. The Engineer

when these assumptions the actual conditions. Implications of various types

of computer analysis o 1 y are addressed by Jung et al. (2005) and Chang et al.
(2005).

lateral bend{ig 3 gencrally amplified due to stability effects. However, it is impractical
to calculate v
applied for ch@ g the compression flange, AASHTO (2010) Article 6.10. l 6 prov1des the

following simp¥glateral bending amplification equation to account in an approximate fashion for

f,=| — f,>1, (5.3.7-6)

(AASHTO 6.10.1.6-4 & 6.10.1.6-5)

where
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Feits = the compression flange elastic lateral-torsional buckling resistance from Eq.
(5.3.5-19) for compact- or noncompact-web members or Eq. (5.3.5-23) for
slender-web members,

fq = the first-order compression flange lateral bending stress at the section under
consideration (for checking of FLB), or the largest first-order compression flange
lateral bending stress within the unbraced length (for checking of LTB), and

fou = the largest value of the compression flange major-axis bendin$g@cess within the
unbraced length under consideration.

Engineer should be particularly mindful of the amplified ¢ giifiteral bending in
exterior girders due to eccentric concrete deck overhang loa g fiction. In situations
where the amplification given by these equatigs i ineer may wish to consider
using an effective length factor K <1 in the calculgtio sing the procedure outlined in
Section 5.3.5 of this module). In cases where the nstruction stresses is large, a
second alternatlve is to conduct a direct geg hoear analysis to determine the second-

e final constructed condition, the
above amplification typically is app ange in negative moment regions of
continuous spans. In this case, Fe 18 is antly due to the moment gradient in
these regions, via the moment r Cp, (see Section 5.3.5).

5.3.7.3 One-third rule co

ult fro ) to the theoretical fully plastic resistance for several

Figure 71 compares t
3 i site compact-flange, compact-web cross-sections. Figure 72 shows

a sketch O c stress distribution on this type of cross-section. The equations
for the ful resistances are based on the original research by Mozer et al
(1971) and a ¥ White and Grubb (2005). The specific stress distribution shown in

Figure 72 is 4
(i.e., warping O
considers equal ¥

ated with equal and opposite lateral bending in each of the equal-size flanges
he flanges due to nonuniform torsion). However, the solution is the same if one
nge lateral bending moments due to minor-axis bending.
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—— Theoretical

...... One-third rule

0 02 04 06 08 1 12 14 16
f,/F,

retical
e compact-

Figure 71 Comparison of the AASHTO (2010) one-third rulg
fully-plastic cross-section resistance for several doubly-sym ’
flange, compact-web I-sections (adapted from Whiang®

One can observe that, within the limit given by Eq. (5), the o i ation (Eq. (2))
provides an accurate to somewhat conservatiy@esti
resistances for the different web-to-flange area’raf in Figure 71. In the limit that
Aw/A: is taken equal to zero, the same approximat both Eq. (2) and Eq. (1). The
comparison of the theoretical and approxi shown in Figure 70 is useful for gaining
a conceptual understanding of the thi iO%SMn the limit of compact-flange,

Iso, Schilling (1996) and Yoo and
Davidson (1997) present other useful cr 1 interaction relationships. However,

combined influence of distrib
stability effects (FLB, LT ckling). Furthermore, yield interaction equations

ations for straight members subjected only to major-

ength, Fyr, to ¢sF, in Eq. (1) and by changing the section plastic moment
resistance, M,, i@, in Eq. (2). The 1/3 coefticient accurately captures the strength interaction
including the var@s yielding and stability effects (White et al. 2001). The extension from cross-
section equations to member equations is ad hoc, but it is similar in many respects to the
development of the AISC (2010) and AASHTO (2010) general beam-column interaction
relationships. The shape of the interaction (i.e., the slope of the line relating fy, and f, in Eq. (1)
or My and f, in Eq. (2)) is based on curve fitting. Equations (1) and (2) are thus semi-analytical
and semi-empirical. White and Grubb (2005) provide a summary of the correlation of Egs. (1)
and (2) with analytical, numerical and experimental results.
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Figure 72 Sketch of a fully plastic stress didtribution, incluifng flang ending.
5.3.8 Shear Strength
5.3.8.1 General
AASHTO (2010) Article 6.10.9.3 bases the I-section memb@lshe istap@¥ either on the web

shear buckling capacity or an idealized additive contribution @the ar buckling and
postbuckling resistances. The web elastic she‘ouc may be expressed as

2
V.—zDt - TEK p 090K

12(1—02)[tD

Dt

(5.3.8-1)
which is the classical plate bucklg atl ultiplied by the web area,Dt,, but with the
buckling coefficient, k, correspfnding to pure r loading. This coefficient is taken as

(5.3.8-2a)
(AASHTO 6.10.9.3.2-7)

’e., webS with transverse stiffeners (referred to as transversely-stiffened) or
with transvers§g@d longitudinal stiffeners (referred to as longitudinally-stiffened) and in which
the transverse si@iliieners are spaced within certain maximum limits, and it is taken as

k=5 (5.3.8-2b)

for unstiffened webs. These equations are a simple approximation of analytical buckling
solutions for isolated panels with ideal simply-supported edge conditions subjected to pure shear
loading (Ziemian 2010). They are applied to the average shear stress in the context of I-girder
webs. Therefore, the ratio of the AASHTO (2010) elastic shear buckling strength to the web
plastic shear capacity may be written as
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Where

F
Vv, =7,,Dt, =—=Dt, =0.58F  Dt, (5.3.8-4)

N

assumed for C¢ > 0.8, which is higher than for uniform compres
residual stress is less. The resulting AASHTO (2010) Articlg6.1
resistance (elastic or inelastic) is expressed as a fraction of t
follows:

For Cq < 0.8 or b >1.40 Ek (elastic bu
t, wa

C= Cel (5.3.8—53)

(AASHTO 6.10.9.3.2-6)

and for C¢ > 0.8
C =./0. - i i (5.3.8-5b)

(AASHTO 6.10.9.3.2-5)
Lastly, the 2 gar buckling equation gives

C=1 ' web plastification) (5.3.8-5¢)

(AASHTO 6.10.9.3.2-4)
at Car> 125 or 2<1.12 [EX .
t, .,

AASHTO (2010) requires that webs with transverse stiffeners spaced at d, > 3D or webs with
one or more longitudinal stiffeners and transverse stiffeners spaced at d, > 1.5D shall be
considered as unstiffened. In these cases, the shear resistance is limited to the shear buckling
design resistance
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WWVa=1.0CV, (5.3.8-6)
(AASHTO 6.10.9.2-1)

However, webs with closer transverse stiffener spacing are considered as stiffened. The
resistance for these types of webs is taken as the additive combination of the above shear
buckling resistance with a representation of the shear postbuckling strength from Basler’s (1961)
seminal research. For members where the ratio of the web area to the average flange area is
smaller than 2.5, i.e.,

2Dt

W

—Tow <25 (5.3.8-7)
(bfctfc + bfttft)

0.9.3.2-1)

the sum of the web buckling and postbuckling design resistances is

O.87(1—C2) v
1+[d°j
D

whereas for members that have s

4V, =1.0|C+ (5.3.8-8)

p

4

(AASHTO 6.10.9.3.2-2)

e web area, this sum is written as

(5.3.8-9)

(AASHTO 6.10.9.3.2-8)

diagonal in eaQ@®T the web panels as shown in Figure 73, in addition to the shear buckling
stresses. In dete@Aining the slope of this tension field, 6, Basler assumes that only an effective
band, s, takes pa transmitting the additional tension (i.e., the flanges are assumed to provide
zero anchorage to the theoretical tension field). The maximum resistance is obtained when
yielding occurs due to the combination of the tension field stress plus the initial web shear
buckling stress. The angle 6 is determined to maximize the predicted postbuckling contribution.
However, when the ultimate shear force given by Eq. (8) is determined, a complete tension field
is assumed at the orientation 0 throughout the entire web. Basler (1963) acknowledges this
inconsistency, and illustrates that the flanges are actually not loaded to the extent required by his
theory in physical tests. Nevertheless, he argues that his theory still provides an acceptable
characterization of I-girder shear strengths.
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Figure 73 Assumed tension field used in determining the angle 0 impli pagher’s (1961)
shear postbuckling strength (Eq. (8)), and used in determining the ‘@i
resistance (Eq. (9))

Equation (9) is referred to in the literature as the “true Basler” s gidhice (e.g., see Porter et
al. (1975) and Wolchuk and Mayrbaurl (1980)). This equation is
applying the idealization shown in Figure 73 throughout th
typographical error in the equation for the true Basler shear
correct expression is as provided in Eq. (9).) ‘

It should be obvious to the reader that the above 10¢@hizati ly a very simplified
representation of the true web response. N jonal web shear failure theories have
been postulated since Basler’s ori icmian (2010)). The large number of

tends to defy explanation by basic stren odels. Recent studies such as Jung and
White (2010b), Yoo and Lee (2 al. (2007) have provided further insight into the
detailed force transfer mechanj h the web ultimate shear resistance. These
studies show that the forc ms can differ substantially from the various failure
and (9) to provide a reasonable prediction of
experimental test resu i ite and Barker (2008) have recently studied the

3 dels using a data set of 129 experimental high-shear low-moment

White et al. (X
involving comB

study the predictions for the above 129 tests plus an additional 57 tests

ed high-shear and high-moment, including 21 additional hybrid girders. Their
results indicate tig@ within the constraint of Eq. (7) plus the AASHTO (2010) proportioning
limits discussed iif Section 5.3.2 of this module, the combination of Eq. (8) for the shear
resistance and the AASHTO (2010) equations outlined in Sections 5.3.3 through 5.3.5 for the
flexural resistance gives a sufficient representation of the high-shear high-moment resistance
without the consideration of moment-shear strength interaction. In other words, the same
resistance factor ¢, = 1.0 is justified for both high-shear low-moment and high-shear high-
moment, and the same resistance factor ¢¢ = 1.0 is justified for both high-moment low-shear and
high-moment high-shear. Also, White et al. (2008) show that for girders with small flanges that
violate Eq. (7), the capacities tend to be smaller but are predicted adequately when Eq. (9) is
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used for the shear resistance. Extensive finite element parametric studies have been conducted by
Hash (2001), White et al. (2001), Aydemir et al. (2004), Jung and White (2006), Kim et al.
(2007) and others that support the above conclusions and help address the complete range of
potential I-girder designs including hybrid and curved I-girders with combined high-moment and
high-shear.

One important condition associated with the above conclusions is that the members must be
checked in general using the maximum shear within a given web panel for V,, the maximum
moment (or flange stress) within the web panel for M, or f,, when the flexurad resistance is
governed by FLB or TFY, and the maximum moment (or flange stress) withiiglie unbraced

of the developments in the past have suggested that the moment should be
of D/2 or do/2 from a transverse stiffener location. The use of M at min (D
the experimental results leads to a false indication of significant M-V intera

moment and high-shear is consistent with the established p
subjected to high-moment low-shear (White et al. 2008).

4

5.3.8.2 Longitudinally-stiffened members

The contribution of the longitudinal stiffen
(2010). Longitudinal stiffeners di

r resistance is neglected in AASHTO
anels. Cooper (1967) calculates the
mniing the shear resistance of the

AASHTO (2010) Article
resistance of the web pa

fficient to develop the general postbuckling
contribution of the longitudinal stiffeners to the web
e their contribution to the flexural capacity in cases
gitudinally-stiffened web bend buckling resistance. These

it possible to neglect moment-shear interaction for

wveb depth members

Falby and Lee (N#EO) address the shear design of [-section members with linearly tapered webs.
They indicate tha®the Basler shear resistance model can be used, with the average web depth
replacing the uniform depth, as long as the angle between the flanges is less than about 4
degrees. Also, they suggest a simple modification to Basler’s model for moderate tapers larger
than 4 degrees, as well as a more conservative model based on an assumed lower-bound tension-
field stress distribution for tapers larger than about 7 degrees. It appears that no studies have
been conducted to ascertain the shear capacity of I-girders with parabolic or fish-belly haunches.
Conservative approximations can be made using concepts similar to those discussed by Falby
and Lee (1976).
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AASHTO (2010) Article C6.10.1.4 discusses the positive or negative contribution of the force
within an inclined flange to the I-girder shear resistance. Falby and Lee (1976) do not consider
this contribution. Also, Article C6.10.1.4 suggests that this flange contribution is difficult to
calculate in general, since numerous sets of concurrent moments and shears must be evaluated to
determine the critical combination. Therefore, this contribution is commonly neglected.
However, the vertical component of the inclined flange force can provide a substantial
contribution to the overall shear resistance, reducing the shear force that the web must resist near
the interior supports in continuous-span I-girders. In turn, the bottom flange gormal stress is
increased due to the bottom flange slope within a haunch. Article C6.10.1.4 gests that this
increase can be estimated as

f="Pn/Ascos 0 .8-10a)
¥ 1.4-1)

Where
P - '\S" A (5.3.8-10b)

4

is the horizontal component of the flange force req

(AASHTO C6.10.1.4-2)

to dev the bending moment M,

stiffeners. Nu us research studies have observed that the bending rigidity is the dominant
parameter that §&erns the performance of transverse stiffeners. This is true both for developing
the shear bucklin@s well as the combined shear buckling and postbuckling resistance of
stiffened webs (Kim et al. 2007; Yoo and Lee 2006; Lee et al. 2003; Stanway et al. 1996; Rahal
and Harding 1990; Horne and Grayson 1983). Although there is some evidence of axial stresses
in the transverse stiffeners due to tension field loading, these effects are relatively minor
compared to the lateral loading on the stiffeners due to the postbuckling response of the web
panels. Furthermore, several research studies have shown that prior AASHTO stiffener area
requirements were more than adequate in certain cases and less than adequate in others in
maintaining a line of near zero lateral deflection along the line of the stiffener (Kim et al. 2007,
Lee et al. 2003; Xie 2000). Also, the studies show that different types of transverse stiffeners
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with comparable moments of inertia, but with widely different areas, have essentially the same
strength performance. Webs with transverse stiffeners attached such that the stiffeners only
provide lateral restraint perform similarly to webs in which a load path exists to transfer tension-
field axial forces into the stiffeners. Lastly, Kim et al. (2007) observe that the demands on the
transverse stiffeners are very similar in comparable straight and curved I-girders that satisfy the
AASHTO (2010) proportioning requirements. Based on these research results, AASHTO (2010)
Article 6.10.11.1 no longer specifies any area requirement for transverse stiffeners in stiffened
webs. Rather, several equations are specified for the transverse stiffener lateral rigidity that apply
equally to straight and curved I-section members.

For stiffeners adjacent to web panels in which neither panel supports shear forcCSllarger than the
shear buckling resistance, the stiffener moment of inertia, taken about the ed@e”i
the web for single stiffeners and about the mid-thickness of the web for stif
required to satisfy the smaller of the following limits:

I, > bt} ] (53.8-11)
AASHTO 6.10.11.1.3-1)
4 13 1.5
I, ZMKF—W’] (5.3.8-12)
40 E

(AASHTO 6.10.11.1.3-2)
where

b = the smaller of d, and

J (5.3.8-13)
(AASHTO 6.10.11.1.3-3)

n o=
Fes = (5.3.8-14)

(AASHTO 6.10.11.1.3-4)

the width

e fundamental stiffener rigidity necessary to develop the calculated AASHTO
web shear bucklig@resistance. For webs proportioned to develop their full plastic shear capacity
(i.e., C=11in Eq. 5.3.8-5¢), the rigidity requirement based on this equation becomes excessive as
the web is made more and more stocky. Equation (12) generally gives a required rigidity that is
slightly larger than that required by Eq. (11) at the web slenderness D/tw just sufficient to
achieve C = 1. For webs in which the It requirement from Eq. (11) is larger than that from Eq.
(12), the requirement from Eq. (12) is sufficient to develop the web plastic shear capacity (C = 1)
(Kim et al. 2007). For webs in which the nominal shear buckling capacity is less than Vp (i.e., C
<1), Eq. (11) typically governs. The rigidity requirement defined by this equation is constant for
do/D > 1.0, but increases substantially for do/D < 1 as shown by Figure 74.
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2.5 A

1.5

0.5 4

do/D

transverse stiffeners must satisfy Eq.
(12). As noted above, Eq. (12) gene size slightly larger than that
necessary to develop the web fully pla , were the web to be made thick enough
such that C =1 for a given pane o/D, web yield strength Fy,, and web depth D. Kim
et al. (2007) observe that this 1Z€ 1 ys accurate to somewhat conservative
compared to the size necessar e web shear postbuckling resistance for thinner
webs.

b, 1
I 2[6](3(d0/D)j|“ (5.3.8-15)

(AASHTO 6.10.11.1.5)
This equation is retained from prior AASHTO Specifications. It is a liberalization (by a factor of

three) of the transverse stiffener section modulus recommended by Cooper (1967). Equation (15)
tends to govern the transverse stiffener size only for horizontally curved I-girders with
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longitudinal stiffeners, relatively large do/R values (such that the curvature parameter Z in the
Article 6.10.11.3.3 provisions for the longitudinal stiffener requirements is at its maximum value
of 10), do/D close to 1.5, and D/t less than about 175.

Equation (12) facilitates the selection of a single size for all the transverse stiffeners in a given
girder or set of girders, since it is independent of D/t,, and do/D. AASHTO (2010) also specifies
several other transverse stiffener dimensional requirements that ensure that the stiffener width is
not overly small relative to the widest compression flange or the largest web depth within the
field section under consideration. These basic dimensional requirements govgn in a number of
practical cases.

5.3.9 Shear Connectors

AASHTO (2010) Article 6.10.10 addresses the design of the shear connectd
and the steel I-sectlons for composite constructlon Both fatigue ang

deck
must be
on focuses
on the strength behavior of the shear connectors in horizontally d d¥cird8ts. In horizontally
curved girders, the shear connectors can be subjected to sig 1 radial) shear

shear forces are relatively small and are gene calculatlon of the longitudinal
shear forces is the same in both straight and cu efore, the behavior of the shear
connectors in straight composite I-girders may be i ecial case of the behavior in
curved I-girders.

8-boUy diagrams of the slab and the steel I-section for a single I-
om appyoximately one-half of the span of a hypothetical simple-span
composite I-girder bridge.

Figure 75 shows\@palized free-body diagrams of the slab and the steel I-section for a single I-
girder taken from approximately one-half of the span of a hypothetical simple-span composite I-
girder bridge. All the forces acting on each of the elements are indicated in the figure, with the
exception of:

1. Dead loads and vertical live loads applied directly to the I-girder,

2. Slab membrane and plate bending forces and moments transferred from adjacent I-girders
along the circumferential cuts made through the slab thickness to isolate the effective
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width of the slab over the I-girder being considered, bs, from the remainder of the slab,
and

3. Vertical forces transferred between the slab and the I-girder, including any vertical forces
associated with the torsional restraint of the I-girder provided by the slab.

The force labeled Py in the figure is the total force developed in the slab by a maximum positive
major-axis bending moment equal to the corresponding cross-section plastic moment M. Article
6.10.10.4.2 assumes that the maximum positive bending moment is located ggproximately at the
position of the maximum positive live load plus impact moment. This positi
because it is easier to locate than the position of the total maximum dead- plus oad moment.
The force Py is calculated as

P =mi (Qgsfgqt” j (5.3.9-1)
=min D=
’ FYW DtW+ Fytbfttft + chbfctfc

Any reduction in the cross-section major-axis positive bend 1 gs. (3-2), (5.3.3-
3),(5.3.4-1 & 2), (5.3.7-1) and/or (5.3.7-2) is geglected.

d more heavily stressed shear
forces to less heavily stressed
er of cohnectors within the above I-girder length

member types. Furthermore, only a
connectors is needed to redistribute th
connectors. Therefore, the total r
may be calculated as

n= (5.3.9-2)

(AASHTO 6.10.10.4.1-2)
Where

Q= . (5.3.9-3)
(AASHTO 6.10.10.4.1-1)

is the factored s resistance of a single connector.
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Figure 77 Plan view simplification of the free-body diag es

Figure 76 Plan view of the slab in the idealized free-body diagra Figure 75.

B P
(0]
R(1-cos0)/2
R sin 6/2
A

in Figure 76.

For the horizontally curved I-girder illustrated in Figure 75, nti icant radial shear

forces must be accounted for in addition to t bov
suggests the simplified model for calculation of t

| forces. Colville (1972)
ated in Figure 76 and Figure

developed at the maximum mome i inear with the shear connectors. This

creates a secondary radial loading e

width bs from the remainder of the slab are
ors are assumed to be the only components available
e plan view of Figure 76.

onnectors are assumed to be spaced uniformly along a straight chord between
the end@ and B shown in Figure 76. This idealization is illustrated in Figure 77. The
shear cofllectors are actually located along the curved axis AB in Figure 76. By
assuming®hat they are located along the straight chord AOB (see Figure 77), the
equations are simplified and the resulting connector forces are estimated conservatively.
Also, since the radius R is typically large compared to the length RO, the error caused by
this assumption is small.

. The radial forces in the shear connectors are normal to the line AOB in Figure 77 and are
proportional to the distance of the connectors from point O.
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Based on the above assumptions, the resultant of the connector forces may be taken as a force Py
acting at the centroid of the group of connectors (taken as point O), plus a moment about a

vertical axis through point O equal to PR (1 — cos 0) / 2. The force in each of the extreme
connectors is equal to the vector sum of the two components, namely

P=P,/n (5.3.9-4)

where N is the total number of connectors along the girder length under consideration, and the
lateral force (perpendicular to AOB)

1.5P, (1-cos®)
(n/n*=1)n* sin@/2

E

I

(5.3.9-5a)

where n* is the number of shear connectors placed at each cross-secd hed to be

large compared to one, Eq. (5a) simplifies to

1.5P, (1-cos®)
n siné/2

F= (5.3.9-5b)

tween the maximum moment
ely approximated by

Furthermore, for all practical values of the subigade

location and the simply-supported end of the gird .(5b)1

(5.3.9-5¢)

where 0 is expressed in radian
in Eq. (5¢). This is equivalent
all of the connectors, an j

e radial shear forces are the same magnitude in
onservative nature of the assumption that the

(5.3.9-6)
(AASHTO 6.10.10.4.2-1)

(5.3.9-7)
(AASHTO 6.10.10.4.2-4)

Colville (1972) discusses other contributions to the shear connector radial forces that come from
the uniform St. Venant and nonuniform warping torsion of the composite I-girder between the
brace points, where the brace points are indicated by the larger radial arrows on the free-body
diagram of the steel I-section in Figure 75. He concludes that these forces are small compared to
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the above forces P and F . Nevertheless, the assumption that the connector radial forces
increase linearly with their distance from point O in Figure 77 is inconsistent with Colville’s
open-section thin-walled beam theory analysis of the composite I-section member to determine
the connector forces due to St. Venant and warping torques. The above calculation of the
connector radial loading effect from Egs. (6) and (7) should be considered as no more than a
reasonable but coarse approximation of the true radial loading effects on the shear connectors.
The above equations are based on a constant radius of curvature R between the maximum
moment location and the simply-supported girder ends. For more general girder geometries, R
may be taken conservatively as the minimum girder radius over the length ugder consideration.

straight bridges with skews exceeding 20°. If written in terms of the forces
conditions, these estimates would be

_ 1
= A foin o (53.9%)
(A TO 6.10.10.1.2-4)
and
_ _F
Fz—=< (5.3.9-9)
nW
(AASHTO 6.10.10.1.2-5)
where
Apot = area of the bottom
founot = elasticall mputed @BttoM flange stress,

L, = di e bet points,

horizo adius of curvature at the brace point under consideration,

e or diaphragm force at the top flange, taken as the total radial force
transferred to the I-girder from all the components of the cross-frames or
diaphragms on each side of the girder at the location under consideration (the
assumption associated with this calculation is that this total radial force must be
balanced by a shear that is transferred to the slab by the shear connectors), and

Ny = number of shear connectors within an effective length of the deck over which the
total radial force from the cross-frames is developed, taken as 48 inches at interior
locations and 24 inches at end supports for calculation of the connector radial
fatigue shear range in Article 6.10.10.1.2.

AASHTO (2010) Article 6.10.10.4 takes Eqgs. (6) and (7) as a sufficient estimate of the shear
connector radial loads under strength conditions. It uses formulas analogous to Egs. (8) and (9)
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only for checking the fatigue shear range in horizontally curved bridges and in bridges with
skews exceeding 20°.

Colville (1972) also discusses a conservative calculation of the vertical (uplift) forces on shear
connectors due to the restraint provided to twisting of the steel I-girders from the bridge deck.
His equations for estimating these forces tend to be small compared to the vector sum of the
longitudinal and radial forces. Furthermore, the downward dead and live loads located above the
I-girder-to-slab interface counteract these local uplift forces. Therefore, AASHTO (2010) Article
6.10.10 does not require any consideration of uplift forces on the shear connggtors. Article
6.10.10.1.1 simply specifies that the connectors shall be capable of resisting 8@k horizontal and
vertical movement between the concrete and the steel.

AASHTO (2010) Article 6.10.10.4.3 specifies the nominal shear resistancd
connector embedded in a concrete deck as

Q,=0.5A,JT'E, <AF, (5.3.9-10)

.10.88.4.3-1, AISC 13-3)

A = cross-sectional area of the s‘ sh nec

Ec = modulus of elasticity of the deck rete,

fc' = compressive stre

Fu = specified minim the stud shear connector.

Also, an alternate equation is
connectors. Channel she
skews larger than 20°

ngth of less commonly used channel shear
not be used in curved bridges or bridges with

d Fp apply only to simple span bridges, and to the length between
jtive moment (taken as the maximum live load plus impact

that are compd
must be develoft
centerline of an 4

(7) by

® for negative flexure in the final condition, a larger total longitudinal force
in the length between the maximum positive moment position and the
ncent interior support. This is handled by replacing P, in Egs. (1), (2), (6) and

Pr=Pp+ Py (5.3.9-11)
(AASHTO 6.10.10.4.2-6)
where P, is an estimate of the total force developed in the negative moment cross-section of the

concrete deck over the interior support. That is, the model of Figure 76 is replaced by the one
shown in Figure 78. The force P, is calculated as
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P, = min

0.45 f/ b, t

T ] (5.3.9-12)

wa th + Fytbfttft + chbfctfc

(AASHTO 6.10.10.4.2-7 & 6.10.10.4.2-8)

Maximum negative totebg -
moment section - "

Maximum po
moment sectio

Figure 78 Plan view free-body diagram of the slab between Ive moment
and maximum negative moment pos

at the interior support cross-section. The first term in this eq d as a conservative

estimate of the combined contribution of bot itudi inforcement and the concrete

This section highlights a number of
that are somewhat separate from the ov
discussed in the previous sectio
proper structural performance.

5.3.10.1

where

fi

Net secti

aining to I-section flexural members
ic of the behavioral considerations

rticle .1.8 addresses the potential fracture through the net section of
aining h

(5.3.10-1)

(AASHTO 6.10.1.8-1)
the elastically computed stress on the gross area of the tension flange, not
including flange lateral bending but presumably including the stress due to tensile

axial force if it exists,

the net tension flange area at the holes, calculated as discussed in Section 5.1.1 of
this module,
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Ag

the gross area of the tension flange, and

Fu

the specified minimum tensile strength of the tension flange.

By multiplying each of the expressions in Eq. (1) by Aq and noting that 0.84 = ¢, / ¢y =0.80 /
0.95, one can observe that this equation effectively handles the tension flange as a tension
member according to AASHTO Article 6.8 (discussed in Section 5.1.1) and ensures that tension
yielding will govern relative to tension fracture based on these provisions. Dexter and Altstadt
(2004) indicate that due to the constraint provided by the web, net section fr.
flange is less critical than the tension member equations imply. However, th:
provisions of Article 6.13.6.1.4 do not consider the contribution of substantial ielding to
the flexural resistance. Therefore, potential liberalization of Eq. (1) should
consideration of substantial web yielding in the splice design provisions.

5.3.10.2 Web bend buckling

The web bend buckling resistance does not enter directly intq th ance of [-section
members at strength load levels except in the context of in eb load-shedding
parameter Ry is less than one, via Egs. (5.3.5-1) and (5.3.5-4 C AASHTO Article

6.10.3 and 6.10.4.2 provisions for constructalyiility a VICE II permanent deflection
limit states directly restrict the elastically conﬁt ange stress to the nominal
web bend buckling stress as a simple device to he bending and transverse
displacements under these conditions. Also ASHTO Article 6.10.5.3 on special
fatigue requirements for webs, the 4@iticlg§”1 0"
always govern relative to a compara atiglie load combinations of this article.
Therefore, theoretical web bend bucklin i revented also under the AASHTO

(2010) factored fatigue loading.

AASHTO Article 6.10.1.94 d@nes the bend buckling resistance as

(5.3.10-2)

(AASHTO 6.10.1.9.1-1)

(5.3.10-3)
(AASHTO 6.10.1.9.1-2)

for webs without longitudinal stiffeners, and Article 6.10.1.9.2 defines the web bend buckling
coefficient as
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k=17 5 9 (5.3.10-4a)

(d,/D)" (D,/D)’

(AASHTO 6.10.1.9.2-1)
for longitudinally-stiffened webs with ds/D¢ > 0.4 and by

k=164 (5.3.10-4b)

5]

for other longitudinally-stiffened webs, where ds is the depth between the g
and the longitudinal stiffener. One can observe that the web bend buckling

s approximately
g coefficients for
s respectively (Timoshenko
gs. (2) and (3) provide a
resistance (Ziemian 2010)

symmetric [-section without longitudinal stiffeners, the abo
equal to kss + 0.8(Ks — Kss), where kss = 23.9 and Kt = 39.6 ar
simply-supported and fully-restrained longltL?al e

and Gere 1961). For singly-symmetric [-sectiohs Wi
reasonably accurate approximation of the theoret
consistent with kK = Kgs + 0.8(Ks — Kss).

For webs without longitudinal stiffent . edict Ferw = Fycat 2Dc/ty = A given
by Eq. (5.3.5-1). The potent1al use of F¢ i id members is justified since the flange

nominal compression flange s
buckling does not need to ybrid sections with Fyc up to 100 ksi as long as the
%3 AASHTO Atrticle 6.10.1.9 adopts a more

conservative approach y ASCE (1968) for Fyw/Fyc < 0.7 by limiting Feny to

the smalleggaf RnFyc and .7 in its explicit web bend buckling checks.

= Fyc at D/ty, = O.95(Ek/l:y¢)0'5 as defined by Eq. (5.3.5-4).

ank and Helwig (1995), account for the effect of the location of a
single longituQu@P stiffener with respect to the compression flange on the web bend buckling
resistance. The\@Rtimum stiffener position is given by ds/D, = 0.4, in which case both Egs. (4a)
and (4b) give k 9 for a doubly-symmetric girder. For longitudinally-stiffened webs with
ds/D¢ > 0.4, the w€b bend buckling deformations occur predominantly within the height ds
between the longitudinal stiffener and the compression flange. Eq. (4a) results in a web bend
buckling stress that is constant with respect to ds/t,, in this case. For longitudinally-stiffened webs
with dy/D¢ < 0.4, the web bend buckling deformations occur predominantly within the height (D
— ds) between the longitudinal stiffener and the tension flange. Equations (4) assume simply-
supported boundary conditions at the flanges. Equation (4a) is limited to a minimum value equal
to the k for webs without longitudinal stiffeners (Eq. (3)) to recognize the nominal restraint from
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the flanges in the limit that Eq. (4a) would otherwise predict a smaller F¢ny than if the web did
not have a longitudinal stiffener.

Aside from its implicit use in determining when load shedding due to the postbuckling actions of
the web must be considered via the Ry, factor, the theoretical web bend buckling stress given by
Eq. (2) has little significance with respect to the maximum flexural resistance. Article
C6.10.1.9.1 emphasizes:

“In many experlmental tests, noticeable web plate bending deformatigns and

simple index for controlling the web plate bending strain

displacements.”
5.3.10.3 Longitudinal stiffeners ‘
The AASHTO (2010) Article 6.10.11.3 provision i wing requirements for the
design of web longitudinal stiffeners in I-gi d to flexure:
1. Web longitudinal stiffeners nSg t yicld when subjected to the idealized

stress due to major-axis bendin

fs < ¢ Rn Fys (5.3.10-5)

(AASHTO 6.10.11.3.1-1)

where

elastic stress at the longitudinal stiffener due to major-axis bending,

ca ted assuming a linear variation in the flexural stress through the
tINOf the web and

the specified minimum yield strength of the stiffener.

The yiel ength of the stiffener is multiplied by the hybrid strength reduction factor to
servatively for the influence of early web yielding on the stiffener stress in
hybrid members. Article C6.10.11.3 suggests that Ry, in Eq. (5) should be taken as the
value applied to the flanges at the strength limit state. Lateral bending of longitudinal
stiffeners due to eccentricity of the stiffener with respect to the web plate, and/or due to
horizontal curvature, is neglected in Eq. (5).
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2. Web longitudinal stiffeners must not buckle locally prior to reaching their yield strength
in uniform axial compression. This is achieved by satisfying the following slenderness
limit, assuming rectangular plate longitudinal stiffeners

b, <0.48t, /5 (5.3.10-6)
Fys

(AASHTO 6.10.11.3.2-1)
which is Eq. (5.2.4-4) with an assumed plate local buckling coefficient of k. = 0.56.

3. Web longitudinal stiffeners and a portion of the web adjacent to them, 3@ligge as an
equivalent column, must not fail by flexural buckling prior to develo the yield
strength of the compression flange. This is achieved by:

e Assuming that the equivalent column fails by inelastj
e Using the traditional CRC column inelastic buckl], la

e Assuming a linear variation in the flexural str@g8s th

in the first requirement above. ‘

epth of the web as

These combined idealizations give

1(d,Y(F
RF [1-—| = ||
" y{ 4( r j ( E J
brid factor, Ry, on the left-hand side of this
equation, but the hybrid ot inclu@8d in the reduction for column inelastic buckling in

(5.3.10-7a)

the square brackets on e longitudinal stiffener is taken as a simply-
supported column with equal to the spacing between the transverse stiffeners,
do, withi gducti umn inelastic buckling. The right-hand side of this equation is

tion of the longitudinal stiffener when the compression flange
g. (7a) is solved for the required radius of gyration of the

> - (5.3.10-7b)
1— 1_$ _x
Dc Rths

The Engineer is required to include an effective width of the web of 18t,, with the longitudinal
stiffener in calculating the radius of gyration r. Also, it is required that the radius of gyration
shall be calculated about the neutral axis of the combined effective cross-section (one is not
allowed to assume that the neutral axis is located at the edge of the stiffener in contact with the
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web, as specified for transverse stiffeners). This requirement is based on the recommendations
by Cooper (1967). Cooper recommended the use of a mean effective width of 20t,, based on the
results of strain measurements reported by Massonnet (1960). The effective width of 18ty is
specified to conform to traditional assumptions in American bridge design, as discussed by
Vincent (1969). Lastly, AASHTO (2010) invokes one additional simplification that is justified
given all the above idealizations and assumptions utilized in arriving at Eq. (7b). Rather than
make the required radius of gyration a function of ds/D., AASHTO Article 6.10.11.3 addresses
the influence of the location of the longitudinal stiffener solely via Eq. (5) and assumes the
optimum location dy/D. = 0.4 in Eq. (7b) to obtain

FS
0.160|0,f—y
r>— VE _

> F
{1—0.6y :l
R.F

h' ys

4. Web longitudinal stiffeners must be stiff enough to f@@int ine offear zero lateral
deflection at their juncture with the web plate for loadg@igvel calculated bend
buckling resistance of the web. This i*hie i

2
I, >Dt {2.4(%’] —0.13} Yij

where

(5.3.10-8)

(AASHTO 6.10.11.3.3-1)

|, = moment of inertia of t 1 stitfener including an effective width of the web
axis of the combined section. If Fy, 1s smaller than
the effective section shall be reduced by the ratio

Equation (8) V b =1 gives a reasonably good fit to the results from Dubas (1948) for the
required lateral\@ligidity of longitudinal web stiffeners in doubly-symmetric I-girders with 0.5 <
do/D < 1.6, a singll longitudinal stiffener located at the optimum position ds = D/5, an effective
width of the web #Cting with the stiffener of 20t,,, and an upper-bound stiffener-to-web area ratio
AyJ/Ay, = Ad/Dty, of 0.1. Dubas (1948) accounts for the fact that the necessary rigidity depends not
only on the panel aspect ratio do/D, but also on the ratio of the stiffener area to the total web area

As/Ay. The required I, is smaller for lesser values of A/Ay, and hence Eq. (8) may be considered
as a reasonable upper bound for the necessary moment of inertia of the combined stiffener and
web effective width (conservatively taken as 18ty,).
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It is important to recognize that the true web bend buckling resistance is a continuous function of
the longitudinal stiffener properties. For stiffener I, values larger than specified by Eq. (8), the
web bend buckling resistance asymptotes gradually to a maximum value as |, approaches
infinity. For |, values somewhat smaller than specified by Eq. (8), the web bend-buckling
resistance starts to reduce significantly due to increasing participation of stiffener lateral
deformations in the web buckling mode. Also, it is important to note that the theoretical web
bend buckling stress is not necessarily the maximum limit of the flexural resistance. For cases
where the web violates Eq. (5.3.5-4) and thus the web bend buckling resistance is exceeded, the

neglecting any benefit of the longitudinal stiffening. However, with respect to
longitudinal stiffener should be adequate to ensure the validity of Egs. (2), (4

Equation (8) neglects any influence of the stiffener location, dy/D, or the fr4
depth in compression, D¢/D, on the required I,. Frank and Helwig (199

element analysis for a wide range of doubly- and singly-symmet with do/D =1
using minimum-size longitudinal stiffeners based on the AASH lirements. For 3 =
1, Egs. (6) and (8) are identical to the AASHTO (1998) req at AASHTO

(1998) specified that I, should be calculated a stiffenier in contact with the
web. AASHTO (2010) specifies that |, is to b e true neutral axis for the
combined stiffener and effective width of the we ooper (1967). For Fys = Fyc
and Ry, = 1, Eq. (7c) requires an eight percen s of gyration, I, relative to do, as well as
' ined as specified above. Therefore, the
elwig (1995) have |, values that
uirement from Eq. (8), and they have r

ut theedge o

minimum size longitudinal stiffeners
range from 72 to 81 percent of the AA

values that range from 64 to 13 AASHTO (2010) requirement from Eq. (7c¢).
Frank and Helwig (1995) poi of conservatism in their study is the fact that
the longitudinal stiffeners i ting the overall bending applied to the I-girder. That
is, they do not apply fle 1 to the longitudinal stiffeners in their study, but the

due to their compatibility with the web plate. On this
ongitudinal stiffeners should not be included in calculating the
moment 0 % oduli Syc and Sy for longitudinally-stiffened I-girders.

It is importa ”(8) and the results from Dubas (1948) are based only on linear
buckling anal Y@ T'herefore, Eq. (8) gives an |, that guarantees only the development of the web
bend-buckling Kg8istance given by Eqgs. (2) and (4). Longitudinal stiffener rigidities as much as
seven times larg§@ave been found to be necessary to ensure the integrity of the longitudinal

stiffeners within the postbuckling range of the web response, e.g., see Ziemian (2010) and Owen
et al. (1970).

For horizontally curved girders, AASHTO requires an increase in the required |, to account for
the tendency of the web to bow and the tendency of the longitudinal stiffeners to bend laterally.
This is accomplished via the parameter 3, given by
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p=2/6+1 (5.3.10-9a)
(AASHTO 6.10.11.3.3-3)

for cases where the longitudinal stiffener is on the side of the web away from the center of
curvature, and

Pt (5.3.10-9b)
(AASHTO 6.10.11.3.3-4)

for cases where the longitudinal stiffener is on the side of the web toward the er of curvature,
where

2
7 0930, 10-10)
Rt,
.11.3.3-5)
is referred to as the curvature parameter. This parameter is lii axigm value of 10.

enter of curvature,
sab g effect that is
hen the longitudinal stiffener is

When a longitudinal stiffener is placed on the side of the we
the eccentricity of the stiffener with respect toghe we
additive with the effect of the horizontal curvire.
placed on the side of the web toward the center

Equations (9) are a simplification o
developed by Hall et al. (1999). The re
the Hanshin (1988) equations. A

isions for longitudinal stiffeners
Nakai and Yoo (1988) for a summary of

The Hanshin prowSions are based on preventing nominal yielding of the longitudinal stiffener
and a portion of the web acting together as a beam-column. These provisions assume that
longitudinal stiffeners are continuous across the transverse stiffener locations; hence, it is
imperative that the detailing of the longitudinal stiffeners is consistent with this assumption. The
reason for the more liberal nature of the AASHTO equations for small do/D stems predominantly

from the fact that the Hanshin provisions require a larger I, for straight I-girders with small do/D.
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The behavior of stiffened plate assemblies is one of the areas of greatest complexity in the
analysis and design of steel structures. The AASHTO (2010) Article 6.10.11.3 provisions for
longitudinal stiffeners are a basic set of criteria for proper proportioning of longitudinal stiffeners
in the webs of I-girders subjected solely to flexure. These provisions are not intended for
members that are subjected to combined flexure and axial compression. The reader is referred to
Ziemian (2010) for discussion of the broader problem of combined flexure and axial
compression in members with longitudinally-stiffened webs.

5.3.10.4 Bearing stiffeners

AASHTO (2010) Article 6.10.11.2 addresses the design of bearing stiffeners.
6.10.11.2.1 requires full-depth bearing stiffeners on built-up sections at all i

loads are not transmitted through a deck or deck system, either bg
provided or the web must satisfy the provisions of Article D6.5

Bearing stiffeners are designed using the AASHTO Article
and assuming an effective length equal to 0.7gR. Al i
the same limit as Eq. (5.3.10-6) to ensure agaiist e areas at the ends of the
stiffeners (where the stiffeners are clipped to clea e fillet weld) must be
sufficient to accept the bearing loads, and t of the stiffeners to the web must be

iffeners are required to satisfy

tiffener elements may be included as part of the
airs are used, the effective column section may
/Fys) tw < 9ty, on each side of the outer projecting

elements g ffeners are bolted to the web or if Fy,, is less than 70 % of the
specified h of the higher strength flange at interior supports of continuous-
span memb en® clements may be included in the effective column cross-section
The first res ginst the loss of compatlblhty between the web and the stiffeners

effectiveness o ybrid web due to early yielding caused by longitudinal flexural stresses.

5.3.10.5 p yielding and web crippling

Webs of built-up sections and rolled shapes subjected to concentrated loads at locations that do
not have bearing stiffeners, and where the loads are not transmitted through a deck or deck
system, must be designed to prevent transverse web yielding or web crippling at the concentrated
loads. If the loads are transmitted through a deck or deck system, they are assumed to be
adequately distributed to the web such that these failure modes do not occur. AASHTO (2010)
Article D6.5 specifies the same web yielding and web crippling limit state equations as in AISC
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(2010) to guard against these secondary failure modes. The web yielding and web crippling limit
states can be important in some cases during construction, for example during incremental
launching over supports, where temporary concentrated loads may be applied to the members at
locations that do not have bearing stiffeners.

5.4 Box-Section Flexural Members

5.4.1 Introduction

The design of box-girder bridges is generally more involved than the design S@lsgirder bridges.
AASHTO (2010) Articles 6.7.4.3, 6.7.5.3 and 6.11 address various consideratiQN8pecific to

analysis and design considerations for tub girder bridges, which as noted i i ) this
module are the predominant type of box-girder construction in the United

elements. Also, they contain a number of components beyond thg
components that are essential to the behavior of the girders and ing overall
structural system. These include:

¢ Diaphragms inside the individual box¢@yder oints\@A support, to transmit the girder
vertical reactions and torques to the suppoa be h generally are not located
directly under the girder webs.

at certain intervals along their span
to maintain the shape of the ¢ i i girders, to help brace the narrow top

e External diaphragms b
reactions across t th between the inside and outside bearings, and to
restrain individ tations at the bearing lines (such rotations tend to
impact the gir i s throughout the span length). Also, at end bearing

ing i provide support for an expansion joint.

1s achieved, the slab itself acts predominantly as the top flange of the box,
glthe lateral bracing redundant for subsequent loading. Nevertheless, the top
lateral bri@ng system still can be an important element during future redecking.

In spite of the unique attributes of box girders and box-girder bridges, many of the requirements
for their design can be taken directly from the requirements for I-girder bridges. For instance, the
general requirements for analysis of the composite structure and for consideration of slab
reinforcing in negative bending regions, hybrid webs, variable web depth, lateral bending
stresses in the top flanges of tub girders during construction, net section fracture at cross-sections
containing holes in a tension flange, and web bend buckling are largely the same as the I-girder
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requirements. As such, Article 6.11 refers back to Article 6.10 in numerous places rather than
duplicate the I-girder provisions.

AASHTO (2010) specifies several broad restrictions intended to limit its scope to the most
common types of box-girder bridges:

e Only single-cell box girders are addressed. Multiple-cell box girders require additional
considerations.

evaluation of the application of the bridge under consideration consj
structural fundamentals.” This article also references the proposed Y
Mayrbaurl (1980) straight box-girder specification for information
of long-span steel box-girder bridges.

e Only box-girder bridges that have a composite concrgte t their length in

ck superstructures in
design of the other components
\c deck. Orthotropic deck box-

length definition.

general. However, AASHTO (2010) Qs no,
of box girders in combination with the us
girder bridges are typically longer than the

e Only composite top flange
flanges is not considered.

eb ior and design of composite bottom

Section 5.4 of this module prov;
corresponding AASHTO (201
on several overriding sys
bridges into two main
allowed and a second

Section 5 448 i
as well as
bridges. Sed
satisfying thd
general AAS

of the behavior of box-girder bridges and the
design provisions. Section 5.4.2 first focuses
iderations. AASHTO (2010) categorizes box-girder
various analysis and design simplifications are

iled analysis and design procedures are necessary.
estrictions applied to bridges classified in the first of these groups

(2010) requirements applicable to all types of box-girder bridges as well as
requirements fo@@everal specific box-girder bridge types respectively. The remaining sections of
Section 5.4 focu§@n the strength behavior and design of the box girders themselves. The
discussions in theSe sections largely parallel those in the previous Sections 5.3.2 through 5.3.9 on
I-section flexural members. In places where the I-girder provisions are applicable, Sections 5.4.5
through 5.4.14 refer back to the previous discussions. Section 5.4.15 closes the discussion of
box-girder bridges by highlighting and explaining a number of key differences between the
AASHTO (2010) box-girder provisions and previous proposed Wolchuk and Mayrbaurl (1980)
specifications for straight long-span steel box-girder bridges.
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Prior to discussing the behavior and design of box girders in detail, it is useful to establish the
following definitions, adapted from AASHTO Article 6.2:

Tub section — An open-top steel girder composed of a bottom flange plate, two inclined or
vertical web plates, and an independent top flange attached to the top of each web. The
Specification requires that the top flanges of straight tub girders must be connected with either a
partial- or a full-length lateral bracing system, with due consideration of the lateral stability of
the top flanges and the overall stability of the members. A full-length lateral bracing system is
required for curved tub girders.

Article 6.11, the top flange of a closed-box section is always composite wi eRlcck in
the final constructed configuration.

tened plate, a
stiffened plate or a top flat plate with reinforced concrete attachg 3 pnnectors. The

discussions of plate local buckling in Section 5.2.4 of this m HTO Article
6.9.4.2. In this section, “stiffened” means th gitughinal an transverse stiffeners are
attached to the plate, whereas “unstiffened” mca oes not have any longitudinal
or transverse stiffeners.

Diaphragm — A vertically oriente ' ber connecting adjacent
osed-box or tub section to transfer and
distribute vertical and lateral loads, to prgia i o the compression flanges, and to limit

Cross-frame — A transversgt onnecting adjacent longitudinal flexural members,

n to transfer and distribute vertical and lateral loads,
to provide stability to ges, and/or to limit the cross-section distortion to
acceptabledgvels.

Article 6.11.2.3 sftcifies the following restrictions that are first stated as being necessary for the
applicability of line girder analysis using the live-load lateral distribution factor equation of
Article 4.6.2.2.2 for multiple steel box girders with a concrete deck. However these restrictions,
combined with additional limits, also form the basis for a number of other analysis and design
simplifications. The additional limits and the corresponding analysis-design simplifications are
discussed subsequently. The specific requirements for use of the above basic live-load
distribution factor are:

186



e The bridge cross-section must consist of two or more single-cell box sections.
e The bridge should not have any horizontally curved segments (the influence of horizontal
curvature generally extends beyond the horizontally curved segments and into other

straight spans of the structure).

e The bridge shall not have any support skew.

e At midspans, 0.8w < a < 1.2w, where W is the center-to-center dist
flanges of the box girders and a is the center-to-center distance bet®
adjacent box sections (see Figure 21).

e between the top
n the flanges of

e For nonparallel box girders, 0.65w < a < 1.35w must be satisfied at
e The value of w must be the same for all of the girders.

e The inclination of the webs with respect to a plane ¢ bol®m flange shall not

exceed 1 to 4.

e The width of concrete deck cantileve‘/er
satisfy Wo < min (0.6 @ayg, 6 ft), where
length.

uding curbs and parapets, shall

is t ¢ a dimension along the span

These restrictions are based on the i ara8@@pistics considered in the original
actors by Johnston and Mattock (1967).

In addition to the above restrictg
be considered to be fully effec ure (i.e., no reduction in resistance due to

aken as the span length for simple spans and the
ontraflexure or between a simple support and a point
1nuous spans. For negative moment regions in

is taken as the distance between the points of permanent load

| IS0 es from studies of simple-span bridges with L/bs ranging from 5.65

¥ and Leve 1957). The effective flange width ranged from 0.89 for the bridge

SBL/b; to 0.99 for the bridge with the largest L/bs in these studies. Dowling and

Harding (1992) &9 indicate that box flanges may be considered as fully effective except in
cases with particularly large aspect ratios (i.e., large b#L), or cases with particularly slender edge
panels or stiffeners. AASHTO 4.6.2.6.4 gives different effective width rules developed by
Moffatt and Dowling (1975 and 1976) for orthotropic steel decks. These effective width
definitions, which are applicable to stiffened or unstiffened box flanges, are discussed
subsequently in Article 5.4.15.

to 35.3 (Goldb

Various AASHTO (2010) articles specify analysis and design simplifications for box-girder
bridges that: satisfy all of the above requirements for (1) use of the simple live-load distribution
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factor equation and (2) consideration of the box flange or flanges as fully effective. These
analysis and design simplifications are as follows:

e Stresses due to distortion of the box cross-section (when it is subjected to torsion) may be
neglected (Article C6.11.2.3). These are the shear, warping and plate bending stresses
illustrated previously in Figure 20. AASHTO (2010) allows these stresses to be neglected
both for consideration of strength as well as for consideration of fatigue (see Article
6.11.5).

6.11.7.1 (this is specified in Article 6.11.6.2.2).

e Shear stresses due to St. Venant torsion may be neglected (Article

e The Engineer may consider reducing the number of i ed® ernal cross-frames to
a minimum of: (1) points of maximur’) 1 , (2) points adjacent to field

i uring transportation and

W also indicates that internal

and/or construction may be handled

3 also states that additional cross-

lifting of shipping pieces (Article 6.7.4.3).
bracing members inserted fgr trans i
as temporary members. Ne
frame members may be requir:
Engineers to use their jud construction conditions, such as eccentric
analyses of potential construction conditions to
I stresses and deformations. Furthermore,
sections with inclined webs, additional

s or struts may be required to reduce the lateral

check the St. Venant s
Article C6.7.4.3 a

¢. In short, although it is possible to reduce the number of internal cross-
frames @lridges satisfying the above restrictions, there are a number of additional
considerd@®ns that must be addressed.

5.4.2.2 Box-girder bridges not satisfying one or more of the above requirements

AASHTO (2010) specifies the following more detailed analysis and design procedures for box-
girder bridges not satisfying one or more of the above requirements:

e The bridge should be analyzed using a refined analysis, i.e., an analysis that captures the
three-dimensional responses of the structure (Article C6.11.2.3).
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For wide bridges in which the box flanges are not considered fully effective, the box-
flange width is to be taken as L/5 in calculating the major-axis bending stresses (Article
6.11.1.1). However, the full box flange width is to be used in the applicable resistance
equations.

Internal diaphragms or cross-frames shall be provided to control the cross-section
distortion, with the spacing not to exceed 40 ft (Article 6.7.4.3). Article C6.7.4.3
elaborates that internal diaphragms and cross-frames: (1) “must” be gaaced to limit the
plate bending stresses due to distortion (see Figure 20) to 20 ksi at thc\@@ength limit state

longitudinal warping stresses (see Figure 20) to 10 % of the normal
axis bending at the strength limit state (Article 6.11.1.1 states that t
be ignored at the strength limit state). These plate bending stresses

supports and the resistance to distortion provided by the & Bs-sc@lllon is analogous to
a continuous elastic foundation. Sample calculation$gisi are presented by
Heins and Hall (1981) and in AASHTO (2003) The i rping stresses due to

cross-section distortion also can be d
provision of adequate internal diaphragm s using these rules, AASHTO
(2010) neglects the influence of the plate 1 ing stresses due to cross-

section distortion for checking of st i

As noted subsequently in Sec
tub sections with inclined webs,

le, Article C6.7.4.3 also states that in
ediate cross-frames, diaphragms or

struts may be required t ge lateral bending in discretely-braced top
flanges. Furthermore, i ent from Article C6.11.1.3 still applies: at least
two intermediate i s or diaphragms are necessary to reduce the
magnitude of th due to distortion of the cross-section at the web-to-

ore than 80 %) such that fillet welds on both sides of
rdmg to Article 6.13.3.4 may be assumed to be adequate.

ge shear connectors shall be designed for the sum of the shear forces due to
flexure aN@due to the St. Venant torsion (Article 6.11.10).

Web splices shall be designed for the sum of the above shears (Article 6.13.6.1.4b).

The longitudinal warping stresses due to cross-section distortion shall be considered
when checking bolted flange splices for slip and for fatigue (Article 6.13.6.1.4c).

The need for a bottom transverse member within internal cross-frames shall be
considered (Article 6.7.4.3). Article 6.7.4.3 indicates that this member may be needed to
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limit the plate bending stress range for fatigue in the bottom box flange at the termination
of fillet welds connecting cross-frame connection plates to the flange. In addition, Article
6.11.11.2 indicates that for rare cases where a box flange is exceptionally wide and more
than two longitudinal stiffeners may be required, transverse flange stiffeners should be
considered to reduce the required size of the longitudinal stiffeners. AASHTO does not
suggest any other conditions requiring a transverse member or transverse stiffener
attached to a box flange.

Where provided, the transverse member shall be attached to the box flange unless
longitudinal flange stiffeners are used, in which case the transverse ber shall be

hall be provided at each support to resist transverse
ion distortion and shall be designed to transmit the
s from the box to the bearings.

diaphragms shall be used between the boxes at end supports.

SM@dcrs are supported on only one bearing, the need for external cross-
ween girders at interior supports should be evaluated to ensure torsional

hese components are also key in controlling the torsional rotations of the

individud@@irders, particularly during construction).

e Diaphragms that are provided for continuity or to resist torsion shall be connected to the
webs and flanges of the box section. (It should be noted that recent studies by Zhou
(2006) and Helwig et al. (2007) indicate that it is not essential to connect the diaphragms
to the girder flanges when the length to depth ratio of the diaphragm is less than five; fit-
up of external diaphragms with the girders during construction is facilitated by not
providing a connection to the flanges,)
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e The effect of access holes on the stresses in diaphragms should be investigated to
determine if reinforcement is required

5.4.3.2 Bearing requirements (Article 6.11.1.2)
Article 6.11.1.2 specifies the following requirements at bearings:
e Single or double bearings may be used. Double bearings provide a restoring couple on

each box, whereas single bearings require bearings on other gigders to provide the
torsional reactions required for equilibrium.

e Single bearings shall be aligned with the shear center of the box.

Furthermore, Article 6.11.11.1 states that stiffeners are to be designed using
provisions of Article 6.10.11.2 plus the following additional requi

e The bearing stiffeners should be attached to the diaphra not §@ the inclined webs,
so that the stiffeners are perpendicular to the sole pl

e At expansion bearings, the bearing ‘fen ragms should be designed for
eccentricity due to the thermal movemenigilhis dled by designing the bearing
stiffener assembly as a beam-column.

5.4.3.3 Top lateral bracing requ i ird Article 6.7.5.3)

Article 6.7.5.3 addresses the top la
requires a full-length lateral br:
full-length system should be P
and for general cases in
s1gn1ﬁcant (e. g tubs 1

requirements for tub girders. This article
urved boxes. Its commentary suggests that a
ght boxes with spans greater than about 150 ft,
ting on the steel section are deemed particularly
symmetrically placed, and tub girders with skewed
e objective is to ensure that the overall stability of the
ormations of the tub sections are adequately controlled during

erection a crete deck. For the other very limited situations, the Engineer is
allowed to @ o a'partial length lateral bracing system. However, if the bracing
system is pa Ocal and global stability of the top flanges and the tub-girder

members musH 1nvest1gated for the Engineer’s assumed construction sequence. Also, Article
C6.7.5.3 states for spans less than about 150 ft, at least one panel of horizontal lateral
bracing should b@@rovided on each side of a lifting point. Furthermore, this article indicates that
cross-section distortion and additional top-flange lateral bending stresses due to warping of the
cross-section may need to be considered when a tub with a partial-length bracing system is
subjected to a net torque.

Article C6.7.5.3 suggests the following equation as a guideline to ensure that a reasonable
minimum area is provided for the diagonal bracing members:
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Ag > 0.03w (5.4.3-1)
(AASHTO C6.7.5.3-1)

Where
Ay = the minimum required cross-sectional area of one diagonal, expressed in inches”. and
w = the center-to-center distance between the top flanges, expressed in inches.

This equation was recommended by Heins (1978) based on studies of straighgand curved steel

composite box-girder bridges with spans between 50 and 250 ft. Tub sectiongath vertical webs
and ratios of the section width-to-depth between 0.5 and 2.0, and an X-type top Yl
system with the diagonals placed at an angle of 45° relative to the longitudig
were assumed in these studies. Heins found that an equivalent solid plate t
lateral bracing system of

teq=0.051n= ﬂcos2 a sina (5.4.3-2)
w

Q|m

was sufficient to limit the section warping stresses to less tha
stresses in all cases, where a is the angle of t -bigmg dia
the box cross-section. Eq. (2) is obtained from
truss chords (i.e., the tub girder top flanges) relati
= 45° into this equation and solving for Ag

0% ajor-axis bending
als with respect to the plane of
sler (1969) by assuming rigid

equation may be used as a guid reasonable minimum area is provided for the
bracing members. If the under = ere generally applicable, the equations given
by Kollbrunner and Basl sed to determine the necessary bracing member

areas for various braci
should be revisited to
designs, ip@imding spans
) ™n -

s suggested that the requirement of teg = 0.05 in.
ility for a complete range of modern tub girder

350 ft. In the meantime, teq = 0.05 in. may be used as an

.7.5.3 suggestion to ensure that a reasonable minimum area is
embers.

Lastly, Articld
combined forcé
the flexure of thd
composite.

.5.3 requires that the top lateral bracing system shall be designed for the
ue to the shear flow in the pseudo-box section plus the force associated with
b due to the factored loads before the concrete deck has hardened or is made

5.4.4 Additional Requirements for Specific Box-Girder Bridge Types

In addition to the above general requirements, specific types of box girders are addressed by
different Articles of the AASHTO (2010) provisions. These requirements are summarized below.
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5.4.4.1 Horizontally curved boxes (multiple or single)

Article C6.11.1 emphasizes that for horizontally curved tub girders, top flange lateral bending
due to curvature must be considered during construction. Also, it points out that the effects of the
St. Venant torsional shear must always be considered at all limit states and during construction in
horizontally curved boxes.

5.4.4.2 Single boxes

The following specific requirements pertain to single box section bridges:

close to the shear center of the box as possible. This requirement is
the torsion that must be resisted by the box.

e Article C6.11.1 indicates that items such as sound barrier,
be critical on single-box sections.

e should be positioned to evaluate both the maximum aximum torsion in
single-box-girder bridges, since the | ca jcal torsion may be different
than those causing the critical flexure.

e Article C6.11.1.2 emphasiz
resisted at supports and is

ngement dictates how torsion is
e box sections.

e Article 6.11.5 states that fo
considered fracture criti
dead load and an appr:
complete fracture glith

, box flanges in tension shall be

is shows that the section can support the full
e live load after sustaining a hypothetical

e webs at any point.

5.4.4.3 Closed boxes

Article 6.11.3.2 states that the maximum vertical deflection of a noncomposite box flange
relative to its edges due to the unfactored permanent loads plus the unfactored
construction loads is limited to  b:/360.

e Article 6.11.3.2 specifies that the through thickness bending stress in the noncomposite
box flange due to the factored permanent loads plus the factored construction loads shall
not exceed 20 ksi. The box flange may be assumed to be simply supported at the webs in
making this calculation and the above calculations.
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5.4.5 Proportioning Limits

AASHTO (2010) Article 6.11.2 defines the following proportioning limits unique to box girders:

e A1 to 4 limit on the inclination of the web plates is recommended relative to an axis
normal to the bottom flange. Larger web inclination is allowed, but the effects of changes
in the St. Venant and/or flexural web shears on lateral bending of the top flanges will be
larger during construction (see the discussion in Section 2.3 of this mgdule). Also, highly
inclined webs are generally less efficient in transmitting shear. Howe¥9 i
bottom flange may be reduced by using a larger web inclination.

e The webs shall be attached to the mid-width of the top flanges. Att3
other than at the top flange mid-widths would cause additional flang
would require special investigation.

of

e Extension of the box flanges at least one inch beyond,th h web is

recommended to facilitate welding of the webs to th
Otherwise, the web and top flange proportion‘ r box girders are the same as
those for I-girders (discussed previously in Sectigm5.3. dule), with the exception that
Eq. (5.3.2-6) is not applicable. Article 6.11.2 spec ned distances along the web
are to be used in checking the web proportigmime 1im well as all other pertinent design
requirements.

Although it 1s discussed in Article 6.11.
additional limit that deserves

ability, AASHTO (2010) provides one
bove proportioning limits. This article suggests

b > L/85 (5.4.5-1)
for the top flanges of tNEN where a full-length lateral bracing system is not
provided ygihi with L taken as the larger of the distances between panels of lateral
bracing, ORBE eral bracing and the end of the piece. This limit is similar in

compact are the sdme as in Article 6.10.6.2.3 for I-sections (see Section 5.3.3 of this module),
except that the bridge must also satisfy the requirements of Article 6.11.2.3 for use of the
simplified live load distribution factor (see Section 5.4.2(A)) and the box flange must be fully
effective based on the provisions of Article 6.11.1.1 (also discussed in Section 5.4.2).

The corresponding Article 6.11.7.1 resistance calculations and ductility requirements are the

same as for compact composite [-sections in positive flexure (see Section 5.3.3) except that, for
continuous spans, the nominal flexural resistance is always subject to the limitation of Eq. (3-2,
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AASHTO 6.10.7.1.2-3). Either Eq. (3-2) or Eq. (5.3.3-3, AASHTO 6.10.7.1.2-2) will usually
govern, thus limiting the nominal flexural resistance to a value less than the full plastic moment
of the cross-section but larger than the cross-section yield moment.

5.4.7 Noncompact Composite Sections in Positive Flexure

AASHTO Article 6.11.6.2.2 specifies that all box sections in positive bending that do not meet
the restrictive requirements discussed above must be designed as noncompact composite
sections. As such, the flexural resistance is always less than or equal to the cigss-section yield
moment. Similar to the procedures for noncompact composite I-sections in pSglive flexure,
discussed previously in Section 5.3.4 of this module, the resistances are expresSS@lan terms of the
elastically computed flange stresses.

For tub sections, the Article 6.11.7.2 calculation of the resistance based on § @tress is
the same as that for noncompact composite I-sections in positive flg
However, for closed-box sections, the nominal resistance of the
taken as

Fnc = RoRnFyc A (5.4.7-1)
(AASHTO 6.11.7.2.2-2)

Where

f 2
A= 1—3{ J
F,

f, = the St. Venant
section und

(5.4.7-2)

(AASHTO 6.11.7.2.2-3)

ss in the flange due to the factored loads at the

si@lal shear
nsi jon, cal®ulated as

" (5.4.7-3)
(AASHTO 6.11.7.2.2-4)
Rb b load-shedding strength reduction factor specified in Article 6.10.1.10.2, with

flange area taken as one-half of the effective area of the box flange, including
ribution of the concrete deck, and

Ry = the hybrid web strength reduction factor specified in Article 6.10.1.10.1, with the
bottom flange area taken as one-half of the effective area of the box flange. (Note
that yielding will practically always occur first in the bottom flange of these section

types.)
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Also, in Eq. (5.4.7-3),

T

the torque due to the factored loads and

Ao the enclosed area within the box section.

Equation (2) reduces the effective yield resistance of the top flange accounting for the influence
of the St. Venant torsional shear stress via the von Mises yield criterion. The participation of the
concrete deck in transferring the shear stresses is neglected by using just the ghickness of the
steel top flange for tic in Eq. (3). Also, the flange shear stress due to flexure 1N@nsidered
negligible and is not included in Eq. (2).

Fnt = Rh Fyt A (5 4.7—4)

(AASHTO 6.11.7.2.2-5)

4

Article 6.11.1.1 requires that box flanges also mu erally

Py

NS

f, <0.75¢, (5.4.7-5)

(AASHTO 6.11.1.1-1)

This magnitude of torsional s i if ever, encountered in practical box girder
g- (2)) will never be smaller than 0.66.

plate may be detq@hined by multiplying the shear on the top of the composite box section by the
ratio of the transformed concrete deck to the total thickness of the top flange plus the
transformed deck. The St. Venant torsional shear in the concrete deck may be determined
similarly. Adequate transverse reinforcing should be provided in the concrete deck to resist the
shear forces due to St. Venant torsion.

The requirements for checking the slab stresses in shored construction are the same as those for
I-section members
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5.4.8 Noncomposite Sections

AASHTO (2010) Article 6.11 assumes that box-girder bridges always have a composite concrete
deck throughout their length in their final constructed condition. Design using a noncomposite
orthotropic steel plate deck is not explicitly addressed. Therefore, the resistance of box sections
under noncomposite loadings is addressed only within Article 6.11.3, Constructability. This
article requires the checking of noncomposite box flanges in tension as well as continuously-
braced (top) box flanges in tension or compression using Eq. (5.4.7-4) but with the yield strength
of the flange under consideration substituted for Fy;. Noncomposite box flanges in compression
are checked under the factored construction loads for

fou < OFnc (5.4.8-1)
3.2-1)
where
fou = the longitudinal flange stress due to the factord@llog W@ section under
consideration, calculated without considef@i on warping, and
Fnc = the nominal compressive r the Article 6.11.8.2 provisions for
sections in negative flexure (di t section of the module).
The top flanges of tub-girders are checked i i posite condition under construction
loadings using the I-section mem i .10.3.2.1 through 6.10.3.2.3. As
such, the design of these elements in is hdndled in the same unified fashion
across all of the AASHTO (2010) prov1 . ange unbraced length is taken as the

distance between the panel poi
under construction loadings is
lateral bending due to any gou

ral bracing system. The flange strength check
9% -1), which includes the influence of flange
ing actions contribute generally to the lateral

eir noncomposite condition prior to the concrete

shear along the length of the girder, causing a horizontal distributed load on
ges of the tub,

e eccentric [0ads from cantilever overhangs acting on forming brackets,

e horizontal curvature, and

e typically to a minor extent, wind.
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The top flanges of tub girders are assumed to be continuously braced after the concrete slab has
hardened or is made composite. As such, the top flange lateral bending effects are negligible and
are no longer considered once the flanges have reached this state.

5.4.9 Composite Sections in Negative Flexure
As noted in the previous section, AASHTO (2010) Article 6.11 assumes that box-girder bridges

always have a composite concrete deck in their final constructed condition. As a result,
resistance checks for flange lateral bending and/or member lateral torsional backling are no

deck. Sufficient internal cross-frames and diaphragms are required such thag
stresses due to warping are negligible in box flanges at the strength limit st
construction and after the completion of the structure. Lateral torsional buc
consideration for composite boxes because of their large torsional g e brsional
buckling resistance.

For the continuously braced top flanges of box girders in th@hina tructg@condition, Articles
6.11.8.1.2 and 6.11.8.3 specify

fbu < ¢thFyt (5.4.9-1)
(A 6.11.8.1.2-1 and 6.11.8.3-1)
for tub sections and Eq. (5.4.7-4)
compression under negative flexure,

r the bottom box flange in
spetifies

fou < ¢ Frc (5.4.9-2)
(AASHTO 6.11.8.1.1-1)
where Fc is the nominal we ress@ance defined in Article 6.11.8.2. Article 6.11.8.2 1s

subdivided into two s 1 the cases of unstiffened box flanges and
anges. The resistance equations for box flanges in compression are

n its definition of the flange slenderness. Also, this article redefines the plate
buckling coefti@@nts k and ks accounting for the influence of the flange stiffeners.

The resistance of box flanges in compression is based on local buckling of the flange under
combined uniform axial compression and shear. The resistance curves, illustrated in Figure 79,
are fitted to two anchor points similar to the handling of compression flange local buckling and
lateral torsional buckling in I-section members. For flange slenderness values

[Af _b J <R [XE (5.4.9-3)
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the flange is taken to provide a constant maximum potential resistance, for

b KE
{ﬂf:E¢>R2-E— (5.4.9-4)

yc

the flange resistance is governed by elastic local buckling, and for

KE b KE
R [—<|4 =—|<R, | — 5.4.9-5
[En-t]en E 549

the flange resistance is governed by inelastic local buckling, where

b =Db; for unstiffened flanges and

b =w = larger of the width between flange longitudinal stiffener tagace from a web to
the nearest flange longitudinal stiffener for stiffened flanges

However, the box flange inelastic local buckling resistance 1 res a sinusoidal
function rather than by a linear interpolation ee wo J@hor points as in the [-section

member equations. The selection of a sinusoidal f@gctio elastic transition curve
originates from the straight box girder developme Vince 69) and Mattock and
Fountain (1967).

The maximum potential resistance as ed with hor Point 1 in Figure 79,

(5.4.9-6)
(AASHTO 6.11.8.2.2-1)

G

Anchor point 1

Sinusoidal inelastic
FLB resistance curve

Anchor point 2

Elastic FLB Resistance
(Eq. 5.4.9-8)

RWKE/F.  (b/t), R, /KE/F, bt

=0.6(b/t,),

Figure 79 Flange local buckling resistance for box flanges in compression.

199



is the flange full-yielding resistance, reduced by the shedding of flexural stresses from the web
due to bend buckling (via Rp), the use of a hybrid web (via Ry) and the influence of the St.
Venant torsional shear stresses (via A, Eq. (5.4.7-2)). The abscissa of Anchor Point 1 is taken at
0.6 of the flange slenderness At at which the elastic local buckling resistance is equal to RyFycA.
Correspondingly, the ordinate of Anchor Point 2 is taken as RyFyr, where Fy; is the base flange
stress corresponding to the nominal onset of yielding. This is taken as

Fyr=(A-0.4) Fye <Fyw (5.4.9-7)

(AAS 06.11.8.2.2-7)
The abscissa of Anchor Point 2 is the value of A at which the flange elastic,
resistance is equal to RyFyr. The elastic local buckling resistance is expressg

(5.4.9-8)

(AASHTO 6.11.8.2.2-3)

The term within the square bracke an rate to somewhat conservative
estimate of the influence of a unifo ess on the elastic buckling resistance of
flat plates in uniform axial compressmn 1 . The applied St. Venant torsional shear
stress Ty is taken as the sum of t from the different torques applied to the

For unstiffened flanges .0 and k; is taken as 5.34 in Egs. (3), (4), (5) and (8).

1 uckling of an infinitely long flat plate with simply-

r the case of f, =0, and thus A =1, AASHTO (2010) Article

or R; in Eq. (3). This, combined with k =4.0 in Eq. (3), is

(2010) compactness requirement for the compression flange
‘or Fyc = 50 ksi, the corresponding Anchor Point 1 value for b/t; is

basic case, Article 6.11.8.2.2 gives R = 1.23. For Fy = 50 ksi, the

corresponding hor Point 2 value for b/tf is 59.2.

For stiffened flan8es, k and ks are typically smaller than the above values due to the finite rigidity

(i.e., flexibility) of the longitudinal stiffeners. In this case, the AASHTO (2010) equations are
formulated in terms of the longitudinal stiffener moment of inertia s necessary to develop a
certain value of k < 4.0. The base equation is

I >yt (5.4.9-9)
(AASHTO 6.11.11.2-2)
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Where

= 0.125k’ forn =1 (5.4.9-10a)
v
= 1.120k’ forn=2 (5.4.9-10b)

I is taken as the moment of inertia of the longitudinal flange stiffener about an axis parallel to
the flange located at the base of the stiffener, and n is the number of equally spaced longitudinal
flange stiffeners.

AASHTO (2010) Articles 6.11.8.2.3 and 6.11.11.2 require |5 to be large eno
value of at least k = 1.0, although a value of at least k = 2.0 is recommended.
which originate from Vincent (1969), are approximate equations that give valyg
theoretical elastic buckling solutions for infinitely long, longitudinally stiffg
Goldberg and Levy (1957). In Article 6.11.8.2.3, the above equations are s D@@isally for
the k values corresponding to a given ls. Article C6.11.11.2 suggests that th&g

longitudinal flange stiffeners should not exceed one for maximum
proportions.

gh to develop a

AASHTO (2010) Article C6.11.11.2 gives the following m&§& ge equ
Vincent (1969), applicable for n =2, 3, 4 and 5:

4

for y, from

v =0.07k’n* (5.4.9-10c)

For n > 2, the required moment of igertia fj d (100) is excessive. This is due to the

the rare cases where an exceptionally is required and N may need to exceed 2,
Article C6.11.11.2 suggests that transve ers be provided to reduce the required
size of the longitudinal stiffene tical value. This Article also suggests that
transverse flange stiffeners shgilild be congg or n =2 if a k value larger than about 2.5 is
needed and it is desired t the requ d size of the longitudinal stiffeners relative to that
given by Eq. (9). Artic s equations for the proportioning of the transverse

and longitudinal stiffe esulting value of the plate buckling coefficient k
applicabl i | cases. The longitudinal stiffeners are sized using y = 8.0 in these
i i the same as the requirement to develop k =2.0 in Eq. (10b).

1/3
5.34+2.84{ s j
wt’,
k, = <5.34 (5.4.9-11)

) (n+1)2

(AASHTO 6.11.8.2.3-3)
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in AASHTO (2010) Article 6.11.8.2.3. This equation, as well as the general extension of
Vincent’s (1969) straight-box girder equations in Figure 79 and Egs. (3) though (10) originates
from Culver (1972).

The longitudinal stiffeners act integrally with the flange in resisting flexural compression in
stiffened box flanges. Also, AASHTO (2010) generally does not count upon any postbuckling
resistance of box flange elements. Therefore, the area of these stiffeners generally should be
included in calculating the moment of inertia, elastic section modulus and other properties of the
box section. Conversely, the web longitudinal stiffeners are sized using the same philosophy as
for I-section members (see Section 5.3.10 of this module). That is, the web 15@@atudinal stiffeners

member cross-section properties.

Article 6.11.11.2 requires that the specified minimum yield
stiffeners shall not be less than the specified minimum yield ox flange to which
they are attached. This is similar to the previq@sly di irement of Eq. (5.3.10-5). Also,
this article specifies that the projecting widths dinal stiffener elements must
satisfy the same limit as defined by Eq. (5.3.10-6)% ion 5.3.10, this limit is
intended to prevent local buckling of the fl inal stiffeners. For structural tee

Article C6.11.8.1.1 addresses
interior pier sections. At't bottom flange is subjected to the stresses from

| as major-axis bending of the internal diaphragm
subjected to shear stresses due to the internal

ell as, when it is non-negligible, the St. Venant torsional shear in
shear stresses due to the bending of the internal diaphragm can
es supported on single bearings. Article C6.11.8.1.1 provides

cking the bottom box flange at interior pier sections under the

(5.4.10-1)
(AASHTO C6.11.8.1.1-1)

f2+3(f, + 1, <4 RR.F

h' yc

Where
fou = the longitudinal flange stress due to major-axis bending of the box section,
foy = the flexural stress in the flange caused by major-axis bending of the internal

diaphragm over the bearings,
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fq the shear stress in the flange caused by the internal diaphragm vertical shear, and

fy

the St. Venant torsional shear stress in the box flange.

Equation (1) is simply a statement of the von-Mises yield criterion (Ugural and Fenster 2003) for
a plate subjected to biaxial normal stress plus shear. Article C6.11.8.1.1 suggests the use of a

flange width equal to 18t with the internal diaphragm for simplified calculation of the stresses fyy
and fy. The shear stress fg may be estimated as

V
f, = vQ (5.4.10-2)
It
B.1.1-2)
Where
V = the maximum vertical shear in the internal diaphggg
Q = the first moment of one-half of the effective box ¢ ) about the neutral

axis of the effective internal diap

eoretically, in cases where the bottom box

of the bottom box flange at an .
(i.e., the concrete slab in a tub girder or the top

flange is governed by E
composite box flange |
under the related biaxia ng conditions.

.1.1 states that the shear due to St. Venant torsion should be
esigning the reinforcing steel for the concrete slab. Article 6.11.10 suggests a
simple method f@A determining the torsional shear in the slab of closed box sections. For tub
sections, Article @ 1.1.1 indicates that the slab should be considered to resist all the torsional
shear acting on the top of the composite box section.

considered wh

5.4.12 Stepped, Variable Web Depth and Other Nonprismatic Box-Section Members
With the exception of:

1. Potential overall lateral torsional buckling of tub girders during construction, and
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2. Potential lateral-torsional buckling of the top flanges between their brace points for tub
girders subjected to positive bending under construction conditions (prior to the
hardening or the concrete slab or the slab being made composite),

all of the resistance checks for box section members are effectively cross-section based. For
stepped, variable web depth and other general nonprismatic box-section members, the above two
cases can be handled as discussed for I-section members in Section 5.3.6 of this module. For
other cases, the resistance calculations for stepped, variable web depth and other nonprismatic
box-section members are handled as discussed in the above Sections 5.4.6 t

5.4.13 Web Shear Strength

Vii=Vy/cos 0 (5.4.13-1)
(AASHTO 6.11.9-1)

Where

V, = vertical shear due on the inclin b u consideration and

6 = the angle of inclination o spect to the vertical direction.

For box girders in bridges not s uirements of Article 6.11.2.3, or with box flanges
that are not fully effective accgiilli ions of Article 6.11.11.1, V, is to be taken as
the sum of the flexural anggSt. al shears.
In checking Eq. (5.3.89 ether the full or true Basler shear resistance is
applicable ransversel W@ fened webs designed utilizing the web postbuckling shear strength,
the effecti  of box flanges should be taken as the smaller of:

The above 18t; limit ensures that the [-section member web shear postbuckling resistance
equations of Article 6.10.9 may be applied equivalently to box-section members.

Articles 6.11.9 and 6.11.11.1 require that intermediate transverse web stiffeners shall be
designed using the I-girder provisions of Article 6.10.11.1 (see Section 5.3.8).
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5.4.14 Shear Connectors

Article 6.11.10 points to the I-girder provisions of Article 6.10.10 for design of the shear
connectors and provides the following additional supplementary requirements:

e Shear connectors are required in negative moment regions. This is because these
components are necessary to resist any significant St. Venant torsional shears that exist in
composite box sections. Also, the simplified live load distribution factors of Article
4.6.2.2.2b were developed for straight box sections that had shear coggectors throughout
the negative flexure regions.

e For box girders in bridges not satisfying the requirements of Article, 2. 3ior use of

designed for the sum of the flexural and St. Venant torsio gigficrs, the
St. Venant shear increases the connector force on one flay
other. Article 6.11.10 requires that the same connectqr pi
flanges. Article C6.11.10 points out the conservatis ) e maximum
flexural and torsional shears, since these are typicall By concurrent loads,
but indicates that the calculation of th‘itic
using current analysis tools.

e The total area of the steel box secti the ctive area of the concrete deck
associated with that box ar the longitudinal force requirements
in Egs. (5.3.9-1) and (5.3.9-1

e The shear connectors o
width of the flange. T
flanges, St, shall sgiasf

flanges shall be distributed uniformly across the
between shear connectors on composite box

(5.4.14-1)

to h nckling of the flange plate subjected to compression. This limit is
value of A¢ = b/t; corresponding to Anchor Point 1 in Figure 79.

e In compd@lke box flanges, in addition to satisfying the requirements of Article 6.10.10,
which req¥ire consideration of a radial force component in the shear connectors due to
horizontal curvature, the vector sum of the longitudinal and St. Venant torsional shears
must be considered. The St. Venant torsional shear may be determined by multiplying the
shear on the top of the composite box section by the ratio of the transformed concrete
deck to the total thickness of the top flange plus the transformed deck.
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5.4.15 Comparison to the Wolchuk and Mayrbaurl (1980) Proposed Specifications for
Long-Span Steel Box-Girder Bridges

As discussed previously, AASHTO (2010) references the proposed Wolchuk and Mayrbaurl
(1980) straight box-girder specification for information regarding the design of long-span steel
box-girder bridges. This section highlights and explains a number of key differences between the
AASHTO (2010) box-girder provisions and the above proposed FHWA provisions. One of the
most important differences is that the FHWA specification does not address the special
requirements necessary for horizontally curved bridges and bridges with skewed bearing lines.
The AASHTO (2010) provisions address these considerations. As such, all ONghe dlscussmns in
this section pertain to straight box-girder bridges in which the bridge cross-sectf® subjected to
minor torsion. Other differences discussed in the following subsections inc
effective widths for box flanges, the flexural resistance calculations for ung
box flanges, and the web shear resistance calculations.

5.4.15.1 Box flange effective widths

contains the
si and Mayrbaurl
d 1976). The particular
iscussion focuses on the

ive moment regions and in
ports. The reader is referred to

of Figure 80.

Figure 80 is reproduced from AASHTO (2010) Article 4.6.
approach recommended for calculation of flange effectlve A4
(1980) and is based on research by Moffatt a
adaptation in this figure is from Wolchuk (19
effective width of the box ﬂange between the we
the negative moment regions in the vicinity
Wolchuk and Mayrbaurl (1980) f

1s fig

The effective width of a box flange is e yB in Figure 80, where B is the total
width between the webs. Curve he figure apply to the maximum positive moment
region of simply-supported glr 1 s girders. The distance L = L; is taken as the
simple-span length or the betweelllhe points of inflection in determining the value of y
for these regions. Curv fened box flanges while Curve (2) applies to

stiffened box flanges 1 ffener area to the box flange area A/Bt = 1. The values
of y are todhe intermediate values of A¢/Bt by interpolation. One can observe that

even for tf t =1, y is approximately equal to 0.9 at L/B = 5 (the length to
width ratio 0 72010) assumes that the box flanges are fully effective. This
supports the O effective width rule within the positive moment regions (see

the prior disc in Section 5.4.2 of this module.

Curves (5) and (§ln the figure apply to the cross-section over interior supports in continuous-
span girders. In this case, L = L, is taken as the distance between points of inflection on each side
of the support. If the distances between the support and the points of inflection on each side, C;
and C,, are unequal, y is determined as the average of the values of y for L, =2C; and L, = 2C,.
One can observe that at L/B = L,/B =5, curves (5) and (6) indicate a range of y values of only
0.55 to 0.62. This implies that the effective width assumptions in AASHTO (2010) Article
6.11.1.1 are overly optimistic at continuous-span interior supports.
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Curves (3) and (4) in the figure apply at the inflection points or simple-support locations. In
Wolchuk and Mayrbaurl (1980), the value of \y taken as a constant based on the value from
Curves (1) and (2) within the middle L1/2 of the span, and is varied linearly between this value
and the inflection point or simple support values, and linearly between the inflection point values
and the interior support values. Obviously, this level of refinement in the assumed effective
width may not be necessary.

Dowling and Harding (1992) take a much more optimistic view regarding box flange effective
widths than indicated from the earlier research by Moffatt and Dowling (1978.and 1976). They
indicate that

Lamas and Dowling [1980], Burgan and Dowling [1985], lg
Hindi [1991]. Thus a flange may normally be considered
across its width. Only in the case of flanges with partjcul ' ct ratios [large
L/B], or particularly slender edge panels or stiffene ¢ ling 1985;

Hindi 1991] is it necessary to consider the flange sta i letai

4

207



Paints of

Bp B Bp . ottt o inFlection
}
T T T ff lyumﬁlﬂnﬁumﬁﬂnﬁ:?fg
L—*L—-l Uniform
As=total area
of stiffeners Lz Ly Ioad
| TUBI|L
'85 4’P& 2 'p B 2 IPB —.85 ‘pPBP
FT i A 1 | atActual stress
g , . I distribution Ly
i | [ L
I AL -+
e L—J—-l Ll
L Effective width
. of flonge
10
As . 0 Dl -
Bt e _
ER | > - — -—
08 = 5y —
-
7 e
P
0.6 4 -
o 4 L2
5 vy '
5 7
177 L2
> / |
0.4 1
*1f €, # C, abtoin
as average of values of
0.2 | for Lz= 2C1 and Lz= ECZ
5 10 15 20
L L
B ar éip

effective widths, reproduced with permission from AASHTO (2010) and
Wolchuk (1997).

Figure 80 Flan

Results from recent studies by Chen et al. (2005), which included several tub-girder bridges,
have already been summarized in Section 2.2.1. Based on these results, the highly simplified
AASHTO (2010) Article 6.11.1.1 rule for the box flange effective widths is considered
acceptable.
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5.4.15.2 Resistance of unstiffened box flanges in compression

As discussed in Section 5.4.9, the AASHTO (2010) provisions for the resistance of unstiffened
box flanges are based on the theoretical elastic buckling for slender flange elements, i.e., plates
satisfying Eq. (5.4.9-4). They are based on a sinusoidal transition curve and a plateau region
developed based on an assumed analogy between column and plate buckling for stockier plates.
The AASHTO (2010) equations are based in large part on the prior AASHTO Specifications that
originate from the developments by Vincent (1969) and Mattock and Fountain (1967). Various
studles of the behavior of geometrlcally imperfect plates contammg d1fferen epresentatwe

FHWA strength curve recommended by Wolchuk and Mayrbaurl t ]
(2010) Article 6.11.8.2 curve previously illustrated in Figure 79, ha Rh and A equal to
1.0. Wolchuk (1997) provides a detailed discussion of the backg c§8 different curves.
One can observe that a linear transition between Anchor Po es a reasonable fit
to both the FHWA strength curve as well as the upper-boun
determined by Dwight and Little (1974) withifathe i i ling region of the response. The
more conservative predictions by AASHTO (201 der flanges governed by
elastic buckling is due to the substantial postbuck i these types of elements. It
would appear that a linear transition curve or Points 1 and 2 is more appropriate to
describe the nominal inelastic loc stiffened box flanges. Although
larger resistances are possible for sle slehder flange plates are generally an
inefficient use of the material.

[ [
AASHTO (2010)

| |
\< Unwelded plates

A

Heavily welded plates

[
FHWA (1980) Fh%

Anchor Point 2

0 0.2 0.4 1 1.2 1.4 1.6

Fy b/t

eFLB

Figure 81 Resistance curves for unstiffened box flanges.
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Regarding the broader application of the AASHTO (2010) flange resistance equations to cases
involving combined axial compression and shear, Dowling and Harding (1992) indicate

“The weakening effect of both types of initial imperfection [geometric imperfections and
residual stresses], separately and together is now well understood and has been
incorporated into the various design methods produced to predict the inelastic buckling
strength of plated structures. The weakening effect of these imperfections is most
pronounced in the range of intermediate slenderness, that is those slend

stress and is least pronounced for shear-loaded cases, being practic
rectangular plates in pure shear.”

The considerations regarding the local buckli ed box flanges in compression

are similar to those discussed in the previous scctign i d flanges. The AASHTO
Article 6.11.8.2 provisions are based on the elasti ce of the stiffened flange
assembly, and they map this resistance to ang kling resistance based on the sinusoidal
transition curve discussed in the prg@ous and Mayrbaurl (1980) suggest a

different approach in which the flan culMed based on the slenderness ratios L/r
of the longitudinal stiffeners and w/t; o between the stiffeners. This approach
treats the plate stiffened by seve ced longitudinal stiffeners as a series of

unconnected struts, each of w
of plate that represents the gla stiffeners. The solutions are expressed as a design
y of transverse stiffeners is not included. Where

, esigned to be sufficiently stiff to ensure that they
imple supports to the ends of the longitudinal stiffeners. The

al stiffeners, L, is taken as the distance between the transverse

provide n
effective
elements.

t comparisons of the predictions by the AASHTO (2010) approach versus the
nd refined numerical studies are not available. Dowling and Harding (1992)
and Galambos (K@&8) show results from various Japanese tests that imply a linear transition for
stiffened flange rd8istances. However, the definitions used for the flange local buckling
coefficient are somewhat different than those in AASHTO (2010). Further studies are needed to
carefully ascertain the relationship between the AASHTO (2010) curves and test results.
Furthermore, Galambos (1998) indicates, “Design rules are needed for flanges stiffened by one
or two stiffeners. The strut approach may not be appropriate in such cases, as it neglects the
transverse stiffness of the plate and is a poor model for a single stiffener.” For the moderate
length box girders targeted by the AASHTO (2010) provisions, the greatest economy is expected
with only one or two longitudinal stiffeners at most. Ziemian (2010) indicates:

results from te
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“For most stiffened flanges the strut approach is sufficiently accurate and is suitable
for design purposes... The discretely stiffened plate approach is of interest mainly for
plates with one or two stiffeners. For such flanges Eurocode 3 Part 1-5 offers a simple
design method that considers the restraint from the plate to the buckling of the
stiffeners... A more rational ultimate load method for the design of transversely
loaded flanges needs to be evolved.”

plate approach
an elastic

Section 7.3.3 of Ziemian (2010) provides a summary of the discretely stiffe
from Eurocode 3, which is based on a theoretical model for buckling of a st
foundation.

5.4.15.4 Shear resistance
Dowling and Harding (1992) state,

“The key difference between plate and box girders Wth e the shear
strength of the webs is the use of relatively thin flan: . At the
boundaries of the webs. Caution is needed i in applyin i yon field models,
derived and verified in the context of the design of webs of box
girders. Of major concern is the relativ support against in-plane
movement which may be afforded to the nge of a box girder,
compared with the restraint offered and narrower flange of a
corresponding plate girder:.

Wolchuk and Mayrbaurl (1980) expres i s and suggest the use of the true Basler
shear strength formula, Eq. 5.3. for box-section members. In addition, Ziemian
(2010) indicates:
“Further research iggne@@ed into th
and their stiffene

uckling strength of transversely stiffened webs

that the diagonal compression continuously increases near the
” Due to this increase, tractions normal to the edges of the panels

compression due ¥ tension field action. Furthermore, the definitions of by, or by for use in Eq.
(5.3.8-7) to check the limits of applicability of the full Basler tension-field model (Eq. (5.3.8-8))
versus the true Basler model (Eq. (5.3.8-9)), explained in Section 5.4.13 of this module, appear
to be sufficient to ensure the equivalent application of the I-section member web shear
postbuckling resistance equations to box-section members.
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5.5 Miscellaneous Flexural Members
5.5.1 Introduction

Article 6.12 of AASHTO (2010) addresses the flexural resistance of various rolled or built-up
noncomposite or composite members used primarily in trusses and frames or in miscellaneous
applications subjected to bending, often in combination with axial loads. In many cases, the
Article 6.12 provisions are based on the AISC (2010) Specification provisions. However, there

are some significant differences. This section provides a succinct overview ghthe corresponding
AASHTO (2010) and AISC (2010) provisions.

5.5.2 I-Section Members in Weak-Axis Bending

The nominal flexural resistance of I-section members subjected to weak-axigiRending iSi8€fined
by AASHTO (2010) Article 6.12.2.2.1 as the corresponding fully- e
(AASHTO 6.10.2.2.1-1)

for cross-sections in which the largest flange less than or equal to the
compact-flange limit Ay given by Eq. (5.3.5-10). where the flanges have
different yield strengths, the smaller of these yiel be used in checking the
flange compactness and in calculating M. ibution to Mp, is generally small, and
hence hybrid web effects are igno i
greater than Ay but less than the nonc
taken equal to the smaller Fyf and k¢ tak
governed by inelastic flange lo
becomes

i given by Eq. (5.3.5-26), with Fy,
W, the flexural resistance is assumed to be
). For Fy, = Fyt and ke = 0.76, Eq. (5.3.5-26)

(5.5.2-2)
(AASHTO 6.10.2.2.1-5)

The theoreti Gl 3 efficient for a linear stress distribution across the flange width,
ompressive stress at the flange tip and zero stress at the web-flange juncture,
-supported edge conditions and 1.61 for fixed edge conditions at the web-
flange juncture {@emian 2010). The value k; = 0.76 is taken as a reasonable value given some
restraint from the$Web and from the portion of the flange loaded in flexural tension on the
opposite side of the web. In setting Fyr = Fys, the influence of residual stresses 1s neglected. This
is justified due to the strain gradient across the flange width, as well as the relatively small value
of ke = 0.76 compared to potential theoretical values. Therefore, the moment capacity
corresponding to Fyr = Fyt is the nominal yield moment My = Fy; Sy, where Sy is the elastic section
modulus for minor-axis bending. If the above values are substituted into the linear equation
representing the inelastic buckling resistance between Anchor Points 1 and 2 in Figure 60 (with
Ry taken equal to 1.0 since the web flexural stress is zero), one obtains

1s 0.57 for simf
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)
M =M —-(M -M )| — 5.5.2-3
" P ( P V)Lo.45 E/Fny ( )

(AASHTO 6.12.2.2.1-2)

where As = larger by/2t; of the two flanges. Equation (2) gives A = 14.1 for Fys = 100 ksi, which is
larger than the maximum by/2t; = 12 permitted for I-sections in AASHTO Article (6.10.2.2) (see

Eq. 5.3.2-3). Therefore, Article 6.12.2.2 does not define a weak-axis bending resistance based on
elastic FLB.

The inelastic FLB resistance is slightly different in AISC (2010). AISC (2010)
Fyr = 0.7Fy1in its calculation of Ay, . The resulting AISC inelastic FLB resis
AASHTO FLB resistance as the flange slenderness approaches the compad
(5.3.5-16). However, it tends to be significantly more conservative than thd
for more slender flanges.

¢=0.76 and

It is important to note that for I-section members subjected tg m efl@ing combined with
flange lateral bending due to minor-axis flexure or torsion, rd rulg¥quations discussed
in Section 5.3.7 of this module apply as long as Eq. (5.3.7-5) one-third rule
equations provide a more accurate representa‘l of i e and should be utilized rather
than the above equations in these cases.

5.5.3 Noncomposite Box-Section Membe

For general box-section
(I)an is ensured conse

y of neglecting of flange local buckling at M, =
6.9.4.2 limits on the flange slenderness (see Eq.

) g as the applied stresses fa + fy are not substituted for Fy
article. For box-sections used as arch ribs, the validity of

flange local & irc
overhangs wit aken equal to 4.8 and 0 50 respectively (see Table 5 and Table 6).

Web bend bucklig@g at M, = :M,, generally is not precluded for webs proportioned by the Article
6.14.4.2 web slenderness requirements (see Eqs. (5.2.4-18) and (5.2.4-19) and the discussions in
Section 5.2.4 of this module). Equation (5.3.10-2) must be satisfied to ensure that web local
buckling will not influence the calculation of the AASHTO (2010) ¢:M, in general box-section
members, including solid-web arch ribs.

Section 5.6.3 discusses the appropriate calculation of beam-column resistances for cases of
combined axial compression and bending when flange or web local buckling is not precluded at

= oM.
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Based on the assumption that flange and web local buckling is precluded at the limit of the
flexural resistance, the AASHTO (2010) Article 6.12.2.2.2 expression for the flexural resistance
of noncomposite box-section members is derived as follows. The derivation starts with the
traditional CRC inelastic column strength equation (Ziemian 2010) written in terms of moments,
ie.,

anMy{l— ¥ J (5.5.3-1)

12.2.2.2-5)
where

(5.5.3-2)

T
MeALTB = E\é El yG‘:l

ASBTO C6.12.2.2.2-1)

is the theoretical elastic LTB bending resistance for uniform @@&ndi beneficial effects

of moment gradient are neglected). ‘

If one substitutes G = E/2(1 — v) = E/2.6 and

j- 4N
2(b/t)
into Eq. (2), where

(5.5.3-3)

(AASHTO C6.12.2.2.2-3)

A = the area en d wit erlines of the plates,
b = car distan tween the plates, and
t = g ates.

and then substifilites Eq. (2) into Eq. (1), the nominal flexural resistance may be expressed as

M =M (5.5.3-4)

- 0.064M yCLb (b/t)
AE I

y

(AASHTO 6.12.2.2.2-1)
after some algebraic manipulation.

Equation (5.5.3-4) is not intended for checking of closed-box section girders in their
noncomposite condition during construction. It is intended for checking of homogeneous doubly-
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symmetric box-section members in trusses, frames, arches, and other miscellaneous applications.
The checking of closed-box section girders in their noncomposite condition is addressed
previously in Section 5.4.8 of this module. For these sections, noncomposite stiffened or
unstiffened box-flanges in compression are checked for a flange local buckling limit state as
illustrated in Figure 79, and the box-flanges in tension are checked for the tension yielding limit
state represented by Eq. (5.4.7-4). The lateral-torsional buckling limit state is assumed not to
govern, and no LTB check is required. Of course, the b/t ratios for the web and flange plates of
box girders can be significantly larger than the b/t limits required for the miscellaneous box-
section members for which Article 6.12.2.2.2 applies.

AISC (2010) takes a different approach in quantifying the flexural resistance of S@ogeneous
doubly-symmetric noncomposite box-section members. The AISC (2010) b
provisions address cases with compact, noncompact or slender unstiffened
longitudinal stiffeners) and compact or noncompact webs. The AISC rules NGk B limit

(but using a linear transition equation for the inelastic buckling rg
(1)), and partly because a moment modifier Cy, only slightly grea
reduction nonexistent. Furthermore, AISC (2010) allows th stances larger
than My and gives M, = M; if the compression flange and th on are compact.
The AISC (2010) Section F7 provisions deﬁ@e F i

M, =M, (M, _Myc)[3_57E\E_

(5.5.3-5)

(AISC F7-2))

for box-section members with n ac ges. This equation gives M, = M, for
bfc
?g Ay =1.12 (5.5.3-6)
where th is the compactness limit for box flanges. It gives M, = My, for
b
- 40 |— (5.5.3-7)

where A 1s the g@feral AISC limit for a noncompact box flange. For larger flange slenderness
values, the AISC FLB resistance is expressed as

My = ch Seff (5.5.3-8)
(AISC F7-3)

where Seff is the effective section modulus determined using the effective width of the
compression flange from Eq. (5.2.4-10) with f = Fy.
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Section F7 of AISC (2010) handles the influence of a noncompact web by requiring an
independent web local buckling (WLB) limit state check:

F
M,=M, (M, - Myc)[0.305t24,% —0.738J£ M, (5.5.3-9)

(AISC F7-5)

This equation gives M, = M, for

b, A =2.42 E
t, F,

where Apy 1s the AISC web compactness limit for box sections, an

Dla, =s57|E
t F

w yc

(5.5.3-10)

(5.5.3-11)

which is the noncompact limit for box-sectio&em igAISC (same as the noncompact
limit for I-section member webs).

The AISC (2010) equations gener
slender. However, the AASHTO (2 es M slightly less than Myc. The
AISC (2010) equations provide the mo characterization of the flexural resistance
of straight box sections having ¢ compact webs without longitudinal stiffeners.

as the compression flange is not

Conversely, the AASHTO (20 . rovisions are the most appropriate for checking
of box girders in their nonco i ince these types of members often have slender
webs and are horizontall quatlo 4) from AASHTO (2010) Article 6.12.2.2.2 is
recommended for box icularly for arch ribs with longitudinally-stiffened

webs. This is because t ongitudinal stiffener requirements of AASHTO Article
6.14.4.2 d0NM@ad elopment of ﬂexural capacities larger than Myc (see Sectlon 524

AASHTO (2010) adopts the following equations directly from AISC (2010) for the nominal
flexural resistance of noncomposite circular tubes having D/t ratios less than 0.45E/Fy:

Mn =M, for D/t < 0.07 E/Fy (5.5.4-1)
(AASHTO 6.12.2.2.3-1, AISC F8-1)
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M. :(0.0ZIE
D/t

+ FYJS for 0.07 E/F, <D/t <0.31 E/F, (5.5.4-2)
(AASHTO 6.12.2.2.3-2, AISC F8-2)

for D/t<0.31 E/F, (5.5.4-3)
(AASHTO 6.12.2.2.3-3 & 6.12.2.2.3-4, AISC F8-3 & F8-4)

M. :0.33ES
D/t

The failure modes and postbuckling behavior of these types of members can be grouped into the
following three categories (Sherman 1992; Ziemian 2010):

1. For D/t less than about 0.05E/Fy, a long inelastic plateau occurs in gent-rotation
curve. The cross-section gradually ovalizes, then local wave bugiit ally form,
after which the moment resistance slowly decays. The flexural resi ced the
theoretical plastic moment due to strain hardening.

2. For 0.05E/Fy < D/t < 0.10E/Fy, the plastic moment is n but a single local
buckle develops and the moment decays slowly withdi

The above equations reflect the above regions of b i 1mens with long constant
moment regions and little restraint goai i e failure location. They are based on
five North American studies invol pipe, electric-resistance-welded pipe

AASHTO (2010) uses th tions in large part for calculation of the flexural
resistance of tees and dges, one of the most important practical usage of the
AISC equations is in d ini acity of Tee-section members subjected to eccentric
axial tensj ue to the attachment of the Tee flange to end gusset plates). The
AISC (20 ) provisions utilize a simplified elastic LTB equation
developed bl ¢ d Trahair (1980). Ellifritt et al. (1992) review this equation and
other prior A flations Tor tees and compare the results to experimental tests. The AISC

(2010) and AA O (2010) LTB resistances are expressed as

[RPGJ
Mn=[B+x/1+Bz}stax (5.5.5-1)
(AASHTO 6.12.2.2.4-2, AISC F9-4)
where
d i
B=+23— |2 (5.5.5-2)
L \J
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(AASHTO 6.12.2.2.4-3, AISC F9-5)
d is the total depth of the section, the plastic moment capacity is defined as
Mmax = FyZy <1.6M, for stems in tension (5.5.5-3a)

<My for stems in compression (5.5.5-3b)
(AASHTO 6.12.2.2.4-1, AISC F9-1 to F9-3)

My = the yield moment of the cross-section, based on the distance tgathe tip of the tee
stem,
and the other parameters have been defined previously. The plus sign in Eg [ when the

stem is in tension and the minus sign applies when the stem is in compress
stem is in compression anywhere along the unbraced length, the provisions @guire the iS¢ of the
negative value of B. The 1.6My limit on Mpax for cases with the steg "y, S
indirectly to eliminate situations where significant yielding of thg ¥ d occlT at service
load levels. Also, the AISC and AASHTO provisions require che
(FLB) when the flange is subjected to flexural compression
expressed as

b,,/2t,, 0384y F
Mn=|v|p—(|v|p—o.7|v|y{ L !

0.62,/E/F,

However, none of the ASTM
corresponding by/2t; valuesfo e larger than the AASHTO Article 6.10.2.2 limit for

ed AASHTO (2010) maximum for tee sections.

bending, the portion with the stem in compression may govern
the LTB res g ¥h the corresponding moments may be small relative to other

compression is\@@bstantially smaller than that for the stem in tension. Since the LTB strength is
sensitive to the ent diagram, AISC (2010) conservatively takes C, = 1.0 for all cases. The
commentary of A¥SC (2010) also cautions that in cases where the stem is in tension, the
connection details should be designed to minimize end restraining moments that may cause the
stem to be in flexural compression.

AASHTO (2010) does not provide any A, or A, limits for local buckling of tee stems loaded in

flexural compression. This is because the above LTB equations give the stem local buckling
strength in the limit of Ly = 0. By substituting Ly = 0 into Egs. (1) and (2), one obtains M, = 0/0.
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However, by using L’Hospital’s rule, the following equation is obtained in the limit of zero
unbraced length (AISC 2005):

M, :% “6(;/'5 - 0.424'3—J <M, (5.5.5-4)
(AISC C-F9-1)

The 2010 AISC Specification provides explicit equations for the local buckling strength of Tee
stems in flexural compression. The AISC (2010) Commentary indicates thatgRe former approach

The AISC (2010) Commentary also provides guidelines for calculating the g8 (€es and
double-angles bent about the y-axis. This case is not addressed in
expected to be rare for bridge applications.

5.5.6 Channels in Strong- and Weak-Axis Bending

jon of the flexural resistance of

AASHTO (2010) adopts the AISC (2010) praffsion
ction member equations for

channels. AISC (2010) uses a generalized form ofghe c

channels subjected to major-axis bending. This ge ized fo mply uses

X? = (5.5.6-1)
where

c = (5.5.6-2)
in place o equation simply allows a conversion from the implicit warping
constant C I-section members to the Cy for channel sections. This
generalized y (5.3.5-21) for the radius of gyration term r;. The LTB resistance

7(5.3.5-19), (5.3.5-24), etc., are otherwise unchanged. The AISC (2010)
nels assume compact flanges and webs. All of the ASTM A6 channels have

d webs for Fy < 65 ksi. As such, the flanges and webs of fabricated channels
.3.5-16) and

compact flange
must satisfy Egs.

233_76\/E (5.5.6-3)
t, F

respectively.

The AISC (2010) resistance equations for channels in major-axis bending are based on the
assumption that the other members that frame into the channel are sufficient to restrain the
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twisting of the member (Johnston 1976; McGuire 1968). Based on this assumption, bending
without twisting occurs between the supports.

AASHTO (2010) also bases its provisions for weak-axis bending of channels on the
corresponding AISC (2010) Section F6 provisions. For channel-section members subjected to
minor-axis flexure, AISC (2010) uses its equations for minor-axis flexure of I-section members
(see Section 5.5.2 of this module). AISC (2010) places a limit of 1.6FSy on the maximum
minor-axis bending flexural resistance. For I-section members, the shape factor Z,/Sy is nearly
always less than 1.6 (only four ASTM A6 W-shapes have a Z,/S, > 1.6). Hoygever, for channel-
sections, Z,/Sy is generally greater than 1.6. Similar to the Mpax = 1.6My lim1
with the stem in tension, the use of Mmax = 1.6F,Sy for channel sections is intend€@to indirectly
prevent substantial yielding at service load levels. Interestingly, the AISC ( i
provisions do not give any restriction on the slenderness of the web for cha
bending. However, if the web is loaded in flexural compression, the AISC i isions
are based implicitly on a compact web response. The slenderness i

Derinn)=
t, F

may be taken as a sufficient requirement to e&re t act\@havior of the web in this case.
AASHTO (2010) specifies Eq. (5.5.6-3) instead, 4@ich is ince this equation is for a web
bent about an axis normal to its plane.

(5.5.6-4)

5.5.7 Rectangular Bars and Roun

In addition, AASHTO (2010) us
rectangular bars and rounds. F
resistances are based on latera
in Figure 60. For these

010) for calculation of the flexural resistance of
bent about their major-axis, the AISC (2010)
kli¥g and have the same form as shown previously
ximum potential resistance is

(5.5.7-1)
(AASHTO 6.12.2.2.7-1, AISC F11-1)

(5.5.7-2)

L =1.9%— (5.5.7-3)

and an ordinate of My (i.e., residual stress effects are neglected at the elastic-to-inelastic LTB
transition point). Furthermore, the nominal elastic LTB capacity may be expressed for these

220



sections in terms of the bending moment or in terms of the maximum bending stress,
respectively, as:

r r E |dt’ dt’ dt’
M =C —‘fEI GlJ=C,———,|——=032C E— 5.5.7-4
e.LTB b Lb y b Lb \m 12 3 b Lb ( )
M 1.9E
Foirs = gLTB =G, Ld/t (5.5.7-5)

(AASHTO 6.12.2.2.7-3, ANG&F11-3 & F11-4)

For solid rounds and rectangular bars bent about their minor axis, AISC an ive the

flexural resistance as

Mn =M, < 1.6M, (5.5.7-6)

One might note that AISC (2010) and AASHTO (2010) also spe
(5.5.7-1). However, since the shape factor for a rectangularf@r i
never reached for these sections.

im
al to

f 1.6My with Eq.
) the limit 1.6My is

5.5.8 Single Angles

Single angles are generally not intended as ers in bridge construction.

ric axial compression is addressed
ssed in Section 5.2.3 of this module, and
the practical condition of flexure due to 1 ension is addressed via the shear lag
calculation of the flexural resistance of single-
angle members is not address
references provided in the e AISC Specification for flexural resistance
equations and discussiq vior of single-angle members.

5.5.9.1 AA 2 A (1999) approach

For concrete-d@@@8cd shapes that satisfy specific detailing requirements on the lateral and
longitudinal ref@@rcement, AASHTO (2010) Article 6.12.2.3.1 defines the flexural resistance
for members thal§@iic not subjected to any axial compression as the smaller of:

1. The plastic moment resistance of the steel section alone, Mps, and
The yield moment of the composite section, My, determined accounting for the different
moments applied to the noncomposite, long-term composite, and short-term composite
cross-sections, and neglecting any of the concrete loaded in tension.
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The concrete is assumed to prevent local buckling of the steel, and hence concrete-encased
shapes are not subject to the width/thickness limitations of Article 6.9.4.2 (discussed in Section
5.2.4 of this module).

Furthermore, for concrete-encased shapes subjected to combined compression and flexure with
Pu/dcPn > 0.3, Article 6.12.2.3.1 specifies that the flexural resistance may be calculated as

(5.5.9-1)

H, -2c)A.F F
M =M S+m+ Ho AR A,F
° 3 2 1.7f/B, g

(AA 6.12.2.3.1-3)

Where
A = total area of the longitudinal bar reinforcement in the
section,
A, = the web area of the structural steel section, d t

B, = the width of the composite cross&ctio plane of flexure,

Fy = the yield strength of the structural s

fe
Equation (1) S simplified estimate of the appropriate fully-plastic flexural resistance for use
with the AASTEID (2010) beam-column strength interaction equations. The first, second and

third terms of t quation are the estimated plastic moment contributions from the steel shape,
the reinforcing ba§®, and the reinforced concrete respectively. In the second term, it is assumed
that at least one-third of the longitudinal bars in the cross-section can be considered to be located
at the distance ¢ from the tension and compression faces of the cross-section. To obtain the third
term, the web of the encased shape is taken as a tension reinforcement for a concrete cross-
section with a flexural depth equal to half the overall depth of the composite section in the plane
of bending.
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If Py/dcPy is less than 0.3, AASHTO Article 6.12.2.3.1 requires that the flexural resistance shall
be determined by a straight-line transition between the value obtained from Eq. (1) at Py/¢cP, =
0.3 and the flexural resistance at P, = 0.

The above approach is supported by comparisons to 44 beam-column tests with concrete-encased
steel shapes (Galambos and Chapuis 1980). This approach is essentially the same as the method
detailed in AISC (1999). The only difference is that the AASHTO procedure does not allow for
any consideration of the influence of shear connectors. The AISC (1999) pr0V1s10ns allow the
flexural resistance at P, = 0 to be taken as the corresponding beam fully-plagic composite
section resistance if adequate shear connectors are provided and the concrete Y@gitudinal and

yield resistance at P, = 0 may be used in determining the nominal flexural

For concrete-filled sections, AASHTO (2010) assumes the use of g
following flexural resistance equations. These are the former AA
noncomposite circular tube sections:

D E
Mn = Mps for — <2 [—
t “\F, @

M, = My for

and

This appears to be a simplificatj
(1999) specifies the use of the
taken equal to zero in Eq 4. is supported by comparisons to 48 beam-column

mbos and Chapuis 1980).

work compd
adequate nu
develop the a

ear connectors must be provided along the length of the member to

orces into the composite cross-section. The maximum spacing of these
connectors is nq@&llowed to exceed 16 in, and connectors are required on at least two faces of
the steel shape i onfiguration symmetrical about the cross-section. The commentary of AISC
(1999) indicates that force transfer by bond is generally disregarded in encased members, but is
commonly used in concrete-filled HSS members as long as the connections are detailed to limit
local deformations. However, it notes that no guidelines are available for structures other than
fixed offshore platforms. No specific guidelines are provided for the shear connector
requirements in concrete-filled members in the AISC (1999) Specification. Also, no specific
shear connector requirements are provided for development of the bending moments into the
composite cross-section of concrete-encased or filled members.
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5.5.9.2 AISC (2010) Approach

The AISC (2010) provisions for the nominal flexural resistance of concrete-encased and compact
filled members are essentially the same as AISC (1999) for the case of P, = 0. Also, presumably,
Eq. (1) and the linear interpolation between this equation and the strength at P, = 0 is still
allowed for concrete encased members where the shear transfer between the concrete and the
steel is not provided according to the Specification requirements. However, AISC (2010)
emphasizes a direct plastic stress distribution based approach that provides significantly
enhanced strength estimates for members that have adequate shear transfer bgtween the concrete

mbers under concentric axial tension,
entric axial compression, and
- and box-section members and
respectively. For members subjected to

combined bending and axial loa, ferred to as beam-columns, the AASHTO (2010)
and AISC (2010) Specificatio nce by interaction equations that reduce to the
above resistances in the ligi I ading (with zero flexure) or flexure about a single
principal axis (with zero , M 5.6.2 summarizes the strength interaction equations

defined in AASHTO ( ary AISC (2010) beam-column provisions. Section
5.6.3 then gi ical interaction between the axial and flexural resistances for
various t of ne teel members. Finally, Section 5.6.4 outlines these interaction

5.6.2 AASHT@K2010) and Primary AISC (2010) Beam-Column Interaction Equations

AASHTO (2010)¥Articles 6.8.2.3 and 6.9.2.2 and the primary AISC (2010) Section H1
provisions specify the following bilinear relationship to define the resistance of members
subjected to combined axial loading and flexure

M
it + M,y +—2-<1.0 for <02 (5.6.2-1a)
2¢c|:>n ¢anx ¢any ¢an

(AASHTO 6.8.2.3-1 & 6.9.2.2-1, AISC H1-1b)
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— +
¢c Pn 9 ¢f M nx ¢f M ny

c'n

R +8£ My , My ng,o for —_>02 (5.6.2-1b)

(AASHTO 6.8.2.3-2 & 6.9.2.2-2, AISC H1-1a)

Where
Py, = the maximum axial force along the member unbraced length under consideration
resulting from the factored loads,
My and =
(I)CPFI =
unbraced length under consideration,
&M and = the factored flexural resistance about the cross-se
WMy corresponding to the unbraced length under cong

The above definitions are strictly applicable only for prisma
members, P, and ¢:P, are based on the cross-ggction i argest value of Py/QPy = fJ/QFy
combined with the governing member elasticﬁ i

Pe/Py = Felf; (see Section 5.2.6). Similarly, My,

section having the largest values of My/My. y for checking the lateral-torsional
buckling limit state (in cases wherg@is li i ble), combined with the member
elastic buckling load ratio ye 18 = Fe, , 1 .3.6). In the above expressions, Mycx
and My are the nominal yield moment o the extreme fiber in compression for
flexure about the cross-section spectively. For checking of flange local buckling

or tension flange yielding limi 1 ere these limit states are applicable, the ratios
Mux/9tMnx and Myy/dMny agg ¢ e cross-sections along the unbraced length under
nx and Myy/¢:Myy from all the applicable flexural
for checking the member resistance under the

yielding, ten , .
about the cro tion y-axis, torsional buckling or torsional-flexural buckling) is inserted in
Egs. (1) for che@ling the strength interaction. Similarly, the largest values of Myy/¢:Mnx and
Muy/0:Myy from J@lhe applicable flexural resistance limit states (i.e., local buckling, yielding or
lateral-torsional blckling) also are inserted in Egs. (1). It should be noted that the largest values
of Pu/¢cPn, Mu/¢:Mny and Myy/¢:Myy may occur at different cross-sections along the length of the
unbraced segment under consideration. This is in general a conservative simplification. The
buckling limit states strictly do not correspond to an individual cross-section. They depend on
the loadings, properties and boundary conditions along the full x- and y-axis unbraced lengths.
For bridge engineering, the applied moments, Myx and Myy, are obtained in the vast majority of
cases by applying amplification factors to first-order elastic moments obtained from structural
analysis at the various required factored loadings.
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Strictly speaking, the Py/¢cPn, Mux/¢tMnx and Myy/¢¢Mpy ratios used in Egs. (1) should be
concurrent values taken from the same factored loading combination. However, this requires that
the above process be applied separately for each factored load combination, including all the
appropriate positions of live load on the structure. Although this is theoretically not a problem in
theory for computerized assessment, such an approach can be prohibitive. This is particularly
true when one realizes that the concurrent loadings giving the maximum value of the unity check
in Egs. (1) may actually occur for a situation where none of the above strength ratios are at their
individual maximum values. The maximum envelope values of Py/¢cPn, Mu/$¢:Mnx and Myy/dtMny
may be combined conservatively for practical checking of the members.

With one minor restriction (discussed subsequently), Egs. (1) are applicable fgQ doubly- and
square and rectangular HSS, solid rounds, squares or rectangles, and any o
combinations of doubly- or singly-symmetric members fabricated from plat

with a composite concrete slab). Nevertheless, Egs. (1) we
studies of noncomposite compact I-section members subject
flexure. Therefore, in the following, the relati@ship
responses of compact [-section beam-columns 1s
discussion of the predictions from Egs. (1) versus

inantly based on
Waxial loading and

e equations and the physical
This is followed by a

nses for other member types.

5.6.3 Noncomposite Members

5.6.3.1 In-plane resistance of doubl i tion members subjected to axial load
and major- or minor-axis be

Figure 82 shows represen
strength envelopes for
major-axis bending m

-yield and “exact” fully-plastic axial force-moment

ubly-symmetric [-section members subjected to

pes are identical for either axial tension or

negative bending moment. Therefore, only one quadrant of the

of the sections considered is a W40x167, which is

ide-flange section (deep web and relatively narrow flanges).

7, which is representative of a “column-type” wide-flange section
ange width nearly the same). The fully-plastic strength envelope is slightly less
mn-type section. However, the normalized initial-yield envelopes are

The other sed
(web depth a
convex for the ¥
essentially the sd
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— W40x167, fully-plastic resistance

107N — —— WA40x167, nominal first yield

Q> —— W14x257, fully-plastic resistance
Q087 NOXNL e W14x257, nominal first yield
Q
g -— - Egs. (5.6.2-1)
LL .
T 0.6
x
<
e)
.QE, 0.4+
©
£
S 0.2

0.0 T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Moment, M/M,

Figure 82 Representative first-yield and fully-plastic axig
envelopes for short compact doubly-symmetric I-section me g ted to major-axis
bending.

The figure also shows the result from Egs. (5.6.2-1) with ¢ a » flial to 1.0. For these
ideal short compact-section members, the nm‘al sistigike P, is equal to the cross-
section yield load Py (assuming that net section fj
tension) and the nominal flexural resistance is equ
(again assuming that the tension flagge fra
resistance). One can observe that
fully-plastic strength envelopes.

lastic moment capacity M,
imit state does not govern the
sonable lower-bound fit to the exact

The nominal first yield curves i be expressed simply as
— 5.6.3-1
> (5.63-1a)
in terms ial force a oment, or equivalently
T (5.6.3-1b)
= 6.

in terms of the cQ@esponding additive elastic axial and flexural stresses, neglecting residual
stress effects. If nOminal residual stresses of F; are assumed in compression at the flange tips and
in tension at the mid-width of the flanges, the corresponding first yield condition is given by
these equations with Py, My and Fy replaced by (1-F./Fy)Py, (1-F/F,)My and Fy-F,.

Figure 83 compares the nominal first yield and fully-plastic axial force-moment strength
envelopes for the same two short compact doubly-symmetric I-section members to Egs. (5.6.2-1)
for the case of combined axial loading and weak-axis flexure. The W40x167 fully-plastic
strength curve is again more convex than the corresponding W14x257 curve. However, the
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normalized first-yield envelope is slightly smaller for the W40x167 compared to that for the
W14x257. In this case, one can observe that both of the theoretical fully-plastic resistance
envelopes are significantly more convex than Egs. (5.6.2-1), and that Egs. (5.6.2-1) appear to
provide a rather conservative estimate of the true capacity. Although this observation is correct,
it only applies to short “stub-columns” or to members loaded in weak-axis flexure and axial
tension. Figure 84 compares the maximum in-plane strength envelopes for strong- and weak-axis
bending and axial compression on representative finite-length column-type wide-flange members
with L/r = 80, taken from Maleck (2001), to the nominal resistance predictions from Egs. (5.6.2-
1). Although the stub-column (i.e., cross-section) strength envelope for weakaaxis bending is
significantly more convex than either of the Egs. (5.6.2-1), or the exact fully
envelopes for strong-axis bending, the beam-column resistances for all but ve
are similar regardless of the axis of bending. This is because the weak-axis f pidity of an
I-section reduces dramatically once yielding starts at the flange tips. The s
through the flanges has a less dramatic effect on the ﬂexural rigidity as the -yield siiS#gth is

strength.

fully-plastic resistance
, hominal first yield
W14x257, fully-plastic resistance
14x257, nominal first yield
Egs. (5.6.2-1)

Normalized Axial Force, P/Py

Figure
envelopes fo

Ive first-yield and fully-plastic axial force-moment strength
ort compact doubly-symmetric I-section members subjected to minor-axis
bending.
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¥ o1 W8x31

1.0 il L/r =80
. L2 Fy = 36 ksi
1 - ¥ Lehigh residual stress pattern

0.8 ;:;\‘5 - o (Galambos and Ketter 1959)
i L1000 cos

0.6 - Fre = 0.3F,

P/P,

0.4+

024 — Major-axis bending

| ——  Minor-axis bending

-— - Egs. (5.6.2-1)
0.0 T T T T Y
0.0 0.2 0.4 0.6 0.8 1.0
(HL/4)M,
Figure 84 Representative maximum in-plane strength envel str@llg- and weak-axis
bending and axial compression on finite length colum pe-flang® members, from

Maleck (2001).

Figure 85 illustrates the behavior for the above’ wgak-a example in greater detail. This
figure shows the strength envelope from Figure ent is defined as the first-
order moment M; = HL/4 at the maximum 1 of the member, the corresponding

internal maximum second-order i ti idspan of the member, M inelastic = M1
+ P32 inelastic, and the corresponding 1 secOnd-order elastic moment My gjastic =
M1 + P& elastic = AF M. In these expres the “true” second-order inelastic lateral
deflection relative to a straight span of the beam-column at the maximum load

capacity of the member, inclu
the influence of initial resg stic 1 the idealized second-order elastic displacement
at the midspan for the lly-straight member, obtained from any legitimate
second-order elastic anW§8i -order elastic analysis combined with a second-order
elastic anyglilication facto d AF is the second-order elastic amplification factor for the
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5{\4--. —r Lehigh residual stress pattern
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Normalized Moment, M/M,

Figure 85 Strength interaction curves in terms of diffgre oments, My =

igure 84 example

analyses of the beam-column. This type of analysi d of yielding through the
cross-sections and along the length gf the i ing residual stress and initial geometric
imperfections effects, and the corre pon in the member stiffness, with
increases in the applied loads. Conver ic curve is obtained by applying the
second-order elastic amplification o0 the méMmber maximum first-order moments M; =

cross-section (not shown but s,
This is because the maxi
yielding and stability

57 fully-plastic resistance curve in Figure 83).
f the member is reached due to a combination of
stification of the midspan cross-section. Part of the
gs. (5.6.2-1) and the “exact” strength curves in Figure
84 and Fig se of a single column strength equation for Py. In general, the P,
from the

column streXily ( distributed plasticity analysis (see Figure 84). The accuracy of
obtained from @l distributed plasticity solutions.

The AASHTO (2@0) - AISC (2010) Egs. (5.6.2-1) were established in large part based on curve
fitting to the results from a large number of beam-column solutions similar to those illustrated in
Figure 85. Based on the definition of the internal moment M, as the maximum second-order
elastic moment within the unbraced length under consideration, determined from an analysis of
the nominally-elastic ideally-straight member (i.e., My = M2 gjastic), the P-M2 gjastic curve in Figure
85 is the appropriate “exact” curve that the beam-column strength interaction equation
represents. The AASHTO (2010) - AISC (2010) Egs. (5.6.2-1) provide an accurate to
conservative fit to the rigorous P-My gjastic curves for all of the strong- and weak-axis bending
cases studied in their development (LeMessurier 1985; Liew et al. 1992; ASCE 1997; Maleck
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and White 2003). In general, Egs. (5.6.2-1) give a superb fit for strong-axis bending and L/r from
0 to 100. They are increasingly conservative for the weak-axis case when L/r is less than about
40. This is due to the large shape factor and significant convexity of the cross-section fully-
plastic strength for weak-axis bending of I-shapes. They are moderately conservative for both
axes when L/r is greater than 120. Also, for sidesway-inhibited cases, Egs. (5.6.2-1) tend to be
somewhat more conservative for beam-columns subjected to reversed-curvature bending than for
cases involving single-curvature bending (Clarke and Bridge 1992). This is due to the fact that
Egs. (5.6.2-1) do not account for the influence of moment gradient on the shape of the strength
envelope.

A few attributes of Egs. (5.6.2-1) deserve highlighting:

moments) is clearly separated from the calculation of the g ances Pp
and M,. Many prior steel design standards do not provid between the
consideration of second-order effects in the elastic struct d the calculation
of the member resistances. The separation of these i @ilitates the use of
an explicit second-order elastic analysis to achleve a aracterization of

stability effects in cases where these *cts

e The bilinear form given by Egs. (5.6.2-1),
the fully-plastic resistance for a sho i mber subjected to major-axis bending,
also provides an accurate ong- and weak-axis P-Ma gastic
strength envelopes.

e The bilinear form given combines the consideration of “member
strength” and “membe single beam-column interaction curve. Many
other prior and cu 1 andards worldwide quantify the in-plane strength of

owever, all beam-columns of finite length fail physically by a
ending and stability effects. Equations (5.6.2-1) provide a

is referred to Liew et al. (1992), ASCE (1997), and Maleck and White (2003)
iscussion of the in-plane strength interaction behavior of doubly-symmetric I-
section members subjected to axial loading and major- or minor-axis bending.

The application of Egs. (5.6.2-1) to other types of beam-column members and other types of
strength limit states is generally ad hoc. Nevertheless, as noted in the previous section, within
certain restrictions, these equations provide an accurate to conservative characterization of the
member strength envelopes for all types of beam-column members. For instance, the in-plane
beam-column resistance of compact square and rectangular welded box or HSS sections is very
similar to that for I-section members in major-axis bending. The in-plane behavior of these types
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of members is much the same as an [-section member with a single web thickness equal to the
sum of the box or HSS section web thicknesses. The next section discusses the relationship
between Egs. (5.6.2-1) and the true in-plane and out-of-plane strength interaction curves for
singly-symmetric members and/or members with noncompact or slender cross-section elements.

Fully-plastic
resistance
First-yield
resistance

-pla@bic axial force-moment strength
mmetric I-section member.

envelopes for a short compact
are not symmetric. The s
and flexural stresses ar;

-section member. Interestingly, these envelopes
urves have a bulge in the quadrants where the axial
mpression or in tension on the larger flange. Of
ubly-symmetric I-section members, the fully-plastic

n upper-bound theoretical limit. The actual resistance for a general
singly-sy
overall men{@k gorlocal member and cross-section distortional stability effects.
The dark solid e in Figure 87 shows a representative strength envelope for a hypothetical
simply-support§@ifinite-length beam-column with noncompact and/or slender cross-section ele-
ments and a sing{§®symmetric cross-section profile. Also shown as dashed lines in the figure are
the base AASHTO (2010) - AISC (2010) strength interaction curves given by Egs. (5.6.2-1).
White and Kim (2003) discuss the behavior of various strength interaction equations and review
the limited experimental test results for prismatic doubly- and singly-symmetric I-section beam-
columns with noncompact and/or slender webs and compact, noncompact and slender flanges.
They conclude that the bilinear strength curves given by Eqgs. (5.6.2-1) provide an accurate to
conservative characterization of the in-plane and out-of-plane resistances from the available
tests. Galambos (2001a & b) proposes a refined procedure for determining the resistance of
prismatic singly-symmetric compact I-section members and makes similar observations
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pertaining to Egs. (5.6.2-1). Generally, Egs. (5.6.2-1) provide an accurate to slightly conservative
characterization of the in-plane resistance of singly-symmetric I-section members when the
smaller flange is subjected to additive flexural and axial stresses. However, these equations tend
to be somewhat conservative relative to the physical beam-column in-plane and out-of-plane
resistances in many cases involving singly-symmetric I-section members when the larger flange
is subjected either to additive axial and flexural compression or tension. The studies by Lee and
Hsu (1981) provide evidence of this conclusion for tapered web singly-symmetric I-section
members.

I<C

Cross-section fully-plastic
resistance

0> 1

Representati

Cross-section first-yield
resistance

Figure 87 Comparison of
supported finite-len

elements, the AISC (20

The beha N

Figure 87. K C for members of these types with intermediate and longer
lengths, the N8k W@the interaction curves is highly accentuated. Figure 88 illustrates
this behavior Y@ with the corresponding AASHTO (2010) - AISC (2010) strength for a
representative SEply-supported Tee-section member considered by Galambos (2001a). The two
different solid c@es in the figure denote capacities based on the in-plane strength limit states.
The two dashed c¥rves denote out-of-plane strength envelopes. Furthermore, the heavy lines
illustrate the results obtained by the refined calculations from Galambos (2001a) whereas the
thin lines indicate the resistances calculated by the AASHTO (2010) - AISC (2010) equations.
One can observe that the bulge in the upper-right and lower-left quadrants is substantial for this
member, and that the true strength along a radial line taken from the origin of the plot can be
more than two times the strength estimate based on Egs. (5.6.2-1) for some of the combinations
of axial force and bending moment. However, in the lower-right and upper-left quadrants, where

with noncompact and/or slender cross-section
ction curves (Egs. (5.6.2-1)), and the cross-section
ully-plastic strength.

233



the stem of the Tee-section is loaded in additive axial and flexural tension or compression, Egs.
(5.6.2-1) provide an accurate estimate of the “true” member strength.

Unfortunately, practical connections for typical Tee-section struts used as bracing or cross-frame
members are typically made to the flange. The corresponding bending moment due to the
eccentricity of the connection generally places the member design in the upper-right or lower-left
quadrants of Figure 88. Furthermore, the moment due to the eccentricity often places the design
in the region of the strength envelopes that exhibit the largest bulge relative to Egs. (5.6.2-1).

o

o

8

b

© - ‘

5 Heavylmes Galambos (2001a) |

3 Thin lineg; AA (2010) resistance

i

£

o

P4
Figure 88 Representative si Tee-section member considered by Galambos
Although Figure 88 in ditional capacity compared to that predicted by the
AASHTO (2010) - A res in the upper-right and lower-left quadrants of the
response, gue 1 in applying these additional strengths. The conservatism in the
lower-left (@l 1 ue to the fact that AISC (2010) limits the maximum flexural
resistance t y corresponds to first yielding at the tip of the stem, neglecting

es where the stem is loaded in flexural compression (see Section
‘ e) For typical eccentric connections on Tee-struts, the compressive elastic
he tip of the stem, M/S,, is larger than the corresponding axial tension, P/Ag.
Therefore, somd@@onservatism may be merited to protect against significant inelastic LTB
distortion of the t€e stem. Also, in the upper-right quadrant, the axial compressive resistance Pp
is reduced due to local buckling effects (via the Q factor, see Section 5.2.4) for a large number of
rolled Tee-sections. This is the case for the WT18x67 member considered in Figure 88.
However, in the upper-right quadrant, if the elastic flexural stress due to the eccentric loading,
M/Syx = Pe/S,, is larger than the corresponding axial compression stress, P/Ag, the Tee stem is
completely in tension. As such, the influence of the slenderness of the stem, d/ty, on the beam-
column resistance is expected to be minor. Furthermore, the AISC (2010) and AASHTO (2010)

residual stre
5.5.5 of this
flexural stress
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flexural resistances in this quadrant are limited to M, = 1.6My to avoid potential significant
yielding at service load levels (see Section 5.5.5).

Unfortunately, no simple method has been established at the present time (2010) for determining
the strength envelopes for singly-symmetric members, accounting for the bulges in the upper-
right and lower-left quadrants illustrated in Figure 86 and Figure 87. In fact, it is probably fair to
say that no simple manual method will ever exist for this calculation.

5.6.3.1.1 Enhanced strength interaction curves for singly-symmetrig members loaded
in their plane of symmetry

AISC (2010) Section H2 gives a separate beam-column interaction equatioq be
written for the case of bending within the plane of symmetry of a singly-s ber as

T b

a b

<1.0 (5.6.3-2)

(AISC H2-1)

This equation is intended to capture some of't
of Figure 88. The term f, in this equation is t
terms of stress fb is the required flexural stress a

e bulge in the er rig d lower left quadrants
s, Fa is the axial capacity in
nsideration, and Fy, is the

, taken as ¢:Mp/S in LRFD
where S is the corresponding elastj ponding to the specific point in the

cross-section under consideration.

The implied advantage of Eq. (2)4 gineer 1s allowed to consider the sign of the axial
and flexural stresses, which ar i ide of the cross-section and subtractive on the
other. Unfortunately, this equ rovide any advantage relative to Egs. (5.6.2-1) for

singly-symmetric memb ing in the plane of symmetry. This is because,
generally, the Engine pplicable points within the cross-section. Hence, the
extreme fiber where the | and flexural stresses are additive always governs the resistance
when the stance terms F, and Fy, are calculated as specified in AISC
(2010), i.e

White and K1
provides some
buckling of the
(5.6.2-1) always

6) discuss a variation on Eq. (5.6.3-2), proposed by Sherman (2005), that
the intended benefits for cases where the M, associated with yielding or

ller flange (or Tee stem) is substantially smaller than M,. However, Egs.
vide a more liberal estimate of the capacities for members where M, = M,

The commentary to AISC (2010) Section H2 acknowledges the above problem and then
discusses several ad hoc checks, similar to but different from Eq. (2). The AISC commentary
points out that these checks are justified by the statement, “A more detailed analysis of the
interaction of flexure and tension is permitted in lieu of Equation H2-1.”

Galambos (2001a) details a procedure that accomplishes the intended objective of Eq. (2), i.e.,
capturing the bulge in the upper-right and lower-left quadrants of the strength envelope, for
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prismatic singly-symmetric compact-section members loaded in their plane of symmetry.
Galambos’ procedure also is applicable for doubly-symmetric I-section members as a special
case. In these cases, it provides an enhanced assessment of the out-of-plane resistance for
members subjected to major-axis bending. Galambos uses separate formulations for the in-plane
and out-of-plane resistance to achieve these objectives. For the nominal in-plane resistance,
Galambos uses the theoretical cross-section fully-plastic strength curve, but with an adjusted
yield strength that varies from Fy at P =0 to F, at P = P, where F; is the in-plane column
resistance in terms of the axial stress and Pj, is the in-plane column resistance in terms of the
axial load. For the nominal out-of-plane strength, Galambos uses the fundamgntal equation for
the elastic torsional-flexural buckling of a singly-symmetric member under ined axial load
and uniform major-axis bending,

(Ry =PI R, ~ 7R+ fM)=(M +Ry,)’ 6.3-3)
to solve for the value of P at elastic torsional-flexural buckling cg i n applied
moment M. He then calculates the ordinate (i.e., the axial resista ¢ aominal out-of-
plane strength curve at this moment by substituting Pe/P,= . (38.1). The terms Py,

I, Pe; and Y, are defined in Section 5.2.3 of this module. T
monosymmetry parameter (Galambos 2001a;‘iemia 2010; \Whi ing 2003b).

and singly-symmetric [-section, Tee and double-an
However, for longer unbraced lenggs, thi ch
resistance equal to the elastic critica i imit of P = 0. For compact Tee and
double-angle members, this approxim with the AISC (2010) nominal flexural
resistance equations (see Section . ver, for I-section members, this prediction is
overly optimistic with respect inelastic LTB flexural resistance (see Figure
60). Galambos (2001b) sugge inal flexural resistance at M = M, in these
cases, where M, is calcu cable inelastic LTB resistance equations. This
adjustment assumes t ic LTB resistance is unaffected by the presence of

cases where M, =My at P = 0.
icts a lateral-torsional buckling

| symmetric rolled compact-element I-section members with KL, <
#jor-axis bending and axial tension or compression, i.e., an enhanced
2f the out-of-plane resistance. Section 5.6.3 of this module summarizes these

KL, subjected
characterizatio
procedures.

Ultimately, the simplest and most reliable determination of the strengths for the above types of
beam-columns may be the use of carefully validated numerical procedures that give explicit
maximum strength solutions, including the influence of appropriate nominal residual stresses and
geometric imperfections. Such calculations are explicitly permitted by Appendix 1 of the AISC
(2010) Specification. However, these types of analysis tools are not readily available for
professional practice at the present time (2010).
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5.6.3.1.2 Usage of the AASHTO (2010) and primary AISC (2010) bilinear interaction
equations with relaxed flange and/or web compactness limits

The last paragraph of Article 6.9.4.2 in AASHTO (2010) states that for members designed for
combined axial compression and flexure using Egs. (5.6.2-1), the plate slenderness requirements
summarized previously by Eq. (5.2.4-4) and Table 5 and Table 6 may be relaxed. These
previously discussed requirements ensure that local buckling of the cross-section plate elements
will not influence the behavior prior to developing the full yield strength of the member in
umform axial compresswn Obviously, if the member compresswe resistancg

the applied elastic stress level due to axial load plus bending in a given crosg
element is smaller than Fy, one might expect that the Eq. (5.2.4-4) requiren
Based on this logic, the last paragraph of Article 6.9.4.2 allows the Englne Y

(5.2.4-4) by fa + fy, where fa = Pu/Ag, f, = MJ/S, Ay is the gross area g iodfind S is
the applicable elastic section modulus to the extreme fiber of the g C
consideration.

P, based on fa at Pof
P, based on f, & f,

- Pn based on use of Fy cking local plate buckling

Egs. (5.6.2-1)

Figure 89 Effect of ro¥%@ing the plate slenderness limits by use of f, + f, rather than Fy in
(5.2.4-20) (the use of f; in Eq. (5.2.4-17) and f, + f,/3 in EQ.

5.2.4-19) has a similar effect)

Also, as prev discussed in Section 5.2.4 of this module, Article 6.14.4.2 specifies similar
criteria for the Yilte elements in solid-web arch ribs. The only difference between the Article
and the above Article 6.9.4.2 rule is that Article 6.14.4.2 allows the Engineer
to replace Fy by hen checking the plate slenderness of the webs of solid-web arch ribs, and
by fa + fp/3 when checking the b/t of web longitudinal stiffeners (see Egs. (5.2.4-18) and (5.2.4-

19)).

As noted in Section 5.2.4, if the above plate slenderness limits are relaxed, AASHTO (2010)
Article 6.9.4.2.1 requires the use of a linear axial force-moment interaction equation rather than
Egs. (5.6.2-1). This is because the validity of Egs. (5.6.2-1) for members containing slender
cross-section elements under uniform axial compression is tied to the calculation of the
resistance Py, based on the loading of the member as a column up to its maximum resistance in
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uniform axial compression. If the plate slenderness requirements in Egs. (5.2.4-4), or (5.2.4-18)
through (5.2.4-21) are relaxed by the use of applied stresses rather than Fy, the calculated Py, is
larger for smaller ratios of axial load to bending as shown in Figure 89. The bilinear shape given
by Egs. (5.6.2-1) already accounts approximately for this effect. The calculations are simpler and
exhibit comparable accuracy to the use of a linear interaction equation with the above variable P,
if one simply uses Egs. (5.6.2-1) with a single calculation of P, determined as the “true”
resistance of the member under uniform axial compression. Nevertheless, the effect of replacing
Fy by fa + fy is typically small since the factored f; + fy is often close to Fy.

5.6.3.2 Out-of-plane strength of doubly-symmetric rolled nonslender-elefg@mt I-section

members with KL, < KL, subjected to axial load and major-axis bending

AISC (2010) specifies the following equation as an enhanced description o
resistance of doubly-symmetric rolled nonslender-element I-section beam- poted to
major-axis bending and axial compression:

2 2
1.5 R -0.5 i + M, <1.0
¢c I:)ny ¢c Pny Cb¢bM nx(Cb=1)

4

where Ppy is the nominal column strength for we ckling in the out-of-plane

direction, and Mnycp=1) is the governing maj i ral resistance of the member based on
the idealized case of uniform bendifly, T i
solution of the differential equations
subjected to axial compression and une
the equation

(5.6.3-4)

(AISC H1-2)

ply-supported elastic member
s (McGuire 1968). This solution yields

M2
Cr’PP,

ey' ez

(5.6.3-5)

(5.6.3-6)

is the polar radius’of gyration of the cross-section. The term in the denominator on the left side
of Eq. (5) is the square of the elastic lateral-torsional buckling resistance of the member, i.e.,

[p b 7 [(7EY
Me: C§r02PeyPeZ :Cb E\/[Tj IyCW+E|yGJ (563-7)

where Cp is the moment gradient modifier (see Section 5.3.5 of this module). Equation (4) is
obtained by assuming Pe, = 2.0Py, which is a lower-bound value for all the ASTM A6 rolled
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wide-flange section members with KL, < KLy, and by replacing Mech=1) and Pey by the design
resistances ¢cPny and ¢pMnxcb=1). The resulting equation provides a much improved assessment
of the out-of-plane resistance of typical rolled column-type I-sections, particularly in cases where
the design resistances are governed by inelastic buckling and/or yielding limit states.

Equation (4) is a simplified version of a comparable equation implemented in the Australian
AS4100 Standard (SAA 1998) based on research conducted by Cuk and Trahair (1986) and Cuk
et al. (1986). The simplifications relative to AS4100 are:

e The use of Pe; = 2.0Pyy to remove the need for the calculation of Pe;,

e The use of an appropriate Cp expression for flexure alone, whereas 4
separate moment gradient modifier that captures enhanced moment
beam-columns subjected to moment and axial compression.

by White and Clark (1997 a & b). It is emphasized that the
CobdpMnxcb=1) is permitted to be greater than ¢p,Mpy. The res
“capped” by the in-plane resistance determined using Eqgs. ( . idering only the in—
plane strength terms, i.e., neglecting the pote‘lly
flexural buckling and CpdpM;x based on lateral-togi
concept to the way that the plateau strength Mmax S
I-section beams subjected to momegt-gra i (Cp>1).

This “cap” is similar in
the general LTB strength of

Figure 90 shows the shape of Eq. (5) of Pez/Pey For ASTM A6 wide-flange
sections, Pe,/Pey is generally great

(5.6.2-1), with ¢cPny and ¢:Mng@8b= ey and Me(Cb_l), provide a slightly hberal

i 1 mn elastic buckling resistance for small values of
P/Pgy. Interestingly, E
with Pe,/Pe (2010) beam-column strength curve defined by Egs.
(5.6.2-1) | nservative for large P/Pey when Pe,/Pey is close to 2.0, whereas it
is signific i jve to Eq. (5) for large Pe,/Pey.
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Figure 90 Theoretical elastic out-of-plane strength envelope 4 d doubly-
symmetric I-section beam-columns versus the base AISC (g8 olumn strength

interaction curve.
It is useful to note that Egs. (4) through (9) argu ontext of assumed
torsionally-simple end conditions, i.e., twisti s is prevented but the member
ends are free to warp and bend laterally. In cases embers are continuous with
less critical adjacent unbraced segments, the adjace y provide substantial warping
and weak-axis bending restraint at i nbraced length. This restraint
potentially can increase the true me 1ly, but it is typically neglected in
design practice.

There is no implicit intent in t the AISC provisions to disallow the use of
doubly-symmetric welded I-s ometries comparable to rolled wide-flange
sections. However, the r, can bg8maller than 2.0 for some thin-web welded I-sections.

However, there is no Eq. (4) to beam-columns having noncompact or
slender cross-section el ts, or to any type of tapered-web or generally nonprismatic beam-
column t there are no experimental or analytical solutions at the present
time (2010 se of Eq. (4) for these cases. Some enhancement relative to

ain situations. However, the precise shape of the beam-column
pends on the mode of failure (FLB, LTB or TFY in the limit of zero axial
NBlrong-axis flexural buckling, or torsional buckling about a centroidal axis or a
constrained axiSQ@l the limit of zero moment, and variations between these limits for combined
axial load and fle@lre). Stated alternately, the precise shape of the beam-column strength
envelope depends on the specific member parameters that influence the resistance in the various
axial and flexural modes of failure as well as the different interactions between these various
failure modes. Further research is needed to determine how to best characterize these resistances.
In the absence of further refinements, of the simple use of Egs. (5.6.2-1) is recommended for
general cases that go beyond the applicability of Eq. (4).

strength enve
force, weak- o

AISC (2010) Section H1 gives the following modification of the moment gradient modifier Cy,
for doubly-symmetric members subjected to axial tension:
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C.=C,i+P,/P, (5.6.3-10)

This modified Cy, factor, with the tension force P, taken as a positive number, accounts for the
beneficial influence of axial tension on the lateral-torsional buckling resistance and is to be
applied with Egs. (5.6.2- 1) Equatlon (10) can be 1nferred from a Verswn of Eq. (5) with the
second termonth = *° ’ " ‘he context of Egs.
(5.6.2-1) is ad hoc 1e lower quadrants of the
strength envelope

Pny = 255 kips

Out-of-plane strength

3007 using Eq (4)
aoo.... /
oo /

o....
100 / ,

!

-100-4 Out-of-plane compressive
strength using Egs. (5.6.2-1)

Pnx= 777 kips

-3001 Tensile strength using
Egs. (5.6.2-1) with
Eq. (10) for C,

Nominal Axial Resistance, P, (kips)

500
Resistance, M, (ft-kips)

Figure 91 Beam -CO resista nder tensile and compressive axial force (tension is
iform primary bending (W16x57, Fy =50 ksi, L, = 18.3 ft, Cp, =
1.0).

ined influence of Egs. (4) and (10) for a simply-supported wide-
flange beam-c n subjected to uniform bending. The example W16x57 member has an
=KLy =KLy = KL, = 18.3 ft, which is equal to L. Fherefore, My = Me(cp=1)
=269 ft-kips is rmed by elastic LTB at Fe 15 = Fyr. (see Egs. (5.3.5 ) and ((5.3.5-17)).
Also, the out-of-plane compressive resistance Py, is governed by elastic flexural buckling at Ppy =
0.877Pey = 255 kips, and Pe; = 850 kips = 3.33Py,, for this member. The resistance for pure axial
tension with zero applied bending moment is taken as Py = 835 kips, the in-plane axial
compressive resistance is Pnx = 777 kips, and the in-plane flexural resistance is My = 438 ft-kips.

Three important sets of curves are shown in Figure 91:
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The in-plane member strength determined using Eqs. (5.6.2-1) with the resistances Py, Mp and
Py, denoted by the outer-most bold strength curves,

The out-of-plane strength determined using Eqgs. (5.6.2-1) with the resistances Pny and Mncp=1)
for the case of axial compression, and, for the case of axial tension, determined using Eqgs. (5.6.2-
with the resistances Py and Mycp=1), but with Mpcp=1) increased by Cy, from Eq. (10) and capped
by Cp Mn(ch=1) < M. This strength is shown by the dotted curves.

The “enhanced” “rigorous” out-of-plane strength determined using Eq. (4) wath the resistances
Pny and Mp(cp=1) for the case of axial compression (with ¢r and ¢. taken equa .0), and, for the
case of axial tension, determined using Eq. (5) with the res1stance Pey replaced PO the terms
on the right-hand side of the equation, and Me = Me(chb= 1) = Mux(cb= 1) int ator on the
left-hand side of the equation. This strength is shown by the dashed curves

For the third set of curves, Eq. (4) is only slightly more conservati ) for the
case of axial compression, since Pe,/Pny = 3.33 for the subject mg 4 . (4) uses the
lower-bound value of Pe,/Pyy = 2.0. However, Eq. (5) is used fof ion case for this

set of strength curves because Eq. (4) is slightly liberal rela lytical out-of-
plane strength equation for tensile axial force.

One can observe that Egs. (4) and (5) give am i nt of the out-of-plane strength,
relative to the second set of curves, for the cases i pression, although the
increase in the strength for this uniform be

compression case. Conversely, fo olumn-type sections (i.e., by = d)

subjected to moment-gradient loadin
of members are subjected to double-cu f-plane resistance typically does not

ion of Eq. (4) is for this situation. In these cases,
the most streamlined approac ioning is to design the member assuming the

out-of-plane strength doe heck the resulting design using Eq. (4).

The Cy given by Eq ( hancement in the flexural resistance due to concurrent
axial tensig the dotted curve, but not as substantial as the result from Eq. (5)
However th provided by Eq. (5) for the axial tension case is not specified
in AISC Q0 gbseWe that the dotted curve asymptotes to the in-plane axial tension

strength in tf
abruptly “cap
0.2Py, the axia

@Vcs at approximately 400 kips axial tension. Equation (5) is more
by the in-plane axial tension resistance at an axial tension slightly larger than
nsion force corresponding to the knee of the bilinear interaction curve.

5.6.3.3 Other typ®s of beam-columns, general loading conditions

The above sections focus on the in-plane resistance of various types of beam-columns loaded
about either their major or minor principal axis of bending, as well as the out-of-plane resistance
of doubly- or singly-symmetric open-section members subjected to bending within their plane of
symmetry. These applications constitute the vast majority of beam-column design situations in
bridge construction.

242



The out-of-plane resistance of closed-section beam-columns bent about their strong-axis and
subjected to axial compression, e.g., a beam-column with a box cross-section, is represented
accurately to conservatively by Egs. (5.6.2-1) with P, taken as the smaller of the member axial
resistances for flexural buckling about the strong- or weak-axis. Equations (5.6.2-1) may be
applied to the design of arch ribs, which often are rectangular box sections (e.g., see Wright and
Bunner (2006)). In cases where a refined buckling analysis is utilized to evaluate the stability of
the arch, P, may be calculated using Eqs. (5.2.1-1) with P, taken as the axial force at the
governing buckling condition. Also, AASHTO (2010) requires the use of a linear interaction
equation rather than Egs. (5.2.1-1) if the plate slenderness limits are relaxed fy using applied
stresses fa, fa + fy/3 and f; + f, instead of Fy in Egs. (5.2.4-17) through (5.2.4-

In some cases, bridge members are subjected to biaxial bending in combinag
tension or axial compression. In these cases, extensive research shows that
generally provide an accurate to somewhat conservative representation of tf

AISC (1999) Appendix H provides nonlinear interaction equatio i I- and box-
section members in braced frames that provide the best kno . rue resistances.

trength mteractwn equation for

design practice. In addition, AISC (2010) Se*
including members in which

combined torsion, shear, flexure and axial forct i
the resistances can be influenced by local buckhn
interaction between the flexural and ax1al c The author is not aware of any
nonlinear beam-column interactio i ing and biaxial bending on open-
section members with singly-symme and/or noncompact or slender cross-
section elements.

5.6.4 Composite Members

This section addresses t i e-moyient interaction for steel-concrete composite members.
d: (A) I- and box-section members with a composite
ete-encased sections and concrete-filled boxes and tubes.

ers with a composite concrete deck

I[-section me ith a composite concrete deck behave in a fashion somewhat like the singly-
symmetric stec{@ldsections with a large top flange discussed in Section 5.6.3 of this module. The
flexural resistan§8in positive bending is based on the plastic section response or flange yielding
depending on wh&her the section is classified as compact or noncompact (see Section 5.3.3 and
5.3.4). The member resistance in axial compression is based either on flexural buckling about the
major axis of bending or on torsional buckling about an enforced axis of rotation located at the
depth of the shear connectors (see Section 5.2.7). The member resistance in combined axial
compression and positive bending may be obtained conservatively by applying Egs. (5.6.2-1).
However, a more liberal estimate may be obtained potentially by estimating the bulge in the
strength envelope for loading within the upper-right quadrant. The appropriate calculations for
this estimate are not readily apparent if the cross-section is noncompact in positive bending,
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and/or if the I-section web is slender in uniform axial compression. The behavior of box-section
members with a composite concrete deck is similar, except that, as noted previously in Section
5.6.3, torsional buckling of the steel section is not a consideration.

5.6.4.2 Concrete-encased sections and concrete-filled boxes and tubes

The AISC (2010) commentary provides guidelines for calculation of the resistance for encased
composite columns and concrete infilled sections subjected to combined axial compression and
bending moment. Three separate approaches may be utilized that vary in thejg level of
conservatism and amount of calculation effort. All of the methods take adva e of the strength
determination for a limited number of loading cases, and utilize interpolation ofN#lleraction
equations to calculate the strengths for other cases.

assessment must be conducted using this method. In addition, thg
slender concrete-filled sections is limited to this method (AISC 2

only to doubly-symmetric composite beam-columns. For th , Egs. (5.6.2-1)
provide a conservative estimate of the member resistance fo compression and
flexure, given the axial resistance Py, calculatvs di inection 5.2.7 of this module and
the flexural resistance calculated as outlined in"Segtio Iso, this approach may be
used for combined tension and flexure. The degre depends on the extent of the

behavior for an encased I-secti
longitudinal reinforcement(se
1 re 93, is obtained by a strain-compatibility analysis.
, may be estimated for various points along this curve
by assumipgaa lastic neutral axis, PNA, drawing the corresponding fully-plastic
stress distigt® their moments about the cross-section reference axis. The
concrete u 8 } d. Strain continuity is assumed between the steel and the
concrete por gy section. This assumption, although not supported by much of the
data from exp ental tests where the interface was monitored, has a negligible influence on the
ultimate strengliilland a minor influence on the stiffness of the cross-section (Galambos 1998).
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(a) Axial load capacity (Point A)

—
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(c) Intermediate Point (Point C)
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(d) Balance Point D)

ints on the beam-column strength

Rather than determine a contin ints to define the cross-section plastic strength
curve, it is sufficient to define i
Figure 93 (Roik and Ber
by linear interpolation

n 2010; AISC 2010). The strengths are determined
een these points. Point A is the strength under

as the value P, in Section 5.2.7 of this module. Point B
is the pla 1 ural resistance for zero axial force. Point C corresponds to a PNA

#ted at the same distance h, below the mid-depth of the I-section. In both of the
stress distributi@iils for Points B and C, the depth 2h,, is in the middle of the section and hence the
stress block or bi@@ks within this depth contribute no moment about the mid-depth reference axis
of the cross-section. In addition, it should be recognized from Figure 92 that the axial forces
from the reinforcement and the shaded portions of the stress blocks from the steel shape cancel
out.

for Point C is
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Axial Force, P

Moment, M

Figure 93 Strength envelope for encased or filled co bedl§-column.

If one adds the stress distributions in Figure 92b and Figure the g axial force from
the sum of these distributions is still the axial@@rce ing to the stress blocks in
Figure 92c. This is because the total axial force i ro. Furthermore, one can
observe by summing the contributions from the d1 ure 92b and Figure 92c¢ that
the corresponding total axial force ig equal the concrete section alone, i.e.
P.=0.85f/(B.H.—A -A,) (5.6.4-1)

where B and H. are the dimensg ete section shown in Figure 92a, A; is the area of
the steel section, and Ag, 1s the

In a similar fashion, if
and the contribution o
obtains

in Figure 92b is subtracted from that of Figure 92¢
1al force is considered, which is still equal to Pc, one

p, 2 +2t,(2h,)F, (5.6.4-2)

h, = , , (5.6.4-3)
2(0.85B, f, +1,(2F, —0.851/)

Once hy is determined, the moment capacity corresponding to points B and C is easily calculated.
The moment corresponding to the balance point (point D), where the moment capacity is largest,

is obtained when the PNA is located at the mid-depth of the cross-section (since in this case, all
the stress blocks contribute to the moment about the mid-depth reference axis). From Figure 92d,
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one can observe that all the contributions to the axial load from the steel shape and the
reinforcement cancel out, and that the axial load Pp corresponds to 0.85 f acting over half of the
cross-section, i.e., Pp = Pc/2.

Point E is an arbitrary point selected to improve the approximation of the “exact” cross-section
strength curve between points A and C.

Given the above approximate cross-section plastic strength envelope and the column design axial

strength ¢.Pp, determined as discussed in Section 5.2.7 of this module (acco,
column length effects), an appropriate design strength envelope may be dete

the abscissa and ordinate of points A through E by the factor
2 (5.6.4-4b)

P 20
s=4, +[¢°P” —¢f]—
V1

to the pot (M;, Pi),i=A, B, C, D or E.

ould be taken in reducing Point D by a

0

where

f=tan™ L'V'i.} ‘

is the angle (in radians) that a radial line from the
The commentary of AISC (2010) i
resistance factor or to account for
whereby additional flexural strength 1 1 wer axial compressive strength than

predicted by the cross-section str emberY Equations (4) avoid this anomaly by
shifting the cross-section stren line toward the origin by a factor that varies
from ¢ for point B to ¢cPn/Po

Finally, thd
interpolatio

The first of thef@Rove approaches directly accommodates compression and biaxial bending, since
Egs. (5.6.2-1) ad modate bending about both the major and minor principal axes of the cross-
section. Roik and§Bergmann (1992) recommend the use of linear interpolation between the
strength envelopes for axial compression and bending about each of the cross-section principal
axes. This approximation may be applied in either of the above second or third methods. The
axial compressive resistance ¢.P, is taken as the smaller resistance for column flexural buckling
about either of the cross-section principal axes in determining the point A4 for each of the
uniaxial strength envelopes. The corresponding maximum second-order elastic moments along
the member length are substituted into the strength interaction equation for bending about each
of the principal axes (as discussed previously in the context of Egs. (5.6.2-1), this is necessary
because the interaction equations provide a simplified check of the combined influence of
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strength and stability for the complete unbraced length of the member, not just a check of the
resistance at a given cross-section).

5.6.5 Summary Assessment of Beam-Column Strength Calculations

It should be clear from the above discussions that the various design strength interaction
equations are only coarse, albeit accurate to conservative, approximations of the true limit states
response of general beam-column members. The nominal axial resistance P, alone is governed in
general by many different limit states. For axial compression, these limit statgs include flexural
buckling about the X- or y-axis of the cross-section based on the effective len'Sgs KLy and KLy,

effective length KL,, or torsional-flexural buckling based on the effective 14
depending on the spe(nﬁcs of the member geometry and boundary conditio

member cross-section contains slender elements under unif ‘
limit states response is influenced by the local buckling and ®havior of the
component plates. For axial tension, the limitgates uaglude ov@hall tension yielding, or tension
fracture at a net section including shear lag eftCc the connection geometry.

The nominal flexural resistance of noncompasi rs and composite members with a

composite concrete deck is gove i s of member elastic or inelastic
lateral-torsional buckling, elastic or 1 kling and postbuckling of the component
plates, and potential extents of yielding s-section depth, depending on the cross-
section type. For encased comp the flexural resistance is based on different

extents of yielding, depending
concrete meets limits on it essive strength in AISC (2010), and depending on

2010) and AISC (1999).

ractlcal means of gaining any substantial improvement in accuracy relative to
interaction equations that have been discussed. Appendix 1 of the AISC
provides guidelines for the application of this type of approach. However,
fituations, the simple Specification strength interaction equations are sufficient
to achieve an economical design.
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6.0 CONCLUDING REMARKS

As stated in the introduction, this module aims to aid the Engineer in reviewing and
understanding the essential principles of steel system and member strength behavior and design
behind various Specification provisions for the design of steel bridge structures. That is, it is
intended as a relatively comprehensive resource that engineers can consult to understand the
background to the various Specification provisions so that the provisions can be properly applied
for “standard” designs, and so the design considerations can be most appropriately be extended
to the many “non-standard” situations that arise in bridge design practice. It ghould also be clear
from the various discussions that there are always areas of potential further 1
Nevertheless, the AASHTO (2010) and AISC (2010) Specifications represent
resource for the efficient, practical and economical design of steel bridge st
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