Missouri State Highway Patrol

Reconstruction Report

Table of Contents
Report Identification
Page I
Page II

Sections

Synopsis
Environmental Factors
Mechanical Factors
Human Factors
Scene Investigation
Findings
Event Analysis

Appendices

Appendix I

Appendix II
Appendix III
Appendix IV
Appendix V
Appendix VI

Page 15
Page 17
Page 21
Page 24
Page 25
Page 31

Photo log
Math Calculations
Astronomical data
Weather data
CDR File
Forensic map
\(\left.\begin{array}{l}Missouri State Highway Patrol

Reconstruction Report\end{array}\right]\)| County: | |
| :--- | :--- |
| Date: | |
| Time: | |
| Location: | |
| Drivers: | |
| Original Investigator: | Tpr. B.A. Moore, \#514, C-11 |
| Troop Reconstructionist: | N/A |
| Assisting Officer: | Cpl. K.A. Lichay, \#443, C-11 |
| Assisting Agencies: | N/A
 Level IV Reconstruction: |
| Sgt. M.H. Mahon, \#298, C-SS, ACTAR \#1054
 Major Crash Investigation Unit
 Team Two, Troop C | |
| Wentzville, Missouri | |

$\mathbf{S}_{\text {ynopsis }}$

On Wednesday, at 0911 hours, there was a two-vehicle crash on Franklin County, Missouri. This crash occurred in the city of \square. A white Chevy Malibu was traveling west on US 50 when it drove into the eastbound lane and collided with a blue Dodge Dynasty that was traveling east in the eastbound lane of US 50. The driver of the Dodge was killed in this crash. Tpr. B.A. Moore, \#514, C-11, was the original investigator.

Troop C Radio personnel notified me of this crash via telephone at 0920 hours,
I was at the office of the Missouri State Highway Patrol Major Crash Investigation Unit, Team Two, in Wentzville, Missouri. I drove to the crash scene. When I arrived at 0955 hours, I contacted Tpr. Moore and Cpl. K.A. Lichay, \#443, C-11. They explained the circumstances of the crash. I walked through the crash scene. I used paint to mark items of evidence that were relevant to this crash. I took photos at the scene and later at the tow yard. The images on CD-ROM are stored at Missouri State Highway Patrol, General Headquarters, Traffic Division, Accident Records, 1510 East Elm, P.O. Box 568, Jefferson City, Missouri. A photo log is attached as Appendix I.

Cpl. Lichay and I used a Sokkia SET 500 total station to record the data and points of evidence that were utilized to produce the diagrams attached to the original accident report and to this narrative.

Vehicles

Vehicle \#1

Vehicle \#1 was a white 2004 Chevrolet Malibu Classic four-door sedan. At the time of the crash, it was traveling west in the eastbound lane of US 50. Vehicle \#1 was demolished in this crash. It was towed from the scene by Sturm's County Wide Towing and taken to their facility at 5th and International in Washington, Missouri.

Vehicle \#2

Vehicle \#2 was a blue 1989 Dodge Dynasty four-door sedan. At the time of the crash, it was traveling east in the eastbound lane of US 50 . Vehicle \#2 was demolished in this crash. It was towed from the scene by Sturm's County Wide Towing and taken to their facility at 5th and International in Washington, Missouri.

Driver \#1

Tpr. Moore's investigation indicated that Driver \#1 was not using a seatbelt at the time of the crash. The driver's front air bag did deploy in this collision.

Driver \#2

Tpr. Moore's investigation indicated Driver \#2 was wearing a shoulder and lap belt at the time of the crash.

Passengers

At the time of the crash, there were no passengers in either vehicle.

$\mathbf{E n v i r o n m e n t a l ~ F a c t o r s ~}^{\text {a }}$

US 50 is an east/west two-lane Federal highway. It tracks from west-southwest (255°) to east-northeast $\left(75^{\circ}\right)$ in the area of the crash. The traveled portion and its shoulders are asphalt. US 50 is straight in the area of the crash. The traveled portion was approximately 23.5 ' wide. The shoulders adjacent to both sides of the traveled portion of US 50 were approximately 10.5^{\prime} wide. US 50 is maintained by the Missouri Department of Transportation.

Grade of US 50

As one views the crash scene, there is no appreciable grade in the area of the crash. Vehicle \#1 was traveling up an indistinguishable grade of 0.1 percent as it was westbound on US 50 . Data collected with the II.

Super-elevation of US 50

Near the area of impact, the westbound lane of US 50 had a super-elevation of 0.9 percent. The high point was the center of the traveled portion of the roadway. The low point was the white fog line adjacent to the right edge of the westbound lane. The super-elevation of the eastbound lane of US 50 was 1.6 percent. The high point was the center of the traveled portion of the roadway. The low point was the white fog line adjacent to the right edge of the eastbound lane. Data collected with the total station was used to calculate the super-elevation of US 50. Math calculations and formulas are included in Appendix II.

Coefficient of Friction of US 50

I used a drag tire and scale to calculate the coefficient of friction. I made three pulls in the eastbound lane adjacent to and in the direction of the skid made by Vehicle \#1. The coefficient of friction was calculated at 0.87. Math calculations and formulas are included in Appendix II.

Condition of US 50

US 50 was free from defects, debris and extraneous material in the area of the crash. The surface was overlaid with new asphalt in the late summer of 2004.

Traffic Control

The speed limit in the area of the crash was 55 miles per hour. There were no other signs or signaling devices in the area to regulate the flow of traffic. The traveled portion was divided into a westbound lane and an eastbound lane by a series of yellow center stripes that were approximately 10.0^{\prime} long and spaced approximately 30.0 ' apart. The right edges of the traveled portions were delineated from the asphalt shoulders by solid white fog lines. There were rumble strips ground into the pavement of both shoulders. Rumble strips are designed to cause vibration and noise in a vehicle that strays from the traveled portion of the highway.

Vision Obstructions

There are no natural or permanent vision obstructions in the area of the crash. There was no evidence to indicate that a temporary vision obstruction was present at the time of the crash.

Light Conditions

On the day of the crash, the sun rose at 0607 hours and set at 2010 hours. The moon rose at 0420 hours and set at 1946 hours. The moon phase was 0.03 . The sky was clear. There was no evidence to indicate the angle or azimuth of the sun was a factor in this crash.

Weather Conditions

Tpr. Moore's investigation indicated this crash occurred under clear skies. According to data archived by the National Weather Service at Spirit of St. Louis Airport, Chesterfield, Missouri, at 0900 hours on the day of the crash, the temperature was 88°. The relative humidity was 54 percent. The barometric pressure was 30.07 " Hg. The wind was from the south-southwest at 13 miles per hour. Visibility was 10 miles under mostly sunny skies.

Spirit of St. Louis Airport is approximately 22.7 miles northeast of the crash site on an azimuth of 46.46°. It was the closest weather monitoring station that I located.

echanical Factors

Vehicles

Vehicle \#1

Vehicle \#1 was a white 2004 Chevrolet Malibu Classic four-door sedan. At the time of the crash, it was traveling west in the eastbound lane of US 50. Vehicle \#1 was owned by Enterprise Rent A Car, 1512 Vandalia Street, Collinsville, Illinois. It displayed Illinois registration, \square which was to expire in December of 2005. The VIN was . Vehicle \#1 was equipped with the following tires:

Tire	Make	Size	Tread Depth	Air Pressure
Right front	Goodyear Eagle GA	P205/65R15	$6 / 32^{\prime \prime} 6 / 32^{\prime \prime} 5 / 32^{\prime \prime}$	30 psi
Left front	Goodyear Eagle GA	P205/65R15	unknown	0 psi
Right rear	Goodyear Eagle GA	P205/65R15	$6 / 32^{\prime \prime} 5 / 32 " 5 / 32 "$	0 psi
Left rear	Goodyear Eagle GA	P205/65R15	$8 / 32 " 8 / 32 " 7 / 32 "$	24 psi

Vehicle \#1 was demolished when it collided with Vehicle \#2. It was towed from the scene by Sturm's County Wide Towing and taken to their facility at 5th and International in Washington, Missouri.

Vehicle \#2

Vehicle \#2 was a blue 1989 Dodge Dynasty four-door sedan. At the time of the crash, it was traveling
odometer and certificate of inspection were obliterated by damage from the collision with Vehicle \#1. Vehicle \#2 was equipped with the following tires:

Tire	Make	Size	Tread Depth	Air Pressure
Right front	Champiro 75 Steel Belted	P195/75R14	$10 / 32 " 9 / 32 " 9 / 32 "$	34 psi
Left front	Champiro 75 Steel Belted	P195/75R14	Unknown	0 psi
Right rear	Remington Maximum	P195/75R14	$4 / 32 " 4 / 32 " 4 / 32 "$	30 psi
Left rear	GrandAm Radial STE	P195/75R14	$5 / 32 " 5 / 32 " 5 / 32 "$	26 psi

Vehicle \#2 was demolished in this crash. It was towed from the scene by Sturm's County Wide Towing and taken to their facility at 5th and International in Washington, Missouri.

Drivers

Driver \#1

There was no evidence to indicate Driver \#1 was under the influence of intoxicants or controlled substances at the time of the crash. There was no evidence to indicate Driver \#1 had a medical condition that contributed to this crash.

I am unaware if Driver \#1 was familiar with the roadway or the area of the crash. US 50 was straight and flat in the area of the crash. There is nothing in the design of the roadway or in the area of the crash that requires specific knowledge to safely operate a motor vehicle.

Driver \#1 made no statements regarding the circumstances of this crash to Tpr. Moore.

Driver \#2

There was no evidence to indicate Driver \#2 was under the influence of intoxicants or controlled substances at the time of the crash. There was no evidence to indicate Driver \#2 had a medical condition that contributed to this crash.

I am unaware if Driver \#2 was familiar with the roadway or the area of the crash. There is nothing in the design of the roadway or in the area of the crash that requires specific knowledge to safely operate a motor vehicle.

Witnesses
Witness \#1
\square
Witness \#2

Witness \#3

$\mathbf{S}_{\text {cene Investigation }}$

Cpl. Lichay and I used a Sokkia SET 5oo total station to record the data and points of evidence that were utilized to produce the diagrams attached to the original accident report and to this narrative. With regards to the accuracy of the measurements obtained with the total station, a fixed reference prism was established. The first shot taken with the total station was to that fixed reference prism. The distance recorded was 23.5^{\prime}. The last shot taken was to the fixed reference prism. The distance recorded was 23.5'. Additionally, the distance between the total station and the fixed reference prism was physically measured with a steel tape at $23^{\prime} 6^{\prime \prime}$, or 23.5^{\prime}.

There was evidence on the roadway to indicate the impact between Vehicle \#1 and Vehicle \#2 occurred astride the white fog line that delineated the eastbound lane of US 50 from the eastbound shoulder. There was a skid from the left front of Vehicle \#1 that was approximately 20.0^{\prime} long. It started approximately 1.0^{\prime} from the fog line in the eastbound lane. It crossed the fog line and ended approximately 1.0^{\prime} on the eastbound shoulder. There were scrapes and small gouges on both sides of the fog line. There was a post-impact skid and scrape from the right front tire of Vehicle \#2 that led to the impact between the guardrail and the right front fender of Vehicle \#2.

Vehicle \#1 came to rest on the traveled portion of US 50. It rotated counterclockwise from impact. The center of mass of Vehicle \#1 moved approximately 14.25^{\prime} from impact to its final position. At rest, the left front tire of Vehicle \#1 was approximately 3.0^{\prime} from the fog line separating delineating the eastbound lane from the eastbound shoulder. The right rear tire was approximately 0.8^{\prime} from the centerline and 11.5^{\prime} from the fog line delineating the eastbound lane from the eastbound shoulder. Vehicle \#1 was facing southeast. It had not been moved prior to my arrival.

Vehicle \#2 rotated counterclockwise from the area of impact. The center of mass moved approximately 18.0' from the initial impact area to the point where it was redirected when the right front fender struck the end of the guardrail. It then moved approximately 14.5^{\prime} to its final position. The right front tire was approximately 8.5^{\prime} from the edge of the eastbound shoulder. The right rear tire was approximately 14.8^{\prime} from the edge of the eastbound shoulder. It was facing northwest. Vehicle \#2 had not been moved prior to my arrival. The roof had been cut and folded by emergency personnel during the extrication of Driver \#2.

During the examination of Vehicle \#1 at the tow yard, I obtained data from the sensing diagnostic module in Vehicle \#1. It had recorded a deployment file in association with this crash. Approximately 5 seconds prior to impact, the deployment file indicated Vehicle \#1 was traveling 59 miles per hour and then increased to 61 miles per hour. It showed that within approximately 1 second of impact, Vehicle \#1 had slowed to 52 miles per hour, which is consistent with the evidence of deceleration on the roadway. The deployment file also
showed evidence of an increase of engine speed, which is consistent with a vehicle pulling out to pass or overtake other vehicles. The readings in the deployment file are consistent with Tpr. Lowe's observations. A copy of the crash data retrieval file is included in Appendix V.

$F_{\text {indings }}$

Vehicle \#1 was traveling west on US 50. Vehicle \#2 was traveling east on US 50. Vehicle \#1 had been reported as a stolen vehicle from the city of \square. Tpr. Lowe was watching for and attempting to locate Vehicle \#1. He was traveling east on US 50 when he met Vehicle \#1. As Tpr. Lowe turned around and started west on US 50, Vehicle \#1 drove into the eastbound lane, apparently to pass other westbound traffic. Vehicle \#1 collided with Vehicle \#2 as Vehicle \#2 drove onto the eastbound shoulder to avoid Vehicle \#1.

There was no physical evidence on the roadway to indicate either vehicle was exceeding the posted 55 miles per hour speed limit. The data from the event data recorded in Vehicle \#1 indicated an impact speed of approximately 52 miles per hour.

There was adequate sight distance in both directions from the area of impact. Driver \#1 should have been able to see approaching traffic and realized that passing traffic moving in the same direction was dangerous and not advisable.

$\mathbf{E}_{\text {vent Analysis }}$

This crash occurred because Driver \#1, while driving a vehicle that was reported stolen, attempted to pass a vehicle or vehicles traveling in the same direction. As he traveled into the oncoming lane during his attempt to pass, his vehicle collided with Vehicle \#2. Driver \#2 died from injuries sustained in the collision.

My observations, findings, and calculations are based on information and evidence that was available at the time this report was prepared. New information and evidence could alter these observations, findings, and calculations.

Sgt. M.H. Mahon, \#298, C-SS
Reconstructionist, ACTAR \# 1054

Reviewed by:
Cpl. A.A. Mallery, 533, C-SS
Reconstructionist, ACTAR \#1055

Original Investigating Officer: Tpr. B.A. Moore, \#514, C-11
Photographer: Sgt. M.H. Mahon, \#298, C-SS
The following is a log of digital photos taken at the crash scene, crash site, and the tow yard. The images on CD-ROM are stored at Missouri State Highway Patrol, General Headquarters, Traffic Division, Accident

Records, 1510 East Elm, P.O. Box 568, Jefferson City, Missouri.
Note: All digital image files are prefixed DSC000... The image number in the photo log corresponds to the image file number (1=DSC00001). Digital Images

1. Left front of Vehicle \#1
2. Front of Vehicle \#1
3. Right side of Vehicle \#1
4. Right rear of Vehicle \#1
5. Rear of Vehicle \#1
6. Left rear of Vehicle \#1
7. Left side of Vehicle \#1
8. Area of impact
9. Right front of Vehicle \#2
10. Front of Vehicle \#2
11. Left front of Vehicle \#2
12. Left side of Vehicle \#2
13. Left side of Vehicle \#2
14. Left rear of Vehicle \#2
15. Right rear of Vehicle \#2
16. Path of Vehicle \#2 to impact area
17. Path of Vehicle \#2 to impact area
18. Path of Vehicle \#2 to impact area
19. Path of Vehicle \#2 to impact area
20. Area of impact
21. Area of impact
22. Area of impact
23. Path of Vehicle \#2 to impact area
24. Path of Vehicle \#2 to impact area
25. Second impact of Vehicle \#2
26. Area of impact
27. Path of Vehicle \#1 to impact area
28. Path of Vehicle \#1 to impact area
29. Path of Vehicle \#1 to impact area
30. Path of Vehicle \#1 to impact area
31. Path of Vehicle \#1 to impact area
32. Area of impact
33. VIN plate of Vehicle \#2
34. Registration of Vehicle \#2
35. Registration of Vehicle \#1
36. Front of Vehicle \#1
37. VIN plate of Vehicle \#1
38. Right side of Vehicle \#1
39. Interior of Vehicle \#1
40. Left front of Vehicle \#2
41. Left front of Vehicle \#2
42. Right side of Vehicle \#2
43. Front of Vehicle \#2

Math Calculations

Sgt. Michael H. Mahon, \#298, C-SS
Missouri State Highway Patrol
599 South Mason Road
St. Louis, Missouri, 63141
Phone: 636-639-9017
Fax: 636-639-1878
E-Mail: michael.mahon@mshp.dps.mo.gov

705711581

Comments: Page 4, paragraph 1, super-elevation of US 50

* * SLOPE OF SURFACE W/ RISE AND RUN * *
$\mathrm{m} / \mathrm{e}=\frac{\text { Rise }}{\text { Run }}$
$\mathrm{m} / \mathrm{e}=\frac{0.1200}{12.2540}$
$\mathrm{~m} / \mathrm{e}=0.0097$
$\circ=\operatorname{lnvTan}(\mathrm{m} / \mathrm{e})$
${ }^{\circ}=\operatorname{lnvTan}(0.0097)$
$\circ=0.5557$
$\mathrm{m} / \mathrm{e}=$ the Slope of the surface.
Rise $=$ The Rise in feet.
Run $=$ The Run in feet.
0.1200

INPUTS:	
The Rise in Feet is:	0.1200
The Run in Feet is:	12.2540

RESULTS:	
The Percentage of Grade is:	0.0097
The Degrees of Grade is:	0.5557

Sgt. Michael H. Mahon, \#298, C-SS
Missouri State Highway Patrol
599 South Mason Road
St. Louis, Missouri, 63141
Phone: 636-639-9017
Fax: 636-639-1878
E-Mail: michael.mahon@mshp.dps.mo.gov
705711581

Comments: Page 4, paragraph 1, super-elevation of US 50

* * SLOPE OF SURFACE W/ RISE AND RUN * *

$\mathrm{m} / \mathrm{e}=$ the Slope of the surface.
Rise $=$ The Rise in feet.
Run $=$ The Run in feet.

INPUTS:	
The Rise in Feet is:	0.1720
The Run in Feet is:	10.7340

RESULTS:	
The Percentage of Grade is:	0.0160
The Degrees of Grade is:	0.9166

Sgt. Michael H. Mahon, \#298, C-SS
Missouri State Highway Patrol
599 South Mason Road
St. Louis, Missouri, 63141
Phone: 636-639-9017
Fax: 636-639-1878
E-Mail: michael.mahon@mshp.dps.mo.gov

705711581

Comments: Page 4, paragraph 2, coefficient of friction of US 50

* * AVERAGE DRAG FACTOR * *

$$
\begin{aligned}
& f=\frac{F}{W} \\
& f=\frac{29.3000}{33.5000} f=\frac{29.5000}{33.5000} f=\frac{29.3000}{33.5000} \\
& f=0.8746 \quad f=0.8805 \quad f=0.8746
\end{aligned}
$$

$$
\text { Sum of DF's }=0.8746+0.8805+0.8746
$$

$$
\text { Sum of DF's = } 2.6297
$$

$\begin{aligned} & \text { af }=\frac{\text { Sum of DF's }}{\text { \# of DF's }} \\ & \text { af }=0.8765 \end{aligned}$	2.6297	af $=$ The Average Drag Factor.	
	3		
INPUTS:		RESULTS:	
The Drag Sled Weight in Pounds is:	33.5000	The Average Drag Factor is:	0.8765
The Sum of the DF's is:	2.6297		
The \# of DF's is:	3.0000		
Sgt. Michael H. Mahon, \#298, C-SS Missouri State Highway Patrol 599 South Mason Road St. Louis, Missouri, 63141 Phone: 636-639-9017 Fax: 636-639-1878			

705711581

Astronomical Data

Sunrise and Sunset
Latitude $=38.26 .065$ North, Longitude $=90.57 .448$ West

$$
\text { Zone }=6 \quad \text { Savings }=\text { Yes } \quad \text { Twilight }=\text { Civil }
$$

** SunTimes ** - Zephyr Services, 1900 Murray Ave., Pittsburgh PA 15217

Moonrise and Moonset
Latitude $=\begin{gathered}38.26 .065 \\ \text { Zone }=6\end{gathered}$ North, Longitude $=90.57 .448$ West Zone = $6 \quad$ Savings $=$ Yes

eather Data

Union, MO Past 24 Hours										
Union. MO is your default location. (What is this?) English \| Metric									目	?
Past 24 Hours from $6 p$ (Reports from St Louis Intl Arp.										
Time	Temp (${ }^{\circ}$ F)	RealFeel (${ }^{\circ}$ F)	Rel. Hum.	Wind Dir.	Wind Spd.	Press. (in)	Precip. (in)	Vis. (mi)	Weather	
6 pm	92	89	35	S	11	29.99	0.00	7	M/Sunny	
7 pm	90	88	43		11	30.00	0.00	7	M/Clear	
8 pm	89	89	47	SSE	10	30.01	0.00	10	Clear	
9 pm	86	86	52	SSE	10	30.01	0.00	10	Clear	
10 pm	85	86	56	SSE	9	30.02	0.00	10	Clear	
11pm	83	83	60	S	12	30.02	0.00	10	Clear	
Mid	81	82	66		9	30.02	0.00	10	Clear	
1 am	80	82	68	S	6	30.02	0.00	9	Clear	
2 am	79	82	71	SSW	4	30.02	0.00	8	Clear	
3 am	78	81		SSW	5	30.02	0.00	7	Clear	
4 am	77	79	76	S	7	30.02	0.00	6	Clear	
5 am	76	79	79	SSW	4	30.04	0.00	6	M/Sunny	
6 am	76	79	81	S	7	30.05	0.00	6	M/Sunny	
7 am	81	85	68	SSW	7	30.06	0.00	6	M/Sunny	
8 m	85	88		SSW	12	30.08	0.00	8	M/Sunny	
9 am	88	92	54	SSW	13	30.07	0.00	9	M/Sunny	
10am	91	97		SW	10	30.06	0.00	9	Sunny	
11am	93	99		SSW	7	30.05	0.00	9	M/Sunny	
Noon	95	97	33		13	30.02	0.00	9	M/Sunny	
1 pm	95	101	36		7	30.01	0.00	9	M/Sunny	
2 pm	97	100	35		12	29.99	0.00	9	M/Sunny	
3 pm	96	97	36	SE	14	29.98	0.00	9	M/Sunny	
4pm	96	96	35	SE	16	29.97	0.00	9	P/Sunny	
5 pm	94	93	38	SSE	13	29.96	0.00	9	M/Sunny	
Past 24 Hour Totals High Temperature: $97^{\circ} \mathrm{F}$ (at 2 pm), Low Temperature: $76^{\circ} \mathrm{F}$ (at 5am) Average Temperature: $87^{\circ} \mathrm{F}$, Total Precipitation: 0.00 in										

DR File

CDR File Information

Vehicle Identification Number	
Investigator	
Case Number	
Investigation Date	
Crash Date	
Filename	
Saved on	
Collected with CDR version	Crash Data Retrieval Tool 2.710
Collecting program verification number	3F8F669A
Reported with CDR version	Crash Data Retrieval Tool 2.710
Reporting program verification number	3F8F669A
Interface used to collected data	Block number: 00 Interface version: 42 Date: 03-10-05 Crecksum: 1300
Event(s) recovered	Deployment Non-Deployment

SDM Data Limitations

SDM Recorded Crash Events:

There are two types of SDM recorded crash events. The first is the Non-Deployment Event. A Non-Deployment Event is an event severe enough to "wake up" the sensing algorithm but not severe enough to deploy the air bag(s). It contains Pre-Crash and Crash data. The SDM can store up to one Non-Deployment Event. This event may be overwritten by another Non-Deployment event This event will be cleared by the SDM after the ignition has been cycled 250 times.
The second type of SDM recorded crash event is the Deployment Event. It also contains Pre-Crash and Crash data. The SDM can store up to two different Deployment Events, if they occur within five seconds of one another. Deployment events cannot be overwritten or cleared from the SDM. Once the SDM has deployed the air bag, the SDM must be replaced.
The data in the non-deployment file will be locked after a deployment, if the non-deployment occurred within 5 seconds before the deployment or a deployment level event occurs within 5 seconds after the deployment.

SDM Data Limitations:
-SDM Recorded Vehicle Forward Velocity Change is one of the measures used to make air bag deployment decisions. SDM Recorded Vehicle Forward Velocity Change reflects the change in forward velocity that the sensing system experienced during the recorded portion of the event. SDM Recorded Vehicle Forward Velocity Change is the change in velocity during the recording time and is not the speed the vehicle was traveling before the event, and is also not the Barrier Equivalent Velocity. This data should be examined in conjunction with other available physical evidence from the vehicle and scene when assessing occupant or vehicle forward velocity change. For deployments and deployment level events, the SDM will record 100 miliseconds of data after deployment criteria is met and up to 50 milliseconds before deployment criteria is met. For non-deployments, the SDM will record the first 150 milliseconds of data after algorithm enable.
-SDM Recorded Vehicle Speed accuracy can be affected if the vehicle has had the tire size or the final drive axle ratio changed from the factory build specifications.
-Brake Switch Circuit Status indicates the status of the brake switch circuit
-Pre-Crash Electronic Data Validity Check Status indicates "Data Invalid" if the SDM does not receive a valid message
-Driver's Belt Switch Circuit Status indicates the status of the driver's seat belt switch circuit

- Passenger Front Air Bag Suppression Switch Circuit Status indicates the status of the suppression switch circuit.
-The Time Between Non-Deployment and Deployment Events is displayed in seconds. If the time between the two events is greater than five seconds, "N/A" is displayed in place of the time.
-If power to the SDM is lost during a crash event, all or part of the crash record may not be recorded.
SDM Data Source:
All SDM recorded data is measured, calculated, and stored internally, except for the following:
-Vehicle Speed, Engine Speed, and Percent Throttle data are transmitted once a second by the Powertrain Control Module (PCM), via the Class 2 data link, to the SDM.
-Brake Switch Circuit Status data is transmitted once a second by either the ABS module or the PCM, via the Class 2 data link, to the SDM. Depending on vehicle option content, the Brake Switch Circuit Status data may not be available.
-If the vehicle is a 2000-2002 Chevrolet Cavalier Z24 or a Pontiac Sunfire GT, with a manual transmission (RPO MM5) and a 2.4L engine (RPO LD9), the Brake Switch Circuit Status data will be reported in the opposite state than what actually occurred, e.g. an actual brake switch status of "ON" will be reported as "OFF".
-In most vehicles, the Driver's Belt Switch Circuit is wired directly to the SDM. In some vehicles, the Driver's Belt Switch Circuit Status data is transmitted from the Body Control Module (BCM), via the Class 2 data link, to the SDM.
-The Passenger Front Air Bag Suppression Switch Circuit is wired directly to the SDM.

System Status At Deployment

SIR Warning Lamp Status
OFF
Driver's Belt Switch Circuit Status

tus	OFF
ression Switch Circuit Status	UNBUCKLED
	Air Bag Not
	Suppressed
	3075
ard Velocity Change (MPH)	3076
SDM Recrded Velocity Change (msec)	-34.17
nt And Deployment Events (sec)	107.5
Deployment Command Criteria Met (msec)	.1

Seconds Before AE	Vehicle Speed (MPH)	Engine Speed (RPM)	Percent Throttle	Brake Switch Circuit Status
-5	59	2816	80	OFF
-4	60	3456	0	OFF
-3	60	3712	89	OFF
-2	61	3008	0	ON
-1	52	1984	0	ON

Time (milliseconds)	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
SDM Recorded Velocity Change	-1.32	-3.95	-5.70	-9.65	-14.92	-21.06	-25.01	-28.08	-30.72	-32.91	-3379	N/A	N/A	NA	N/A

System Status At Non-Deployment

SIR Warning Lamp Status

Driver's Belt Switch Circuit Statu
Passenger Front Air Bag Suppression Switch Circuit Status Air Bag Not Suppressed
Ignition Cycles At Non-Deployment
Ignition Cycles At Investigation
Maximum SDM Algorithm Forward Velocity Change (MPH)
Algorithm Enable to Maximum SDM Recorded Velocity Change (msec)

Seconds Before AE	Vehicle Speed (MPH)	Engine Speed (RPM)	Percent Throttle	Brake Switch Circuit Status
-5	68	2496	14	OFF
-4	68	2496	14	OFF
-3	68	2496	14	OFF
-2	68	2496	25	OFF
-1	66	2432	25	OFF

Time (rilliseconds)	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
SDM Recorded Velocity Change	0.00	0.00	0.00	0.00	-0.44	-0.44	-0.44	-0.44	-0.44	-0.88	-0.88	$-\mathbf{- 1 . 3 2}$	-1.32	-1.32	-1.32

Hexadecimal Data

This page displays all the data retrieved from the air bag module. It contains data that is not converted by this program.

$\$ 01$	08	23	00	00		
$\$ 02$	95	26				
$\$ 03$	41	53	34	30	37	36
$\$ 04$	4 B	54	4 B	34	37	33
$\$ 05$	00					
$\$ 06$	22	67	41	00		
$\$ 10$	FE	7 F	FO			
$\$ 11$	A	AA	AA	E 3	B 2	00
$\$ 14$	03	04	2 B	80		
$\$ 18$	88	85	90	BC	FF	00
$\$ 1 \mathrm{C}$	FA	32	4 E	FA	FA	FA
$\$ 1 \mathrm{D}$	FA	FA	32	4 E	FA	FA
$\$ 1 \mathrm{E}$	FA	FA				
$\$ 1 \mathrm{~F}$	FF	02	00	00	00	
$\$ 20$	AO	00	00	FF	27	FO
$\$ 21$	FF	FF	FF	FF	FF	FF
$\$ 22$	FF	FF	FF	FF	FF	FF
$\$ 23$	FF	00	00	7 E	00	00
$\$ 24$	00	00	00	01	01	01
$\$ 25$	01	01	02	02	03	03
$\$ 26$	03	03	00	6 A	6 D	6 E
$\$ 27$	6 E	6 E	00	00	00	41
$\$ 28$	41	24	24	24	00	26
$\$ 29$	27	27	27	27	00	FE
$\$ 2 \mathrm{~A}$	$\mathrm{B7}$	FC	FF	FF	FF	FF
$\$ 2 \mathrm{~B}$	FF	FF	FF	00	00	00
$\$ 2 \mathrm{C}$	00	00	00	00		
$\$ 2 \mathrm{D}$	28	11	27	00		
$\$ 30$	AO	00	00	FF	27	FO
$\$ 31$	FF	BF	FF	FF	FF	FF
$\$ 32$	FF	FF	FF	FF	FF	FF
$\$ 33$	7 C	08	03	00	03	09
$\$ 34$	0 D	16	22	30	39	40
$\$ 35$	46	4 B	4 D	FF	FF	FF
$\$ 36$	FF	0 B	56	09	BE	53
$\$ 37$	62	61	61	5 F	00	CO
$\$ 38$	00	00	00	E 2	00	CC
$\$ 39$	00	1 F	2 F	3 A	36	2 C
$\$ 3 \mathrm{~A}$	00	FE	7 F	FB	31	00
$\$ 3 \mathrm{~F}$	00	40	00			
$\$ 3 \mathrm{C}$	04	2 B	56	2 B		
$\$ 40$	FF	FF	FF	FF	FF	FF
$\$ 41$	FF	FF	FF	FF	FF	FF
$\$ 42$	FF	FF	FF	FF	FF	FF
$\$ 43$						
$\$ 3$						

orensic Map


```
C:\Reconstructions\2005\0803c\0803c\0803C Job Description:
16:25:58 Page No.: }
```

1 N :	0.000 E :	$0.000 \mathrm{El}: 100$	0.000 D: TS
100 N :	1.261 E:	23.435 El:	98.829 D: RP
101 N :	157.006 E :	281.422 El:	96.464 D: GR
102 N :	156.981 E :	281.378 El:	96.466 D: EP
103 N :	146.709 E :	283.838 El:	96.938 D: WL
104 N:	113.983 E :	291.741 El:	96.575 D: EP
105 N :	113.983 E:	291.741 El :	96.575 D: GR
106 N :	124.262 E :	288.541 El:	96.911 D: WL
107 N :	56.898 E:	81.007 El :	97.002 D: GR
108 N:	126.187 E :	164.746 El :	96.837 D: GR
109 N :	90.879 E:	38.420 El:	97.121 D: EP
110 N :	81.849 E:	40.588 El:	97.360 D: WL
111 N :	59.397 E:	45.460 El:	97.308 D: WL
112 N :	48.972 E:	48.565 El:	97.051 D: EP
113 N :	40.978 E:	-153.751 El:	97.181 D: EP
114 N :	31.079 E:	-149.285 El:	97.524 D: WL
115 N :	19.953 E :	-144.990 El:	97.697 D: LL
116 N :	9.393 E:	-141.012 El:	97.453 D : WL
117 N :	-0.989 E:	-137.689 El:	97.268 D: EP
118 N :	69.809 E :	42.869 El:	97.480 D: LL
119 N :	77.397 E:	49.261 El:	$97.455 \mathrm{D}:$ VB
120 N :	74.603 E :	45.111 El:	$97.458 \mathrm{D}:$ VB
121 N :	71.732 E :	46.916 El:	$97.507 \mathrm{D}: 11 \mathrm{R}$
122 N :	75.235 E:	51.392 El :	$97.432 \mathrm{D}: 11 \mathrm{R}$
123 N :	70.170 E:	55.106 El :	97.428 D: 11R
124 N :	64.612 E :	53.058 El:	97.358 D: 11R
125 N :	64.167 E :	54.495 El:	$97.337 \mathrm{D}:$ VB
126 N :	69.214 E :	56.948 El:	$97.406 \mathrm{D}:$ VB
127 N :	62.678 E:	62.044 El :	97.201 D: S1
128 N :	69.984 E :	80.575 El:	97.264 D: S1
129 N :	66.099 E:	59.267 El:	97.357 D: GM
130 N :	66.433 E:	60.255 El:	97.325 D: GM
131 N :	65.888 E:	62.197 El :	97.293 D: GM
132 N :	62.972 E :	60.311 El:	97.264 D: SC
133 N :	63.417 E :	60.946 El:	97.279 D: SC
134 N :	63.534 E :	61.834 El:	$97.286 \mathrm{D}:$ SC
135 N :	65.878 E:	61.478 El:	$97.312 \mathrm{D}:$ SC
136 N :	65.703 E :	62.189 El :	97.301 D: SC
137 N :	66.189 E:	62.417 El:	$97.283 \mathrm{D}:$ SC
138 N :	66.044 E:	62.732 El:	97.308 D: SC
139 N :	61.976 E:	58.847 El:	$97.256 \mathrm{D}:$ SC
140 N :	61.448 E:	59.770 El:	97.245 D: SC
141 N :	57.333 E :	71.695 El:	97.058 D: SC
142 N :	56.819 E:	74.306 El :	97.022 D: SC
143 N :	56.999 E:	76.341 El:	97.070 D: S1
144 N :	57.831 E:	69.000 El :	97.096 D: S1
145 N :	129.107 E :	266.217 El:	97.116 D : LL
146 N :	139.511 E :	304.297 El:	97.041 D: LL
147 N :	38.229 E :	87.386 El:	$91.762 \mathrm{D}:$ VB
148 N :	42.738 E:	90.100 El:	$91.800 \mathrm{D}:$ VB

149 N:	47.889 E:	80.630 El:	$94.082 \mathrm{D}:$ VB	
150 N :	48.418 E:	79.345 El:	94.444 D: VB	
151 N:	47.803 E:	75.310 El:	$94.720 \mathrm{D}:$ VB	
152 N:	45.206 E:	76.057 El:	93.681 D: VB	
153 N :	42.072 E:	77.769 El:	92.843 D: VB	
$\begin{gathered} 154 \mathrm{~N}: \\ 16: 25: 58 \end{gathered}$	39.810 E:	84.512 El:	$91.928 \text { D: } \underset{\text { Pag }}{11 \mathrm{~L}}$	Job Description:
155 N:	44.757 E :	87.109 El :	92.508 D : 11L	
156 N :	48.508 E:	79.040 El:	$94.408 \mathrm{D}: 11 \mathrm{~L}$	
157 N :	43.956 E:	80.248 El:	$92.807 \mathrm{D}: 11 \mathrm{~L}$	
158 N:	1.255 E:	23.426 El:	98.830 D: RM	

Traverse Print Out

138	43.3135	91.140	91.5543	0.000	0.000	5.100	SC
139	43.3059	85.520	92.0525	0.000	0.000	5.100	SC
S							

CDR File Information

Vehicle Identification Number
Investigator
Case Number
Investigation Date
Crash Date
Filename
Saved on
Collected with CDR version
Collecting program verification number
Reported with CDR version
Reporting program verification number
Interface used to collected data
Block number: 00 Interface version: 42 Date: 03-10-05 Checksum: 1300
Event(s) recovered

SDM Data Limitations

SDM Recorded Crash Events:
There are two types of SDM recorded crash events. The first is the Non-Deployment Event. A Non-Deployment Event is an event severe enough to "wake up" the sensing algorithm but not severe enough to deploy the air bag(s). It contains Pre-Crash and Crash data. The SDM can store up to one Non-Deployment Event. This event may be overwritten by another Non-Deployment event. This event will be cleared by the SDM after the ignition has been cycled 250 times.
The second type of SDM recorded crash event is the Deployment Event. It also contains Pre-Crash and Crash data. The SDM can store up to two different Deployment Events, if they occur within five seconds of one another. Deployment events cannot be overwritten or cleared from the SDM. Once the SDM has deployed the air bag, the SDM must be replaced.
The data in the non-deployment file will be locked after a deployment, if the non-deployment occurred within 5 seconds before the deployment or a deployment level event occurs within 5 seconds after the deployment.

SDM Data Limitations:

-SDM Recorded Vehicle Forward Velocity Change is one of the measures used to make air bag deployment decisions. SDM Recorded Vehicle Forward Velocity Change reflects the change in forward velocity that the sensing system experienced during the recorded portion of the event. SDM Recorded Vehicle Forward Velocity Change is the change in velocity during the recording time and is not the speed the vehicle was traveling before the event, and is also not the Barrier Equivalent Velocity. This data should be examined in conjunction with other available physical evidence from the vehicle and scene when assessing occupant or vehicle forward velocity change. For deployments and deployment level events, the SDM will record 100 milliseconds of data after deployment criteria is met and up to 50 milliseconds before deployment criteria is met. For non-deployments, the SDM will record the first 150 milliseconds of data after algorithm enable.
-SDM Recorded Vehicle Speed accuracy can be affected if the vehicle has had the tire size or the final drive axle ratio changed from the factory build specifications.
-Brake Switch Circuit Status indicates the status of the brake switch circuit.
-Pre-Crash Electronic Data Validity Check Status indicates "Data Invalid" if the SDM does not receive a valid message.
-Driver's Belt Switch Circuit Status indicates the status of the driver's seat belt switch circuit
-Passenger Front Air Bag Suppression Switch Circuit Status indicates the status of the suppression switch circuit.
-The Time Between Non-Deployment and Deployment Events is displayed in seconds. If the time between the two events is greater than five seconds, "N/A" is displayed in place of the time.
-If power to the SDM is lost during a crash event, all or part of the crash record may not be recorded.

SDM Data Source:

All SDM recorded data is measured, calculated, and stored internally, except for the following:
-Vehicle Speed, Engine Speed, and Percent Throttle data are transmitted once a second by the Powertrain Control Module (PCM), via the Class 2 data link, to the SDM.
-Brake Switch Circuit Status data is transmitted once a second by either the ABS module or the PCM, via the Class 2 data link, to the SDM. Depending on vehicle option content, the Brake Switch Circuit Status data may not be available.
-If the vehicle is a 2000-2002 Chevrolet Cavalier Z24 or a Pontiac Sunfire GT, with a manual transmission (RPO MM5) and a 2.4L engine (RPO LD9), the Brake Switch Circuit Status data will be reported in the opposite state than what actually occurred, e.g. an actual brake switch status of "ON" will be reported as "OFF".
-In most vehicles, the Driver's Belt Switch Circuit is wired directly to the SDM. In some vehicles, the Driver's Belt Switch Circuit Status data is transmitted from the Body Control Module (BCM), via the Class 2 data link, to the SDM.
-The Passenger Front Air Bag Suppression Switch Circuit is wired directly to the SDM.

System Status At Deployment

SIR Warning Lamp Status	OFF
Driver's Belt Switch Circuit Status	UNBUCKLED
Passenger Front Air Bag Suppression Switch Circuit Status	Air Bag Not
Suppressed	
Ignition Cycles At Deployment	3075
Ignition Cycles At Investigation	3076
Maximum SDM Algorithm Forward Velocity Change (MPH)	-34.17
Algorithm Enable to Maximum SDM Recorded Velocity Change (msec)	107.5
Time Between Non-Deployment And Deployment Events (sec)	1
Time From Algorithm Enable to Deployment Command Criteria Met (msec)	10

Seconds Before AE	Vehicle Speed (MPH)	Engine Speed (RPM)	Percent Throttle	Brake Switch Circuit Status
-5	59	2816	80	OFF
-4	60	3456	0	OFF
-3	60	3712	89	OFF
-2	61	3008	0	ON
-1	52	1984	0	ON

Time (milliseconds)	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
SDM Recorded Velocity Change	-1.32	-395	-5.70	-9.65	-14.92	-2106	-25.01	-2808	-30.72	-32.91	-33.79	N/A	N/A	N/A	N/A

System Status At Non-Deployment

SIR Warning Lamp Status	OFF
Driver's Belt Switch Circuit Status	UNBUCKLED
Passenger Front Air Bag Suppression Switch Circuit Status	Air Bag Not
Suppressed	
Ignition Cycles At Non-Deployment	3010
Ignition Cycles At Investigation	3076
Maximum SDM Algorithm Forward Velocity Change (MPH)	-1.73
Algorithm Enable to Maximum SDM Recorded Velocity Change (msec)	100

Seconds Before AE	Vehicle Speed (MPH)	Engine Speed (RPM)	Percent Throttle	Brake Switch Circuit Status
-5	68	2496	14	OFF
-4	68	2496	14	OFF
-3	68	2496	14	OFF
-2	68	2496	25	OFF
-1	66	2432	25	OFF

Time (milliseconds)	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
SDM Recorded Velocity Change	0.00	000	0.00	0.00	-0.44	-0.44	-0.44	-0.44	-0.44	-088	-0.88	-132	-132	-1.32	-132

Hexadecimal Data

This page displays all the data retrieved from the air bag module. It contains data that is not converted by this program.

01	08	23	00	00		
\$02	95	26				
\$03	41	53	34	30	3	36
\$04	4B	54	4B	34	37	33
\$05	00					
\$06	22	67	41	00		
\$10	FE	7 F	F0			
\$11	A7	AA	AA	E3	B2	00
\$14	03	04	2B	80		
\$18	88	85	90	BC	FF	0
\$1C	FA	32	4 E	FA	FA	A
\$1D	FA	FA	32	4 E	F	A
\$1E	FA	FA				
\$1F	FF	02	00	00	0	
\$20	A0	00	00	FF	27	O
\$21	FF	FF	FF	FF	F	FF
\$22	FF	FF	FF	FF	F	FF
\$23	FF	00	00	7E	0	00
\$24	00	00	00	01	01	1
\$25	01	01	02	02	03	03
\$26	03	03	00	6A	6D	E
\$27	6E	6E	00	00	00	41
\$28	41	24	24	24	00	26
\$29	27	27	27	27	00	FE
\$2A	87	FC	FF	FF	F	F
\$2B	FF	FF	FF	00	0	0
\$2C	00	00	00	00		
\$2D	28	11	27	00		
\$30	A0	00	00	FF	27	FO
\$31	FF	BF	FF	FF	FF	FF
\$32	FF	FF	FF	FF	FF	FF
\$33	7 C	08	03	00	03	09
\$34	OD	16	22	30	39	40
\$35	46	4B	4D	FF	F	FF
\$36	FF	OB	56	09	BE	53
\$37	62	61	61	5F	00	C0
\$38	00	00	00	E2	00	CC
\$39	00	1 F	2 F	3A	36	2C
\$3A	00	FE	7F	F8	3	00
\$3B	00	40	00			
\$3C	04	2B	56	2B		
\$40	FF	FF	FF	FF	FF	FF
\$ 41	FF	FF	FF	FF	FF	FF
\$42	FF	FF	FF	FF	FF	FF
\$43	FF					


```
Continue File 05-0803C036 2-10.raw 10:31:50
Parameters
Display Format : N Azimuth
Surface to Grid: 1.000000000
Angle Sets Tolerance 0.0"
Reciprocal Angles OFF
Correct Curv. & Refract. OFF
Distance Units FEET
Project Info
Control Number: 38.26.065
Project Number: 90.57.448
Project Name :
Project Scope :
Crew :
Instrument :
Serial Num. :
Temperature :
Pressure :
PPM's : 0
Occupy Point
```


BS POINT

```
ID :100
Desc:RP
Elev:98.829
N E:1.2615 23.4352
OCC POINT
ID :1
Desc:TS
Elev:100.000
N E:0.0000 0.0000
BS Bearing: N 86-55-08.0 E
IH : 5.475
10:34:01 8/3/05
New Backsight for Sideshots
IH: 5.475
HAng: 86.55080 SDist: 23.52
HzDst: 23.47 VtDst: -1.55
```


Standard Sideshot
ID :101
Desc:GR
Fig :1
HAng: 60.50340 SDist: 322.28
HzDst: 322.26 VtDst: -3.91
VAng: 90.41430 TH: 5.10
Angle RT:333.5526

Standard Sideshot
ID :102
Desc:EP
Fig :2
HAng: 60.50340 SDist: 322.23
HzDst: 322.21 VtDst: -3.91
VAng: 90.41420 TH: 5.10
Angle RT:333.5526

Standard Sideshot

ID :103
Desc:WL
Fig :3
HAng: 62.40000 SDist: 319.53
HzDst: 319.51 VtDst: -3.44
VAng: 90.36590 TH: 5.10
Angle RT:335.4452

Standard Sideshot
ID :104
Desc:EP
Fig :4
HAng: 68.39340 SDist: 313.24
HzDst: 313.22 VtDst: -3.80
VAng: 90.41420 TH: 5.10
Angle RT:341.4426

Standard Sideshot
ID :105
Desc:GR
Fig :5
HAng: 68.39340 SDist: 313.24
HzDst: 313.22 VtDst: -3.80

Angle RT:341.4426

Standard Sideshot
ID :106
Desc:WL
Fig :6
HAng: 66.42020 SDist: 314.18
HzDst: 314.16 VtDst: -3.46
VAng: 90.37540 TH: 5.10
Angle RT:339.4654

Standard Sideshot
ID :107
Desc:GR
Fig :5
HAng: 54.54590 SDist: 99.05
HzDst: 98.99 VtDst: -3.37
VAng: 91.57050 TH: 5.10
Angle RT:327.5951

Standard Sideshot
ID :108
Desc:GR
Fig :1
HAng: 52.32590 SDist: 207.55
HzDst: 207.52 VtDst: -3.54
VAng: 90.58360 TH: 5.10
Angle RT:325.3751

Standard Sideshot
ID :109
Desc:EP
Fig :2
HAng: 22.55010 SDist: 98.72
HzDst: 98.67 VtDst: -3.25
VAng: 91.53200 TH: 5.10
Angle RT:295.5953

Standard Sideshot
ID :110
Desc:WL
Fig :3
HAng: 26.22350 SDist: 91.41

HzDst: 91.36 VtDst: -3.01
VAng: 91.53240 TH: 5.10
Angle RT:299.2727

Standard Sideshot
ID :111
Desc:WL
Fig :6
HAng: 37.25450 SDist: 74.86
HzDst: 74.80 VtDst: -3.07
VAng: 92.20530 TH: 5.10
Angle RT:310.3037

Standard Sideshot
ID :112
Desc:EP
Fig :4
HAng: 44.45390 SDist: 69.05
HzDst: 68.97 VtDst: -3.32
VAng: 92.45320 TH: 5.10
Angle RT:317.5031

Standard Sideshot
ID :113
Desc:EP
Fig :2
HAng:284.55250 SDist: 159.15
HzDst: 159.12 VtDst: -3.19
VAng: 91.09000 TH: 5.10
Angle RT:198.0017

Standard Sideshot
ID :114
Desc:EP
Fig :2
HAng:281.45360 SDist: 152.34
HzDst: 152.34 VtDst: -1.15
VAng: 90.25560 TH: 6.80
Angle RT:194.5028

Previous SS Bad

Standard Sideshot

```
ID :114
```

Desc:WL
Fig :3
HAng:281.45370 SDist: 152.49
HzDst: 152.49 VtDst: -1.15
VAng: 90.25570 TH: 6.80
Angle RT:194.5029

Standard Sideshot
ID :115
Desc:LL
Fig :7
HAng:277.50080 SDist: 146.36
HzDst: 146.36 VtDst: -0.98
VAng: 90.22580 TH: 6.80
Angle RT:190.5500

Standard Sideshot
ID :116
Desc:WL
Fig :6
HAng:273.48390 SDist: 141.33
HzDst: 141.32 VtDst: -1.22
VAng: 90.29440 TH: 6.80
Angle RT:186.5331

Standard Sideshot
ID :117
Desc:EP
Fig :4
HAng:269.35180 SDist: 137.70
HzDst: 137.69 VtDst: -1.41
VAng: 90.35080 TH: 6.80
Angle RT:182.4010

Standard Sideshot
ID :118
Desc:LL
Fig :7
HAng: 31.33140 SDist: 81.93
HzDst: 81.92 VtDst: -1.20
VAng: 90.50090 TH: 6.80
Angle RT:304.3806

```
Standard Sideshot
ID :119
Desc:VB
Fig :8
HAng: 32.28320 SDist: 91.79
HzDst: 91.74 VtDst: -2.92
VAng: 91.49230 TH: 5.10
Angle RT:305.3324
Standard Sideshot
ID :120
Desc:VB
Fig :8
HAng: 31.09370 SDist: 87.23
HzDst: 87.18 VtDst: -2.92
VAng: 91.54590 TH: 5.10
Angle RT:304.1429
Standard Sideshot
ID :121
Desc:11R
Fig :8
HAng: 33.11120 SDist: 85.76
HzDst: 85.71 VtDst: -2.87
VAng: 91.55000 TH: 5.10
Angle RT:306.1604
Standard Sideshot
ID :122
Desc:11R
Fig :8
HAng: 34.20120 SDist: 91.16
HzDst: 91.11 VtDst: -2.94
VAng: 91.51000 TH: 5.10
Angle RT:307.2504
Standard Sideshot
ID :123
Desc:11R
Fig :8
HAng: 38.08350 SDist: 89.27
HzDst: 89.22 VtDst: --2.95
VAng: 91.53310 TH: 5.10
Angle RT:311.1327
```

```
Standard Sideshot
ID :124
Desc:11R
Fig :8
HAng: 39.23310 SDist: 83.66
HzDst: 83.61 VtDst: -3.02
VAng: 92.04000 TH: 5.10
Angle RT:312.2823
Standard Sideshot
ID :125
Desc:VB
Fig :8
HAng: 40.20250 SDist: 84.24
HzDst: 84.19 VtDst: -3.04
VAng: 92.04010 TH: 5.10
Angle RT:313.2517
--------
Standard Sideshot
ID :126
Desc:VB
Fig :8
HAng: 39.26490 SDist: }89.6
HzDst: 89.63 VtDst: --2.97
VAng: 91.53510 TH: 5.10
Angle RT:312.3141
Standard Sideshot
ID :127
Desc:S1
Fig :9
HAng: 44.42330 SDist: 88.25
HzDst: 88.19 VtDst: -3.17
VAng: 92.03390 TH: 5.10
Angle RT:317.4725
Standard Sideshot
ID :128
Desc:S1
Fig :9
HAng: 49.01250 SDist: 106.77
HzDst: 106.72 VtDst: -3.11
VAng: 91.40110 TH: 5.10
Angle RT:322.0617
```

Standard Sideshot
ID :129
Desc:GM
Fig :10
HAng: 41.52510 SDist: 88.83
HzDst: 88.78 VtDst: -3.02
VAng: 91.56500 TH: 5.10
Angle RT:314.5743
Standard Sideshot
ID :130
Desc:GM
Fig :10
HAng: 42.12290 SDist: 89.74
HzDst: 89.69 VtDst: -3.05
VAng: 91.56510 TH: 5.10
Angle RT:315.1721
Standard Sideshot
ID :131
Desc:GM
Fig :10
HAng: 43.20570 SDist: 90.66
HzDst: 90.61 VtDst: -3.08
VAng: 91.56540 TH: 5.10
Angle RT:316.2549
Continue File 05-0803C036 2-10.raw 11:05
Parameters
Display Format : N Azimuth
Surface to Grid: 1.000000000
Angle Sets Tolerance 0.0"
Reciprocal Angles OFF
Correct Curv. \& Refract. OFF
Distance Units FEET
Standard Sideshot
ID :132
Desc:SC
Fig :11

$$
\text { HAng: 43.45500 SDist: } 87.25
$$

HzDst: 87.19 VtDst: -3.11
VAng: 92.02360 TH: 5.10
Angle RT:316.5042

Standard Sideshot
ID :133
Desc:SC
Fig :11
HAng: 43.51430 SDist: 88.01
HzDst: 87.96 VtDst: -3.10
VAng: 92.00570 TH: 5.10
Angle RT:316.5635

Standard Sideshot
ID :134
Desc:SC
Fig :11
HAng: 44.13230 SDist: 88.71
HzDst: 88.66 VtDst: -3.09
VAng: 91.59450 TH: 5.10
Angle RT:317.1815

Standard Sideshot
ID :135
Desc:SC
Fig :12
HAng: 43.01160 SDist: 90.16
HzDst: 90.11 VtDst: -3.06
VAng: 91.56490 TH: 5.10
Angle RT:316.0608

Standard Sideshot
ID :136
Desc:SC
Fig :12
HAng: 43.25340 SDist: 90.52
HzDst: 90.47 VtDst: -3.07
VAng: 91.56470 TH: 5.10
Angle RT:316.3026

Standard Sideshot
ID :137
Desc:SC

Fig :13
HAng: 43.19120 SDist: 91.03
HzDst: 90.98 VtDst: -3.09
VAng: 91.56470 TH: 5.10
Angle RT:316.2404

Standard Sideshot

ID :138
Desc:SC
Fig :13
HAng: 43.31350 SDist: 91.14
HzDst: 91.09 VtDst: -3.07
VAng: 91.55430 TH: 5.10
Angle RT:316.3627

Standard Sideshot
ID :139
Desc:SC
Fig :14
HAng: 43.30590 SDist: 85.52
HzDst: 85.46 VtDst: -3.12
VAng: 92.05250 TH: 5.10
Angle RT:316.3551

Standard Sideshot
ID :140
Desc:SC
Fig :14
HAng: 44.12250 SDist: 85.78
HzDst: 85.72 VtDst: -3.13
VAng: 92.05270 TH: 5.10
Angle RT:317.1717

Standard Sideshot
ID :141
Desc:SC
Fig :15
HAng: 51.21050 SDist: 91.86
HzDst: 91.80 VtDst: -3.32
VAng: 92.04100 TH: 5.10
Angle RT:324.2557

Standard Sideshot
ID :142

Desc:SC
Fig :15
HAng: 52.35470 SDist: 93.60
HzDst: 93.54 VtDst: -3.35
VAng: 92.03110 TH: 5.10
Angle RT:325.4039

Standard Sideshot
ID :143
Desc:S1
Fig :16
HAng: 53.15130 SDist: 95.33
HzDst: 95.27 VtDst: -3.30
VAng: 91.59120 TH: 5.10
Angle RT:326.2005

Standard Sideshot

ID :144
Desc:S1
Fig :16
HAng: 50.01580 SDist: 90.09
HzDst: 90.03 VtDst: -3.28
VAng: 92.05100 TH: 5.10
Angle RT:323.0650

Standard Sideshot
ID :145
Desc:LL
Fig :7
HAng: 64.07410 SDist: 295.89
HzDst: 295.87 VtDst: -3.26
VAng: 90.37520 TH: 5.10
Angle RT:337.1233

Standard Sideshot
ID :146
Desc:LL
Fig :7
HAng: 65.22120 SDist: 334.77
HzDst: 334.75 VtDst: -3.33
VAng: 90.34140 TH: 5.10
Angle RT:338.2704

Standard Sideshot

ID :147
Desc:VB
Fig :17
HAng: 66.22180 SDist: 95.77
HzDst: 95.38 VtDst: -8.61
VAng: 95.09360 TH: 5.10
Angle RT:339.2710

Standard Sideshot
ID :148
Desc:VB
Fig :17
HAng: 64.37230 SDist: 100.09
HzDst: 99.72 VtDst: -8.58
VAng: 94.54540 TH: 5.10
Angle RT:337.4215

Standard Sideshot
ID :149
Desc:VB
Fig :17
HAng: 59.17330 SDist: 93.99
HzDst: 93.78 VtDst: -6.29
VAng: 93.50210 TH: 5.10
Angle RT:332.2225

Standard Sideshot
ID :150
Desc:VB
Fig :17
HAng: 58.36280 SDist: 93.14
HzDst: 92.95 VtDst: -5.93
VAng: 93.39030 TH: 5.10
Angle RT:331.4120

Standard Sideshot
ID :151
Desc:VB
Fig :17
HAng: 57.35410 SDist: 89.38
HzDst: 89.20 VtDst: -5.65
VAng: 93.37380 TH: 5.10
Angle RT:330.4033

Standard Sideshot

```
ID :152
Desc:VB
```

Fig :17
HAng: 59.16270 SDist: 88.73
HzDst: 88.48 VtDst: -6.69
VAng: 94.19370 TH: 5.10
Angle RT:332.2119
Standard Sideshot
ID :153
Desc:VB
Fig :17
HAng: 61.35150 SDist: 88.74
HzDst: 88.42 VtDst: -7.53
VAng: 94.52090 TH: 5.10
Angle RT:334.4007
Standard Sideshot
ID :154
Desc:11L
Fig :17
HAng: 64.46370 SDist: 93.80
HzDst: 93.42 VtDst: -8.45
VAng: 95.09590 TH: 5.10
Angle RT:337.5129
Standard Sideshot
ID :155
Desc:11L
Fig :17
HAng: 62.48210 SDist: 98.25
HzDst: 97.93 VtDst: -7.87
VAng: 94.35330 TH: 5.10
Angle RT:335.5313

Standard Sideshot
ID :156
Desc:11L
Fig :17
HAng: 58.27430 SDist: 92.93
HzDst: 92.74 VtDst: -5.97
VAng: 93.40530 TH: 5.10
Angle RT:331.3235

ID :157
Desc:11L
Fig :17
HAng: 61.17170 SDist: 91.81
HzDst: 91.50 VtDst: -7.57
VAng: 94.43410 TH: 5.10
Angle RT:334.2209

Standard Sideshot
ID :158
Desc:RM
Fig :17
HAng: 86.55560 SDist: 23.51
HzDst: 23.46 VtDst: -1.55
VAng: 93.46070 TH: 5.10
Angle RT:0.0048

ET- PLUS
Not Caused
Head- on collision $\omega / 2$ cars

