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SUMMARY 

 
Global climate change is already affecting average conditions in many locations around 
the world. Over the coming century, climate is expected to continue to change as the 
result of both past and future emissions of heat-trapping gases from human activities. 
Impacts include increasing temperatures, shifting precipitation patterns, and changes in 
the risk of some extreme events.  

The purpose of this report is to document observed trends and projected future changes in 
temperature and precipitation-related climate indicators for the greater Mobile Bay area. 
These indicators were selected by the Gulf Coast 2 project team as being particularly 
relevant to analyzing the potential for climate change to have a negative impact on 
transportation infrastructure and operations in the Gulf Coast region.  The inidcators 
reflect thresholds relevant to infrastructure design that can be projected using climate 
modeling tools and techniques.  Data from five long-term weather stations in the region, 
Bay-Minette, Coden, Fairhope, Mobile Airport, and Robertsdale, are used in this 
analysis.   Results from this report inform the temperature and precipitation-related 
analyses of the companion document, Gulf Coast Study, Phase 2: Task 2, Climate 
Variability and Change in Mobile, Alabama.1 

Future projections are based on simulations from 10 global climate models, 
corresponding to three different futures: the IPCC SRES higher (A1fi), mid-high (A2), 
and lower (B1) emission scenarios. Statistical downscaling was performed using the 
Asynchronous Regional Regression Model (ARRM). Biases in simulated historical 
temperature and precipitation were evaluated by comparing simulated values with 
observations. In general, biases were larger for precipitation than for temperature, and for 
quantiles near the tails of the distribution as compared to the mean. 

Over the past 50 years, the Mobile Bay region has experienced significant and consistent 
trends in fall temperatures (cooling), consecutive days per year over 95 and 100oF 
(increasing), summer and fall precipitation (increasing), and most quantiles of 24h, 48h, 
and 96h cumulative precipitation (increasing). 

In the future, temperatures are projected to warm by an average of 1.5oF over the near 
term, 2.4-4.6oF by mid-century, and 3.2-7.7oF by end-of-century. Greater warming is 
projected for later summer and fall as compared to other months. Hot temperature 
extremes are projected to increase while cold temperature extremes are projected to 
decrease, with greater differences between higher vs. lower emissions scenarios for warm 
temperature extremes (e.g. 7-day hottest temperature) as compared to cold temperature 
extremes (e.g. coldest day of the year). Before the end of the century, the number of days 
with maximum temperature exceeding 95oF could increase by a factor of 3 under lower 
emissions and 10 under higher. 

Little change is expected in annual average precipitation, although fall precipitation is 
projected to continue to increase. Nearly all precipitation extremes are projected to 

                                                        
1 Available at: http://www.fhwa.dot.gov/hep/climate/gulf_coast_study/index.htm 
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increase in the future, although with little difference between the values for various time 
periods or for higher as compared to lower emissions. 

In addition to summarizing potential climate changes in the greater Mobile Bay region, 
this report also lays out a methodology that can be used to replicate a regional climate 
assessment such as this in other regions and for other climate indicators. 
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SECTION 1: BACKGROUND 
 

In the past, climate variations were caused by natural forces. These include external 
changes in amount of energy the Earth receives from the Sun, or the cooling effects of 
dust clouds from powerful volcanic eruptions, amplified by natural feedbacks within the 
earth-ocean-atmosphere system. Today, however, the climate is being altered by both 
natural and human causes (Hegerl et al., 2007). Since the Industrial Revolution, 
atmospheric levels of heat-trapping gases such as carbon dioxide and methane have been 
rising, primarily due to increased consumption of fossil fuels such as coal, oil, and natural 
gas (Andres et al., 1999; Stern & Kaufmann, 1998).  

Atmospheric levels of carbon dioxide are now higher than they have been at any time in 
at least the last 800,000 years (Lüthi et al., 2008). Average surface temperatures in the 
Northern Hemisphere have risen by 1.3°F (0.75oC) over the past 150 years (Trenberth et 
al., 2007). Based on these and many other lines of evidence, the Intergovernmental Panel 
on Climate Change (IPCC), which represents the work of thousands of climate scientists 
around the world, has concluded that it is very likely that most of the climate changes 
observed over the last fifty years have been caused by emissions of heat-trapping gases 
from human activities (IPCC, 2007). Subsequent analyses have strengthened this 
conclusion, with more recent studies suggesting that human influence is responsible for 
most of the warming over the last one hundred and fifty years, and as much as all of the 
warming over the last sixty years (Huber & Knutti, 2011; Foster & Rahmstorf, 2011; 
Gillett et al., 2012). 

Over the coming century, climate will likely continue to change in response to both past 
and future emissions of heat-trapping gases from human activities (IPCC, 2007). At the 
global scale, temperature increases between 4oF up to 13oF are expected by end of 
century, accompanied in many regions of the United States by increases in extreme heat 
and heavy precipitation events (USGCRP, 2009).  

Alabama’s climate – together with that of the rest of the United States - is expected to 
reflect changes occurring at the global scale (USGCRP, 2009). This report describes the 
changes in long-term climate and climate variability that might be expected over the 
coming century for five long-term Global Historical Climatology Network (GHCN) 
weather stations in the Mobile Bay region of Alabama, located in Bay-Minette, Coden, 
Fairhope, Mobile (airport), and Robertsdale. Future projections are based on three future 
emissions scenarios (higher, mid-high, and lower), and simulations from ten different 
global climate models.  
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Section 2 lays out a general framework for conducting regional climate impact analyses, 
describes the scenarios and models, and explains the statistical downscaling model used 
to generate high-resolution projections for the individual weather stations.  

Section 3 discusses how infrastructure-relevant temperature metrics are likely to be 
affected by climate change in the near future (2010-2039), by mid-century (2040-2069) 
and towards the end of the century (2070-2099) relative to a historical baseline of 1980-
2009.  

Section 4 describes projected changes in precipitation indices for those same future time 
periods.  

Section 5 provides guidance on understanding and interpreting the range of uncertainty in 
future projections, and evaluates the ability of downscaled climate projections to 
reproduce observed historical variability for the Mobile stations.  

Finally, Section 6 concludes with a discussion of the implications of climate change for 
the Mobile Bay region, including the potential for climate projections to inform 
adaptation planning. 
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SECTION 2:  DATA AND METHODS  
 

 
Assessing the potential impacts of climate change on a given location and sector is a 
challenging task. It begins with integrating multiple datasets and model outputs that cover 
a range of spatial and temporal scales. Inputs and methods must be translated across 
disciplinary boundaries. Reasonable ways must be found to quantify the uncertainty 
inherent to future projections before synthesizing the results into a coherent picture of 
potential impacts.  
Although challenging, it is important to assess climate impacts because the information 
generated can be valuable to long-term planning or policies. For example, projected 
changes in heating or cooling degree-days can be incorporated into new building codes or 
energy policy. Shifts in the timing and availability of streamflow can be used to 
redistribute water allocations or as incentive for conservation programs. Projected 
changes in growing season and pest ranges can inform crop genetics research and 
agricultural practices.  
The primary challenge in climate impact analyses is the reliability of future information. 
A common axiom warns that the only aspect of the future that can be predicted with any 
certainty is the fact that it is impossible to do so. However, although it is not possible to 
predict the future, it is possible to project it. Projections can describe what would be 
likely to occur under a set of consistent and clearly articulated assumptions. For climate 
change impacts, these assumptions should encompass a broad variety of the ways in 
which energy, population, development and technology might change in the future.  
By quantifying a range, future projections can be expressed in terms of risk. Risk is a 
concept that is already incorporated into decision-making at all levels: by individuals who 
routinely rely on a sense of risk to guide their purchases, from vitamins to motor vehicles; 
by businesses that use risk analyses as input to strategic planning; and by governments 
for whom risk assessment is an integral part of both domestic and foreign policy.  
This section first describes a general approach to developing the projections needed to 
quantify the risks of climate impacts for any regional or sectoral analysis. This general 
framework is then applied to quantify potential effects on transportation infrastructure in 
the greater Mobile Bay region. The remainder of this section describes the specific 
datasets and methods selected for, and used in, this analysis. These include observational 
data, global climate models, future scenarios, and downscaling methods. Where 
appropriate, the extent to which these datasets and tools can be applied to other regions or 
sectors is also discussed. 

A General Framework for Developing and Applying Climate Projections 
to Regional Impact Analyses 
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Each regional impact analysis has its own unique requirements. However, there are some 
common datasets, tools, and methods that can be combined in ways that are relevant 
across a broad range of applications (Figure 2.1).  
Most analyses begin by identifying the parameters of the study. In this first step there are 
at least three key questions to consider that will determine the type of data, tools, and 
methods used in the analysis: 
1. What is the geographic extent and region of interest? For example: a watershed, a 

city, a state, or an eco-region. 
2. What is the system and the concern associated with it? For example: the long-term 

prospects for water supply from a certain reservoir; the cost of operating or 
maintaining city buildings; the public health response to deteriorating air quality; or 
the ecological impacts of an invasive species moving into the region. 

3. What existing information or tools can be used to quantify the potential impacts of 
climate change on this system? For example: a model already used for water 
management planning by the district; historical data that can be used to correlate 
building maintenance costs with temperature variability; a dynamical air quality 
model coupled with epidemiological response functions to certain pollutant levels; or 
a statistical climate envelope modeling package that, when combined with historical 
climate data, can calculate the implied limits on invasive species’ ranges. 

The second step is to 
assemble the scientific data 
and models needed to develop 
future projections. There are 
several different approaches 
to doing so, depending on the 
answer to question 3 above 
(what information can be used 
to quantify the sensitivity of 
the system to climate?). 
When the answer to question 
3 is “not much,” a study 
might need to begin by 
quantifying the response of a 
system to a fixed perturbation 
in temperature or other 
climate conditions that is 
simply added to observed 
conditions—for example, the 
impact of a steady-state 2 and 
4oC warming, or a sustained 
precipitation decrease of 25% 
and 50%). This type of 
approach has been used for 

many early-stage climate impact analyses to determine the sensitivity of the system to 
plausible levels of change. The magnitude of the perturbation need only lie within the 

 
Figure 2.1. A general framework for designing and conducting regional or 
sectoral climate impact analyses. 
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reasonable range of expected changes, and can be simply read from existing plots such as 
those available in USGCRP (2009) or generated using the Climate Wizard tool 
(http://www.climatewizard.org). 
When the answer to question 3 includes long-term data and/or modeling tools that 
capture the effect of climate variability and/or change on the system of interest, however, 
then a different approach is possible. If the sensitivity of the system can already be 
determined, then it is possible to use time-dependent simulations that track the 
simultaneous evolution of changes in multiple aspects of climate. 
In contrast to perturbation analyses, assessing the actual likelihood or risk of climate 
impacts requires global climate model simulations driven by future scenarios of human 
emissions. The spatial accuracy of global climate models is limited to the regional scale, 
so downscaling is commonly used to transform large-scale changes in climate into more 
localized conditions similar to those measured at long-term weather stations. The ability 
of the climate and downscaling models to simulate local conditions can be evaluated by 
validating historical simulations on a set of independent observed data. 
Climate science can generate projections of basic climate variables, such as daily 
maximum temperature or 24h cumulative precipitation. For climate impact analyses, 
however, these projections must be translated into impact-relevant information. In some 
cases, the translation step consists of calculating projected changes in secondary climate 
indicators already used in planning or known to be relevant. Indicators are generally 
specific to each study, consisting of the weeks per year exceeding a given amount of rain, 
for example, corresponding to a local sewer overflow threshold; the average number of 
days per year with sufficient snow to require plowing and salting the roads; or the risk of 
temperature in summer exceeding a level that would affect crop yields.  
In other cases, climate projections are used as input to an additional set of climate 
response, or impact, models. For example, daily temperature, humidity, rainfall and solar 
radiation can replace meteorological observations in ecological models to simulate the 
effects of climate change on a range of systems, from forest nutrient cycles to crop yields. 
Dynamic vegetation models driven by climate projections can simulate changes in 
wildfire frequency and area burned. Three-dimensional output fields from climate models 
can be used to drive air quality models, estimating the impact of warmer temperatures 
and changes in atmospheric circulation patterns on air quality and pollution. Empirical 
epidemiological models can combine climate projections with observed response 
functions to quantify the potential impacts of extreme heat on respiratory disease and 
even mortality. 
The third step in Figure 2.1 is to synthesize the results of the analysis and quantify the 
uncertainty to assess future risk. As discussed in more detail in Section 5, near term 
uncertainty is dominated by natural variability (Hawkins & Sutton, 2009; 2011). Natural 
variability is largely chaotic, a function of heat exchanges between the ocean and the 
atmosphere, volcanic eruptions, variations in solar energy, and other processes unrelated 
to human activities. Natural uncertainty can be addressed by using input from multiple 
climate model simulations, each with slightly different initial conditions. Future 
projections of climate should always be summarized over climatological time scales—
typically, 20 to 30 years--to determine the risk of a given event or magnitude of change 
over that period as a whole. 
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Towards mid-21st century, scientific understanding of the climate system becomes the 
largest contributor to the range in projections. Model uncertainty can be addressed by 
using the projections from multiple climate models. Each climate model represents the 
various components and processes that make up the Earth’s climate system in slightly 
different ways. These differences affect how sensitive the simulated Earth’s climate is to 
human emissions, as well as the regional distribution of climate change. 

By the end of the century, the contribution of human emissions increases in importance. 
For temperature, the future scenario becomes the dominant factor determining the 
magnitude of future change (Hawkins & Sutton, 2009, 2011). Scenario uncertainty can be 
addressed by using a broad range of future scenarios, including both increases and 
decreases in future emissions of heat-trapping gases from human activities. For analyses 
after mid-century, projections should not be averaged across scenarios; rather, each 
scenario should be compared to quantify the role of human choices in determining the 
magnitude of future impacts. 

Two Examples: Assessing Climate Impacts for Chicago and the U.S. 
The general framework described above is similar to that used in previous assessments. 
Two examples illustrate how this process can be used to frame analyses with very 
different spatial scales, motivations, and purposes. The first example is a local study of 
climate impacts on the city of Chicago (Wuebbles et al., 2010; Hayhoe et al., 2010a,b,c). 
The second is a national study of the impacts of climate change on multiple U.S. regions 
and sectors (USGCRP, 2009). 

CHICAGO 

Step One. This analysis was initiated by the city of Chicago’s Department of 
Environment and the Chicago Climate Action Plan advisory committee. They decided 
that the Action Plan should be based on scientific projections of how climate change 
would affect local conditions in Chicago, projections which would in turn inform a risk 
analysis of climate impacts on city operations under a higher and lower emissions future. 
As the Action Plan was specific to Chicago, the geographic extent of the analysis was 
limited to the area under the jurisdiction of the city itself.  

The specific concern was how climate change would affect city operations, as 
represented by city departments and other organizations such as the Chicago Transit 
Authority and the Chicago School Board. No models or planning tools were being used 
to incorporate climate or weather-related variables into city planning, but the climate 
impacts team (consisting of scientists and risk management experts from the international 
management consulting firm Oliver Wyman) were given full access to city departments 
to collect information on how each department might be impacted by climate change. 

Step Two. In order to capture the full range of projected future change, the SRES A1fi 
(higher) and B1 (lower) emission scenarios were used as the basis for future projections. 
Four global climate models had daily simulations available for these scenarios (CCSM3, 
GFDL CM2.1, HadCM3 and PCM). Long-term station data was obtained for the three 
stations within the city of Chicago (O’Hare, University, and Midway) as well as for 
additional suburban stations in order to generate a broader base of future projections. 
Global model simulations were downscaled using a statistical quantile regression 
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approach to provide daily projections of maximum and minimum temperature and 
precipitation. 

Step Three. To quantify the impact of climate change on city departments, the city 
invited representatives from each department to a meeting where climate scientists 
presented sample indicators, including projected changes in the number of days per year 
over a given temperature threshold, the frequency of heavy rainfall events, and projected 
changes in winter snowfall. These examples were used to demonstrate the type of 
information that could potentially be provided to the city.  

The risk assessment team then followed up on this initial step with individual meetings 
with each city department to identify actual indicators relevant to that department. These 
meetings resulted in a list of over 100 secondary indicators that affected operations costs 
in 14 departments. These included the frequency of freeze/thaw events affecting road 
conditions and pothole formation; number of days per year over a specific temperature 
threshold at which rapid transit rails warped; accumulated heating and cooling degree-
days that are proportional to energy use; and precipitation exceedences that could lead to 
storm sewer overflow.  

This list of indicators was 
then provided to the scientific 
team, which calculated 
projected changes in these 
indicators as simulated by 
each global model, 
corresponding to each future 
scenario, and handed these 
back to the risk assessment 
team. The team then 
calculated the costs to each 
city department for three 
future time periods (2010-
2039, 2040-2069 2070-2099) 
under higher and lower 
emissions based on the risk 
assessment model they had 

built using the data collected from each department. The resulting costs (shown in Fig. 
2.2) were then provided to the city to use as input to decisions on adaptation and 
mitigation. 

UNITED STATES 

Step One. This analysis was initiated by the U.S. Global Change Research Program’s 
mandate to provide a national assessment of climate change impacts for the United 
States. Previous assessments had divided the U.S. into 8 regions: Northwest, Southwest, 
Great Plains, Midwest, Northeast, Southeast, Islands, and Alaska. Each of these regions 
formed the basis for a chapter in the assessment.  

 
Figure 2.2 Projected changes in annual operating and maintenance costs 
to the city of Chicago under the SRES higher (A1fi) and lower (B1) future 
scenarios as simulated by the average of four climate models for the 
Chicago O’Hare, Midway, and University weather stations. (Hayhoe et al., 
2010b) 
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The purpose of the assessment was to provide consistent analysis of historical trends, to 
generate projections of future changes in average and extreme temperature and 
precipitation, and to synthesize available information on the most important aspects of 
climate change for each region. 

Step Two. This assessment also wanted to 
ensure its projections captured a broad 
range of projected future change, from the 
SRES A1fi (higher) to the B1 (lower) 
emission scenario. However, as A1fi 
simulations were available from only four 
global climate models, simulations 
corresponding to the A2 (mid-high) 
scenario generated by 12 more global 
models were also used. As this was a 
regional assessment covering a very large 
geographic area, global climate model 
projections were downscaled to a gridded 
database of observed temperature and 
precipitation, rather than individual 
weather stations. Global model simulations 
were downscaled using a statistical 
quantile mapping approach that generated 

monthly projections of changes in maximum and minimum temperature and 
precipitation, then daily values generated by sampling from the historical record. 

Step Three. The purpose of the assessment was not to directly quantify climate impacts 
for each region, but rather to provide a consistent basis of regional climate projections 
within which the literature on climate impacts could be framed. For that reason, the 
translation process consisted of ensuring that the same type of projections was used as the 
basis for each regional chapter. A number of broadly-relevant secondary indicators were 
identified and plotted as maps, including the number of days per year over 90 and 100oF, 
as well as new versions of the “migrating climate” diagram shown in Fig. 2.3. 

STEP ONE: Identifying the parameters of the analysis  
Here, the general framework described in Figure 2.1 is applied to climate impacts on 
transportation infrastructure in the Mobile Bay area. This report focuses primarily on the 
last two steps of the general framework illustrated in Figure 2.1. Hence, only a brief 
overview of Step 1 is provided here. 

This study focuses on the greater Mobile Bay region (see Figure 2.6 below). As this is a 
coastal region, the geographic extent of the study was determined by ensuring the study 
area included enough long-term weather stations to be sufficiently representative of the 
region (here, 5), but not so many weather stations as to include other more distant regions 
inland that could have micro-climates that differed from those of coastal Alabama.  

The concern motivating this analysis of temperature and precipitation projections was the 
potential for changes in average and/or extreme temperature and precipitation to exceed 

 
Figure 2.3. This “migrating climate” diagram illustrates 
what a typical summer in Michigan might feel like in the 
future under a higher (here, A2) and lower (B1) 
emissions scenario (USGCRP, 2009) 
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the engineering design thresholds of transportation infrastructure, particularly in this 
region.  For more information on these indicators, please see Gulf Coast Study, Phase 2: 
Task 2, Climate Variability and Change in Mobile, Alabama.2 

Existing temperature and precipitation metrics used in current design standards already 
reflected the sensitivity of these standards to climate. A list of these metrics, summarized 
in Table 2.1, was used to define the secondary climate indicators calculated in Step 3. 
The precise definition used to calculate each metric is given in the Appendix. 

TEMPERATURE PRECIPITATION 
Average Extreme Average Extreme 
Monthly Mean Number of extreme heat days over 

95, 100, 105, 110 
Monthly Mean 24h precipitation: 0.2nd to 50th 

percentile 
Seasonal Mean Maximum number of consecutive 

days over 95, 100, 105, 110 
Seasonal Mean 48h and 96h precipitation: 

mean, 0.2nd to 50th percentile 
Annual Mean  Warmest and coldest consecutive 

four days: 5th through 95th 
percentile  

Annual Mean  Greatest 3-day precipitation 
per season 

Annual 50th and 
95th percentile 

Coldest historical day, probability   
Hottest historical 7-day period, 
probability  

  

Table 2.1. Secondary climate indicators used in this study, identified on the basis of engineering design standards. 

STEP TWO: Developing and evaluating high-resolution climate 
projections  

Scenarios: Past and Future 

The Coupled Model Intercomparison Project’s “20th Century Climate in Coupled 
Models” (20c3m) scenario is used to drive global climate model simulations from the late 
1800s through 2000 (Meehl et al., 2007). This scenario reproduces climate conditions 
observed over the past century as closely as possible. It includes observed changes in 
solar radiation, volcanic eruptions, human emissions of greenhouse gases, and emissions 
of other gases and particles including aerosols and air pollutants. 

Future scenarios are more difficult. They depend on a myriad of factors, including how 
human societies and economies will develop over the coming decades; what 
technological advances are expected; which energy sources will be used in the future to 
generate electricity, power transportation, and serve industry; and how all these choices 
will affect future emissions from human activities. 

To address these questions, in 2000 the Intergovernmental Panel on Climate Change 
(IPCC) developed a set of future emissions scenarios known as SRES (Special Report on 
Emissions Scenarios; Nakicenovic et al., 2000). These scenarios encompass a range of 
plausible futures by estimating the emissions resulting from a range of projections for 
future population, demographics, technology, and energy use (Fig. 2.4a).  

In this analysis, projected climate changes under the SRES higher A1fi or fossil-intensive 
scenario (red line) are compared to those expected under the mid-high A2 scenario 

                                                        
2 Available at: http://www.fhwa.dot.gov/hep/climate/gcs_overview.htm. 
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(orange line) and the lower B1 scenario (blue line). Typically, just two scenarios (A1fi 
and B1) would suffice to encompass an adequate range of future change. However, the 
A2 mid-high scenario was included as simulations for the A1fi higher scenario were 
available from only four of the ten global climate models used in this analysis. 

  

Figure 2.4 Projected future greenhouse gas emissions, in units of gigatons carbon equivalent. Non-CO2 gases were 
converted to CO2-equivalent units using a 100-year global warming potential value. Values are shown for: (a) the 
2000 SRES emission scenarios, and (b) the 2010 Representative Concentration Pathways, converted from 
concentrations to emissions using a carbon cycle model. The SRES higher (A1fi, red), mid-high (A2, orange), and lower 
(B1, dark blue) scenarios are used in this analysis. SRES A1fi is similar to RCP 8.5, while SRES B1 is similar to RCP 4.5. 
 

The A1fi higher emissions scenario represents a world with fossil fuel-intensive 
economic growth and a global population that peaks mid-century and then declines. New 
and more efficient technologies are introduced toward the end of the century. In this 
scenario, atmospheric carbon dioxide concentrations reach 940 parts per million (ppm) by 
2100, more than triple pre-industrial levels (Nakicenovic et al., 2000).  

The A2 mid-high emissions scenario imagines a more individualistic world, where each 
region develops relatively independently, with slow technological development. 
Emissions rise rapidly towards the end of the century, with carbon dioxide concentrations 
reaching 870 ppm by 2100 (Nakicenovic et al., 2000).  

The B1 lower-emissions scenario also represents a world with high economic growth and 
a global population that peaks mid-century and then declines. However, this scenario 
includes a shift to less fossil fuel-intensive industries and the introduction of clean and 
resource-efficient technologies. Emissions of greenhouse gases peak around mid-century 
and then decline. Atmospheric carbon dioxide concentrations reach 550 ppm by 2100, 
approximately double pre-industrial levels (Nakicenovic et al., 2000). 

As diverse as they are, the SRES scenarios still do not cover the entire range of possible 
futures. Since 2000, CO2 emissions have already been increasing at an average rate of 3% 
per year. If they continue at this rate, emissions will eventually outpace even the highest 
of the SRES scenarios (Raupach et al., 2007; Myhre et al., 2009). On the other hand, 
significant reductions in emissions—on the order of 80% by 2050, as already mandated 
by the state of California—could reduce CO2 levels below the lower B1 emission 
scenario within a few decades (Meinhausen et al., 2006). Nonetheless, the substantial 
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difference between the SRES higher- and 
lower- emissions scenarios used here provides 
a good illustration of the potential range of 
changes that could be expected, and how 
much these depend on future emissions and 
human choices. The relative importance of 
scenario uncertainty, as compared to 
uncertainty due to natural variability and the 
uncertainty inherent to modeling the physical 
climate system, is discussed in Section 5. 

As of 2011, the SRES emission scenarios are 
in the process of being replaced by a new 
series of scenarios based on atmospheric 
carbon dioxide equivalent concentrations. 
These scenarios, known as Representative 
Concentration Pathways (RCPs), will be used 
as the basis for climate model simulations in 
support of the IPCC Fifth Assessment Report, 
to be published in 2012 (Moss et al., 2010). 

The new RCP 8.5 scenario is very similar to the SRES A1fi higher scenario, while the 
new RCP 4.5 scenario is similar to the SRES B1 lower scenario (Figure 2.4b). Future 
climate impact assessments can therefore rely on RCP 8.5 to 4.5, or 2.6, to cover the 
range of plausible emission futures. 

Global Climate Model Simulations 

Future scenarios are used as input to global climate models (GCMs). GCMs are complex, 
three-dimensional coupled models that are continually evolving to incorporate the latest 
scientific understanding of the atmosphere, oceans, and Earth’s surface. As output, 
GCMs produce geographic grid-based projections of temperature, precipitation, and other 
climate variables and daily and monthly scales. These physical models were originally 
known as atmosphere-ocean general circulation models (AO-GCMs). However, many of 
the newest generation of models are now more accurately described as earth system 
models (ESMs) as they incorporate additional chemistry and biology.  
Because of their complexity, GCMs are constantly being enhanced as scientific 
understanding of climate improves and as computational power increases. Some models 
are more successful than others at reproducing observed climate and trends over the past 
century (Randall et al., 2007; see Section 5 for more on evaluating climate simulations). 
However, all future simulations agree that both global and regional temperatures will 
increase over the coming century in response to increasing emissions of greenhouse gases 
from human activities (IPCC, 2007; Fig. 2.5).  

  

Model Name Origin Atmospheric Resolution 
(horizontal, vertical) 

Climate 
Sensitivity (oC) Reference 

Figure 2.5 Projected future global temperature 
change for the SRES emission scenarios (degrees 
C). The range for each individual emission scenario 
indicates model uncertainty in simulating the 
response of the Earth system to human emissions 
of greenhouse gases. Source: IPCC, 2007 
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BCCR-BCM2.0 Bjerknes Centre for Climate 
Research, Norway 

1.9° x 1.9° 
31 levels N/A Furevik et al., 

2003 

CCSM3 National Center for Atmospheric 
Research, USA 

1.4° x 1.4°  
26 levels 2.7 Collins et al., 2006 

CGCM3 (T47) Canadian Centre for Climate 
Modelling and Analysis, Canada 

2.8° x 2.8°  
31 levels 3.4 

Flato, 2005 
CGCM3 (T63) 1.9° x 1.9° 

31 levels 3.4 

CNRM-CM3 Météo-France/Centre National 
de Recherches Météorologiques 

1.9° x 1.9° 
45 levels N/A Salas-Mélia, 2005 

ECHAM5/MPI-
OM 

Max Planck Institute for 
Meteorology, Germany 

1.9° x 1.9° 
31 levels 3.4 Roeckner et al., 

2003 

GFDL-CM2.0 National Oceanic and 
Atmospheric Administration 
(NOAA)/Geophysical Fluid 

Dynamics Laboratory (GFDL) 

2.0° x 2.5°  
24 levels 2.9 Delworth et al., 

2006 
GFDL-CM2.1 2.0° x 2.5°  

24 levels 3.4 

PCM National Center for Atmospheric 
Research, USA 

2.8° x 2.8° 
26 levels 2.1 Washington et al., 

2000 
UKMO-

HadCM3 Hadley Centre/Met Office, UK 2.5° x 3.75°  
19 levels 3.3 Gordon et al., 

2000 

Table 2.2. Description of the ten global climate models used in this analysis, including their origin and nationality, 
horizontal resolution, number of vertical levels, climate sensitivity defined as the equilibrium temperature change 
resulting from a doubling of carbon dioxide relative to pre-industrial times, and reference. 

 
Historical GCM simulations are initialized in the late 1800’s, externally “forced” by the 
human emissions, volcanic eruptions, and solar variations represented by the 20c3m 
scenario, and allowed to develop their own pattern of natural chaotic variability over 
time. This means that, although the climatological means of historical simulations should 
correspond to observations at the continental to global scale, no temporal correspondence 
between model simulations and observations should be expected on a day-to-day or even 
year-to-year basis. For example: while a strong El Niño event occurred from 1997 to 
1998 in the real world, it may not occur in a model simulation in that year. Over several 
decades, however, the average number of simulated El Niño events should be similar to 
those observed. Similarly, although the central U.S. suffered the effects of an unusually 
intense heat wave during the summer of 1995, model simulations for 1995 might show 
that year as average or even cooler-than average. However, a similarly intense heat wave 
should be simulated some time during the climatological period centered around 1995.   
In this study, ten different global climate models were used. Their origins, horizontal and 
vertical resolution, and further references, are provided in Table 2.2 below. These models 
were chosen based on several criteria. First, only well-established models were 
considered, those already extensively described and evaluated in the peer-reviewed 
scientific literature. Models must have been evaluated and shown to adequately reproduce 
key features of the atmosphere and ocean system. Second, the models had to include the 
greater part of the IPCC range of uncertainty in climate sensitivity (2 to 4.5oC; IPCC, 
2007). Climate sensitivity is defined as the temperature change resulting from a doubling 
of atmospheric carbon dioxide concentrations relative to pre-industrial times, after the 
atmosphere has had decades to adjust to the change. In other words, climate sensitivity 
determines the extent to which temperatures will rise under a given increase in 
atmospheric concentrations of greenhouse gases (Knutti & Hegerl, 2008).  The extent to 
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which model uncertainty, including 
climate sensitivity, affects future 
projections is discussed further in Section 
5. The GCMs used here range from 
relatively low sensitivity (PCM, 2.1oC) to 
moderate (GFDL CM2.1, 3.4oC; see Table 
2.2).  

Few models have climate sensitivity 
exceeding 4oC and, of those, none had 
continuous time series available for at 
least two of the three scenarios used in this 
analysis. Thus, the third and last criteria is 
that the models chosen must have 
continuous daily time series of 
temperature and precipitation archived for 
at least two of the three emission scenarios 
used here (SRES A1fi, A2, and B1). The 
GCMs selected for this analysis are the 

only ten models for which continuous daily output from at least two of the three A1fi, A2 
and/or B1 simulations was available. 

As GCMs are global, these simulations could be used to evaluate climate impacts 
anywhere in the world. For some regions of the world (including the Arctic, but not the 
continental U.S.) there is some evidence that models better able to reproduce regional 
climate features may produce different future projections (e.g. Overland et al., 2011). 
Hence, depending on the geographic region it may or may not be desirable to cull models 
that have been demonstrated in the literature to fail to reproduce important regional 
climate characteristics (Knutti, 2010). Such characteristics include large-scale circulation 
features or feedback processes that can be resolved at the scale of a global model. 
However, it is not valid to evaluate a global model on its ability to reproduce local 
features, such as the bias in temperature over a given city or region. Such limitations are 
to be expected in any GCM, as they are primarily the result of a lack of spatial resolution 
rather than any inherent shortcoming in the physics of the model. 

Historical Observations 

Station-level observations of daily maximum and minimum temperature and precipitation 
were obtained from the Global Historical Climatology Network, produced jointly by the 
U.S. Department of Energy's Carbon Dioxide Information Analysis Center (CDIAC) and 
the National Oceanographic and Atmospheric Administration's National Climatic Data 
Center (NCDC; Vose et al., 1992). Five stations surrounding the Mobile Bay region were 
selected for analysis: (A) Bay-Minette, (B) Coden, (C) Fairhope, (D) Mobile Airport, and 
(E) Robertsdale, AL (Table 2.3, Fig. 2.6).  

Although GHCN station data have already undergone a standardized quality control 
(Durre et al., 2008), these stations were additionally filtered using a quality control 
algorithm to identify and remove erroneous values that had previously been identified in 

 
Figure 2.6 Locations of the 5 weather stations 
surrounding Mobile Bay, Alabama, used in this analysis. 
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the GHCN database. This additional quality control step included three tests for errors, 
where any occurrences were removed and replaced with “NA” values. The first error test 
removed the data on any days where the daily reported minimum temperature exceeds the 
reported maximum. The second error test removed any temperature values above or 
below the highest recorded values for North America (-50 to 70oC) or with precipitation 
below zero or above the highest recorded value for the continental U.S. (915 mm in 24h). 
The third error test removed repeated values of more than five consecutive days with 
identical temperature or non-zero precipitation values to the first decimal place. 

 

Station Name Latitude Longitude 
Beginning of Record 

Temp      Precip 
GHCN ID NOAA CO-OP ID 

(A) Bay-Minette 30.8839 -87.7853 Mar 1915 Nov 1913 USC00010583 10583 

(B) Coden 30.3878 -88.2281 Oct 1956 Oct 1956 USC00011803  11803 

(C) Fairhope 30.5467 -87.8808 Aug 1917 Aug 1917 USC00012813 12813 

(D) Mobile (airport) 30.6883 -88.2456 Jan 1948 Jan 1948 USC00015478 15478 

(E) Robertsdale 30.565 -87.7017 Feb 1924 May 1912 USC00016988 16988 

Table 2.3. Latitude, longitude, and identification numbers for the 5 weather stations used in this analysis. 

The quality control algorithm also flagged (but did not replace) any occurrences of four 
possible errors: first, years with very low or very high annual temperature ranges; second, 
decades with mean values greater than 1.5 times the standard deviation of the previous 
decade; and lastly, years with a number of wet (precipitation>0.1”) or drizzle 
(precipitation>0”) days exceeding the maximum recorded North American value (350 
days).  

Downscaling Methods 

Global models cannot accurately capture the fine-scale changes experienced at the 
regional to local scale. GCM simulations require months of computing time, effectively 
limiting the typical grid cell sizes of the models to 1 or more degrees per side (Table 2.2). 
And although the models are precise to this scale, they are actually skillful, or accurate, to 
an even coarser scale (Grotch & MacCracken, 1991).  

Dynamical and statistical downscaling represent two complementary ways to incorporate 
higher-resolution information into GCM simulations. Dynamical downscaling, often 
referred to as regional climate modeling, uses a limited-area, high-resolution model to 
simulate physical climate processes at the regional scale, with grid cells typically ranging 
from 10 to 50km per side. Statistical downscaling models capture historical relationships 
between large-scale weather features and local climate, and use these to translate future 
projections down to the scale of any observations—here, individual weather stations. 

Regional climate models are just as computationally intensive as global climate models. 
They also require GCM outputs at high temporal frequencies that are not generally 
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available. Using currently-available regional climate model simulations, such as those 
available from the North American Regional Climate Change Assessment Program,3 
limits the range of future projections to a few global models and one future scenario that 
does not capture as broad a range of the uncertainty as that represented here. However, 
regional models provide a plethora of outputs in addition to temperature and precipitation 
(including atmospheric circulation, winds, humidity, etc.). Hence, regional model 
simulations or dynamical downscaling provides essential inputs to sensitivity analyses 
that require a broad suite of climate variables in order to assess a given system’s potential 
vulnerabilities to changing climate. 

Statistical models assume that the relationship between large-scale weather systems and 
local climate will remain constant over time. This assumption may be valid for lesser 
amounts of change, but could lead to biases under larger amounts of climate change 
(Vrac et al., 2007). Statistical models are generally flexible and less computationally-
demanding, able to use a broad range of GCM inputs to simulate future changes in 
temperature and precipitation for a continuous period from 1960 to 2100. Hence, 
statistical downscaling models are best suited for analyses that require a range of future 
projections that reflect the uncertainty in emission scenarios and climate sensitivity, at the 
scale of observations that may already be used for planning purposes. 

Ideally, climate impact studies should use multiple downscaling methods, as regional 
climate models can directly simulate the response of regional climate processes to global 
change, while statistical models can better remove any biases in simulations relative to 
observations. However, rarely (if ever) are the resources available to take this approach.  

Instead, most assessments tend to rely on one or the other type of downscaling, where the 
choice based on the needs of the assessment (e.g., Hayhoe et al., 2004, 2008; USGCRP 
2000, 2009). If the study is more of a sensitivity analysis, where using one or two future 
simulations is not a limitation, or if it requires many climate variables as input, and has a 
generous budget, then regional climate modeling may be more appropriate. If the study 
needs to resolve the full range of projected changes under multiple GCMs and scenarios, 
or is more constrained by practical resources, then statistical downscaling may be more 
appropriate.  

Even within statistical downscaling, selecting an appropriate method for any given study 
depends on the questions being asked. The variety of techniques ranges from a simple 
delta approach (which consists of subtracting historical simulated values from future 
values, and adding the resulting “delta” to historical observations, as used in USGCRP, 
2000) to complex clustering and neural network techniques that rival dynamical 
downscaling in their demand for computational resources and high-frequency GCM 
output (e.g., Vrac et al., 2007; Kostopoulou et al., 2007).  

If the timescales of interest are seasonal or annual averages, as often required for 
ecological analyses, a delta approach can be appropriate. If timescales of weeks to 
months are required, as for hydrological analyses, then a monthly quantile mapping 
approach such as the Bias Correction Statistical Downscaling model (BCSD; Maurer & 
Hidalgo, 2008, as used in Hayhoe et al., 2004, 2008, USGCRP, 2009) is adequate. If 
                                                        
3 http://www.narccap.ucar.edu/ 



 21 

daily values are needed, then an approach is required that uses daily information from the 
GCMs (as used in Hayhoe et al., 2004). 

For this analysis, an approach that uses daily GCM output was used, known as the 
Asynchronous Regional Regression Model (ARRM; Stoner et al., submitted). 
Asynchronous quantile regression assumes that if two independent time series describe 
the same variable, at approximately the same location, then they must have similar 
probability distributions. This is generally a valid assumption for variables such as 
temperature and precipitation that are directly simulated by global models, but this 
assumption was tested by validating the statistical model on an independent set of 
observational data that was not used to train the statistical model and quantifying biases 
in simulated historical values across the range of the distribution from the 0.1st to the 
99.9th quantile. The results of the validation exercise are discussed in detail in Section 5. 

A statistical downscaling model, rather than regional climate model output, was selected 
for use in this study for three reasons. First, this assessment only required projected 
changes in air temperature and precipitation, both of which can be generated using a 
statistical model. No additional variables were required. Second, the study required future 
projections that cover the full range of plausible emission scenarios and GCM 
simulations. Regional climate model outputs do not yet cover this broad a range of 
scenario and model uncertainty (see discussion of uncertainty in Section 5). Third, 
projections were requested for three future time periods: near-term, mid-century, and 
end-of-century. Regional climate model simulations do not provide continuous time 
series but are typically limited to only one or two future time slices.  

The high-resolution projections used in USGCRP (2009), the upcoming USGS GeoData 
Portal (2011), and this report are all based on a similar set of global climate model 
simulations and future scenarios. However, different combinations of statistical 
downscaling approaches and observational datasets have been used to generate each 
dataset. Specifically, the BCSD model used in USGCRP (2009) uses a quantile mapping 
approach that combines monthly GCM outputs with sampling from the historical daily 
record to produce daily values (Fig. 2.7a). In contrast, the ARRM model used here and in 
the upcoming USGS GeoData Portal uses a quantile regression technique that directly 
downscales daily output from global climate models (Fig. 2.7b). Table 2.4 summarizes 
the similarities and differences between the datasets. 
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Dataset Year GCM simulations Observed data Downscaling method 

MOBILE 2011 CMIP3 GHCN stations ARRM 

USGS GeoData Portal 2011 CMIP3, CMIP5 (2012) 1/8th degree grid and GHCN stations ARRM 
USGCRP  2009 CMIP3 1/8th degree grid BCSD 

Table 2.4 Downscaling methods, observational data, and climate model simulations used to generate three different 
datasets of high-resolution climate projections. 

Asynchronous Regional Regression Model (ARRM) 

The ARRM model used in this analysis is based on a highly generalizable quantile 
regression technique first introduced by Koenker & Basset (1978) to estimate conditional 
quantile functions by training a model using observational data to describe quantiles of 
the modelled predictor variable as functions of observed predictand covariates (Koenker 
& Hallock, 2001). In other words, a quantile regression model is derived for each weather 
station that transforms dataset A (e.g., historical model simulations) into a probability 
distribution that closely resembles dataset B (e.g., historical observations). This model 
can then be used to transform additional datasets (e.g. future model simulations) into 
probability distributions that continue to reflect the characteristics of dataset B 
(observations). The general process is illustrated in Figure 2.7(a). 

Quantile regression was applied by O’Brien et al. (2001) to calibrate satellite 
observations from asynchronous, or non-matched, datasets, while Dettinger et al. (2004) 
was the first to apply this statistical technique to climate projections to examine simulated 
hydrologic responses to climate variations and change, as well as to heat-related impacts 
on health (Hayhoe et al., 2004). ARRM expands on these original applications with 
modifications specifically aimed at improving the ability of the model to simulate the 
shape of the distribution including the tails, including pre-filtering of GCM input using 
principal components analysis, use of a piecewise rather than linear regression to 
accurately capture the often non-linear relationship between modeled and observed 
quantiles, and bias correction at the tails of the distribution. 

Quantile regression has two key advantages relative to other statistical approaches: first, 
it does not require temporal correspondence between model simulations and 
observations; and second, it is capable of incorporating model-simulated changes in the 
shape of the daily distribution (including shifts in the mean, skewedness, and variance) 
into future projections. In comparison to regional modeling, it is highly efficient, since it 
does not involve retention of the large-scale dynamical flow patterns, and thus does not 
require significant computer resources.  

Transforming GCM output into high-resolution projections using ARRM begins with 
daily observations of temperature and precipitation, filtered using a quality control 
process to remove questionable or erroneous values as described previously. Next, 
climate model output fields are re-gridded to the scale of the observations using bilinear 
interpolation. For training, the method requires a minimum of 20 years of observations 
and model simulations with less than 5% missing data over that time period in order to 
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produce robust results. For the five stations in this analysis, 51 years or the entire 
observational record from 1960 to 2010 was utilized for training purposes. 

Model predictor values and observed predictand values are ranked and a function (here, a 
piecewise linear regression) is fitted to the datasets by month, including two weeks of 
overlapping data on either side. This additional refinement was added to account for 
shifting seasons in future projections that may produce conditions outside the range of a 
typical historical month in the future, and allows the method to utilize each data point 
twice rather than once during the training process.  

 

 

Optimal placements and number of break points (up to six) in the piecewise linear 
regressions are identified automatically as locations with higher curvature on a plot of 
ranked modeled vs. observed values. The slopes of the regression segments are checked 
to ensure no negative slopes are present, and if there is a negative slope a break point is 
removed to force a positive slope. 

Improved performance on temperature downscaling is obtained by filtering the model 
fields using an empirical orthogonal function (EOF) analysis, also referred to as principal 
component analysis, that retains only 97% of the original variance. As the linear 
regressions at the tails are based on a much lower number of data points than those in the 
center of the distribution, the low and high tail of the distributions undergo further 
scrutiny by performing bias correction at the tails, ensuring that values are within 30% of 
the observations. 

(a) DAILY QUANTILE REGRESSION

 

(b) MONTHLY QUANTILE 
MAPPING

 
Figure 2.7 This diagram illustrates the primary steps involved in (a) the ARRM downscaling model used to generate 
the high-resolution projections for the greater Mobile Bay region presented in this report, and (b) the BCSD 
downscaling model used to generate the projections used in USGCRP (2009). The green boxes show where global 
climate model output is used as input to the downscaling model, while the blue boxes indicate where observations 
are used as input. Brown-shaded boxes describe the various computational and analysis steps. 
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For precipitation, the model selects from three possible predictors the one best suited to 
each month: convective, large-scale, or total precipitation. EOF filtering of the model 
output is not performed since it degrades the results and introduces negative values for 
precipitation. The logarithm of precipitation values is used instead of raw precipitation 
amount as this was found to decrease the residuals of the regression.  

The downscaling is performed as follows: for each individual station, GCM output for the 
“training” period, 1960-2010, is regressed on observed daily temperature and 
precipitation for the same time period to quantify the statistical relationship between each 
individual quantile of that variable’s daily distribution, and compared to observations 
(Fig. 2.8a). The statistical relationship derived from the observations and historical GCM 
simulations is then applied to future GCM simulation output in order to downscale future 
temperature and precipitation conditions to the same locations used to derive the original 
regression relationships (Fig. 2.8b). Finally, the validity of the statistical relationship can 
finally be evaluated through comparison with an independent set of observations that 
were not used to train the statistical model. Validation of the downscaling for the five 
Mobile Bay weather stations is summarized in Section 5. 

 

  
Figure 2.8 (a) Observed (black) and historical simulated 
distribution of daily maximum summer temperatures by 
four GCMs for a weather station in Mobile for evaluation 
period 1980-1999.  

 (b) Historical simulated (black) and future projected daily 
maximum summer temperature under the SRES A1FI 
higher (red) and B1 lower (orange) emission scenarios. 

 

STEP THREE: Translating into impact-relevant information  

The final step in the analysis was to translate projected changes in primary climate 
variables (maximum and minimum temperature and 24h cumulative precipitation) into a 
series of secondary climate indicators listed in Table 2.1. The results of this translation 
are described in Sections 3 and 4. 
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SECTION 3: TEMPERATURE-RELATED CHANGES 
 

Over climate time scales of thirty years or more, average temperature and related 
indicators in the Mobile Bay region are expected to reflect the multiple influences of 
global change, modified by local factors including topography, small-scale feedback 
processes, and land use. The magnitude and rate of global change depends on human 
emissions of heat-trapping gases, as well as on the sensitivity of the Earth’s climate 
system to those emissions. As global change increases in magnitude, its influence on 
local-scale climate is likely to grow.  

This section summarizes historical observed trends and the changes in temperature and 
temperature-related secondary indicators that are projected to occur in response to global 
change. Projected changes are consistent across all five stations; unless otherwise 
indicated, plotted values correspond to the average value across the five stations. 

Annual and Seasonal Temperatures 
Historical observed trends in average temperatures vary by month and station. In this 
analysis, trends were detected using a Mann-Kendall trend analysis. A “significant” trend 
is defined here as one with a p-value less than 0.1, and a “consistent” trend is one where 
multiple stations have a significant trend with the same sign of the Kendall 4: either 
negative (decreasing) or positive (increasing).   

For average, seasonal, and monthly temperatures there were no historical trends for the 
period 1960 through 2010 that were significant and consistent across all five stations. 
When the definition of consistency was relaxed to require only four out of five stations 
showing a trend in the same direction, negative trends (or cooling) were detected for 
average minimum temperature for three indicators: monthly values in April and 
September, and seasonal values for Fall (SON).  

Future projections assume that local factors, including topographical influences, changes 
in land use, and small-scale feedback processes that determine the response of local 
climate to larger-scale influences, remain invariant. The only factors permitted to change 
in these future projections are the magnitude of global climate change, and its influence 
at the regional scale. 

                                                        
4 The p-value measures the probability of obtaining a given value in error.  A p-value of 0.1, therefore, 
indicates 90% confidence that the trend detected is real.  The Kendall tau shows how a given variable 
is correlated with time in order to demonstrate whether a trend is present.  The sign of tau indicates 
whether the trend is positive or negative (i.e. increasing or decreasing with time).  Tau values can 
range from -1 to +1, with larger absolute values indicating stronger trends.   
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Under these assumptions, annual 
average temperature is expected 
to increase in the future. Over the 
next few decades, projected 
temperature changes are expected 
to be similar regardless of the 
emissions pathway followed over 
that time (the contribution of 
scenarios to future uncertainty is 
discussed further in Section 5). 
This uniformity arises due to the 
inherent lag time inherent in the 
climate system, as well as the lags 
built into our energy system (i.e., 
it is unrealistic to consider a 
scenario where all fossil fuel use 
could be nearly eliminated within 
a decade or two). The majority of 
the changes that will happen over 
the next few decades are the result 
of heat-trapping gas emissions 
that have already built up in the 
atmosphere or are already entailed 
by our existing infrastructure 
(Stott & Kettleborough, 2002). 

By 2010-2039, annual 
temperature is projected to 
increase by an average of +1.5oF 
across all scenarios.5 By mid-
century, increases range from 2.4 
to 4.6oF by 2040-2069, depending 
on the future scenario. By the end 
of the century (2070-2099), 
projected increases under higher 
emissions (+7.7oF) are more than 
double those expected under 

lower emissions (+3.2oF).  

Changes in the Mobile Bay region are consistent with those projected to occur across the 
larger southeastern U.S. and the Gulf Coast (Fig. 3.1). In general, slightly greater changes 
are projected for minimum as compared to maximum temperature, and for inland as  

                                                        
5 In Sections 3 and 4, for the purpose of consistency comparisons across time periods contrast 
historic simulated values with future simulated values, and not observed or monitored data, unless 
otherwise noted. 

 
Figure 3.1 Change in Southeast annual average minimum and 
maximum temperature, in degrees F, projected to occur under 
global mean temperature increases of 1oC (top), 2oC (middle) and 
3oC (bottom). Shown here is the mean value as simulated by the ten 
climate models used in this analysis. Projected changes for the 
Mobile Bay region are consistent with the broader changes 
projected to occur across the Gulf Coast.  

 

Figure 3.2 Projected change in average monthly temperature for 
2070-2099 relative to 1980-2099, in degrees F, for the higher (A1fi), 
mid-high (A2) and lower (B1) emission scenarios. Values averaged 
across all climate models and stations. 
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compared to coastal regions. 
Geographic differences likely 
reflect the moderating influence 
of the Gulf of Mexico on coastal 
temperatures. 

Both observed and projected 
future temperature changes vary 
by season. In the future, over 
climate timescales of 30 years or 
more, temperature in all months 
is projected to increase. Greater 
warming, on the order of 1oF 
under lower emissions and more 
than 2oF under higher emissions 
by end-of-century, is expected in 
later summer and fall as 
compared to other months (Fig. 
3.2). The smallest amount of 
warming is projected in winter 
months. Under higher emission 
scenarios, the season of higher 
warming extends from May 
through October.  

Extreme Heat 
For extreme temperature 
indicators, there were no 
historical trends for the period 
1960 through 2010 that were 
significant and consistent across 
all five stations. With the 
definition of consistency relaxed 
to require only four out of five 
stations showing a trend in the 
same direction, increases were 
detected in the number of 
consecutive days per year over 
95oF and 100oF. Decreases were 
observed in the 5th and 25th 
percentile of warmest 
consecutive 4 days of the year, 
as well as in the 50th percentile 
and mean of the warmest 
consecutive 7 days. 

As mean temperatures increase, 

(a)    

(b)   

(c)   

Figure 3.3 Projected change in the maximum daily temperature for (a) 
the hottest consecutive 7 day of the year, (b) the hottest day of the 
year and (c) the hottest day in 30 years (bottom) for the five weather 
stations as simulated for the B1 lower, A2 mid-high, and A1FI higher 
emission scenarios averaged over 10 (B1, A2) and 4 (A1FI) 
independent climate model simulations. Projected changes sample 
from the 98th, 99.7th, and 99.99th percentile of the distribution, 
respectively. Projected changes beyond the 99.9th percentile of the 
distribution, such as projections for the hottest day in 30 years, 
should be taken as qualitative rather than quantitative in nature as 
the projections are not intended to be accurate to that degree.  Error 
bars show the range of projected values for A1Fi and the 2σ range for 
A2 and B1 (i.e., one σ above and below the mean). 
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extreme heat is also expected to become more frequent and more severe. Calculations for 
a large number of heat indices are summarized in the Excel files developed as part of this 
work.  (Note: these are provided as an appendix in the Task 2 report.) Here, 
representative results from these extreme heat calculations are highlighted, including 
projected changes in: the hottest day of the year, hottest consecutive 7 days of the year, 
and hottest day in 30 years or three decades (Figure 3.3), as well as projected changes in 
the number of days per year over 95 and 100oF (Figure 3.4). 

Calculations of the hottest 7 days of the year sample from the 98th percentile of the 
distribution; the hottest day of the year, the 99.7th percentile; and the hottest day in 30 
years, the 99.99th percentile. The degree to which climate simulations are accurate at 
these percentiles is evaluated in Section 5 using a cross-validation technique to reproduce 
the historical observations and quantify the biases in simulated vs. observed. In general, 
however, projected changes beyond the 99.9th percentile of the distribution, such as 
projections for the hottest day in 30 years, should be taken as qualitative rather than 
quantitative in nature. The statistics used here to relate regional climate to global-scale 
change are not intended to be accurate to that scale. 

The hottest 7 days of the year historically averages just under 95oF (Figure 3.3a). Within 
the next few decades, the average temperature of the hottest 7 days of the year is 
projected to increase by approximately 1.5oF. As indicated by the fact that the average 
values for each scenario fall within the error bars of the others on the plot, any difference 
between scenarios over this time scale is purely the result of differences in natural 
variability between the model simulations. By mid-century, the hottest 7 days of the year 
are projected to range from 97 to 99oF, with some differences beginning to emerge 
between scenarios. By the end of the century, average temperature on the hottest 7 days is 
projected to average 98oF under lower emissions (+3oF relative to the historical period) 
and almost 102oF under higher emissions (+7oF relative to the historical period), with a 
statistically significant difference between the values projected under higher vs. lower 
emissions, as indicated by the fact that the values projected for the mid-high A2 and 
higher A1FI scenarios lie outside the error bars for the lower B1 scenario. These 
increases are very similar to those projected for the mean, suggesting that the mean of the 
distribution could increase at the same rate as the 98th percentile of the distribution. 

Sampling from the 99.7th percentile of the distribution, the hottest day of the year for the 
five weather stations currently averages between 96 and 97oF (Figure 3.3b). This is 
expected to increase to 98oF by 2010-2039. By 2040-2069, the hottest day of the year is 
expected to average between 99 and 101oF, depending on emission scenario. By the end 
of the century, the hottest day of the year could average more than 103oF under higher 
emissions (+7oF relative to the historical period), or 99oF under lower (+3oF relative to 
the historical period). Again, the magnitude of this increase is very similar to that 
projected for the hottest 7 days of the year, and the mean value of the distribution 
(average annual temperature). 

Daily maximum temperature for the hottest day in 30 years currently averages around 
101oF. This index is also projected to increase in the future, with some indication of 
greater changes under higher emission scenarios as compared to lower (Figure 3.3c). 
Increases are approximately the same magnitude as projected for the hottest day and  
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 3.4 Projected change in individual (a, b) and consecutive (c,d) days per year over (a,c) 95oF and (b,d) 100oF for 
the average of the 5 weather stations as simulated for the B1 lower, A2 mid-high, and A1FI higher emission scenarios 
averaged over 10 (B1, A2) and 4 (A1FI) independent climate model simulations. Error bars show range of projected 
values for A1Fi and 2σ range for A2 and B1 (i.e., one σ above and below the mean). 

week of the year; however, these type of climate projections are not intended to be 
accurate to the one-in-10,950th day or the 99.99th percentile of the distribution. Hence, 
these results should be interpreted cautiously, with greater emphasis on qualitative 
direction of trends rather than quantitative numbers. 

Temperature thresholds also show increases in the number of days per year exceeding a 
given value. Projections were requested for number of days exceeding 95, 100, 105 and 
110oF, as well as for the maximum number of consecutive days exceeding those 
thresholds. For all five weather station locations, there are currently no days per year over 
105oF and no significant changes in this number are projected for the future; hence, only 
projections for days over 95 and 100oF are shown here. 

On average, the Mobile Bay region currently experiences between 8 to 9 days per year 
above 95oF, with 4 to 5 or just over half of those days occurring during one single 
consecutive period (i.e., during a heat wave) and very few days per year over 100oF (Fig 
3.4).6 The average number of consecutive days per year over both 95 and 100oF already 
                                                        
6 Unless otherwise indicated, all figures compare model-based historical with future simulations.  
After downscaling, the average statistics of simulated climate for 1980 – 2009 are nearly identical to 
observed data but may not match precisely because global climate models represent slightly 
different samples or subsets of all possible combinations of the natural variability that could have 
occurred during that period. 
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show significant trends from 1960 through 2010. As average temperatures increase, the 
number of days per year over 95oF is projected to increase, as is the number of 
consecutive days. Projections of nearly 40 consecutive days over 95oF under higher 
emissions and 13 consecutive days under lower emissions suggest that heat waves, if 
defined as occurring when maximum daily temperatures exceed 95oF, could increase in 
length by as much as a factor of 10 under a higher emissions scenario, and 3 under a 
lower scenario. The number of individual days per year is projected to be approximately 
twice the number of consecutive days. 

Days with maximum temperature exceeding 100oF are currently rare (the hottest day on 
record in Mobile, AL is 105oF in 2000). Within the next few decades, several such days 
are expected each year. By mid-century, between 1.5 and 6 days per year could be over 
100oF, depending on the emission scenario. By the end of the century, an average of 3 
individual days and 2 consecutive days per year over 100oF are projected under lower 
emissions and up to 20 individual days or 8 consecutive days per year under higher 
emissions. The analysis for days over 100oF samples from the far tail of the distribution 
of daily temperature so projections are less robust than for less extreme temperature 
thresholds. 

Cold Temperatures 
For extreme cold temperature indicators, there were no historical trends in the indicators 
requested for the period 1960 through 2010 that were significant and consistent across all 
five stations.  

As average temperatures increase, 
however, cold temperatures are also 
expected to become less frequent 
and less severe. For example, the 
temperature of the coldest day of 
the year (currently 18oF, which is 
the 99.7th percentile of the 
distribution) is expected to increase 
by +2oF, to 20oF, within the next 
few decades, and by an average of 
+3-4oF, to 21-22oF, by mid-century 
(Fig. 3.5). By the end of the 
century, there is some difference 
between the expected temperatures 
under lower emissions (21oF) as 
compared to higher (24.5oF, or an 
increase of 6.5oF compared to 
historical).  

Average winter temperatures are projected to increase across the distribution, from the 5 
to 95th percentile, by an average of 5-6oF under the higher A1fi and mid-high A2 
scenarios, and 3oF under the lower B1 scenario by the end of the century. The 
contribution of scenarios to overall uncertainty is discussed further in Section 5. 

 
Figure 3.5 Projected change in the temperature of the coldest day 
of the year (or the 99.7th percentile of the distribution of minimum 
temperature) for Mobile, AL as simulated for the B1 lower, A2 
mid-high, and A1FI higher emission scenarios averaged over 10 
(B1, A2) and 4 (A1FI) independent climate model simulations. 
Error bars show range of projected values for A1Fi and 2σ range 
for A2 & B1 (i.e., one σ above and below the mean). 
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SECTION 4: CHANGES IN PRECIPITATION 
 

Climate change is not just about warmer temperatures; as the planet warms, precipitation 
patterns are also expected to shift in both space and time. Some seasons may get wetter, 
while others get drier. The intensity and frequency of heavy rainfalls, as well as the 
duration of dry periods, may be altered.  

This section summarizes observed historical trends and the changes in precipitation and 
rainfall-related secondary indicators that have been observed and are projected to occur in 
the Mobile Bay area in response to global change. As in Section 3, historical trends were 
detected using a Mann-Kendall trend analysis. A “significant” trend is defined here as 
one with a p-value less than 0.1, and a “consistent” trend is one where multiple stations 
have the same sign of the Kendall 7. Projected future changes are consistent across all 
five stations; unless otherwise indicated, plotted values correspond to the average value 
across the five stations. 

 

                                                        
7 The p-value measures the probability of obtaining a given value in error.  A p-value of 0.1, therefore, 
indicates 90% confidence that the trend detected is real.  The Kendall tau shows how a given variable 
is correlated with time in order to demonstrate whether a trend is present.  The sign of tau indicates 
whether the trend is positive or negative (i.e. increasing or decreasing with time).  Tau values can 
range from -1 to +1, with larger absolute values indicating stronger trends. 

 
 

Figure 4.1 Projected annual average precipitation for the 
average of the 5 weather stations, as simulated by the 
average of ten climate models for the B1 (lower), A2 (mid-
high) and A1FI (higher) emissions scenarios. Error bars show 
range of projected values for A1fi and 2σ range for A2 & B1 
(i.e., one σ above and below the mean). 

Figure 4.2 Data from 1960 to 2010 shows a 
significant increase in average precipitation at all 
five stations for one season (summer, dark red) and 
at four out of five stations for one more season (fall, 
red) and five months of the year. 
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Figure 4.3 Projected change in seasonal average precipitation averaged across the five Mobile Bay weather stations 
relative to 1980-2009; as simulated by the average of ten climate models for the B1 (lower), and A2 (mid-high) 
scenarios and four climate models for the A1FI (higher) emissions scenarios. Error bars show range of projected 
values for A1Fi and 2σ range for A2 & B1 (i.e., one σ above and below the mean). 
 

Annual and Seasonal Precipitation 
Annual precipitation in the Mobile Bay region averages around 65 inches per year. From 
1960 through 2010, no significant changes were observed in this annual average. Over 
this century, there is some indication, although with significant variability, of a relatively 
small increase of several inches by mid-century, followed by a return to present-day 
values under higher emissions scenarios by end-of-century (Fig. 4.1). 

Little to no change in annual average precipitation can mask significant changes in the 
seasonal and monthly distribution of precipitation. From 1960 to 2010, for example, a 
significant and consistent increase in summer (JJA) precipitation was observed across all 
five stations. When the definition of consistency was relaxed to require just four out of 
five stations to show a trend in the same direction, there were significant increases in 
summer (JJA) and fall (SON) precipitation, as well as monthly average precipitation for 
January, April, June, July and November (Fig 4.2).   

In terms of future projections, fall precipitation continues to show the strongest and most 
consistent increase across all time periods and scenarios, by up to 30% by end-of-century 
under higher emissions averaged across all five weather stations. This suggests that the 
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climate models may be accurately capturing the regional factors responsible for observed 
increases in fall precipitation over the last 50 years. There is also some indication that 
precipitation may increase in winter, particularly over the near term and under lower 
emissions. Projections for the spring and summer, however, have large error bars 
indicating lack of inter-model agreement regarding the magnitude and even the sign of 
the change (Fig. 4.3). 

Seasonal changes in precipitation in the Mobile Bay region are consistent with those 
projected to occur across the southeastern U.S. and the Gulf Coast (Figure 4.4). 
Precipitation changes are largest and most consistent during the fall season; winter shows 
a slight increase under lower amounts of change; changes in spring are inconsistent; and 
summer shows risk of drying that increases over time and with larger global change.  
Uncertainties in these projections are discussed further in Section 5. 

 

 
Figure 4.4 Change in Southeast seasonal average precipitation, in percentage relative to 1990-2009, as projected 
under global mean temperature increases of 1oC (top), 2oC (middle) and 3oC (bottom). Values shown here are the 
means as simulated by the ten climate models used in this analysis. Projected changes for the Mobile Bay region are 
consistent with the broader changes projected to occur across the Gulf Coast. 
 

 

Heavy Precipitation Events 
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Heavy rainfall events can damage 
homes, businesses, and public 
infrastructure. The frequency of 
occurrence of more than 2 inches 
of rain in 24h, for example, has 
already increased across much of 
the U.S., particularly in the 
Northeast and Midwest 
(USGCRP, 2009).  

In the Mobile Bay region, 
exceedence thresholds for 24h 
annual maximum daily 
precipitation, as well as 
cumulative 48h and 96h 
precipitation, show the most 
significant and consistent changes 
from 1960 to 2010. For the 
maximum 24h precipitation, 
increases in all the exceedence 

probabilities from 0.2 to 50% are significant and consistent across all 5 weather stations. 
For 48h precipitation, increases up to the 5% exceedence are consistent across all 
stations, and increases in exceedences up to 50% are consistent across four out of the 5 
stations. Similar increases are also seen in 96h precipitation (Fig. 4.5).  

In many regions, the observed trend in heavy rainfall is expected to continue in the future 
as warming temperatures accelerate the hydrological cycle at both the local and global 
scale (e.g. Tebaldi et al., 2006). Here, projected changes in heavy rainfall events are 
captured by calculating the exceedence thresholds for the 24h annual maximum and 
cumulative 2-day and 4-day precipitation from the 0.2nd to the 50th quantile, and the 
maximum 3-day precipitation totals for each season.  

This section focuses on projected changes in the 1st and 50th exceedence thresholds for 
annual maximum 24h precipitation and cumulative 96h precipitation, as representative of 
the range of changes generally projected for all precipitation indicators. These two 
metrics not only average precipitation over a different number of hours, but are also 
defined slightly differently. Exceedance thresholds discussed here are taken from four 
distinct 30-year datasets and should not be compared with recurrence intervals usually 
applied to much larger observed historical datasets.  Details regarding the calculations 
methods used for each metric are provided in the Appendix. Additional projections for 
the complete set of indicators are available in an Appendix to the Task 2 report.  

Most precipitation exceedence thresholds are projected to increase, consistent with 
observed historical trends. There is some indication of slightly greater increases for 
shorter duration events, but there is also greater uncertainty in the statistics for these 
shorter events (Figure 4.6). In general, however, most projections show little difference 
across scenario, rainfall event duration (24, 48, or 96h), or time period (near-term, mid-
century, and end-of-century). 

 
Figure 4.5 Significant increases in many exceedence thresholds for 
cumulative 24h, 48h, and 96h precipitation are observed at all five 
stations (dark blue) and at four out of five stations (light blue) over 
the period 1960 to 2010. No negative values, or decreases, were 
detected. 
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Observed cumulative 24h precipitation for the 5 Mobile Bay weather stations averages 
around 13.5” for the first percentile and 5” for the 50th percentile. Historical simulated 
values are slightly lower, averaging 12.5” and 4.5” (a further discussion of biases in 
simulated historical values is provided in Section 5). Consistent with historical trends, 
increases in the 1st percentile are projected to continue across all scenarios, all models, 
and for all future time periods (Fig. 4.6a). There is no real difference between the changes 
projected to occur under any given scenario, or even for any given time period. Thus, 
rather than showing as a linear trend, these projections suggest more of a “step”-type 
increase in the exceedence threshold of the 1st percentile. Similarly, exceedence 
thresholds for the 50th percentile of 24h precipitation are also projected to increase, 
although changes are less significant compared to historical values. Again, there is little 
difference between the changes projected under any given scenario or even for any given 
time period (Fig. 4.6b). 

(a) 
 

(b) 

(c) (d) 

Figure 4.6 Precipitation exceedence thresholds across most time periods including 24h (a, b) and 96h (c, d) are 
projected to increase. Increases tend to be slightly larger for lower exceedence thresholds as compared to higher 
ones (here, 1% compared to 50%), but in general there is little difference between the magnitude of changes 
projected under different scenarios and for different future time periods. For each time period, the scenarios shown 
(from left to right) are B1, A2, and A1Fi. 
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Observed cumulative 96h or 
4-day precipitation for the 5 
Mobile Bay weather stations 
averages around 7” for the 
first percentile and 0.65” for 
the 50th percentile8. Historical 
simulated values are similar, 
averaging 8” and 0.6” (a 
further discussion of biases in 
simulated historical values is 
provided in Section 5). Also 
consistent with historical 
trends, increases in the 1st 
percentile are projected to 
continue across all scenarios, 
all models, and for all future 
time periods (Fig. 4.6c). 
Exceedence thresholds for the 
50th percentile of 24h 
precipitation are also 
projected to increase slightly, 

although changes are less significant compared to historical values (Fig 4.6d). As seen for 
24h precipitation, there is little difference between the changes projected under any given 
scenario or even for any given time period, suggesting that the primary driver of 
uncertainty in projected future changes in precipitation is scientific or model uncertainty 
(see Section 5 for more discussion on uncertainty). 

Average annual maximum three-day precipitation totals were calculated individually for 
each season. Historical and simulated future annual average values are shown in Figure 
4.7. Projected changes are generally positive, although relatively small (averaging less 
than 1 inch compared to the historical average of 5 inches). Every season shows some 
indication of an overall increase in the amount of precipitation accumulated during three-
day events. However, in most cases the range of projected values includes the potential 
for no change or even a slight decrease compared to historical simulated values. Seasonal 
values (not shown, but available in the excel data files accompanying this report) show 
increases typically on the order of half an inch in spring and summer, and one inch in 
winter and fall, also with little difference between emission scenarios and time period. 

 

                                                        
8 Note that this is a four-day running total, and thus is not directly comparable to the 24 hour data. 

 
 
Figure 4.7 Maximum three-day precipitation totals currently average 
around 5 inches per year. As is the case for the other measures of 
accumulated precipitation shown in Figure 4.6, projections indicate a 
likely increase in average values of maximum three-day accumulated 
precipitation, with little distinction between the changes projected under 
different scenarios or time periods.  
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SECTION 5: UNCERTAINTY 
 

There is always some degree of uncertainty inherent to any future projections. In order to 
accurately interpret and apply future projections for planning purposes, it is essential to 
quantify both the magnitude of the uncertainty as well as the reasons for its existence. 
Each of the steps involved in generating projections—future scenarios, global modeling, 
and downscaling—introduces a degree of uncertainty into future projections; how to 
address this uncertainty is the focus of this section. 

It is a well-used axiom that all models are wrong (but some can be useful). The Earth’s 
climate is a complex system. It is only possible to simulate those processes that have been 
observed and documented. Clearly, there are other feedbacks and forcing factors at work 
that have yet to be documented. Hence, it is a common tendency to assign most of the 
range in future projections to model, or scientific, uncertainty.  

Future projections will always be limited by scientific understanding of the system being 
predicted. However, there are other important sources of uncertainty that must be 
considered; some that can even outweigh model uncertainty for certain variables and time 
scales. 

Sources of Uncertainty in Global and Regional Climate Change 
Uncertainty in climate change at the global to regional scale arises primarily due to three 
different causes: (1) natural variability in the climate system, (2) scientific uncertainty in 
predicting the response of the Earth’s climate system to human-induced change, and (3) 
socio-economic or scenario uncertainty in predicting future energy choices and hence 
emissions of heat-trapping gases (Hawkins & Sutton, 2009).  

It is important to note that scenario uncertainty is very different, and entirely distinct, 
from scientific uncertainty in at least two important ways. First, while scientific 
uncertainty can be reduced through coordinated observational programs and improved 
physical modeling, scenario uncertainty arises due to our fundamental inability to predict 
future changes in human behaviour. Scenario uncertainty can only be reduced by the 
passing of time, as certain choices (such as depletion of a non-renewable resource or 
implementation of an emissions control policy) eliminate or render certain options less 
likely. Second, scientific uncertainty is often characterized by a normal distribution, 
where the mean value is more likely than the outliers. Scenario uncertainty, however, 
hinges primarily on whether or not the primary emitters of heat-trapping gases, including 
traditionally large emitters such as the United States as well as nations with rapidly-
growing contributions such as India and China, will enact binding legislation to reduce 
their emissions or not. There is no reason per se to assume a mid-range scenario is the 
most likely. For example, if these nations do enact legislation, then the lower emission 
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scenarios become more probable. If they do not, then the higher scenarios become more 
probable. The longer such action is delayed, the less likely it becomes to achieve a lower, 
as compared to a mid-low, scenario because of the carbon dioxide that continues to 
accumulate in the atmosphere. Hence, scenario uncertainty cannot be considered to be a 
normal distribution. Rather, the consequences of a lower vs. a higher emissions scenario 
must be considered independently, in order to isolate the role that human choices are 
likely to play in determining future impacts. 

 

Figure 5.1. Percentage of uncertainty in future temperature projections one decade in the future (top row), four 
decades in the future (middle row) and nine decades in the future (bottom row) that can be attributed to natural 
variability (left column), model uncertainty (center column), and scenario uncertainty (right column). Source: Hawkins 
& Sutton, 2009. 

Figure 5.1 illustrates how, over timescales of years to several decades, natural chaotic 
variability is the most important source of uncertainty. By mid-century, scientific or 
model uncertainty is the largest contributor to the range in projected temperature and 
precipitation change. By the end of the century, scenario uncertainty is most important 
for temperature projections, while model uncertainty continues as the dominant source of 
uncertainty in precipitation. This is consistent with the results of the projections for the 
Mobile Bay region discussed in this report, where there is a significant difference 
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between the changes projected under higher vs. lower scenarios for temperature-based 
metrics, but little difference for precipitation-based metrics. 

Dealing with Uncertainty 
The first source of uncertainty can be addressed by always averaging or otherwise 
sampling from the statistical distribution of future projections over a climatological 
period – typically, 20 to 30 years. In other words, the average winter temperature should 
be averaged over several decades, as should the coldest day of the year. No time stamp 
more precise than 20 to 30 years should ever be assigned to any future projection. In this 
report and accompanying data files, simulations are always averaged over four 30-year 
climatological time periods: historical (1980-2009), near-term (2010-2039), mid-century 
(2040-2069) and end-of-century (2070-2099). 

The second source of uncertainty, model or scientific uncertainty, can be addressed by 
using multiple global climate models to simulate the response of the climate system to 
human-induced change (here, 10 models for the B1 and A2 scenarios, 4 models for A1FI 
as that is all that were available at the time of publication). As noted above, the climate 
models used here cover a range of climate sensitivity; they also cover an even wider 
range of precipitation projections, particularly at the local to regional scale.  

Again, while no model is perfect, most models are useful. Only models that 
demonstratively fail to reproduce the basic features of large-scale climate dynamics (e.g., 
the Jet Stream or El Niño) should be eliminated from consideration, as multiple studies 
have convincingly demonstrated that the average of an ensemble of simulations from a 
range of climate models (even ones of varied ability) is generally closer to reality than the 
simulations from one individual model, even one deemed “good” when evaluated on its 
performance over a given region (e.g., Weigel et al., 2010; Knutti, 2010). Hence, 
wherever possible, impacts should be summarized in terms of the values resulting from 
multiple climate models while uncertainty estimates can be derived from the range or 
variance in model projections. This is why most plots in this report show both multi-
model mean values as well as a range of uncertainty around each value. 

The third and final primary source of uncertainty in future projections can be addressed 
through generating climate projections for multiple futures: for example, a “higher 
emissions” future where the world continues to depend on fossil fuels as the primary 
energy source (SRES A1FI, A2), as compared to a “lower emissions” future focusing on 
sustainability and conservation (SRES B1).  

Over the next 2 to 3 decades, projections can be averaged across scenarios as there is no 
significant difference between scenarios over that time frame due to the inertia of the 
climate system in responding to changes in heat-trapping gas levels in the atmosphere 
(Stott & Kettleborough, 2002). Past mid-century, however, projections should never be 
averaged across scenarios; rather, the difference in impacts resulting from a higher as 
compared to a lower scenario should always be clearly delineated. That is why, in this 
report, future projections for mid-century and beyond are always summarized in terms of 
what is expected for each scenario individually. 
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Uncertainty and Bias in Downscaling 
Downscaling climate projections from global models to the scale of individual weather 
stations introduces a fourth source of uncertainty, that of the downscaling model used to 
relate large-scale weather patterns to local-scale varability. For a statistical downscaling 

model, this uncertainty in turn can be 
attributed to three distinct sources: 
(1) the degree to which the limited 
set of observations used to train the 
statistical method fail to capture the 
larger range in possible weather 
conditions at that location; (2) the 
inability of the statistical model to 
perfectly reproduce the relationship 
between large-scale weather and 
local conditions; and (3) limitations 
in the ability of the global climate 
model to simulate regional 
conditions.  

The extent to which these three 
sources of uncertainty and error 
affect the accuracy of local-scale 
projections can be evaluated through 
a cross-validation process. Typically, 
a statistical downscaling model is 
trained on all available historical data 
in order to maximize the sample of 
naturally-occurring weather 
conditions. The trained model is then 
used to downscale future simulations 
using the relationship it has 
developed between large-scale 
climate and local weather conditions 
during the historical period. 

During cross-validation, however, 
the statistical model is trained on all 
but one year of the historical 
observations (e.g., 1961-2009), and 
then used to downscale that single 
year (1960). This produces one 
years’ worth of simulated historical 
conditions that are entirely 
independent of the data used to train 
the model.   

(a)  

(b)  

(c)   
Figure 5.2. Probability distribution of daily (a) maximum 
temperature (degrees C), (b) minimum temperature (degrees C) 
and (c) the log of wet day precipitation (cm). Black line 
represents observed values for the period 1960-2009 for 
Mobile, AL; red lines represent historical simulations 
downscaled from 10 different global climate models for the 
same time period, trained independently of the observations to 
which they are being compared (i.e., cross-validated). 
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The model is then trained 
on the years 1960 and 
1962-2009 (leaving out 
1961) and used to 
downscale the single year 
1961. There are now two 
years’ worth of simulated 
historical values that are 
independent of the data 
used to train the model. 
This process can be 
repeated N times, where N 
is equal to the number of 
years available in the 
observational record. The 
end result is a timeseries of 
daily simulated variables 
equal in length, but 
independent of, the 
observed record used to 
train the downscaling 
method.  

The probability, or density, 
distribution of this cross-
validated independent time 
series can be directly 
compared to observed 
maximum and minimum 
temperature and wet-day 
precipitation. This 
comparison is shown in 
Fig. 5.2. Black lines are 
observations, while red 
lines represent the various 
global models that have 
been downscaled to the 
Mobile Airport station.  

 This comparison shows 
that simulated maximum & 
minimum temperature 
tends to match observed 
values more closely than 
wet-day precipitation. It 
also shows how one or two 
of the 10 global climate 

(a)  

(b)  

(c)  
 
Figure 5.3. Biases in quantiles 0.1, 1, 10, 25, 50, 75, 90, 99 and 99.9 for (a) 
maximum temperature (oF), (b) minimum temperature (oF), and (c) 
precipitation (%) relative to observed, for the historical period 1980-2009 for 
the average of the 5 Mobile Bay stations. Biases for simulations based on 
individual climate models indicated by colors shown in the legend. 
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models used in this analysis (individual models indicated by red curves) tend to be 
outliers, incapable of reproducing the distribution of local temperature or precipitation to 
the same degree as the majority of the models. 

The cross-validated simulations can also be used to quantify the bias in various quantiles 
of the distribution of daily climate variables introduced by the downscaling, by 
essentially ‘slicing’ the distribution at the quantile of interest. Comparing the bias across 
various global climate models helps to illustrate the component of this error that is due to 
limitations in the global climate model that the downscaling method is unable to correct 
for. In other words, a good downscaling model can convert most global climate model 
simulations into something resembling observations; but its ability is naturally limited by 
the quality of the input fields from the global model.  

As illustrated in Figure 5.3, absolute biases towards the ends of the temperature 
distribution (0.1 and 99.9th quantiles) tend to be much greater than the biases for quantiles 
towards the center of the distribution. This reflects the fact that there is much less 
observational data available to train the model at the tails of the distribution as compared 
to the center. For temperature, biases at the ends of the distribution can be as great as +/-
1oF; whereas biases in the center tend to average around +/-0.2oF. Biases also tend to be 
higher for Tmin as compared to Tmax.  

For precipitation, which has an asymmetrical or gamma-like distribution, biases in high 
precipitation values are generally greater than biases in lower precipitation amounts. (In 
Fig 5.2, the log value of wet-day precipitation is plotted to better highlight the ability of 
simulations to reproduce the observed distribution.) Biases also tend to be positive, 
between 20-30% for the 99th and 99.9th quantile of the distribution, indicating that the 
simulations consistently over-estimate values relative to observed. For lower precipitation 
quantiles, biases tend to be between 5-10% relative to observed precipitation amounts, 
except for biases in the 1st quantile which are higher. The absolute values of these biases 
tend to be on the order of a tenth of an inch or less, suggesting that the spike in biases at 
the 1st quantile might plausibly be a symptom of the tendency of global models to 
simulate more “drizzle” than observed in the real world, and the inability of the 
downscaling approach to completely correct for that flaw. Comparing the full distribution 
of precipitation to temperature in Fig. 5.2 confirms that the statistical model has more 
difficulty in simulating precipitation than temperature, due at least in part to its much 
greater spatial and temporal variability as compared. 

For both temperature and precipitation, and for nearly every quantile value shown in Fig. 
5.3, biases associated with an individual climate model can range from zero to the 
maximum value. This range illustrates the third uncertainty listed above, that of the 
differing abilities of the global models to reproduce the features of regional climate that 
affect conditions at each weather station. 

Biases for all quantile values averaged across all climate models are non-zero. These 
values illustrate the second uncertainty listed above, the ability of the downscaling 
approach to accurately capture the relationship between large-scale climate and local 
conditions. 



 43 

Finally, higher biases at the tails as compared to the center of the distribution illustrate 
both the first and second uncertainty, the first being the limited sample of historical data 
available to train the downscaling model, and the second being the ability of the 
statistical model to capture features of the distribution towards the tails.  

This last conclusion, that biases tend 
to be larger at the tails of the 
distribution, can be shown more 
clearly by calculating the average 
bias for quantiles that are extreme 
(0.1, 1, 99, 99.9th quantiles) and 
comparing those averages to the 
average bias for quantiles that are 
closer to the center of the distribution 
(10, 25, 50, 75, 90th quantiles) as 
shown in Figure 5.4.  

From Fig. 5.4, it is clear that the 
highest biases are in precipitation, 
and the lowest in maximum 
temperature. Also, some models tend 
to have higher biases than others.  

Does this information help to identify 
any global models that might provide 
more accurate simulations of climate 
change? This comparison does not 
readily identify any particular model 
or set of models as “best” (although it 
does provide some basis for 
potentially removing one model 
(CNRM) that performs poorly for 
precipitation across the entire 
distribution). Rather, this provides 
insight into the various abilities of 
the models to perform better when 
downscaled to maximum or 
minimum temperature or 
precipitation, or to the center or tails 
of the distribution, and therefore 
what amount of confidence should be 

attached to simulated values. 

 
  

(a)  

 
(b) 

 
Figure 5.4. Cumulative normalized bias in cross-validated 
maximum temperature (green), minimum temperature (yellow) 
and precipitation (red) at (a) the tails of the distribution (0.1, 1, 
99, 99.9th quantiles) and (b) the center of the distribution (10, 
25, 50, 75, 90th quantiles) averaged over 5 Mobile Bay stations 
compared to independent observations for the period 1960-
2009. 
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SECTION 6: CONCLUSIONS 
 

Climate change is expected to affect Mobile and surrounding region by increasing 
average, seasonal, and extreme temperatures, as well as shifting precipitation patterns 
between seasons and over time.  

Over the past 50 years, no significant and consistent trend in annual average temperature 
was observed across all five weather stations. Significant cooling trends in minimum 
temperature in April, September, and the fall season, and increases in the number of 
consecutive days over 95 and 100oF per year, was observed at four out of the five 
weather stations.  

In the future, annual average temperatures are expected to warm by approximately the 
same amount as warm temperature extremes, whereas cold temperature extremes are 
projected to warm to a slightly lesser degree. In other words, the magnitude of changes in 
cold temperatures, including the average temperature for winter and fall months, is 
expected to be slightly smaller than changes in average temperatures, while the 
magnitude of changes in hot temperatures, including the average temperatures of warmer 
summer months, may be slightly greater than the change in average temperatures. 
Relatively large increases are expected in the number of days per year over a given high 
temperature threshold (e.g., 95 or 100oF), as well as in the number of consecutive days 
over these thresholds.  

For all temperature-related indices, there is a significant difference between the changes 
expected under higher as compared to lower emissions by end-of-century. For many but 
not all of these indices, there is also a difference by mid-century. Inter-scenario 
differences are most pronounced for projected changes in warm and hot temperatures, 
and less pronounced for changes in cold temperatures. 

No historical changes were observed in average annual precipitation over the last 50 
years, and little change is expected in the future. There is some indication that seasonal 
precipitation may increase during winter and fall, particularly over the near-term to mid-
century. This is balanced by consistent projections of little change to decreases in 
summer precipitation. However, all seasonal changes are on the order of no more than 
10% relative to climatological precipitation during the period 1980-2009.  

The most consistent and significant trends observed in the historical data are increases in 
the exceedence thresholds for accumulated precipitation. In the future, additional slight 
increases are projected in the amount of rainfall occurring in 24h, 48h, and 96h, as well 
as in maximum 3-day precipitation accumulations. However, these changes are not 
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significantly different between scenarios, nor even across different time periods, 
suggesting that whatever mechanism may be driving these changes may not be overly 
sensitive to the magnitude of future global change. 

There is some indication of a greater trend towards drying under higher as compared to 
lower emission scenarios, consistent with projected changes for the greater Southeast 
region. In general, however, inter-scenario differences tend to be insignificant or well 
within the range of uncertainty for most precipitation-related indicators. 

Analysis of the bias in simulated maximum and minimum temperatures and precipitation 
do not reveal any particular global climate model, or sub-set of models, that consistently 
perform better than others in simulating observed climate over this region. Hence, using 
the complete multi-model mean coupled with the range continues to be the most reliable 
way to incorporate model or scientific uncertainty into any impact analyses.  

The projections described here underline the value in preparing to adapt to the changes 
that cannot be avoided. Due to complex interactions between temperature and the 
different factors that affect precipitation in the Gulf Coast region, there is not a clear 
correlation between future greenhouse gas emissions and precipitation change.  The 
effects documented in this report suggest that reducing emissions would reduce the 
magnitude of temperature changes, but it is not clear what would be the impact (if any) of 
reducing emissions on precipitation-related effects.  
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On the science and policy of climate change: 

THE ROUGH GUIDE TO CLIMATE CHANGE (3RD edition) 

Henson, Robert. 2011. Rough Guides, 416 pp. 

 

 

 

 

 

 On global climate models: 

CLIMATE MODELS: AN ASSESSMENT OF STRENGTHS AND 
LIMITATIONS  

A Report by the U.S. Climate Change Science Program and the 
Subcommittee on Global Change Research [Bader D.C., C. Covey, 
W.J. Gutowski Jr., I.M. Held, K.E. Kunkel, R.L. Miller, R.T. 
Tokmakian and M.H. Zhang (Authors)]. Department of Energy, Office 
of Biological and Environmental Research, Washington, D.C., USA, 

124pp. 

Available online at: http://www.climatescience.gov/Library/sap/sap3-1/final-
report/  

 

 

On scenario selection, global model performance, statistical and 
dynamical downscaling, and application and analysis of high-
resolution projections to impact analyses: 

CLIMATE PROJECTIONS FOR IMPACT ANALYSES: A 
PRACTICAL USER’S GUIDE 

A report of the U.S. Fish & Wildlife Service, Dept. of Interior. 

http://www.climatescience.gov/Library/sap/sap3-1/final-report/
http://www.climatescience.gov/Library/sap/sap3-1/final-report/
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Expected Spring 2012. 

 

 

 

On climate change impacts by sector (water, agriculture, 
ecosystems, health, infrastructure, society) and for the Southeast and 
other regions of the U.S.: 

GLOBAL CLIMATE CHANGE IMPACTS IN THE UNITED 
STATES 

U.S. Global Climate Change Research Program, 2009. Cambridge 
University Press, 192 pp. 

Available online at: http://www.globalchange.gov/usimpacts/  

 

 

On synthesizing information about climate change 
impacts to inform decision-making and policy: 

WARMING WORLD: IMPACTS BY DEGREE 

National Academy of Sciences. 2011. Climate 
Stabilization Scenarios: Emissions, Concentrations, and 
Impacts over Decades to Millennia.  

Available online at:  

http://dels.nas.edu/resources/static-assets/materials-
based-on-reports/booklets/warming_world_final.pdf  

 

 

  

http://www.globalchange.gov/usimpacts/
http://dels.nas.edu/resources/static-assets/materials-based-on-reports/booklets/warming_world_final.pdf
http://dels.nas.edu/resources/static-assets/materials-based-on-reports/booklets/warming_world_final.pdf
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APPENDIX  
 

Indicator Definitions 
Secondary climate change indicators requested for the greater Mobile Bay region. Unless 
otherwise indicated, all values are calculated individually for each weather station, for 
1980-2009 using both observations and historical simulations, and for the periods 2010-
2039, 2040-2069 and 2070-2099 using future simulations. 

1. Timeseries of annual average precipitation, maximum, mean, and minimum 
temperature from 1960 to 2099.  

2. Monthly 30-year mean of precipitation, maximum, mean, and minimum temperature 

3. Seasonal 30-year mean of precipitation, maximum, mean, and minimum temperature 

4. Annual 30-year mean of precipitation, maximum, mean, and minimum temperature 

5. Seasonal and annual 30-year average number of days and maximum number of 
consecutive days with maximum daily temperature >=95F, >100F,105F,110F  

6. Annual 30-year mean of 4 consecutive warmest days in summer and coldest days in 
winter: 5th, 25th, 50th ,75th, 95th percentile 

7. Annual coldest day and maximum 7-day average temperature with the % probability 
(1,5,10,50) of occurrence during 30-year period  

8. Annual precipitation for 24-h period with a 0.2, 1, 2, 5, 10, 20, 50 % occurrence 
during 30-year period 

9. Annual two and four-day exceedance probability across 2 consecutive days :0,2, 1,2, 
5, 10, 20, 50 percentile and mean (note that these are calculated differently than the 
variable in #8 above). 

10. Seasonal 30-year mean of largest 3-day total precipitation in each season 

Dealing with Low-Frequency Quantiles 
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For certain variables that are sampling beyond the range of the observed historical 
distribution (e.g., #8 and 9), the 0.2% and 1% exceedences are identical. This is because 
the distributions are only based on 30 values for each period. On average, creating a 
distribution from only 30 points means that there will only be one value above 95% and 
below 5%. So anything above 95% or below 5% is not robust, as this requires 
extrapolating far beyond the original data used to create the distribution. 
The function used here to fit quantiles uses an empirical distribution based on the data, 
not a theoretical distribution. More information on this routine can be found here: 
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html 
However, engineers often use a Log-Pearson distribution to fit precipitation curves. This 
distribution is theoretical rather than empirical, which means it can extrapolate beyond 
the ranges of the data used to derive the distribution. For that reason, we asked: what 
difference would it make if a Log-Pearson fit were used to calculate the quantiles of the 
distribution?  
For the quantiles contained within the range of the data, an empirical distribution is more 
accurate than fitting a theoretical distribution because it makes no assumptions regarding 
the distribution of the data. For these quantiles, differences between the two approaches 
would be a function of how well the theoretical distribution fit the empirical distribution. 
For quantiles that lie beyond the range of the data (for example, the 1st or 99th quantiles in 
a dataset that is made up of less than 99 data points), there is a significant difference 
between the two approaches. An empirical approach simply assigns an out-of-range 
quantile the most extreme value on that side of the distribution. So, for example, if the 
highest value in a distribution of 20 points were 42.5 then the value of 90th quantile and 
any higher quantile would all be set to 42.5. This method provides a highly constrained 
estimate of extreme values as it does not allow estimates beyond the range of the data 
used to derive the distribution. A theoretical distribution, on the other hand, provides 
some estimate of the shape of the tail beyond the values used to make the distribution. 
Quantile values outside the range of the data points can then be estimated based on that 
distribution. Using a theoretical distribution therefore provides an extended estimate of 
extreme values as it permits estimates beyond the range of observed (or modeled) data. 
Since the empirical approach was used to derive the quantiles in this analysis, they should 
be viewed as minimum estimates for these values. In reality, the values of quantiles 
beyond the range of the observations used to derive the distribution will be more extreme 
than the values given here. 

Indicator Robustness 
Concerns about the robustness of multiple variables were addressed by re-defining 
certain precipitation variables so as to sample from a greater part of the distribution. This 
analysis found that: 
1. Any difference between the 3 scenarios is insignificant so averaging across all 

scenarios for precipitation extremes is recommended if the calculations sample from 
only 30 points. 

2. General trends (or lack thereof) appear relatively robust for variable #7. 
The “general drop-off” in precipitation towards the end of the century originates directly 
from the projections from global climate models. Maps showing projected precipitation 

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html
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changes across the entire Southeast have been added to this report to place projections for 
the Mobile Bay area into the context of the larger geographic context. The general trends 
are for a decrease in summer precipitation balanced by an increase in fall and winter. 
Decreases become slightly stronger under higher emissions (annual average changes for 
A1fi: -6%, A2: -3%) compared to lower (annual average changes for B1: +2%). 
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