

C: \\Forensic Scenes \\Tpr. Heath Sears $\backslash 09-0105 A 024-1$ Job Description: \par 08:00:22

```
SS,OP1,FP106,AR113.10260, ZE87.37440,SD204.5996,--ZS1\par
106 113.1026 204.600 87.3744 0.000 0.000 5.100 ZS1\par
SS,OP1,FP107,AR115.16070, ZE87.40490,SD190.7996, --ZS2\par
107 115.1607 190.800 87.4049 0.000 0.000 5.100 ZS2\par
SS,OP1,FP108,AR116.22250, ZE88.12070,SD140.0997,--XWL1\par
108 116.2225 140.100 88.1207 0.000 0.000 5.100 XWL1\par
SS,OP1,FP109,AR123.55160, ZE89.35500,SD86.2998, --XWL1 \par
109 123.5516 86.300 89.3550 0.000 0.000 5.100 XWL1\par
SS,OP1,FP110,AR152.54050, ZE94.44100,SD38.0999, --XWL1 \par
110 152.5405 38.100 94.4410 0.000 0.000 5.100 XWL1\par
SS,OP1,FP111,AR235.46590, ZE99.13200,SD38.5999, --XWL1\par
111 235.4659 38.600 99.1320 0.000 0.000 5.100 XWL1\par
SS,OP1,FP112,AR260.57080, ZE97.07220,SD72.4999, --XWL1 \par
112 260.5708 72.500 97.0722 0.000 0.000 5.100 XWL1\par
SS,OP1,FP113,AR268.22300, ZE96.20220,SD103.5998,--XWL1\par
113 268.2230 103.600 96.2022 0.000 0.000 5.100 XWL1\par
SS,OP1,FP114,AR278.13180, ZE94.19540,SD256.9995, --XWL1\par
114 278.1318 257.000 94.1954 0.000 0.000 5.100 XWL1\par
SS,OP1,FP115,AR268.14000, ZE96.32120,SD96.5998,--GRDRL\par
115 268.1400 96.600 96.3212 0.000 0.000 5.100 GRDRL\par
SS,OP1,FP116,AR265.25070, ZE96.52410,SD82.6998,--GRDRL\par
116 265.2507 82.700 96.5241 0.000 0.000 5.100 GRDRL\par
SS,OP1,FP117,AR262.59570, ZE97.04540,SD73.2999, --GRDRL\par
117 262.5957 73.300 97.0454 0.000 0.000 5.100 GRDRL\par
SS,OP1,FP118,AR258.48040, ZE97.33500,SD59.9999,--GRDRL\par
118 258.4804 60.000 97.3350 0.000 0.000 5.100 GRDRL\par
SS,OP1,FP119,AR259.34520, ZE97.19420,SD60.0999, --ZML1 \par
119 259.3452 60.100 97.1942 0.000 0.000 5.100 ZML1\par
SS,OP1,FP120,AR263.07290, ZE96.01330,SD71.4999,--ZML1\par
120 263.0729 71.500 96.0133 0.000 0.000 5.100 ZML1\par
SS,OP1,FP121,AR264.52070, ZE95.36110,SD78.8998,--ZML1 \par
121 264.5207 78.900 95.3611 0.000 0.000 5.100 ZML1\par
SS,OP1,FP122,AR241.44540,ZE97.21080,SD56.9999, --YL\par
122 241.4454 57.000 97.2108 0.000 0.000 5.100 YL\par
SS,OP1,FP123,AR241.12350, ZE97.18030,SD57.3999,--YL\par
123 241.1235 57.400 97.1803 0.000 0.000 5.100 YL\par
SS,OP1,FP124,AR236.04170,ZE96.40150,SD64.4999,--WL\par
124 236.0417 64.500 96.4015 0.000 0.000 5.100 WL\par
SS,OP1,FP125,AR256.33350, ZE96.03200,SD104.7998,--BRDG\par
125 256.3335 104.800 96.0320 0.000 0.000 5.100 BRDG\par
SS,OP1,FP126,AR162.23200, ZE93.00520,SD63.2999,--GRDRL1 \par
126 162.2320 63.300 93.0052 0.000 0.000 5.100 GRDRL1\par
SS,OP1,FP127,AR218.52460,ZE98.37360,SD36.9999,--ZS1\par
127 218.5246 37.000 98.3736 0.000 0.000 5.100 ZS1\par
SS,OP1,FP128,AR220.30360,ZE98.38440,SD37.4999,--ZS1\par
128 220.3036 37.500 98.3844 0.000 0.000 5.100 ZS1\par
SS,OP1,FP129,AR211.39300,ZE99.52420,SD30.2999,--ZS1\par
129 211.3930 30.300 99.5242 0.000 0.000 5.100 ZS1\par
SS,OP1,FP130,AR221.53410,ZE99.51580,SD32.4999,--ZS1\par
130 221.5341 32.500 99.5158 0.000 0.000 5.100 ZS1\par
SS,OP1,FP131,AR227.29420,ZE99.42120,SD34.3999,--ZS1\par
131 227.2942 34.400 99.4212 0.000 0.000 5.100 ZS1\par
SS,OP1,FP132,AR235.51420,ZE99.17240,SD38.1999,--XS3\par
132 235.5142 38.200 99.1724 0.000 0.000 5.100 XS3\par
SS,OP1,FP133,AR236.37190,ZE99.10120,SD38.8999, --XS3\par
133 236.3719 38.900 99.1012 0.000 0.000 5.100 XS3
```

C: \\Forensic Scenes \\Tpr. Heath Sears $\backslash 09-0105 A 024-1$ Job Description: \par 08:00:22

```
SS,OP1,FP134,AR237.33220,ZE99.04230,SD39.7999,--XS3\par
134 237.3322 39.800 99.0423 0.000 0.000 5.100 XS3\par
SS,OP1,FP135,AR222.45020,ZE99.03420,SD36.1999,--XS4\par
135 222.4502 36.200 99.0342 0.000 0.000 5.100 XS4\par
SS,OP1,FP136,AR226.18540,ZE99.03440,SD37.0999,--XS4\par
136 226.1854 37.100 99.0344 0.000 0.000 5.100 XS4\par
SS,OP1,FP137,AR229.15390,ZE98.54450,SD38.6999,--XS4\par
137 229.1539 38.700 98.5445 0.000 0.000 5.100 XS4\par
SS,OP1,FP138,AR222.23120, ZE98.49110,SD37.1999,--XS5\par
138 222.2312 37.200 98.4911 0.000 0.000 5.100 XS5\par
SS,OP1,FP139,AR223.58160,ZE98.49000,SD37.6999,--XS5\par
139 223.5816 37.700 98.4900 0.000 0.000 5.100 XS5\par
SS,OP1,FP140,AR227.02390,ZE98.47030,SD38.6999, --XS5\par
140 227.0239 38.700 98.4703 0.000 0.000 5.100 XS5\par
SS,OP1,FP141,AR221.47000, ZE98.38530,SD37.7999,--XS6\par
141 221.4700 37.800 98.3853 0.000 0.000 5.100 XS6\par
SS,OP1,FP142,AR224.22150,ZE98.40100,SD38.3999,--XS6\par
142 224.2215 38.400 98.4010 0.000 0.000 5.100 XS6\par
SS,OP1,FP143,AR225.09000, ZE99.10180,SD36.3999, --XGM1 \par
143 225.0900 36.400 99.1018 0.000 0.000 5.100 XGM1 \par
SS,OP1,FP144,AR222.52290, ZE99.08530,SD35.8999, --XGM1 \par
144 222.5229 35.900 99.0853 0.000 0.000 5.100 XGM1 \par
SS,OP1,FP145,AR225.18510, ZE99.01220,SD37.1999, --XGM2\par
145 225.1851 37.200 99.0122 0.000 0.000 5.100 XGM2\par
SS,OP1,FP146,AR222.34180, ZE99.00230,SD36.4999, --XGM2\par
146 222.3418 36.500 99.0023 0.000 0.000 5.100 XGM2\par
SS,OP1,FP147,AR245.04310,ZE97.51070,SD52.3999,--XS7\par
147 245.0431 52.400 97.5107 0.000 0.000 5.100 XS7\par
SS,OP1,FP148,AR247.09420,ZE97.29190,SD58.0999,--XS7\par
148 247.0942 58.100 97.2919 0.000 0.000 5.100 XS7\par
SS,OP1,FP149,AR250.03280,ZE97.11200,SD64.9999,--XS7\par
149 250.0328 65.000 97.1120 0.000 0.000 5.100 XS7\par
SS,OP1,FP150,AR255.57090,ZE96.31490,SD87.0998,--XS7\par
150 255.5709 87.100 96.3149 0.000 0.000 5.100 XS7\par
SS,OP1,FP151,AR257.45090,ZE96.16060,SD98.6998,--XS7\par
151 257.4509 98.700 96.1606 0.000 0.000 5.100 XS7\par
SS,OP1,FP152,AR258.29150, ZE96.10080,SD103.1998,--XS7\par
152 258.2915 103.200 96.1008 0.000 0.000 5.100 XS7\par
SS,OP1,FP153,AR267.36140, ZE96.39510,SD93.1998,--FLUID\par
153 267.3614 93.200 96.3951 0.000 0.000 5.100 FLUID\par
SS,OP1,FP154,AR265.24120, ZE96.57250,SD82.7998,--FLUID \par
154 265.2412 82.800 96.5725 0.000 0.000 5.100 FLUID\par
SS,OP1,FP155,AR277.49000, ZE99.35210,SD41.1999, --XML2\par
155 277.4900 41.200 99.3521 0.000 0.000 5.100 XML2\par
SS,OP1,FP156,AR266.04180, ZE99.34320,SD42.9999, --XML2\par
156 266.0418 43.000 99.3432 0.000 0.000 5.100 XML2\par
SS,OP1,FP157,AR258.56160, ZE99.01320,SD48.0999, --XML2\par
157 258.5616 48.100 99.0132 0.000 0.000 5.100 XML2\par
SS,OP1,FP158,AR257.02340, ZE98.19460,SD53.3999, --XML2\par
158 257.0234 53.400 98.1946 0.000 0.000 5.100 XML2\par
SS,OP1,FP159,AR256.00070, ZE97.48460,SD57.6999, --XML2\par
159 256.0007 57.700 97.4846 0.000 0.000 5.100 XML2\par
SS,OP1,FP160,AR229.40330,ZE102.19060,SD28.8999,--XML3\par
160 229.4033 28.900 102.1906 0.000 0.000 5.100 XML3\par
SS,OP1,FP161,AR247.10470, ZE103.30270,SD27.9999, --XML3\par
161 247.1047 28.000 103.3027 0.000 0.000 5.100 XML3
```

```
C:\\Forensic Scenes\\Tpr. Heath Sears\\09-0105A024-1 Job Description:\par
08:00:22 Page No.: 4\par
SS,OP1,FP162,AR265.57340,ZE103.48080,SD28.0999,--XML3\par
162 265.5734 28.100 103.4808 0.000 0.000 5.100 XML3\par
SS,OP1,FP163,AR287.33510, ZE103.15110,SD28.5999, --XML3\par
163 287.3351 28.600 103.1511 0.000 0.000 5.100 XML3\par
SS,OP1,FP164,AR260.40370,ZE98.05330,SD57.7999,--BAT\par
164 260.4037 57.800 98.0533 0.000 0.000 5.100 BAT\par
SS,OP1,FP165,AR266.01430, ZE97.32360,SD73.9999,--BAT\par
165 266.0143 74.000 97.3236 0.000 0.000 5.100 BAT\par
SS,OP1,FP166,AR255.48390,ZE97.49050,SD57.3999,--EOA\par
166 255.4839 57.400 97.4905 0.000 0.000 5.100 EOA\par
SS,OP1,FP167,AR221.48100, ZE110.37490,SD21.2000,---DITCH \par
167 221.4810 21.200 110.3749 0.000 0.000 5.100 DITCH\par
SS,OP1,FP168,AR161.50500,ZE93.41500,SD67.4999,--RM2\par
168 161.5050 67.500 93.4150 0.000 0.000 5.100 RM2
}
```

Original Incident (CAD) Number:		
County:		
Date:		
Time:		
Location:		

All Drivers Involved:

Driver \#:	First Name	Middle	Last Name	

Original Investigating Officer:	Cpl. C. O. Tubbs
Troop Reconstructionist(s):	NA
Assisting Officer(s):	NA
Assisting Agency(ies):	NA
Level IV Reconstructionist(s):	Sgt. H. A. Sears
Date of Report:	$05-04-2009$

Contents

Section Page
I Synopsis 1
II Environmental Factors 2
III Mechanical Factors 4
IV Human Factors 8
V Scene Investigation 10
VI Findings 14
VII Event Analysis 16
VII Attachments 18

Section I - Synopsis

Abstract

On Wednesday, the Major Crash Investigation Unit, Team \#1, was notified of a fatality motor vehicle accident involving felony charges that had occurred on , in Clay County, Missouri. Sergeant H. A. Sears was assigned to the case that had been initiated by Corporal C. O. Tubbs who also submitted the original report of the collision, indicating that it occurred on Missouri 92 (MO 92), 0.5 mile west of US 169. The accident involved two vehicles with one fatality.

The collision involved a red 1990 Lincoln bearing Missouri registration

The accident also involved a black 2003 Ford truck bearing Missouri registration
 injured and later died from injuries sustained in the crash.

The collision occurred as Vehicle \#1 was \square when it struck the front driver's side of Vehicle \#2, which was \square a private drive located north of the highway. After impact, Vehicle \#1 crossed the centerline, hit a bridge wall, and came to rest in the \square lane on First \square. Vehicle \#2 rotated clockwise, struck two bridge marker signs, and slid up the bridge guardrail coming to rest partially on the guardrail and in the westbound lane of MO 92.

Section II - Environmental Factors

This collision occurred on MO 92, classified as part of the state-numbered highway system, and designated an east-west route, consisting of a single asphalt roadway measuring approximately 20 feet wide and separated into two lanes of traffic by two continuous yellow paint lines aligned near the roadway centerline which prohibit passing in either direction. Both lanes of traffic are bordered on the outside by continuous white paint lines and narrow gravel shoulders measuring about 1.5 feet in width. The westbound lane is additionally bordered by a grass ditch situated approximately 10 feet to the north that parallels the roadway and which rises steeply to the north, to form a grass embankment.

In the area of the crash, the westbound traffic follows a downhill course of approximately 4 percent grade before leveling off somewhat prior and a private drive that intersects MO 92 from the north just east of the bridge. Sight distance to the private drive for westbound drivers extends about 480 feet.

DSC6.JPG - View of crash scene, looking west

DSC14.JPG - View of crash scene, looking east

The frictional characteristics of the MO 92 asphalt roadway were measured by Sgt. Sears on March 5, 2009, using a drag sled with a representative vehicle tire patch attached to its base weighing approximately 32 pounds. Pulls of 19.5 pounds were recorded in the direction of vehicle pre- and post-impact travel to the west, resulting in a
frictional coefficient of 60.9 percent (.609) of the constant decelerative force of gravity on that surface.

The collision occurred just after noon, during the hours of daylight, with clear skies and no precipitation or other factors that would adversely affect driver visibility.

The roadway is maintained by the Missouri Department of Transportation, Jefferson City, and has a posted speed limit of 55 miles per hour. The crash location is approximately 50 feet west of the west Smithville City Limit. Global positioning system coordinates for the collision location are

Section III - Mechanical Factors

Both vehicles were photographed and examined by Sgt. Sears, with the assistance of Sergeant G. Q. Billings, Vehicle \#1 at Clower's body Shop in Smithville, and Vehicle \#2 at Co-Part Salvage yard in Edwardsville, Kansas. Vehicle \#2 had initially been towed to All Star Tow in Tracy, Missouri, before being transferred.

Vehicle \#1, identified in Section I, was a red 1990 Lincoln Mark VII LSC twodoor coupe with 19,182 miles registered on its odometer at the time of examination. It was equipped with a driver's side air bag that had deployed ${ }^{1}$ and integrated lap and shoulder seat belt restraints for the driver's position that extended and latched when checked for operability. Vehicle \#1 exhibited massive front-end damage.

The Vehicle \#1 front bumper was forced rearward and folded just over two feet to the right of the left front corner. Front-end and engine components were forced rearward over two feet on the passenger side and over three feet on the driver's side. The Vehicle \#1 hood was crumpled and forced upward and rearward, and its roof was crumpled in two places along its front edge. The left front quarter panel was completely detached, while the right front remained, but was crumpled along its entire length. Both headlight assemblies were completely detached. The Vehicle \#1 driver's door front and window frame was forced rearward and outward, and the driver's side "A" pillar, that vehicle member at which the door hinges, was forced rearward about 1.5 feet. Interior dash components were forced rearward, as well. The car body behind the rear axle was forced downward and body components on both sides were crumpled to the rear quarter panels.

The Vehicle \#1 windshield was partially detached and completely cracked. The remaining vehicle glass was completely gone except the rear driver's side window, which

[^0]remained intact. The left front tire was deflated while the remaining Vehicle \#1 tires remained inflated.

On , the Vehicle \#1 right rear wheel was removed by Sgt. Sears in order to examine the right rear disc brake. The brake pad appeared thick and remained in contact with the disc, which also appeared in good condition. No evidence that the Vehicle \#1 rear brakes were "anti-lock" equipped was observed.

DSC40.JPG - View of Vehicle \#1 right rear disc brake

DSC42.JPG - View of Vehicle \#1 disc brake

Vehicle \#1 was not weighed. However, manufacturer specifications indicate it should have weighed 3615 pounds. The additional weight of the driver should have increased its weight at the time of the collision to around 3745 pounds, according to computerized Missouri Department of Revenue driver’s license files.

Vehicle \#2, identified in Section I, was a black 2003 Ford F-350 Super-duty Crew Cab equipped with dual front air bags that had deployed and with integrated lap and shoulder seat belt restraints for the driver's position that were locked in the retracted position, indicative of non-use. It exhibited extensive collision damage to its driver's side.

The Vehicle \#2 grille was broken and partially detached, and the left side of the front bumper was forced inward and downward. The radiator was forced forward and to the right at its left side, and the left headlight assembly was completely detached. The Vehicle \#1 driver's side from the left front quarter panel, including the portion of the hood above it, to the rear driver's side door, was completely crumpled. The left rear corner of the truck bed was scraped and the left brake light cover was broken.

All Vehicle \#2 glass remained intact except for the driver's door window that was completely gone. The left front wheel was completely detached, and the left rear tire was deflated, but the right side tires remained inflated.

The Vehicle \#2 RCM (Restraint Control Module) was downloaded on at Co-Part Salvage, and a copy of the downloaded data is included as an attachment to this report, and discussed in Section VI - Findings.

Vehicle \#2 was not weighed. However, manufacturer specifications indicate it should have weighed 6339 pounds. The additional weight of the driver should have
increased its weight at the time of the collision to around 6517 pounds according to computerized Missouri Department of Revenue driver’s license files.

Section IV - Human Factors

Section V - Scene Investigation

The scene of the collision was examined and photographed by Sgt. Sears on With the assistance of Sgt. G. Q. Billings, at which time it was also charted using assigned electronic mapping instruments. Measurements referred to in this report are from information generated from computer graphics gathered by the mapping instruments, unless noted. (Vehicle final rest measurements were taken from measurements obtained at the scene of the crash by Cpl. R. V. Meade).

A measurement reference line was established across and perpendicular to the MO 92 roadway at the location of the east end of the \square Roadway edges and paint lines also serve as supplemental reference lines in descriptions below. Directional references are according to nominal directions of travel rather than to actual real-world bearings, unless noted.

Vehicle \#1 came to rest upright in a west facing in the eastbound lane on . Its left front corner was approximately 9 feet west of the reference line and about one-half foot south of the eastbound white line. The Vehicle \#1 left rear corner was approximately 3 feet east of the reference line and about one foot north of the white line.

Vehicle \#2 came to rest upright in a northeast facing, its front-end partially on top of the guardrail north of the roadway, extending rearward into the westbound lane. Its right front corner was approximately 18 feet east of the reference line and about 4 feet north of the westbound white line. The Vehicle \#2 right rear corner was approximately one foot east of the reference line and about 7 feet south of the white line.

A pair of pre-impact tire marks attributable to the Vehicle \#1 front tires was observed in the westbound lane and gave indication of its travel prior to the collision. The right front mark began approximately 294 feet east of the reference line and about 2 feet south of the westbound white line while the left front mark became visible
approximately 279 feet east of the reference line and about 7 feet south of the white line. The marks were fairly straight and led into the area of impact where the right front ended on the white line approximately 73 feet east of the reference line and the left front approximately 76 feet east of the reference line and about 5 feet south of the white line.

A tire mark, measuring about 3.5 feet in length, attributable to the Vehicle \#1 left front tire after impact with Vehicle \#2 was observed in the westbound lane. It began approximately 75 feet east of the reference line and about 4.3 feet south of the westbound white line.

A tire scrub mark, measuring about 5 feet in length, attributable to the Vehicle \#2 front left tire during impact events, was observed in the westbound lane. It began approximately 75 feet east of the reference line and about 3 feet south of the westbound white line. Two gouges were observed on either side of the scrub mark measuring about 2 feet in length each, and were attributable to the Vehicle \#2 left front tire rim.

DSC9.JPG - View of Vehicle \#1 front left pre- and post-impact tire marks and Vehicle \#2 left front post-impact tire mark and gouges in the westbound lane, looking west

A tire mark, attributable to the Vehicle \#2 left rear tire during post-collision travel was observed in the westbound lane. It became visible approximately 52 feet east of the reference line and about 4 feet south of the westbound white line and curved toward the northwest, ending near the position of Vehicle \#2 at final rest. (This mark was originally charted as leading toward the position of Vehicle \#1 at final rest, was later determined to be the first portion of the Vehicle \#2 left rear tire mark evident in the digital image below).

DSC10.JPG - Arrows point to Vehicle \#2 left rear post-impact tire mark

Section VI - Findings

Using computer generated graphics of the collision scene based on information gathered by the mapping instruments, as well as evidence observed during examination of the scene and of the damaged vehicles, and driver and witness statements, determinations were reached regarding the crash situation, also graphically depicted in the attached scale diagram.

Tire and gouge mark evidence along with graphic analysis indicates the collision occurred in lane, the Vehicle \#1 right side tires on the westbound white line nearly aligned with the westbound heading of the road, and the Vehicle \#2 front-end approximately 6.5 feet into the lane or south of the white line about 24 degrees counter-clockwise from the south heading of the driveway, its rear-end on the driveway, about 12 feet north of the white line.

Damage to the vehicles and evidence on the roadway indicate the Vehicle \#1 front center struck Vehicle \#2 on the driver’s side about 2.5 feet rear of the left front corner. The impact forced Vehicle \#2 to rotate in a clockwise direction as Vehicle \#1 continued in the west direction through collision, the Vehicle \#2 driver's side striking the Vehicle \#1 passenger side as it rotated, causing Vehicle \#1 to course to the southwest towards the south bridge wall where it came to rest. Vehicle \#2 continued to rotate as it was forced west, its front wheels sliding north of a metal guardrail situated just north of the roadway, its undercarriage behind the front axle sliding onto the top of the guardrail as its rear-end rotated clockwise toward the east end of the north bridge wall, its front undercarriage on the guardrail, where it came to rest.

Math computations indicate Vehicle \#1 traveled to final rest at a speed of approximately 29.8 miles per hour, while Vehicle \#2 rotated to the west at a speed of about 25.2 miles per hour.

Math computations also indicate Vehicle \#1 was traveling approximately 96 miles per hour at the beginning of its pre-impact tire marks and 73 miles per hour at impact with Vehicle \#2. ${ }^{2}$

Further computations indicate Driver \#1 experienced a motion change at impact, or delta-V, of approximately 44 miles per hour, while that experienced by Driver \#2 was between 25 and 32 miles per hour. ${ }^{3}$

The highest delta-V recorded by the Vehicle \#2 SDM indicates a speed of 10.84 miles per hour 66 milliseconds into the collision. This particular RCM records delta-V in the longitudinal direction only, and as Vehicle \#2 began rotating clockwise at impact, it therefore is only a partial description of motion change.

Driver \#2 was most likely ejected out the driver’s side window immediately after the collision as his truck was forced to the west and rotated clockwise by the force of the impact.

[^1]
Section VII - Event Analysis

According to determinations reached in this report, this crash occurred as the result of the high speed Vehicle \#1 was traveling after cresting a hill on MO 92 at the same time Driver \#2 was attempting to turn east onto the highway from a private drive north of the roadway. The collision was of sufficient force to eject unrestrained Driver \#2 from his truck, killing him.

The fact that Driver \#1 survived the collision considering a very substantial motion change, can be attributed to his use of seat belt restraints and the deployment of his car's driver's side air bag, which prevented his upper body and head from violently contacting the forward interior components of his car as they were forced rearward during impact events. Had Driver \#2 been making use of the available seat belt restraints in his truck, he should not have been ejected and likely would have survived the collision, considering the lack of intrusion into his occupant space by vehicle components.

Math computations indicate Driver \#1 was approximately 434 feet east of impact when he observed Vehicle \#2 pulling into his lane and began to react by moving his foot from the accelerator pedal to the brake pedal. ${ }^{4}$ He actually reacted about as quickly as could be expected after cresting the hill and first having a view of Vehicle \#2, but the speed he was traveling made it impossible to slow enough and/or avoid the collision. Had he been traveling the posted speed limit of 55 miles per hour, Driver \#1 could have completely stopped his car almost 50 feet east of the area of impact. At 55 miles per hour, Vehicle \#1 would require over 5 seconds to travel the 434 feet to impact, while Vehicle \#2 could have been driven from the private drive to a position completely in the eastbound lane in well under 5 seconds, and thus avoid the accident entirely.

[^2]Driver \#2 probably completely stopped his truck halfway into the westbound lane when he observed Vehicle \#1 traveling down the hill toward him at such a high rate of speed, but did not have any substantial amount of time to back his truck into the drive before impact or accelerate to attempt to clear the lane.

Section VIII - Attachments

1. Photo Log
2. Scale Diagram
3. Math Computations
4. Copy of downloaded RCM data from 2003 Ford F-350
5. Copy of Expert AutoStats manufacturer specifications for 1990 Lincoln Mark VII and 2003 Ford F-350

Reporting Officer

Reviewing Officer

Photo Log

All digital images were taken by Sgt. Sears. DSC1.JPG through DSC16.JPG were taken at the scene of the crash on . DSC17.JPG through DSC25.JPG were taken on \square at Clower's Body Shop in Smithville, Missouri.

DSC26.JPG through DSC38.JPG were taken at Co-part Salvage in Edwardsville, Kansas, on March 5, 2009. DSC39.JPG through DSC43.JPG were taken at Clower's Body Shop on

Directional references are according to nominal directions of travel rather than to actual real-world bearings, unless noted.

1. View of the crash scene, looking westbound
2. Progressive view from previous view
3. View of the crash scene, looking westbound, with a view of a patrol truck in a driveway just north of the area of impact
4. Progressive view from previous view
5. Progressive view from previous view
6. View of Vehicle \#1 pre-impact tire marks, looking westbound
7. Progressive view from previous view
8. View of tire marks, scrub marks and gouges at the area of impact, looking westbound
9. Close-up view of tire scrub marks and gouges
10. View of the area of vehicle post-impact travel, looking westbound
11. View of guardrail upon which Vehicle \#2 came to rest
12. View of the guardrail, looking north
13. View of the south bridge wall, Vehicle \#1 came to rest just north of it
14. View of the crash scene, looking eastbound
15. View looking east from the driveway just north of the area of impact. Image taken from the driver's seat of patrol truck
16. View looking east from the edge of the driveway north of the impact area. Image taken from the patrol truck driver's seat
17. View of Vehicle \#1 from the left rear
18. View of the Vehicle \#1 rear
19. View of Vehicle \#1 from the right rear
20. View of Vehicle \#1 from the right front
21. View of the Vehicle \#1 front
22. Close-up of damage to the Vehicle \#1 front
23. View of the Vehicle \#1 left front
24. View of the Vehicle \#1 left front
25. View of the Vehicle \#1 interior from the driver’s side
26. View of Vehicle \#2 from the right front
27. View of the Vehicle \#2 front
28. View of Vehicle \#2 from the left front
29. View of the Vehicle \#2 left front driver’s side
30. View of the Vehicle \#2 driver's side
31. View of Vehicle \#2 from the left rear
32. View of the Vehicle \#2 rear
33. View of Vehicle \#2 from the right rear
34. View of the Vehicle \#2 interior from the front passenger door
35. View of damage and paint transfer to the left corner of the Vehicle \#2 front bumper
36. View of damage and paint transfer to the lower Vehicle \#2 driver's door
37. View of the Vehicle \#2 interior through the driver's window
38. View of damage and paint transfer to Vehicle \#2 behind the left front wheel cut-out and lower portion of the driver's door
39. View of the Vehicle \#1 left rear disc brake
40. View of the Vehicle \#1 left rear disc brake
41. View of Vehicle \#1 and its removed left rear wheel
42. View behind the Vehicle \#1 left rear disc brake
43. View behind the Vehicle \#1 left rear disc brake

Math Computations

Item I:

Computation to determine the frictional coefficient of the MO 92 roadway in the area of the collision, using the following generally accepted formula:

$$
f=\frac{F}{W}
$$

Where F is the forced required to maintain movement of the drag sled once motion is achieved, and W is the weight of the sled, 32 pounds.

Pulls averaging 19.5 pounds were recorded on the asphalt pavement in the direction of vehicle post-impact travel and in the direction of Vehicle \#1 pre-impact travel:

$$
\begin{aligned}
f & =\frac{19.5}{32} \\
& =.609375 \\
& =.609
\end{aligned}
$$

Item II:

Computation to determine μ, the adjusted deceleration factor applicable to Vehicle \#1 post-impact travel. The percentage of overall vehicle weight at the locked and sliding front tires, . 56 , is combined with the frictional coefficient of the roadway, .609. This is added to the combination of the percentage of remaining vehicle weight at the rear tires, .44 , and a commonly accepted decelerative value for free-rolling tires, .02:

$$
\begin{aligned}
\mu & =(.56 \times .609)+(.44 \times .02) \\
& =.34104+.0088 \\
& =.34984
\end{aligned}
$$

Item III:

Computation to determine the Vehicle \#1 post-impact speed, using the following generally accepted formula:

$$
S=\sqrt{30 \times D \times \mu}
$$

Where 30 is a mathematical constant; D is the distance Vehicle \#1 traveled to final rest, 85 feet; and μ is the adjusted decelerative value for Vehicle \#1 post-impact travel, . 349 :

$$
\begin{aligned}
S & =\sqrt{30 \times 85 \times .349} \\
& =\sqrt{889.95} \\
& =29.83202 \\
& =29.8 \mathrm{mph}
\end{aligned}
$$

Item IV:

Computation to determine, μ_{2}, the deceleration factor applicable to Vehicle \#2 post-impact travel on the metal guardrail. First, the slope percentage is determined by dividing the height of the guardrail, 1.8 feet, by the distance the Vehicle \#2 center of gravity was behind its front axle, 5.5 feet:

$$
\begin{aligned}
\frac{1.8}{5.5} & =.3272727 \\
& =.327
\end{aligned}
$$

This is combined with the percentage of weight at the Vehicle \#2 rear axle, .40:

$$
.327 \times .40=.13
$$

Therefore, the percentage of vehicle weight sliding on the guardrail, .87 , is combined with a commonly accepted decelerative value for metal on metal, .1. This is added to the combination of the percentage of vehicle weight at the rear tires, .13 , combined with the frictional coefficient of the roadway, .609, and a commonly accepted decelerative value for rotating vehicles, .7:

$$
\begin{aligned}
\mu_{2} & =(.87 \times .1)+(.13 \times .609 \times .7) \\
& =.087+.055419 \\
& =.142419 \\
& =.142
\end{aligned}
$$

Item V:

Computation to determine the Vehicle \#2 post-impact speed using the following generally accepted formula:

$$
S=\sqrt{30\left[\left(D_{1} \times \mu_{2}\right)+\left(D_{2} \times f \times .7\right)\right]}
$$

Where 30 is a mathematical constant; D_{1} is the post-impact distance traveled by Vehicle \#2 on the metal guardrail, 17 feet; μ_{2}, is the decelerative value applicable to post-impact travel on the guardrail, .142; D_{2} is the post-impact distance traveled by Vehicle \#2 prior to the guardrail, 44 feet; f is the frictional coefficient of the roadway, .609 ; and .7 is a commonly accepted decelerative value for a rotating vehicle:

$$
\begin{aligned}
S & =\sqrt{30[(17 \times .142)+(44 \times .609 \times .7)]} \\
& =\sqrt{30[2.414+18.7572]} \\
& =\sqrt{30[21.1712]} \\
& =\sqrt{635.136} \\
& =25.2019 \\
& =25.2 \mathrm{mph}
\end{aligned}
$$

Item VI:

Computation to determine the Vehicle \#1 impact speed using the following generally accepted in-line momentum formula:

$$
S_{1} W_{1}-S_{2} W_{2}=S_{1}^{\prime} W_{1}+S_{2}^{\prime} W_{2}
$$

With the values:
S_{1} : the Vehicle \#1 impact speed, to be determined
S_{2} : the Vehicle \#2 impact speed. A range of speeds is considered here between 0 and 10 mph
$S^{\prime}{ }_{1}$: the Vehicle \#1 post-impact speed, 29.8 mph
$S^{\prime}{ }_{2}$: the Vehicle \#2 post-impact speed, 25.2 mph
W_{1} : the Vehicle \#1 weight with occupant, 3745 pounds
W_{2} : the Vehicle \#2 weight with occupant, 6517 pounds
Inserting values:

$$
\begin{aligned}
S_{1} 3745-(0) 6517 & =(29.8) 3745+(25.2) 6517 \\
S_{1} 3745-0 & =111601+1642228.4 \\
S_{1} 3745 & =275829.4 \\
\frac{S_{1} 3745}{3745} & =\frac{275829.4}{3745} \\
S_{1} & =73.6527 \\
& =73.6 \mathrm{mph}
\end{aligned}
$$

A Vehicle \#2 impact speed of 10 miles per hour results in a Vehicle \#1 impact speed of approximately 91 miles per hour.

Item VII:

Computation to determine the Vehicle \#1 speed at the beginning of its visible tire marks in the westbound lane, using the following generally accepted formula:

$$
S=\sqrt{S_{o}^{2}+(30 \times D \times f)}
$$

Where S_{o} is the Vehicle \#1 impact speed, 73.6 miles per hour; 30 is a mathematical constant; D is the distance traveled by Vehicle \#1 from the beginning of its visible tire marks to impact, 215 feet; and f is the frictional coefficient of the roadway, .609:

$$
\begin{aligned}
S & =\sqrt{73.6^{2}+(30 \times 215 \times .609)} \\
& =\sqrt{5424.7217+3928.05} \\
& =\sqrt{9352.771732} \\
& =96.7097 \\
& =96.7 \mathrm{mph}
\end{aligned}
$$

Item VIII:

Computation to determine the amount of time required by Vehicle \#1 to travel from the beginning of its visible tire marks to impact, using the following generally accepted formula:

$$
t=\frac{.0455\left(S_{o}-S_{f}\right)}{\mu}
$$

Where .0455 is a mathematical constant; S_{o} is the Vehicle \#1 speed at the beginning of its tire marks, 93.6 miles per hour; S_{f} is the vehicle \#1 impact speed; and μ is the deceleration factor applicable to this portion of preimpact travel, .517:

$$
\begin{aligned}
t & =\frac{.0455(93.6-73.6)}{.517} \\
& =\frac{.0455(20)}{.517} \\
& =\frac{.91}{.517} \\
& =1.76 \mathrm{sec}
\end{aligned}
$$

Item IX:

Computation to determine the distance Vehicle \#1 was from impact 1.6 seconds prior to the beginning of its visible tire marks, using the following generally accepted formula:

$$
D=1.466 \times S \times t
$$

Where 1.466 is a mathematical constant; S is the Vehicle \#1 speed at the beginning of its tire marks, 93.6 miles per hour; and t is perception/reaction time, 1.6 seconds:

$$
\begin{aligned}
D & =1.466 \times 93.6 \times 1.6 \\
& =219.548 \\
& =219 f t
\end{aligned}
$$

This is added to the Vehicle \#1 skid distance of 215 feet resulting in a total distance of 434 feet.

Item X:

Computation to determine the motion change in miles per hour undergone by Driver \#1 during the collision, using the following generally accepted formula:

$$
\Delta V_{1}=\sqrt{S_{1}^{2}+S_{1}^{\prime 2}-2 S_{1} S_{1}^{\prime} \cos \theta}
$$

Where S_{1} is the Vehicle \#1 impact speed, 73.6 miles per hour; $S^{\prime}{ }_{1}$ is the Vehicle \#1 post-impact speed, 29.8 miles per hour; 2 is a mathematical constant; and $\cos \theta$ is the cosine of the angle of Vehicle \#1 departure from impact, 5 degrees, or .996:

$$
\begin{aligned}
\Delta V_{1} & =\sqrt{73.6^{2}+29.8^{2}-2(73.6)(29.8) .996} \\
& =\sqrt{5416.96+888.04-4369.86} \\
& =\sqrt{1935.13} \\
& =43.9901 \\
& =44 m p h
\end{aligned}
$$

Using the same formula, inserting the Vehicle \#2 values and the range of impact speeds between 0 and 10 miles per hour results in a range of deltaV speeds between 25.2 and 32.1 miles per hour.

Item XI:

Computation to determine the time required by Vehicle \#2 to travel from the private drive to a position completely in the eastbound lane, using the following generally accepted formula:

$$
t=.249 \sqrt{\frac{D}{a}}
$$

Where .249 is a mathematical constant; D is the distance to complete the turn into the eastbound lane, 55 feet; and a is an average acceleration factor for this type truck, .15:

$$
\begin{aligned}
t & =.249 \sqrt{\frac{55}{.15}} \\
& =.249 \sqrt{366.66} \\
& =.249 \times 19.148 \\
& =4.7679 \\
& =4.7 \mathrm{sec}
\end{aligned}
$$

Item XII:

Computation to determine the time required by Vehicle \#1 to travel the distance from the point Driver \#1 observed Vehicle \#2 to impact had he been traveling at the posted speed limit, 55 miles per hour, using the following generally accepted formula:

$$
t=\frac{D}{1.466 \times S}
$$

Where D is the distance, 434 feet; 1.466 is a mathematical constant; and S is the speed limit 55 miles per hour:

$$
\begin{aligned}
t & =\frac{434}{1.466 \times 55} \\
& =\frac{434}{80.63} \\
& =5.38261 \\
& =5.3 \mathrm{sec}
\end{aligned}
$$

CDR File Information	
User Entered VIN	
User	
Case Number	
EDR Data Imaging Date	
Crash Date	
Filename	
Saved on	SMITHVILLE F350.CDR
Collected with CDR version	Thursday. March 5 2000 at 12:03:48 PM
Reported with CDR version	Crasi Data Retrieval Tool 3.1.1
EDR Device Type	Crasi Data Retrieval Tod 3.1.1
Event(s) recovered	airbeg control module

IMPORTANT NOTICE: Rcbert Bosch LLC recommends that the latest production release of Crash Data Retrieval software be utilized when viewing. printing or exporting any retrieved data from within the CDR program. This ensures that the retrieved data has been translated using the most recent information including but not limited to that which was provided by the manufacturers of the vehicles supported in this product.

Module Information

The retrieval of this data has been authorized by the vehicle's owner, or other legal authority such as a subpoena or search warrant, as indicated by the CDR tool user on Thursday, March 5 2009 at 12:03:48 PM

Important Limitations on Vetrorix Crash Data Retrieval (CDR) Tool Capabilities.
Disclaimer: This Restraint Control Module (RCM) records longitudinal deceleration data for the purpose of understanding the input data the Restraint Control Module used to determine whether or not to deploy restraint devices. This module does not record vehicle speed, throttle position, brake on-off, and other data, which may be recorded in some 1999 model year and later General Motors modules. The deceleration data recorded by Ford's module during a crash can subsequently be mathematically integrated into a longitudinal Delta-V. Delta- V is the change in velocity during the recording time and is NOT the speed the vehicle was traveling before the accident, and is also not the Barrier Equivalent Velocity. The Vetronix CDR Tool will read and interpret both acceleration in G's and Delta-V in mph. RCM's in Ford vehicles that can be read by the Vetronix CDR tool are listed in the Vetronix Help Files.

Important
If there is any question that the restraint system did not perform as it was designed to perform, please read the system only through the diagnostic link connector. The Vetronix CDR kt provides an RCM interface cable to plug directly into the restraint control module. The Vetronix CDR RCM Interface Cable connects only power, ground, and memory read pins to the relevant vehicle restraint control module. The other RCM pins normally connect to inputs, such as sensors, and outputs, such as airbags, are not connected when you use the RCM Interface Cable to plug directly into the module. Since the vehicle restraint control module is constantly monitoring airbag system readiness (when powered), it will detect that the sensors and airbags are not connected. The restraint control module may record a new diagnostic trouble code into memory for each device that is not connected. These new diagnostic trouble codes may record over previously written diagnostic trouble codes present prior to the accident and spoil evidence necessary to determine if the restraint system performed in the accident as it was designed to perform. Not only could ths prevent Ford from being able to determine if the system performed as it was designed to perform but, regardless of innocent inadvertence, you could raise issues of evidence spoliation in any litigation that may arise out of the accident. If you cannot read the module via the diagnostic link connector, and if you suspect improper system performance. contact Ford Motor Company and request their assistance to read the module with a proper vehicle simulator attached.

While data stored in RCM's is accurate, accident reconstructionists must be aware of the limitations of the data recorded in Ford's control modules and should compare the recorded data with the physical evidence at the accident scene using professional accident reconstruction techniques (i.e. vehicle crush characteristics, skid marks, etc) before making any assumptions about the import and validity of the data recorded in the module with respect to the crash event being analyzed. The following describes specific limitations that must be considered when analyzing recorded data. Investigators should obtain permission of the vehicle owner or have sufficient legal authority prior to reading any data.

1. There may be no deceleration data recorded in the module.

Loss of power (cut wires, damaged battery, orushed fuse box) to the module during or immediately after the crash may prevent the crash data from being recorded. A backup power supply within the module has sufficient power to continue to analyze the deceleration data and deploy restraint devices if needed, but there is no backup power for recording

If the deceleration input dces not create a vehicle longitudinal Delta-V above 4 mph within 100 milliseconds, there may not be any data recorded.
2. In unusual circumstances, deceleration data stored in the module may be from a crash other than the one you are currently
analuzing Page 1 of $9 \quad$ Printed on: Thursday, March 52009 at 12:05:15 PM

The module will record data from same non-deploy events, If, after the module has recorded data from a non-deploy event, and there is a subsequent event in which there is a loss of power and no new recording is made for that subsequent event, the deceleration data in the module's memory may be from the prior event. If the new, subsequent event is a deploy event and recording has occurred, the deployment times should be recorded. If there are no deployment times recorded, but airbags or other restraint devices are observed to have deployed. the recorded data that you read are most likely from a prior event.

Once an airbag or other restraint device has been commanded to deploy, the data recorded in connection with that deployment are "locked", and subsequent crashes cannot be recorded.

If a vehicle is being repaired, the RCM should be replaced after any crash in which restraint devices deploy. Early printed shop manuals refer to re-using modules by clearing the "crash data memory full" code, but this is no longer true and the latest on-line electronic shop manual directs that modules be replaced.

Crashes that involve multiple impacts will record only one of the impacts. If there is a deployment, the deployment event will be recorded and locked. If no restraint device is commanded to deploy, the recorded data are not "locked", and subsequent impacts may record over any previous recorded data. Further analysis will be required to determine which of the events was actually recorded.
3. The computed longitudinal Delta- V may understate the total Delta- V

Many real-worid crashes can last longer than the memory has the capacity to record. Therefore, the actual Delta-V of the event may be higher than the Delta-V calculated and displayed by the Vetronix CDR System output. Review the end of the
longitudinal acceleration/deceleration pulse - if it has not settled to zero G's by the end of the recording, the vehicle longitudinal Delta- V is most likely understated. If there is a clear decaying trend line you may choose, at your own risk, to estimate the total Delta- V by extrapolating the decay trend to zero and to calculate the additional Delta- V not captured.

Under some circumstances where power is interrupted, during the recording of data, or the module re-sets during the recording of data, a partial recording may occur. This will be shown as "no data" in the data table and will not be plotted on the graph of acceleration. When some portion of the acceleration data is not recorded, the Delta-V during that time cannot be calculated. A Delta-V will be calculated for the points that are valid, but the user must be aware that the partial Delta- V calculated will further underestimate the actual event total Delta-V.
4. This module records only longitudinal acceleration/deceleration of the vehicle. You must compute lateral or resultant total acceleration based on your estimated Principal Direction of Force (PDOF).
5. Vertical acceleration/decelerations are not recorded. Vehide spin about a point not centered on the Restraints Control Module sensor may add or subtract from bulk vehicle motion.
6. This module is not intended to record acceleration/deceleration in a side-impact event. If the side impact generates a longitudinal deceleration component sufficient to wake up the frontal deployment algorithm, there may be a recording of longitudinal deceleration in a side impact event.

Any Longitudinal Delta-V determined by using data read from the air bag module should be verified with physical evidence from the crash (such as vehicle crush, skid marks) and assumed accident sequence. Multiple impacts, angular collisions, side impacts, vehicle spin, etc should be considered in addition to the data read from the air bag module.

System Status At Deployment
Diagnostic codes active when event occurred
Passenger Airbag Switch Position During Even
Time From side Safing Decision to Left (Driver) Side Bag Deployment (msec)
Activated
Frontal and Pretensioner Fire time (ms) $\begin{array}{r}18.25 \\ \hline\end{array}$
(A) $\mathbf{B O S C H}$

Crash Pulse Data

Milliseconds	Long. Acceleration (Gs)	Long. Cumulative Delta V (MPH)
1	-1.54	-0.03
2	0.51	-0.02
3	14.91	0.30
4	-4.11	0.21
5	-23.64	-0.30
6	-5.65	-0.43
7	-11.31	-0.68
8	8.74	-0.49
9	20.05	-0.05
10	-29.30	-0.69
11	-17.99	-1.08
12	-4.11	-1.17
13	-5.14	-1.29
14	-20.56	-1.74
15	-8.74	-1.93
16	-14.39	-2.25
17	-32.38	-2.96
18	-8.22	-3.14
19	-44.20	-4.11
20	-15.42	-4.45
21	-28.78	-5.08
22	-24.67	-5.62
23	-12.34	-5.89
24	-8.22	-6.07
25	10.28	-5.85
26	35.47	-5.07
27	47.80	-4.02
28	28.78	-3.39
29	4.63	-3.28
30	17.48	-2.90
31	2.06	-2.86
32	-25.70	-3.42
33	-46.77	-4.45
34	-63.74	-5.85
35	-42.66	-6.78
36	-16.45	-7.14
37	19.02	-6.73
38	39.06	-5.87
39	25.19	-5.32
40	-16.96	-5.69
41	-34.95	-6.45
42	-24.16	-6.99
43	17.99	-6.59
44	47.80	-5.54
45	35.98	-4.75
46	11.82	. 4.49
47	-5.14	-4.60
48	-16.96	-4.98
49	-1.54	. 5.01
50	12.85	-4.73
51	-0.51	-4.74
52	-39.06	-5.60
	Page 5 of 9	Printod on: Thurscay

Milliseconds	Long. Acceleration (Gs)	Long. Cumulative Delta V (MPH)
53	-28.78	-6.23
54	-26.73	-6.82
55	-21.07	-7.28
56	-0.51	-7.29
57	-6.68	-7.44
58	-19.53	-7.87
59	-14.39	-8.18
60	-2.06	-8.23
61	-12.34	-8.50
62	-10.28	-8.72
63	-15.42	-9.06
64	-31.87	-9.76
65	-27.76	-10.37
66	-21.59	-10.84
67	17.48	-10.46
68	47.80	-9.41
69	22.62	-8.92
70	-4.63	-9.02
71	4.11	-8.93
72	20.56	-8.47
73	7.20	-8.32
74	-8.22	-8.50
75	2.57	-8.44
76	1.54	-8.41
77	-4.63	-8.51
78	-5.65	-8.63
79	0.51	-8.62
80	-1.03	-8.64
81	-11.31	-8.89
82	-9.25	-9.10
83	-0.51	-9.11
84	-0.51	-9.12
85	0.00	-9.12
86	-0.51	-9.13
87	0.00	-9.13
88	-8.22	-9.31
89	-19.53	-9.74
90	-11.31	-9.99
91	-1.03	-10.01
92	2.57	-9.95
93	-1.03	-9.98
94	1.54	-9.94
95	3.60	-9.86
96	2.06	-9.82
97	3.08	-9.75
98	1.54	-9.72
99	-6.17	-9.85
100	-3.60	-9.93
101	5.65	-9.81
102	-0.51	-9.82
103	-3.08	-9.89
104	-1.03	-9.91
105	-0.51	-9.92
106	-2.06	-9.96
107	2.57	-9.91
	Page 6 of 9	Printed en: Thurseday

Milliseconds	Long. Acceleration $($ Gs)	Long. Cumulative Delta V (MPH)
108	8.74	-9.72
109	4.11	-9.63
110	3.60	-9.55
111	-2.06	-9.59
112	-2.57	-9.65
113	-1.03	-9.67
114	-4.11	-9.76
115	-1.03	-9.78
116	1.03	-9.76

Page 7 of 9
Printed an: Thursday, March 52009 at 12:05:15 PM

Hexadecimal Data

Data that the vehicle manufacturer has specified for data retrieval is shown in the hexadecimal data section of the CDR report. The hexadecimal data section of the CDR report may contain data that is not translated by the CDR program. The control module contains additional data that is not retrievable by the CDR system.

	A6	424	405	1	14	A2	58	2D	OD	23	OF 2	2D 3	384	4 C	C8 F
0810	10	FF	ED 1	13	3 C	78	F1	9 E	08	A2	F9	EF 1	199	995	52
0820:	2D	03 E	B3 4	431	1B	0A	F	OA	A1	5E	03	OE	D	E	002
83	3 C	3 C 8	80	28	05	28	B4	07	28	18	200	0 C 0	038	84	B7
0840:	04	050	OB	05 A	AD	42	OA	06	5B	00	640	00 B	B4	OB	8
850:	E8	096	601	11	30	05	78	09	60	01	4 A	00 C	C2 0	00	C9
860	B8	119	94	032	20	00	08	00	OF	00	120	028	8A	5	-
87	30	003	320	00	C8	01	B7	07	D0	03	200	00 C	C8 0	04	45
0880:	DC	002	2A 0	00	C8	00	DC	04	51	32	1 E	40	40	01	A
890:	32	2D 1	140	OA 8	82	17	55	C8	32	1 E	021	18	310	03	F
8A0:	14	FF 5	504	41	60	CC	43	FF	FF	FF	FF	FF F	FF	EF	F
08B0:	FF	EF	FF F	FF F	FF	F									
3C0:	04	FE F	FF F	FF	FF	FF	57	09	63	31	43	334	410	02	3
8D0	09	FE 8	80	00 F	FE	7B	32	FF	80	03	FF	800	04	FF	0
08E0:	02	FF 8	80	2 F	FF	80	21	FF	80	23	FF 8	80 0	0A F	FF	0
08F0:	1D	OF 0	000	00	OA	80	04	FF	FF	FF	FF F	FF F	FF F	FF	00
0900:	06	314	425	52	03	75	FF	FF	FF	02	09 A	AA A	AA F	FF	FF
910	AA	90	087	76	25	FF	FF	04	60	44	489	955	526	67	F
0920:	9 A	9E B	BA 9	95	6 F	92	87	AE	C4	64	7A 9	959	93	75	C
0930:	5 E	8 D 4	477	7F	65	6 D	85	8D	B1	E2	FA D	D5 A	Аб B	BF	A1
0940:	42	214	4 A 7	7D	C2	E9	CE	7 C	59	6E	C0 F	FA E	E3	4	93
0950:	9	B6 9	9 C 5	51	65	69	74	9 C	90	77	819	998	858	897	7 F
0960:	67	73 E	BF F	FA	C9	94	A5	C5	$A B$	8D	A2 A	A0 9	949	92	E
0	87	8 B 9	9C 9	9 C 9	9D	9 C	9D	8D	77	87	9 B A	A2 9	9 B A	A0 A	A
0980:	A3	AO 9	919	96 A	A8	9 C	97	9B	9 C	99	A2 A	AE A	AS A	A4	O
990 :	9 B	959	9B 9	9F 9	9D	F1	00	00	FC	9 E	004	490	000	00	00
09A0:	00	C4 0	006	60	00	4D	00	1 F	00	46	005	570	000	00	0
09B0:	00	4D 0	00	00	00	49	00	C8	01	D2	000	000	000	000	00
09C0	00	004	49 F	FF	01	FF	FF	07	AF	00	FF F	FF F	FF F	FF F	FF
09D0:	FF	FF F	FF F	FF F	FF F	FF F	FF F	FF F	FF						
09E0:	EF	EF	EF	FF	FF	FF	F\%	FF	FF	FF	FF	FF	F	FF F	
09F0:	FF	FF F	FF F	FF F	FF F	FF F	FF								

BOSCH

Comments

10-50 j4

Disclaimer of Liability

The users of the CDR product and reviewers of the CDR reports and exported data shall ensure that data and information supplied is applicable to the vehicle, vehicle's system(s) and the vehicle ECU. Robert Bosch LLC and all its directors, officers, employees and members shall not be liable for damages arising out of or related to incorrect, incomplete or misinterpreted soffware and/or data. Robert Bosch LLC expressly excludes all liability for incidental, consequential, special or punitive damages arising from or related to the CDR data, CDR sofware or use thereof.

0 LINCOLN MARK VII 2DR COUPE
CURB WEIGHT:
Curb Weight Distribution -
Gross Vehicle Weight Rating:
Number of Tires on Vehicle: Drive Wheels:

HORIZONTAL DIMENSIONS
Total Length
Wheelbase:
Front Bumper to Front Axle
Front Bumper to Front of Front Well
Front Bumper to Front of Hood
Front Bumper to Base of Windshield
Front Bumper to Top of Windshield
Rear Bumper to Rear Axle
Rear Bumper to Rear of Rear Well
Rear Bumper to Rear of Trunk
Rear Bumper to Base of Rear Window

WIDTH DIMENSIONS

```
Maximum Width
    Front Track
    Rear Track
```

VERTICAL DIMENSIONS

```
Height
Ground to:
    Front Bumper (Top)
    Headlight - center
    Hood - top front
    Base of windshield
    Rear Bumper - top
    Trunk - top rear
```

 Base of rear window
 Base of rear window
 3615 lbs
Front: 56%
4
REAR lbs.

Inches	Feet	Meters
203	16.92	5.16
109	9.08	2.77
45	3.75	1.14
22	1.83	0.56
4	0.33	0.10
60	5.00	1.52
84	7.00	2.13
49	4.08	1.24
32	2.67	0.81
3	0.25	0.08
30	2.50	0.76
71	5.92	1.80
59	5.00	1.50
60		1.52

Inches	Feet	Meters
54	4.50	1.37
20	1.67	0.51
25	2.08	0.63
31	2.58	0.79
38	3.17	0.97
23	1.92	0.58
37	3.08	0.94
40	3.33	1.02

1990 LINCOLN MARK VII 2DR COUPE

INTERIOR DIMENSIONS

Front Seat Shoulder Width		56	4.67	1.42
Front Seat to Headiner	38	3.17	0.97	
Front Leg - seatback to floor (max)	42	3.50	1.07	
		58		
Rear Seat Shoulder Width		3.83	1.47	
Rear Seat to Headliner		3.08	0.94	
Rear Leg - seatback to floor (min)	37	3.08	0.94	

Seatbelts: 3pt LAP \& SHOULDER - front, None or Unknown - rear Airbags: NO AIRBAGS

STEERING DATA

Turning Circle (Diameter)		516	43.00	13.11
Steering Ratio: $14.70: 1$ Wheel Radius: 12 Tire Size (OEM): $215-70 \mathrm{R} 15$	1.00	0.30		

ACCELERATION \& BRAKING INEORMATION

```
Brake Type: ALL DISC
ABS System: ABS
Braking, 60 mph ->> 0 (Hard pedal, no skid, dry pavement):
    d = 138 ft t = 3.1 sec. a =-28.0 ft/sec/sec G-force = - 0.87
ACCELERATION:
```


Transmission Type:
AUTOMATIC
NOTES:
Federal Bumper Standard Requirements $=2.5 \mathrm{MPH}$
This vehicles Rated Bumper Strength:
5 mph
N.S.D.C. $=1984-1991$

1990 LINCOLN MARK VII 2DR COUPE

OTHER INFORMATION
TIP-OVER STABILITY RATIO $=1.35$ STABLE
NHTSA Star Rating (calculated)
CENTER OF GRAVITY (No Load):
Inches behind front axle $=47.96$
Inches in front of rear axle $=61.04$
Inches from side of vehicle $=35.50$
Inches from ground $=22.06$
Inches from front corner $=99.51$
Inches from rear corner $=115.62$
Inches from front bumper $=92.96$
Inches from rear bumper $=110.04$
MOMENTS OF INERTIA APPROXIMATIONS (No Load):
YAW MOMENT OF INERTIA $=2517.45 \mathrm{lb}-\mathrm{ft}-\mathrm{sec}^{\wedge} 2$
PITCH MOMENT OF INERTIA $\quad=2429.85 \mathrm{lb}-\mathrm{ft}-\mathrm{sec}^{\wedge} 2$
ROLL MOMENT OF INERTIA $=500.70 \mathrm{lb}-\mathrm{ft}-\mathrm{sec}^{\wedge} 2$
ERONT PROFILE INFORMATION
ANGLE ERONT BUMPER TO HOOD ERONT $=70.0 \mathrm{deg}$
ANGLE ERONT OF HOOD IO WINDSHIELD BASE $=7.1 \mathrm{deg}$
ANGLE ERONT OE HOOD TO WINDSHIELD TOP $=14.7 \mathrm{deg}$
ANGLE OF WINDSHIELD
ANGLE OF STEERING TIRES AT MAX TURN
$=30.3 \mathrm{deg}$

FIRST APPROXIMATION CRUSH FACTORS:

```
Speed Equivalent (mph) of Kinetic Energy (KE) used in causing crush or indentation may be evaluated using the following formula, the appropriate Crush Factor (CF), and Maximum Indentation Depth (MID), in feet:
```

```
V(mph) = Sqr root of (30 * CF * MID)
```

V(mph) = Sqr root of (30 * CF * MID)
KE Equivalent Speed (Front/Rear/Side) = 21 CF
Bullet vehicle IMPACT SPEED estimation
based on TARGET VEHICLE damage ONLY = 27 CF
(Tested for Rear/Side Impact only)

```

These CF values are based upon analysis of NHTSA Barrier Crash data, and from over 1000 vehicle accidents where independant evaluation of speed was possible. (These are NOT 'A', 'B', 'C', or ' \(G\) ' values)

The Rear Impact data with more than \(2-3\) inches of crush damage should be looked at carefully, since some vehicles have very weak trunk \& fender strength. Therefore, on some cars, esp. GM, your estimate from the rear crush data may be high by as much as 4-5 mph (on a crush of 18 inches).

```

2003 FORD F350 SUPER DUTY CREW CAB LWB 4DR 4X4 PICKUP

```
INTERIOR DIMENSIONS
\begin{tabular}{|c|c|c|c|}
\hline Front Seat Shoulder Width & Inches
64 & \[
\begin{aligned}
& \text { Feet } \\
& 5.33
\end{aligned}
\] & \[
\begin{array}{r}
\text { Meters } \\
1.63
\end{array}
\] \\
\hline Front Seat to Headliner & 41 & 3.42 & 1.04 \\
\hline Front Leg - seatback to floor (max) & 41 & 3.42 & 1.04 \\
\hline Rear Seat Shoulder Width & 65 & 5.42 & 1.65 \\
\hline Rear Seat to Headliner & 38 & 3.17 & 0.97 \\
\hline Rear Leg - seatback to floor (min) & 32 & 2.67 & 0.81 \\
\hline
\end{tabular}
Seatbelts: 3pt - front and rear
Airbags: FRONT SEAT AIRBAGS
STEERING DATA
\begin{tabular}{llccc} 
Turning Circle (Diameter) & & 732 & 61.00 & 18.59 \\
Steering Ratio: & \(17.00: 1\) & & & \\
Wheel Radius: & & \(-\cdot\) & -
\end{tabular}
ACCELERATION \& BRAKING INFORMATION
Brake Type: ALL DISC
ABS System: REAR ABS STANDARD, ALL WHEEL ABS OPTIONAL
Braking, 60 mph \(\rightarrow 0\) (Hard pedal, no skid, dry pavement):

ACCELERATION:

Transmission Type: 5spd MANUAL
NOTES:
Federal Bumper Standard Requirements \(=\) NO REQUIREMENT
```

2 0 0 3 ~ F O R D ~ F 3 5 0 ~ S U P E R ~ D U T Y ~ C R E W ~ C A B ~ L W B ~ 4 D R ~ 4 X 4 ~ P I C K U P ~

```

OTHER INFORMATION
TIP-OVER STABILITY RATIO \(=1.06 \underset{\star \star}{*} \underset{\text { NHTSA Star Rating }}{\text { (calculated) }}\)
CENTER OF GRAVITY (No Load):
    Inches behind front axle \(=68.80\)
    Inches in front of rear axle \(=103.20\)
    Inches from side of vehicle \(=40.00\)
    Inches from ground \(=31.14\)
    Inches from front corner \(=114.98\)
    Inches from rear corner \(\quad=159.30\)
    Inches from front bumper \(=107.80\)
    Inches from rear bumper \(=154.20\)
MOMENTS OF INERTIA APPROXIMATIONS (No Load):
    YAW MOMENT OF INERTIA \(=5186.17 \mathrm{lb}-\mathrm{ft}-\mathrm{sec}^{\wedge} 2\)
    PITCH MOMENT OF INERTIA \(\quad=5442.68 \mathrm{lb}-\mathrm{ft}-\mathrm{sec}^{\wedge} 2\)
    ROLL MOMENT OF INERTIA \(=1159.58 \mathrm{lb}-\mathrm{ft}-\mathrm{sec}^{\wedge} 2\)
ERONT PROFILE INFORMATION
    ANGLE ERONT BUMPER TO HOOD FRONT \(=71.6 \mathrm{deg}\)
    ANGLE ERONT OF HOOD TO WINDSHIELD BASE \(=11.1\) deg
    ANGLE ERONT OF HOOD TO WINDSHIELD TOP \(=22.3 \mathrm{deg}\)
    ANGLE OF WINDSHIEID
    ANGLE OF STEERING TIRES AT MAX TURN
\(=\quad 5186.17\)
\(=\quad 5442.68\)
\(=1 b-f t-\sec ^{\wedge} 2\)
\(=1159.58\)
\(l b-f t-\sec ^{\wedge} 2\)

ERONT PROFILE INFORMATION
\begin{tabular}{lllll} 
ANGLE ERONT BUMPER TO HOOD FRONT & \(=\) & \(=71.6\) & deg \\
ANGLE FRONI OF HOOD IO WINDSHIELD BASE & \(=11.1\) & deg \\
ANGLE FRONT OE HOOD TO WINDSHIELD TOP & \(=22.3\) & deg \\
ANGLE OF WINDSHIELDD & \(=37.9\) & deg \\
ANGLE OF STEERING TIRES AT MAX TURN & \(=26.9 \mathrm{deg}\)
\end{tabular}

\section*{EIRST APPROXIMATION CRUSH EACTORS:}
```

 Speed Equivalent (mph) of Kinetic Energy (KE) used in
 causing crush or indentation may be evaluated using the
following formula, the appropriate Crush Factor (CF), and
Maximum Indentation Depth (MID), in feet:
V(mph) = Sqr root of (30*CF * MID)
KE Equivalent Speed (Front/Rear/Side) = 21 CF
Bullet vehicle IMPACT SPEED estimation
based on TARGET VEHICLE damage ONLY = 27 CF
(Tested for Rear/Side Impact only)
These CF values are based upon analysis of NHTSA Barrier Crash
data, and from over }1000\mathrm{ vehicle accidents where independant
evaluation of speed was possible. (These are NOT 'A', 'B', 'C',
or 'G' values)
The Rear Impact data with more than 2-3 inches of crush damage
should be looked at carefully, since some vehicles have very weak
trunk \& fender strength. Therefore, on some cars, esp. GM, your
estimate from the rear crush data may be high by as much as 4-5
mph (on a crush of 18 inches).

```











































Turn down
No cause
Fatality caused by T-bone collision```


[^0]:    ${ }^{1}$ The original report indicates that the driver's air bag had not deployed. When Vehicle \#1 was examined and photographed at Clower's Body Shop on $\quad$ the air bag appeared to have deployed or was pulled out by someone else investigating the crash.

[^1]:    ${ }^{2}$ These speeds are based on a range of possible Vehicle \#2 impact speeds between 0 and 10 miles per hour, and reflect the low end. A Vehicle \#2 impact speed of 10 miles per hour, results in a Vehicle \#1 impact speed of 91 miles per hour.
    ${ }_{3}^{3}$ Again, this range of delta-V speeds is based on the range of possible Vehicle \#2 impact speeds between 0 and 10 miles per hour.

[^2]:    ${ }^{4}$ According to studies conducted by Dr. Paul Olsen, daytime drivers typically require approximately 1.6 seconds between the time they perceive a hazard to the time their vehicle's dynamics are changed by a braking response.

