The Guidebook for Measuring Multimodal Network Connectivity is a guide for transportation planners and analysts on the application of analysis methods and measures to support transportation planning and programming decisions. It describes a five-step analysis process and numerous methods and measures to support a variety of planning decisions. It includes references and illustrations of current practices, including materials from five case studies conducted as part of the research process.
DISCLAIMER

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of information contained in this document.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of this document.

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official policy of the U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation.

This report discusses general research associated with performance measures and elements of a performance management framework. This report was not intended to address the specific requirements associated with the FHWA rule that established national measures for system performance and other associated requirements, including specific target setting, data collection/reporting, and other general reporting requirements. That final rule [“National Performance Management Measures; Assessing Performance of the National Highway System, Freight Movement on the Interstate System, and Congestion Mitigation and Air Quality Improvement Program”: Docket No. FHWA–2013–0054, RIN 2125–AF54, Federal Register - Vol. 82, No. 11, Pg. 5970 - January 18, 2017] can be found at: https://www.gpo.gov/fdsys/pkg/FR-2017-01-18/pdf/2017-00681.pdf. Within this final rule a measure to track the percentage of travel occurring in non-single occupancy vehicles (non-SOV) was established to reflect multimodal transportation use. The FHWA acknowledged in the rulemaking that the approaches to effectively track multimodal performance will improve with time, and, for this reason, noted that the required non-SOV measure will serve as a starting point. The FHWA further discussed its intent to revisit this measure in the future, as research projects underway to evaluate multimodal performance reach their completion. This report is an example of a research project that will help inform transportation decision makers in how they can effectively measure and improve multimodal performance. Complimentary efforts that are underway both within and outside of FHWA will be used as well to evaluate how and when required multimodal performance measures can be improved.

ACKNOWLEDGEMENTS

All photographs by Nathan McNeil, Portland State University, unless otherwise noted.
TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

3 About this Guidebook
3 What is Multimodal Network Connectivity?
4 How Can Multimodal Network Connectivity Analyses Support Transportation Decisions?
5 Who Can Use this Guide?

CHAPTER 2: CONNECTIVITY ANALYSIS PROCESS

10 Step 1: Identify the Planning Context
14 Step 2: Define the Analysis Method(s) and Measures
19 Step 3: Assemble the Data
26 Step 4: Compute the Metrics
28 Step 5: Package the Results

CHAPTER 3: FACT SHEETS ON CONNECTIVITY ANALYSIS METHODS AND MEASURES

38 Connectivity Analysis Method: Network Completeness
40 Connectivity Analysis Method: Network Density
42 Connectivity Analysis Method: Route Directness
44 Connectivity Analysis Method: Access to Destinations
46 Connectivity Analysis Method: Network Quality
48 Spotlight on National Practice—The PeopleForBikes Initiative to Measure Bicycle Network Connectivity Nationwide
50 Connectivity Measure: Bicycle Level of Service (BLOS)
52 Connectivity Measure: Bicycle Level of Traffic Stress (Bicycle LTS)
54 Connectivity Measure: Bicycle Low Stress Connectivity
56 Connectivity Measure: Bicycle Route Quality Index (RQI)
58 Connectivity Measure: Pedestrian Index of the Environment (PIE)
60 Connectivity Measure: Pedestrian Level of Service (PLOS)
62 Connectivity Measure: Pedestrian Level of Traffic Stress (Pedestrian LTS)

CHAPTER 4: LESSONS LEARNED

66 Step 1: Identifying the Planning Context
66 Step 2: Defining the Analysis Method
66 Step 3: Assembling Data
67 Step 4: Computing Metrics
67 Step 5: Packaging Results

BIBLIOGRAPHY

68

APPENDIX: CASE STUDIES

69
INTRODUCTION

01

About This Guidebook
What Is Multimodal Network Connectivity?
How Can Multimodal Network Connectivity Analyses Support Transportation Decisions?
Who Can Use This Guide?