Welcome & Introductions

Douglas Townes, P.E.
FHWA Resource Center
| Webinar 1: Overview of 3D Models for Construction |
| Webinar 2: Creating 3D Engineered Models |
| Webinar 3: Applications of 3D Models in the Contractor’s Office |
| Webinar 4: Applications of 3D Models on the Construction Site |
| Webinar 5: Managing and Sharing 3D Models for Construction |
| Webinar 6: Overcoming Challenges to Using 3D Engineered Models for Construction |
| Webinar 7: Steps to Requiring 3D Engineered Models for Construction |
| Webinar 8: The Future: Adding Time, Cost and other Information to 3D Model |
Introduction: Webinar Topics

| Webinar 1: Overview of 3D Models for Construction |
| Webinar 2: Creating 3D Engineered Models |
| Webinar 3: Applications of 3D Models in the Contractor’s Office |
| Webinar 4: Applications of 3D Models on the Construction Site |
| Webinar 5: Managing and Sharing 3D Models for Construction |
| Webinar 6: Overcoming Challenges to Using 3D Engineered Models for Construction |
| Webinar 7: Steps to Requiring 3D Engineered Models for Construction |
| Webinar 8: The Future: Adding Time, Cost and other Information to 3D Model |

Archival May no longer reflect current or accepted regulation, policy, guidance or practice.
Overview of 3D Engineered Models for Construction

www.fhwa.dot.gov/3D
<table>
<thead>
<tr>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Townes (FHWA-RC)</td>
<td>Welcome and Introductions</td>
</tr>
<tr>
<td>John Krause (Florida DOT)</td>
<td>Surveying Methods for 3D Models</td>
</tr>
<tr>
<td>Brett Wood (Florida DOT)</td>
<td>Surveying Methods for 3D Models</td>
</tr>
<tr>
<td>Francesca Maier (Parsons Brinckerhoff)</td>
<td>Creating 3D Models in Design</td>
</tr>
<tr>
<td>Mike Pullen (Multnomah County)</td>
<td>Using 3D Models in Public Outreach</td>
</tr>
<tr>
<td>Douglas Townes (FHWA-RC)</td>
<td>Information on Next Webinar and Close</td>
</tr>
</tbody>
</table>
Supporting 3D Design

Florida Department of Transportation
Surveying & Mapping Office
John Krause, PSM and Brett Wood, PSM

Archival
May no longer reflect current or accepted regulation, policy, guidance or practice.
Learning Objectives

• Identify best practice for capturing existing conditions
• Describe how survey data is processed into useful outputs for design and construction
3D design efficiencies start early and go on throughout the life of the project

- 3D design efficiencies start early and go on throughout the life of the project.
- To fully realize the cost savings of 3D design FDOT is moving towards providing the contractors with digital 3D design plans.
 - This will allow the contractors to estimate the project more accurately.
 - Project packages can be sent to responding contractors much faster and more efficiently than traditional paper hard copies.
 - All respondents will be estimating from the same “sheet of music”.

- Supporting certified digital survey data of existing conditions.
 - Typically this would include a topographic surface and 3D data.
 - Provided with digital signatures using

Archival may no longer reflect current or accepted regulation, policy, guidance or practice.
SOME KEY ELEMENTS DRIVING 3D DESIGN ARE THE ADVANCEMENTS IN SURVEYING WHICH ALLOW SWIFT COLLECTION OF REMOTELY SENSED IMAGERY DATA WITH ACCURACIES SUFFICIENT FOR DESIGN.

The Old Way

Imagery Characteristics:
- Often includes valuable ancillary information
- Details difficult if not impossible to collect conventionally
- Better representation of change
- More detail
- Downside – storage!

http://www.saminc.biz/project/detail/crenshaw-light-rail-mobile-mapping
http://www.earthmagazine.org

Archival may no longer reflect current or accepted regulation, policy, guidance or practice.
TML Task Team established in 2012 by the State Surveyor and District Surveyors
Establish Consistent, Predictable & Repeatable (CPR) survey processes and documentation
Included FDOT Central Office Remote Sensing and Location Survey personnel.
Representatives from each FDOT District
Interested consultants with experience using technology
Limited Team size to maintain functionality.

TML General Scope

<table>
<thead>
<tr>
<th>Task Units</th>
<th>No. of Units</th>
<th>Hour / Unit</th>
<th>Hours</th>
<th>Hours</th>
<th>Hours</th>
<th>Hours</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 30.01</td>
<td>PSM Only</td>
<td>Senior LiDAR Technician</td>
<td>30.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr. LiDAR Tech Only</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LiDAR Technician Only</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 30.02</td>
<td>PSM Only</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr. LiDAR Tech Only</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LiDAR Technician Only</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 30.03</td>
<td>Personnel Only</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Technician Only</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 30.04</td>
<td>Scan Miles Only</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LiDAR Sensor Operator</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-Technician to drive vehicle, 1-base station</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 30.05</td>
<td>PSM Only</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr. LiDAR Tech Only</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LiDAR Technician Only</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 30.06</td>
<td>PSM Only</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr. LiDAR Tech Only</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LiDAR Technician Only</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 30.07</td>
<td>PSM Only</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr. LiDAR Tech Only</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LiDAR Technician Only</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 30.08</td>
<td>Corridor Miles Only</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSM Only</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr. LiDAR Tech Only</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LiDAR Technician Only</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Archival May no longer reflect current or accepted regulation, policy, guidance or practice.
General Mobile LiDAR Survey Methods and Vertical Accuracies

- Fixed Wing Aerial LiDAR Mapping (ALS) = +/- 0.5 – 1.0 feet
- Low Altitude MLS = +/- 0.1 – 0.2 feet
- Vehicle TMLS = +/- 0.050 – 0.1 feet
- Static Laser Scanning = +/- 0.005 – 0.05 feet

3D Design projects are beginning to be supported by several survey imagery technologies.
Improving Technology

Low Altitude LiDAR Testing in District 3

<table>
<thead>
<tr>
<th>Washington County SR 10</th>
<th>FDOT X-Sections</th>
<th>150kHz</th>
<th>80kHz</th>
<th>150kHz</th>
<th>240kHz</th>
<th>400kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEGIN 1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1562524.429 649544.226</td>
<td>78.304</td>
<td>-0.163</td>
<td>78.467</td>
<td>-0.097</td>
<td>78.401</td>
<td>0.061</td>
</tr>
<tr>
<td>1562523.036 649548.922</td>
<td>78.634</td>
<td>-0.088</td>
<td>78.722</td>
<td>-0.015</td>
<td>78.649</td>
<td>0.202</td>
</tr>
<tr>
<td>1562520.116 649560.522</td>
<td>78.959</td>
<td>-0.083</td>
<td>79.042</td>
<td>0.007</td>
<td>78.952</td>
<td>0.21</td>
</tr>
<tr>
<td>1562517.459 649572.428</td>
<td>78.967</td>
<td>-0.084</td>
<td>79.051</td>
<td>-0.054</td>
<td>79.021</td>
<td>0.155</td>
</tr>
<tr>
<td>1562516.255 649576.851</td>
<td>78.722</td>
<td>-0.087</td>
<td>78.809</td>
<td>-0.007</td>
<td>78.729</td>
<td>0.059</td>
</tr>
<tr>
<td>END</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1562623.897 649570.799</td>
<td>79.857</td>
<td>-0.109</td>
<td>79.966</td>
<td>-0.081</td>
<td>79.938</td>
<td>0.119</td>
</tr>
<tr>
<td>1562622.459 649575.294</td>
<td>80.203</td>
<td>-0.061</td>
<td>80.264</td>
<td>0.002</td>
<td>80.201</td>
<td>0.16</td>
</tr>
<tr>
<td>1562619.377 649586.984</td>
<td>80.587</td>
<td>-0.065</td>
<td>80.652</td>
<td>0.006</td>
<td>80.593</td>
<td>0.207</td>
</tr>
<tr>
<td>1562616.357 649598.829</td>
<td>80.443</td>
<td>-0.115</td>
<td>80.558</td>
<td>0.006</td>
<td>80.437</td>
<td>0.2</td>
</tr>
<tr>
<td>1562615.191 649603.490</td>
<td>80.168</td>
<td>-0.146</td>
<td>80.314</td>
<td>-0.056</td>
<td>80.224</td>
<td>0.06</td>
</tr>
<tr>
<td>END</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1562722.625 649597.367</td>
<td>82.064</td>
<td>-0.099</td>
<td>82.163</td>
<td>-0.012</td>
<td>82.076</td>
<td>0.114</td>
</tr>
<tr>
<td>1562721.847 649601.856</td>
<td>82.399</td>
<td>-0.049</td>
<td>82.448</td>
<td>0.003</td>
<td>82.396</td>
<td>0.195</td>
</tr>
<tr>
<td>1562718.872 649613.402</td>
<td>82.696</td>
<td>-0.017</td>
<td>82.713</td>
<td>0.016</td>
<td>82.68</td>
<td>0.165</td>
</tr>
<tr>
<td>1562715.747 649625.257</td>
<td>82.498</td>
<td>-0.062</td>
<td>82.56</td>
<td>0.03</td>
<td>82.528</td>
<td>0.156</td>
</tr>
<tr>
<td>1562715.168 649630.244</td>
<td>82.187</td>
<td>-0.108</td>
<td>82.295</td>
<td>-0.051</td>
<td>82.238</td>
<td>0.144</td>
</tr>
</tbody>
</table>

Archival
May no longer reflect current or accepted regulation, policy, guidance or practice.
Managing LiDAR Data

- Using TopoDOT to filter Mobile LiDAR Data for quality control
- Usual step is to delineate point cloud data by vehicle trajectory
- Compare passes for coverage and to estimate vertical precision.

Archival May no longer reflect current or accepted regulation, policy, guidance or practice.
Managing LiDAR Data

- Using TopoDOT to filter Mobile LiDAR Data into manageable sizes
- Usual step is to segregate point cloud data by uniform tile areas with matching filenames
- Be careful when thinning data
 - Filter, don’t delete
 - Always be mindful of final object design criteria as it relates to accuracy and point density
Combining the two remote sensing technologies yields better 3D survey information.

Keep in Mind it is not independent if processed from same SBET.
Photogrammetry - Autocorrelation

Archival
May no longer reflect current or accepted regulation, policy, guidance or practice.

Fort Pickens
Advantage of Additional Datasets

Global Mapper Software – Comparing Image Data

Archival data may no longer reflect current or accepted regulation, policy, guidance or practice.
Autocorrelation from Digital Mapping Camera (DMC) Imagery

FDOT - SMO
Summary

- When measured on a common datum, imagery from different sources can be very beneficial
 - Verify Accuracy
 - More complete Information
 - Change detection
- The 3D model - Greater than the sum of its parts

Archival May no longer reflect current or accepted regulation, policy, guidance or practice.
Verify Learning Outcomes

- Identify best practice for capturing existing conditions
- Describe how survey data is processed into useful outputs for design and construction
Creating 3D Engineered Models in Design

Francesca Maier, PE
Parsons Brinckerhoff
Learning Objectives

• Identify rapid 3D Modeling tools using GIS data
• Describe types of 3D models developed during design
• Describe how 3D models are prepared for Automated Machine Guidance

Archival May no longer reflect current or accepted regulation, policy, guidance or practice.
Bridge as-built plans, 1946
Use of 3D Data in Planning

Source: Washington State DOT
3D Context Models from GIS Data

Source: Parsons Brinckerhoff

Archival may no longer reflect current or accepted regulation, policy, guidance or practice.
Growing Detail in Design Models

Source: Wisconsin DOT
Growing Detail in Design Models

Archival May no longer reflect current or accepted regulation, policy, guidance or practice.
Growing Detail in Design Models
Growing Detail in Design Models

Source: HNTB
What’s in your design workflow?

- CADD alignments, profiles and superelevation
- Criteria for cross-sections and earthworks
- Corridor models for cross-sections and earthworks
- Proposed TINs for earthworks
- Outputting LandXML for bidding
- Outputting line strings for bidding
- Releasing corridor models for bidding
Detail Needed for Construction: Design Intent
Detail Needed for Construction: AMG

Source: Sundt Construction
Detail Needed for Construction: AMG

Source: Florida DOT
3D for Plans versus 3D for AMG

Archival may no longer reflect current or accepted regulation, policy, guidance or practice.
3D for Plans versus 3D for AMG

Archival May no longer reflect current or accepted regulation, policy, guidance or practice.
Surface Definitions for AMG

Roadway Model Surface - Top
Roadway Model Surface - Pavement

Source: Wisconsin DOT

Archival May no longer reflect current or accepted regulation, policy, guidance or practice.
Surface Definitions for AMG

Roadway Model Surface - Datum

Source: Wisconsin DOT

Archival
May no longer reflect current or accepted regulation, policy, guidance or practice.
Do you have concerns about releasing Digital Data for Information Only?
- Yes, I'd rather not release any digital data
- Yes, but I'll release PDFs of the plans
- Yes, but I'll release Alignments, Control Points and Existing Surfaces
- Yes, but I'll release LandXML & 3D line strings
- No, I'd release all digital data

Archival May no longer reflect current or accepted regulation, policy, guidance or practice.
Welcome Land Development Professionals!

Quick Statistics
November 28, 2013

Members: 757
Organizations: 664
Countries: 41
Registered Software: 70

Stay informed and participate by
joining the LandXML.org
Industry Consortium.
See LandXML.org members from 2006 mapped in Google Earth.

View the message archives.

LandXML.org in a Nutshell
Launched January 2000, LandXML.org is committed to providing an non-proprietary data standard (LandXML), driven by an industry consortium of partners. There is no direct cost to join LandXML.org, nor specific level of participation required.

Once you join, stay informed and participate by using the

News December 8, 2013

Thanks to Ladd Nelson of Carlson Software for updating the web site UI and layout.
New web application to convert FAA RGS survey data to LandXML-1.2 on web applications.
Expanded domain/email mapping to Google Earth & Google Maps web application

Is your software LandXML Registered and Certified?
Software vendors Apply for Registered Software status today
LandXML.org has resumed active status. Contact us
LandXML validator & Report Generator on the Web Applications page.
LandXML to SVG Web Application (Works for LandXML-1.0, LandXML-1.1, LandXML-1.2 files)

Is your software application LandXML Registered and Certified?

LandXML.org XML Data Exchange Standards

LandXML-1.2 schema: Ratified/Standardized on August 15, 2008
LandXML-1.1 schema: Ratified/Standardized on July 21, 2006
LandXML-1.0 schema: Ratified/Standardized on July 17, 2002
Convert Data to Exchangeable Format

Archival May no longer reflect current or accepted regulation, policy, guidance or practice.
Convert Data to Exchangeable Format

Archival data may no longer reflect current or accepted regulations, policies, guidance, or practices.
Build a Model from Exchanged Data

Every Day Counts
<table>
<thead>
<tr>
<th>Coordinate System</th>
<th>PA83-SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>NAD83 Pennsylvania State Planes, Southern Zone</td>
</tr>
<tr>
<td>Description</td>
<td>Lambert Conformal Conic</td>
</tr>
<tr>
<td>Projection</td>
<td>Calculated from PA83-S by Mentor Software</td>
</tr>
<tr>
<td>Source</td>
<td>US Survey Foot</td>
</tr>
<tr>
<td>Units</td>
<td>40°58'00.0000"N</td>
</tr>
<tr>
<td>First Standard Parallel</td>
<td>39°58'00.0000"N</td>
</tr>
<tr>
<td>Second Standard Parallel</td>
<td>77°45'00.0000"W</td>
</tr>
<tr>
<td>Origin Longitude</td>
<td>39°20'00.0000"N</td>
</tr>
<tr>
<td>Origin Latitude</td>
<td>1968500</td>
</tr>
<tr>
<td>False Easting</td>
<td>0</td>
</tr>
<tr>
<td>False Northing</td>
<td>Positive X and Y</td>
</tr>
<tr>
<td>Quadrant</td>
<td>61°00'00.0000"W</td>
</tr>
<tr>
<td>Minimum Longitude</td>
<td>74°00'00.0000"W</td>
</tr>
<tr>
<td>Maximum Longitude</td>
<td>39°15'00.0000"N</td>
</tr>
<tr>
<td>Minimum Latitude</td>
<td>41°30'00.0000"N</td>
</tr>
<tr>
<td>Maximum Latitude</td>
<td>41°30'00.0000"N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datum</th>
<th>NAD83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>North American Datum of 1983</td>
</tr>
<tr>
<td>Source</td>
<td>US Defense Mapping Agency, TR-8350.2-B, D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ellipsoid</th>
<th>GRS1980</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Geodetic Reference System of 1980</td>
</tr>
<tr>
<td>Description</td>
<td>6378137</td>
</tr>
<tr>
<td>Equatorial Radius</td>
<td>6356752.314103478</td>
</tr>
<tr>
<td>Polar Radius</td>
<td>0.081819191042830641</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>Stem, L.E., Jan 1989, State Plane Coordinate</td>
</tr>
</tbody>
</table>

| Vertical Datum | North American Vertical Datum of 1988 |
Archival May no longer reflect current or accepted regulation, policy, guidance or practice.
Build a Model from Exchanged Data

Every Day Counts
Build a Model from Exchanged Data

May no longer reflect current or accepted regulation, policy, guidance or practice.
Build a Model from Exchanged Data

Archival may no longer reflect current or accepted regulation, policy, guidance or practice.
Compare Exchanged Model to Design Model

Every Day Counts | 52
Compare Exchanged Model to Design Model
Compare Exchanged Model to Design Model
Compare Exchanged Model to Design Model
Summary

Source: Iowa State University
Verify Learning Outcomes

- Identify rapid 3D Modeling tools using GIS data
- Describe types of 3D models developed during design
- Describe how 3D models are prepared for Automated Machine Guidance
3D Modeling as a Public Information Tool
Multnomah County’s Sellwood Bridge Project

Mike Pullen
Multnomah County
Does your organization use 3D models for public outreach?

• Yes
• No
• Not Sure
Overview

• Project Background
• Phased Construction vs. Detour
• Public Information Challenge
• 3D Model as Tool
• Results
Archival
May no longer reflect current or accepted
regulation, policy, guidance or practice.

Sellwood Bridge in Portland, Oregon
Project Background

- Investigated closing bridge during construction of new bridge
- Significant economic and business concerns
- County commitment to keep crossing open
- Goal = no more than 30 days of closure during 3-year bridge replacement
Staged Construction

- Original assumed option
- Bridge built in 2 phases, 1 half at a time
- Keep bridge in service during work
- Use existing bridge while first half of new bridge is built on southside
- Traffic shifts to south half of new bridge
- Old bridge removed
- North half of new bridge built to form one new bridge
Detour Construction

• Proposed in 2011 by newly-hired design and construction teams
• Approved by County Board in June 2011
• Old bridge moved north, out of work zone
• Bridge moved carefully and safely by specialty subcontractor
• Detour bridge will not include worst sections of old bridge
Detour Construction

- Uses portion of old east approach
- Detour bridge as strong or stronger than old bridge (including seismic)
- New bridge can be built in one phase
- Similar number of bridge closure days
Detour Bridge Benefits

- **Time:**
 - Reduce construction by up to 12 months

- **Money:**
 - Reduce cost ($5 to $10 million) in materials, labor, and equipment

- **Safety:**
 - Separation improves safety for workers and travelling public.

- **Design:**
 - Eliminates redundant features
 - Improves appearance (two arch ribs instead of four)

- **Environmental Impacts:**
 - Fewer temporary work bridges
 - Less construction time
 - Less in-water and riparian impacts

Every Day Counts
New Bridge if built in one phase (detour option)

New Bridge if built in two phases (staged option)
Detour: Slide Old Bridge North

Potential Staging Area

Access

Temporary Work Platform

Potential Staging Area and Temporary Parking

Access

Archival information may no longer reflect current or accepted regulation, policy, guidance or practice.
Detour: Construct New Bridge

Potential Staging Area

Potential Staging Area and Temporary Parking

Temporary Work Platform

Access

Detour Option 1 - Stage 2, East Approach First Stage Construction
Detour: Completed Bridge
Public Information Challenges

- Public doubts about moving the old bridge, then re-opening it
- Neighbor concerns about proximity of new alignment
- Risks to regional traffic flow and county’s reputation if bridge was damaged during move
Public Information Tools

- Meetings with neighbors, businesses
- Newsletter
- Drawings to explain bridge move
- Website update
- Media (news conferences, tours)
- Timelapse video
- 3D model
3D Model as Public Information Tool

• Animated 3D model by general contractor Slayden-Sundt prepared for proposal

• County and web consultant added narration by general contractor and titles to video for lay audience

• Posted video with 3D model to website and shared with public audiences to show bridge move sequence
Video Sequence

Screen 3D animation of bridge construction sequence
3D Model Images of Detour Bridge

Concept for detour bridge construction
Constructing detour bridge near residences
Traffic on detour bridge during construction of new bridge
Completed new bridge after removal of detour bridge
Results

• Successful bridge move in January 2013
• Bridge closure limited to five days, over holiday weekend
• Positive local and national media coverage
• Large public turnout on bridge move day
• Increased credibility for project owner, contractor and design team
Archival
May no longer reflect current or accepted regulation, policy, guidance or practice.
Archival May no longer reflect current or accepted regulation, policy, guidance or practice.
Bridge Move Facts and Figures

• Truss span moved –
 – 6.8 million pounds (3,400 tons)
 – 1095 feet long
 – 31 feet wide
 – 32 feet tall
• Lift – about 2-1/2 inches
• Sliding
 – 66 feet North at West End
 – 33 feet North at East End
 – Maximum Speed – 6 inches per 10 seconds
 – Move Time = 14 hours
Project Information

- Overall budget - $307.5 million
- Traffic on detour bridge – January 2013
- Traffic on new span – Summer 2015
- East approach/Hwy. 43 interchange complete – Summer 2016
Bridge Move Team

- Slayden/Sundt Joint Venture – General Contractor (prepared 3D model)
- Omega Morgan – Heavy move Subcontractor
- T. Y. Lin International – Design in-river piers
- Multnomah County – Owner, oversight
Verify Learning Outcomes

• Describe uses of 3D models during design and construction
Questions

May no longer reflect current or accepted regulation, policy, guidance or practice.
Upcoming Webinars and Close

Douglas Townes, P.E.
FHWA Resource Center
| Webinar 1: Overview of 3D Models for Construction |
| Webinar 2: Creating 3D Engineered Models |
| **Webinar 3: Applications of 3D Models in the Contractor’s Office** |
| Webinar 4: Applications of 3D Models on the Construction Site |
| Webinar 5: Managing and Sharing 3D Models for Construction |
| Webinar 6: Overcoming Challenges to Using 3D Engineered Models for Construction |
| Webinar 7: Steps to Requiring 3D Engineered Models for Construction |
| Webinar 8: The Future: Adding Time, Cost and other Information to 3D Model |

Archival May no longer reflect current or accepted regulation, policy, guidance or practice.
Applications of 3D Models in the Contractor’s Office

February 19, 2014
1:00 pm – 2:30 pm

www.fhwa.dot.gov/3D

Douglas.townes@dot.gov