


FOREWORD

The Federal Highway Administration (FHWA) conducted a comprehensive case study of how
3D digital design data was used successfully by both the owner agency and the construction
contractor during six specific highway construction projects. A State Transportation Agency
should read this report because of the emphasis was placed on the data integration and data
transfer standards. Researchers explored the factors that did or did not enable data integration
and migration. The case studies were analyzed to identify the characteristics of projects that were
conducive to the use of 3 D digital design data in construction. The research synthesized
processes for data integration and characterized the data necessary for specific uses in
construction, including layout, AMG paving, construction acceptance, and measuring pay
quantities. It also identified gaps in data exchange schemas that need to be addressed to better
support the use of 3 D digital design data in highway construction. The actionable products of
the research are guidelines for determining if a project has the characteristics likely to support
use of 3D digital design data in construction, defining the data specifications to support those
uses, and opportunities to streamline processes to enable data integration and maximize the

utility of the data.
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1. INTRODUCTION

Section 1304 of The Moving Ahead for Progress in the 21st Century Act (MAP-21) emphasizes
(1) the identification and deployment of innovative technologies and practices to achieve three
goals in relation to highways and bridges: increase the efficiency of their construction, improve
their safety, and extend their service life. The use of three-dimensional (3D) engineered models
in construction, promoted under the Federal Highway Administration’s (FHWA'’s) Every Day
Counts (EDC) initiative, is one tool in the innovative technologies toolbox that helps meet this
MAP-21 provision. (2)

The objective of this research is to conduct a comprehensive case study of how 3D digital design
data was used successfully by both the owner agency and the construction contractor during
highway construction. Emphasis is placed on the data integration and data transfer standards that
enable such integration. Also included with this case study is the identification of the elements,
guidance, and applications that are needed to develop means and methods for optimizing
construction, earthwork balancing, equipment Automatic Machine Guidance (AMG) control
systems, and modeling software.

Electronic project data may include drawings, reports, or project files and may be vector or raster
in nature. (3) For the purposes of this study, 3D Digital Design Data (“3D data”) is defined as
any 3D vector data that represents the design intent of the contract documents. This includes data
developed during the course of creating the contract documents, or 3D data created from the
contract documents, generally in a Computer-Aided Design and Drafting (CADD) or extensible
markup language (XML) format.

This report summarizes the literature search that set the context for the study, introduces the
methodology, and presents the comprehensive case studies of six specific construction projects
in four States: New York, Virginia, Utah, and Missouri. The information collected during the
case studies was then analyzed to present synthesized data uses (and characterization), process
maps for the data integration, and to identify project characteristics that led to favorable uses of
3D digital data in construction.

One of the most significant lessons learned in the case studies was the need for careful digital
data quality control, especially prior to construction. The reliability and resolution of the original
ground survey information had the most significant impact on the successful use of 3D digital
data in construction. The final chapters present guidance on quality control for digital data that
will be used in construction.

The most significant factor that supported or constrained the use of 3D digital data by both the
contractor and the owner was data exchange. Generally, owners and contractors used different
software and hardware. While careful data exchange via open data schemas was generally
possible, more successful data integration resulted where both parties used common data, either
through collaborative interaction with the data or through using the same hardware and software
to obviate the need for converting the data into different proprietary formats. This informed the
chapter on data schema types and areas for further development.



OBJECTIVE

Studying individual projects yielded quantitative and qualitative data on the use, enabling
policies, and results of applying 3D digital design data and AMG to highway construction. The
objective was therefore to gather data from sample projects that are representative of typical
State transportation agencies’ construction work in an era of constrained budgets and a vast need
for renewal.

While high-profile, large projects may provide opportunities for advanced uses of 3D digital data
and AMG, the objective of this project was to ascertain where 3D digital design data and AMG
may benefit in the usual workflow of standard projects. The research provides actionable tools
for State transportation agencies to use in scoping and executing projects to result in the optimal,
most favorable application of 3D digital data in highway construction.

ACRONYMS
This section introduces some of the acronyms used in this report.

3R: Resurfacing, Restoration, or Rehabilitation. A category of common construction project
types that typically falls on the lower end of construction contract value.

AMG: Automated Machine Guidance. The use of real-time positioning equipment with 3D
digital data to guide or control the blade on construction equipment, resulting in real-time
construction layout without the need for physical markers such as stakes or hubs.

CADD: Computer-Aided Design and Drafting. A category of computer software that is used
to develop roadway designs. CADD software typically uses an object-oriented approach to apply
mathematical rules that automate the process of drafting roadway designs. 3D digital design data
is a common output of the application of CADD software.

CIM: Civil Integrated Management. The collection, organization, and managed accessibility
to accurate data and information related to a highway facility. The concept may be used by all
affected parties for a wide range of purposes, including planning, environmental assessment,
surveying, design, construction, maintenance, asset management, and risk assessment. (4)

DTM: Digital Terrain Model. A topographic model of the bare earth — terrain relief - that can
be manipulated by computer programs. The data files contain the spatial elevation data of the
terrain in a digital format which usually presented as triangulated irregular network (TIN).

GNSS: Global Navigation Satellite System. A satellite navigation system with global coverage.
In this report, GNSS usually refers to survey equipment that is able to receive and triangulate
position using signals from one or many GNSSs, including the U.S. Global Positioning System
(GPS).

GPR: Ground Penetrating Radar. Device that uses radar pulses to image the makeup of what
lies under the physical surface of a road or unfinished surface.



GPS: Global Positioning System. A satellite navigation system maintained by the United States
Air Force Space Command.

ISO: International Organization for Standardization. A non-governmental international
organization that researches and develops standards.

IRI: International Roughness Index. A mathematical property of any road profile obtained by
a valid method. Units are in in/mi or m/km, and is an indication of the smoothness of a road; the
lower the value, the smoother the road.

Lidar: (Portmanteau of “light” and *“radar’”). Remote sensing technology that measures
distance and other information by recording information about laser reflections. Typically, lidar
machines consist of rapidly pulsing lasers that are capable of taking millions of measurements in
a short time. Information that can be gathered by such devices includes x,y,z coordinates of
objects that the laser strikes and intensity of the returned beam. Commonly, a camera captures
simultaneous images to extract RGB color of the remote object as well and assign it to the point.

RTS: Robotic Total Station. A Total Station survey tool that automatically tracks the prism and
can be operated by a single person, controlling the instrument remotely.

STIP: Statewide Transportation Improvement Program. A list of all projects, or project
phases, proposed for federal funding.

XML: Extensible Markup Language. A text-based, human-readable and machine-readable
structured data schema.



2. BACKGROUND

Prior to selecting case studies, a focused literature search gained insight into the most current and
best pra