Los Alamos National Laboratory

TRANSIMS REPORT SERIES

Traffic Jams Dynamics In
Stochastic Cellular Automata

Kai Nagel
Michael Schreckenberg

September 18-22, 1995

TMIP

Travel Model Improvement Program

Department of Transportation
Federal Highway Administration
Bureau of Transportation Statistics
Federal Transit Administration
Assistant Secretary for Policy Analysis

Environmental Protection Agency

U.S. Department of Transportation

U.S. Environmental Protection Agency
WHAT IS TRANSIMS?

TRANSIMS is a new system of travel forecasting models being developed by the Los Alamos National Laboratory for the Travel Model Improvement Program. The TRANSIMS models are a wholly new approach to travel forecasting, specifically designed to meet the needs of today’s transportation decision makers for more accurate information on traffic congestion, differential impacts of transportation and motor vehicle emissions. TRANSIMS is composed of four basic modules.

Activity-Based Travel Demand estimates the number, characteristics and locations of activities in which individuals will participate during the forecast period. Activities are work, shopping, recreation, etc. These activity estimates are based on characteristics of individuals, their households and vehicles determined by a synthetic population generator.

Intermodal Trip Planning computes combined route and mode trip plans to accomplish individuals’ desired activities. Intermediate activities such as shopping may occur during the routing of a principal trip such as work. TRANSIMS maintains the identities and characteristics of individual drivers, vehicles and other travelers throughout their trips. Trips are identified by specific geographic points of origin and destination.

Traffic Microsimulation computes the movement of persons, goods and vehicles on the simulated transportation network second by second during the forecast period. The microsimulation continuously computes the operating status of all vehicles and engines throughout the trips, including locations, speeds, acceleration or deceleration. Every motor vehicle in the study area is monitored in this way, thereby indicating areas and times of traffic congestion and emission concentrations.

Air Quality Analyses identify the kinds of emissions and calculate the effects of emissions on the atmosphere in the study area. The air quality module estimates the nature, amount and conditions of emissions by each motor vehicle. The output of the emissions modules are consistent with airshed models.

TRANSIMS is a considerable departure from traditional, four-step travel forecasting procedures. The new technical approaches in TRANSIMS permit equity analyses of transportation alternatives, service reliability and forecast uncertainty. Moreover, all of the traditional analyses conducted by the best current four-step models can be conducted with TRANSIMS.
Traffic Jam Dynamics in Stochastic Cellular Automata
Kai Nagel, Los Alamos National Laboratory
and Santa Fe Institute,
U.S.A.
and
Michael Schreckenberg, Universität Duisburg,
Germany
95ATS089

Simple models for particles hopping on a grid (cellular automata) are used to simulate (single lane) traffic flow. Despite their simplicity, these models are astonishingly realistic in reproducing start-stop-waves and realistic fundamental diagrams. One can use these models to investigate traffic phenomena near maximum flow. A so-called phase transition at average maximum flow is visible in the life-times of jams. The resulting dynamic picture is consistent with recent fluid-dynamical results by Kühne/Kerner/Konhüser, and with Treiterer's hysteresis description. This places CA models between car-following models and fluid-dynamical models for traffic flow. — CA models are tested in projects in Los Alamos (USA) and in NRW (Germany) for large scale microsimulations of network traffic.

1 Introduction

Simulation obeys a basic trade-off between resolution, fidelity, and scale. Many questions in transportation simulation currently can only be treated using high-resolution models (i.e. resolving each individual traveller) and looking at large spatial and temporal scales (e.g. for land use forecasts). In that situation, it is straightforward to think about reducing fidelity as much as possible. With respect to vehicular traffic flow, this means to find a minimal model of driving behavior without losing features which are believed to be essential for large scale questions. One solution to this challenge are cellular automata [25, 27] models of traffic [5, 4, 23].

These models serve a multitude of purposes: They run fast on computers, which allows both quick testing of different approaches as well as extensive statistical analysis, and they are simple enough for analytical treatment. All this helps answering the question of a minimal fidelity (minimal complexity [3]) model of driving behavior. In addition, the high computing speed also offers a potential for real time applications.

Schreckenberg and Nagel [22] give a more physical view on why such models are useful.

2 The Stochastic Traffic Cellular Automaton (STCA)

The basic computational model is defined on a one-dimensional array of \(L \) sites with open or periodic boundary conditions. This could, for example, be a link in a road network. Each site is either occupied by one vehicle, or empty. Each vehicle has an integer velocity with values between zero and \(v_{\text{max}} \), where we often use \(v_{\text{max}} = 5 \) for reasons stated below. The number of empty sites in front of a vehicle is denoted by \(\text{gap} \). For an arbitrary configuration, one update of the system consists of the following four consecutive steps, which are performed simultaneously for all vehicles:

1.) **Acceleration**: If the velocity \(v \) of a vehicle is lower than \(v_{\text{max}} \) and if there is enough space ahead, then the speed is increased by one: \(\text{If } (v < v_{\text{max}} \&\& v < \text{gap}) \text{ THEN } v := v + 1. \)

\[\text{Note that either rule 1 or rule 2 applies, but never both.} \]
2.) Slowing down (due to other cars): Else if the next vehicle ahead is too close, speed is reduced to gap: \[\text{ELSE IF } (v > \text{gap}) \text{ THEN } v := \text{gap}. \]

3.) Randomization (which is applied after rules 1 \& 2): With probability \(p \), the velocity of each vehicle (if greater than zero) is decreased by one.

4.) Car motion: Each vehicle is advanced \(v \) sites.

Note that, because of integer arithmetic, expressions like for example \(v < \text{gap} \) and \(v \leq \text{gap} - 1 \) are equivalent.

Since this model involves discrete space, discrete time, a small number of discrete states per cell, and a local and completely synchronous update, this model is formally a (stochastic) cellular automaton.

Already this simple model shows nontrivial and realistic behavior, for example start-stop-waves which are visible in space-time-plots (Fig. 1), or in the fundamental diagrams (Fig. 2). That reinforces our claim that already fairly simple models of driving dynamics can be rather realistic on more macroscopic scales.

Step 3 is essential in simulating realistic traffic flow since otherwise the dynamics is completely deterministic. When following through the rules for special cases like a single car on an empty road or a car approaching a thick traffic jam, one finds that it condenses three different behavioral patterns into one computational rule: (i) fluctuations at maximum speed; (ii) retarded acceleration; (iii) over-reactions at braking. Without this randomness, every initial configuration of vehicles and corresponding velocities reaches very quickly a stationary pattern which is shifted backwards, i.e. opposite to the vehicle motion, one site per time step [12, 13, 16].

The model can also be seen as a discrete particle hopping model [10]. Simpler versions of the CA model can be related to the Lighthill-Whitham theory of traffic flow. See [22] for more details.

3 Traffic jam dynamics

The statistics of the traffic jams in the STCA can be analyzed in a systematic way. Roughly speaking, a so-called phase transition takes place at the density \(\rho_c \) corresponding to maximum average flow; at higher densities than that traffic jams can survive for infinitely long times. This phase transition can be described using concepts from the physics of critical phenomena. More precisely, assume a situation with laminar traffic flow at a given homogeneous density
Figure 2: Fundamental diagram of the model (throughput versus density). Points: Averages over short times (100 iterations) in a sufficiently large system \((L = 10,000)\). Broken line: Long time averages (10⁶ iterations) in a large system \((L = 10,000)\). Dotted line: Long time averages in a small system \((L = 100)\).

Figure 3: Space-time plot of traffic at density \(\rho = 0.85\) in the so-called cruise control limit, i.e. fluctuations at maximum speed are artificially set to zero. At \(t = 5\), we emulate a disturbance by setting the velocity of a randomly selected vehicle to zero. One clearly sees the growing disturbance.

\(\rho_o\) and with a homogeneous flow \(q_o = v_{\text{max}} \cdot \rho_o\) (cf. Fig. 3). Now assume a small disturbance of this laminar flow, for example by setting the velocity of one randomly selected car to zero. Many different choices for the local perturbation give rise to the same large scale behavior. The perturbed car eventually re-accelerates to maximum velocity. In the meantime, though, a following car may have come too close to the disturbed car and has to slow down. This initiates a chain reaction – an emergent traffic jam.
Now, in the average, one finds three different behaviors, depending on ρ_o:

- For relatively low densities, the emergent traffic jam quickly dissolves.

- For relatively high densities, the emergent traffic jam grows forever, that is the inflow into the jam $q_{\text{in}} = q_o$ is higher than the outflow q_{out}, and the average number of cars in a jam, $\langle n(t) \rangle_{\text{all}}$ behaves as

$$\langle n(t, \rho_o) \rangle_{\text{all}} \sim t \cdot (q_{\text{in}}(\rho_o) - q_{\text{out}}),$$

where \sim means "proportional to for $t \to \infty$" and $\langle \ldots \rangle_{\text{all}}$ means the ensemble average over all initiated jams, i.e. the average over many simulations using ρ_o but different Monte Carlo seeds.

- Somewhere in between, that is when ρ_o is such that $q_{\text{in}} = q_{\text{out}}$, the emergent jam in the average neither grows or shrinks. This density is called the critical density $\rho_c = q_{\text{out}}/v_{\text{max}}$. Note that the critical point is given by the outflow behavior, which is in turn given by the acceleration behavior of drivers.

See [17] for more details.

It has to be stressed again that this description is only true in the ensemble average, i.e. for each given ρ_o we averaged over many different Monte Carlo realizations. For an individual jam, it happens rather often that even above ρ_o the jam eventually dies out; others however keep on growing forever and therefore compensate in the average.

This average picture is phenomenologically consistent with the fluid-dynamical model of Kühne/Kerner/Konhäuser [9, 8, 20, 24] (KKK model), except that one has to replace $\langle n(t) \rangle_{\text{all}}$ by the amplitude $A(t)$: In the fluid-dynamical model, below a certain density ρ_c, $A(t)$ decreases exponentially; above ρ_c, one finds, at least initially, exponential growth, and exactly at ρ_c, the amplitude neither grows nor shrinks. See [18].

The CA picture is also consistent with some newer mathematical car following models [2], and also with Treiterer's observation of a hysteresis effect: Laminar flow above the critical density ρ_c is possible for some time, but eventually traffic breaks down and separates into (i) jams, and (ii) laminar flow at ρ_c in between jams [18].

However, the STCA goes beyond the fluid-dynamical and (mathematical) car following models mentioned above as it allows for a stochastic evolution of the traffic jam. This is expected to be extremely important in traffic networks near capacity, where spill-back from disturbances may grow back into upstream intersections, which may cause a complete network break-down. Here, a deterministic model either always predicts network breakdown or always not, whereas a stochastic model allows to predict the probability of such a break-down event.

It is interesting to note that a theoretic argument for the jam dynamics suggests that traffic jam dynamics is "universal", which is a well defined concept in the theory of critical phenomena and means that probably many and maybe all one-dimensional traffic models with "reasonable" rules display, again in the thermodynamic limit and in a certain coarse-grained description, the same traffic jam dynamics. Depending on the needs for the traffic question under consideration, the simplest version of this jam dynamics may well be good enough and more complicated models then only cost resources.

4 Computational speeds

We have performed extensive tests of computational speeds of different implementations of the CA on different computer architectures [15, 19, 21, 16]. Especially for parallel machines, system size becomes a crucial quantity since, for example, a certain system size may run efficiently on a
small number of processors but inefficiently on a large number of processors. For simplification, the following numbers therefore are extrapolations from a simulated system of size 10,000 km (single lane), with a CA density of $\rho = 0.1$, i.e. 133,333 vehicles; for more details see the above references. Some conclusions from the tests can be summarized as follows:

- CA models are in principle amenable to single bit coding, thereby stuffing all 32 (or 64) bits of a computer word with information and processing this information simultaneously using word-wise logical operations. These approaches run extremely fast on traditional vector-computers like the Crays. We reached real time limits of 4,000,000 km or 53,000,000 veh sec/sec (vehicle seconds per second) on a NEC SX-3.

- On non-vectorizing parallel machines though, single bit coding is not much faster, and it is also much less flexible for more ambitious uses where one would, say, want to keep track of travelers' plans. We still reached, for example, a real time limit of 260,000 km or 3,500,000 veh sec/sec on an 32-node Intel iPSC hypercube, or 220,000 km (3,500,000 veh sec/sec) on a 32-node CM-5 (not using the vector units).

- An implementation of the freeway network of NRW (including freeway intersections and lane changing) slowed the simulation speed down by less than a factor of 2. We reached 290,000 km or 59,000,000 veh sec/sec on a 64-node Intel Paragon.

- Extrapolations for a large but existing machine, the 1024-node CM-5, let us expect 1,700,000 km or 27,000,000,000 veh sec/sec, i.e. enough simulation speed for the whole Los Angeles area in real time.

5 Simulations of the freeway network of NRW

The model has been used to make microscopic simulations of the freeway network of the German land NRW [19, 16]. Here, we will describe some simulations which have been undertaken to test the usefulness of a CA approach for simulating route choice behavior in realistic network configurations.

In the simulations, there are many travelers with different origin-destination pairs. Travelers have route plans (paths) so that they know on which intersections they have to make turns in order to reach their destinations. Each traveler has a choice between 10 different paths. Each traveler chooses a path, the microsimulation is executed accordingly to the plans of each traveler (no re-planning during the trip), and each traveler remembers the performance of his/her option.

Each traveler tries each option once. Afterwards, she usually chooses the option which performed best in the past, except that, with a small probability p_{other}, another option is chosen randomly, in order to update the information about other options.

This approach - giving each agent a set of options and let each agent act on the basis of the performances of these options - is a simplified version of Holland's classifier systems [7, 1].

The simulations were based on a digital version of the freeway network of NRW (see [19, 16] for details). The code is written for parallel computers using message passing, in principle for an arbitrary numbers of computational nodes (CPNs). In practice, two Sparc10 workstations, coupled via optical link and using PVM 3.2, were used. That gives the idea that experiments such as the following are already possible with a still modest amount of hardware, and that the consistent use of parallel supercomputers will allow systematic analysis of much larger systems.

Apart from the network and the individual trip plans, the simulation is kept as simple and straightforward as possible. This includes single directional lanes (i.e. only one lane in each direction) and over-simplified ramps [14, 16].
The specific simulation set-up is described in the following. The simulation is an approximation of long distance traffic through NRW. Let us denote by boundary points the points where the freeways cross the borders of North-Rhine-Westfalia. In the way the network was prepared [19, 16], these are the only open ends of the network. At each of these endpoints, 2000 vehicles were assumed to be in an ordered queue with the desire to enter as early as possible. Each vehicle has a destination, which is one of the other boundary points of the networks, and which remains the same through all repetitions of the simulation. The destinations are chosen randomly, with a higher probability of choosing destinations which are far away; using different distributions gave only small differences on the level of detail which is discussed here [16].

Then, each vehicle gets a list of 10 different paths to reach its destination. These lists have been pre-calculated for all allowed O-D-pairs, and contain the 10 geometrically shortest paths which do not use the same node twice ([11], see [16]). Each vehicle individually now decides which path to use. In the first day (= period), each vehicle uses the shortest path; during the subsequent 9 days, each vehicle randomly selects one of the not yet tested options. Afterwards, it selects, as mentioned in the introduction, the option with the best performance, apart from the probability \(p_{\text{other}} = 5\% \) to re-test one of the other options, which is then chosen randomly.

After these preparations, the microsimulation starts. Vehicles are updated according to the standard dynamical rules, and they change segments when they are at an intersection. Each vehicle then follows its plan until it reaches its destination, where it notes the arrival time \(t_{\text{arriv}} \), i.e. the current iteration step of the simulation, which is used as performance criterion for this specific path. When this is the first time this specific path has been used, this is used as the first guess; for repeated trials of the same route, both a myopic and an averaging scheme were tested without visible differences.

After all vehicles have reached their destinations and recorded the above information, the simulation is restarted, where all vehicles have the same initial position and the same destination as before, but may choose a different path according to the rules described above.

Figs. 4 demonstrates the result of the learning algorithm. Both the top and the bottom figure uses exactly the same initial configuration of cars with their individual destination. Both figures are snapshots of the situation after 6000 iterations (100 minutes). The top figure shows the situation when every driver follows the geometrically shortest path. Meanwhile, in the bottom figure, drivers act according to their previous experiences, i.e. they usually use the path where they were fastest in the past. Note that, generally speaking, people “learn” according to the programmed rules to equilibrate the jams between different paths, so that all options are equally slow.

Further experimentation reveals that the day-to-day pattern of these simulations after the learning phase is fairly stable. Together with the result that also the learning algorithm (myopic vs. averaging) nor the specific distance distribution do not matter very much, one can conclude quite in general that many of the results are robust, in spite of the stochasticity of the model.

Both the TRANSIMS project in Los Alamos [26] and the “Verkehrsverbund NRW” in Germany plan to use CA approaches as a microsimulation option.

6 Summary

Already a simple, grid-based particle hopping model yields realistic traffic jam behavior and realistic fundamental diagrams. The model was used to investigate the regime of maximum flow. It was found that there is a phase transition at a critical density \(\rho_c \); above \(\rho_c \) traffic jams in the average never dissolve, therefore defining average maximum flow after the break-down of laminar flow. This behavior is similar to recent fluid-dynamical and continuous car-following
Figure 4: Top: Situation at the “first day” after 6000 iterations (100 minutes), when trips through the network are chosen with a fourth order preference for long trips, and when all drivers follow the geometrically shortest path. — Bottom: Situation at “day 15” after 6000 iterations (100 minutes), for the same initial conditions as for the top figure, but where drivers have “learned”.

theories of traffic flow, as well as with Treiterer’s hysteresis description. Implementations on different supercomputers confirm that the computational speed is sufficient to perform regional traffic simulations in faster than real time. Results from simulations of the freeway network of the German land North-Rhine-Westfalia show in a more practical case, that this model makes
simulations based on individual behavior possible with only a modest amount of hardware.

References

[26] TRANSIMS—The TRansportation ANalysis and SIMulation System project, TSA-DO/SA, Los Alamos National Laboratory, U.S.A.
Travel Model Improvement Program

The Department of Transportation, in cooperation with the Environmental Protection Agency, has embarked on a research program to respond to the requirements of the Clean Air Act Amendments of 1990 and the Intermodal Surface Transportation Efficiency Act of 1991. This program addresses the linkage of transportation to air quality, energy, economic growth, land use and the overall quality of life. The program addresses both analytic tools and the integration of these tools into the planning process to better support decision makers. The program has the following objectives:

1. To increase the ability of existing travel forecasting procedures to respond to emerging issues including: environmental concerns, growth managements, and lifestyles along with traditional transportation issues,

2. To redesign the travel forecasting process to reflect changes in behavior, to respond to greater information needs placed on the forecasting process and to take advantage of changes in data collection technology, and

3. To integrate the forecasting techniques into the decision making process, providing better understanding of the effects of transportation improvements and allowing decisionmakers in state governments, local governments, transit agencies, metropolitan planning organizations and environmental agencies the capability of making improved transportation decisions.

This research was funded through the Travel Model Improvement Program.

Further information about the Travel Model Improvement Program may be obtained by writing to:

TMIP Information Request
Metropolitan Planning (HEP-20)
Federal Highway Administration
U.S. Department of Transportation
400 Seventh Street, SW
Washington, D.C. 20590