

Creating 3D Engineered Models

January 8, 2013 11:00 am – 12:30 pm EST

Welcome & Introductions

Douglas Townes, P.E. **FHWA Resource Center**

Webinar 1: Overview of 3D Models for Construction

Webinar 2: Creating 3D Engineered Models

Webinar 3: Applications of 3D Models in the Contractor's Office

Webinar 4: Applications of 3D Models on the Construction Site

Webinar 5: Managing and Sharing 3D Models for Construction

Webinar 6: Overcoming Challenges to Using 3D Engineered Models for Construction

Webinar 7: Steps to Requiring 3D Engineered Models for

Construction

1.11

Webinar 8: The Future: Adding Time, Cost and other Information to 3D Model

Introduction: Webinar Topics

Webinar 1: Overview of 3D Models for Construction

Webinar 2: Creating 3D Engineered Models

Webinar 3: Applications of 3D Models in the Contractor's Office

Webinar 4: Applications of 3D Models on the Construction Site

Webinar 5: Managing and Sharing 3D Models for Construction

Webinar 6: Overcoming Challenges to Using 3D Engineered Models for Construction

Webinar 7: Steps to Requiring 3D Engineered Models for

Construction

1.10

Webinar 8: The Future: Adding Time, Cost and other Information to 3D Model

Overview of 3D Engineered Models for Construction

Inspendent Bildge Passment Contract Administration Technologies and Immultions 3D Modeling Intelligent Compaction Accelerated Construction Every Day Counts SHRP2	
D Engineered Models	Events
- Autumated Machine Guidance	Slide In Bridge Construction (SIBC) from the Engineer/Designer Perspective Webinar 1/28/2014
3D Engineered Models for Construction - Case Study for Policies and Organizational Changes for Implementation. The Kentucky Case Study, FRWA-HIF-13-049 2013 3D Engineered Models for Construction - Understanding the Benefits of 3D Modeling in Construction. The Merconain Case Study, FRWA-HIF-13-050 2013	View all Upcoming Construction Events
JD. 4D. and 5D Engineered Models for Construction - Executive Summary, FHWA-HE-13-048 2013 birrials	More Information EtriWA Public Private Partnerships
Overview of 3D Engineered Models for Construction November 20, 2013 at 100 at 2.30 pm	ITEA Contact
	Chris Schneider Office uf Asset Management, Pawment, and Construction 202493-0551 E-mail Chris

	acc dic
Speaker	Торіс
Douglas Townes (FHWA-RC)	Welcome and Introductions
John Krause (Florida DOT)	Surveying Methods for 3D Models
Brett Wood (Florida DOT)	Surveying Methods for 3D Models
Francesca Maier (Parsons Brinckerhoff)	Creating 3D Models in Design
Mike Pullen (Multnomah County)	Using 3D Models in Public Outreach
Douglas Townes (FHWA-RC)	Information on Next Webinar and Close
Nar willow	Every Day Counts

Supporting 3D Design

Florida Department of Transportation Surveying & Mapping Office John Krause, PSM and Brett Wood, PSM

- Identify best practice for capturing existing conditions
- Describe how survey data is processed into useful outputs for design and construction Nay nination. Policy.

3D design efficiencies start early and go on throughout the life of the project

- > 3D design efficiencies start early and go on throughout the life of the project
- To fully realize the cost savings of 3D design FDOT is moving towards providing the contractors with digital 3D design plans.
 - This will allow the contractors to estimate the project more accurately.
 - Project packages can be sent to responding contractors much faster and more efficiently than traditional paper hard copies.
 - All respondents will be estimating from the same "sheet of music".
- Supporting certified digital survey data of existing conditions.
 - Typically this would include a topographic surface and 3D data.
 - Provided with digital signatures using
 - <u>http://www.identrust.com/govern</u> <u>ment/index.html</u>

Supporting 3D Design

SOME KEY ELEMENTS DRIVING 3D DESIGN ARE THE ADVANCEMENTS IN SURVEYING WHICH ALLOW SWIFT COLLECTION OF REMOTELY SENSED <u>IMAGERY</u> DATA WITH ACCURACIES SUFFICIENT FOR DESIGN.

The Old Way

Imagery Characteristics:

- Often includes valuable ancillary information
- Details difficult if not impossible to collect conventionally
- Better representation of change
- More detail
- Downside storage!

http://www.saminc.biz/project/detail/crenshaw-light-rail-mobile-mapping

FDOT Implementation of Terrestrial Mobile LiDAR

- TML Task Team established in 2012 by the State Surveyor and District Surveyors
- Establish Consistent, Predictable & Repeatable (CPR) survey processes and documentation
- Included FDOT Central Office Remote Sensing and Location Survey personnel.
- Representatives from each FDOT District
- Interested consultants with experience using technology
- Limited Team size to maintain functionality.

TML Project Staff Hour Form

TML Guidelines

TERRESTRIAL MOBILE LIDAR SURVEYING & MAPPING GUIDELINES Floridu Department of Transportation. August 23, 2012

TML General Scope

30 TERRESTRIAL PROPERTY LINAR

av acil

he CONSULTANY shall perform Terrored Mobile (2014) tools in avandance with all pplicitly values, manuals, publices, masks is, builtooks, providers, and corner input community.

a addition to the maps and LEDGR products. The COSSULTANT dual submit all expensions and reports to report the sampling. This will subout documentation of a economy reacted Documentage, Höpknare conversations, and arts reacts

0.1 Minster Pleasing

Research and proper nationals necessary for the increased on earlier of the inductor (2008) Monom. This surfactor has to not increase and addrey planning, TPT (this surplacities subricking, writter reports, and air research surgests).

- 8.2 Project Control Point Coordination All offers services to reactance for group planment of project ground costs is time release. Standardination costs (point, and relation point, apporting the Mathew LDMB areas.
- Mobilization Repair for LDDE searce and origin for proper last collection, and pr specialized personal and apppart to one.
- 6.4 Mobile LEDAT Mission Perfore physical services and relies have servery data, including an combination base status UPS acceptions and operation of any exercises address requirement.
- 9.5 USAM Processing December and percent calculated assessments data from Mehler LDAP, rolation sensors, and any time inflore mapped decing assess, reaches Mehler TAMR memoryment percent and a no same condeps. Paparete are large particle decid data and income particle field assessments for datases.
- 0.6 Termential Mobile Photography Proceeding Parcel, relevance, and same digital photographic images file collected itemp initial-LOOT access.
- 10.7 Transformation (Adjustment Adout LEVR) point should nee to Project Control point. Grame point cloud data Milely in approved signal format. Perpare separat reports of provision and

General Mobile LiDAR Survey Methods and Vertical Accuracies

\triangleright	Fixed Wing Aerial LiDAR Mapping (AL	S)	= +/-	0.5 –	- 1.0	feet
\triangleright	Low Altitude MLS	·	= +/-	0.1 –	0.2	feet
\triangleright	Vehicle TMLS		= +/-	0.050 -	0.1	feet
\triangleright	Static Laser Scanning	<u>}</u>	= +/-	0.005 -	0.05	feet
			~			

3D Design projects are beginning to be supported by several survey imagery technologies

GooDen

Improving Technology

Low Altitude LiDAR Testing in District 3

Low Altitude LiDAR Testing in District 3	
Washington County SR 10 FDOT 150kHz 150kHz 150kHz 240kHz	100kHz
	rgSet4-X
BEGIN 1 0 1 0 1 0 1 0 1 0	1
1562524.429 649544.226 78.304 -0.163 78.467 -0.097 78.401 0.061 78.243 0.063 78.241 -0.093	78.397
1562523.036 649548.922 78.634 -0.088 78.722 -0.015 78.649 0.202 78.432 0.156 78.478 -0.051	78.685
1562520.116 649560.522 78.959 -0.083 79.042 0.007 78.952 0.21 78.749 0.123 78.836 -0.052	79.011
1562517.459 649572.428 78.967 -0.084 79.051 -0.054 79.021 0.155 78.812 0.153 78.814 0.045	78.922
1562516.255 649576.851 78.722 -0.087 78.809 0.007 78.729 0.059 78.663 0.034 78.688 -0.06	78.782
END	
BEGIN 2 2 0 </td <td>2</td>	2
1562623.897 649570.799 79.857 -0.109 79.966 0.081 79.938 0.119 79.738 0.095 79.762 -0.051	79.908
1562622.459 649575.294 80.203 -0.061 80.264 0.002 80.201 0.16 80.043 0.091 80.112 -0.06	80.263
1562619.377 649586.984 80.587 -0.065 80.652 -0.006 80.593 0.207 80.38 0.122 80.465 -0.038	80.625
1562616.357 649598.829 80.443 -0.115 80.558 0.006 80.437 0.2 80.243 0.144 80.299 -0.026	80.469
1562615.191 649603.490 80.168 -0.146 80.314 -0.056 80.224 0.06 80.108 -0.01 80.178 -0.081	80.249
END	
BEGIN 3 0 3 0 3 0 3 0 3 0	3
1562722.625 649597.367 82.064 -0.099 82.163 -0.012 82.076 0.114 81.95 0.11 81.954 -0.05	82.114
1562721.847 649601.856 82.399 0.049 82.448 0.003 82.396 0.195 82.204 0.148 82.251 -0.03	82.429
1562718.872 649613.402 82.696 -0.017 82.713 0.016 82.68 0.165 82.531 0.102 82.594 -0.014	82.71
1562715.747 649625.257 82.498 -0.062 82,56 -0.03 82.528 0.156 82.342 0.145 82.353 -0.08	82.578
1562715.168 649630.244 82.187 -0.108 82.295 -0.051 82.238 0.144 82.043 0.118 82.069 -0.029	82.216
END	
Every Day Cou	ints 13

Managing LiDAR Data

- Using TopoDOT to filter Mobile LiDAR Data for quality control
 Usual step is to delineate point cloud data by vehicle trajectory
- > Compare passes for coverage and to estimate vertical precision.

200 scille

Managing LiDAR Data

- 0	- fuit] 7 • ⊠coll• ≡ 2 • 💁 • • ▲ • • 📴 • @ • @ • @ • @ • @ • @ • @ • @ • @ •
Ele Ede	Rement Settings In	ula Utilities Werkspace Window Help Topo00104
🖞 Tasks		- A
F. S.	off A p A p A p A p A b c c c c c c c c c c c c c	
Animat	Tool Settings	Effect
	Delete Small Files	Deletes small parsed files that have less than 1000 points.
	Creating Grid Elements	Specify whether or not to draw the grid tiles within MicroStation.
	X Block Size	Specify the width of the block to be used to parse data.
a	Y Block Size	Specify the height of the block to be used to parse data.
A Sec.	Thin Data	Thins the data by selecting every Nth point (Specified in the next settings box)

- Using TopoDOT to filter Mobile LiDAR
 Data into manageable sizes
- Usual step is to segregate point cloud data by uniform tile areas with matching filenames
- Be careful when thinning data
 - Filter, don't delete
 - Always be mindful of final object design criteria as it relates to accuracy and point density

Combining Photography With Mobile LIDAR

- Combining the two remote sensing technologies yields better 3d survey information
- Keep in Mind it is not independent if processed from same SBET

Photogrammetry - Autocorrelation

Advantage of Additional Datasets

Global Mapper Software – Comparing Image Data

Verifying USGS DEM Surface for Orthophotography

Autocorrelation from Digital Mapping Camera (DMC) Imagery

Every Day Counts 19

Summary

- When measured on a common datum, imagery from different sources can be very beneficial.
 - Verify Accuracy
 - More complete Information
 - Change detection
- > The 3D model Greater than the some of it's parts

Photogrammetry, LiDAR, and Conventional Surveying

Rutting on Interstate 10

- Identify best practice for capturing existing conditions
- Describe how survey data is processed into useful outputs for design and construction ay notion, policy

Creating 3D Engineered Models in Design

in ation.

Francesca Maier, PE Parsons Brinckerhoff

Nnohion

- Identify rapid 3D Modeling tools using GIS data
- Describe types of 3D models developed during design
- Describe how 3D models are prepared for Automated Machine Guidance

Lifecycle Data

Lifecycle Data

Use of 3D Data in Planning

3D Context Models from GIS Data

xoby: Feature T		Deta Sources		a 1
		×	4	9A 9A
ice :	× 1	юнгсе Туре	Statu	DateLoaded
Tio Feature				
Ddppes		Vector	Not Configured	
- CL-dipped		Vector	Not Configured	
- El Buldings				
🕂 🖬 building .		Vector	Driported	Wed 3an 30 2013
Coverage Are	85			
Vegetate	Laxea 👘	Vector	Imported	Thu Jan 10 2013
- Roads				
- Aleys		Vector	Imported	Thu Dec 37 2012
CL-cloped	1	Vector	Smoorted	Pri Jan 11 2013
Terrain				
Surface -	SURFACES	Autodesk D4X	Seconted	Fri Jan 11 2013
- El Water Areas				
water		Vector	Stroorted	Pri Jan 11 2013

Data Source Detail

Source type

Source: Wisconsin DOT

Growing Detail in Design Models

Growing Detail in Design Models

- CADD alignments, profiles and superelevation
- Criteria for cross-sections and earthworks
- Corridor models for cross-sections and earthworks
- Proposed TINs for earthworks
- Outputting LandXML for bidding
- Outputting line strings for bidding
- Releasing corridor models for bidding

Detail Needed for Construction: Design Intent

Detail Needed for Construction: AMG

Source: Sundt Construction

Detail Needed for Construction: AMG

Source: Florida DOT

3D for Plans versus 3D for AMG

3D for Plans versus 3D for AMG

3D for Plans versus 3D for AMG

- Do you have concerns about releasing Digital Data for Information Only?
 - Yes, I'd rather not release any digital data
 - Yes, but I'll release PDFs of the plans
 - Yes, but I'll release Alignments, Control Points and Existing Surfaces
 - Yes, but I'll release LandXML & 3D line strings
 - No, I'd release all digital data

Sharing 3D Models with Others rent or or actin

For the Consumer

WELCOME LAND DEVELOPMENT PROFESSIONALS!

Useful Links

Quick Statistics November 28, 2013

Members: 757 Organizations: 664 Countries: 41 Registered Software: 70

Stay informed and participate by joining the LandXML.org Industry Consortium.

See LandXML.org members from 2006 mapped in Google Earth.

View the message archives.

LandXML.org in a Nutshell

Launched January 2000, LandXML.org is committed to providing an non-proprietary data standard (LandXML), driven by an industry consortium of partners. There is no direct cost to join LandXML.org, nor specific level of participation required.

Once you join, stay informed and participate by using the

News December 8, 20

Thanks to Ladd Nelson of Carlson Software for updating the web site UI and layout.

New web application to convert FAA NGS survey data to LandXML-1.2 on web applications.

Expanded domain/email mapping to Google Earth & Google Maps web application

Is your software LandXML Registered and Certified?

Schema Versions

Software vendors Apply for Registered Software status today

LandXML, org has resumed active status. Contact us

LandXML Validator & Report Generator on the Web Applications page.

LandXML to SVG Web Application (Works for LandXML-1.0, LandXML-1.1, LandXML-1.2 files)

Is your software application LandXML Registered and Certified?

Land Version Land Version XML.org 1.2 🗸 XML.org 1.1 🗸

LandXML.org XML Data Exchange Standards

LandXML-1.2 schema: Ratified/Standardized on August 15, 2008 LandXML-1.1 schema: Ratified/Standardized on July 21, 2006 LandXML-1.0 schema: Ratified/Standardized on July 17, 2002

Convert Data to Exchangeable Format

Contraction of the second	el E	export Cross Sections	
Import	Export Surface	Export Alignm	ent
Alignment Data Geometry Project: Include: Selected:	LavaLandsTrails	▼ Save → Filte	As
Name	Description S	t A Previ	ew
A B BenhamFalls RF_RDRare	Path next C From Sun C Extg. Be S Rare at a O		R
andXML: OV Include Active C Include All Cogo inear Units: itate: ile Name:	Children Only	rsion 1.1/1.2	

andXML		
Export Pa	arcel Expor	t Cross Sections
Import	Export Surface	Export Alignment
Surface Data Surfaces:	0	Save
Name	Description 🔺	Save As
Default	G E	
A	E. Cascade to	Preview
A-AB A-SG	E. Cascade to	
B	Sunriver to Be	Help
B-AB	-	
200	m · · · · · · · · · · · · · · · · · · ·	
\cdot		
Include Trian	gles	
Include Featu	ures	
Include Non	Triangulated Features	
near <mark>U</mark> nits:	US Feet 👻	
ate:	proposed 👻	
le Name:		

Convert Data to Exchangeable Format

	Malua
Property	Value
∃ Translation	
Translate	Off
Base Point Northing	0.0000'
Base Point Easting	0.0000
Base Point Elevation	0.000'
Translated Coordinate Northing	0.0000
Translated Coordinate Easting	0.0000
	0.000
 ■ Rotation ■ Point Import Settings 	
Surface Import Settings	fullimport
Create snapshot after import	On
Create Source data in Drawing	On On
Convert Survey Foot to International Foot	
Pipe Network Import Settings	
Conflict Resolution Settings	\mathbf{C}
 Default Diameter Units 	
Alignment Import Settings	
Element Constraint Assignment	Free and floating curve groups
	Summan and a second
	hairte uilles entires das soch elsenset is the elisenset. Eined solut
	straints will be assigned to each element in the alignment. Fixed only:
	Free and floating curve groups: Assigns free or float constraints to
pported Civil 3D curve group types.	

nits and Zone	Transformation	Object Layers Abbrevia	tions Ambient Settings		<i>...</i>
Drawing units:	and a second second second second	Imperial to Metric conver		Scale:	0
Feet	•	US Survey Foot(39.37 I		→ 1 [*] = 50'	
Angular units:			d from other drawings	Custom scale:	
Degrees	•	Set AutoCAD variable		50	
Zone				-0	
Categories:		C	USA, Pennsylvania	\sim	
	ordinate systems:		Corry Child India		
and the second second		anes, South Zone, US For			
Description: NAD83 Per		anes, South Zone, US Foo	ot		
Projection:			6,		
LM					
Datum:		X			
Datum: NAD83		· ^ `			
267.23203193					
267.23203193					
2012/2012/11		0	OK Car	cel Apply	Help

very Day Counts 45

Coordinate System	PA83-SF
Description	NAD83 Pennsylvania State Planes, Southern 2
Projection	Lambert Conformal Conic
Source	Calculated from PA83-S by Mentor Software
Units	US Survey Foot
First Standard Parallel	40°58'00.0000"N
Second Standard Parallel	39°56'00.0000"N
Origin Longitude	77-45'00.0000"W
Origin Latitude	39°20'00.0000"N
False Easting	1968500
False Northing	0
Quadrant	Positive X and Y
Minimum Longitude	81°00'00.0000"W
Maximum Longitude	74°00'00.0000"W
Minimum Latitude	39°15'00.0000"N
Maximum Latitude	41°30'00.0000"N
Datum	· · · · · · · · · · · · · · · · · · ·
Name	NAD83
Description	North American Datum of 1983
Source	US Defense Mapping Agency, TR-8350.2-B, D
Ellipsoid) · · · · · · · · · · · · · · · · · · ·
Name	GRS1980
Description	Geodetic Reference System of 1980
Equatorial Radius	6378137
Polar Radius	6356752.3141403478
Eccentricity	0.081819191042830641
Source	Stem, L.E., Jan 1989, State Plane Coordinate
Vertical Datum	•
Vertical Datum	North American Vertical Datum of 1988

	Export P	arcel	Export Cross Sections	
	Import	Export Surface	Export Alignme	rit ()
	Surfaces		Apph	
	Duplicate Surf	aces: () Rename	Browse	
1	Feature Seed			0
	Feature Style:	Breakline	Previe	
	Include Tri	angle Points	Help	
	Geometry			
	Duplicate Geo	metry: 🧿 Rename		
		C Replace		
	Default Style:			
	Derault Style.	Prop_Horia	Alignmer 👻	
	Use Land>	KML Project Name as	Geometry Project Name	
	Use Land	KML Stationing		
	Include Po	int Names		
	File Name:			
		EHWA EDC2 Deploy	nent\Task 5 - Workshops\/	Materi
\sim	1.1103010111	Contract Depicy	ione (Tuble o Trontanopo u	
		Close		
		Ciuse	•	

										6	5	X
💓 Ber	ntley InRoads Suite	V8i (SELE	CTseries 2	!)						6		
<u>F</u> ile	Surface Geometry	<u>B</u> ridge	<u>D</u> rainage	Survey	<u>Evaluation</u>	<u>M</u> odeler	Site Modeler	Dr <u>a</u> fting	<u>Q</u> uantities	<u>T</u> ools <u>H</u> elp	30	
3	View Surface			•	C Perimet				X)	
	Update <u>3</u> -D/Plan	n Surface	Display		Triangle			Fea	atures	Deleted		Total
⊡ … 1					Contou	rs Cont <u>o</u> urs			0	0		0
	Triangulate Surfa	ace			<u>Feature</u>	-	0.		0	0		0
	Desig <u>n</u> Surface			•	4€ ³ Compo				0	0		0
	Edit Surface			•		te Feature	c		0	0		0
	<u>F</u> eature			•		e Elevations.		17	0	0		0
	Surface Propertie	es				athymetric E	evations		0	0		0
	Active Surface				Slope <u>\</u> Single				0	0		0
	Copy Surface								0	0		0
	🕺 <u>D</u> elete Surface				™ T <u>wo</u> Pe		U)					
	<table-of-contents> <u>R</u>ename Surface</table-of-contents>	e				rossing Segn						
	Utilities			•		l <u>B</u> reaklines.						
				-6	Profiled							
				\mathbf{O}	🛛 <u>G</u> riddeo	Model						
	Surfaces 🖁 Geon	netry	T C		Gt Color-C	o <u>d</u> ed Aspect	ts					
						oded <u>E</u> levati						4
Allows	the user to set plan	arize opti	ons that a	pply to	G⊵ Color-C	oded <u>S</u> lopes	l					
					🚺 Options	I						
	•	(X									
	1		$\langle \gamma \rangle$									
	~??											
		$ \land $										Every Day Co
	N .(22										

Source: Iowa State University

N no win

- Identify rapid 3D Modeling tools using GIS data
- Describe types of 3D models developed during design
- Describe how 3D models are prepared for Automated Machine Guidance

3D Modeling as a Public Information Tool Multnomah County's Sellwood Bridge Project

Mike Pullen Multhomah County

n use 3D motors of the children of the childre Does your organization use 3D models for

- Project Background
- Phased Construction vs. Detour
- Public Information Challenge
- 3D Model as Tool
- Results on horizon

y acordin

Sellwood Bridge in Portland, Oregon

our

61

- Investigated closing bridge during construction of new bridge
- Significant economic and business concerns
- County commitment to keep crossing open
- Goal = no more than 30 days of closure during 3-year bridge replacement

- Original assumed option
- Bridge built in 2 phases, 1 half at a time
- Keep bridge in service during work
- Use existing bridge while first half of new bridge is built on southside
- Traffic shifts to south half of new bridge
- Old bridge removed
- North half of new bridge built to form one new bridge

- Proposed in 2011 by newly-hired design and construction teams
- Approved by County Board in June 2011
- Old bridge moved north, out of work zone
- Bridge moved carefully and safely by specialty subcontractor
- Detour bridge will not include worst sections of old bridge

NRUIAtio

- Uses portion of old east approach
- Detour bridge as strong or stronger than old bridge (including seismic)
- New bridge can be built in one phase
- Similar number of bridge closure days

- Time:
 - Reduce construction by up to 12 months
- Money:
 - Reduce cost (\$5 to \$10 million) in materials, labor, and equipment
- Safety:
 - Separation improves safety for workers and travelling public.
- Design:
 - Eliminates redundant features
 - Improves appearance (two arch ribs instead of four)
- Environmental Impacts:
 - Fewer temporary work bridges
 - Less construction time
 - Less in-water and riparian impacts

Detour Construction: Early Phase

Detour Construction: Approaches & Piers

Detour: Slide Old Bridge North

Detour: Construct New Bridge

Detour Option 1 - Stage 2, East Approach First Stage Construction

Detour: Fill In East Approach

Detour: Completed Bridge

Public Information Challenges

- Public doubts about moving the old bridge, then re-opening it
- Neighbor concerns about proximity of new alignment
- Risks to regional traffic flow and county's reputation if bridge was damaged during move

NUNATI

Public Information Tools

- Meetings with neighbors, businesses
- Newsletter
- Drawings to explain bridge move
- Website update
- Media (news conferences, tours)
- Timelapse video
- 3D model

3D Model as Public Information Tool

- Animated 3D model by general contractor Slayden-Sundt prepared for proposal
- County and web consultant added narration by general contractor and titles to video for lay audience
- Posted video with 3D model to website and shared with public audiences to show bridge move sequence

Screen 3D animation of bridge construction sequence

3D Model Images of Detour Bridge

3D Model Images of Detour Bridge

3D Model Images of Detour Bridge

Traffic on detour bridge during construction of new bridge

3D Model Images

Completed new bridge after removal of detour bridge

- Successful bridge move in January 2013
- Bridge closure limited to five days, over holiday weekend
- Positive local and national media coverage
- Large public turnout on bridge move day
- Increased credibility for project owner, contractor and design team

Bridge Move Facts and Figures ect cuirence or nrack

- Truss span moved
 - 6.8 million pounds (3,400 tons)
 - 1095 feet long
 - 31 feet wide
 - 32 feet tall
- Lift about 2-1/2 inches
- Sliding ۲
 - 66 feet North at West End
 - 33 feet North at East End
 - Maximum Speed 6 inches per 10 seconds
 - Move Time = 14 hours

NUNATIK

- Overall budget \$307.5 million
- Traffic on detour bridge January 2013
- Traffic on new span Summer 2015
- East approach/Hwy. 43 interchange complete – Summer 2016

y mu istil

- Slayden/Sundt Joint Venture General Contractor (prepared 3D model)
- Omega Morgan Heavy move Subcontractor
- T. Y. Lin International Design in-river piers
- Multnomah County Owner, oversight

models dury Describe uses of 3D models during design

Upcoming Webinars and Close

Douglas Townes, P.E. **FHWA Resource Center**

Webinar 1: Overview of 3D Models for Construction

Webinar 2: Creating 3D Engineered Models

Webinar 3: Applications of 3D Models in the Contractor's Office

Webinar 4: Applications of 3D Models on the Construction Site

Webinar 5: Managing and Sharing 3D Models for Construction

Webinar 6: Overcoming Challenges to Using 3D Engineered Models for Construction

Webinar 7: Steps to Requiring 3D Engineered Models for

Construction

1.10

Webinar 8: The Future: Adding Time, Cost and other Information to 3D Model

Applications of 3D Models in the Contractor's Office

February 19, 2014 1:00 pm – 2:30 pm

www.fhwa.dot.gov/3D

Douglas.townes@dot.gov