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FOREWORD

This report documents the investigation, modeling, and validation of the enhanced HIgh PERformance PAVing (HIPEPAV®) II software program. HIPERPAV II is a comprehensive, yet user-friendly software package. HIPERPAV II primarily incorporates as a set of guidelines for the proper selection of design and construction variables to minimize early-age damage to jointed plain concrete pavement (JPCP) and continuously reinforced concrete pavement (CRCP). In addition, the software determines the effect of early-age behavior factors. This report, Volume III of a three-volume set, is the Technical Appendices, which documents work carried out during the study. Volume I is the Project Summary documenting the efforts undertaken for the guidelines. Volume II is the Design and Construction Guidelines and HIPERPAV II User's Manual, which provides general instruction on the use and application of the HIPERPAV II.

This report will be of interest to those involved in concrete pavement mix design, as well as the design and construction of concrete pavements. Sufficient copies of this report are being distributed to provide two copies to each Federal Highway Administration (FHWA) Resource Center, two copies to each FHWA Division Office, and a minimum of four copies to each State highway agency. Additional copies for the public are available from the National Technical Information Services (NTIS), 5285 Port Royal Road, Springfield, VA, 22161.


Gary L. Henderson
Director, Office of Infrastructure
Research and Development


Notice

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

Quality Assurance Statement

The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.
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