CENTER FOR INNOVATIVE FINANCE SUPPORT

Introduction to Enhancements in P3-VALUE 2.1: Benefit-Cost Analysis

P3 Webinar April 26, 2018

Prior Webinars

- Basics of P3-VALUE: Webinar on Project Delivery Benefit-Cost Analysis, February 22, 2016
- P3-VALUE 2.1 Enhancements:
 - Simplified input sheet, reviewed in webinar on February 22, 2018
 - Transparent output for value for money analysis, Reviewed in in webinar on March 22, 2018
- All prior webinar presentations, recordings and transcripts are available on FHWA's web site at.
 - https://www.fhwa.dot.gov/ipd/p3/p3_training/webinars.aspx

2

Instructors

Patrick DeCorla-Souza

P3 Program Manager USDOT Build America Bureau and FHWA Office of Innovative Program Delivery

Wim Verdouw Financial Modeler IMG/Rebel

U.S. Department of Transportation Federal Highway Administration

Webinar Outline

- Part 1 Overview of Benefit-Cost Analysis (BCA)
- Part 2 P3-VALUE 2.1 BCA Enhancements
- Part 3 Illustrative Application of Benefit-Cost Analysis

CENTER FOR INNOVATIVE FINANCE SUPPORT

Part 1: Overview of P3 Benefit-Cost Analysis

P3-VALUE 2.1 Webinar

Financial vs. Economic Evaluation

Financial Evaluation

- Considers financial elements only, i.e., "cash flows"
- Perspective is that of the procuring agency

Economic Efficiency Evaluation

- Considers full range of costs and benefits to society
- Perspective is that of society as a whole

Types of Project Delivery Evaluation

* Cash flow analysis

** Net economic benefits excludes transfers and financing cash flows

Benefit-Cost Analysis (BCA) Process

- Timing impacts
- Cost impacts
- Quality impacts
- Scope optimization

Project Delivery BCA Framework

Federal Highway Administration

Project Delivery BCA Output

In P3-VALUE, all three options are compared to No Build

U.S. Department of Transportation Federal Highway Administration

OFFICE OF INNOVATIVE PROGRAM DELIVERY

10

Perspective Considerations

Perspective	Financial Analysis (VfM Analysis)	Economic Analysis (BCA)
Agency	Costs to Agency's balance sheet	Agency costs plus societal benefits
State	Costs to State	State costs plus societal benefits
National	Societal costs	Societal costs and benefits (true BCA)

For More Information

FHWA's **Benefit-Cost Analysis for P3 Project Delivery: A** Framework

<u>https://www.fhwa.dot.gov/ipd/p3/toolkit/publications/guidebooks/bca/</u>

CENTER FOR INNOVATIVE FINANCE SUPPORT

Part 2: Introduction to P3-VALUE 2.1 Enhancements

P3-VALUE 2.1 Webinar

What is P3-VALUE 2.1?

- An analytical tool
- Educational
- Quantitative screening

Tool and References

P3-VALUE 2.1 Excel Spreadsheet

User Guide, Quick Start Guide, FAQs

> Primers & Guidebooks

P3-VALUE 2.1 Tool Structure

P3-VALUE 2.1 Enhancements

- Simplified input sheet
 - Reviewed in webinar on February 22, 2018
- Transparent output for value for money analysis
 - Reviewed in in webinar on March 22, 2018
- Benefits from ridesharing (carpools and transit) included in benefit-cost analysis
 - To be reviewed in today's webinar

17

Transit and Carpool Inputs in Simplified Input Sheet

Benefit Cost Inputs (Transit & Carpool)	No Build	ML/TL	GPL
Additional passengers carried by transit (% of vehicles)	2.00%	4.00%	1.50%
Additional passengers carried by carpools (% of vehicles)	2.00%	4.00%	1.50%

Detailed Inputs for Transit and Carpools

• Approach is similar to the approach for vehicular traffic (covered in webinar on February 22)

Transit Passenger Forecast

Average Weekday Transit Passenger Forecast in thousands

Breakdown of Transit Travel Forecast into Time Periods

DETAILED INPUT FOR TRANSIT

Transit Passenger Forecast	Year	No Build	ML/TL	GPL
Weekday daily transit passengers in model start year (in thousands)	2018	2.4k	1.0k	1.6k
Weekday daily transit passengers in input year 2 (in thousands)	2020	2.5k	1.2k	1.7k
Weekday daily transit passengers in input year 3 (in thousands)	2030	2.8k	1.4k	1.8k
Weekday daily transit passengers in input year 4 (in thousands)	2040	3.0k	1.6k	2.0k
Weekday daily transit passengers in input year 5 (in thousands)	2050	3.2k	1.8k	2.1k
Annual transit passengers growth after last input year (in percent)	> 2050	0.50%	1.00%	0.50%
Transit Passengers Shares		No Build	ML/TL	GPL

Peak transit percentage (of total transit passengers)

Off-peak transit percentage (of total transit passengers)

Weekend transit percentage (of total transit passengers)

30.00%

70.00%

60.00%

22

30.00%

70.00%

60.00%

30.00%

70.00%

60.00%

Carpool Passenger Forecast

Average Weekday Carpool Passenger Forecast in thousands

23

Breakdown of Carpool Travel Forecast into Time Periods

DETAILED INPUT FOR CARPOOL

Carpooling Passenger Forecast	Year	No Build	ML/TL	GPL
Weekday daily carpooling passengers in model start year (in thousands)	2018	2.4k	1.0k	1.6k
Weekday daily carpooling passengers in input year 2 (in thousands)	2020	2.5k	1.2k	1.7k
Weekday daily carpooling passengers in input year 3 (in thousands)	2030	2.8k	1.4k	1.8k
Weekday daily carpooling passengers in input year 4 (in thousands)	2040	3.0k	1.6k	2.0k
Weekday daily carpooling passengers in input year 5 (in thousands)	2050	3.2k	1.8k	2.1k
Annual transit passengers carpooling after last input year (in percent)	> 2050	0.50%	1.00%	0.50%
Carpooling Passengers Shares		No Build	ML/TL	GPL
Peak carpooling percentage (of total carpooling passengers)		80.00%	80.00%	80.00%
Off-peak carpooling percentage (of total carpooling passenge	ers)	20.00%	20.00%	20.00%

Off-peak carpooling percentage (of total carpooling passengers)

Weekend carpooling percentage (of total carpooling passengers)

15.00%

15.00%

15.00%

Please stand by while we open the P3-VALUE 2.1 tool to show the enhanced features

CENTER FOR INNOVATIVE FINANCE SUPPORT

Part 3: Illustrative Application of P3-VALUE 2.1 for Project Delivery Benefit-Cost Analysis

P3-VALUE 2.1 Webinar

Example hypothetical project

- Managed lanes added to existing facility
- Delayed construction completion under PSC

Project Information

- 20 miles highway expansion, from 3 lanes to 5 lanes in each direction
 - 3 General Purpose Lanes (GPL); 2 new Managed Lanes (ML)
- Costs under PSC (including contingencies for risks):

•	Pre-construction	\$25M
•	Construction:	\$400M
•	Routine O&M:	\$4M per year
•	Major maintenance:	\$10M every 8 years

• Timing:

Federal Highway Administration

- Preconstruction start:
- Construction duration:
- Concession term:

\$10M every 8 years
2018 (2 years duration)
4 years for PSC, 3 years for P3
46 years
5 years

Assumptions

- No difference in traffic volumes, carpooling and transit for conventional delivery vs. P3
- P3 option provides better service quality through:
 - Reduced construction-related traffic delays due to better work zone practices
 - Reduced incident-related traffic delays due to better incident response
 - Reduced vehicle operating costs due to better pavement quality

Benefit-Cost

Benefit Cost Inputs (Delays & Pavement Quality)	No Build	PSC	P3
Average duration of construction activity (in hours)	0.00 hours	8.00 hours	7.50 hours
Average duration of O&M activity (in hours)	4.00 hours	3.00 hours	2.75 hours
Speed adjustment factor for incident delays (in percent)	18.00%	9.00%	8.50%
Pavement quality (IRI, in inch/mile)	150 inch/mile	140 inch/mile	130 inch/mile

Benefit Cost Inputs (Transit & Carpool)	No Build	PSC	P3
Additional passengers carried by transit (% of vehicles)	2.00%	4.00%	1.50%
Additional passengers carried by carpools (% of vehicles)	2.00%	4.00%	1.50%

31

Risk Inputs

Lifecycle Performance Risk & Revenue Uncertainty Adjustment Inputs

Lifecycle performance risk calculation method (see options below)	Option 1
Lifecycle performance risk aggregate premium (in million \$, option 2 only)	\$400.0M
Revenue uncertainty adjustment calculation method (see options below)	Option 1
Delta between availability payment & toll concession WACC (in percent, option 1 only)	1.60%
Revenue uncertainty adjustment (% of toll revenue collection, option 2 only)	28.00%

Guidance for Valuation Options

Option 1: WACC-based risk premium is calculated to determine the value of lifecycle performance risks/revenue uncertainty adjustment

Option 2: User to provide a risk premium for the value of lifecycle performance risks/revenue uncertainty adjustment

Option 3: Lifecycle performance risks/revenue uncertainty adjustment are ignored in the analysis

Review of Model Outputs

- 1. Delayed PSC (Delayed Conventional Delivery)
- 2. PSC (Conventional Delivery)
- 3. P3 Delivery

Delayed PSC (Delayed Conventional Delivery

Benefits & costs under Delayed Conventional Delivery	NPV @ 2.00%	Real total
Δ Travel time cost	\$1,828M	\$3,251M
Δ Delays due to construction	(\$48M)	(\$57M)
Δ Delays due to O&M	\$10M	\$17M
Δ Delays due to incidents	\$1,360M	\$2,388M
Δ Non-fuel costs	\$111M	\$193M
Δ Fuel costs	(\$109M)	(\$176M)
Δ Accident costs	\$292M	\$507M
Δ Emissions cost	(\$127M)	(\$226M)
Highway benefits subtotal	\$3,318M	\$5,898M
Δ Transit passenger benefits	\$22M	\$40M
Δ Carpooling passenger benefits	\$20M	\$36M
Transit and carpool passenger benefits subtotal	\$43M	\$76M
Total benefits	\$3,360M	\$5,974M
O&M No Build cost savings	\$205M	\$350M
Real construction costs	(\$370M)	(\$435M)
Real operations costs	(\$104M)	(\$180M)
Real base variability	-	-
Real pure risks	-	-
Lifecycle performance risk	(\$86M)	(\$140M)
Total costs	(\$354M)	(\$516M)
Total net benefits / (costs) under Delayed Conventional Delivery	\$3,006M	\$5,458M
Benefit cost ratio under Delayed Conventional Delivery	9.48	N/A

PSC (Conventional Delivery)

Benefits & costs under Conventional Delivery	NPV @ 2.00%	Real total
Δ Travel time cost	\$2,058M	\$3,521M
Δ Delays due to construction	(\$50M)	(\$54M)
Δ Delays due to O&M	\$11M	\$19M
Δ Delays due to incidents	\$1,573M	\$2,639M
Δ Non-fuel costs	\$132M	\$217M
Δ Fuel costs	(\$140M)	(\$213M)
Δ Accident costs	\$345M	\$568M
Δ Emissions cost	(\$147M)	(\$250M)
Highway benefits subtotal	\$3,781M	\$6,446M
Δ Transit passenger benefits	\$25M	\$43M
Δ Carpooling passenger benefits	\$23M	\$39M
Transit and carpool passenger benefits subtotal	\$48M	\$82M
Total benefits	\$3,829M	\$6,528M
O&M No Build cost savings	\$248M	\$400M
Real construction costs	(\$408M)	(\$435M)
Real operations costs	(\$128M)	(\$210M)
Real base variability	-	-
Real pure risks	-	-
Lifecycle performance risk	(\$104M)	(\$160M)
Total costs	(\$392M)	(\$516M)
Total net benefits / (costs) under Conventional Delivery	\$3,437M	\$6,012M
Benefit cost ratio under Conventional Delivery	9.76	N/A

P3 Delivery

Benefits & costs under P3 Delivery	NPV @ 2.00%	Real total
Δ Travel time cost	\$2,103M	\$3,569M
Δ Delays due to construction	(\$36M)	(\$38M)
Δ Delays due to O&M	\$14M	\$22M
Δ Delays due to incidents	\$1,673M	\$2,780M
Δ Non-fuel costs	\$136M	\$221M
Δ Fuel costs	(\$148M)	(\$221M)
Δ Accident costs	\$356M	\$580M
Δ Emissions cost	(\$151M)	(\$255M)
Highway benefits subtotal	\$3,946M	\$6,660M
Δ Transit passenger benefits	\$26M	\$44M
Δ Carpooling passenger benefits	\$23M	\$40M
Transit and carpool passenger benefits subtotal	\$49M	\$83M
Total benefits	\$3,995M	\$6,743M
O&M No Build cost savings	\$257M	\$410M
Real construction costs	(\$388M)	(\$410M)
Real operations costs	(\$119M)	(\$193M)
Real base variability	-	-
Real pure risks	-	-
Lifecycle performance risk	(\$90M)	(\$136M)
Total costs	(\$340M)	(\$516M)
Total net benefits / (costs) under P3 Delivery	\$3,655M	\$6,227M
Benefit cost ratio under P3 Delivery	11.73	N/A

Summary of Costs and Benefits

Costs and Benefits of Alternative Delivery Methods in millions of dollars (present value)

Patrick DeCorla-Souza

P3 Program Manager
USDOT Build America Bureau
& FHWA Center for Innovative Finance Support
(202) 366-4076

Patrick.DeCorla-Souza@dot.gov

