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CHAPTER 1.  INTRODUCTION 

This technical report presents the findings of Task 11: Develop Framework of the DTFH61-10-

R-00036 Exploratory Advanced Research (EAR) program to develop Foundational Knowledge 

to Support a Long-Distance Passenger Travel Demand Modeling Framework. Task 11, which is 

the last task under Phase II (Research Tasks) of the project, unifies all the model components 

into a modeling system, demonstrates the integration of the modeling components with software, 

and produces performance metrics of interest to planning applications. 

The purpose of this report is to document the development of the modeling system and the 

demonstration of this system to develop long-distance passenger travel for 2010. This effort 

involved significant data development to build road, air, rail, and bus networks, as well as a zone 

system for the United States in order to best serve the goal of accurately estimating long-distance 

travel. The models developed and presented in the Model Estimation Memorandum (Tasks 8 and 

9, October 2013) were updated to ensure consistency among the variables and to expand the 

underlying survey coverage from a single source to a combined dataset of four states. Additional 

exploratory work on the joint-destination and mode-choice models was undertaken to address the 

challenges of estimation on such a large dataset. 

The demonstration of the methods and data developed is provided with software to implement 

the model components for long-distance travel. This demonstration is based on the least complex 

of the recommended model component to evaluate the overall challenges of the modeling system 

and methods to implement the long-distance passenger travel models. The demonstration focuses 

on predicting a single day of long-distance travel in a specific month and evaluates several ways 

to expand this demonstration to predict annual long-distance passenger travel. As a 

demonstration, this does not include calibration, validation, or forecasting with the modeling 

system. Performance metrics have been selected to visualize the possible outputs from the 

modeling system; examples of these outputs have been provided. 

1.1    Objectives of the Program 

The US Department of Transportation (US DOT) recognizes that long-distance travel represents 

a significant portion of all travel and that this type of travel is economically important. In 1995, 

the date of the last long-distance passenger travel survey in the United States, 25% of all person-

miles traveled in the United States were classified long-distance travel. Long-distance travel 

includes both Business and Leisure travel, both of which are major contributors to the United 

States economy. As a result, the US DOT desires to support continued high levels of personal 

mobility for both economic and social purposes. 

Providing personal mobility in a cost-effective manner requires an understanding of travel 

behavior and an evaluation of investments in transportation infrastructure and services; it also 

requires anticipating the effects of any public- and private-sector decisions that impact the 

transportation system and its uses. The development of the Long-Distance Passenger Travel 

Demand Modeling Framework will be focused on addressing this overall goal. 
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The primary uses of the long-distance passenger travel demand model are to: a) evaluate 

transportation investments in transportation infrastructure and services designed to address 

deficiencies in the national transportation system; and (b) evaluate the impacts of transportation 

planning policies being considered at the national level or significant private-sector decisions 

that may affect the national transportation system. Intercity travel has not received the same 

attention in the travel demand modeling field as urban and local travel have; as a result, it has not 

evolved to reflect the unique nature of these types of trips. 

A secondary use of the long-distance passenger travel demand model is to support statewide 

models around the country. There are at least 30 statewide travel demand models in the United 

States and each one incorporates long-distance travel as external movements into, out of, and 

through the state, and internal movements within the state. There are currently many methods for 

incorporating long-distance travel in statewide models, but there is no agreement on the best 

method. There is also a collective desire to improve upon these methods and the data that are 

used to support these methods. Insufficient or inaccurate data is a common theme in limiting the 

understanding of long-distance travel. 

The US DOT is leading the effort to develop long-distance passenger travel demand models that 

will support both national modeling needs and statewide modeling needs through this 

Exploratory Advanced Research (EAR) program. A multimodal national transportation demand 

model could be used to: 

 Analyze national, multistate, or megaregion travel and congestion; 

 Test the effectiveness of national policies; 

 Provide a framework for system performance measurement; 

 Evaluate the impacts of private-sector decisions on the national transportation system; 

 Provide state agencies with interstate passenger travel for statewide planning; and 

 Provide metropolitan agencies with quality external trip data for urban area planning. 

National Travel Modeling 

There are three primary reasons to build national travel models: 

 To inform infrastructure investment decisions; 

 To evaluate the impacts of transportation policies on mobility and the economy; and 

 To understand the impacts of private-sector transportation decisions. 

It is important that the Long-Distance Passenger Travel Demand Modeling Framework recognize 

these uses so that it is specifically designed to address these needs. In some cases, emerging 

developments in various fields should be considered so that the modeling framework can 

integrate these developments and evaluate their impacts. Examples of emerging developments 

are vehicle technologies (e.g., gas, hybrid, diesel, electric, etc.) with different fuel efficiencies, 

communication advances, high-speed rail, and others. 
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Infrastructure Investment Decisions 

Transportation agencies across the United States use travel demand forecasting models to inform 

their infrastructure investment decisions by evaluating possible alternatives against a base case to 

select the alternative with the highest return on the investment. Benefits are determined as a 

result of the travel demand and compared to the cost of the investment. It is important to 

understand the characteristics of the travel demand so that the benefits for each alternative can 

accurately reflect tradeoffs that travelers make and the impacts that will be affected by these 

choices. 

Policy Analysis 

The use of a long-distance passenger travel demand model for policy analysis in the United 

States was one of the primary objectives in constructing this model. Proposed is a broad 

spectrum of potential policy analyses that a national passenger travel model could support: 

 Modal alternatives. There is direct competition between air, rail, bus, and auto modes 

for intercity and long-distance travel, and any infrastructure investments being considered 

should be evaluated in the context of this competition. Currently, these types of 

infrastructure investments are evaluated using a corridor, state, or megaregion model, 

often developed specifically to evaluate a single project. A distinct advantage of a 

national model to evaluate these investments would be that a national would be consistent 

from one state/region to another; be less likely to be biased in favor of a particular mode; 

and represent improved forecasts, since the forecasts will represent a deeper 

understanding of long-distance travel. In addition, some modal alternatives have the 

ability to induce travel. 

 Pricing. There are many aspects of pricing that can and should affect national model 

forecasts. Pricing can be a strategy to manage demand or raise revenues (e.g., toll roads, 

air and rail fares, etc.). Pricing is also represented as assumptions on gas prices, and the 

effects of rising or falling gas prices can be used to evaluate overall transportation 

impacts. Air fares can change based on when tickets are purchased (advanced prices are 

lower) and are set by the private sector based on market factors. Rail fares tend to be 

more stable and are correlated with distance traveled, but could change to reflect 

advanced ticket prices (as is currently done in the United Kingdom) or demand, as is the 

case with congestion pricing (prices are higher during peak periods of demand). Also, 

traveler decisions are affected by reimbursement for business travel. 

 Economics. Policies that aim to improve the economic conditions will, in turn, affect 

long-distance travel. Tourism is an important sector of the economy that can change 

according to economic conditions, which determines the type of traveler who will visit. 

In tougher economic times, travelers will visit destinations closer to home. Business 

travel is also affected by the economy and has increasingly adapted to new technologies 

that offer a substitute for business travel. Fare structures can be set differently for 

Business and Leisure travelers (either by time of day or day or week or season). 

 Environmental. Environmental policies that aim to reduce emissions can have effects on 

long-distance travel. An increase in the gas tax will influence gas consumption and 
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potentially reduce vehicle miles traveled (VMT), and possibly change vehicle purchase 

decisions for lower-emission vehicles. Carbon taxes will affect the cost of air travel. The 

Environmental Protection Agency (EPA) may change fuel standards, which would result 

in changes in vehicle purchases. Some lower-emission vehicles (e.g., electric cars) have 

limitations on long-distance travel. 

 Livability. Transportation policies pertaining to livability, like Smart Growth or 

Complete Streets, can change the social character of a destination and increase the 

attractiveness of an area for tourism or business travel. This, in turn, will affect the long-

distance travel to that destination over time. 

 Safety. Policies to reduce accidents, such as the security clearance at airports or reduced 

speeds on highways, can affect travel behavior by causing mode shifts or reduced travel 

to avoid these regulations; these policies can also induce travel from safety conscious 

travelers. 

 Regional. Policies that affect different regions of the country (e.g., taxes, tolls, gas prices, 

etc.) may result in different travel behavior across regions. These differences will need to 

be reflected, to the extent possible, in the data underlying the long-distance models. 

 Airport or Rail Planning. Policies made by airports or long-distance rail operators 

regarding new capacity, rail airport connections, or environmental impacts could use a 

national model to inform these decisions. 

 Labor Force. Prosperous regions can attract labor forces from less prosperous regions 

and can create long-distance travel between regions. The labor force is adaptive to 

economic conditions and housing affordability, which can drive changes in long-distance 

travel. 

The goal of the Long-Distance Passenger Travel Demand Modeling Framework is to account for 

changes in these types of policies so that changes in long-distance travel can be forecast. While 

private-sector decisions are outside the control of the US DOT, it is useful to have long-distance 

passenger travel demand models that are sensitive to the factors that the private sector may 

control. This is because sensitivity tests can then be used to evaluate decision impacts. 

Statewide Travel Modeling 

Statewide models can benefit from national long-distance passenger travel demand models that 

provide input on travel into, out of, and through a state and long-distance travel occurring 

between urban areas within a state. The usefulness of these inputs and outputs will depend 

directly on the definition of long-distance travel chosen for the framework. Long-distance trips 

can be defined by distance, mode, destination, and/or purpose. 

Interstate Travel 

Long-distance travel is usually implied with interstate travel, but there are some states where 

metropolitan areas cross state boundaries and interstate travel within these regions is not long 

distance. There are also states with smaller geographies where interstate travel (or even through 

travel) are also not long distance. However, statewide models depend on a definition of long-

distance travel that includes interstate travel. 
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Intrastate Travel 

Larger states are recognizing that long-distance travel within their states is behaviorally different 

from other travel and that there are benefits to forecasting this travel with different parameters 

than metropolitan area models or traditional statewide models. Smaller states do not face this 

same challenge. National long-distance passenger travel demand models could provide useful 

information for larger states on long-distance passenger travel demand. 

Megaregion Travel Modeling 

The objectives for a long-distance national travel model to support analysis for statewide 

modeling also apply to megaregion modeling objectives, which are often developed to support 

infrastructure investments that cross several regions or states. There are fewer megaregion 

models in the United States than statewide models, but these models should be considered in 

defining the long-distance trip and determining aspects of integration that are important (e.g., 

spatial scale, temporal scale, trip purpose, mode, and trip chaining). 

1.2    Contents of the Report 

This report comprises work completed during the course of the research study. There are three 

main topics covered in this final report: 

 Background research is presented in Chapter 2 as a summary of experience in the 

United States and internationally and identifies the majority of the literature provided in 

the references (Chapter 9). 

 Model exploration includes a discussion of estimation and application data sources, such 

as socioeconomic, land-use data, and household surveys, as well as zones developed for 

this study and the networks developed for each mode in Chapter 3. Chapter 4 presents the 

integrated modeling system framework and the estimated model components within this 

framework. There is additional research on the exploration into model form and structure 

that is provided in a technical memorandum. 

 A demonstration of the long distance modeling framework, using a simplified 

application structure, is presented in Chapter 5. This includes presentation of software 

developed to apply the microsimulation of all United States households’ long-distance 

passenger travel models. Chapter 6 is a discussion of potential performance metrics that 

can be produced with this new set of long-distance models. 

The background research for this project explored many possible datasets to support model 

estimation, but all datasets had some limitations. Once the integrated modeling system 

framework for long-distance passenger travel was developed, the research team also developed a 

set of recommendations to provide the data for building and applying the model in Chapter 7. 

Chapter 8 presents a high-level summary and a scope of work for the implementation phase of 

the project. This phase is underway and includes calibration and validation of the models with 

various observed data and sensitivity testing for different policies. 
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CHAPTER 2.  SUMMARY OF EXPERIENCE IN THE UNITED 

STATES AND INTERNATIONALLY 

Experience with long-distance travel demand modeling in both the United States and 

internationally served as a foundation for the development of the Long-Distance Passenger 

Travel Demand Modeling Framework. Current long-distance travel demand modeling in the 

United States has been developed primarily as a component of statewide models, either directly 

or indirectly (as part of overall trip‐making). These approaches vary from conventional 4‐step 

planning models to integrate economic- and activity‐based approaches. The treatment of long-

distance travel depends on the size of the state and the decision to segment long- and short-

distance travel. 

The United States models reviewed include those in California, Florida, Indiana, Kentucky, 

Michigan, New Hampshire, Ohio, Oregon, Tennessee, and Wisconsin. There are several national 

or multinational models outside the United States—primarily in Europe, but also in South 

America and Australia—where long-distance trips are modeled, with a similar range of methods 

as for statewide modeling in the United States. The international models reviewed in Task 2 

include those in the United Kingdom, France, Belgium, Netherlands, Germany, Denmark, 

Norway, Sweden, Portugal, Switzerland, Czech Republic, Italy, Australia, and Chile. 

The definition of a long-distance trip varied in the literature, which reinforced the need to 

determine a definition for a long-distance trip that met the needs of this study. In other studies, a 

long-distance trip has often been defined according to the size and scope of the region of interest; 

regions may vary from small states to small countries, to large states or countries. The United 

States is the largest country examined in the literature review, with the exception of the 

European-level models. 

Each of the models reviewed were summarized along seven dimensions: 1) context; 2) definition 

of a long-distance trip; 3) model structure and form; 4) segmentation; 5) approach to forecasting; 

6) types of applications and procedures; and 7) data sources. 

2.1    Definitions and Context 

Two contexts in which long-distance travel has been modeled can be distinguished: 

 Some models have been developed for specific corridors, generally to help with decision-

making about infrastructure investment and pricing. An example is the Danish Great Belt 

Study. 

 Other models have been developed for complete areas, with a view to making them 

available for general policy and investment analysis for several modes and over a wide 

area. An example is the UK Long-Distance Model. 

The UK Planet HS2 models show how a general model can be adapted to a specific project, in 

that case giving a substantial time saving, which was essential for such a large project (over US 

$50 billion) attracting huge political attention. 



 

10 

In the United States, of those states that forecast long-distance travel, many consider daily travel 

demand, long-distance travel, and freight demand simultaneously. Typically, states develop these 

models in response to a specific need, whether it is tourism, alternative modes, or freight. Models 

of air traffic may not give detailed attention to other modes. 

In the case of models applicable to a specific project, the definition of the trips that are included 

is obviously those that would or might use the project. The more general models typically have a 

rigorous specification of trip length, often 100 km (62 miles) or 50 miles, with some instances of 

thresholds greater than 50 miles. The international examples often use the 100-km threshold 

while the domestic examples often use the 50-mile threshold, highlighting the somewhat 

arbitrary nature of this threshold setting. In some cases, the models consider any travel between 

urban areas, without a specific distance threshold. The Long-Distance Passenger Travel Demand 

Modeling Framework assumes a long-distance trip is greater than or equal to 50 miles. 

2.2    Model Structures and Segmentation 

The majority of long-distance trip models in the United States rely on modifications to the 

traditional 4-step planning process. While there are many assumptions inherent in this process, it 

makes it: a) easier to implement long-distance models across the state; and b) more efficient for 

results of the long-distance modeling efforts to be compared with those from local urban models. 

This is especially relevant, as many long-distance travel models in the United States serve as a 

supplement (and are estimated simultaneously) to daily travel models. 

However, there has been a recent trend toward more long-distance models utilizing the tour-

based modeling approach. While this is more insightful and offers more-detailed results and 

opportunities for analysis, it requires extensive surveys of travelers. 

The major components of the international models were found to be as follows: 

 The majority of the models described have at their core a logit choice submodel 

describing mode choice and usually other choices, such as submode, major routes, and 

timing choices. 

 Some of the models, chiefly those that are not specific to corridors, represent destination 

choice. This is usually more sensitive to network effects than mode choice (i.e., it should 

be placed lower in a nested logit hierarchy). 

 A number of models have an elastic trip generation component, in which change in 

accessibility is represented as changing the total number of trips made. 

 Overall growth in trips is based on population and employment growth, with income, car 

ownership, and purchasing power possibly taken into account. 

The MATISSE model, which uses an assignment concept, and Dargay’s model, which is based 

on elasticities, are exceptions to the general trend of these models. Estimation generally uses 

maximum likelihood, although in many cases this is not a full-information procedure, as 

sequential estimations are made. Some models use trips (origin–destination) as the basic unit, 

while others use return tours or production–attraction relationships. 
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Among the models in the United States, the most common long-distance trip purposes are 

business, leisure, and personal business. However, a significant number of models do not define 

trip purpose. Few states consider segments of long-distance travel beyond the main trip purpose. 

Analysis methods consider household and zone characteristics, which could be extrapolated, but 

states have not demonstrated this. 

It was found that all of the international models are segmented by travel purpose, at least 

separating Business and Leisure trips; however, commuting is occasionally grouped with 

business. Further purpose segmentations often concern the identification of commute and 

education, holiday, and social (“visit friends or relatives”) trips. Associated with the purpose 

segmentation is length of stay, perhaps isolating day trips, or distinguishing short stays from long 

stays with a split at 3–5 days. Further trips are sometimes split and modeled separately for 

medium lengths and long trips, with a split at 150–300 miles. 

A key further segmentation, which for data reasons is not included in many models, is by income 

group. Other segmentations used in some models concern residence location (e.g., country), 

party size, age, sex, employment, and car ownership (sometimes considered to be car 

availability). Specific segmentations that are not widely used are by area type (in the UK 

National Travel Model) and the detailed segmentation used in MATISSE, and also INVERMO. 

2.3    Approach to Forecasting 

Among the international models, the key distinctions were found to be between sample 

enumeration and zonal approaches, though these form a spectrum rather than a clear distinction 

between approaches. In either case, a conventional factoring to allow for growth in population, 

employment, and perhaps income is often applied, using government data sources. In some 

cases, forecasting is made difficult by the extent of macroeconomic developments (e.g., the huge 

advance in income in Poland in the last 20 years or the major setback in many countries in the 

last three years). 

Pivoting is an important part of some modeling processes. When the model has a full set of 

alternative-specific constants (e.g., in a mode-choice model), then it will automatically reproduce 

the base situation. However, when destination choice is included, pivoting can help to 

substantially improve accuracy, though the quality of the base matrix data that are available are 

sometimes poor. Some models also include steps for assignment and iteration between the 

assignment and the demand model to allow highway capacity to be taken into account. This is 

more often a highway assignment, but in some cases rail capacity is also an issue. 

In the United States, many states keep the long-range models separate from their forecasting 

methods, treating them as a sequential process rather than integrating them. As mentioned, many 

states developed long-distance models to address specific concerns. As a result, these models are 

designed to evaluate corridors, alternative routes, and alternative modes. This is also true 

internationally, where many of the models are designed for particular schemes and are restricted 

to application for those schemes, perhaps covering variations in the infrastructure, but also in 

operation and pricing. 
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However, there are also a set of more general models, for which high-speed rail is often an 

important application, though it is recognized that general models are not always capable of 

modeling this alternative without being extended (e.g., by stated choice information). Also, the 

prediction of CO2 output is important in some cases and can be handled by special modules in 

conjunction with, for example, user benefit. In other cases, models are packaged for use by the 

client (e.g., in spreadsheet systems or special-purpose software). Occasionally, the packaged 

application is a simplified “sketch planning” variant of the full model. 

2.4    Data Sources 

All of the United States models rely on extensive datasets, and utilize Census and NHTS data to 

some extent. The most detailed models either include an add-on to the NHTS or include data 

from a statewide long-distance travel survey. This is also true internationally, where national 

travel surveys are often a key source for modeling traveler behavior. These are often 

supplemented by scheme-specific surveys, whether revealed preference, stated choice, or both. 

Stated intentions data are also used, for example, to try to obtain information about likely 

increases in the frequency of travel, which is not amenable to stated choice investigation. Ticket 

sales data, where available, are a useful source because of the volume. Other aggregate data, 

such as simple counts, can also be important to improving the accuracy of the model. The 

importance of good network data for all the modes considered cannot be overstated. 

2.5    Other Issues 

Some documentation is available only in the languages of the countries concerned. In some 

cases, documentation is limited or not available because the study is confidential. In other cases, 

interest focused on the first years of operation of infrastructure and then the pattern of build-up, 

involving learning and perhaps “novelty” trips. This is also associated with validation of the 

models, which can be done immediately on opening, provided that the unstable nature of demand 

is taken into account at that point. In addition, the important application to high-speed rail raises 

the issue of the position of new alternatives relative to existing ones. Whether high-speed rail is 

best handled as a choice (e.g., using a logit model) or as part of a rail assignment has raised 

issues in several countries. Furthermore, the question of induced demand can be an important 

one for significant infrastructure or pricing projects. This was addressed in the Great Belt Study 

and validated once the project opened, but the models under-predicted induced demand in the 

long term, after correctly predicting short-term induced demand. The use of simple models to 

check complex ones is a useful procedure. Finally, it will be useful to focus on a small number of 

the studies reviewed to get detailed information on particular modeling issues. 

2.6    Summary 

Table 1 provides a list of all of the models reviewed and a summary along the seven dimensions. 
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Table 1: Summary Table Comparing Long-Distance Models 

Model Region Context Definition Structure Segments Forecasting Applications Data 

Eurotunnel 
Car Market 
Share Model 

UK to France 
and beyond 

Market for Le 
Shuttle vs. ferry 

No specific 
definition (London 
to Paris > 200 miles) 

Nested logit route 
choice model, linear 
regression growth 
model 

Business, Motor 
inclusive tour, Day 
trip, Short stay, 
Long holiday, 
Caravans 

Time-series models 
predict total trips, 
pivot from flows on 
existing alternatives 

Determine a price 
elasticities/cross-
elasticities across 
days, time periods 

UK Government 
International 
Passenger Survey, 
stated preference 
surveys, road 
networks, economic 
data 

Union 
Railways 

UK to France, 
Belgium and 
beyond 

Market for Eurostar 
trains from London 
to Brussels and 
Paris 

No specific 
definition (London 
to Paris > 200 miles) 

Choice model of 
mode, station, 
access mode. 
exponential model 
with accessibility 
LogSums for trip 
generation 

7 trip purposes, UK 
residents vs. 
nonresidents, group 
size, trip duration, 
and season 

Sample 
enumeration, pivot 
from flows on 
existing 
alternatives. 
Growth factors 
from regression 
model 

Viability of 
intermediate 
stations, elasticity 
of demand to price 
and travel time 

Combined revealed 
preference- stated 
preference data, 
plus Stated 
Intentions data 

Very Fast 
Train 

Australia 

A high-speed rail 
project from 
Sydney to 
Melbourne via 
Canberra 

More than 200 
miles 

Mode-choice model 

Business vs. leisure, 
SE variables are 
party size, duration 
of stay, age and 
income 

Conventional model 
to project total 
demand, then 
sample 
enumeration 

Specific to the 
Sydney-Melbourne 
project 

Combined revealed 
preference-stated 
preference-stated 
Intentions survey 

High-Speed 
Line – South 

Netherlands to 
Belgium and 
France 

HSL-S from 
Amsterdam to Paris 
via Brussels 

No specific 
definition 

Predictions for 
business-as-usual 
and diversions from 
that 

Business, commuter 
and leisure, 
domestic and 
international flows 

Spreadsheet 
forecasting model 
allows user 
adjustment, no 
explicit forecasts 
incorporated 

Specific to 
evaluation of the 
HSL project 

Revealed 
preference and 
stated choice data, 
network data and 
traffic counts 

Scilly Corridor 
Model 

SW United 
Kingdom 

Mode choice for 
travelers to the 
Isles of Scilly 

Islands are 28 miles 
from the English 
mainland 

Choice between 
ferry, helicopter 
and (fixed-wing) 
plane 

Visitors (staying on 
islands, day 
trippers), Residents 
(leisure, business), 
high and low 
income  

UK government 
forecasts for 
population and 
income, sample 
enumeration in a 
spreadsheet 

Specific to the ferry 
and its replacement 

Revealed 
preference and 
stated preference 
surveys 
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Model Region Context Definition Structure Segments Forecasting Applications Data 

Norwegian 
National 
Model 

Norway 

Developed to 
support national 
environmental 
policy, extended to 
consider 
infrastructure 
projects 

Over 100 km (62 
miles) 

Predicts travel 
frequency, mode 
(car, air, rail, bus 
and boat), 
destination choice  

Business, 
work/education, 
social, recreation 
and ‘service’ 
(personal business); 
SE variables in the 
trip frequency 
model 

Documentation not 
available 

Environmental 
policy, 
infrastructure 
issues, considered 
unsuitable for HSR 
modeling 

Revealed 
preference data 
from the national 
transport survey 

Norwegian 
High-Speed 
Rail Modeling 

Norway 
Under development 
to investigate 
potential for HSR 

No specific 
definition 

Mode choice (car, 
air, bus, existing 
train, proposed 
HSR) 

Travel purpose 

Conventional 
growth factors are 
applied to the 
matrices 

Specific to the high-
speed rail 
application 

Stated choice 
survey, base trip 
volumes from 
Norwegian National 
Model 

Swedish 
National 
Model 

Sweden 

Similar to the 
Norwegian model: 
distinguishes 
between long-
distance and short-
distance traffic 

Over 100 km (62 
miles), although 
some longer 
commute trips 
modeled as short 
distance 

Nested logit models 
predicts travel 
frequency, mode, 
destination choice, 
applied to tours 

Business and 
Leisure travel 
(which is 
segmented by 
duration of stay) 

Documentation not 
available 

Range of policy 
analyses, 
particularly HSR 
studies 

National travel 
survey, detailed 
network data 

Great Belt 
Study 

Denmark 
A model of travel 
between east and 
west Denmark 

No specific 
definition 

Nested logit model 
for mode, route 
choice, travel 
frequency, 
submodel forecasts 
new trip generation 

Business and 
Leisure (which is 
segmented into 
single passengers 
and groups 

Sample 
enumeration, pivot 
from existing flows. 
Trips forecast using 
population, 
economic growth, 
fuel prices 

User-friendly 
system delivered to 
client testing 
demand sensitivity 
to pricing 

Stated preference 
surveys and 
national travel 
survey 

Fehmarn/Fem
ern Belt Study 

Germany/Den
mark 

Model passenger 
and freight traffic 
across the Femern 
Belt 

No specific 
definition 
(Copenhagen to 
Hamburg is 180 
miles) 

Discrete choice 
model of mode and 
route choice 

Business and 
Leisure (which is 
segmented into 
single passengers 
and groups 

Full details not 
available, included 
forecasting 
economic/trade 
development 

Specific to the 
evaluation of the 
project; simple 
sketch version used 
for fast scenario 
testing 

Revealed 
preference and 
stated preference 
surveys  

UK Long-
Distance 
Model 

Great Britain 
(does not 
include 
Northern 
Ireland) 

Intended to study a 
wide range of policy 
relating to long-
distance travel 

Trips over 50 miles 
entirely within 
Great Britain plus 
airport access trips 
over 50 miles 

Nested logit choice 
model for demand, 
network models for 
highway, air and rail 

Commute/ 
education, business 
and other, plus SE 
variables income, 
auto ownership, 
etc. 

Population, auto-
ownership forecasts 
are inputs, pivots 
from observed 
data, preloaded 
networks 

Initial use is for HSR 
tests 

Revealed 
preference data 
from the National 
Travel Survey, 
additional trip 
diaries, stated 
preference survey 
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Model Region Context Definition Structure Segments Forecasting Applications Data 

PLANET Long 
Distance 

England 

Forecasting for 
proposed new HSR 
line (“HS2 ”) in 
England 

All air and rail trips, 
car trips over 30 km 
(see text for other 
complexities)  

Emphasis on 
railway assignment, 
predicts growth for 
car, air and rail 
independently 

Business, commute 
and other travel; 
auto ownership 

External mode-
specific forecasts, 
then incremental 
modeling of mode 
choice and changed 
travel frequency 

Specific to the 
evaluation of the 
project 

Rail ticket sales, rail 
on board surveys, 
National Transport 
Model, stated 
preference survey 

Dargay’s 
Model 

Great Britain 
(does not 
include 
Northern 
Ireland) 

Model for long-
distance travel in 
GB 

Over 50 miles 

Mode, purpose and 
trip length 
components, each 
with elasticities 
with respect to a 
range of variables 

Business, 
commuting, leisure 
day trips, visiting 
friends and 
relatives and 
holidays; trip length 
split at 150 miles 

2030 forecasts, 
uses government 
forecasts of GDP 
and fuel price 

Fast model to test a 
range of policy and 
other scenarios 

National travel 
survey, national 
aggregate time-
series data, survey 
of long-distance 
travel 

UK National 
Transport 
Model 

Great Britain 
(does not 
include 
Northern 
Ireland) 

Predicts traffic 
volumes for surface 
modes 

Long-distance 
traffic is included in 
the model but is 
known to be poorly 
represented 

Logit model for 
mode and area 
type. Highway and 
rail trips iterate 
with a network 
model 

8 travel purposes, 
plus SE variables 

Trip generation 
input from National 
Trip End Model 

Wide range of 
policy appraisal by 
the Department for 
Transport 

UK National Travel 
Survey, national 
population and 
employment data, 
network data 

MATISSE 
France and 
Europe 

Used for a number 
of French and 
international 
studies in the 1990s 

Unclear from 
documentation 

All-or-nothing 
assignment to 
mode and route for 
each segment and 
for O-D pair 

15,000 segments: 
value of time, 
preferred journey 
time, frequency of 
travel, length of 
journey and party 
size 

MATISSE model 
embedded in a 
system of models 
that give forecasts 
of population and 
transport supply 

HSR applications in 
France and 
neighboring 
countries 

Unclear from 
documentation 

European-
level Models 

Europe 

TransTools2 is a 
continental scale 
model to provide 
input to European 
infrastructure 
planning 

All trips included 
except intrazonal, 
therefore minimum 
around 30 miles; 
separate models for 
trips over 100km 
(62 miles) 

Nested logit model 
of travel frequency, 
mode and 
destination, linked 
to assignment 
models. Tour based 

Business/ 
commuting, 
holiday, social and 
recreation 

Forecasts are 
assigned to 
networks for 
highway, rail and 
air, pivots from 
base matrices 

Model is the 
standard for 
applications 
involving the Trans-
European Networks 

DATELINE survey 

Netherlands 
National 
Model 

Netherlands 

Extensively used for 
range of transport 
policy analysis and 
updated for 25 
years 

Model does not 
separate out long 
trips 

Tree-nested logit 
models of travel 
frequency, mode, 
destination, time 
period, iterated 
with network 
models. Tour based 

Detailed (several 
hundred) based on 
SE variables, 
separate models for 
each trip purpose 

Choice models used 
to pivot from 
observed highway 
traffic matrices. 
Population growth 
modeled 

Infrastructure, 
pricing and 
management 
policies. Hundreds 
of applications have 
been made 

National travel 
survey (OVG), 
network data, 
stated preference 
surveys, and many 
other sources 
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Model Region Context Definition Structure Segments Forecasting Applications Data 

Airport 
Catchment 
Competition 
Model 

Netherlands 

Assessment of 
policy relating to 
the national airport, 
Schiphol 

Only trips beyond 
the catchment area, 
which includes the 
major competing 
airports; effectively 
over 300 miles 

Nested logit model 
of access/egress 
mode choice within 
the catchment area, 
route choice for air 
journeys, main 
mode choice (car, 
train and air) 

Business and 
Leisure 

Forecasts of total 
traffic using growth 
factors 

Used to formulate 
national policy on 
the development of 
Schiphol 

Passenger counts 
for existing services, 
base case supply 
data  

UK Air Travel 
Demand 
Models 

UK 

National air 
passenger demand 
model and 
allocation model 

All domestic and 
international 
scheduled and 
charter air trips 

Demand model is a 
time-series model, 
logit model of 
airport choice 

Country of 
residence (UK vs. 
foreign), purpose 
(business vs. 
leisure), and 
destination 
(domestic vs. 
international by 
region) 

Forecasts are 
produced up to the 
year 2050. Allow for 
uncertainty relating 
to GDP, oil prices 
and fuel efficiency 

Predicts demand by 
airport, which gives 
air traffic 
movements and 
CO2 emissions 

Historic GDP data, 
forecasts for future 
GDP growth, UK 
airport survey data 

Portuguese 
National 
Model 

Portugal 

Model to evaluate 
transport measures 
that have a regional 
or national impact 

Over 50 km (31 
miles), but excludes 
air travel 

Models choice of 
mode (multinomial 
logit model), 
destination and 
route 

Business, 
commuting and 
leisure; auto 
ownership 

Currently base-year 
only 

None yet, but 
intended for testing 
HSR proposals 

Household long-
distance survey, 
network data 

Generation, 
Distribution 
And Mode 
Choice Model 

Northern Chile 

Model of 
interurban trips in 
the north-central 
macrozone of Chile 

<150km short trips, 
150-500km 
medium, >500km 
long trips 

Multinomial/Neste
d logit models: trip 
generation, trip 
length, joint choice 
of distribution and 
mode 

Short, medium, and 
long trips; home-
based (BH) and 
non-home-based 
(NHB) trips; 8 
segments by trips 
purpose/ 
season/party size 

Pivots from existing 
flows, no long-term 
forecasts were 
produced 

Produces matrices 
of daily journey 
numbers by 
distance and modes 
for the forecast 
period 

Intercept O-D 
survey in the region 

KITE Long-
distance Study 

Switzerland, 
Portugal and 
Czech Republic 

Long-distance 
survey for 
Switzerland, 
Portugal and the 
Czech Republic 

Over 100km (62 
miles) 

Hazard models of 
time between long-
distance trips, 
mixed logit models 
of mode choice 

Distance, mode of 
travel, income, age, 
education and 
gender 

Not relevant Not relevant 

KITE survey has 
both revealed 
preference and 
mode choice stated 
preference 
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Model Region Context Definition Structure Segments Forecasting Applications Data 

Invermo 
Study 

Germany 
Person-level 
simulation model of 
intermodal trips 

Over 100 km (62 
miles) 

Trip generation 
(synth. population, 
simulation), 
destination choice 
(gravity model), 
mode choice (logit 
model) 

Work related, 
visiting friends or 
relatives, other 
personal journeys 
of under three 
days, and holiday 
travel over four 
days 

Microsimulation 
model 

Case study of air-
rail interchange in 
Cologne/ Frankfurt/ 
Stuttgart 

Large-scale 
revealed preference 
study 

Italian High-
Speed Rail 
Study 

Italy 
Demand for HSR in 
Italy 

Routes vary from 
124 km (75 miles) 
to 720 km (450 
miles) 

linear regression 
model of future O-D 
volumes, nested 
logit mode-choice 
model, induced 
demand model 

Business and 
nonbusiness 

Documentation not 
available 

Predict impacts of 
HSR services 

Revealed 
preference-stated 
preference survey 
for mode choice, 
before and after 
data for induced 
demand 

California 
Statewide 
High-Speed 
Rail Ridership 

California 
HSR ridership and 
revenue for 
proposed line 

Interregional trips 
segmented at 100 
miles into short and 
long trips 

Interregional 
model: frequency, 
destination choice 
and mode choice; 
then assignment of 
all trips including 
urban and external 

Business, 
Commute, 
Recreation and 
Other; other 
variables such as 
household size, 
income, number of 
workers 

Standalone 
program that loops 
on TAZ residence/ 
segment 
combinations, CUBE 
voyager for 
assignment 

EIRs and revenue 
forecasting of 
various HSR 
alignments 

Revealed 
preference an d 
stated preference 
surveys, Household 
Travel Surveys by 
Caltrans, SCAG, 
MTC, SACOG, 
network data and 
Census data 

Integrated 
Florida 
Statewide 
Model 

Florida 

Model system 
including passenger 
and freight 
components 

Travel greater than 
40 miles from home 

4-step model 
(“mode” is just auto 
occupancy, 
assignment is joint 
with freight)  

Separate long-
distance generation 
and distribution 
models; trip 
purpose are 
business and four 
types of visitor 

Land-use/ 
population growth 
factors supplied by 
the local MPOs 

Range of statewide 
and regional 
transportation 
planning studies 

NHTS, ATS, and 
Florida Visitors 
Survey 

Indiana 
Statewide 
Travel 
Demand 
Model 

Indiana 
Full planning tool, 
includes long-
distance trips 

Defined subjectively 
by the decision-
maker 

4 step model, with 
separate 
procedures for 
long-distance trips 
(except combined 
assignments) 

Within the state vs. 
one trip end 
outside the state 

Separate 
population and 
employment 
forecasts feed the 
model 

Corridor studies, 
state Lrevealed 
preference, 
developing inputs 
to HERS 

Indiana travel 
survey, NHTS, 
revealed preference 
data, Census, DOT 
road inventory 
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Model Region Context Definition Structure Segments Forecasting Applications Data 

Kentucky 
Statewide 
Travel Model 

Kentucky 

Model of long-
distance trips 
within KY and 
roughly halfway 
into neighboring 
states 

Over 100 miles 

US Macro model (3-
step, no mode 
choice), combined 
with micro model of 
Kentucky (denser 
network) 

Business, tourism, 
or other 

Fratar method to 
forecast population 
growth related to 
each trip purpose 

Studies to 
determine traffic 
volumes, economic 
impacts of new 
corridors 

ATS, National 
Highway Planning 
Network, HPMS 

Michigan 
Statewide 
Travel 
Demand 
Model 

Michigan 

4-step person-trip 
model for all 
motorized ground 
transportation 

Any trip between 
urban areas 

4-step model 

Home-based trips 
(work, vacation and 
other), and non-
home-based trips 

Regional economic 
model forecasts SE 
inputs 

Used for making 
development 
decisions, including 
bypass, freeway 
and/ or local road 
alternatives 

Census, state 
employment 
agencies, roadway 
inventory, traffic 
counts 

New 
Hampshire 
Statewide 
Travel Model 

New Hampshire 
Tour-based model 
of all travel in the 
state 

Long-distance trips 
are included as 
tours, but not 
defined explicitly 

Tour-based 
microsimulation 
framework of 
sequential 
multinomial logit 
models 

Work, school, 
other, shopping, 
recreation, and 
chauffeuring 

Uses a sample 
enumeration 
technique, SE data 
for 1990, 2005, and 
2020 

Capable of 
analyzing major 
projects and pricing 
policies, producing 
VMT estimates for 
air quality, external 
flows for MPOs 

New Hampshire 
Activities and Travel 
Survey, transit 
surveys, stated 
preference survey, 
Census, network 
data 

Ohio Long-
Distance 
Travel Model 

Ohio 
Tour-based long-
distance model 

All non-work tours 
to destinations 
more than 50 miles 
from home 

A series of (mainly 
logit) models of 
travel or not, tour 
pattern scheduling, 
internal/external, 
destination, mode 

Household travel, 
work-related travel 
and other travel; 
household 
characteristic 

Not available 
It can be used to 
evaluate HSR 

Ohio Statewide 
Household Travel 
Survey 

Oregon 
Statewide 
Integrated 
Model 

Oregon 

The Long-Distance 
Transport (LDT) 
module is part of 
SWIM2 

Noncommuting 
trips longer than 50 
miles, but still 
within the state 

A series of (mainly 
logit) models of 
travel or not, tour 
pattern scheduling, 
internal/external, 
destination, mode 

Household trips 
(entire household), 
work-related trips 
(individual), 
individual non-work 
trips 

Synthetic 
population is the 
main SE input  

Sensitivity tests 
(e.g. increasing 
capacity, increasing 
travel costs, 
changing density) 
for 2006 to 2024 

NHTS data 

Tennessee 
Statewide 
Model 

Tennessee 
3-step statewide 
model, only long-
distance trips 

Over 75 miles 

Trip generation, trip 
distribution and trip 
assignment (no 
mode choice) 

Home-based work, 
home-based others 
and non-home-
based, but 
combined during 
distribution 

Uses MPO forecasts 
of population and 
employment 
growth 

Lanes, ADT on new 
highways, 
pavement 
management plans 
for interstates 

1990 NPTS and 
1990 CTPP 
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Model Region Context Definition Structure Segments Forecasting Applications Data 

Wisconsin 
Multimodal 
Intercity 
Passenger 
Demand 
Model 

Wisconsin 
Interurban model 
of all roads, 
including HSR 

Over 50-miles 
between states, 
counties, and major 
urban areas 

Cross classification 
trip generation 
mode, destination 
and mode-choice 
models that are run 
simultaneously 

Business, personal 
business, and 
pleasure-related 
travel 

Based on 
population, 
economic activity 
forecasts, induced 
growth 

Planning analyses at 
a statewide level, 
ridership and 
revenue estimates 

2001 NHTS add-on 
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CHAPTER 3.  DATA SOURCES 

Before the long-distance passenger travel demand model could be applied to predict long-

distance travel behavior of all the households in the United States, a number of datasets had to be 

prepared. A brief description of the key steps involved in the preparation of the application 

datasets is provided in the sections that follow. 

3.1    Zone Systems 

This section provides an overview of the development of a new zonal system for forecasting 

long-distance travel at the national scale. 

Zone System Creation 

A new geographical construct termed the National Use Model Area (NUMA) was created and 

adopted for this effort. NUMA-level geography is a composite representation of counties and 

Census Bureau Public Use Microdata Areas (PUMAs) across the United States. The United 

States includes 3,143 counties and county equivalents (in 2013) and 2,378 PUMAs (as of the 

2012 American Community Survey). Using counties or PUMAs as zones for a national-level 

travel model is appropriate; both offer a geographic resolution that may be considered reasonable 

from a long-distance travel perspective, and the number of geographical units is consistent with 

the number of zones typically seen in large-area travel models. 

Census Tracts were considered as a means to enhance the level of detail in the zone system, but 

with approximately 75,000 Census Tracts, it was found to be computationally prohibitive to 

adopt the Census Tract as the geographic basis for defining national travel model zones. Census 

Tracts were found to add detail for access and egress to air and rail stations, by building travel 

paths that connect a Census Tract at the origin to an origin station, then connecting the origin 

station to the destination station, then connecting the destination station to the destination Census 

Tract. This method of multilevel geographies for evaluating travel paths has been implemented 

in urban activity-based models and was selected as the preferred method for the integrated 

modeling system framework (Chapter 3), but was not included in the demonstration system 

(Chapter 4). To support this effort, the Census Tract was implemented for synthetic-population 

generation. 

In comparing the relative sizes of counties and PUMAs, it was clear that these geographical units 

should not be used as zones without some additional transformation. The sizes of these 

geographical units vary widely throughout the country; in some instances, multiple counties 

constitute a single PUMA, and in other instances, multiple PUMAs constitute a single county. In 

order to define the geographic zone system for the national travel model developed in this study, 

it was decided that the smaller of the two geographies should be used to define the NUMAs. 

Thus, in a situation where multiple counties comprise a single PUMA, the county was selected as 

the NUMA (the smaller of the two); where multiple PUMAs comprise a single county, the 

PUMA was selected as the corresponding NUMA (again, the smaller of the two). In this way, the 

zone system adopted for this effort would offer a reasonable geographic representation that is 

neither too large nor too small in its definition in the context of modeling long-distance travel. 
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The NUMA generation exercise was performed in GIS software. The PUMA-level shapefile (a 

point file) was overlaid on top of the county-level shapefile (a polygon file). The number of 

PUMAs that fall within each county were then counted. If the total number of PUMAs in a 

county was greater than one, then the PUMA was selected as the geographical resolution; 

otherwise, the county was selected as the geographical resolution for defining NUMAs. The 

process followed is shown in Figure 1. 

Figure 1: Procedure to Define NUMA-Level Geographical Resolution 

 

In Figure 1, assume that the first panel (blue-colored blocks with diagonal lines) represents the 

counties in a (hypothetical) state. There are three counties in the state in this illustrative example: 

county A, county B, and county C. The second panel (orange-colored blocks with vertical lines) 

depicts the PUMA-level geographical layout of the same state (PUMA 1, PUMA 2, and PUMA 

3). To arrive at the NUMA-level geographical representation, the PUMA-level polygon file is 

converted to a point file and overlaid on the county-level polygon file (third block). It can be 

observed from the figure that county A encompasses two PUMAs; therefore, the level of 

geographical representation that is adopted here is the PUMA. County B has zero PUMAs within 

its boundary and county C has a one-to-one correspondence between a county and PUMA. In 

both of these situations, the county is selected as the geographical resolution to define NUMAs. 

The NUMA-level geographical representation for the state is shown in the final block as a mix of 

counties and PUMAs. In this example, the NUMA-level representation for the state consists of 

four geographies (two counties and two PUMAs). 

This methodology was applied across all states (and for each county and PUMA within a state) 

to select the preferred geographical resolution that would define the NUMA. Following this 

exercise, consistency checks were performed to ensure that no geography was left unrepresented. 

A few anomalies were identified in this process, due to minor inconsistencies in the alignment of 

PUMA- and county-level geographical boundaries.  
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Figure 2 depicts an example for the State of Arizona. This figure depicts the NUMA-level 

geographical representation for Arizona. The PUMA is the selected geographical level in Part A 

of the figure, and county is the selected geographical level in Part B of the figure. This leaves the 

white region neither selected as part of the PUMA representation in Part A nor as part of the 

county representation in Part B. These anomalies were resolved by manually selecting the 

geographical resolution in such a way (i.e., larger geography is selected) that no area was left 

unrepresented. In the instance depicted in Figure 3 shows that county is selected as the preferred 

geography to define a NUMA, even though the county encompasses multiple PUMAs. This 

ensured that no area was left unrepresented in the NUMA-level geographical representation. 

There were 19 such occurrences across the United States, where the larger geography (between 

county and PUMA) was manually selected to ensure completeness in areal coverage and 

geographical representation. The NUMA-level geographical file generated from this exercise 

comprised 4,381 NUMAs. 

A key issue that arises in the context of the aforementioned procedure is that a NUMA may be 

quite large, encompassing a large area. The procedure involves the selection of the “larger” 

geography (county vs. PUMA) to ensure that no land area remains unaccounted for in the 

NUMA representation. In the 19 instances where this procedure was invoked, this procedure was 

particularly troublesome in only one case, where the resulting NUMA was a large county 

(Miami-Dade County) comprising more than 500 Census Tracts. Only 2% of the NUMAs have 

more than 50 Census Tracts. This one NUMA with 500+ Census Tracts has a population of 2.5 

million, which is much larger than the population of any PUMA (PUMAs are defined as 

geographical areas with ~100,000 population). The procedure for developing NUMAs was found 

to be considerably robust, excepting this particular instance, where the size of the NUMA was 

quite large. In the future, such anomalies can be easily rectified by manually splitting large 

NUMAs into groups of Census Tracts. Rule-based heuristics would have to be established to 

implement such a procedure (e.g., rules defining the maximum number of Census Tracts per 

NUMA, and the maximum population per NUMA). 

Figure 2: Inconsistencies in Geographical Representation—Panel A 
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Figure 3: Inconsistencies in Geographical Representation—Panel B 

 

Following the aforementioned initial NUMA generation exercise, the NUMAs were further split 

so that no NUMA had more than one airport. Major airports across the nation were converted to 

a GIS-point shapefile and overlaid on the NUMA polygon file. Only six NUMAs across the 

United States had more than one airport located within the NUMA boundary. In cases where a 

NUMA had more than one airport, and the Census Tract-level geography allowed for a clear 

demarcation, the NUMA was split along the Census Tract boundary (Figure 4). In the figure, the 

NUMA is shown with a border and the dots represent the airports in the NUMA under 

consideration. Since the Census Tract boundary allowed for a clear demarcation, the NUMA was 

split along the Census Tract boundary as shown in the figure. In cases where it was not possible 

for a clear delineation (because the NUMA split involved multiple Census Tracts), NUMAs were 

split as close to the Census Tract boundary as possible, as shown in Figure 5. 
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Figure 4: NUMA Split Exactly Along the Census Tract Boundary 

 

Figure 5: NUMA Split Approximately Along the Census Tract Boundary 

 

A similar exercise was performed for Amtrak rail stations. A total of 132 NUMAs had more than 

one Amtrak station within their respective boundaries. If a NUMA had multiple rail stations that 

were spatially separated, a process similar to the one previously outlined for airports was 

performed to split the NUMA into multiple NUMAs (such that each resulting NUMA had only 

one Amtrak rail station). However, for NUMAs with several rail stations located in close 

proximity to one another, NUMAs were split through a manual process so that the rail stations 

were dispersed across multiple NUMAs to the extent possible. Consider for example, the NUMA 

shown in Figure 6, which has nine rail stations. Given the level of geographical resolution, a 

prudent course was chosen, and this NUMA was not split into nine different NUMAs. Rather, a 

judgment was made to split this NUMA into three separate NUMAs. A similar inspection- and 

judgment-based approach was followed for all of the 132 NUMAs that had multiple Amtrak rail 

stations. As a result of this process, it is possible for some NUMAs (particularly in the dense 

Northeast) to contain “pockets” of closely spaced rail stations. 
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Figure 6: NUMAs with Multiple Rail Stations 

 

After the NUMAs were split to account for multiple airports/rail stations, the final NUMA-level 

geographical file consisted of 4,570 NUMAs. All of the network level-of-service data for 

highway (auto and bus) modes follow this geographical resolution. The final NUMA map for the 

United States is shown in Figure 7. Following the creation of the NUMA polygon file, an 

equivalence table was generated between Census Tracts and NUMAs by overlaying the Census 

Tract point file on the NUMA polygon file. 
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Figure 7: Final NUMA Map 

 

Zone Connectors 

The NUMA polygon shapefile was imported into TransCAD and converted to a TransCAD 

geographic file. NUMA centroid locations (points) were generated from the NUMA polygon file 

automatically within TransCAD. The US highway network downloaded from the Federal 

Highway Administration (FHWA) Highway Performance Monitoring System website
1
 was also 

converted to a TransCAD network file. The NUMA centroid point file was overlaid on the US 

highway network file and access connectors were generated from each NUMA centroid to the 

nearest highway link. Up to three highway connectors were generated for each NUMA, with an 

intent to mimic multiple entry points to a zone, subject to a distance threshold of 50 miles. Figure 

8 shows an illustration of the centroid connectors generated using this procedure. 

                                                 

1
 Federal Highway Administration (FHWA) Highway Performance Monitoring System website  

http://www.fhwa.dot.gov/policyinformation/hpms/shapefiles.cfm
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Figure 8: NUMA Centroid Connectors 

 

3.2    Modal Networks and Level of Service 

Road System 

The National Highway Planning Network (NHPN) was used to generate estimates of travel time, 

distance, and cost in the form of highway skims. The NHPN, developed by FHWA, is a 

geospatial database that comprises interstates, principal arterials, and rural minor arterials (over 

450,000 miles of existing and planned highways in the country). The most up-to-date highway 

network, which was published in 2011, was downloaded from the FHWA’s website.
2
 In addition, 

the network includes intermodal connectors that were linked with appropriate airports and rail 

stations. 

The project team obtained distance and speed information for each highway link, along with toll 

information for different toll roads across the nation. This information was used to generate 

                                                 

2
 Most up-to-date US highway network, published in 2011, and is available from FHWA's website. 

http://www.fhwa.dot.gov/planning/processes/tools/nhpn/
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travel time, distance, and generalized cost skims for the NUMA-level zonal system. Procedures 

followed for each of these efforts are discussed in this section. 

Auto Travel Time, Distance, and Cost 

The network shapefile used to generate NUMA centroid connectors has information regarding 

distance (mile) and the posted speed limit (mph) for each link in the US highway network. This 

network file was imported to TransCAD and linked with the NUMA centroid file. Travel time to 

traverse a link was computed as distance divided by posted speed limit. Using built-in shortest-

path computation methods in TransCAD, travel time and distance skims were generated for the 

US highway network. In addition, a generalized cost skim was also generated for the auto mode. 

Generalized cost to traverse a link was computed as follows: 

Equation 1: Generalized Cost to Traverse a Link 

 

Value of time ($17 per hour) and auto operating cost ($0.18 per mile) were used to compute 

generalized cost. These values may be adjusted during model calibration and validation as part of 

the implementation phase described in Chapter 9. These values may also be changed to assess 

sensitivity of travel demand to varying levels of value of time and auto operating costs. The toll 

per mile was computed based on the procedure described previously. The generalized cost value 

was computed for all links in the US highway network, and generalized cost skims were 

generated by minimizing the generalized cost across each NUMA pair. Travel time, distance, and 

generalized cost skim matrices were thus generated for the auto mode at the NUMA level 

(4570×4570 matrices). 

Toll Facilities 

Shapefiles containing information on the highway network attributes (at the link level) for the 

United States were obtained from the FHWA’s Highway Performance Monitoring System 

website.
3
 From these files, a subset of toll roads was extracted based on toll charge (>0) specified 

on the link. Supplementary information regarding toll facilities in the United States was obtained 

from FHWA’s Toll Facility Information website.
4
 Information from both of these sources was 

compared to ensure completeness of toll information data. The highway network shapefile did 

not designate several toll facilities that were reported in the supplementary toll information data. 

The missing toll facilities were manually digitized based on the supplementary information. The 

toll charge for missing facilities was imputed from the available data as the average of maximum 

and minimum toll charge for a passenger car. Directionality attributes for toll roads was also 

added manually after a visual inspection of the toll facilities in Google Earth. The toll roads 

                                                 

3
 FHWA’s Highway Performance Monitoring System website. 

4
 FHWA’s Toll Facility Information website.  

http://www.fhwa.dot.gov/policyinformation/hpms.cfm
https://www.fhwa.dot.gov/policyinformation/tollpage/
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shapefile was merged with the rest of the US highway network shapefile to generate the highway 

network skims. The toll for each link on the highway network was represented on a per-mile 

basis (by dividing the toll cost by the length of the corridor). For links that did not have a toll 

associated with them, this value was set to zero. Figure 9 presents the US highway network with 

toll roads identified in red. 

Figure 9: Toll Roads in the United States 

 

Rail System 

The rail network was developed from the Amtrak rail system (Figure 10). Additional commuter 

rail systems could be added, but these were not considered essential for this project. 
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Figure 10: Amtrak Rail Network 

 

Rail Station Connectors 

The project team generated access links for rail stations by creating connectors that linked each 

rail station to all Census Tracts that were within 50 miles of the station. To accomplish this, the 

rail station locations were first represented as points on the Census Tract (polygon) shapefile. 

Centroid locations were identified for all of the Census Tracts in the Census Tract polygon file. 

A circular buffer region, with a 50-mile radius, was created for each rail station. All of the 

Census Tract centroids that fell within the 50-mile buffer region of a rail station were selected, 

and a rail station connector was generated to each Census Tract within the buffer region. The 

spider network created from the generation of rail station to Census Tract connectors is shown in 

Figure 11. A Census Tract is allowed to have a connector to all rail stations within 50 miles from 

the location of its centroid. 
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Figure 11: Rail Station-to-Census Tracts Connectors 

 

Rail Travel Time, Distance and Cost 

Amtrak’s General Transit Feed Specification (GTFS) data were processed and analyzed to 

construct level-of-service measures for the national rail network. The GTFS data comprise the 

following information on various services operated by Amtrak across the nation: 

 Agency: Contains information on all of the transit agencies that provided data in the 

transit feed. 

 Calendar: Contains the dates on which a particular service operates; data regarding start 

and end times of the service, and the days of the week on which the service operates. 

 Routes: Contains information regarding transit routes; a route is defined as a group of 

trips (or consecutive stops) that are displayed as a single service. 

 Shapes: Contains the rules for drawing lines on a map to represent routes. 

 Stop Times: Contains arrival and departure times of the train at the stop level. 

 Stops: Contains the geolocation of individual stops. 

 Transfers: Defines the rules for making connections at transfer points between routes. 

 Trips: Contains information at the trip level for each route; a trip is a sequence of two or 

more stops. 



 

33 

The GTFS data were imported to TransCAD using inbuilt functions in the software. TransCAD 

aggregates these files as inputs and generates node- (representing Amtrak stations) and link-level 

(representing Amtrak routes) geographical files. The Amtrak network generated by TransCAD is 

shown in Figure 12. 

Figure 12: Amtrak Rail Network Generated from TransCAD 

 

A manual inspection was performed to ensure that the Amtrak network was represented 

accurately by the output generated from TransCAD. The Amtrak network consists of a total of 

43 rail routes and 518 rail stations. 

From the Amtrak GTFS data, travel time and stop (dwell) time were extracted at the level of 

each individual link on the rail network. A transfer-time table, which defines the transfer times at 

all links where a route transfer is feasible, was also generated from the GTFS data. A network 

file was generated in TransCAD based on the link and node layers created from GTFS data. Each 

link on the network had three attributes assigned to it: 1) travel time; 2) stop time; and 3) transfer 

time. Travel time to traverse a link was computed as the sum of these three link attributes. Skims 

were generated for the rail network at the stop level by minimizing travel time between each 

station pair. TransCAD provides inbuilt functions to generate a distance skim corresponding to 

the travel-time skim. The travel-time and distance-skim matrices generated for Amtrak rail 

network were generated at the station level (518×518 matrices). 
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Transfer-Frequency 

The transfer-frequency matrix defines the minimum number of transfers a traveler needs to make 

to travel from one Amtrak station to another. Two sets of travel-time skims were generated in 

TransCAD, employing the procedures described in the previous section (i.e., one skim where 

transfer time is included in the computation of total travel time, and another skim where transfer 

time is excluded). The difference between these two skim matrices provided the total transfer 

time between any Amtrak station pair. Based on a detailed analysis of the data, transfer times 

were defined as either short (one minute) or long (one hour) transfer times. Using a series of 

logic checks and count-calculation procedures, the number of short and long transfers was 

computed from the transfer-time matrix. The number of short and long transfers were then added 

together to obtain the total number of transfers between a station pair. 

Rail Frequency 

An innovative methodology was developed by the project team to obtain the operating (service) 

frequency between each Amtrak station pair. First, frequency lookup tables were created for all 

routes by manually parsing the Amtrak website. Information regarding frequency of operation on 

weekdays and weekends was collected for all 43 Amtrak routes. Using these data, average daily 

frequency and weekly frequency was computed for each route. 

As part of the methodology, 43 Amtrak route variables (represented as columns) were created in 

the link files generated by TransCAD from Amtrak GTFS data. Each link on the Amtrak rail 

network was assigned to a unique route using a binary (0/1) indicator. There were a few links on 

the rail network that were common to multiple routes, and these links were assigned to the route 

with the highest daily frequency. For any given Amtrak station pair, if a route matrix has a 

nonzero entry, it implies that the specific route is used in computing the shortest travel time path 

between the station pair under consideration. For each station pair, a query was run across the 43 

route skim matrices to identify all routes that were included in the shortest-path computation. 

After all routes involved in the shortest-path computation were identified (for each station pair), 

the frequencies of all of these routes were obtained from the frequency lookup table. The route 

with minimum (lowest) frequency among those selected or included on the path defined the 

operational frequency for Amtrak services between a given station pair. For example, to travel 

from Dodge City in Kansas to Poplar Bluff in Missouri, the shortest path involves traveling on 

three different Amtrak routes: the Southwest Chief, the Missouri River Runner, and the Texas 

Eagle (shown in Figure 13). The operational frequency of Amtrak service between these two 

station pairs is one train per day, which is the minimum of the operating frequencies of the three 

routes involved in shortest-path computation between these stations. The aforementioned 

procedure systematically computes this frequency. Manual checks were performed to see how 

accurately this methodology was able to depict the operational frequencies for several station 

pairs and the results confirmed that the frequencies were accurate. Separate operating-frequency 

matrices were generated at the day and week level to account for differing temporal windows of 

interest. 



 

35 

Rail Fares 

Generating station-to-station rail fare matrices involved two key steps: 

1. Estimating models to predict one-way average rail fare, by class. 

2. Applying estimated models to generate station-to-station O-D fare matrices. 

For the first step, a number of linear regression models were estimated using 2004 rail fare data, 

obtained by the research team from Amtrak under a confidential agreement. This was a national 

dataset that included over 34,000 raw records and contained information on origin station, 

destination station, route, fare class, ridership, ticket revenues, and passenger miles traveled. 

Figure 13: Rail Frequency Computation—Illustrative Example 

 

For model estimation purposes, the average fare between an O-D pair was calculated from ticket 

revenues and ridership information. To be more consistent with base years that were used to 

derive level-of-service variables for other modes, 2004 rail fares were factored up to 2012 levels 
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by using Consumer Price Index (CPI) values for US city averages for transportation between the 

years 2004 and 2012. Next, for each fare class, separate models were estimated for the following 

six regions to capture regional variation in rail fare: 

 California (CA) 

 Midwest (MW): Includes Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, 

Missouri, Ohio, and Wisconsin. 

 Northeast (NE): Includes Connecticut, Delaware, District of Columbia, Maine, 

Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode 

Island, Vermont, and West Virginia. 

 Northwest (NW): Includes British Columbia Oregon and Washington. 

 South (S): Includes Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North 

Carolina, South Carolina, Tennessee, and Virginia. 

 West (W): Includes Arizona, Colorado, Idaho, Kansas, Montana, Nebraska, Nevada, 

New Mexico, North Dakota, Oklahoma, Texas, and Utah. 

The estimated models describe the relationship between rail fare and rail-trip distance. A number 

of functional forms of the dependent variable (such as fare and logarithm of fare) and the 

independent variable (distance, distance square, and logarithm of distance) were tested; the final 

model results are summarized in Table 3. As shown, rail fare appears to have a polynomial 

relationship with trip mileage—the extent of this relationship varies by geographic region and 

fare class. Due to the polynomial specification of the model, it was necessary to impose a 

restriction to ensure that fare will only increase as the mileage increases. Figure 14 through 

Figure 25 present observed average rail fares and mileage of rail trips by region and fare class (in 

hollow blue circles). The figures also show model-predicted average rail fares (in hollow red 

circles), which track well with the observed data. In addition, the model-predicted fares were 

compared against Amtrak’s online reservation fares for a limited number of station pairs with 

mixed demand. To conserve space, validation results for only California are presented in Table 

2). Given that online rail fares show wide variation and depend, to a certain degree, on travel 

dates and how far in advance the reservations were made, the overall model performance was 

found to be within acceptable limits. The estimated models were applied to generate station-to-

station average rail fare matrices, by class. These matrices were then converted to zone-to-zone 

matrices. 
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Table 2: Observed vs. Estimated Rail Fare—California 

Origin State 
(Station Code) 

Destination State 
(station code) 

Fare Class 
Predicted 
2012 Fare  

(A) 

Amtrak 
2014 Fare  

(B) 

Percent 
Difference in 

Fare 
(B-A) 

California (SAN) California (LAX) First/business 60.96 56.00 9% 

California (SAN) California (LAX) Economy 28.29 37.00 -24% 

California (EMY) California (SAC) First/business 44.23 56.00 -21% 

California (EMY) California (SAC) Economy 22.62 29.00 -22% 

California (SAC) Illinois (CHI) First/business 509.02 792.00 -36% 

California (SAC) Illinois (CHI) Economy 163.28 157.00 4% 

California (MTZ) Nevada (RNO) First/business 81.85 140.00 -42% 

California (MTZ) Nevada (RNO) Economy 35.35 75.00 -53% 

California (LAX) Arizona (MRC) First/business 158.50 165.00 -4% 

California (LAX) Arizona (MRC) Economy 60.96 55.00 11% 
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Table 3: Rail Fare Model by Region and Fare Class 

Region First/Business Class Economy Class 

California (CA)  

Sample size = 1,256 
Adjusted R-squared = 0.85 

 

Sample size = 1,877 
Adjusted R-squared = 0.90 

Midwest (MW) 
 

Sample size = 1,762 
Adjusted R-squared = 0.81 

 

Sample size = 2,733 
Adjusted R-squared = 0.88 

Northeast (NE) 
 

Sample size = 2,661 
Adjusted R-squared = 0.77 

 

Sample size = 3,674 
Adjusted R-squared = 0.72 

Northwest (NW) 
 

Sample size = 607 
Adjusted R-squared = 0.81 

 

Sample size = 765 
Adjusted R-squared = 0.88 

South (S)   

Sample size = 2,085 
Adjusted R-squared = 0.61 

 

Sample size = 3,108 
Adjusted R-squared = 0.65 

West (W) 
 

Sample size = 1,531 
Adjusted R-squared = 0.58 

 

Sample size = 2,706 
Adjusted R-squared = 0.78 
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Figure 14: Relationship between average rail fare and trip mileage (CA first/business class) 

 

Figure 15: Relationship between average rail fare and trip mileage (CA economy class) 
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Figure 16: Relationship between average rail fare and trip mileage 

 (Midwest first/business class) 

 

Figure 17: Relationship between average rail fare and trip mileage 

 (Midwest economy class) 
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Figure 18: Relationship between average rail fare and trip mileage 

(Northeast first/business class) 

 

Figure 19: Relationship between average rail fare and trip mileage 

(Northeast economy class) 
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Figure 20: Relationship between average rail fare and trip mileage 

(Northwest first/business class) 

 

Figure 21: Relationship between average rail fare and trip mileage 

(Northwest economy class) 
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Figure 22: Relationship between average rail fare and trip mileage 

(South first/business class) 

 

Figure 23: Relationship between average rail fare and trip mileage 

(South economy class) 
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Figure 24: Relationship between average rail fare and trip mileage 

(West first/business class) 

 

Figure 25: Relationship between average rail fare and trip mileage 

(West economy class) 
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Air System 

Airport Connectors 

The same procedure used to generate rail station to Census Tract connectors was adopted to 

generate airport-to-Census Tract connectors. In the case of airports, the radius of the buffer 

region was set to 100 miles instead of 50 miles, as airports may draw travelers from a larger 

market area than rail stations. The spider network created from the generation of airport-to-

Census Tract connectors is shown in Figure 26. As in the case of rail station connectors, a 

Census Tract was allowed to have a connector to all airports within 100 miles from the location 

of its centroid. 

Figure 26: Airport-to-Census Tracts Connectors 

 

Air Travel Time, Distance, and Cost 

Air network characteristics for the year 2012 were obtained from two main databases provided 

by the Bureau of Transportation Statistics: the Airline On-Time Performance Data (on-time data 

hereafter) and the Airline Origin and Destination Survey (DB1B). The on-time data are 

published monthly and contain at least 1% domestic nonstop scheduled service flights 

information (i.e., air carrier, flight number, scheduled departure and arrival dates and times, 

actual departure and arrival times, canceled or diverted flights, taxi-out and taxi-in times, air 
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time, and nonstop distance).
5
 The DB1B is a 10% sample database of airline tickets from 

reporting carriers and includes the full itinerary information of domestic flights (i.e., air carrier, 

origin and destination airports, season, number of passengers, fare paid by each passenger, fare 

class, and distance). The DB1B data are published quarterly.
6
 Using these two databases, an 

airport-to-airport origin-destination (O-D) matrix with the following air level-of-service and 

demand variables was derived: 

 The number of flights serving a particular O-D pair over a period of one week (i.e., 

frequency per week). 

 On-time performance (in percentage) across the flights serving a particular O-D pair over 

a period of one week when: 

 A flight is considered on-time if arrival delay <15 minutes; and 

 A flight is considered on-time if arrival delay <30 minutes. 

 The average flight duration (not including transfers) in minutes. 

 The average passenger-weighted fare, by season, for a particular O-D pair for: 

 Economy class; and 

 First/business class. 

 The number of passengers, by season, for trips between the airports with: 

 No stop; 

 One stop (summarized by stop locations); and 

 Two or more stops (summarized by stop locations). 

 The average coupon-mileage for trips with: 

 No stop; 

 One stop (summarized by stop locations); and 

 Two or more stops (summarized by stop locations). 

The resulting files from the processing of the DB1B and on-time databases were further 

combined using a custom program to create the final airport-to-airport level-of-service data file 

to use in the models. The fields in this resulting file are shown in Table 4, with notes about how 

the variables are defined. These variables included: Average business class fare ($); average 

economy class fare ($)in the DB1B data for the O-D; average number of transfers; average total 

scheduled in-flight duration; average fraction of flights within 15 minutes of scheduled arrival; 

average fraction of flights within 30 minutes of scheduled arrival; number of direct flights per 

                                                 
5 
More information on on-time data and summary statistics is available at this website.  

6
 More information on the DB1B database is available at this website.  

http://apps.bts.gov/xml/ontimesummarystatistics/src/index.xml
http://www.transtats.bts.gov/Tables.asp?DB_ID=125
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week; frequency of one-stop flights per week (based on minimum of two flights); and frequency 

of two-stop flights per week (based on minimum of three flights). 

Table 4: Airport-To-Airport Level-of-Service Variables,  

Based on DB1B and on-Time Databases 

Field Definition 

OAIRPORT 3-letter code for origin airport 

DAIRPORT 3-letter code for destination airport 

BUSIPAX Number of business class DB1B records 

BUSIFARE Average business class fare ($) 

ECONPAX Number of economy class DB1B records 

ECONFARE Average economy class fare ($)in the DB1B data for the O-D 

NPAXVALID Number of DB1B records with valid routes 

AVGTRANSFERS Average number of transfers  

AVGDISTANCE Average total route distance 

AVGDURATION Average total scheduled in-flight duration 

AVGONTIME15 Average fraction of flights within 15 minutes of scheduled arrival 

AVGONTIME30 Average fraction of flights within 30 minutes of scheduled arrival 

NPAXDIRECT Number of DB1B records with direct flight 

FREQDIRECT Number of direct flights per week 

DISTDIRECT Average distance of direct flights 

DURADIRECT Average flight duration of direct flights 

OT15DIRECT Average fraction of direct flights within 15 minutes of scheduled arrival 

OT30DIRECT Average fraction of direct flights within 30 minutes of scheduled arrival 

NPAX1STOP Number of DB1B records with one stop 

FREQ1STOP Frequency of one-stop flights per week (based on minimum of two flights) 

DIST1STOP Average total distance of 1-stop flights 

DURA1STOP Average total flight duration of 1-stop flights 

OT151STOP Fraction of 1-stop flights within 15 min of scheduled arrival (min of two flights) 

OT301STOP Fraction of 1-stop flights within 30 min of scheduled arrival (min of two flights) 

NPAX2STOP Number of DB1B records with two stops 

FREQ2STOP Frequency of 2-stop flights per week (based on minimum of three flights) 

DIST2STOP Average total distance of 2-stop flights 

DURA2STOP Average total flight duration of 2-stop flights 

OT152STOP Fraction of 2-stop flights within 15 min of scheduled arrival (min of three flights) 

OT302STOP Fraction of 2-stop flights within 30 min of scheduled arrival (min of three flights) 

Notes on Table 4: 

All fields are O-D specific, using only the 312 airports included in the on-time database. 

All averages and fractions are passenger-weighted, where applicable, so that routes with more 

passengers using them weigh more heavily in the combined serviced levels. 

“Valid” routes are routes where that are either in the on-time data base, or where there are at 

least 10 DB1B records. Where no record is in the on-time database, the following default values 

are used: (a) frequency = 7 flights/week, (b) on-time percentage is the average of the overall on-

time percentages of the departure airport and the arrival airport, and (c) the flight duration = 

25.54 + 0.09 * distance + 1.509 * sq. rt. (distance); based on a regression equation estimated on 

valid records, where duration is in minutes and distance is in miles. 
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For routes with two or more flights, the frequency is taken as the minimum scheduled frequency 

across the flights, and the on-time percentages are taken as the minimum on-time percentages 

across the flights. 

Generating Zone-to-Zone Matrices for Rail and Air 

Although the data were prepared so that, in the future, Census Tract-to-Census Tract level of 

service for air and rail could be used, the initial model application uses zones (NUMAs) as the 

basic level of spatial aggregation. This required using the station-to-station and airport-to-airport 

matrices along with the Census Tract-to-airport/station connectors to create zone-to-zone rail and 

air level-of-service matrices. This was done as follows: 

 Within each zone, the Census Tract with the largest number of resident households was 

chosen as the representative origin tract within the zone, and the Census Tract with the 

largest total employment was chosen as the representative destination tract within the 

zone. 

 Using estimates of value of time and relative travel time component weights from 

previous model estimations, generalized costs were calculated for all possible air routes 

via combinations of origin airports within 100 miles of the representative origin tract and 

destination airports within 100 miles of the destination tract. The tract-to-airport access 

and egress distances were also used in these calculations. 

 The route via the least-generalized-cost airport pair was then selected as the 

representative air route for the zone pair. 

The same procedure was used to select rail routes, using all combinations of rail stations within 

50 miles of the O-D Census Tracts. 

Bus System 

Travel time, distance, and fare skims were generated in this study for the long-distance bus 

network of the United States. Because it is difficult to identify each and every bus route across 

the nation, efficient procedures were employed to arrive at the level-of-service measures for the 

bus network. Procedures followed for generating bus level-of-service measures are discussed in 

this section. 

Bus Travel Time 

The project team gathered a large amount of information on bus-service characteristics for 

several bus-service providers operating in a variety of markets across the country. The bus-

service-attribute data collection effort corresponded to 447 unique city pairs. Information 

regarding distance and travel time by bus was available for each of the city pairs. The 447 city 

pairs were then geocoded in ArcGIS to obtain their spatial coordinates. A Python code was 

written to obtain the auto distances and travel times between these city pairs using Google’s 

distance matrix application programming interface (API). Auto distances generated from 

Google’s API and the corresponding bus distances that were collected manually were compared 
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to ensure consistency between bus and auto distance data. The comparison is shown in Figure 

27. 

Figure 27: Comparison between Auto and Bus Distances 

 

The data points in Figure 27 are heavily concentrated along the 45-degree line, which implies 

that the auto and bus distances between the city pairs in consideration are largely consistent with 

one another. 

Next, a comparison was made between auto and bus travel times for different distance ranges 

and an auto-to-bus travel time conversion factor table was generated. This information is 

presented in Table 5. 

Table 5: Auto-to-Bus Travel Time Conversion Factors 

Distance (miles) Factor 

> 0 - 120 1.27 

> 120 - 300 1.43 

> 300 - 600 1.50 

> 600 1.61 

Using the information from Table 5, auto travel times (discussed in the road system section) 

were converted to bus travel times. (For example, if the distance between an O-D pair is 60 miles 

and the auto travel time is 60 minutes, the corresponding bus travel time for the O-D pair was 

found to be 60×1.27 = 76 minutes.) The difference between auto and bus travel times accounts 

for wait, transfer, and stop times that encumber bus travel. 
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Bus Fares 

Bus fare was calculated through the estimation of a statistical regression model that related bus 

fare to various trip attributes. The fare-collection effort focused primarily on the popular bus 

routes (and carriers), while also ensuring that there is sufficient sample size for model estimation 

in different distance bands. A total of 1,000 data points were collected for 447 unique city pairs. 

The following information was collected from the carrier’s website for each city pair, including: 

 Travel Distance (miles); 

 Number of transfers; 

 Number of stops; 

 Travel time (minutes); 

 One-way fare ($); 

 Frequency; 

 Transfer point; and 

 Interstate/intrastate travel. 

The frequency information was missing for approximately one-third of the data collected. The 

missing frequency information was imputed using a cell mean-imputation approach. Several 

specifications were tested with a host of variables included to predict the fare between an O-D 

pair. However, only travel time was used in the final bus fare regression equation model owing 

to data limitations for other attributes in forecasting mode. A bus fare regression model with 

travel time as the independent variable was estimated and validated: 

Equation 2: Bus Fare Regression Model 

 

This model was used to generate a bus fare matrix from the bus-travel-time matrix. 

Bus Feasibility Matrix 

It was necessary to determine if bus is a feasible mode-choice option when considering long-

distance travel between locations. To determine if bus travel was feasible or not for a given 

NUMA pair, a buffer-region approach, similar to that discussed in the airport-to-Census Tract 

connectors section, was adopted. Bus stop location information for the United States was 

obtained from bus GTFS data. The bus stop location (point) data was overlaid on the NUMA-

level polygon file. A 40-mile buffer region was drawn from each NUMA centroid. The total 

number of bus stops that fall within the 40-mile buffer region of each NUMA was determined 

and stored. A binary (0/1) indicator was generated for each NUMA, where the NUMA would 

receive a “1” if there is at least one bus stop within the 40-mile buffer from the NUMA’s 

centroid location. Otherwise, the NUMA received a “0.” The NUMA-level information was 

converted to a feasibility matrix by multiplying the bus feasibility indicators for each NUMA- 

O-D pair. If both the origin and destination NUMAs had a value of “1” in their bus feasibility 
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indicator column, bus travel was considered feasible between the NUMA pair under 

consideration. Otherwise, bus travel was considered infeasible between the NUMA pair. The 

spider network created from the generation of NUMA centroid-to-bus station connectors is 

shown in Figure 28. A NUMA is allowed to have a connector to all bus stations within 40 miles 

from the location of its centroid. 

Figure 28: NUMA Centroid-to-Bus Station Connectors 

 

Bus Travel Time and Fares 

To obtain the bus-travel-time matrix, the auto-travel-time matrix was first generated at the 

NUMA level by minimizing travel time between each O-D pair using built-in skimming 

procedures in TransCAD. This process resulted in a complete 4570×4570 matrix of auto travel 

times. A corresponding distance matrix was automatically generated by TransCAD. The auto 

travel times between different O-D pairs were converted to bus travel times using the factors 

presented in Table 5 for different distance ranges. The bus-travel-time matrix was multiplied 

(cell-by-cell multiplication) by the feasibility matrix to obtain the final bus-travel-time matrix for 

O-D pairs (between which bus travel is deemed feasible). The bus-travel-time matrix obtained as 

a result of this exercise was used to compute a fare matrix (see Figure 27). 

3.3    Socioeconomic Data 

Person and Household Characteristics 

Person and household characteristics were derived from the Public Use Microdata Sample 

(PUMS) of the 2010 Decennial Census and the 2007–2011 American Community Survey (ACS) 
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5-year estimates. These are used primarily as input to the synthetic-population process, described 

in Chapter 4. 

The personal characteristics selected from the Census data include: 

 Age of the person; 

 Gender of the person; 

 Race of the person; and 

 Employment status of the person. 

The household characteristics selected from the Census data include: 

 Presence of children in the household; 

 Household income level; 

 Householder age; 

 Household size; 

 Type of household; 

 Number of nonworkers in the household; 

 Number of full-time workers in the household; 

 Number of part-time workers in the household; 

 Number of students in the household; 

 Number of vehicles in the household; and 

 Group quarter identifier. 

The householder refers to the person (or one of the people) in whose name the housing unit is 

owned or rented (maintained) or, if there is no such person, any adult member, excluding 

roomers, boarders, or paid employees. If the house is owned or rented jointly by a married 

couple, the householder may be either a husband or a wife. The person designated as the 

householder is the "reference person" to whom the relationship of all other household members, 

if any, is recorded. 

The household type is a function of whether members are related to the householder by birth, 

marriage, or adoption and whether the household is headed by a single householder (male or 

female) or a married couple. A nonfamily household consists of a householder living alone (a 

one-person household) or where the householder shares the home exclusively with people to 

whom he/she is not related. 

As of 1983, group quarters were defined in the Current Population Survey as noninstitutional 

living arrangements for groups not living in conventional housing units or groups living in 

housing units containing ten or more unrelated people or nine or more people unrelated to the 

person in charge. Examples of people in group quarters include a person residing in staff quarters 
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at a hospital, a halfway house, military housing, college dormitories, or retirement housing. Since 

1972, inmates of institutions have not been included in the Current Population Survey. 

Employment Data 

Employment data was compiled from two sources: 

 Longitudinal Employer Household Dynamics (LEHD). 

 Bureau of Labor Statistics (BLS) Quarterly Census of Employment and Wages (QCEW). 

A brief description of the steps that were undertaken to generate employment database for the 

current project is provided below. 

Longitudinal Employer Household Dynamics (LEHD) 

2010 LEHD Origin-Destination Employment Statistics (LODES) database was the primary 

source of employment data. Categories used in developing these data are presented in Table 6. 

The database contains private and public job numbers for all states and the District of Columbia 

(the only exception is Massachusetts, which has yet to join the LEHD program). For the private 

sector, employment numbers were summarized by 20 different industries. In addition, tourism 

and recreation-related industries, such as arts/entertainment/recreation, accommodations, and 

food services, were further divided into a number of subcategories (also shown in Table 6 

through Table 8). 

Table 6: National Employment Categories—NAICS Employment Categories 

NAICS Employment Categories 

(1) agriculture, forestry, fishing, and hunting 

(2) mining quarrying, and oil and gas extraction 

(3) utilities 

(4) construction 

(5) manufacturing 

(6) wholesale trade 

(7) retail trade 

(8) transportation and warehousing 

(9) information, 

(10) finance and insurance 

(11) real estate and rental and leasing 

(12) professional scientific, and technical services 

(13) management of companies and enterprises 

(14) administrative and support and waste management and remediation services 

(15) educational services 
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NAICS Employment Categories 

(16) health care and social assistance 

(17) arts, entertainment, and recreation 

(18) accommodation and food services 

(19) other services [except public administration] 

(20) public administration 

Table 7: National Employment Categories— Subcategories of Tourism and Recreation 

Employment 

Subcategories of Tourism and Recreation Employment 

(1) performing arts companies  

(2) spectator sports 

(3) promoters of performing arts, sports, and similar events 

(4) agents and managers for artists, athletes, entertainers, and other public figures 

(5) independent artists, writers, and performers 

(6) museums, historical sites, and similar institutions 

(7) amusement parks and arcades 

(8) gambling industries 

(9) other amusement and recreation industries 

Table 8: National Employment Categories— Subcategories of Accommodation and Food 

Service Employment 

Subcategories of Accommodation and Food Service Employment 

(1) traveler accommodation 

(2) RV (recreational vehicle) parks and recreational camps 

(3) rooming and boarding houses 

(4) full-service restaurants 

(5) limited-service eating places 

(6) special food services 

(7) drinking places (alcoholic beverages) 

This step was undertaken to create proxies for attraction variables (e.g., number of rooms/beds in 

hotel/motel/resort, number of employment in theme parks, etc.), which were not readily 

available. The LODES database, which includes data at block-level, provides job numbers by 

main industry only. To create a database that includes employment in tourism and recreation-

related industries, broken down by subcategories, the LEHD Quarterly Workforce Indicators 
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(QWI) data, which is available at a spatial resolution larger than Census block, was employed. 

Finally, the private-sector data were aggregated at the appropriate level to produce a Census 

Tract-level file. For the private sector, the job numbers were available for the Federal, state, and 

local government. Here, the data-processing step involved aggregation of block-level public 

sector employment data to the Census Tract level. 

Bureau of Labor Statistics (BLS) Quarterly Census of Employment and Wages (QCEW) 

Census Tract-level QCEW data for the year 2010, published by the BLS, was used to generate an 

employment database for the Commonwealth of Massachusetts (MA). Since the QCEW is an 

essential input to the LEHD program, the assumption was that, though the employment dataset 

was compiled using multiple databases/sources, the final dataset contains consistent records. 

3.4    Land-Use Data 

A number of national-scale data sources that provide data free of charge were used to assemble a 

land-use file. To be consistent with the spatial unit applied to summarize the level-of-service 

(LOS) data, a Census Tract-level land-use file was compiled to facilitate both model estimation 

and application tasks. The land-use data and corresponding sources are listed below. 

 2010 Census. National-level geographic files (i.e., shape files) include all the tracts in the 

Unites States that are available from the U.S. Census Bureau. For the current project, 

2010 Census Tract-level geographic files with demographic profile information were 

downloaded to obtain the following land-use data: 

 Total land area; and 

 Number of permanent households and noninstitutionalized group quarters. 

 US National Park Service, 2012, TomTom data, and ESRI. A group of layers 

containing the national, state, and regional parks were available in the ArcGIS software. 

The layers were created using data from several sources, including the National Park 

Service (NPS), TomTom, and ESRI. Information available from these layers included 

park/forest name, type (e.g., national park, state park, regional park, national forest, etc.), 

location, and size. In total, information on 3,355 parks/forests was used to create a 

database that provides total park/forest area, by Census Tract. 

 National Center for Education. Information available from the National Center for 

Education was used to create an initial database of colleges and universities that offer a 

bachelor’s degree or higher. Variables included in this database were institution name, 

location (latitude and longitude), and total enrollment in 2011. Once this initial database 

was created, community colleges, vocational colleges, and online colleges were dropped 

from the list since these colleges are likely to attract fewer long-distance trips. Next, the 

data were aggregated to create a file that provides total college/university enrollment, by 

Census Tract. 

The research team recognizes that, in addition to the land-use variables mentioned previously, 

other variables (e.g., parking costs) are likely to improve predictive capability of the model. 
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However, such variables are only available from a selected number of state/regional models and 

it was not feasible to create a national-level dataset for this project. 

3.5    Household Surveys 

Several datasets were identified both during and since the review of experience. The following 

surveys are discussed in more detail: 

 1995 American Travel Survey (ATS). 

 2001 National Household Travel Survey (NHTS). 

 2012 California Household Travel Survey (CHTS) 

 2010 Colorado Front Range Travel Survey 

 2003 Ohio Household Travel Survey 

The datasets are described with reference to the model components that they might support 

development of, and discussion of their known limitations. 

1995 American Travel Survey (ATS)
7
 

The “standard” dataset for modeling long-distance travel in the United States has long been the 

1995 ATS. The Census Bureau of Transportation Statistics (BTS) carried out the ATS 

periodically up until 1995, but has not carried it out since, which is the main reason such a dated 

source of data is still in use. The attractive features of this dataset can be seen in Table 10: 

 It is a large dataset, with over one-half million long-distance trips (75 miles or more), 

reported by almost 70,000 households, randomly selected from all across the United 

States. 

 It contains one full year’s worth of trips for each household. 

 In contrast to the other surveys listed in Table 10, this survey was not entirely 

retrospective. Respondents were contacted before the year-long reporting period began, 

and were sent a calendar/diary to record key details of every long-distance trip made by 

every household member. They were then contacted every three months to relay 

important information about the trips they had reported. 

 Also, computer-assisted personal interviews (CAPIs) were performed with respondents 

who could not participate by telephone, reducing one potential source of nonresponse 

bias. 

                                                 

7
 The 1995 American Travel Survey (ATS)  

http://www.bts.gov/publications/1995_american_travel_survey/technical_documentation/entire.pdf
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Besides the fact that these data are 20 years old, there are several factors that might limit their 

usefulness for some types of modeling: 

 There is no geocode information available for the trips, so it would not be possible to 

attach detailed mode-impedance information. 

 There is a high respondent burden associated with a 12-month survey with repeated 

interviews. Even though the reported response rate is high (85%), there may have been 

some amount of “soft refusal,” with respondents simply declining to report any more trips 

after reaching a certain level of “fatigue.” 

2001 National Household Travel Survey (NHTS)
8
 

In 2001, instead of repeating the ATS for long-distance travel, a decision was made to combine 

the ATS with the periodic NHTS, which is a more typical travel diary survey of all trips made 

during one 24-hour period. A subset of NHTS households were given a separate log on which to 

retrospectively record all trips of 50 miles or more they had made during the four weeks before 

their survey travel day, and then report those trips during the same telephone call as they 

reported all trips made on their selected travel day. (This is essentially the same survey 

methodology that was also used for all of the other surveys described here.) 

In retrospect, it may have been a questionable decision to combine the long-distance travel into 

the NHTS, as the resulting 46,000 long-distance trips comprise less than 9% of the number of 

trips obtained in the 1995 ATS. As a result, the 2001 NHTS long-distance data have not been 

used extensively for modeling or analysis, and the long-distance component was dropped from 

the 2009 NHTS survey altogether. 

The NHTS data lack the main attractive features of the ATS data (large sample size and 

nonretrospective methodology), but these data share some of the key weaknesses of the ATS 

(i.e., older data and lack of geocodes and detailed spatial information). 

2012 California Household Travel Survey (CHTS) 

The California Department of Transportation (CalTrans) performed a major survey effort for the 

entire state in 2012. The design of the survey is similar to that used in the Colorado survey, but 

with the retrospective period extended from 2 weeks to 8 weeks. The rationale for extending the 

retrospective period was that it would provide more trips for modeling, and that even if the full 

period may not be useful for modeling trip frequency/generation (due to increasing recall 

nonresponse bias), if a respondent does remember the trip, their recall of the details of that trip 

(e.g., mode, destination, etc.) is likely to be good enough to use for modeling those other aspects 

of behavior. 

                                                 
8
 The 2001 National Household Travel Survey (NHTS)  

http://nhts.ornl.gov/2001/usersguide/UsersGuide.pdf
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With a sample size of over 40,000 households, plus the 8-week period, this survey yielded a 

large sample of trips to use in modeling. Also, full geocoding and spatial information will be 

available (for approved researchers who sign a confidentiality agreement).  

2010 Colorado Front Range Travel Survey
9
 

There are few regional planning agencies (MPOs) that have included a special long-distance 

travel component as part of their household travel survey. A recent example, however, is the 

2010 survey carried out by a group of Colorado MPOs, with the Denver Regional Council of 

Governments (DRCOG) taking the lead. An attractive feature of this survey is that it is quite 

recent, and also that detailed geocoding information is likely to be available for all trips (for 

researchers who sign a confidentiality agreement). Also, the retrospective period of two weeks 

seems short enough to allow fairly accurate respondent recall. The short recall period, however, 

along with a limited sample size of just over 3,000 households, resulted in just over 6,100 long-

distance trips.  

2003 Ohio Household Travel Survey 

Similar to Colorado, the Ohio Department of Transportation conducted a long-distance passenger 

travel survey as part of a larger household travel survey effort. There were 2,094 households who 

made 13,807 long-distance trips. This survey is biased for total demand, since the survey 

contained only households that made at least one long-distance trip over the 2-week assigned 

travel period. These data were collected only in the spring and fall seasons, and so no data were 

collected during the winter and summer or major holidays. There were no commute trips 

collected in this survey.  

Content of the Long-Distance Household Travel Survey Datasets 

All of the aforementioned United States datasets (summarized in Table 9) are similar in terms of 

the data items that they contain. The fact that they were (mainly) retrospective surveys, and were 

time-constrained “add-ons” to standard household travel surveys, has tended to limit the amount 

of detail that could be collected regarding each long-distance trip. The common data items 

include: 

 Main trip purpose. This is the most important variable for model segmentation. 

 Journey leg. Whether the trip is leaving home, returning home, or is part of a 

multidestination tour. 

 Trip origin and destination addresses. This information is necessary to connect land-

use information and travel network information for modeling mode choice and 

destination choice. The national-level datasets (ATS and NHTS) were collected primarily 

for descriptive analyses and not for modeling, and also are subject to strict privacy 

regulations, so detailed geocodes are not available. The California and Colorado surveys, 

                                                 

9
 The 2010 Colorado Front Range Travel Survey. 

http://nfrmpo.org/Files/NFRMPO-HHSurveyDraft_AppendixGNoSPSS.pdf
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on the other hand, were designed to provide data for modeling, and used the most modern 

geocoding methods (“real time” online geocoding, using Google maps technology). 

 Travel group size (and composition). This is another key segmentation or explanatory 

variable. 

 Date (or day of week) of travel, and trip departure time of day. These can also be 

important segmentation or explanatory variables (e.g., separating weekend from weekday 

travel). 

 Duration of stay at the destination. Along with trip purpose, this information helps to 

define specific types of journeys for segmentation. 

 Main travel mode and access/egress modes and locations. This is necessary 

information for modeling mode choice. For air, rail and bus trips, the extra information 

collected typically includes the boarding and alighting airport or station, and the modes 

used to/from those locations. 

The surveys are also similar in terms of the types of information they do not include, such as: 

 Information on the trip planning process. This may include how information was 

gathered, how reservations were made, how far in advance planning was done, etc. Data 

regarding “packaging” of travel, lodging, and activities may be especially useful. 

 More-detailed information on trip purpose(s). In addition to classifying the main 

purpose, it may be useful to have data on the range of different activities carried out on 

the trip. 

 How often the destination had been visited in the past. There can be differences in 

decision-making for first-time versus repeat trips, and for frequent versus infrequent trips. 

 Type of lodging used. This is an important consideration in terms of the cost of the trip, 

and can also influence mode choice. 

 The specific route (and operator) used. This may be useful data for auto trips and air 

and bus trips. 

 Fares actually paid and subsidies received. This may be useful for understanding air 

travel decisions, where different travelers can pay different prices, and many receive 

reimbursement. 

 Class of travel used. This is important for air travel, and possibly for rail. 

 Type of auto used. In terms of size class/body type, or else make/model. This has 

implications in terms of travel cost, comfort level, and accessibility to recreational areas. 

Typically, these types of additional questions are only included in special-purpose surveys for 

market research purposes, and such data are often proprietary. While they could provide useful 

data for exploratory modeling, they are not strictly necessary for modeling long-distance travel, 

and may even be problematic to use in the context of longer-term predictive models, since 

future-year assumptions or predictions would need to be made for these factors. 
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Table 9: Summary of Long-Distance Travel Survey Characteristics 

National ATS 

NHTS 

California Colorado Ohio 
NY WI 

Year 1995 2001 2001 2012-2013 2010 2001-2003 

One-way trip length 75+ miles
10

 50+ miles 50+ miles 50+ miles 50+ miles 50+ miles 

Timeframe for Data Collection 
- retrospective 

1 year 4 weeks 4 weeks 8 weeks 2 weeks 2 weeks
11

 

Number of HHs reported LD 
trips 

48,527 HH 7,032 HH 11,027 HH ≅15,500 HH 3,000 HH 2,094 HH 

Number of LD trips/tours 
reported 

556,026 
tours 

28,021 
tours 

44,011 
tours 

≅58,500 

trips 
≅6,100 trips ≅13,807 trips 

During the data collection 
process, how was it 
determined that the reported 
trips are LD trips? 

Self-
reported 

Self-
reported 

Self-
reported 

Self-
reported 

Self-
reported 

Self-reported 

Trip origin used to define LD 
trips 

Home Home Home Home Home Home 

Trip destination used to 
define LD trips 

Farthest 
destination 

Farthest 
destination 

Farthest 
destination 

Any 
destination 

Any 
destination 

Any 
destination 

                                                 

10 ATS data are available for 100+ miles trips only.  

11 The Ohio survey also included a 4-week prospective survey of nonhousehold travel survey households that were screened for a probability of 
making a long-distance trip.  
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Data Preparation 

The 1995 ATS collected long-distance travel information from 80,000 households in the United 

States over the course of one year. The ATS survey gathered information on all tours to 

destinations 100 miles or more away from a respondent’s home. For each home-to-home tour, 

households were asked to identify the main purpose of the tour, accompaniment type, party size, 

mode, and destination. 

To generate the sample for analysis, the person-level tour information was first aggregated into 

household-level data. Several consistency checks were then performed and those households 

with missing or inconsistent information were deleted from the estimation sample. As a result, 

the final estimation sample included 47,931 households. To estimate the nonbusiness and 

business model structures, only those households that undertook at least one nonbusiness or 

business tour during the year were selected. Second, the tours that had a destination outside the 

United States (i.e., international tours) were eliminated from the analysis. The final nonbusiness 

and business samples included 40,794 and 14,664 households, respectively. 

The remaining four household travel surveys were processed to allow merging of these surveys. 

The major data-processing steps included the following: 

 Forming tours from trip-level data. This step was only applicable for the 2003 Ohio and 

the 2012 California surveys, and involved identifying the primary destination of the tour. 

To be consistent with other datasets that used tour as the unit of travel-related 

information, the farthest destination from home was used to identify the tour destination. 

 Identifying the tour purpose and, where necessary, recoding it as: 

 Commute; 

 Business; 

 Visiting friends and relatives; 

 Leisure; or 

 Personal business. 

 Identifying the tour mode and, where necessary, grouping it as: 

 Auto; 

 Bus; 

 Rail; and 

 Air. 

 Appending O-D Census Tract and NUMA-zone identifications (IDs) to each tour record. 

These IDs were used to append appropriate network skims, land-use, and employment 

data. 

While collected information was not uniform across all household survey datasets, the data were 

processed in such a way that the following variables were common across all estimation datasets: 
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 Household Characteristics: Household size, number of driving-age adults, number of 

workers, age of head of household, number of vehicles, income, residence location 

(longitude/latitude, Census Tract ID, NUMA-zone ID, county and state Federal 

Information Processing Standard [FIPS] codes), the date on which trip reporting period 

ended, and survey year. 

 Person Characteristics: Age, gender, worker status, and student status. 

 Travel Characteristics: Number of trips in the tour, the date on which the tour began, 

number of nights away from home, total travel party size, number of household members 

traveling together, tour origin (always home), tour origin and destination locations 

(longitude/latitude, Census Tract ID, NUMA-zone ID, county and state FIPS codes), 

primary tour purpose, outbound and inbound tour modes, and outbound and inbound 

access modes. 

Data Used for Model Estimation 

For model estimation purposes, each dataset was examined in detail and a number of descriptive 

statistics were generated.
12

 It was clear from these analyses that the data from the sources listed 

previously varied in terms of: 

 Trip length employed to identify long-distance travel (e.g., 50+ miles vs. 100+ miles); 

 Geographic coverage of the study area (e.g., national, state, or regional); 

 Duration of tour reporting period (e.g., one year, three months, four weeks, etc.); 

 Data collection schedule (e.g., all through the year or only a few months in one year); 

 Spatial resolution of tour origin/destination; and 

 The type and the level of details of travel-related information collected. 

As a result, some datasets were more suitable for estimation of a particular type of model(s) than 

others. Table 10 lists the datasets used to estimate different long-distance model components. As 

summarized in Table 10, combination household time budget/ annual tour-generation/tour-

scheduling/tour-duration/tour-participation models were estimated using a multiple discrete-

continuous extreme value (MDCEV) structure on the 1995 ATS data. This is because the ideal 

model framework is designed to predict a household’s long-distance travel schedule for a period 

of one year as a single scheduling process, and ATS is the only dataset that had a tour reporting 

period of one full year. However, the age of the dataset and its coarse spatial resolution made 

ATS less suitable for estimating other models, particularly mode and destination choice. All 

other models—including simpler logit models of tour generation, scheduling, and duration—

were estimated using a combined dataset from the California, New York, Ohio, and Wisconsin 

                                                 
12

 To conserve space, the descriptive statistics are not included in this report, but are available from the research 

team upon request. 
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surveys (with the exception that only the California data were used for the logit tour-generation 

and tour-scheduling models). 

Table 10: Datasets Used to Estimate Long-Distance Travel Model Components 

Household 
Travel Survey 

Time 
Budget 

Tour 
Generation 

Tour 
Scheduling 

Tour 
Duration 

Travel 
Party 
Size 

Destination 
and Mode 

Choice 

1995 ATS       

2001 NHTS (NY)       

2001 NHTS (WI)       

2012 CHTS       

2003 Ohio       

 2010 Colorado 
Front Range 
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CHAPTER 4.  INTEGRATED MODELING SYSTEM 

4.1    Overview 

This overview (Figure 29) outlines the aspects of the Long-Distance Passenger Travel Demand 

Modeling Framework that will be important to frame the individual modeling components. The 

core model components, and those necessary to support the core model components in the model 

design, are the focus of this overview, but there are a few additional elements of the model 

design that are identified in the model design for comprehensiveness, but are reserved for future 

model development efforts due to data or resource limitations. 

The Long-Distance Passenger Travel Demand Modeling Framework considered four aspects of 

modeling travel demand: 

 Macroeconomic and land-use models. These produce socioeconomic forecasts of the 

population and economy as input to the modeling system. These models can be quite 

complex, were not the main focus of this effort, and were not intrinsic to the core system 

components. Data on socioeconomic forecasts were available for current- and future-year 

conditions and were used as inputs without developing integrated modeling components 

for these elements. 

 Population and long-term mobility models. These produce synthesized populations 

with personal and household characteristics, and long-term choices such as work and 

school locations and vehicle availability for the population in the United States. These 

models were also not directly the focus of this study, but were more directly and 

necessarily integrated with the travel demand model components. 

 Long-distance travel demand models. These produce schedules, destinations, and 

modes for long-distance travel across the United States. These comprise the core model 

components. Route choice is the one element within this category of models that was 

problematic to test, given the limited data that were available. Route choice is also the 

model component of least importance for policy and scenario testing and was therefore 

not included in the final framework. 

 Assignment models. These produce volumes on highway, rail, bus, and air systems for 

the evaluation of performance on travel, environmental, economic, and other measures. 

These models are essential to the eventual use of the long-distance travel models and are 

included as essential elements of the framework. Existing technologies for aggregate, 

static assignments will be employed to implement assignment models. Disaggregate, 

dynamic-assignment methods are not practical or necessary to deploy at a national scale 

for long-distance travel. This is also the element that brings together commercial and 

short-distance passenger travel demand from other sources to produce comprehensive 

assessments of all travel in the United States. 

The long-distance passenger travel demand forecasting model framework is designed to cover 

the contiguous United States, with external zones for Mexico, Canada, and other countries. 

Alaska and Hawaii were also incorporated. 
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One core recommendation for the framework is the use of a one-year timeframe for the 

passenger travel demand models. This recommendation deviates from available data sources and 

existing long-distance travel model practice. That said, this is a critical recommendation to 

adequately capture the behavioral elements of long-distance travel, which are often scheduled 

over a one-year timeframe and have typical seasonal fluctuations. Integration of this travel with 

other models (such as statewide or multistate corridor models) may require conversion to an 

average weekday, but the richness of the annual data can also provide input for seasonal or peak 

travel periods. This is described more fully in Chapter 7 on long-distance travel survey data.  

4.2    Framework 

The integrated modeling system framework presented here reflects the long-term goal to develop 

a long-distance passenger travel demand model that achieves the objectives of the project. The 

shorter-term goal, to develop a long-distance travel demand model that is practical for current 

use following calibration and validation, is described in Chapter 5 of this report. Long-distance 

travel is defined as a tour—or round trip—whose two-way (home-to-home) length exceeds 100 

miles. 

The long-distance passenger travel demand modeling system is presented in Figure 29. There are 

three main elements to this system: 

 Population Synthesis to synthesize persons and households across the United States with 

demographic and socioeconomic characteristics. The sample records include a 

comprehensive set of household characteristics for each PUMA in the PUMS. The 

marginal household and person control files include relevant household and person 

characteristics for each Census Tract. 

 Tour Generation, Scheduling, Duration, and Party Size to estimate how many long-

distance tours each household makes in each month of the year, based on 

sociodemographic characteristics and annual household budgets. This element also 

includes estimating the duration, purpose, and party size for each long-distance tour. 

 Destination and Mode Choice to estimate the destination and mode choice for each 

long-distance tour for each household for the year, based on characteristics of each mode 

(i.e., auto, bus, rail, and air) and each destination. The four modal networks were 

analyzed to produce estimates of travel time, cost, and distance for each mode as input. 

These joint models produced a combined utility across all modes and destinations 

(referred to as LogSum) that can be used as accessibility measures for travel from 

specific residence zones. These measures provided feedback of long-distance 

accessibility to the generation and scheduling of tours, as represented by the dotted line in 

Figure 29. 

The elements of the framework are described in more detail in the following sections. 
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Figure 29: Long-Distance Passenger Travel Demand Modeling Framework 
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4.3    National Synthetic-Population Generation 

The generation of a national synthetic population is essential for modeling long-distance travel 

demand at the level of the individual traveler. In this study, a national synthetic population was 

generated using the procedures embedded in the PopGen software package (Ye et al., 2009). The 

PopGen system is a robust synthetic-population-generation software that is capable of 

controlling for both household- and person-level attributes in the synthetic-population generation 

process. Although the software is computationally efficient and capable of running in parallel 

(i.e., utilizing multiple cores in a computer) the process can be quite computationally 

burdensome and time consuming when attempting to synthesize a population for the entire 

nation. For this reason, the parameters and levels of spatial disaggregation adopted in the 

synthetic-population generation process were established to balance the desire for a synthetic 

population generated based on controls at a fine geographical resolution and the desire for rapid 

computational time. 

Methodological Procedure 

The methodological procedure embedded in the PopGen software allows the generation of a 

synthetic population using a variety of control variables at both the household and person levels. 

The key input datasets for the population synthesis process are as follows: 

 A sample file that includes disaggregate household and person records for a sample of the 

population of interest. This sample file serves two key purposes: it provides the joint 

distribution among attributes of interest and households included in the synthetic 

population that are drawn from the sample. 

 A marginal file that includes aggregate household- and person-level control totals for the 

geographic region of interest at the desired level of geographic resolution. This file 

provides the control totals that must be matched in the synthesis process. The sample file 

is expanded in such a way that the expanded sample mirrors the marginal control totals. 

 A geographic-correspondence file that maps individual geographies (e.g., block groups or 

Census Tracts) to larger geographic areas (e.g., the PUMA). This file is important 

because the sample file (often derived from the PUMS data of the Census Bureau) is 

geocoded only to the PUMA level; thus, the joint distribution of attributes of interest for a 

specific PUMA is applied to all Census Tracts or block groups that belong to that 

particular PUMA in the geographic-correspondence file. 

PopGen follows a three-step process in the synthesis of a population. First, the joint distribution 

of the attributes of interest is determined for each geography. The marginal control totals from 

the Census files are used to expand this joint-distribution matrix so that the marginal control 

totals are matched exactly. This procedure, known as iterative proportional fitting (IPF), is 

applied to both the household- and person-level attribute joint distributions. As a result of the 

first step, the total number of households or persons that need to be generated for each cell of the 

joint-distribution matrix is determined. 

In the second step, every household in the sample is given a weight such that the weighted total 

of households (persons) matches the total number of households (persons) as calculated through 



 

69 

the IPF procedure. This step is referred to as the iterative proportional updating (IPU) algorithm, 

wherein the weights associated with households are iteratively updated such that the weighted 

frequencies of households and persons match the expanded joint-distribution totals at both the 

household and person levels. 

In the third step, households are drawn through a Monte Carlo simulation process using the 

weights computed in the second step. This completes the synthetic-population generation 

procedure. There are a few additional steps to ensure the process is robust and yields the best 

fitting synthetic population: 

 Application of an appropriate rounding procedure so that the frequencies of households 

(in the sample) to be drawn into the synthetic population are whole numbers (the weights 

at the end of the second step are likely to be fractional weights and appropriate rounding 

methods need to be applied to determine whole numbers of households without 

introducing rounding errors). 

 Repeated drawing of a synthetic population through the Monte Carlo simulation 

procedure with a goodness-of-fit check after each draw. The best draw from among 25 

different draws is chosen as the synthetic population for the study. 

In the procedure adopted for this study, the output of the synthetic-population-generation process 

was a sample of households with a frequency or weight variable that indicates the number of 

times the (sample) household is replicated in the synthetic population. In other words, the 

synthetic population was not expanded to comprise an exhaustive dataset of more than 300 

million records. Instead, a sparse representation of the synthetic-population data files was used to 

achieve efficiency in data handling and storage. In addition, this format is consistent with the 

notion of computing “expected” travel demand using the weight variable, as opposed to 

simulating long-distance travel for each agent in the population (which would be vastly more 

computationally burdensome). To produce a microsimulation model of long-distance travel for 

the entire population (at the agent level), the synthetic population can be expanded such that 

there a unique record for each household and for each person in every household of the synthetic 

population. Processing and managing such large data highlights big-data challenges that require 

further study to identify the most efficient ways to process synthetic-population datasets. 

Context 

The United States includes 50 states, 9 commonwealths/territories, and 6 military states. For this 

project, the national synthetic-population-generation effort was limited to the 50 states plus the 

District of Columbia. No synthetic population was generated for the other eight 

commonwealths/territories (excluding the District of Columbia) and the six military states. 

According to the 2010 Census, the 50 states and the District of Columbia collectively had a 

population of 308.7 million people. Of this population, 300.8 million people resided in 116.7 

million households, while the remaining 8 million people lived in group quarters. The nation had 

3,143 counties, 73,057 Census Tracts, and 217,740 block groups in the 50 states plus the District 

of Columbia. The frequency distribution of counties, tracts, and block groups across the 51 

entities is shown in Table 11. 
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Table 11: Number of Counties, Census Tracts, and Block Groups, by State 

State Counties Tracts Block groups 

Alabama 67 1,181 3,438 

Alaska 29 167 534 

Arizona 15 1,526 4,178 

Arkansas 75 686 2,147 

California 58 8,057 23,212 

Colorado 64 1,249 3,532 

Connecticut 8 833 2,585 

Delaware 3 218 574 

District of Columbia 1 179 450 

Florida 67 4,245 11,442 

Georgia 159 1,969 5,533 

Hawaii 5 351 875 

Idaho 44 298 963 

Illinois 102 3,123 9,691 

Indiana 92 1,511 4,814 

Iowa 99 825 2,630 

Kansas 105 770 2,351 

Kentucky 120 1,115 3,285 

Louisiana 64 1,148 3,471 

Maine 16 358 1,086 

Maryland 24 1,406 3,926 

Massachusetts 14 1,478 4,985 

Michigan 83 2,813 8,205 

Minnesota 87 1,338 4,111 

Mississippi 82 664 2,164 

Missouri 115 1,393 4,506 

Montana 56 271 842 

Nebraska 93 532 1,633 

Nevada 17 687 1,836 

New Hampshire 10 295 922 

New Jersey 21 2,010 6,320 

New Mexico 33 499 1,449 

New York 62 4,919 15,464 

North Carolina 100 2,195 6,155 

North Dakota 53 205 572 

Ohio 88 2,952 9,238 

Oklahoma 77 1,046 2,965 

Oregon 36 834 2,634 

Pennsylvania 67 3,218 9,740 

Rhode Island 5 244 815 

South Carolina 46 1,103 3,059 

South Dakota 66 222 654 

Tennessee 95 1,497 4,125 

Texas 254 5,265 15,811 

Utah 29 588 1,690 

Vermont 14 184 522 

Virginia 134 1,907 5,332 

Washington 39 1,458 4,783 

West Virginia 55 484 1,592 

Wisconsin 72 1,409 4,489 

Wyoming 23 132 410 

TOTAL 3,143 73,057 217,740 
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A decision had to be made regarding the geographic resolution that would be chosen for 

synthesis of a national synthetic population. The number of counties, at just 3,143, is quite 

modest and in line with the number of traffic analysis zones (TAZs) included in many regional 

travel demand models. In fact, several larger regional travel demand models have well over 

3,000 TAZs and it has been computationally feasible to generate synthetic populations for such 

model regions at the level of the individual TAZ without having to utilize massively parallel 

computing infrastructure. While it would be computationally efficient to synthesize a national 

population at the level of the county (because there would be only 3,143 geographies), such a 

level of geographical resolution is less than ideal due to the aggregate and coarse nature of a 

county. A county can be extremely heterogeneous in nature; as a result, even though the 

synthetic population may closely match countywide marginal totals, it is likely that such a 

synthetic population will perform extremely poorly in matching tract- or block-group-level 

marginal totals. 

Ideally, a synthetic-population-generation process at the level of the block group would be 

performed. The block group is a detailed level of geography for which the Census data provides 

a rich set of marginal control totals. In addition, a synthetic population that replicates population 

distributions at the level of the individual block groups would undoubtedly be representative of 

the population in a region. However, in the context of a national synthetic-population-generation 

effort, it can be computationally burdensome to synthesize a population for more than 217,000 

geographies. Massively parallel computing architectures would have to be deployed to realize 

reasonably efficient computational times. As a compromise between the geographic detail 

offered by the block-group-level synthesis and the computational ease afforded by the county 

level, the research team conducted a Census Tract-level synthesis of the national population. The 

tract-level synthesis involved generating a population for just over 73,000 Census Tracts in the 

country; in this instance, the deployment of a modest parallel computer architecture provided 

reasonable computational times for such a synthesis effort. 

In order to perform the synthetic population generation, the research team had to identify the 

Census datasets that had the richest amount of information at the desired level of geography. 

With the availability of the decennial 2010 Census data and ACS datasets, it is possible to 

synthesize a population using a set of datasets that reflect the current state of the population in 

the United States. Based on a number of considerations—the age of the long-distance travel 

survey datasets used for model development and estimation, the availability of complete data for 

a number of variables of interest available at the Census Tract-level, and the base year of the 

long-distance travel demand model development effort—the project team chose to use the 2007–

2011 5-year ACS datasets for population synthesis. Thus, the marginal control data for a variety 

of household- and person-level attributes was derived from the ACS 2007–2011 5-year data 

compilation. Similarly, for all syntheses, the ACS PUMS 2007–2011 sample data were used. As 

a result, the sample and marginal control data are consistent. The latest 2010 decennial Census 

version of the Mable Geocorr geographic-correspondence files, developed by the Missouri 
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Census Data Center,
13

 are datasets that were used to map the Census Tracts to corresponding 

PUMAs. Table 12 provides information on the sizes of the ACS marginal and PUMS datasets. 

A first-round population synthesis effort was previously undertaken using 2005–2009 ACS data 

sets (both marginal and PUMS data). The second round of the population synthesis is being 

undertaken using the more up-to-date 2007–2011 ACS datasets. While the population totals 

corresponding to the marginal files in Table 12 are those for the 2007–2011 datasets, the sample 

sizes for PUMS files (in the latter two columns of the table) still correspond to those for the 

2005–2009 ACS datasets. Numbers in these two columns will be updated as soon as the second 

round of population synthesis is complete. Given that the PUMS file sizes are generally 

consistent across years, the sample sizes shown in Table 12 for PUMS files are likely to also be 

reflective of sample sizes in the 2007–2011 PUMS files. 

Control Variables 

PopGen can use any combination of controls for synthesizing a population for the nation. While 

the use of many control variables may sound appealing from a synthetic population 

representativeness standpoint, the use of a large number of control variables comes with its own 

drawbacks. In the presence of large numbers of control variables, thousands—or even millions—

of constraints may be generated. Having such a large number of constraints can greatly increase 

computational time and can lead to sparse matrices; this is because some of the cells in a 

multidimensional joint-distribution matrix may not have many (or any) observations in the 

sample file. In addition, several variables may be correlated with one another and it is not 

necessary to explicitly control for each and every household or person-level socioeconomic 

variable of interest. Rather, it is important to identify a set of largely uncorrelated dimensions 

that are key determinants of long-distance travel demand and that would adequately capture the 

heterogeneity of the population. By choosing a limited set of control variables, the synthetic-

population-generation run time can be kept manageable while simultaneously obtaining a 

representative synthetic population. In addition to identifying an appropriate set of control 

variables, it is also necessary to specify the categories for each control variable. Once again, the 

number of categories should be set so that the joint-distribution matrix does not become too 

sparse while simultaneously retaining a richness of population representation, reflected in the 

synthetic population that is generated. The research team conducted a number of small-scale 

trials to identify an appropriate set of controls and categories that may be adopted in a national-

level synthetic-population-generation effort at the Census Tract resolution. 

 

                                                 

13
 Missouri Census Data Center 

http://mcdc.missouri.edu/websas/geocorr12.html
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Table 12: Marginal Population for PUMS and ACS 2007–2011 Data 

State 
Marginal Control Files 

PUMS Files 
(2005-2009) 

Total Households Population in HH Group Qtr Pop Household Sample Person Sample 

Alabama 1,831,269 4,747,424 115,816 94,639 236,597 

Alaska 252,920 700,703 26,352 14,063 35,156 

Arizona 2,344,215 6,337,373 139,384 126,562 316,405 

Arkansas 1,121,386 2,895,928 78,931 57,735 144,338 

California 12,433,172 36,969,200 819,816 737,628 1,844,071 

Colorado 1,941,193 4,966,061 115,878 99,578 248,945 

Connecticut 1,360,115 3,558,172 118,152 70,767 176,918 

Delaware 332,837 890,856 24,413 17,779 44,448 

District of Columbia 260,136 593,955 40,021 11,914 29,785 

Florida 7,140,096 18,688,787 421,709 372,266 930,665 

Georgia 349,0754 9,600,612 253,199 191,816 479,539 

Hawaii 445,513 1,346,554 42,880 26,934 67,335 

Idaho 575,497 1,549,987 28,951 31,038 77,595 

Illinois 4,773,002 12,790,182 301,773 254,047 635,116 

Indiana 2,472,870 6,454,254 186,923 128,379 320,948 

Iowa 1,219,137 3,032,266 98,112 60,318 150,795 

Kansas 1,104,479 2,830,985 79,074 56,492 141,229 

Kentucky 1,681,085 4,316,040 125,870 85,919 214,799 

Louisiana 1,675,097 4,484,596 127,427 89,761 224,402 

Maine 551,601 1,328,543 35,545 26,302 65,754 

Maryland 2,128,377 5,736,545 138,375 114,316 285,791 

Massachusetts 2,522,409 6,512,227 238,882 129,643 324,108 

Michigan 3,825,182 9,920,621 229,068 195,696 489,240 

Minnesota 2,094,265 5,278,190 135,395 105,018 262,544 

Mississippi 1,085,062 2,956,700 91,964 58,752 146,881 



 

74 

State 
Marginal Control Files 

PUMS Files 
(2005-2009) 

Total Households Population in HH Group Qtr Pop Household Sample Person Sample 

Missouri 2,354,104 5,955,802 174,142 118,581 296,452 

Montana 403,495 982,854 28,849 19,590 48,976 

Nebraska 715,703 1,813,061 51,165 36,162 90,404 

Nevada 986,741 2,673,396 36,154 53,471 133,677 

New Hampshire 514,869 1,315,911 40,104 26,066 65,165 

New Jersey 3,180,854 8,753,064 186,876 174,080 435,199 

New Mexico 762,002 2,037,136 42,629 40,772 101,929 

New York 7,215,687 19,302,448 585,678 383,686 959,216 

North Carolina 3,664,119 9,418,736 257,246 188,803 472,006 

North Dakota 278,669 666,783 25,056 13,317 33,293 

Ohio 4,554,007 11,525,536 306,266 228,423 571,057 

Oklahoma 1,432,735 3,714,520 112,017 74,277 185,692 

Oregon 1,509,554 3,801,991 86,642 75,855 189,638 

Pennsylvania 4,952,566 12,660,739 426,113 251,507 628,768 

Rhode Island 410,475 1,053,959 42,663 20,841 52,102 

South Carolina 1,758,732 4,575,864 139,154 91,582 228,956 

South Dakota 318,466 807,697 34,050 16,121 40,302 

Tennessee 2,457,997 6,297,991 153,472 125,653 314,132 

Texas 8,667,807 24,774,187 581,139 497,882 1,244,705 

Utah 871,358 2,715,379 46,152 54,725 136,812 

Vermont 256,711 624,958 25,329 12,390 30,974 

Virginia 2,991,025 7,926,192 239,834 158,420 396,051 

Washington 2,602,568 6,652,845 139,375 133,146 332,865 

West Virginia 740,080 1,846,372 49,382 36,689 91,723 

Wisconsin 2,279,738 5,664,893 150,214 112,602 281,506 

Wyoming 219,628 554,697 13,712 11,160 27,899 

TOTAL 114,761,359 306,603,772 7,987,323 6,113,162 15,282,904 
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Table 13 presents the control variables and categories used in the synthetic-population-

generation process. At the household level, it can be seen that the control variables include 

presence or absence of children, household size, age of householder, household income, number 

of workers in household, and type of household. At the person level, the control variables include 

age, gender, employment status, and race. The synthetic population also generates a group-

quarter population, distinguishing between individuals in institutionalized and noninstitutional 

group-quarter settings (not shown in Table 13). There are 4,480 constraints (cells in the joint 

distribution) at the household level and 560 constraints at the person level. In addition, there are 

two group-quarter constraints. In general, these variables represent important socioeconomic and 

demographic characteristics that are known to affect travel demand in statistically significant 

ways. In addition, while a few variables are closely related to one another, they each contribute 

uniquely to the generation of a representative synthetic population. 

The sociodemographic characteristics included in the synthetic-population files are not limited to 

the variables used as controls. Any uncontrolled variables that are available in the sample data 

can be added in a straightforward manner to the synthetic population generated by PopGen. The 

synthetic-population files generated in this project include a number of raw variables 

(corresponding to the controlled categorized variables) and uncontrolled variables so that a 

comprehensive set of information is available for model application. 

The variables added to the household file (post-synthesis) from the raw PUMS file include the 

following raw variables, which refers to the original uncategorized variable available in the 

PUMS file: 

 Raw household size. 

 Raw household income. 

 Number of own children in the household. 

 Number of vehicles in the household. 

 Raw householder age. 

 Number of workers in the household. 

 Number of nonworkers in the household. 

 Number of full-time workers in the household. 

 Number of part-time workers in the household. 

 Number of students in the household. 

At the person level, only one raw variable is added to the synthetic person file. The raw age 

variable is appended to the file. All of these variables are matched from the original PUMS 

records using the unique PUMS identifier associated with each household and person in the 

sample files. The unique PUMS identifier included in the synthetic-population files may be used 

to match any other variables in the PUMS files that may be desired for model application in 

forecasting mode. 
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Table 13: Household- and Person-Level Constraints for Generating Synthetic Population 

Level Variable Description 
Category 

Value 
Category Description 

H
o

u
s
e
h

o
ld

 

Presence of children in 
the household 

1 Presence of own children 

2 No own child presence 

Household income level 

1 Annual household income $0 - $14,999 

2 Annual household income $15,000 - $24,999 

3 Annual household income $25,000 - $34,999 

4 Annual household income $35,000 - $44,999 

5 Annual household income $45,000 - $59,999 

6 Annual household income $60,000 - $99,999 

7 Annual household income $100,000 - $149,999 

8 Annual household income over $150,000 

Householder age 
1 Householder age 64 years or less 

2 Householder age 65 years or more 

Household size 

1 Household size = 1 

2 Household size = 2 

3 Household size = 3 

4 Household size = 4 

5 Household size = 5 

6 Household size = 6 

7 Household size = 7 

Type of household 

1 Family: Married couple 

2 Family: Male householder, no wife 

3 Family: Female householder, no husband 

4 Nonfamily: Householder alone 

5 Nonfamily: Householder not alone 

Number of workers in the 
household 

1 Household has no workers (coded as 1 in synthetic data) 

2 Household has 1 worker (coded as 2 in synthetic data) 

3 Household has 2 workers (coded as 3 in synthetic data) 

4 Household has 3 or more workers (coded as 4 in n. data) 

P
e
rs

o
n

 

Age of the person 

1 Person age under 5 years 

2 Person age 5 to 14 years 

3 Person age 15 to 24 years 

4 Person age 25 to 34 years 

5 Person age 35 to 44 years 

6 Person age 45 to 54 years 

7 Person age 55 to 64 years 

8 Person age 65 to 74 years 

9 Person age 75 to 84 years 

10 Person age 85 years or more  

Gender of the person 
1 Male person 

2 Female person 

Race of the person 

1 White alone 

2 Black or African American alone 

3 American Indian and Alaska Native alone 

4 Asian alone 

5 Native Hawaiian and Other Pacific Islander alone 

6 Some other race alone 

7 Two or more races 

Employment status of the 
person 

1 Not employed (less than 16 years old) 

2 Employed 

3 Unemployed 

4 Not in labor force (over 64 years old) 
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PopGen was run for the entire nation, synthesizing the population for each state in a sequential 

manner. PopGen wrote out the synthetic-population files for each state and conducted an 

assessment of the performance of the synthesis process for each state before proceeding to a 

subsequent state. If there was an issue with the synthesis of a population for a particular state, the 

software paused and displayed an error message asking the operator if the process should be 

terminated (this was done so that the analyst could fix the error and relaunch the program from 

the point it stopped) or continued. The process was automated such that no human intervention 

was needed if there were no errors in the synthesis process, there was adequate storage and 

memory on the machine, and there was uninterrupted network connectivity. PopGen downloads 

Census datasets in real time, so it is important to have an uninterrupted and fast network 

connection that facilitates efficient downloading and processing of data. Census datasets also 

vary from one release to the next, so some minor modifications to the data download and 

processing steps need to be made in PopGen if it is desired to apply PopGen in the future using a 

different release of Census datasets. At the end of the synthetic-population-generation process, 

PopGen produced 51 folders, with each folder containing: 

 Synthetic household and group quarter records; 

 Synthetic person records; 

 Sample household and group quarter records; 

 Sample person records; 

 Marginal tract-level records for household attributes; and 

 Marginal tract-level records for person attributes. 

In PopGen, the number of households synthesized is always equal to the total number of 

households in the marginal control file. As long-distance travel choices may often involve 

household-level negotiations and decision processes, it was considered important to exactly 

match the number of households to control totals. Due to some inconsistency between personal- 

and household-level controls, it is possible that the total population (number of persons) 

synthesized by PopGen will be slightly different from the marginal control total for the number 

of persons in each Census Tract. This modest difference generally arises due to the inevitable 

modest inconsistencies between household-level marginal control distributions and person-level 

marginal control distributions. At the end of the synthetic-population-generation process, the 

synthetic-population files in the 51 folders were integrated to form the national synthetic-

population files. The process of concatenation of the 51 household- and person-level synthetic-

population files has been automated, but it needs to be run separately as a post-processing step 

upon completion of the PopGen procedure. 

Results of Population Synthesis Process 

The synthetic-population-generation process was performed along with periodic checks that 

identified some issues related to the integrity and consistency of the Census datasets and 

geographic-correspondence files. The project team completed a first-round population synthesis 

effort using 2005–2009 ACS datasets and has embarked on a second-round population synthesis 

effort using 2007–2011 ACS datasets. A future-year synthetic population may be generated 
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using a population-evolution model system or using future-year controls that may be available or 

inferred at the Census Tract level. It should be noted that model execution time is highly 

dependent on hardware configurations, availability of multiple processors, and availability of 

memory. Using a set of six workstations (each with a quad-core CPU) with reasonable memory 

and processing speed configurations should provide for the generation of a synthetic population 

for the entire nation in about one week. In general, it should be expected that the synthesis of a 

nationwide population is a computationally burdensome process that will involve substantial 

computation times. Moving to a county-level resolution may bring about some efficiencies, but 

at a great cost in terms of population representativeness. 

The synthetic-population files were assessed for each state to ensure that the population 

synthesized for each Census Tract closely mirrored that in the marginal control datasets from the 

Census Bureau. Figure 30 through Figure 32 show an illustration of the total households 

generated for three sample states: Arizona, Connecticut, and Illinois. As expected, the points 

(each point represents a Census Tract) fall strictly along a 45-degree line, indicating that PopGen 

synthesizes the exact number of households as contained in the marginal control files. Figure 33 

through Figure 35 show a comparison of the synthetic population versus the marginal control 

total at the person level. 

As mentioned previously, PopGen does not exactly match person totals in its attempt to control 

for the number of households. This is because there will be slight inconsistencies between 

household- and person-level controls, and the Monte Carlo simulation process by which 

households are drawn into the synthetic population will introduce some noise; as a result, these 

graphs do not show perfect adherence to the 45-degree line. Nonetheless, the points are wrapped 

tightly around the 45-degree line, showing a good level of fit and representativeness of the 

synthetic population. It should be noted that the goodness of fit would have been less had the 

procedure not adequately controlled for person-level attributes. By controlling for both 

household- and person-level attributes, PopGen is able to generate a representative synthetic 

population where marginal control totals are matched perfectly at the household level and are 

exceptionally close at the person level. 

In addition to ensuring that the population synthesis process generates the correct number of 

households and persons (in total), it is also useful to assess the performance of the synthesis 

process by comparing actual marginal control distributions against corresponding distributions in 

the synthetic population. These comparisons can be performed at various geographic levels, 

including state, county, and Census Tract level. As the population synthesis was undertaken at 

the level of the Census Tract, it may be appropriate to compare distributions at this geographic 

level. If the distributions match closely at this level of geographic resolution, then it implies that 

the distributions match at higher levels of aggregation (county and state). On the other hand, just 

because control distributions match at the county or state level, this does not mean that the 

control distributions would adequately match at the Census Tract level (which is a higher degree 

of spatial resolution). Comparisons at the block-group level may also be undertaken; but, given 

the spatial definition of the NUMA zonal system, validation at such a disaggregate spatial level 

appears unnecessary for the long-distance travel modeling context. 
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Figure 30: Comparison of Number of Households in Synthetic Population versus Marginal 

Control Total for Census Tracts in Arizona 

 

Figure 31: Comparison of Number of Households in Synthetic Population versus Marginal 

Control Total for Census Tracts in Connecticut 

 

Figure 32: Comparison of Number of Households in Synthetic Population versus Marginal 

Control Total for Census Tracts in Illinois 
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Figure 33: Comparison of Number of Persons in Synthetic Population versus Marginal 

Control Total for Census Tracts in Arizona 

 

Figure 34: Comparison of Number of Persons in Synthetic Population versus Marginal 

Control Total for Census Tracts in Connecticut 

 

Figure 35: Comparison of Number of Persons in Synthetic Population versus Marginal 

Control Total for Census Tracts in Illinois 
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The set of graphs in Figure 36 through Figure 39 show a comparison of household and person 

attributes for one randomly chosen Census Tract in Maricopa County (Greater Phoenix 

metropolitan region) in Arizona. In the interest of brevity, such comparisons are not shown for 

other Census Tracts in the country, although the project team completed an extensive set of 

comparisons for Census Tracts across the nation to ensure that the population synthesis process 

is generating a representative population. The comparisons demonstrate the close match between 

actual population characteristics and synthetic-population characteristics. All of the distributions 

seen in Figure 40 through Figure 43, for example, show a high level of agreement between the 

actual marginal control distribution and the synthetic-population distribution. This pattern was 

found to repeat itself without exception for Census Tracts across the nation. 

In sum, the national synthetic-population-generation effort was successful in producing a 

representative national synthetic population suitable for travel demand modeling and forecasting. 

An updated synthetic population, based on the 2007–2011 ACS datasets, is under development 

and will offer a more up-to-date and representative population of the nation. 

Figure 36: Comparison of Control Distributions between Actual Synthetic Populations 

(Census Tract 522745 in Maricopa County, Arizona) (Household Type) 
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Figure 37: Comparison of Control Distributions between Actual Synthetic Populations 

(Census Tract 522745 in Maricopa County, Arizona) (Household Size) 

 

Figure 38: Comparison of Control Distributions between Actual Synthetic Populations 

(Census Tract 522745 in Maricopa County, Arizona) (Number of Workers) 
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Figure 39: Comparison of Control Distributions between Actual Synthetic Populations 

(Census Tract 522745 in Maricopa County, Arizona) (Household Income) 

 

Figure 40: Comparison of Control Distributions between Actual Synthetic Populations 

(Census Tract 522745 in Maricopa County, Arizona) (Gender) 
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Figure 41: Comparison of Control Distributions between Actual Synthetic Populations 

(Census Tract 522745 in Maricopa County, Arizona) (Race) 

 

Figure 42: Comparison of Control Distributions between Actual Synthetic Populations 

(Census Tract 522745 in Maricopa County, Arizona) (Employment Status) 
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Figure 43: Comparison of Control Distributions between Actual Synthetic Populations 

(Census Tract 522745 in Maricopa County, Arizona) (Age) 
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participation and scheduling of nonbusiness tours are likely to be made collectively at the 

household level, rather than by each individual separately (see Laesser et al., 2009). Also, some 

of the business purposes (e.g., business/pleasure and convention/conference/seminar) provide the 

opportunity for the person making the tour to include his/her family members in the tour; hence, 

the decision process becomes a collective one, as opposed to being purely based on the 

individual making the tour. Further, the data source used for the estimation (the 1995 ATS) does 

not provide socioeconomic details at the individual level; thus, it is impossible to use the 

individual (as opposed to the household) as the unit of analysis. Whether business or 

nonbusiness, the tour-scheduling process involves several decisions. The following sequential 

decision-making process was used in this analysis: 

1. The household decides whether to make a tour (either business or nonbusiness). 

2. If the decision is “yes,” then the household allocates an annual budget for time spent on 

nonbusiness and business activities. 

3. The household further splits the total annual budget into various tour purposes. To illustrate, 

assume a household decides to engage in nonbusiness travel (step 1) and allocates a 30-day 

budget (step 2) for it. Then, in step 3 (the current step), the household will further split the 

30-day budget into various nonbusiness purposes. The same process is followed for business 

purposes. 

4. The household decides the number of tours to make in a given year based on the budget 

allocated for various nonbusiness and business purposes. That is, if a household allocates 

eight days for recreational purposes, the household may make more than one tour to consume 

their total recreational budget. 

5. The household decides the tour-party composition (i.e., number of people in the tour). 

The above-described decision-making steps reflect a top-down approach, where the households 

first decide whether to make a specific kind of tour, followed by determination of tour-specific 

characteristics, such as duration, number of tours, party size, and composition. 

Decision-Making Steps in the Process 

This section provides an overview of the models used in the decision-making steps. Additional 

detail on the underlying methodology of these models can be found in the references provided. 

 The first and second steps (decision to make a nonbusiness or business tour followed by 

the determination of total annual budget) are modeled using a sample selection model 

(see Greene, 2012, pp. 913–918). 

 The third step (allocation of total annual budget in various nonbusiness and business 

purposes) is modeled using Bhat’s (2008) MDCEV model. The MDCEV model 

simultaneously estimates the participation and duration of a tour. Further, the MDCEV 

structure allows the households to participate in more than one tour, which is more 

realistic in long-distance travel. This hypothesis can further be corroborated based on the 

statistics provided in Table 14 and Table 15 for nonbusiness and business purposes, 

respectively. As shown in Table 14 and Table 15, households who participate in one kind 

of tour also participate in other kinds of activities. For example, out of 7,149 households 
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(Table 14, first row) who participated in tour type “visiting friends” during the third 

quarter (July–September), 6,505 households (Table 14, last column) also participated in 

other kinds of activities. The same can also be observed for business purposes. Further, 

for each tour purpose, there is significant variation in the number of households across 

different times of the year, which is divided into quarters: 

 Q1: January–March (winter). 

 Q2: April–June (spring). 

 Q3: July–September (summer). 

 Q4: October–December (fall). 

Thus, to capture seasonal variations in the MDCEV model, a 24-option (6 purposes * 4 

quarters) was used to structure nonbusiness purposes and a 12-option (3 purposes * 4 

quarters) structure was used for business purposes. 

 The fourth step (number of tours by tour purpose) is modeled using a traditional zero 

truncated Poisson regression (see Greene, 2012, pp. 850–852). 

 Finally, the fifth step (party size and composition) is modeled using a multinomial logit 

model (MNL). 

Nonbusiness Travel Model Estimation Results 

Decision to Make Nonbusiness Tours and Annual Budget Model 

A sample selection model was estimated using the maximum likelihood estimation (MLE) 

technique to determine the household’s decision to make nonbusiness tours and the annual 

duration. (Note that for these models, the term “nonbusiness” also excludes long-distance work 

Commute tours, which were not included in the models presented in this section.) 

The results of the first component (decision to conduct nonbusiness travel) are provided in Table 

14 that the alternative-specific constants in this context do not have any tangible meaning. They 

simply represent the effect of all unobserved factors (explanatory variables not considered in the 

specification). The results indicate that the propensity to conduct nonbusiness travel increases as 

the household income increases. This result is intuitive, as households with higher income levels 

can afford to make nonbusiness tours, which may not be an option for low-income households, 

as long-distance discretionary tours can be expensive (see Mergoupis and Steuer, 2003 for 

similar results). The number of business tours is also found to have a significant effect on a 

household’s decision to engage in nonbusiness travel: households that do not make any business 

tours are more likely to make nonbusiness tours than are the households that make at least one 

business tour. This may indicate that households where individuals make business tours may face 

challenges in terms of finding an itinerary feasible for all the individuals in the household 

(nonbusiness travel is a collective decision made at the household level). 
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Table 14: Participation and Duration (Nonbusiness Purposes) 

Activity Type 
Total Number (%) 

of Households 
Participating 

Participation Duration (Days) 
Number of Households (% of Total 

Number Participating) Who Participate… 

Mean St. Dev. Min. Max. 
Only in this 

Activity 
In This and Other Activity 

Types 

Visit friends/relatives (Q1) 7178 (17.60) 5.84 4.92 1 24 640 (8.92) 6538 (91.08) 

Visit friends/relatives (Q2) 10036 (24.6) 5.28 4.11 1 20 1341 (13.36) 8695 (86.64) 

Visit friends/relatives (Q3) 10772 (26.41) 5.87 4.85 1 24 1768 (16.41) 9004 (83.59) 

Visit friends/relatives (Q4) 9919 (24.31) 5.20 3.72 1 18 1430 (14.42) 8489 (85.58) 

Relaxation (Q1) 2570 (6.30) 6.61 6.55 1 35 297 (11.56) 2273 (88.44) 

Relaxation (Q2) 4263 (10.45) 5.37 4.69 1 29 631 (14.80) 3632 (85.20) 

Relaxation (Q3) 5620 (13.78) 5.36 3.89 1 20 1072 (19.07) 4548 (80.93) 

Relaxation (Q4) 2264 (5.55) 4.41 3.31 1 17 257 (11.35) 2007 (88.65) 

Sightseeing (Q1) 684 (1.68) 4.31 3.32 1 17 83 (12.13) 601 (87.87) 

Sightseeing (Q2) 1637 (4.01) 3.97 2.92 1 14 258 (15.76) 1379 (84.24) 

Sightseeing (Q3) 2543 (6.23) 3.83 2.76 1 13 472 (18.56) 2071 (81.44) 

Sightseeing (Q4) 1167 (2.86) 3.42 2.38 1 11 171 (14.65) 996 (85.35) 

Recreation (Q1) 1698 (4.16) 4.80 3.39 1 17 131 (7.71) 1567 (92.29) 

Recreation (Q2) 2492 (6.11) 3.89 2.62 1 13 222 (8.91) 2270 (91.09) 

Recreation (Q3) 3449 (8.45) 4.47 3.25 1 16 387 (11.22) 3062 (88.78) 

Recreation (Q4) 1650 (4.04) 4.50 3.14 1 15 130 (7.88) 1520 (92.12) 

Entertainment (Q1) 1353 (3.32) 3.30 2.24 1 11 130 (9.61) 1223 (90.39) 

Entertainment (Q2) 2039 (5.00) 3.19 2.09 1 10 254 (12.46) 1785 (87.54) 

Entertainment (Q3) 2283 (5.60) 3.00 2.03 1 10 318 (13.93) 1965 (86.07) 

Entertainment (Q4) 1591 (3.90) 2.85 1.71 1 8 156 (9.81) 1435 (90.19) 

Personal business (Q1) 2621 (6.42) 5.05 4.99 1 27 275 (10.49) 2346 (89.51) 

Personal business (Q2) 4549 (11.15) 4.11 3.68 1 20 650 (14.29) 3899 (85.71) 

Personal business (Q3) 4418 (10.83) 3.93 3.41 1 18 650 (14.71) 3768 (85.29) 

Personal business (Q4) 3180 (7.80) 3.68 3.12 1 17 428 (13.46) 2752 (86.54) 

Q1: January–March (winter), Q2: April–June (spring), Q3: July–September (summer), Q4: October–December (fall) 
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Table 15: Participation and Duration (Business Purposes) 

Activity Type 
Total Number (%) 

of Households 
Participating 

Participation Duration (Days) 
Number of Households (% of Total 

Number Participating) Who Participate… 

Mean St. Dev. Min. Max. 
Only in this 

Activity 
In This and Other 

Activity Types 

Business (Q1) 4464 (30.44) 6.38 6.36 1 33 953 (21.35) 3511 (78.65) 

Business (Q2) 5159 (35.18) 5.64 5.35 1 28 1212 (23.49) 3947 (76.51) 

Business (Q3) 4472 (30.50) 5.62 5.43 1 29 1067 (23.86) 3405 (76.14) 

Business (Q4) 3880 (26.46) 4.84 4.27 1 23 906 (23.35) 2974 (76.65) 

Business/Pleasure (Q1) 761 (5.19) 5.20 4.06 1 20 210 (27.60) 551 (72.40) 

Business/Pleasure (Q2) 1050 (7.16) 4.62 3.29 1 18 305 (29.05) 745 (70.95) 

Business/Pleasure (Q3) 1016 (6.93) 5.11 3.98 1 21 297 (29.23) 719 (70.77) 

Business/Pleasure (Q4) 713 (4.86) 4.27 3.04 1 15 220 (30.86) 493 (69.14) 

Convention/Conference/Seminar 
(Q1) 

591 (4.03) 3.37 2.00 1 11 166 (28.09) 425 (71.91) 

Convention/Conference/Seminar 
(Q2) 

982 (6.70) 3.33 1.89 1 9 372 (37.88) 610 (62.12) 

Convention/Conference/Seminar 
(Q3) 

883 (6.02) 3.91 2.45 1 12 393 (44.51) 490 (55.49) 

Convention/Conference/Seminar 
(Q4) 

586 (4.00) 2.93 1.66 1 8 204 (34.81) 382 (65.19) 
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Table 16: Nonbusiness Discretionary Tour Model (Decision to Make Nonbusiness Travel) 

Variables Coeff. T-Stat 

Alternative-Specific Constant 1.626 46.212 

Income (Base: 25K-49K) 

 Less Than 25K -0.202 -9.662 

 50K-99K 0.189 9.068 

 100k and more 0.389 9.114 

Business Tour (Base: Zero Tours) 

 1 or more tours -0.583 -33.784 

Family Composition 

 Presence of Children (less than 17 Years Old) -0.215 -6.121 

 # of individuals between 17 and 49 years old -0.087 -8.546 

 # of individuals >= 50 years old -0.017 -1.483 

Working Status  

 # of full-time workers 0.017 1.989 

 # of part-time workers 0.033 2.315 

Vehicle Ownership (Base: Three or More Vehicles) 

 Zero Vehicle -0.085 -2.842 

 One or Two Vehicles -0.141 -7.071 

Household Residential Location (Base: Mountain) 

 New England -0.174 -5.867 

 Atlantic -0.163 -4.120 

 East-North Central -0.165 -5.008 

 West-North Central -0.095 -3.207 

 South Atlantic -0.087 -3.011 

 East-South Central -0.238 -7.231 

 West-South Central -0.120 -3.335 

 Pacific -0.062 -1.825 
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Table 17: Annual Budget Model (Annual Nonbusiness Budget) 

Variables Coeff. T-Stat 

Constant 2.459 122.281 

Income (base: 25K-49K) 

 Less than 25K -0.201 -12.901 

 50K-74K 0.164 9.796 

 75k – 99K 0.342 13.271 

 100K and more 0.535 17.670 

Working status  

 # of full-time workers -0.125 -28.013 

 # of part-time workers -0.069 -6.851 

Vehicle ownership (base: Three or more vehicles) 

 One or Two vehicles -0.090 -6.920 

Household residential location (base: Mountain) 

 New England -0.126 -6.321 

 Atlantic -0.060 -2.190 

 East-North Central -0.134 -5.753 

 West-North Central -0.159 -7.819 

 South Atlantic -0.116 -6.036 

 East-South Central -0.272 -11.053 

 West-South Central -0.220 -8.473 

 Pacific --- --- 

Note for Table 17: The dependent variable (annual budget) is transformed on logarithmic scale. 

Table 17 Model fit: 

Sample Size: 47,931 households. Log-likelihood value at convergence: -14999.30. 

For the family composition and working-status variables, the coefficient on family composition 

provides the effect of nonworkers in the household and the coefficient on working status 

provides the differential impact between a nonworker and a worker in the household. The results 

indicate that households with more workers are more likely to engage in nonbusiness travel as 

compared to the households with fewer workers. This is intuitive, as individuals in the workforce 

have a relatively more hectic day-to-day schedule (long working hours, commute time, etc.) than 

do nonworkers; thus, these households have a higher likelihood of taking vacations to rest and 

recharge themselves. The presence of children in the household has a negative effect on the 

propensity to conduct nonbusiness travel, possibly due to the inherent expenses of child rearing 

(e.g., education, health care, apparel, etc.), which may limit the household’s ability to direct 

resources to long-distance nonbusiness discretionary tours. The results also suggest that elderly 

dominated households (age 50 and above) have a high likelihood of conducting nonbusiness 

travel. Jang et al. (2004) also found that older travelers outspent younger travelers. 
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Vehicle ownership also has an impact on the decision to engage in nonbusiness travel. 

Intuitively, the availability of private vehicles in the household increases mobility for the 

residents, thus providing extra flexibility to the household in terms of scheduling a tour (see Wu 

et al., 2013 for similar findings). 

Finally, location-specific variables (i.e., New England, Middle Atlantic, East-North Central, 

West-North Central, South Atlantic, East-South Central, West-South Central, Mountain, and 

Pacific) were added to the model to capture any location-specific effects that were not directly 

controlled for in the model. The availability of recreational sites in a specific region may induce 

more nonbusiness discretionary tours in that region’s households, as compared to households in 

other regions. For example, one may expect a higher number of recreation sites (e.g., national 

parks, camping and hunting sites, etc.) in the Mountain region than in other regions; thus, a 

Mountain household has a higher likelihood of making a discretionary tour than a household in 

another region. In the current specification, the Mountain region is the base category; a negative 

sign on other region indicator variables indicates that households in those regions are less likely 

to engage in nonbusiness travel as compared to the households in the Mountain region. 

For the annual budget model (see Table 17), the duration variable (indicating the number of 

nights away from home) was transformed on a logarithmic scale to avoid prediction of negative 

values. First, the alternative-specific constants do not have any tangible meaning, as discussed 

earlier. Second, with an increase in household income, the annual budget of nonbusiness travel 

increases (see, Wu et al. 2013 for similar findings). This result is intuitive, as households with 

higher income levels can afford to make longer-duration nonbusiness discretionary tours, which 

may not be an option for low-income households. Third, the effect of the number of workers 

(full- or part-time) aligns with the results, which indicate a small budget for worker-oriented 

households relative to non-worker-oriented households. The workers typically have only a few 

days off each year and thus cannot afford to take longer-duration nonbusiness discretionary 

tours. Fourth, the duration increases with the increase in vehicle ownership (see Nicolau and 

Mas, 2005, for similar findings). This is understandable, as a high number of vehicles owned 

may suggest an availability of personal vehicles for all eligible adults, resulting in an increased 

mobility that enables the individuals in the household to plan for long-duration nonbusiness 

discretionary tours without worrying about the traveling needs of other individuals in the 

household (in a household with low vehicle ownership, the daily traveling decisions generally 

tend to be joint, as opposed to the independent decisions made in households with high vehicle 

ownership). Similar to the first component of the model, the location-specific variables were 

added to capture any location-specific effects, which are not directly controlled for in the model. 

Finally, the variance-covariance matrix (t-statistics in parenthesis) is presented in Equation 3: 

Equation 3: Nonbusiness Annual Budget Model Variance-Covariance Matrix 

 

The results indicate a significant correlation between two components (decision to conduct a 

nonbusiness travel and its duration) of the model, suggesting that some common unobserved 

factors impact the decision and duration in the same direction. 
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Nonbusiness Tour-Participation and Duration Model 

Table 18 presents the estimation results for nonbusiness purposes. As established, the alternative-

specific constants do not have any tangible meaning, but simply represent the effect of all 

unobserved factors (explanatory variables not considered in the specification). Among the set of 

explanatory variables considered in the specification, the age-related variables offer a number of 

interesting results: 

 The results indicate that households with children (less than 17 years old) prefer 

relaxation, sightseeing, recreation, entertainment, and personal business over visiting 

friends. This is not surprising, as children prefer activities that offer participation, fun, 

and adventure (see Nickerson and Jurowski, 2001). At the same time, these activities 

(relaxation, sightseeing, recreation, and entertainment) provide a good opportunity for 

such households to spend quality time together. 

 Young individuals (17–34 years old) seem to prefer recreation (spring and summer), 

entertainment (winter, spring, and summer), and visiting friends (winter, spring, and 

summer) over other nonbusiness purposes. These young individuals are likely to be in the 

early stages of career and family, resulting in long hours at the office in addition to an 

increase in family responsibilities. Thus, these individuals may prefer activities that 

potentially provide a quick break from their heavily scheduled lives, such as recreation, 

entertainment, and even visiting friends. 

 Middle-aged individuals (35–49 years old) exhibit a somewhat similar preference, but are 

also more likely to allocate time to activities such as relaxation (winter, spring, and 

summer) and sightseeing (winter, spring, and summer) as compared to younger 

individuals. The increase in preference of middle-aged individuals for relaxation and 

sightseeing activities can be attributed to the increase in age (relaxation and sightseeing 

present more convenient forms of vacation, offering both mental and physical relaxation 

as compared to other activities) and the presence of children and partners in their lives. 

 Baby boomers and empty nesters (50–64 years old) prefer visiting friends (winter, spring, 

and summer), relaxation (winter and spring), sightseeing (winter, spring, and summer), 

and entertainment (all four seasons) over other tour purposes. However, households with 

baby boomers and empty nesters are also more likely to spend more time on personal 

business as compared to households with young and middle-aged individuals. This is not 

surprising, as these households are in the stage where their children do not live with them 

anymore, allowing them to be more socially active. These households also are likely to 

spend more time visiting doctors and getting health treatments due to aging; as a result, it 

is unsurprising that such households spend more time on personal business than young 

and middle-aged households. 

Seniors (65 and older) also have same preferences for activities (visiting friends, sightseeing, 

entertainment, and personal business) as baby boomers and empty nesters, which is 

understandable. Overall, the results suggest significant variation in tour participation across 

different times of the year by different groups of people (see Grigolon et al., 2014, for similar 

findings).
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Table 18: Tour Duration and Participation Model (Nonbusiness Purposes) 

 Q1: January–March (winter), Q2: April–June (spring), Q3: July–September (summer), Q4: October–December (fall) 

Alternative 
(Base : Visit 

friends/relatives (Q3)) 

Explanatory Variables 

Alternative-
Specific 
Constant 

Family Composition 

Presence of 
children (< 17 

years old) 

# of individuals 
between 17–34 

years old 

# of individuals 
between 35–49 

years old 

# of individuals 
between 50–64 

years old 

# of individuals 
>= 65 years old 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Visit friends/relatives (Q1) -0.448 -14.707 -0.142 -1.579 0.049 6.305       

Visit friends/relatives (Q2) -0.047 -1.596         

Visit friends/relatives (Q4) 0.130 4.211 -0.470 -5.352 -0.071 -6.945 -0.071 -6.945 -0.071 -6.945 -0.071 -6.945 

Relaxation (Q1) -1.623 -37.27 0.215 3.815 -0.037 -4.743     -0.041 -2.468 

Relaxation (Q2) -1.128 -29.297     

Relaxation (Q3) -1.135 -28.87   -0.051 -4.548 -0.128 -7.448 

Relaxation (Q4) -1.68 -37.929   -0.208 -10.549 -0.130 -10.374 

Sightseeing (Q1) -2.741 -49.837  0.215 3.815 -0.037 -4.743       

Sightseeing (Q2) -2.130 -38.744   0.080 4.485 0.080 4.485 0.080 4.485 

Sightseeing (Q3) -1.703 -37.522         

Sightseeing (Q4) -2.07 -38.31   -0.208 -10.549 -0.130 -10.374 -0.130 -10.374   

Recreation (Q1) -1.400 -24.765  0.298 3.637 -0.049 -3.388 -0.049 -3.388 -0.049 -3.388 -0.381 -8.745 

Recreation (Q2) -1.154 -27.387   0.064 7.173 -0.064 -4.709 -0.223 -11.920 

Recreation (Q3) -0.905 -19.808     

Recreation (Q4) -1.430 -27.088   -0.049 -3.388 -0.049 -3.388 -0.049 -3.388 

Entertainment (Q1) -1.827 -44.213  0.353 4.989         

Entertainment (Q2) -1.431 -40.567         

Entertainment (Q3) -1.536 -23.99       0.027 1.227 

Entertainment (Q4) -1.688 -43.897   -0.116 -4.496     

Personal business (Q1) -1.369 -43.281  0.114 1.675 -0.064 -7.519   0.065 7.688   

Personal business (Q2) -0.686 -17.805  0.349 3.839   0.077 5.219 

Personal business (Q3) -0.812 -26.233  0.114 1.675   

Personal business (Q4) -1.025 -30.508 -0.056 -4.950     
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Table 18 (cont.): Tour Duration and Participation Model (Nonbusiness Purposes) 

Alternative 
(Base : Visit 

friends/relatives (Q3)) 

Explanatory Variables 

Working Status 
Household Residential Location 
(Mountain is the base category) 

# of full-time 
workers 

# of part-time 
workers 

England M-Atlantic 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Visit friends/relatives (Q1) -0.044 -7.637 -0.018 -1.332 0.153 4.653 0.122 2.608 

Visit friends/relatives (Q2) 

Visit friends/relatives (Q4)       

Relaxation (Q1) -0.033 -4.216 -0.035 -1.851 0.507 16.088 0.649 15.699 

Relaxation (Q2) 

Relaxation (Q3) 0.066 7.943 0.069 4.254 

Relaxation (Q4)     

Sightseeing (Q1) -0.033 -4.216     0.211 2.013 

Sightseeing (Q2)   0.118 2.558 0.394 6.000 

Sightseeing (Q3) 0.066 7.943 0.069 4.254 

Sightseeing (Q4)   0.211 2.013 

Recreation (Q1)   0.031 1.619 0.157 2.206   

Recreation (Q2)    -0.042 -1.252 -0.259 -6.363 -0.318 -5.328 

Recreation (Q3) 0.062 5.767 0.031 1.619 

Recreation (Q4) 

Entertainment (Q1)     -0.568 -7.889 -0.228 -4.037 

Entertainment (Q2)     -0.282 -5.245 

Entertainment (Q3) 0.067 3.082 -0.040 -1.009 

Entertainment (Q4)     -0.568 -7.889 

Personal business (Q1)     -0.170 -5.141 -0.389 -7.939 

Personal business (Q2) -0.047 -4.300 -0.026 -1.008 

Personal business (Q3)     

Personal business (Q4)     
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Table 18 (cont.): Tour Duration and Participation Model (Nonbusiness Purposes) 

Alternative 
(Base : Visit 

friends/relatives (Q3)) 

Explanatory Variables 

Household Residential Location (Mountain is the base category) 

EN-Central WN-Central S-Atlantic ES-Central WS-Central Pacific 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Visit friends/relatives (Q1) 0.180 5.418 0.121 4.224 0.034 1.175 0.141 4.187 0.136 4.362   

Visit friends/relatives (Q2)   

Visit friends/relatives (Q4) 0.055 1.255     

Relaxation (Q1) 0.480 14.292 -0.140 -3.335 0.192 3.249 0.204 2.494   0.379 11.515 

Relaxation (Q2) 0.486 12.791 0.418 11.500 0.170 3.480 

Relaxation (Q3)   0.634 16.382 

Relaxation (Q4) -0.140 -3.335 0.486 12.791   

Sightseeing (Q1) -0.275 -1.786 -0.144 -1.866 -0.165 -2.766       

Sightseeing (Q2)   -0.331 -3.876 0.418 11.500     

Sightseeing (Q3) 0.298 5.003  0.174  2.854     0.166 2.164 

Sightseeing (Q4) -0.144 -1.866 0.304 3.955     

Recreation (Q1)   -0.193 -5.649 -0.513 -12.761 -0.574 -9.819     

Recreation (Q2)   -0.351 -5.385     0.344 8.297 

Recreation (Q3)   -0.513 -12.761 -0.574 -9.819 -0.328 -4.094 

Recreation (Q4)       

Entertainment (Q1) -0.212 -1.977   -0.394 -10.777   -0.349 -2.759 0.389 6.894 

Entertainment (Q2)         0.179 3.335 

Entertainment (Q3) 0.235 3.192  0.122 1.924     

Entertainment (Q4)         0.389 6.894 

Personal business (Q1) -0.196 -4.739 -0.052 -1.685 -0.283 -9.577       

Personal business (Q2) -0.242 -5.614 -0.179 -4.316 -0.148 -3.906 

Personal business (Q3)   

Personal business (Q4) -0.196 -4.739 
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Table 18 (cont.): Tour Duration and Participation Model (Nonbusiness Purposes) 

Alternative 
(Base : Visit friends/ 

relatives (Q3)) 

Explanatory Variables 

Vehicle Ownership (base: three or more vehicles) 

 Zero Vehicle One Vehicle Two Vehicles 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Visit friends/relatives (Q1) -0.062 -2.585 -0.062 -2.585 -0.062 -2.585 

Visit friends/relatives (Q2) 

Visit friends/relatives (Q4)       

Relaxation (Q1) -0.136 -4.164 -0.407 -10.842 -0.260 -8.651 

Relaxation (Q2) 

Relaxation (Q3) -0.224 -6.128 -0.074 -2.516 

Relaxation (Q4) 

Sightseeing (Q1)   -0.230 -5.116 -0.150 -4.935 

Sightseeing (Q2)     

Sightseeing (Q3) -0.215 -3.393 -0.230 -5.116 

Sightseeing (Q4) 

Recreation (Q1) -0.457 -11.831 -0.823 -23.833 -0.391 -15.748 

Recreation (Q2) 

Recreation (Q3) 

Recreation (Q4) 

Entertainment (Q1) -0.280 -6.665 -0.434 -12.522 -0.309 -10.959 

Entertainment (Q2) 

Entertainment (Q3) 

Entertainment (Q4) 

Personal business (Q1) -0.124 -3.770 -0.364 -13.206 -0.166 -6.941 

Personal business (Q2) 

Personal business (Q3) 

Personal business (Q4) 
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Table 18 (cont.): Tour Duration and Participation Model (Nonbusiness Purposes) 

Alternative 
(Base : Visit 

friends/relatives (Q3)) 

Explanatory Variables 

Family Income (Base: 25K-49K) 

Less Than 25K 50K-74K 75K-99K 100K and More 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Visit friends/relatives (Q1) -0.090 -4.243       

Visit friends/relatives (Q2)       

Visit friends/relatives (Q4)       

Relaxation (Q1) -0.374 -13.823 0.248 13.623 0.248 13.623 0.438 14.436 

Relaxation (Q2) 

Relaxation (Q3) 

Relaxation (Q4) 

Sightseeing (Q1) -0.394 -6.022 0.180 5.432     

Sightseeing (Q2) -0.244 -5.425 0.166 2.509   

Sightseeing (Q3)   0.187 2.815 

Sightseeing (Q4) -0.394 -6.022   0.166 2.509 

Recreation (Q1) -0.615 -14.025 0.163 6.456 0.296 5.997 0.340 9.784 

Recreation (Q2) 

Recreation (Q3) -0.268 -4.724   

Recreation (Q4) -0.615 -14.025     

Entertainment (Q1) -0.525 -6.492     0.148 3.525 

Entertainment (Q2) -0.272 -7.552     

Entertainment (Q3)     

Entertainment (Q4)     

Personal business (Q1)         

Personal business (Q2)         

Personal business (Q3)         

Personal business (Q4)         
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Table 18 (cont.): Tour Duration and Participation Model (Nonbusiness Purposes) 

Alternative 
(Base : Visit 

friends/relatives (Q3)) 

Explanatory Variables 

Business Tour (base: no business tour) 

One Tour Two Tours Three Tours  Four or more Tours 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Visit friends/relatives (Q1)     0.100 5.029 0.100 5.029 

Visit friends/relatives (Q2)   0.100 5.029 

Visit friends/relatives (Q4)     

Relaxation (Q1) 0.102 3.163 0.102 3.163 0.102 3.163 0.102 3.163 

Relaxation (Q2)       

Relaxation (Q3)         

Relaxation (Q4)   0.102 3.163 0.102 3.163   

Sightseeing (Q1)       0.236 3.032 

Sightseeing (Q2)         

Sightseeing (Q3) -0.137 -2.815 -0.137 -2.815 -0.137 -2.815 -0.137 -2.815 

Sightseeing (Q4)   -0.137 -2.815 0.236 3.032 0.236 3.032 

Recreation (Q1)   0.119 3.666   0.161 3.774 

Recreation (Q2) -0.076 -2.008   -0.114 -2.080 

Recreation (Q3) 0.119 3.666   

Recreation (Q4)     0.161 3.774 

Entertainment (Q1)   0.159 2.402     

Entertainment (Q2)   -0.141 -2.340 -0.141 -2.340 -0.195 -4.605 

Entertainment (Q3)     

Entertainment (Q4)   0.159 2.402     

Personal business (Q1)   0.095 2.666 0.226 6.825 0.093 4.108 

Personal business (Q2)   

Personal business (Q3)   

Personal business (Q4)   0.226 6.825 
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Table 18 (cont.): Tour Duration and Participation Model (Nonbusiness Purposes) 

Alternative 
Translation Parameters 

Coeff. T-Stat 

Visit friends/relatives (Q3) 5.869 38.841 

Visit friends/relatives (Q1) 5.851 31.156 

Visit friends/relatives (Q2) 5.013 35.979 

Visit friends/relatives (Q4) 5.085 34.273 

Relaxation (Q1) 8.261 19.404 

Relaxation (Q2) 6.969 23.848 

Relaxation (Q3) 7.583 25.828 

Relaxation (Q4) 5.461 16.708 

Sightseeing (Q1) 5.863 9.683 

Sightseeing (Q2) 5.538 14.415 

Sightseeing (Q3) 5.551 17.837 

Sightseeing (Q4) 4.626 12.219 

Recreation (Q1) 6.007 13.627 

Recreation (Q2) 4.453 16.215 

Recreation (Q3) 5.097 20.554 

Recreation (Q4) 5.124 13.615 

Entertainment (Q1) 3.919 12.663 

Entertainment (Q2) 3.906 15.064 

Entertainment (Q3) 3.753 16.26 

Entertainment (Q4) 3.498 12.86 

Personal business (Q1) 5.718 20.078 

Personal business (Q2) 4.568 25.394 

Personal business (Q3) 4.382 25.415 

Personal business (Q4) 4.057 21.369 

Table 18 Model Fit: 

Sample Size: 40,794 households. Log-likelihood value at convergence: -369209.39. 
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Next, the coefficient on the working-status variable provides the differential impact between a 

nonworker and worker in the household. Thus, if the coefficient on working status is positive, it 

means that a household with more workers is more likely to participate in an activity type as 

compared to a household with more nonworkers. The results suggest that with an increase in the 

number of full-time workers (people working 35 or more hours per week), the household is more 

likely to pursue activities such as relaxation (summer and fall), sightseeing (summer and fall), 

recreation (all four seasons), entertainment (winter, spring, and fall), and personal business 

(winter, summer, and fall). This is not surprising, as full-time workers typically only get 

occasional getaways; when they do have vacation time, they prefer activities that offer more 

physical and mental relaxation than simply visiting friends can provide. The effect of part-time 

workers (people working fewer than 35 hours per week) is also similar to the effect of full-time 

workers, suggesting that—irrespective of the number of work hours—workers generally prefer 

relaxing vacations (relaxation, sightseeing, recreation, entertainment) over visiting family and 

friends (see LaMondia et al., 2008 for similar findings). 

Location-specific variables (New England, Middle Atlantic, East-North Central, West-North 

Central, South Atlantic, East-South Central, West-South Central, Mountain, and Pacific) were 

also added to capture the effects of location on different nonbusiness purposes. This variable 

may capture the effect of the presence of various vacation-specific sites, which are not directly 

included in the model. The base category is Mountain; a negative sign on the location variable 

for a particular nonbusiness purpose suggests that households in the Mountain region are more 

likely to participate in that particular purpose than are households in that specified region. For 

example, for the recreation purpose (spring, summer, and fall), the coefficient corresponding to 

the New England region variable is negative (-0.254) suggesting that households in the Mountain 

region are more likely to make recreational tours in spring, summer, and fall than are households 

in the New England region. This outcome might be due to the abundance of recreational sites in 

the Mountain region as compared to the New England region, making it easy for Mountain 

residents to engage in hunting, fishing, boating, camping, etc. The other location-specific 

variables can be interpreted similarly. 

Vehicle ownership is found to have a significant impact on participation and duration of all 

nonbusiness purposes. The results indicate that with an increase in vehicle ownership, the 

household is more likely to participate in various nonbusiness tour purposes (see the increase in 

magnitude of vehicle ownership coefficient across columns for all tour purposes) (see LaMondia 

et al., 2008 for similar findings). This is understandable, as a higher level of vehicle ownership 

may suggest an availability of personal vehicles for all eligible adults, resulting in an increased 

mobility that enables the individuals in the household to make various nonbusiness tours, as 

desired. 

Household income also has the same effect as vehicle ownership; an increase in household 

income is associated with an increase in the likelihood of participation in various nonbusiness 

purposes (see the increase in magnitude of household income coefficient across the columns for 

all tour purposes) (see LaMondia et al., 2008 for similar findings). This result is intuitive, as 

households with higher-income levels can afford to participate in various nonbusiness purposes, 

which low-income households may not be able to afford. 
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Finally, the effect of the number of business tours on the likelihood of making nonbusiness tours 

is also intuitive. The results indicate that, in general, the households with more business tours are 

more likely to also participate in nonbusiness tours. The higher number of business tours may 

signify a more hectic work schedule for individuals in the households, which may necessitate 

nonbusiness discretionary tours in order to allow those workers to take a break. However, there 

are also several negative effects. For example, the households that do not make any business 

tours are more likely to participate in sightseeing during summer than are households that make 

at least one business tour. This result suggests that, given the flexibility in time (a household with 

no business tours may have a more flexible schedule than a household with at least one business 

tour), a household may schedule travel for some nonbusiness purposes to optimize their 

experience, such as vacations to spots that become more scenic during certain times of the year. 

The translation parameters can be viewed as a measure of satiation. A large value for the 

translation parameter for a certain nonbusiness purpose indicates less satiation; as a result, 

households may invest more time into that tour, even increasing the number of such episodes. 

For example, the translation parameter for relaxation is larger than that of other purposes, 

indicating that households invest more time in relaxation-related activities. 

Nonbusiness Tour-Frequency Model 

Table 19 through Table 24 present the result for six nonbusiness purposes (i.e., visit 

friends/relatives, relaxation, sightseeing, recreation, entertainment, and personal business). In the 

next paragraph, the results of the tour-frequency model for different nonbusiness purposes are 

briefly discussed. 

Table 19 presents the estimates for the visit friends/relatives purpose. The results indicate that a 

high-income household is likely to make more such tours than a low-income household. The 

presence of children in the household has a negative impact on number of tours because children 

prefer activities that offer fun, participation, and adventure. The propensity to make more of 

these tours decreases with an increase in the age of individuals in the household. Therefore, a 

young-individual-dominated (17–34 years old) household is likely to make more of these tours 

relative to a middle-aged, baby boomer and empty nester, or elderly household. This reflects the 

human desire of individuals to be more sociable during the early stages of life. Further, worker-

oriented households are likely to make more of such tours relative to non-worker-oriented 

households; this is probably due to participation in social gatherings of workers’ peer groups. 

Overall, vehicle ownership has a negative impact on the frequency of tours. One would expect an 

increase in tour frequency with an increase in vehicle ownership. This is because accessibility to 

a personal vehicle increases mobility and reduces dependency on others for traveling. On the 

other hand, it is possible that in households with low vehicle ownership, the primary driver 

(individual who frequently uses the vehicle in the household) may cater to the traveling needs of 

other household members, such as dropping off kids at relatives house over the weekend and 

picking them up later, or drop-off/pick-up of other individuals, resulting in an overall increase in 

tour frequency. Location-specific variables were also included to capture any indirect effects that 

might be specific to a location. The base category is New England; as a result, a negative sign on 

a location variable suggests that households in that particular location are likely to make fewer 

such tours than other households from New England. Finally, as expected, the total budget 

allocated to the tour purpose has a positive impact on tour frequency. 
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Table 19: Tour-Frequency Model (Nonbusiness Purposes) 

Variables 
Visit friends/relatives:Q1 Visit friends/relatives:Q2 Visit friends/relatives:Q3 Visit friends/relatives:Q4 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-Specific Constant -1.201 -22.589 -1.132 -23.262 -1.220 -24.869 -1.335 -28.339 

Income (base: less than 25K) 

 More than 25K     0.119 4.316   

Family composition 

 Presence of Children (less than 17 years old) -0.301 -2.650 -0.419 -5.025 -0.400 -5.030 -0.392 -3.737 

 # of individuals between 17 and 34 years old 0.369 20.636 0.371 26.288 0.431 42.828 0.432 30.159 

 # of individuals between 35 and 49 years old 0.303 16.984 0.321 24.89 0.389 44.159 0.398 30.027 

 # of individuals between 50 and 64 years old 0.256 11.709 0.249 15.353 0.337 22.306 0.325 19.018 

 # of individuals >= 65 years old 0.072 2.122 0.085 3.141 0.238 9.690 0.182 6.930 

Working status  

 # of full-time workers 0.045 3.266 0.037 3.539   0.034 3.145 

 # of part-time workers   

Vehicle ownership (base: Three or more) 

 Zero vehicle -0.166 -3.180 0.034 0.985     

 One vehicle   0.127 5.255 0.105 4.239 

 Two vehicles   0.118 4.105 

Household residential location (base: New England) 

 Atlantic     -0.089 -1.720 -0.126 -1.977 

 East-North Central 0.132 2.495       

 West-North Central 0.171 3.862 0.203 6.385 0.152 4.374 0.226 7.416 

 South Atlantic 0.072 1.515   -0.118 -3.441   

 East-South Central 0.285 5.424 0.153 3.489   0.132 3.069 

 West-South Central   0.116 2.406     

 Mountain -0.077 -1.599 -0.088 -2.583 -0.201 -6.190 -0.102 -3.154 

 Pacific -0.300 -4.521 -0.268 -4.509 -0.333 -7.275 -0.323 -6.252 

Natural Logarithm of Total Duration Allocated to the 
Alternative 

0.558 34.178 0.438 30.306 0.304 23.771 0.423 26.288 

Sample size 7178 10036 10772 9919 

Log-likelihood value at convergence -11652.87 -14163.08 -14566.96 -12838.00 
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Table 20: Tour-Frequency Model (Nonbusiness Purposes) 

Variables 
Relaxation (Q1) Relaxation (Q2) Relaxation (Q3) Relaxation (Q4) 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.807 -14.944 -1.673 -20.740 -1.778 -22.582 -2.298 -14.904 

Income (base: less than 25K) 

 25K – 49K     0.123 1.875 0.440 3.437 

 50K – 74K 0.183 2.692 0.079 1.772 

 75K – 99K 0.138 1.913 

 100K and more 0.257 2.629 0.219 3.157 

Family composition 

 # of individuals between 17 and 34 years old 0.310 10.452 0.397 16.856 0.413 32.881 0.449 13.011 

 # of individuals between 35 and 49 years old 0.359 14.924 0.412 16.116 

 # of individuals between 50 and 64 years old 0.238 6.680 0.319 11.687 0.345 17.040 0.335 10.333 

 # of individuals >= 65 years old     0.258 7.577 0.123 1.771 

Working status  

 # of full-time workers 0.061 2.309 0.042 2.116     

 # of part-time workers       

Vehicle ownership (base: Three or more) 

 Zero vehicle         

 One vehicle 0.179 2.869 0.129 2.909     

 Two vehicles 0.052 1.291 0.141 1.521 

 Three or more vehicles     

Household residential location (base: New England or Mountain) 

 Atlantic 0.137 1.219       

 East-North Central 0.143 1.365       

 West-North Central     0.096 1.860   

 South Atlantic 0.152 1.841 0.117 2.431     

 East-South Central     -0.133 -2.434   

 West-South Central 0.340 2.782       

 Pacific -0.149 -1.349 -0.124 -1.565     

Natural logarithm of total duration allocated to the 
alternative 

0.488 15.213 0.427 20.627 0.519 24.574 0.496 12.331 

Sample size 2570 4263 5620 2264     

Log-likelihood value at convergence -3416.77 -5318.75 -7347.79 -2308.26     
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Table 21: Tour-Frequency Model (Nonbusiness Purposes) 

Variables 
Sightseeing (Q1) Sightseeing (Q2) Sightseeing (Q3) Sightseeing (Q4) 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.331 -7.282 -1.998 -14.653 -1.627 -19.042 -1.846 -10.205 

Income (base: greater than 75K) 

 Less than 75K       -0.112 -1.205 

Family composition 

 # of individuals between 17 and 34 years old 0.430 10.990 0.546 21.290 0.511 26.407 0.465 14.746 

 # of individuals between 35 and 49 years old 

 # of individuals between 50 and 64 years old 0.262 3.206 0.376 8.241 0.383 13.288 0.205 2.924 

 # of individuals >= 65 years old   

Working status  

 # of full-time workers     0.025 1.757   

Vehicle ownership (base: Three or more) 

 Zero vehicle     0.102 2.197   

 One vehicle       

 Two vehicles -0.190 -1.425 0.296 3.459 0.285 2.119 

 Three or more vehicles -0.456 -2.703 0.120 1.263   

Household residential location (base: New England) 

 Atlantic -0.466 -1.884       

 East-North Central     0.129 1.967   

 West-North Central   -0.200 -1.697     

 South Atlantic 0.320 1.897       

 East-South Central         

 West-South Central         

 Mountain -0.185 -1.290       

 Pacific -0.278 -1.522       

Natural logarithm of total duration allocated to the 
alternative 

0.302 3.578 0.190 4.532 0.082 3.102 0.273 5.503 

Sample size 684 1637 2543 1167 

Log-likelihood value at convergence -664.44 -1486.03 -2545.83 -839.52 
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Table 22: Tour-Frequency Model (Nonbusiness Purposes) 

Variables 
Recreation (Q1) Recreation (Q2) Recreation (Q3) Recreation (Q4) 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-Specific Constant -1.436 -12.526 -1.363 -16.606 -1.205 -17.454 -1.458 -10.933 

Income (base: less than 50K) 

 50K – 74K -0.164 -2.149     0.150 1.926 

 75K – 99K -0.347 -4.375     

 100K and more 0.142 1.780     

Family composition 

 # of individuals between 17 and 34 years old 0.370 16.287 0.315 10.407 0.340 23.980 0.285 10.871 

 # of individuals between 35 and 49 years old 0.253 9.198 

 # of individuals between 50 and 64 years old 0.295 7.572 0.170 5.008 0.239 9.527 0.230 5.696 

 # of individuals >= 65 years old       

Working status  

 # of full-time workers   0.029 1.252     

Vehicle ownership (base: Three or more) 

 Zero vehicle         

 One vehicle         

 Two vehicles     0.089 2.313   

Household residential location (base: New England or Mountain) 

 Atlantic -0.434 -3.244       

 East-North Central -0.350 -3.032   -0.102 -1.615   

 West-North Central -0.403 -3.957 0.177 2.423   -0.220 -2.087 

 South Atlantic     -0.158 -2.551   

 East-South Central -0.552 -4.449       

 West-South Central -0.212 -1.875 0.206 2.179     

 Pacific -0.245 -1.833     -0.169 -1.180 

Natural Logarithm of Total Duration Allocated to the 
Alternative 

0.812 20.417 0.661 18.802 0.465 16.686 0.591 11.014 

Sample size 1698 2492 3449 1650 

Log-likelihood value at convergence -2628.60 -3283.77 -4862.08 -2047.50 
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Table 23: Tour-Frequency Model (Nonbusiness Purposes) 

Variables 
Entertainment (Q1) Entertainment (Q2) Entertainment (Q3) Entertainment (Q4) 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -2.000 -13.022 -1.689 -11.550 -1.554 -16.593 -1.732 -13.158 

Income (base: 100K and more) 

 Less than 25K   0.115 1.373     

 25K – 49K       

 50K – 74K 0.108 1.286     

 75K – 99K       

Family composition 

 # of individuals between 17 and 34 years old 0.452 13.557 0.368 16.153 0.424 22.134 0.413 15.692 

 # of individuals between 35 and 49 years old 

 # of individuals between 50 and 64 years old 0.395 7.863 0.239 5.917 0.350 10.487 0.264 4.753 

 # of individuals >= 65 years old 

Vehicle ownership (base: Three or more) 

 Zero vehicle         

 One vehicle         

 Two vehicles     0.071 1.278   

Household residential location (base: New England) 

 Atlantic       0.205 1.377 

 East-North Central       0.229 1.737 

 West-North Central 0.211 1.902       

 South Atlantic   -0.127 -1.298 -0.265 -3.202   

 East-South Central 0.314 1.963       

 West-South Central         

 Mountain 0.262 2.560       

 Pacific   -0.197 -1.971 -0.627 -4.966   

Natural logarithm of total duration allocated to the 
alternative 

0.572 10.824 0.599 10.556 0.463 12.677 0.508 8.130 

Sample size 1353 2039 2283 1591 

Log-likelihood value at convergence -1579.50 -2167.82 -2544.64 -1618.74 
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Table 24: Tour-Frequency Model (Nonbusiness Purposes) 

Variables 

Personal Business 
(Q1) 

Personal Business 
(Q2) 

Personal Business 
(Q3) 

Personal Business 
(Q4) 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-Specific Constant -1.059 -11.989 -1.197 -17.256 -1.336 -19.279 -0.909 -8.621 

Income (base: less than 25K) 

 25K – 49K 0.116 2.110     -0.104 -1.456 

 50K – 74K       

 75K – 99K       -0.185 -2.014 

 100K and more         

Family composition 

 # of individuals between 17 and 34 years old 0.273 13.650 0.314 12.610 0.343 15.890 0.327 17.716 

 # of individuals between 35 and 49 years old 

 # of individuals between 50 and 64 years old 

 # of individuals >= 65 years old 0.173 3.983 0.208 5.594 0.308 8.440 0.231 6.331 

Working status  

 # of full-time workers   0.038 1.829 0.053 3.180   

 # of part-time workers   0.062 2.215   

Vehicle ownership (base: Three or more) 

 Zero vehicle     -0.104 -1.552 -0.137 -2.449 

 One vehicle     -0.208 -3.155 

 Two vehicles       

Household residential location (base: New England) 

 Atlantic   -0.228 -1.891     

 East-North Central -0.264 -2.343 -0.115 -1.235     

 West-North Central 0.244 3.316 0.204 3.502 0.186 3.403 0.215 3.219 

 South Atlantic         

 East-South Central 0.351 4.177 0.153 1.906 0.187 2.302 0.210 2.417 

 West-South Central       0.225 2.477 

 Mountain   0.151 2.811 0.167 3.189   

 Pacific -0.343 -3.247 -0.475 -5.131 -0.457 -5.113 -0.431 -3.911 

Natural logarithm of total duration allocated to the 
alternative 

0.479 20.228 0.380 17.540 0.390 15.237 0.337 12.257 

Sample size 2621 4549 4418 3180     

Log-likelihood value at convergence -4016.05 -5758.72 -5423.76 -3926.25     
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The aforementioned explanatory variables (i.e., income, number of individuals in different age 

category, number of workers, vehicle ownership, total budget allocated to the tour, and location-

indicator variables to capture any indirect location-specific effect) have an intuitive effect on 

remaining nonbusiness-quarter combinations. However, vehicle ownership, in particular, has a 

mixed effect. An increase in vehicle ownership is associated with both an increase (sightseeing 

and personal business) and decrease (visit friends, relaxation, recreation, and entertainment) in 

tour frequency, respectively. Two possible explanations for this could be: 1) the dependency on 

the primary driver in the household; and 2) the difference in level of satiation associated with 

different levels of vehicle ownership. That is, the impact of an additional vehicle on the tour 

frequency will be relatively less for high-vehicle-ownership households as compared to low-

vehicle-ownership households. 

Nonbusiness Tour-Party Composition Model 

Table 25 through Table 48 present the result for tour-party composition models for six 

nonbusiness purposes (i.e., visit friends, relaxation, sightseeing, recreation, entertainment, and 

personal business) and quarters (i.e., January–March, April–June, July–September, and October–

December). In the current study, five alternative options were considered: 

 One adult and no children. 

 Two adults and no children. 

 Three or more adults with or without children. 

 One adult with children. 

 Two adults with children. 

The one-adult-and-no-children option is the base category for all purpose-quarter combinations. 

In the model specification, family composition (i.e., presence of children and number of adults in 

different age groups), total budget allocated to the tour, number of episodes, and number of 

workers in the household are considered as explanatory variables. 

Table 25 presents the estimates for visit friends/relatives tour purpose during the first quarter 

(January–March). First, the presence of children in the household has a positive impact on party 

composition, which includes children as one of the group members. Second, the effect of number 

of adults (decomposed in various age groups) has a positive impact on all the nonsingle party 

types, reinforcing the notion that individuals in these households jointly participate in 

nonbusiness discretionary tours. The results indicate that households with more adults for a given 

age category are more likely to have a tour-party composition that includes at least one child and 

one or more adults. 
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Table 25: Tour-Party Composition Model (Visit friends/relatives: January–March) 

Alternatives 
(base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.669 -16.126 -8.071 -25.188 -5.795 -30.911 -6.267 -31.039 

Family composition 

 Presence of children in the household -0.510 -2.114   0.964 4.773   

 # of individuals between 17 and 34 years old 0.737 12.677 1.984 18.832 1.976 30.623 2.360 34.639 

 # of individuals between 35 and 49 years old 0.488 9.939 1.912 23.239 1.557 30.075 1.872 32.26 

 # of individuals between 50 and 64 years old 0.950 19.791 2.161 23.759 1.327 19.325 1.730 25.92 

 # of individuals >= 65 years old 1.216 23.101 2.388 22.029 1.411 13.756 1.668 16.38 

Natural logarithm of total duration  -0.142 -4.624 -0.142 -4.624 -0.142 -4.624 -0.287 -5.648 

# of episodes   0.017 1.960 0.017 1.960 0.017 1.960 

# of workers (full-time or part-time) -0.060 -1.919 -0.060 -1.919   0.092 2.702 

Sample size 7178 

Log-likelihood value at convergence -6845.29 
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Table 26: Tour-Party Composition Model (Visit friends/relatives: April–June) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.785 -20.484 -8.384 -30.143 -5.687 -39.748 -6.281 -37.615 

Family composition 

 Presence of children in the household -0.900 -3.723   1.320 9.367   

 # of individuals between 17 and 34 years old 0.603 14.211 2.108 29.838 1.746 36.668 2.196 39.811 

 # of individuals between 35 and 49 years old 1.949 37.144 

 # of individuals between 50 and 64 years old 1.069 26.056 2.414 30.422 1.395 24.200 

 # of individuals >= 65 years old 1.273 29.146 1.429 13.439 

Natural logarithm of total duration  -0.166 -6.502 -0.166 -6.502   -0.166 -6.502 

# of episodes 0.031 6.007 0.031 6.007     

# of workers (full-time or part-time) -0.082 -3.169 -0.082 -3.169 -0.082 -3.169 0.059 1.743 

Sample size 10036 

Log-likelihood value at convergence -9710.91 
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Table 27: Tour-Party Composition Model (Visit friends/relatives: July–September) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.701 -19.602 -8.722 -34.236 -6.057 -40.747 -6.659 -40.026 

Family composition 

 Presence of children in the household -0.844 -3.097   1.715 10.812 0.341 1.780 

 # of individuals between 17 and 34 years old 0.692 17.113 2.315 34.278 1.750 35.964 2.173 53.987 

 # of individuals between 35 and 49 years old 

 # of individuals between 50 and 64 years old 1.223 32.641 

 # of individuals >= 65 years old   

Natural logarithm of total duration  -0.246 -8.297   0.130 2.837 -0.152 -3.632 

# of episodes 0.050 3.768 0.050 3.768   0.050 3.768 

# of workers (full-time or part-time) -0.156 -6.943 -0.156 -6.943 -0.053 -1.59   

Sample size 10772 

Log-likelihood value at convergence -10248.48 
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Table 28: Tour-Party Composition Model (Visit friends/relatives: October–December) 

Alternatives 
 (Base: One Adult, No Children)  

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -2.019 -21.748 -8.81 -34.038 -6.086 -36.027 -6.67 -40.455 

Family composition 

 Presence of children in the household -0.682 -2.593 -2.267 -2.244 1.365 7.512   

 # of individuals between 17 and 34 years old 0.759 21.25 2.349 33.837 1.766 29.444 2.249 44.715 

 # of individuals between 35 and 49 years old 1.730 31.078 

 # of individuals between 50 and 64 years old 1.319 36.942 

 # of individuals >= 65 years old 2.797 31.311 1.151 9.531   

Natural logarithm of total duration  -0.202 -6.438 -0.202 -6.438 -0.202 -6.438 -0.202 -6.438 

# of episodes 0.051 3.417 0.051 3.417 0.051 3.417 0.051 3.417 

# of workers (full-time or part-time)   0.125 4.044 0.125 4.044 0.125 4.044 

Sample size 9919 

Log-likelihood value at convergence -9099.12 
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Table 29: Tour-Party Composition Model (Relaxation: January–March) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.340 -9.580 -7.440 -10.144 -4.943 -15.28 -5.744 -19.656 

Family composition 

 Presence of children in the household     0.771 2.004   

# of individuals greater than 17 years old 0.600 10.644 1.486 7.810 1.093 11.696 1.672 20.622 

Natural logarithm of total duration  0.195 4.651 0.195 4.651     

# of episodes       0.047 2.962 

# of workers (full-time or part-time) -0.065 -1.665     -0.065 -1.665 

Sample size 2570 

Log-likelihood value at convergence -2606.93 

Table 30: Tour-Party Composition Model (Relaxation: April–June) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.362 -12.109 -7.601 -18.077 -5.999 -23.625 -5.649 -25.932 

Family composition 

 Presence of children in the household     1.170 4.666   

 # of individuals between 17 and 64 years old 0.526 14.418 1.733 17.053 1.367 20.214 1.565 24.007 

 # of individuals >= 65 years old 0.333 1.579 

Natural logarithm of total duration  0.236 6.630   0.236 6.630 0.236 6.630 

# of episodes   0.033 1.014 0.033 1.014 0.033 1.014 

# of workers (full-time or part-time)       0.103 2.630 

Sample size 4263 

Log-likelihood value at convergence -4451.20 
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Table 31: Tour-Party Composition Model (Relaxation: July–September) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.584 -15.832 -9.072 -28.369 -6.905 -31.181 -7.255 -36.013 

Family composition 

 Presence of children in the household     1.479 6.839 0.527 2.744 

 # of individuals greater than 17 years old 0.832 20.844 2.247 26.237 1.909 31.385 2.279 39.021 

Natural logarithm of total duration    0.331 6.747 0.331 6.747 0.331 6.747 

# of episodes 0.057 3.659     -0.087 -3.587 

# of workers (full-time or part-time)   0.214 6.795   0.214 6.795 

Sample size 5620 

Log-likelihood value at convergence -5759.25 

Table 32: Tour-Party Composition Model (Relaxation: October–December) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.431 -9.268 -7.974 -12.758 -6.502 -17.155 -6.215 -19.151 

Family composition 

 Presence of children in the household         

# of individuals greater than 17 years old 0.780 12.488 1.697 10.267 1.606 14.699 1.675 17.931 

Natural logarithm of total duration  0.226 3.867 0.226 3.867 0.226 3.867 0.226 3.867 

# of episodes     0.065 1.324   

# of workers (full-time or part-time) -0.096 -2.065 0.191 3.100 -0.096 -2.065 0.191 3.100 

Sample size 2264 

Log-likelihood value at convergence -2247.72 
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Table 33: Tour-Party Composition Model (Sightseeing: January–March) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.195 -5.198 -6.755 -5.595 -6.205 -8.21 -5.422 -11.339 

Family composition 

 Presence of children in the household     0.916 1.813 0.916 1.813 

 # of individuals between 17 and 34 years old 0.654 7.272   1.628 8.064 1.782 14.587 

# of individuals greater than 35 years old 1.724 5.758 

Natural logarithm of total duration    -0.525 -2.345 -0.525 -2.345   

# of episodes     0.357 2.394   

# of workers (full-time or part-time)         

Sample size 684 

Log-likelihood value at convergence -676.34 

Table 34: Tour-Party Composition Model (Sightseeing: April–June) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.802 -9.190 -8.288 -14.257 -5.644 -13.268 -6.981 -18.778 

Family composition 

 Presence of children in the household     1.368 3.303   

# of individuals greater than 17 years old 0.775 11.068 2.189 14.868 1.491 12.271 2.096 18.882 

Natural logarithm of total duration      -0.238 -1.762   

# of episodes 0.136 1.814 0.136 1.814 0.136 1.814   

# of workers (full-time or part-time)     0.222 3.672 0.222 3.672 

Sample size 1637 

Log-likelihood value at convergence -1649.55 
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Table 35: Tour-Party Composition Model (Sightseeing: July–September) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.355 -8.683 -8.503 -19.406 -6.289 -19.459 -6.823 -22.054 

Family composition 

 Presence of children in the household         

# of individuals greater than 17 years old 0.856 14.789 2.305 19.673 1.728 17.401 2.331 28.019 

Natural logarithm of total duration  -0.089 -1.400 -0.089 -1.400 -0.089 -1.400 -0.089 -1.400 

# of episodes       -0.137 -1.427 

# of workers (full-time or part-time)   0.250 5.476 0.250 5.476 0.250 5.476 

Sample size 2543 

Log-likelihood value at convergence -2551.31 

Table 36: Tour-Party Composition Model (Sightseeing: October–December) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -2.186 -8.620 -8.948 -9.174 -5.827 -11.206 -6.73 -13.423 

Family composition 

 Presence of children in the household     3.282 6.564   

# of individuals greater than 17 years old 1.143 14.935 2.277 9.698 1.297 7.587 2.024 13.997 

Natural logarithm of total duration      0.201 1.386 0.201 1.386 

# of episodes 0.207 1.443 0.207 1.443     

# of workers (full-time or part-time)     0.321 3.450 0.321 3.450 

Sample size 1167 

Log-likelihood value at convergence -1042.20 



 

118 

Table 37: Tour-Party Composition Model (Recreation: January–March) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.001 -5.092 -3.236 -15.113 -5.122 -11.715 -5.148 -13.366 

Family composition 

 Presence of children in the household     1.243 3.673   

# of individuals greater than 17 years old 0.190 2.484 -0.766 -2.992 1.008 9.588 1.447 14.808 

Natural logarithm of total duration  0.261 3.587 0.261 3.587 -0.292 -2.461 -0.292 -2.461 

# of episodes     0.169 3.847 0.169 3.847 

# of workers (full-time or part-time) -0.166 -3.272     -0.166 -3.272 

Sample size 1698 

Log-likelihood value at convergence -1790.80 

Table 38: Tour-Party Composition Model (Recreation: April–June) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.145 -12.806 -8.554 -13.412 -5.275 -17.18 -5.034 -18.042 

Family composition 

 Presence of children in the household     0.620 1.878   

 # of individuals between 17 and 49 years old   1.415 10.339 1.111 15.673 1.245 18.357 

# of individuals greater than 50 years old 0.343 8.224 

Natural logarithm of total duration    0.490 2.722 -0.142 -1.374   

# of episodes 0.157 4.399 0.157 4.399 0.157 4.399 0.157 4.399 

# of workers (full-time or part-time)         

Sample size 2492 

Log-likelihood value at convergence -2586.10 
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Table 39: Tour-Party Composition Model (Recreation: July–September) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.103 -11.363 -7.543 -19.819 -5.246 -21.089 -5.265 -22.444 

Family composition 

 Presence of children in the household     1.017 3.903   

 # of individuals between 17 and 34 years old 0.285 8.416   1.174 18.102 1.479 26.697 

 # of individuals between 35 and 49 years old   1.523 17.319 

# of individuals greater than 50 years old 0.285 8.416 

Natural logarithm of total duration  0.235 5.030 0.235 5.030   0.235 5.030 

# of episodes 0.095 3.517 0.095 3.517 0.095 3.517   

# of workers (full-time or part-time)         

Sample size 3449 

Log-likelihood value at convergence -3612.00 
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Table 40: Tour-Party Composition Model (Recreation: October–December) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.462 -14.298 -7.539 -10.201 -5.551 -12.087 -4.335 -10.912 

Family composition 

 Presence of children in the household     1.412 3.573   

 # of individuals between 17 and 49 years old   1.231 7.320 0.875 5.473 0.962 10.345 

# of individuals greater than 50 years old 0.413 8.302 

Natural logarithm of total duration      -0.310 -3.014 -0.310 -3.014 

# of episodes 0.089 2.438   0.089 2.438 0.089 2.438 

# of workers (full-time or part-time)     0.239 1.992   

Sample size 1650 

Log-likelihood value at convergence -1613.83 
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Table 41: Tour-Party Composition Model (Entertainment: January–March) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -0.855 -5.358 -6.676 -8.81 -5.095 -10.878 -6.076 -11.972 

Family composition 

 Presence of children in the household     1.031 2.240   

# of individuals greater than 17 years old 0.346 5.703 1.349 7.107 1.088 8.587 1.398 10.630 

Natural logarithm of total duration        0.409 3.245 

# of episodes         

# of workers (full-time or part-time)       0.110 1.376 

Sample size 1353 

Log-likelihood value at convergence -1412.98 

Table 42: Tour-Party Composition Model (Entertainment: April–June) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -0.923 -7.059 -7.079 -11.077 -4.995 -13.652 -5.198 -15.92 

Family composition 

 Presence of children in the household     1.630 4.985 0.726 2.098 

# of individuals greater than 17 years old 0.304 6.195 1.341 8.703 0.899 6.142 1.269 17.360 

Natural logarithm of total duration        0.350 3.603 

# of episodes         

# of workers (full-time or part-time)     0.184 1.641   

Sample size 2039 

Log-likelihood value at convergence -2130.95 
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Table 43: Tour-Party Composition Model (Entertainment: July–September) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.102 -7.42 -7.547 -13.859 -5.112 -16.791 -5.136 -18.626 

Family composition 

 Presence of children in the household     0.755 3.275 0.755 3.275 

# of individuals greater than 17 years old 0.325 6.328 1.588 12.290 1.198 14.977 1.440 22.068 

Natural logarithm of total duration  0.231 3.516 0.231 3.516 0.231 3.516 0.231 3.516 

# of episodes         

# of workers (full-time or part-time)         

Sample size 2283 

Log-likelihood value at convergence -2443.84 

Table 44: Tour-Party Composition Model (Entertainment: October–December) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.405 -8.18 -6.957 -10.231 -5.31 -11.357 -5.47 -14.154 

Family composition 

 Presence of children in the household     1.826 4.672   

# of individuals greater than 17 years old 0.499 9.019 1.347 7.852 0.756 2.445 1.433 15.622 

Natural logarithm of total duration  0.290 3.703 0.290 3.703   0.290 3.703 

# of episodes         

# of workers (full-time or part-time)     0.414 1.601   

Sample size 1591 

Log-likelihood value at convergence -1598.34 
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Table 45: Tour-Party Composition Model (Personal Business: January–March) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -0.937 -6.981 -7.306 -13.163 -4.854 -17.963 -5.356 -18.738 

Family composition 

 Presence of children in the household     1.135 3.797   

# of individuals greater than 17 years old 0.518 8.999 1.565 11.430 0.974 13.172 1.357 19.627 

Natural logarithm of total duration  -0.143 -3.398     -0.143 -3.398 

# of episodes 0.085 4.586 0.085 4.586 0.085 4.586 0.085 4.586 

# of workers (full-time or part-time) -0.240 -6.618 -0.240 -6.618     

Sample size 2621 

Log-likelihood value at convergence -2730.00 

Table 46: Tour-Party Composition Model (Personal Business: April–June) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.265 -11.820 -6.893 -19.47 -5.199 -23.022 -5.842 -24.882 

Family composition 

 Presence of children in the household     1.265 6.131   

# of individuals greater than 17 years old 0.672 15.229 1.732 18.484 1.197 20.279 1.537 27.005 

Natural logarithm of total duration  -0.140 -3.934 -0.140 -3.934 -0.140 -3.934 -0.140 -3.934 

# of episodes 0.182 8.552 0.182 8.552 0.182 8.552 0.182 8.552 

# of workers (full-time or part-time) -0.297 -10.75 -0.297 -10.75     

Sample size 4549 

Log-likelihood value at convergence -4819.28 
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Table 47: Tour-Party Composition Model (Personal Business: July–September) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.271 -11.676 -7.197 -20.095 -6.546 -27.001 -6.435 -26.249 

Family composition 

 Presence of children in the household     1.662 7.253 0.490 1.894 

# of individuals greater than 17 years old 0.563 14.230 1.755 18.775 1.678 25.831 1.716 23.622 

Natural logarithm of total duration  -0.086 -2.448     -0.086 -2.448 

# of episodes 0.063 4.461 0.063 4.461 0.063 4.461 0.063 4.461 

# of workers (full-time or part-time)       0.205 4.900 

Sample size 4418 

Log-likelihood value at convergence -4667.34 

Table 48: Tour-Party Composition Model (Personal Business: October–December) 

Alternatives 
 (Base: One Adult, No Children) 

Two Adults, No 
Children 

Three or More 
Adults with and 

Without Children 

One Adult with 
Children 

Two Adults with 
Children 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.234 -9.925 -7.547 -16.634 -6.173 -21.196 -5.984 -21.961 

Family composition 

 Presence of children in the household     1.528 6.070   

# of individuals greater than 17 years old 0.665 11.791 1.826 15.676 1.610 19.283 1.797 23.608 

Natural logarithm of total duration  -0.076 -1.849     -0.076 -1.849 

# of episodes 0.117 4.859 0.117 4.859 0.117 4.859 0.117 4.859 

# of workers (full-time or part-time) -0.284 -7.576 -0.284 -7.576 -0.284 -7.576 -0.284 -7.576 

Sample size 3180 

Log-likelihood value at convergence -3340.06 
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The total budget of the tour also has a negative impact on nonsingle party types, suggesting that 

nonsingle households may spend less time visiting friends, relative to single-person households, 

and allocate more time to activities such as relaxation, recreation, and entertainment (see effect 

of budget on tour-party composition for relaxation, recreation, and entertainment purposes 

[Table 29–Table 32; Table 37–Table 40; and Table 41–Table 44]) to spend more time with their 

family. This effect is manifested through a higher likelihood of a single-person tour for 

households that allocate a high budget for the visit friends/relatives tour purpose. The number of 

episodes also has a positive impact on nonsingle party types, which include at least one child, 

suggesting that households who visit their friends/relatives quite frequently prefer going with 

their family members or, perhaps, accompany friends. Finally, households with more workers 

have a higher likelihood of having a tour-party composition of two adults with children than 

households with more nonworkers while visiting their friends/relatives. 

The aforementioned explanatory variables (i.e., number of individuals in different age categories, 

number of workers, total budget allocated to the tour, and number of episodes) intuitively affect 

other nonbusiness-quarter combinations. The variables’ effects on various tour-party 

compositions can be interpreted similarly to the methods discussed previously. Households that 

allocate a large budget to relaxation, recreation, and entertainment purposes choose party 

composition with one or more adults with children. The households with more workers relative 

to nonworkers have a high likelihood of choosing a party composition that includes children. 

Business Travel Model Estimation Results 

Decision to Make Business Tours and Annual Budget Model 

A sample selection model was estimated using the MLE technique to determine the household’s 

decision to conduct business travel and its annual duration. The results of the first component 

(decision to conduct business travel) are provided in Table 49. As mentioned, the alternative-

specific constants do not have any tangible meaning in this context, but simply represent the 

effect of all unobserved factors (explanatory variables not considered in the specification). 

With an increase in household income, the propensity to make business tours increases. This 

result is intuitive, as household income level can be viewed as a proxy for job status. That is, it 

can be assumed that individuals belonging to a high-income household generally have high-

status white collar jobs, for which long-distance business meetings are more common. For the 

family composition and working-status variables, the coefficient on family composition provides 

the effect of nonworkers in the household and the coefficient on working status provides the 

differential impact between a nonworker and a worker in the household. The results indicate that 

a household with more workers is more likely to engage in business travel as compared to 

households with fewer workers—an intuitive result. Finally, the location-specific variables were 

added in the model to capture any location-specific effects, which are not directly controlled for 

in the model. This variable may capture the effect of the presence of various employment 

opportunities that may exist in the region and are not directly included in the model. 
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Table 49: Business-Tour Model (Decision to Make Business Travel) 

Variables Coeff. T-Stat 

Alternative-Specific Constant -0.375 -15.425 

Income (base: 25K-49K) 

 Less than 25K -0.374 -19.596 

 50K-74K 0.291 16.137 

 75K-99K 0.606 21.769 

 100k and more 0.910 27.627 

Family composition 

 Presence of Children (less than 17 years old) -0.263 -7.643 

 # of individuals between 17 and 49 years old -0.023 -2.685 

 # of individuals between 50 and 64 years old -0.070 -6.752 

 # of individuals >= 65 years old -0.197 -18.147 

Working status  

 # of workers (full-time or part-time) 0.110 14.764 

Household residential location (base: Mountain) 

 New England -0.328 -13.033 

 Atlantic -0.416 -12.391 

 East-North Central -0.337 -11.805 

 West-North Central -0.122 -4.858 

 South Atlantic -0.165 -6.920 

 East-South Central -0.184 -6.345 

 West-South Central -0.103 -3.326 

 Pacific -0.097 -3.554 

For the annual duration model (Table 50), the duration variable (indicating the number of nights 

away from home) was transformed on a logarithmic scale to avoid prediction of negative values. 

First, as noted, the alternative-specific constants do not have any tangible meaning. Second, with 

the increase in household income, the annual budget for business travel increases. This result 

corroborates the finding discussed earlier: high-income households are generally employed in 

white collar jobs that commonly require business travel. Third, the effect of the number of 

workers (full- or part-time) and nonworking adults is intuitive: the total business budget 

increases with the increase in the number of workers relative to increase in number of 

nonworkers. Finally, the lack of a vehicle in the household has a positive impact on the business-

tour duration. This result likely arose because workers in households with high vehicle 

ownership may take their own vehicles on business tours, which allows them to minimize their 

travel time for relatively short business tours (300–500 miles). Finally, the variance-covariance 

matrix (t-statistics in parenthesis) is presented in Equation 4: 

Equation 4: Business Annual Budget Model Variance-Covariance Matrix 

 



 

127 

The results indicate a significant correlation between two components (decision to conduct 

business travel and its duration) of the model, suggesting that some common unobserved factors 

impact the decision and duration in the opposite direction. 

Table 50: Annual Business Budget Model 

Variables Coeff. T-Stat 

Constant 2.268 24.319 

Income (base: less than 50K) 

 50K-74K 0.169 5.556 

 75K-99K 0.348 7.491 

 100k and more 0.449 8.000 

Working status  

 # of workers (full-time or part-time) -0.065 -6.562 

 # of nonworking adults -0.081 -5.655 

Vehicle ownership (base: one or more vehicles) 

 No vehicle 0.137 3.920 

Note: The dependent variable (annual budget) is transformed on logarithmic scale 

Table 50 Model Fit: 

Sample Size: 47,931 households. Log-likelihood value at convergence: -21821.10. 

Business-Tour Participation and Duration Model 

Table 51 presents the estimation results for business tour participation and duration. As 

mentioned earlier, the alternative-specific constants do not have any tangible meaning. Among 

the set of explanatory variables considered in the specification, the first is presence of children 

(less than 17 years old) in the household. The results indicate that, in general, households with 

children prefer to avoid business-related tours. However, they may prefer to schedule business-

related travel by the time of year: business-only in winter, spring, and summer; business/pleasure 

in winter; and convention/conference/seminar travel in winter and summer. This is intuitive, as 

such households are likely to have childcare responsibilities that may discourage them from 

making long-distance/duration business tours. The interesting point to observe here is that 

households with children do not prefer any kind of business-related tours during fall (October to 

December), perhaps because they want to spend holidays with their family. 

In general, the coefficients on family composition and working-status variables indicate a higher 

likelihood of participating in pure business tours (business and conferences) for the households 

with more workers. On the other hand, households with relatively more nonworkers are more 

inclined toward business/pleasure tour purposes. Also, baby boomers and empty nesters (50–64 

years of age) and seniors (above 65 years of age) prefer the business/pleasure combination, 

indicating that workers older than 50 may like to take their spouses on business tours. 
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Table 51: Tour Duration and Participation Model (Business Purposes)  

Alternatives 
(Base : Business (Q1)) 

Explanatory Variables 

Alternative-
Specific 
Constant 

Family Composition 

Presence of 
children (< 17 

years old) 

# of individuals 
between 17–34 

years old 

# of individuals 
between 35–49 

years old 

# of individuals 
between 50–64 

years old 

# of individuals 
>= 65 years old 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Business (Q2) 0.187 6.618           

Business (Q3) -0.040 -1.425           

Business (Q4) -0.246 -6.125 -0.253 -2.362 -0.035 -2.219       

Business/Pleasure (Q1) -1.666 -29.109   -0.129 -6.265 -0.077 -5.228     

Business/Pleasure (Q2) -1.347 -26.043 -0.444 -3.380     

Business/Pleasure (Q3) -1.804 -30.628     0.143 5.092 0.322 9.404 

Business/Pleasure (Q4) -1.84 -31.696 -0.129 -6.265 -0.077 -5.228   

Convention/Conference
/Seminar (Q1) 

-2.398 -31.892     0.055 3.556 0.171 9.141 0.505 21.082 

Convention/Conference
/Seminar (Q2) 

-1.862 -32.953 -0.254 -1.632   

Convention/Conference
/Seminar (Q3) 

-1.859 -35.441   -0.189 -6.392   

Convention/Conference
/Seminar (Q4) 

-2.203 -23.365 -0.254 -1.632 -0.115 -3.516   0.388 6.232 

Q1: January-March (winter), Q2: April-June (spring), Q3: July-September (summer), Q4: October-December (fall) 
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Table 51 (cont.): Tour Duration and Participation Model (Business Purposes) 

Alternatives 
(Base : Business (Q1)) 

Explanatory Variables 

Working Status 
Household Residential Location 
(Mountain is the base category) 

# of full-time 
workers 

# of part-time 
workers 

England M-Atlantic 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Business (Q2)         

Business (Q3)   0.035 1.753     

Business (Q4) 0.024 1.957     

Business/Pleasure (Q1) -0.040 -2.476   -0.165 -3.145 -0.161 -1.662 

Business/Pleasure (Q2)   

Business/Pleasure (Q3)     -0.464 -2.573 

Business/Pleasure (Q4) -0.040 -2.476   -0.161 -1.662 

Convention/Conference
/Seminar (Q1) 

        

Convention/Conference
/Seminar (Q2) 

        

Convention/Conference
/Seminar (Q3) 

        

Convention/Conference
/Seminar (Q4) 

0.116 2.954 0.087 2.304     
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Table 51 (cont.): Tour Duration and Participation Model (Business Purposes) 

Alternatives 
(Base : Business (Q1)) 

Explanatory Variables 

Household Residential Location (Mountain is the base category) 

EN-Central WN-Central S-Atlantic ES-Central WS-Central Pacific 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Business (Q2)     0.083 2.041       

Business (Q3)     0.124 1.885 0.102 1.973   

Business (Q4)         

Business/Pleasure (Q1)     -0.200 -2.310   -0.189 -1.762 0.223 3.806 

Business/Pleasure (Q2)       -0.110 -1.180   

Business/Pleasure (Q3) -0.167 -1.753       -0.189 -1.762   

Business/Pleasure (Q4)   -0.200 -2.310 -0.110 -1.180   0.223 3.806 

Convention/Conference
/Seminar (Q1) 

0.264 2.626 0.182 2.720 0.196 2.522 0.204 1.385   0.285 3.037 

Convention/Conference
/Seminar (Q2) 

          

Convention/Conference
/Seminar (Q3) 

    0.196 2.522       

Convention/Conference
/Seminar (Q4) 

0.264 2.626     -0.314 -1.760   0.285 3.037 
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Table 51 (cont.): Tour Duration and Participation Model (Business Purposes) 

Alternatives 
(Base : Business (Q1)) 

Explanatory Variables 

Vehicle Ownership (base: three or more vehicles) 

Zero Vehicle One Vehicle Two Vehicles 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Business (Q2)       

Business (Q3) -0.089 -1.952     

Business (Q4)     

Business/Pleasure (Q1) -0.214 -3.246 -0.229 -1.701   

Business/Pleasure (Q2)     

Business/Pleasure (Q3) 0.182 2.779 0.182 2.779 

Business/Pleasure (Q4)       

Convention/Conference
/Seminar (Q1) 

-0.182 -1.972 -0.164 -1.847 -0.164 -1.847 

Convention/Conference
/Seminar (Q2) 

0.126 2.432   

Convention/Conference
/Seminar (Q3) 

  

Convention/Conference
/Seminar (Q4) 
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Table 51 (cont.): Tour Duration and Participation Model (Business Purposes) 

Alternatives 
(Base : Business (Q1)) 

Explanatory Variables 

Family Income (base: 25K-49K) 

Less than 25K 50K-74K 75K-99K 100K and More 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Business (Q2) 0.179 2.762     -0.092 -1.732 

Business (Q3) 

Business (Q4) 

Business/Pleasure (Q1) 0.440 6.119 -0.215 -5.478 -0.371 -7.162   

Business/Pleasure (Q2) -0.371 -7.162 

Business/Pleasure (Q3) 

Business/Pleasure (Q4)   

Convention/Conference
/Seminar (Q1) 

0.518 7.450 -0.525 -12.641 -0.795 -13.674 -0.824 -11.598 

Convention/Conference
/Seminar (Q2) 

Convention/Conference
/Seminar (Q3) 

Convention/Conference
/Seminar (Q4) 
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Table 51 (cont.): Tour Duration and Participation Model (Business Purposes) 

Alternatives 
Translation Parameters 

Coeff. T-Stat 

Business (Q1) 6.424 22.906 

Business (Q2) 5.108 25.408 

Business (Q3) 5.537 24.576 

Business (Q4) 5.144 22.641 

Business/Pleasure (Q1) 10.406 8.990 

Business/Pleasure (Q2) 8.989 10.495 

Business/Pleasure (Q3) 10.366 10.967 

Business/Pleasure (Q4) 8.222 9.139 

Convention/Conference/Seminar (Q1) 6.695 7.379 

Convention/Conference/Seminar (Q2) 7.941 9.361 

Convention/Conference/Seminar (Q3) 13.034 7.973 

Convention/Conference/Seminar (Q4) 6.459 7.164 

Table 51 Model Fit: 

Sample Size: 14,664 households. Log-likelihood value at convergence: -79801.20. 
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Location-specific variables (i.e., New England, Middle Atlantic, East-North Central, West-North 

Central, South Atlantic, East-South Central, West-South Central, Mountain, and Pacific) were 

also added to capture the effect of location on different business purposes. This variable may 

capture the effect of various employment opportunities in a region that are not directly included 

in the model. For example, if a specific region has a greater percentage of the population 

employed in white collar jobs, then that region may see a higher number of business tours. The 

base category is Mountain; thus, a negative sign on the location variable for a particular 

nonbusiness purpose suggests that households in the Mountain region are more likely to 

participate in that particular nonbusiness purpose than are households from other regions. For 

example, for the business/pleasure (all four seasons) purpose, the coefficient corresponding to 

the New England region variable is negative (-0.175). This suggests that households in the 

Mountain region are more likely to take business/pleasure tours (all four seasons) than are 

households in the New England region. The other location-specific variables can be interpreted 

in a similar fashion. 

Vehicle ownership is found to have a significant impact on participation in and duration of all 

business purposes. The results indicate that with an increase in vehicle ownership, the household 

is more likely to participate in various business-only purposes (see the increase in magnitude of 

vehicle ownership coefficient across the columns for all tour purposes) over the course of the 

year. This is understandable, as a high level of vehicle ownership may suggest an availability of 

personal vehicles for all eligible adults in the household, granting them increased mobility. 

Vehicle ownership can also be viewed as a proxy for income. That is, it can be assumed that 

individuals belonging to high-income households generally have high-status white collar jobs, 

for which long-distance business meetings are quite common. However, for the 

business/pleasure purpose in the third quarter, the households with one or two vehicles are more 

likely to participate than are households with three or more vehicles. 

The signs on the household income coefficients suggest a negative impact of the increase in 

household income on business tours. However, the negative direction does not mean that high-

income households are less likely to participate in various business tours than are low-income 

households. Instead, it indicates that business tours for such households may simply be shorter 

than for low-income households—while high-income individuals make more business tours, at 

the same time they are able to minimize their tour duration because they can afford faster modes 

of transportation. 

Furthermore, the translation parameters can be viewed as a measure of satiation. A large value 

for the translation parameter for a certain nonbusiness purpose indicates less satiation; 

households may invest more time in that tour, even increasing the number of such episodes. For 

example, the translation parameter for business/pleasure is greater than that of the business-only 

purpose for all seasons and conference purposes for three seasons, indicating that people invest 

more time in business/pleasure tours than in business-only and conference-purpose tours. This 

result is understandable, as a business/pleasure tour provides an opportunity for the individual 

making the business tour to take family members along, or include relaxation in addition to the 

business meeting. 
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Business-Tour Frequency Model 

Table 52 through Table 54 present the results for three business purposes (i.e., business, 

business/pleasure, and convention/conference/seminar). In the next paragraph, the results of the 

tour-frequency model for different business purposes are discussed. 

Table 52 presents the estimates for the business purpose. The results indicate that high-income 

households are likely to make fewer business tours (except in the third quarter) relative to low-

income households. This result is slightly surprising, as one might expect high-income 

households to make more business tours in all the quarters, relative to low-income households, 

due to their white collar job status, as noted. This is an area that warrants further evaluation with 

a more current dataset, which was not available in this project. The coefficients on family 

composition and working-status variables provides the impact of nonworkers and the differential 

impact between a nonworker and a worker on tour frequency. The results suggest an increase in 

tour frequency for worker-dominated households in the second quarter, while in other quarters 

the difference is not significant. The results also suggest that young and middle-aged households 

are likely to have a high tour frequency relative to baby boomers, empty nesters, and elderly 

dominated households. Vehicle ownership has a mixed effect. Increase in vehicle ownership is 

associated with both an increase (third quarter) and decrease (first, second, and fourth quarter) in 

tour frequency. Increases in tour frequency with an increase in vehicle ownership is intuitive, as 

people may take their own vehicle for short business tours (200–300 mile tour and 1–2 day 

duration) to reduce their journey time. On the other hand, decreases in tour frequency in the first, 

second, and fourth quarters for high-vehicle-ownership households could be due to unobserved 

corporate scheduling/decision factors. Location-specific variables were also included to capture 

any indirect effects (effect of various employment opportunities in a region that are not directly 

included in the model, which may increase or decrease tour frequency) that might be specific to a 

location. The base category is New England; a negative sign on a location variable suggests that 

households in that particular location are less likely to make such tours than other households 

from New England. Finally, as expected, the total budget allocated to the tour purpose has a 

positive impact on tour frequency. 

All of the aforementioned explanatory variables (i.e., income, number of individuals in different 

age category, number of workers, vehicle ownership, total budget allocated to the tour, and 

location-indicator variables to capture any indirect location-specific effect) have intuitive effects 

for other business purpose quarter combinations. In particular, income and vehicle ownership 

each have a mixed effect for other business purposes, as noted. These mixed effects highlight the 

variation in tour making that exists across various quarters for a given tour purpose; thus, 

quarter-specific models (as developed here) should be preferred over the models that do not 

include time period as a modeling dimension. 
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Table 52: Tour-Frequency Model (Business Purposes) 

Variables 
Business (Q1) Business (Q2) Business (Q3) Business (Q4) 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-Specific Constant -0.451 -8.713 -0.445 -8.476 -0.396 -5.832 -0.634 -10.339 

Income (base: less than 25K) 

 25K – 49K         

 50K – 74K 0.108 2.777 0.137 3.389 0.251 5.973 0.144 2.992 

 75K – 99K 0.153 3.281 0.212 4.458 0.273 4.613 

 100K and More 0.319 6.764 0.376 8.279 0.520 9.368 0.398 7.287 

Family composition 

 # of individuals between 17 and 34 years old -0.037 -3.370 -0.023 -2.165 -0.062 -2.365 -0.045 -2.471 

 # of individuals between 35 and 49 years old     -0.033 -1.496   

 # of individuals between 50 and 64 years old -0.037 -3.370 -0.023 -2.165 -0.071 -2.779   

 # of individuals >= 65 years old -0.094 -2.600     

Working status  

 # of full-time workers 0.036 3.410 0.043 4.102 0.064 3.270 0.053 4.270 

Vehicle ownership (base: Three or more)         

 Zero vehicle 0.133 2.731 0.149 2.920     

 One vehicle     -0.165 -2.596   

 Two vehicles     -0.066 -1.693 0.099 1.743 

Household residential location (base: New England) 

 Atlantic         

 East-North Central 0.139 2.605 0.188 3.219 0.170 2.528 0.181 2.668 

 West-North Central     0.123 2.214 0.117 2.092 

 South Atlantic         

 East-South Central 0.150 2.611 0.143 2.336 0.225 3.958 0.166 2.485 

 West-South Central 0.158 2.680 0.120 1.895 0.239 3.544 0.174 2.537 

 Mountain   0.107 2.632     

 Pacific -0.330 -5.821 -0.286 -4.979 -0.175 -2.686 -0.327 -4.570 

Natural logarithm of total duration allocated to the 
alternative 

0.659 43.027 0.549 33.140 0.505 28.199 0.599 30.107 

Sample size 4464 5159 4472 3880     

Log-likelihood value at convergence -8794.08 -9234.61 -7915.44 -6440.80     
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Table 53: Tour-Frequency Model (Business Purposes) 

Variables 

Business/Pleasure 
(Q1) 

Business/Pleasure 
(Q2) 

Business/Pleasure 
(Q3) 

Business/Pleasure 
(Q4) 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-Specific Constant -1.687 -8.624 -1.705 -9.963 -1.758 -11.686 -1.849 -9.792 

Income (base: less than 50K) 

 50K – 74K   -0.207 -1.735 0.131 1.338 -0.358 -2.717 

 75K – 99K -0.344 -2.986 -0.369 -2.913 

 100K and More 

Family composition 

 # of individuals between 17 and 34 years old 0.359 6.025 0.417 6.116 0.405 14.066 0.485 8.394 

 # of individuals between 35 and 49 years old 0.274 7.078 0.317 6.033 0.408 10.122 

 # of individuals between 50 and 64 years old 0.203 3.368 0.244 3.472 0.310 7.209 0.288 3.254 

 # of individuals >= 65 years old   0.311 3.137   

Working status  

 # of full-time workers   0.050 1.221     

Vehicle ownership (base: Two or more)         

 Zero vehicle -0.357 -1.656   0.162 1.514   

 One vehicle       

Household residential location (base: New England) 

 Atlantic         

 East-North Central     0.290 1.369   

 West-North Central     0.130 1.115 0.335 1.732 

 South Atlantic   -0.232 -1.536     

 East-South Central 0.412 2.166   0.166 1.340   

 West-South Central 0.502 2.617 0.240 1.553   0.376 2.246 

 Mountain         

 Pacific       -0.625 -2.355 

Natural Logarithm of Total Duration Allocated to the 
Alternative 

0.771 11.862 0.592 12.453 0.312 6.985 0.501 6.823 

Sample size 761 1050 1016 713 

Log-likelihood value at convergence -1034.96 -1207.50 -1127.76 -691.61 
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Table 54: Tour-Frequency Model (Business Purposes) 

Variables 

Convention/Conference/
Seminar (Q1) 

Convention/Conference/
Seminar (Q2) 

Convention/Conference/
Seminar (Q3) 

Convention/Conference/
Seminar (Q4) 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.555 -10.143 -2.165 -11.890 -3.299 -10.732 -1.846 -7.042 

Income (base: less than 50K) 

 50K – 74K -0.416 -2.354 -0.241 -1.748     

 75K – 99K -0.353 -1.659 -0.243 -1.209 -0.546 -1.729 

 100K and more 

Family composition 

 # of individuals between 17 and 34 years old -0.221 -2.231 0.273 5.322 0.524 7.455 0.143 1.704 

 # of individuals between 35 and 49 years old   0.418 7.628 0.249 5.042 

 # of individuals between 50 and 64 years old   0.177 1.952 0.496 6.352   

 # of individuals >= 65 years old     

Working status  

 # of full-time workers 0.170 3.237       

Vehicle ownership (base: Three or more)         

 Zero vehicle 0.542 3.131       

 One vehicle     0.300 1.742   

 Two vehicles     0.242 1.266 

Household residential location (base: New England) 

 Atlantic   -1.233 -2.375     

 East-North Central     0.815 3.126   

 West-North Central -0.357 -1.296       

 South Atlantic     0.337 1.781   

 East-South Central         

 West-South Central -0.340 -1.113 -0.516 -1.639     

 Mountain     0.462 2.425   

 Pacific       -0.697 -1.919 

Natural logarithm of total duration allocated to the 
alternative 

0.740 15.829 0.824 26.766 0.714 9.070 0.536 3.513 

Sample size 591 982 883 586     

Log-likelihood value at convergence -455.07 -697.22 -609.27 -334.02     
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Business Tour-Party-Composition Model 

Table 55 through Table 63 present the results for tour-party composition models for three 

business purposes (business, business/pleasure, and convention/conference/seminar) and quarters 

(January–March, April–June, July–September, and October–December). The current study 

considered three alternative options, including: 

 Single person; 

 Two people; and 

 Three or more people. 

The one-person option is the base category for all the purpose-quarter combinations. The model 

specification considered family composition (number of workers), vehicle ownership, total 

budget allocated to the tour, number of episodes, and number of workers in the household as 

explanatory variables. Further, for the convention/conference/seminar purpose (all quarters), the 

two-person and three-or-more-persons categories were combined into one category (two or more 

persons) due to an insufficient number of observations corresponding to the three-or-more-

persons category (Table 63). 

Table 55 presents the estimates for business-tour purpose during the first quarter (January–

March). The results indicate that households with more full-time workers are likely to travel in a 

group of three or more people for their business tours; however, households with more part-time 

workers are likely to travel in a group of two. The positive impact of number of workers on tour-

party size is unclear. In general, for business-only tours, the party size may depend on workers’ 

job descriptions (lower-level employee or higher-level employee) and the nature of meeting 

(sales meeting vs. product design discussion, etc.). Since such information is unavailable for 

individuals in the current data sample, such effects can only be captured indirectly through 

working status (full- or part-time) of the worker and vehicle ownership of the household 

(especially for combined business and pleasure purpose). 

The results also indicate that a worker belonging to a high-vehicle-ownership household is likely 

to travel in a group of two, since it allows the individual to take his/her own private vehicle for 

the tour without worrying about the travel needs of other individuals in the household. Overall, 

the total budget of the tour has a negative impact (see sign on the “natural logarithmic of total 

duration” variable in Table 55 to Table 59) on nonsingle party types, suggesting that individuals 

travel alone for long-duration business tours, which is not surprising. The number of episodes 

also has a negative impact on nonsingle party types, suggesting that frequent tour makers 

(possibly sales agents, business representative, etc.) may also travel alone. The effect of 

explanatory variables on the tour-party size for other business purposes and quarter combinations 

can be interpreted similarly, as noted previously. However, caution must be exercised while 

making inferences. This is because the current model specifications do not include key 

components (e.g., nature of workers’ jobs, corporate decision-making process, etc.), which are 

the real drivers of business-tour-party size. 
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Table 55: Tour Size Model (Business: January–March) 

Alternatives 
(base: Single Person) 

Two People Three or more People 

Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.675 -19.254 -4.022 -19.115 

Working status 

 # of full-time workers   0.383 7.384 

 # of part-time workers 0.177 3.041   

Vehicle ownership (base: One or no vehicle) 

 Two vehicles   -0.540 -2.670 

 Three or more vehicles 0.179 1.955 

Natural logarithm of total duration  -0.103 -2.097   

# of episodes -0.032 -2.78   

Sample size 4464 

Log-likelihood value at convergence -2330.64 

Table 56: Tour Size Model (Business: April–June) 

Alternatives 
(base: Single Person) 

Two People Three or more People 

Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.588 -13.931 -4.099 -21.408 

Working status 

 # of full-time workers -0.080 -2.976 0.384 8.139 

 # of part-time workers 0.105 1.902 

Vehicle ownership (base: One or no vehicle) 

 Two vehicles 0.321 3.344   

 Three or more vehicles -0.283 -1.650 

Natural logarithm of total duration  -0.101 -2.487 -0.101 -2.487 

# of episodes -0.043 -2.938   

Sample size 5159 

Log-likelihood value at convergence -2796.66 

 



 

141 

Table 57: Tour Size Model (Business: July–September) 

Alternatives 
(base: Single Person) 

Two People Three or more People 

Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.863 -16.592 -5.231 -18.341 

Working status 

 # of full-time workers -0.110 -4.040 0.580 10.271 

 # of part-time workers   

Vehicle ownership (base: One or no vehicle) 

 Two vehicles 0.616 5.567   

 Three or more vehicles   

Natural logarithm of total duration    0.121 1.404 

# of episodes -0.050 -2.965   

Sample size 4472 

Log-likelihood value at convergence -2377.58 

Table 58: Tour Size Model (Business: October–December) 

Alternatives 
(base: Single Person) 

Two People Three or more People 

Coeff. T-Stat Coeff. T-Stat 

Alternative-specific con: stant -1.724 -12.189 -4.704 -16.601 

Working status 

 # of full-time workers -0.067 -2.238 0.477 6.678 

 # of part-time workers   

Vehicle ownership (base: One or no vehicle) 

 Two vehicles 0.411 3.530   

 Three or more vehicles   

Natural logarithm of total duration  -0.099 -1.811 -0.099 -1.811 

# of episodes -0.050 -2.296 -0.050 -2.296 

Sample size 3880 

Log-likelihood value at convergence -1949.50 
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Table 59: Tour Size Model (Business/Pleasure: January–March) 

Alternatives 
(base: Single Person) 

Two People Three or more People 

Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -2.001 -7.413 -6.098 -10.891 

Working status 

 # of workers (full-time or part-time) 0.567 6.971 1.349 11.558 

 # of nonworking adults 0.719 6.005 1.492 9.279 

Vehicle ownership (base: One or no vehicle) 

 Two vehicles 1.018 4.608 1.573 3.975 

 Three or more vehicles 

Natural logarithm of total duration      

# of episodes     

Sample size 761 

Log-likelihood value at convergence -647.70 

Table 60: Tour Size Model (Business/Pleasure: April–June) 

Alternatives 
(base: Single Person) 

Two People Three or more People 

Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.521 -6.244 -6.126 -13.354 

Working status 

 # of workers (full-time or part-time) 0.523 7.608 1.512 13.37 

 # of nonworking adults 0.741 7.293 1.730 11.361 

Vehicle ownership (base: One or no vehicle) 

 Two vehicles 0.737 4.454 0.737 4.454 

 Three or more vehicles 

Natural logarithm of total duration  -0.205 -2.568   

# of episodes     

Sample size 1050 

Log-likelihood value at convergence -868.18 
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Table 61: Tour Size Model (Business/Pleasure: July–September) 

Alternatives 
(base: Single Person) 

Two People Three or more People 

Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.691 -7.421 -4.195 -14.741 

Working status 

 # of workers (full-time or part-time) 0.349 5.225 1.173 15.497 

 # of nonworking adults 0.482 5.022 1.264 13.009 

Vehicle ownership (base: One or no vehicle) 

 Two vehicles 1.014 5.583   

 Three or more vehicles   

Natural logarithm of total duration      

# of episodes     

Sample size 1016 

Log-likelihood value at convergence -903.60 

Table 62: Tour Size Model (Business/Pleasure: October–December) 

Alternatives 
(base: Single Person) 

Two People Three or more People 

Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -1.391 -5.331 -5.116 -11.95 

Working status 

 # of workers (full-time or part-time) 0.200 2.778 0.991 9.902 

 # of nonworking adults 0.387 3.317 1.234 9.943 

Vehicle ownership (base: One or no vehicle) 

 Two vehicles 1.045 5.441 1.045 5.441 

 Three or more vehicles 

Natural logarithm of total duration      

# of episodes 0.129 1.826 0.129 1.826 

Sample size 713 

Log-likelihood value at convergence -627.44 
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Table 63: Tour Size Model (Convention/Conference/Seminar) 

Alternatives 
(base: Single Person) 

Two and more People 

January–March 
 

April–June 
 

 
July–September 

 

 
October–December 

 

Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat Coeff. T-Stat 

Alternative-specific constant -2.347 -6.988 -1.738 -8.248 -2.579 -8.956 -1.900 -6.530 

Working status 

 # of workers (full-time or part-time) 0.324 4.373 0.159 2.876 0.361 5.736 0.188 2.554 

 # of nonworking adults 0.361 3.358 0.307 3.784 0.738 7.842 0.512 4.265 

Vehicle ownership (base: One or no vehicle) 

 Two vehicles 0.601 2.531 0.546 3.126 0.783 4.113 0.734 3.202 

 Three or more vehicles 

Natural logarithm of total duration  0.278 2.188       

# of episodes     0.274 2.010   

Sample size 591 982 883 586 

Log-likelihood value at convergence -346.80 -573.00 -505.20 -344.65 
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4.5    Destination and Mode Choice 

Mode choice has generally been considered a key component of long-distance modeling and, 

where it is included, destination choice is typically modeled jointly with mode choice.   

Destination Choice 

The primary issue for the development of a long-distance model framework is whether 

destination choice should form part of the model. Of the 24 non-United States models reviewed 

for this study, just nine included a destination choice (or distribution) phase. The main arguments 

that have been made in the development of the models are the following: 

 Social and business destinations appear fixed to the traveler and the only issue is how 

often they are visited. That is, this argument would suggest that changes in trip length and 

distribution should be handled by differential frequency rates to represent the differential 

impact on demand of services serving specific corridors. 

 However, the evidence is that, in the long term, trip length distributions have a form that 

can only be explained by some sort of choice process. In the United Kingdom, 

redistribution effects are recognized as the most relevant behavioral change resulting 

from transport infrastructure (WebTAG, 3.10.3, para. 1.4.8).  

 In model estimation, there is experience that estimating a joint model of mode and 

destination choice gives better results than separate estimates of, for example, a mode 

choice model; such results have been obtained over many years, most recently in the 

context of long-distance travel by Rohr et al. (2010). This is not a priori a surprising 

finding; there are other examples where focusing on just one dimension within a 

multidimensional choice process leads to inferior model performance and potentially very 

different substantive findings; for example, see the discussions on joint modeling of 

airport, airline, and access mode choice in Hess & Polak (2006a, 2006b). 

When destination choice is included, the alternatives represented in the model have been defined 

as discrete, nonoverlapping areas, usually called zones. More detailed spatial definition could be 

considered (e.g., in the form of blocks or parcels), though this does not seem to have been done 

for long-distance modeling. The choice between more aggregate and less aggregate definitions 

turns on whether averaging or sampling is a more appropriate procedure for the specific context 

of the model being developed, as averaging must be applied when large spatial alternatives are 

used and sampling must be used for smaller and more numerous alternatives. 

When spatial alternatives cover more than the smallest area, it is likely that the land use within 

the alternative will be mixed. A description of the attractive power of the area will then involve 

multiple variables, such as employment in different categories or areas devoted to specific 

activities, such as hotels or recreation areas. Procedures have long existed to handle such 

multiple attractors in modeling (Daly, 1982). 

A possible improvement to this process, which has also not been applied in long-distance 

modeling, is to introduce a process of choice set formation. This would naturally be associated 

with the use of a high level of spatial definition for the elementary alternatives, relying on the 
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choice set formation to reduce the number of alternatives. However, the formation of choice sets 

needs to be modeled in a way that will be intuitively convincing, statistically well founded and 

suitable for forecasting. These are challenging requirements, and estimation and application 

complexity is obviously increased. 

When choice set formation is not modeled, it is useful to understand that there is no assumption 

that travelers consider all the destinations. The model represents a choice probability without 

being explicit about the process that leads to the formation of choices.  

An issue in modeling destination choice is that the tours made by travelers can visit several 

destinations. Procedures of varying levels of complexity have been applied in general travel 

demand forecasting. For long-distance modeling, it is unusual that multiple long trips are made 

in the course of a tour. More often, a long trip will be made to a primary destination and then 

short trips will be made to other destinations in the vicinity of the primary destination before 

taking the long trip back home. Other common causes of multiple destinations are incidental 

stops along the route for an overnight stay, a meal, or simply to refuel; these are generally (and 

reasonably) neglected in modeling mode and destination choice. For long-distance modeling, 

therefore, the general approach has been to model an out-and-back tour to a primary destination 

and to neglect short-distance travel and the small number of people who make tours with three or 

more long-distance legs. However, models have represented the fact that people spending more 

time at their destination are more likely to make side trips and are therefore more likely to take 

their cars to facilitate the side trips than are people making shorter stays. 

An important issue for destination choice modeling is that it is difficult, or in some cases perhaps 

impossible, to design stated preference data that are relevant. The central issue is that much 

destination choice results from long-term processes: business and social relationships are more 

easily developed at shorter than longer distances, but stated preferences require respondents to 

consider short-term behavioral changes, which are unlikely to be appealing. This means that 

modeling must be based on revealed preferences. There is potential for exploring the benefits of 

stated preference techniques other than stated choice, notably stated intentions-type data, though 

attempts at this have not yet been entirely convincing. 

The models that have been used for destination choice have been of the logit form, treating the 

alternatives symmetrically so that the model of destination choice alone is multinomial logit. 

Sometimes these are described as gravity models, but the gravity formulation can be rewritten as 

a logit model without changing the essence of the model. The logit choice formulation is more 

suitable for statistical analyses. 

A further possibility that has not been adopted in destination choice models that have been used 

in practice is to represent correlations between alternatives. This could be useful where there are 

similarities between alternatives (e.g., that they are close in space or have similar local 

characteristics, but this has not yet been exploited in long-distance modeling). The introduction 

of such correlations, together with those involving mode choice, might mean that cross-nested 

logit or even more sophisticated model forms, such as mixed logit, would be required. 

Nonlinearity has been found to be necessary in many practical models (Ben-Akiva et al., 1987; 

Daly, 2010, which also gives a literature review), as maintaining linearity of the utility functions 
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in a MNL formulation will often lead to the model predicting unreasonably high elasticities. It 

can be shown that a more sophisticated model formulation can represent these effects at least as 

well as a nonlinear formulation, but such models will usually involve an increase in run time (see 

Daly and Carrasco, 2009). It may be necessary to introduce nonlinearity in more than one 

attribute to maintain model accuracy over the full range of attributes. 

Mode Choice 

The mode choice alternatives defined in long-distance models have been: 

 Car, which is sometimes split into car driver and car passenger to allow car occupancy to 

be a function of policy and network conditions—also, toll roads can be recognized as 

separate alternatives in some cases; 

 Train, which is sometimes split into high-speed and “classic” trains; 

 Air; and 

 Bus or coach, not always included due to perceptions that it is a low-income mode. 

The formulation for the car mode can vary, as it is possible to split cars into single- and multi-

occupied vehicles, with the potential for further splits depending on the level of occupancy (e.g., 

two people vs. three-plus). The split into driver and passenger is more common outside the 

United States, where HOV lanes are rare and the improved forecasting of the total number of 

cars is important for modeling congestion. In the United States, the occupancy can be important 

for determining access to HOV lanes (see the discussion by de Jong et al., 1998). However, if the 

model represents travel by parties, rather than by individuals, these distinctions are treated as 

exogenous rather than as choice and a single-car alternative can be modeled. 

For train, as well as the HSR/classic split mentioned above, there are possibilities for modeling:  

 The class of travel (i.e., first vs. standard class [using the UK nomenclature], perhaps 

generalized to ticket type). 

 Choice of access mode. 

 Choice of access station. 

The last two choices need to be made in all models, of course, to determine levels of service for 

the train mode, but in some models, positive probabilities are calculated for several access modes 

and/or access stations. In these cases, it needs to be noted that egress modes are different from 

access modes in that driving one’s own car is not available as an egress mode, so that car driver 

will have a lower share on egress. The distinction between “park-and-ride” and “kiss-and-ride” 

(i.e., drop-off or pick-up) can be important if information is required about car parking at stations 

or simply to improve the measures of level of service. 

For air, there are subchoices of class/ticket, access mode and airport, along exactly the same lines 

as for train. The extensive literature on airport access modeling provides useful guidance that 

may also be applicable to station access. 
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For bus, few subchoices have been modeled in existing models and the difficulty is rather to 

obtain good measures of levels of service. The bus network is much less fixed than train or even 

air networks, and highway distances are often used as a proxy, though these do not give good 

indications of levels of service for bus. 

Determining fares for train, air, and bus modes is difficult, as fare systems can be complicated, 

with fares depending on person types, while yield management systems are often difficult or 

deliberately impossible to understand. Generally, average or proxy variables are used, with a 

corresponding loss of accuracy. This is especially true in an air travel context, where reliance on 

average fares (generally the only available information), despite the dynamic nature of fare 

systems, often leads to an inability to estimate meaningful and significant fare effects in revealed 

preference data (cf. Hess & Polak, 2006a, 2006b). Note, however, that these variables will 

generally be more reliable than using reported values, which would only give results for a small 

number of modes, probably only for the chosen destination, and which are subject to severe 

biases such as self-justification. 

For mode choice, it is possible to work with stated preference data; stated choice has been used 

in many studies for high-speed rail and for other infrastructure studies such as tunnels and 

bridges, as well as being used extensively for air travel behavior analyses (cf. Hess et al., 2007, 

and the review therein). However, for forecasting, stated preference data would generally not be 

used unsupported, as the error in the model is a function of the interview process and cannot be 

reproduced for forecasting (Daly and Rohr, 1998). 

The nonlinearities noted for destination choice modeling should be included, or at least tested, in 

mode choice modeling when destination choice is not a part of the model system. 

Joint Destination and Mode Choice 

Model systems with both mode and destination choice components have generally been of the 

tree-nested logit form. This form of model gives some freedom for the relationship of the various 

components of the model, without imposing an undue penalty on run time. In this context, it 

should be noted that the relationship of mode and destination choice is determined by the relative 

error in these two model components, which is a function of context-dependent aspects of the 

model, such as zone size and the measurement of socioeconomic variables. Thus, the nesting 

needs to be tested in every case. Typically, international models have found destination choice to 

be modeled with lower error than mode choice, whereas it seems that domestic models have 

made the opposite finding. 

To determine model structure, it is important that the estimations should be made simultaneously 

rather than sequentially. In a statistical sense, sequential estimation, while known to be 

consistent, is quite inefficient. In practical terms, sequential estimation is liable to give wrong 

results and this has been found to be particularly true when the model structure is estimated. 

Sequential estimation is also much more time consuming and error prone. 

Further nesting within the tree logit framework can be used to represent correlation within 

different destination classes (e.g., geographical or in terms of trip length) or between modes and 

submodes. For example, it is usual that station (or airport) access modes are nested below main 
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mode choice and that station choice is at a still lower level. However, in cases where structure is 

uncertain, cross-nested logit models can be considered (cf. Hess & Polak, 2006b and Hess et al., 

2011). Such models are considerably more difficult to estimate; however, once estimated, these 

models impose little extra run time penalty compared with tree-nested models. It is also worth 

noting that where there is a possibility that the optimal ordering of nesting levels varies across 

respondents in the data, a mixture approach can be used, such as discussed recently in the mode-

destination context by Ishaq et al. (2012). 

Moving beyond the GEV framework, which includes MNL and both types of nested logit model, 

is also possible. The most obvious model type to consider is mixed logit, which has not been 

applied for long-distance models, to the research team’s knowledge, but which can be applied on 

the required scale (Daly and Carrasco, 2009). The use of mixed logit models would allow 

correlations between alternatives to be flexibly modeled, as well as allowing for variation in 

individual preferences such as values of time.  

Current Practice 

Mode and submode choice models form components of the majority of current and recent 

forecasting systems that include long-distance travel. While destination choice is not always 

included, it forms a natural component of model systems that cover more than a single corridor. 

Current practice represents these choices by tree-nested logit models. 

The scope of the models includes choice among the key long-distance modes: air, rail, and car, 

with bus added in some contexts. Submodes could include choices such as: 

 Choice of different types of train service; in particular, the use of high-speed rail and 

conventional services; 

 Choice of class of train travel, ticket type, or even of operator; 

 Choice of access modes for train or air travel; and 

 Choice of major route options, such as the use of tunnels, bridges, and ferry services to 

cross major barriers. 

When destination choice is modeled, the alternative destinations are usually modeled using 

geographical zones. 

The “utility” functions used in the logit models typically comprise measures of generalized time 

(i.e., time including separately measured components such as “in-vehicle” [line haul] time) and, 

for modes other than car, access time and some measures of frequency (e.g., an estimate of 

waiting time) and of interchange penalty. The weighting of these time components may be 

obtained from stated preference analyses, particularly when new mode or submode alternatives 

are being considered; alternatively, standard weightings may be taken from government advice 

(e.g., the UK government’s WebTAG), from meta-analysis, or from analysts’ experience. The 

use of revealed preference is also possible in this context, though less common. It is not common 

in current practice that these weightings would vary between individual travelers, either based on 

measured characteristics of the traveler or as a random distribution. However, different models 

are often used for different travel purposes and these may have different weightings. 
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The price of the alternatives is converted to a time equivalent value by applying a value of time. 

Most often, time is used as the numéraire (i.e., dividing cost by the value of time). In this 

instance, it is more common to consider variation over the travelers—in particular, allowing 

variation by tour length (i.e., giving a nonlinear function) or by income, as well as by travel 

purpose. Again, estimation of the value of time may be made by stated preference analyses or by 

reference to standard values. The use of random variation of values of time may sometimes be 

considered where price differentials are large, but this remains uncommon. 

Nonlinear functions may be used in the model, applied either to the components of generalized 

time or to the entire generalized time function, sometimes termed “cost damping.” Often, these 

transformations are applied to bring the forecasting properties of the model in line with an a 

priori expectation (e.g., that the elasticity would lie in an expected range). 

Often, the prediction of mode and submode choice within the logit model is applied with a tree-

nesting structure. Here again, the nesting parameters may be obtained by stated preference 

analyses or based on values imported from previous studies. 

When destination choice forms part of the model, the generalized time functions would be 

applied for each combination of mode and destination, but the form of the function would be 

consistent across the destinations. Additionally, however, it is necessary to include in the model 

a measure of the attractive power, or “size,” of each destination, because the number of 

elementary destinations in a zone is not uniform and the number of tours choosing each 

destination is a function of the attractiveness of the destination and the difficulty of reaching it. 

All else being equal, the probability of choosing a destination zone is proportional to the number 

of elementary destinations in that zone. As shown by Daly (1982), this proportionality can be 

achieved by including, in the utility function for each destination, a log function of the number of 

attractions in the zone; this formulation is widely adopted.  

When destination choice is being modeled, it is desirable to model the choices of mode and 

destination simultaneously. This is usually done with a tree-nested structure, in which the 

relative sensitivity of choice between modes can be different from the sensitivity between 

destinations (i.e., a given change in level of service can have a different impact on mode choice 

than on destination choice). The relative strength of the two effects is represented by their 

positioning in the tree-nested model, with the higher choice being less sensitive and the lower 

choice being more sensitive. The positioning of the modes and destinations, and the “structural” 

parameter that indicates the relative sensitivity, is determined by estimation on local data—in 

this case, using revealed preference (as stated preference over destinations is difficult) or by 

import from earlier studies. For example, the UK WebTAG advice indicates that modes should 

be less sensitive (i.e., modeled at a higher level) than destinations, and provides structural 

parameter values. 

In any case, a simultaneous model is recommended (i.e., the parameters should be estimated in a 

structure considering the alternative modes and alternative destinations at the same time). Not 

only does this help in obtaining a suitable nesting coefficient, but it is often found that the 

additional variance given by considering alternative destinations helps in obtaining more robust 

parameter estimates. 



 

151 

Advanced Approaches 

In this section, three possible departures from current practice for mode and destination choice 

models are examined. 

Cross-Nested Logit 

Multinomial (MNL) and simple tree-nested (i.e., without cross-nesting) logit (NL) models are 

standard approaches for modeling the joint choice of destination and mode choice in large-scale 

applications. However, the specific case of joint mode and destination choice is often 

characterized by complex error structures along both the mode and destination dimensions, and a 

simple NL model cannot capture this. A cross-nested logit (CNL) structure presents an obvious 

solution in this context. 

A key feature of models of destination choice is the incorporation of size variables. These 

variables capture attributes of the alternatives that are specific to the size of the destination (i.e., 

rather than the quality of the destination or the journey for the mode-destination pair), and which 

are independent of the characteristics of the journey from the origin (e.g., travel time and travel 

cost). To enable the use of CNL in this context, the existing framework needs to be extended by 

incorporating size variables. In the standard specification of CNL, a suitable model for a mode-

destination context is one in which each alternative falls into one mode nest and one destination 

nest, as shown in Equation 5: 

Equation 5: Standard Specification of CNL for Destination and Mode Choice Probabilities 

 

where Vmd gives the modeled utility of mode m to destination d; pd and pm are unconditional 

destination and mode-choice probabilities; pd|m and pm|d are conditional choice probabilities; and 

0 < 𝛼 < 1 are nest membership parameters, subject to a normalization constraint such as 

𝛼𝑚+𝛼𝑑 = 1. 

To permit the inclusion of size variables in a general CNL, the membership of nest 𝑘 for 

alternative 𝑗 is parameterized, as shown in Equation 6: 
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Equation 6: Inclusion of Size Variables in a General CNL for a Destination or Mode Nest 

 

where 𝑅 is an adjusted size measure; 

 𝑅𝑗 = (
𝑆𝑗

𝑆
)
𝛾

 

where 𝑆𝑗 is the size of destination 𝑗; 

 𝑆 is the average destination size, simply normalizing these values
14

; and 

 𝛾 is the ‘log-size multiplier’ with a standard value of 1. 

What is then obtained, within a destination nest 𝑑 is shown in Equation 7: 

Equation 7: Conditional Probability of Choosing Mode Nest m within a Destination d 

 

in which the factor 𝑅𝑑

1
𝜃𝑑

⁄
 cancels out, as it is constant across modes. 

Within a mode nest 𝑚, the conditional probability of choosing destination 𝑑 is shown in 

Equation 8: 

Equation 8: Conditional Probability of Choosing Destination d within a Mode Nest m 

 

which is obviously proportional to the adjusted size 𝑅𝑑. 

The unconditional choice probability of destination 𝑑 is displayed in Equation 9: 

                                                 

14 This means that the values of 𝛼𝑚 and 𝛼𝑑 are not affected by the units of 𝑆. 

𝑝𝑚 |𝑑 ∝  𝛼𝑑𝑅𝑑 exp 𝑉𝑚𝑑   
1

𝜃𝑑
⁄

∝  𝛼1 exp 𝑉𝑚𝑑   
1

𝜃𝑑
⁄

 

𝑝𝑑|𝑚 ∝  𝛼𝑚𝑅𝑑
𝜃𝑚 exp 𝑉𝑚𝑑   

1
𝜃𝑚

⁄
= 𝑅𝑑 𝛼2 exp 𝑉𝑚𝑑   

1
𝜃𝑚

⁄
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Equation 9: Unconditional Choice Probability of Destination d 

 

which is obviously proportional to the adjusted size 𝑅𝑑. 

Finally, the unconditional choice probability of mode 𝑚 is displayed in Equation 10: 

Equation 10: Unconditional Choice Probability of Mode m 

 

in which the weighting of the contributions of each destination is appropriately moderated by the 

size. 

Mixed Logit 

While all types of choice models allow for variations in sensitivities across decision-makers 

through interactions with characteristics of the respondents or the journey, there are limits to the 

amount of heterogeneity that can be captured in this way. The Mixed Multinomial Logit 

(MMNL) model has become the standard tool in academic research for capturing such 

heterogeneity, and it is also widely used in applied work. 

The MMNL model accommodates taste heterogeneity in a continuous specification, through 

integration of MNL choice probabilities over the assumed multivariate random distribution of the 

vector of taste coefficients 𝛽. In particular, let 𝑃𝑛,𝑡 𝛽  be the MNL probability of the observed 

choice for respondent n, conditional on a vector of taste coefficients 𝛽. 

The log-likelihood (LL) function of the corresponding MMNL model is shown in Equation 11: 

Equation 11: Log Likelihood (LL) Function of the Mixed Multinomial Logit Model 

 

where N is the number of respondents and the vector of taste coefficients 𝛽 follows a random 

distribution 𝑓 𝛽|Ω  with a vector of parameters Ω. This LL function has no closed-form 

solution, and the typical approach to estimation is to replace the LL by the simulated log-

likelihood (SLL), with: 

𝑝𝑑 ∝    𝛼𝑑𝑅𝑑 exp 𝑉𝑚𝑑   
1

𝜃𝑑
⁄

𝑚
 
𝜃𝑑

= 𝑅𝑑    𝛼𝑑 exp 𝑉𝑚𝑑   
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𝜃𝑑
⁄

𝑚
 
𝜃𝑑

 

𝑝𝑚 ∝    𝛼𝑚𝑅𝑑
𝜃𝑚 exp 𝑉𝑚𝑑   

1
𝜃𝑚

⁄

𝑑
 
𝜃𝑚

=   𝑅𝑑 𝛼𝑚 exp 𝑉𝑚𝑑   
1

𝜃𝑚
⁄

𝑑
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𝐿𝐿 Ω =   𝑙𝑛 𝑃𝑛 𝛽  𝑓 𝛽|Ω d𝛽
𝛽

𝑁

𝑛=1
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Equation 12: Simulated Log Likelihood (SLL) Function of the Mixed Multinomial Logit 

Model 

 

where 𝛽𝑟,𝑛 now represents one of R draws for respondent n from the distribution 𝑓 𝛽|Ω . 
Increasing the number of draws from the multivariate vector 𝛽, and especially their coverage of 

the multivariate domain of 𝛽, reduces the error introduced in estimation. 

Random-Regret-Minimization Approach 

The field of choice modeling has seen a recent surge in interest in what can broadly be termed as 

models that depart from a purely compensatory decision-making approach. In a standard random 

utility maximization (RUM) framework, the probability of choosing a given alternative is a 

function of the relative value of that alternative’s utility, compared to all the other available 

options. The utility is a function of only the attributes of that alternative and any disadvantages 

for one characteristic (e.g., cost) can be compensated by advantages in another characteristic 

(e.g., time). In models that depart from this compensatory framework, a situation could exist 

where disadvantages are penalized more than advantages. An example of such a framework is 

the random-regret-minimization approach, where an individual does not choose the option that 

maximizes his/her utility, but chooses one that minimizes the regret experienced when choosing 

an alternative that is outperformed by another alternative for one or more characteristics. Such 

model structures tend to favor compromise alternatives. 

Factors Limiting Implementation of Advanced Models 

The use of any model for the analysis of large-scale problems is affected by the size of the choice 

set (i.e., number of alternatives), the number of individuals in the data, and the number of model 

parameters. All three of these arise in the analysis of long-distance travel, and the resulting 

increase in complexity accentuates the already existing differences in computational cost 

between simple and advanced models. Sampling of individuals can help, as can sampling of 

alternatives. However, an important issue in this context is that the latter introduces bias, and 

correction approaches are not straightforward for advanced models. 

The estimation of more parameters clearly leads to further difficulties for both theoretical and 

empirical identification. Moreover, the key factor in the computational cost of a modeling 

approach is the number of calculations involved. This affects the three departures from standard 

modeling approaches above in the following ways: 

 The CNL model involves the calculation not only of utilities for individual alternatives 

(like a MNL model), but the calculation of the number of LogSums and probabilities for 

nests of alternatives; this is substantially higher than in a NL model given that each 

alternative can now fall into multiple nests. 

𝑆𝐿𝐿 =   
𝑙𝑛(𝑃𝑛 𝛽𝑟 ,𝑛 )

𝑅

𝑅

𝑟=1

𝑁
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 The MMNL model requires simulation-based estimation techniques, which means that 

utilities and choice probabilities need to be calculated not just once per alternative and 

individual, but once per draw used in the simulation process. This complexity increases 

further when making use of more flexible distributions in the specification of the model. 

 For non-RUM models that exploit the choice context, the increase in computational 

complexity stems from the fact that the measure related to the appeal of an alternative 

(i.e., the counterpart of a utility) is a function of comparisons with other alternatives, 

which—with large numbers of alternatives—leads to a substantial increase in the number 

of computations. 

Indirect Inference as a Possible Solution 

Indirect inference (II) is a technique that can be used in a situation where the true model desired 

is difficult or impossible to estimate, but where it is possible to simulate data using this model 

with reasonable computational cost. 

The process used in II can be explained in a few sequential steps: 

1. The true model is the model that one desires to use on the data, but that cannot be estimated 

due to computational reasons. 

2. This true model uses a vector of parameters β, and a set of R different sets of values are 

defined for β drawn from a reasonable range, which is not too wide and not too narrow, with 

βr referring to the r
th

 such set. 

3. R sets of choices are simulated using the true model, where the choices Yr for set r are 

simulated using the vector of parameters βr. 

4. A simpler model is then defined, known as the auxiliary model, which is easier to estimate, 

but has at the least the same number of parameters as the true model; the auxiliary model is 

estimated on each of the R sets of simulated choices, yielding parameter vector αr in 

estimation on Yr. While this is not a theoretical requirement, it seems wise for the auxiliary 

model to bear some resemblance to the true model. 

5. A relationship between the parameters of the auxiliary model, α, and the parameters of the 

true model, β, is then formulated. This relationship is known as the binding function, and it 

measures the diversion in parameters when estimating the auxiliary model on data simulated 

using the true model. A typical approach would be to use regression of α on β, where, with 

sufficiently large R, this binding function converges to a nonstochastic limit. 

6. Finally, the auxiliary model is estimated on the real (nonsimulated) data—say Yo—to yield 

estimates, αo. The inverse of the preceding binding function is then applied to obtain inferred 

estimates, βo, for the true model on the real data without needing to estimate it. 

Under (fairly) standard regularity assumptions, the II approach yields estimates that are 

consistent and asymptotically normal. In practice, the assumptions in step two have a certain 

impact on the performance of the approach; as a result, an iterative approach may be needed, first 

simulating for a wider range for β, and, after completing steps 3–6, narrowing the range of β and 

repeating steps 3–6 one or more times. 
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II was introduced by Smith (1993) and applications in choice modeling have been put forward by 

Keane and Smith (2003), and more recently by Karlström et al. (2013), for route choice 

modeling, and by Wang et al. (2013) for estimation of mixed logit on large samples of choices. 

In the current application, II can be exploited primarily by using an auxiliary model that is 

structurally the same as the true model, but which makes use of a much smaller sample of 

alternatives, and, in the context of MMNL, also a limited set of draws in simulation-based 

estimation. 

What follows is a simple illustration of the potential benefits of the II framework to large-scale 

modeling of the type addressed in this project. In particular, the case of simulated data based on 

the California survey is examined. The reason for using simulated data is that in this case, the 

true values of the model parameters are known, permitting testing of the performance of the 

method without any outside effects. The California survey was selected over the national data for 

several reasons, including timing (in terms of data availability) and size (the smaller size of the 

California dataset made it more applicable to this initial testing work). 

The specific scenario that was examined made use of a sample of 6,635 respondents, with four 

modes and up to 58 destinations. This produced a total maximum choice set size of 232; II was 

then applied to test the effect of sampling destinations. 

The following steps were used in the empirical work: 

1. Choices were first simulated from this data for a CNL model in which each alternative falls 

into one mode nest and one destination nest, using αm=0.4, and as a result αd=0.6. The 

corresponding nesting parameters, λmode and λdest, were set to 0.3 and 0.7, respectively. Two 

size variables, relating to leisure/hospitality, were used and for which the log-size factor was 

set to 0; for other services, the log-size factor, γOS, was set to 0.65. Included were constants 

for bus (δbus=-4.5), rail (δrail=-3.5), and air (δair=-2.8), along with time (βtime=-0.0038) and 

cost (βcost=-0.0142). These parameters are, to some extent, informed by estimation work on 

the actual real-world data. 

2. For the II work, the100 simulated datasets were then produced, where the parameters used in 

simulation varied widely, covering approximately 50% on each side of the above true values. 

3. A sample of up to 20 destinations per respondent was produced, using with-replacement 

sampling and simple utility functions from an MNL model estimated on the real data. 

4. For each of the 100 datasets simulated above, the CNL model was then estimated using the 

sample of 20 destinations, adding the chosen destination when it was not already included in 

the sample. This process produced the parameters for the auxiliary model, which is a CNL 

model with sampling of destinations, so that the bias in the results for the auxiliary model is 

thus caused by sampling. In these estimations, the simple McFadden “positive conditioning” 

correction was included for sampling in MNL, which should address some, but not all of, the 

sampling bias given the use of CNL instead of MNL. 

5. Multivariate regression was then used, with the auxiliary estimates as the dependent 

variables, and the true values as the explanatory variables. This yielded the estimates (with t-

ratios in brackets) presented in Table 64. 
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6. Finally, the auxiliary model was then estimated on the true data, using the binding function 

inside the estimation. This implies that the parameters being estimated relate to the true 

model (i.e., the explanatory variables in the above regression), while the parameters used in 

calculating the choice probabilities (and hence the likelihood function, which is maximized) 

relate to the auxiliary model and are obtained through the binding function above. The 

crucial factor in this process is that the same sample of 20 destinations per individual is used 

as in the estimation on the 100 II datasets. This means that the bias introduced by sampling 

should be the same as in the II runs, allowing the binding function to correct for it. 

The results of three models are presented in Table 65. The first set details the results for the 

model estimated without sampling of alternatives. This recovered the true values used in 

simulation quite closely; without any significant bias for rail, it approximates significance. The 

second set of results is for a CNL model estimated with sampling of alternatives, using only the 

McFadden correction and not II. Significant bias is seen in comparison with the estimates on the 

full data (i.e., not the values used in simulating that data) for six out of nine parameters, with 

some large biases. The third set of results is for a CNL model estimated with sampling and the II 

binding function. In this instance, the bias is no longer statistically significant for any of the nine 

parameters, and it decreases in magnitude for seven of them. The drop in significance for the one 

parameter that still has a high percentage bias (λmode) was a result of the correction to the 

standard errors that was also obtained through the use of the binding function. These standard 

errors now relate to the parameters one would estimate on the full sample, rather than those of 

the auxiliary model. 

As a final step, implications in terms of model fit were also examined. The estimation of the true 

model on the true data gives a LL of -20,118.5. Using the parameters obtained with the second 

(i.e., sampled) model on the full dataset gives a LL of -20,194.1 (i.e., noticeably more negative). 

On the other hand, using the estimates obtained from II in the computation of the LL on the full 

sample of destinations gives a LL of -20,121.2, which is much closer to that of the true model, 

suggesting that II manages to correct the bias introduced by the sampling of alternatives. 
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Table 64: Multivariate Regression Model Estimation Results  

  
True Values 

  intercept δbus δrail δair βtime βcost γOS λmode λdest αm 

A
u

x
il
ia

ry
 V

a
lu

e
s

 

δbus -2.207 
(-5.2) 

1.1825 
(26.74) 

-0.0182 
(-0.39) 

0.0344 
(0.78) 

-40.6378 
(-1.3) 

-6.6977 
(-0.74) 

-0.047 
(-0.16) 

-0.6111 
(-1.37) 

2.5978 
(8.55) 

1.0884 
(3.59) 

δrail -1.7449 
(-8.45) 

0.0318 
(1.48) 

1.1597 
(51.58) 

0.0611 
(2.83) 

-76.7806 
(-5.06) 

-4.8799 
(-1.11) 

-0.0031 
(-0.02) 

0.0973 
(0.45) 

1.3958 
(9.45) 

1.07 
(7.26) 

δair -0.6647 
(-0.87) 

0.0053 
(0.07) 

-0.0977 
(-1.17) 

1.3254 
(16.55) 

-77.8717 
(-1.38) 

32.8946 
(2.02) 

-1.1899 
(-2.19) 

1.5398 
(1.91) 

1.0566 
(1.93) 

0.2974 
(0.54) 

βtime -0.0005 
(-2.35) 

0 (0.92) 
-0.0001 
(-2.86) 

-0.0001 
(-5.13) 

1.1536 
(71.4) 

0.0062 
(1.33) 

-0.0001 
(-0.68) 

0.0008 
(3.31) 

0.0002 
(1.35) 

-0.0002 
(-1.49) 

βcost -0.005 
(-3.78) 

-0.0004 
(-3.06) 

-0.0001 
(-0.93) 

0 
(0.25) 

0.3466 
(3.54) 

1.0555 
(37.39) 

0.0008 
(0.84) 

-0.0005 
(-0.34) 

0.0054 
(5.63) 

0.0022 
(2.3) 

γOS -0.195 
(-6.86) 

0.0034 
(1.15) 

0.0032 
(1.02) 

-0.0039 
(-1.3) 

11.0706 
(5.29) 

0.7964 
(1.32) 

1.0053 
(49.88) 

-0.0791 
(-2.65) 

-0.0261 
(-1.28) 

0.0243 
(1.2) 

λmode 0.2022 
(7.39) 

-0.0015 
(-0.54) 

-0.0013 
(-0.44) 

-0.0042 
(-1.47) 

-21.0553 
(-10.46) 

-1.7311 
(-2.98) 

-0.0023 
(-0.12) 

0.3017 
(10.49) 

0.0254 
(1.29) 

-0.1611 
(-8.24) 

λdest 0.3079 
(4.51) 

-0.0133 
(-1.87) 

0.0098 
(1.31) 

-0.0125 
(-1.76) 

10.3609 
(2.07) 

1.401 
(0.97) 

0.0076 
(0.16) 

-0.0784 
(-1.09) 

0.7802 
(15.97) 

-0.085 
(-1.74) 

αm 0.3642 
(7.29) 

-0.0037 
(-0.72) 

-0.0179 
(-3.3) 

-0.0272 
(-5.21) 

50.4103 
(13.73) 

4.2542 
(4.01) 

-0.0021 
(-0.06) 

0.2813 
(5.36) 

0.2026 
(5.66) 

0.267 
(7.48) 
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Table 65: Results of Three Models 

 
δbus δrail δair βtime βcost γOS λmode λdest αm 

True Values -4.5 -3.5 -2.8 -0.0038 -0.0142 0.65 0.3 0.7 0.4 

Estimate On Full Data -4.4244 -4.2295 -2.7715 -0.0039 -0.0132 0.6349 0.2662 0.7045 0.4266 

std err 0.36 0.38 0.21 0.00 0.00 0.06 0.07 0.07 0.07 

t-ratio against zero -12.33 -11.10 -13.52 -19.68 -9.21 11.22     

t-ratio against 1       -11.08 -4.12   

t-ratio against 0.5         -0.99 

bias -1.68% 20.84% -1.02% 2.17% -7.39% -2.33% -11.27% 0.65% 6.66% 

significance of bias 0.21 -1.91 0.14 -0.42 0.74 -0.27 -0.51 0.06 0.36 

Estimate Using Sampling -5.1867 -5.1771 -3.3708 -0.0042 -0.0135 0.3521 0.3996 0.7955 0.6544 

std err 0.28 0.36 0.22 0.00 0.00 0.06 0.02 0.08 0.06 

bias 17.23% 22.40% 21.62% 7.48% 2.49% -44.53% 50.10% 12.91% 53.40% 

significance of bias -2.72 -2.67 -2.76 -1.06 -0.23 -4.84 6.82 1.13 3.72 

Estimate Using Sampling 
With II 

-4.4458 -4.2915 -2.7683 -0.0038 -0.0138 0.6549 0.4041 0.7148 0.4304 

std err 0.41 0.35 0.24 0.00 0.00 0.06 0.09 0.09 0.11 

bias 0.48% 1.47% -0.12% -2.06% 5.24% 3.15% 51.78% 1.45% 0.88% 

significance of bias -0.05 -0.17 0.01 0.36 -0.46 0.34 1.48 0.11 0.04 
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While most work in a long-distance-travel context relies on simple nested logit structures, this 

work has made the case that complex error structures may exist along multiple dimensions of 

choice and that a cross-nesting structure might be more appropriate. This is, however, only one 

departure from “standard” techniques and another big gap between applied work and academic 

research is in the lack of applications of models allowing for random heterogeneity in 

preferences in a large-scale context. It is without a doubt the case that accommodating complex 

error structures and random heterogeneity would lead to major gains in model performance and 

likely prediction accuracy. It would, however, also result in large increases in computational 

complexity and empirical identification of the models. For such techniques to gain widespread 

exposure necessitates more work along the lines of the indirect inference explorations in the 

present report, or methods such as Bhat’s Maximum Approximate Composite Marginal 

Likelihood (MACML). 
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CHAPTER 5.  LONG-DISTANCE MODEL DEMONSTRATION 

This section details the preliminary implementation of models and datasets created during this 

project. The modeling process is closely aligned with the approach discussed in Chapter 3, but 

contains some differences in model form and structure, as described in Figure 44. The 

preliminary implementation will be further refined and calibrated during the next phase of this 

project. The first section of this chapter discusses options for the overall model implementation 

structure, and describes the specific structure used for the demonstration model implementation. 

The second section documents the specific model components used in the preliminary 

implementation. The third section discusses software performance issues and options for further 

software development. 

Figure 44: Long-Distance Passenger Travel Demand Model Demonstration 
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5.1    Structure of the Preliminary Model Implementation 

A variety of different application structures were considered for implementation of the national 

long-distance passenger model, ranging from a more aggregate structure to a fully disaggregate 

microsimulation model. 

Aggregate Structure 

Figure 45 illustrates how an aggregate model could be structured. An example of such a model 

system is the California Statewide Long-Distance Model, first created to forecast demand for the 

proposed high-speed rail (HSR) system in California (Outwater, et al. 2011, JOCM). 

Figure 45: Aggregate Model Structure 

 



 

163 

The main reason such a system is termed “aggregate” is that the households in the synthetic 

population are aggregated into sociodemographic segments, and the models are run for each 

residence zone/sociodemographic segment, rather than for individual households. Also, rather 

than using Monte Carlo microsimulation to simulate individual long-distance tours for each 

household, the model probabilities are used directly at each stage in the model system to add 

additional detail to the output. In this regard, the model structure shown in Figure 45 is 

analogous to an advanced “4-step” zonal model structure that might be used to forecast regional 

travel demand. Specifically, the steps in the model system would work as follows: 

1. The “Aggregator” aggregates the households in each residence zone into demographic 

segments that are combinations of specific household attributes. For example, one might use 

the attributes of household size, number of workers, and income group—and about three or 

four categories of each—to split the households into roughly 50 different household 

segments (e.g., approximately 4 x 4 x 3 categories). 

2. An auto-ownership model is then applied to each segment in each zone, and the probabilities 

are used to further divide each segment into auto-availability subsegments (e.g., zero-vehicle 

households, households with one or more vehicles per adult, and car-competition households 

[i.e., HH that own one or more vehicles but have fewer vehicles than adults]). This model is 

termed “aggregate” in Figure 45 because the household variables are limited to those 

variables used in defining the sociodemographic segments, as contrasted to a “disaggregate” 

model that could use any household characteristic variables that are in the synthetic-

population file. (Note that auto ownership is a variable in the synthetic-population file, based 

on PUMS data. However, it is not a variable that is used as a control in drawing the synthetic 

population, nor is it typically available in future-year socioeconomic forecasts. For those 

reasons, it is better to include an auto-ownership model as part of the forecasting system, as 

is typically done for advanced urban-regional models.) 

3. Aggregate Mode/Destination Choice models are used to calculate measures of the 

accessibility of long-distance travel from each origin zone to all possible destinations by all 

available modes, which can then be used as an input variable to the subsequent tour-

generation and scheduling models. The LogSum across all modes and destinations is 

calculated as the relevant accessibility measure, and is calculated for every combination of 

origin zone, sociodemographic segment, auto-availability level, and long-distance tour 

purpose. The LogSum can also be calculated within specific distance bands, with the 

expectation that greater accessibility to destinations within 50 miles will tend to decrease the 

frequency of long-distance travel, while accessibility to destinations farther than 50 miles 

will tend to increase the frequency of long-distance travel, with travel for different tour 

purposes showing different sensitivity to accessibility within different distance bands. (For 

example, long-distance Commute and Personal Business tours are usually in the range of 50 

to 150 miles, so the frequency of those tours may be most sensitive to accessibility and 

attractiveness of destinations within that distance range.) 

4. Aggregate Tour Generation and Scheduling models are applied for each origin 

zone/demographic segment/auto-availability segment combination to predict the number of 

long-distance tours generated for each tour purpose during each period of the year. (The 

period shown in Figure 45 is the month of the year.) If desired, further aggregate models can 
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be used at this stage to further subdivide the predicted tours by duration of stay (e.g., day 

tours, 1–2 night tours, 3–6 night tours, and 7+ night tours), and also by travel party size (e.g., 

1 person, 2 persons, 3 persons, 4+ persons). These models are sensitive to the 

mode/destination accessibility variables from the previous step in order to predict some level 

of tour induction or suppression as accessibility levels and attractions change. 

5. The final step of the system is to apply the probabilities from the Mode/Destination Choice 

models in order to “distribute” each available long-distance destination/mode combination. 

Because this is typically the most computationally intensive step of the model system, the 

structure in Figure 45 leverages the fact that these models have already been used to calculate 

accessibility LogSums (step three). Instead of repeating those same calculations, the model 

probabilities (which must be calculated anyway in order to calculate the LogSums) are stored 

in memory and used for this step, avoiding significant potential run time. 

The final output of such an aggregate model is tour origin-destination matrices, by mode. If 

desired, the model can also produce such O-D matrices for every combination of mode, purpose, 

month, demographic segment, car-availability segment, etc. However, this would require 

significant memory and disc space to save this large number of matrices, so it is more typical to 

just aggregate and write out the O-D matrices along a few key dimensions, such as mode, 

purpose, and time period. 

Disaggregate Structure 

The other end of the spectrum for model application is a fully disaggregate microsimulation 

structure, as depicted in Figure 46. Compared to the aggregate structure shown in Figure 45, 

there are many similarities. The key differences are as follows: 

 There is no population “Aggregator” needed, as each household in the synthetic 

population is simulated individually. 

 The same model components are used, although each component is labeled as 

“disaggregate” instead of “aggregate.” This means that the models can include all 

household characteristics in the synthetic sample as explanatory variables. It also means 

that more model specifications can be used. For instance, a model structure, such as the 

MDCEV model recommended for Tour Generation and Scheduling, requires a 

disaggregate microsimulation framework for application, as it does not allow calculation 

of closed-form probabilities that are required for aggregate-model-application structures. 

 In this structure, it is still expedient to use a more aggregate version of the 

Mode/Destination Choice models to precalculate accessibility LogSums for use in the 

Tour Generation and Scheduling models. This is because applying the fully disaggregate 

version of Mode/Destination Choice models for every possible tour purpose for every 

household would be prohibitive in terms of run time. (Note that this method of using 

precalculated aggregate accessibility LogSums is also used in most urban, activity-based 

[AB] microsimulation model systems.) 

 Rather than producing O-D matrices, this structure produces a separate output record for 

each predicted tour, with all relevant aspects of the tour on the file. These tour records 

can then be aggregated up to O-D matrices along any desired dimensions, providing more 
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flexibility than in an aggregate model system, where the number and definition of the 

output matrices need to be prespecified. Such a model can also produce an output record 

for each simulated household, indicating the predicted auto ownership, the number of 

tours predicted for each long-distance purpose, and, perhaps, other output variables 

summarizing each household’s predicted long-distance tours. 

Figure 46: Disaggregate Model Structure 

 

It is clear that the disaggregate model structure provides several advantages over an aggregate 

structure in terms of the variety of different variables that can be used in the models and written 

to the output files; this structure may also allow more choice model types to be applied (i.e., 

those that sample from distributions of parameters rather than having deterministic probability 

equations). The two potential disadvantages of a disaggregate structure include: 1) longer model 

run times; and 2) random simulation error from using Monte Carlo simulation rather than 

applying choice probabilities directly. The larger the population size that the model will be 

applied to, the more that run time becomes an issue, while random simulation error may become 

less of an issue (due to fact that random simulation error is generally proportional to the square 

root of the sample size). 
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Given the aforementioned advantages and disadvantages, for the preliminary model system, a 

modified disaggregate structure (Figure 47) was used. This structure is identical to the fully 

disaggregate structure shown in Figure 46, except for the last step to predict tour modes and 

destinations. It stores the probabilities calculated from the Mode/Destination Choice models 

while calculating aggregate LogSums, and uses those probabilities in the final step to perform 

the Monte Carlo microsimulation to predict a specific mode/destination combination for each 

tour. This structure results in a model system that runs quickly while still providing all of the 

advantages of a fully disaggregate model system. 

Figure 47: Modified Disaggregate Model Structure 

 

Currently, the Mode/Destination models used in this system are sensitive to household income 

and household car availability, as well as tour purpose. In future implementations, it would be 

possible to add additional dimensions to the aggregate Mode/Destination models—such as party 

size, month or year, and/or nights away from home— while still maintaining a significant run-

time benefit versus a fully disaggregate model system implementation. 

Note that it would also be possible to use the probabilities to distribute each simulated tour 

across all available modes and destinations in the final step, thus producing O-D matrices as 
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output, similar to the aggregate model structure. This would partially reduce random simulation 

error at the final step, but it would have some of the disadvantages of the aggregate structure in 

that the model outputs would be more cumbersome and less flexible to work with, and would 

probably require some amount of pre-aggregation. A better approach to reducing random 

simulation error, especially with regard to spatial distribution, would be to do multiple 

mode/destination draws per simulated tour (all from the same probabilities), instead of just a 

single draw. For example, one could perform 25 Monte Carlo draws per tour, with the expansion 

factor on each of the output tours reduced by a factor of 25. 

5.2    Logit Models Used for Initial Model System Implementation 

In this section, the logit discrete choice models that are used for the preliminary model system 

implementation, as depicted in Figure 47, are presented and briefly described. The models 

described in this section were estimated using data records combined from four different 

surveys: 

 The 2012–2013 California Statewide Travel Survey long-distance survey data. 

 The 2001 New York NHTS add-on sample long-distance survey data. 

 The 2001 Wisconsin NHTS add-on sample long-distance survey data. 

 The 2003 Ohio Statewide Travel Survey long-distance survey data. 

Auto Ownership 

Although it is possible to observe household car ownership from the PUMS records in the 

synthetic population, this variable is not used as a control variable in drawing the population, and 

it is typically not available for future-year demographic forecasts. Therefore, the model has been 

estimated based on household characteristics from the households in the combined sample from 

the four aforementioned long-distance surveys. 

The model estimation results are shown in Table 66. The base alternative in the model is 2 cars 

in the household, with utility = 0, and coefficients are estimated for the other four alternatives: 0 

cars, 1 car, 3 cars, and 4+ cars. The main implications of the estimated coefficients are the 

following: 

 One-adult households are most likely to own 0 or 1 cars, while households with 3 or 4+ 

adults of driving age are most likely to own 3 or 4+ cars. 

Household income, used in logarithmic form, is an important variable, particularly for higher-

income households much less likely to own 0 or 1 cars. (As in most models presented in this 

section, a separate “nuisance” variable was estimated for those households with missing income 

data, so that they can be included in the estimation without biasing the other income-related 

coefficients. Such variables for missing data are not used in model application, because the 

synthetic sample households do not have missing data.) 
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Table 66: Household Car Ownership Model 

Alternative 0 cars 
 

1 car 
 

2 cars 3 cars 
 

4+ cars 
 

 Coeff. T-stat. Coeff. T-stat. (base) Coeff. T-stat. Coeff. T-stat. 

Constant 6.92 16.4 6.3 29.3 0 -2.69 -13 -4.54 -16.4 

1 adult in HH 2.51 36.3 2.53 92.2 0     

2 adults in HH     0     

3 adults in HH     0 1.67 65.9 2 62.3 

4+ adults in HH     0 1.93 38.3 3.61 74.1 

Log(income) -1.52 -36.7 -0.85 -41.7 0 0.162 8.5 0.275 10.8 

Missing income data -16.5 -36.4 -9.31 -41.2 0 1.92 8.9 3.15 10.9 

Workers / adults ratio -0.582 -7.1 -0.265 -7.3 0 0.458 13.4 0.98 20.2 

HH has children -0.903 -12.0 -1.01 -34.9 0     

HH head age 65+   0.265 7.5 0 -0.238 -6.5 -0.23 -4.4 

HH head age <35 0.219 2.7 0.0762 2.2 0 -0.287 -9.8 -0.157 -4.2 

Log(emp+res density) 0.842 48.2 0.261 36.0 0 -0.109 -17.1 -0.247 -29.0 

Statistics 

Observations 72737         

Rho-squared (0 coeff) 0.361         

Rho-squared (constants) 0.202         
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 Beyond the income effect, having a higher fraction of a household’s adults working also 

favors higher auto ownership. 

 Households with children are less likely to own 0 or 1 cars. 

 Households with young heads (under age 35) or older heads (age 65 or older) tend to 

have lower car ownership. 

 Households that live in zones with higher residential and employment density also tend to 

have lower car ownership. This last effect is quite strong in terms of t-statistics, and the 

logarithmic form for density gives a stronger effect than using a linear effect. In an urban-

regional model, a more-detailed variable for accessibility would be used, such as the 

increase in an aggregate mode-destination choice LogSum that derives from car 

availability. However, such accessibility effects are mainly related to accessibility for 

local everyday tours, which cannot be accurately measured with the national-level zones 

and networks used in this model system. Thus, the density within the residence zone 

(PUMA or county) provides a strong proxy for local accessibility. 

Tour Frequency 

In contrast to the MDCEV model of annual generation and scheduling of long-distance tours, 

which treats all long-distance tours made by a household during the year in a joint-choice 

framework, these simpler logit models used a single day as the decision period. Although the 

various surveys have different lengths of retrospective recall for the long-distance surveys (8 

weeks for the California statewide survey), breaking the data down into individual days has the 

advantage that only a few household-days (only about 0.04%) have more than one long-distance 

tour generated on that given day, meaning that tour generation can be modeled as a 0/1 choice— 

no tour, or one tour for a given day. Also, because the time lapse between each survey date and 

the date that the person actually completed the long-distance survey is known, a nonresponse 

bias function, predicting how the reported tour generation decreases with the amount of time 

passed between each travel day and the survey, can be estimated. 

Table 67 presents a model estimated using the data from the California 2012–2013 Statewide 

long-distance survey. (Although the data from the Ohio, New York and Wisconsin long-distance 

surveys can be used to further calibrate the model, they have not yet been used in estimation.) 

The base alternative in the model is to begin no long-distance tours during the specific day. The 

five other alternatives shown in the columns are to make a tour for any of the long-distance 

purposes. Note that these were not estimated as separate models—the household has the choice 

of making a tour for any one of the tour purposes, but not more than one. (A separate model, 

described below, was used to predict the small number of household-days with two or more 

tours.) 
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Table 67: Household-Day Tour-Generation Model 

Purpose alternative Commute Business Visit F&R Leisure Pers. Bus 

 Coeff. T-stat Coeff. T-stat Coeff. T-stat Coeff. T-stat Coeff. T-stat 

Base alt. is no tour in the day 

Constant -15.1 -19.9 -11.7 -38.2 -6.05 -35.6 -9.06 -48.3 -3.12 -11.6 

Log (income) 0.41 8.4 0.619 28.5 0.200 13.5 0.445 27.0 0.0954 4.9 

Missing income data 4.94 8.7 7.19 28.3 2.22 13;0 5.00 26.2 1.02 4.5 

HH has 0 car -1.8 -3.1 -0.222 -2.0 -0.519 -6.8 -0.151 -1.8 -0.701 -6.8 

HH has fewer cars than adults 0.343 4.2 -0.122 -3.4 -0.188 -7.0 -0.327 -11.6 -0.0844 -2.4 

HH has children 0.272 4.2 -0.099 -3.4 -0.299 -12.1 0.0257 1.1 -0.0897 -2.7 

HH workers/adults ratio 1.08 9.9 0.837 19.4 -0.0951 -3.4 -0.0966 -3.3 -0.465 -11.7 

One-person HH   -0.221 -5.5   -0.253 -7.9 -0.343 -8.2 

HH head under age 35 -0.419 -3.3 -0.302 -5.6     -0.498 -7.8 

HH head age 65 or older -0.512 -5.2 -0.244 -6.8     -0.11 -3.3 

Mode/dest LogSum 0-50 miles -0.299 -15.2 -0.0684 -8.0 -0.0547 -6.2 -0.0423 -4.7 -0.243 -28.4 

Mode/dest no zones 0-50 
miles 

-2.37 -8.7 -0.582 -5.6 -0.604 -6.6 -0.455 -4.8 -1.75 -20.1 

Mode/dest LogSum 50-150 
miles 

0.611 12.1 0.0303 1.6     0.0407 2.3 

Mode/dest LogSum over 150 
miles 

    0.0401 3.0 0.0416 3.1   

January     -0.456 -9.6 -0.471 -9.3 -0.246 -4.3 

February   0.164 3.7 -0.275 -6.8 -0.291 -6.7   

March   0.295 7.1 -0.177 -4.7     

April           

May (base)           

June -0.379 -3.3     0.192 5.8   

July -0.448 -3.6     0.396 12.1 -0.127 -2.4 

August       0.234 6.9 -0.142 -2.8 

September -0.35 -3 0.0921 2.1 -0.249 -6.6   -0.163 -3.3 
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Purpose alternative Commute Business Visit F&R Leisure Pers. Bus 

October -0.472 -3.7 0.184 4.4 -0.297 -7.5 -0.126 -3.2 -0.253 -4.8 

November       -0.282 -6.4 -0.135 -2.5 

December   -0.348 -5.8   -0.484 -9.4 -0.298 -4.9 

No. of days before survey   -0.0072 -4.3 -0.0131 -9.3 -0.0094 -6.8 -0.0141 -7.5 

Log(no.days before survey) -0.409 -15.0 -0.177 -6.4 -0.0973 -4.2 -0.13 -5.8 -0.131 -4.4 

Statistics 

Observations 1,479,150         

No. of tours (% of HH-days) 1,074 0.07% 6,575 0.44% 9,857 0.67% 10,193 0.69% 5,619 0.38% 

Rho-squared (0 coeff.) 0.924          

Rho-squared (c constants) 0.027          
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The fifth row of Table 67 shows that on any given survey day, only 0.07% of households made a 

long-distance commute tour, 0.44% a long-distance business tour, etc. Across the five purposes, 

these fractions sum to 2.25%, meaning that in 97.75% of cases, the chosen alternative is the base 

alternative (no tour). The key results for the model include the following 

 The long-distance tour rates for all purposes increase with the logarithm of household 

income, with the effects strongest for Business and Leisure tours, and weakest for 

Personal Business. 

 Over and above the effect of income, the tour rates for all purposes also increase with car 

ownership, with zero-vehicle households making fewer tours, particularly for the 

Commute purpose. Car competition (fewer cars than driving-age adults) also has a 

negative effect for most purposes, but not for Commute. 

 Households with children tend to make more Commute and Leisure tours, but fewer tours 

for the other purposes. 

 The higher the fraction of household adults that work, the more Commute and Business 

tours are made, and the fewer long-distance tours for the other purposes, particularly 

Personal Business. 

 One-person households tend to make fewer Business, Leisure, and Personal Business 

tours. 

 Households with the head age under 35 or over 65 tend to make fewer Commute, 

Business, and Personal Business tours. 

 The accessibility LogSums from the aggregate mode/destination models generally show 

the results one would expect. The greater the accessibility to zones within 50 miles, the 

fewer long-distance tours are made to zones greater than 50 miles away, all else being 

equal. There are also larger rural zones (typically counties) for which there are no other 

zones accessible within 0–50 miles. The dummy variable for these zones is negative, 

compensating for the fact that those zones do not have the negative effect from the 

accessibility LogSum. (In future versions of this model, it may also be useful to test 

density variables for the residence zone.) 

 The accessibility LogSum to all zones within the 50–150 mile range is positive and large 

for the Commute purpose, and positive with much smaller values for the Business and 

Personal Business LogSums. In contrast, it is the accessibility LogSum to all zones 

farther than 150 miles that have the positive effects for visit friends/relatives and Leisure, 

as those are the two purposes that tend to have the longest tours. The LogSum 

coefficients are typically about 0.04, which indicates some tour induction/suppression 

effect would be predicted in response to changes in accessibility, but this is not a major 

effect. 

 The next set of variables capture higher tour rates for certain purposes in certain months, 

relative to the “base” month of May. Leisure (vacation) tours are higher in the summer 

months and lower in the fall and winter, while Visit tours are lower in the winter and fall 

(but not in November or December, presumably due to holiday visits). Commute-tour 

rates are somewhat lower in the summer months, while Business tours are highest 

between February and March and September and October, and lowest in December. 
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 The final effects in the models are shown for the lag time between the travel day and the 

time the respondent took the survey. The greater the number of days before the survey, 

the lower the tour rates for all purposes, presumably due to recall bias. For most 

purposes, both logarithmic and linear variables are significant in combination, while for 

Commute, only a logarithmic variable was significant. In model application, these 

variables will not be applied, assuming that the tour rates reported for the day 

immediately prior to the survey are the most accurate (having the least recall bias). 

For the 33,000 or so household-days for which at least one long-distance tour was reported, there 

are about 2.3% where a second tour was also reported. As a result, a second model was estimated 

(Table 68) and used to predict what household-days for which one tour is predicted also make a 

second tour. (The number of household-days with three or more tours was negligible, so no more 

than two tours per day were modeled.) Compared to the main tour-generation and scheduling 

model in Table 67, there are fewer significant variables in the model of the second tour. One of 

the most significant variables for all purposes was a dummy variable indicating whether or not 

the first tour was for that same purpose, as most people who reported multiple tours tended to 

report them all for the same purpose. (Additional data checking may eliminate duplicate tour 

records in the data.) For all purposes except Commute and Leisure, the accessibility LogSum 

variables have a positive—and even stronger—effect for making a second tour. For Business and 

Leisure, higher income is related to making multiple tours in the day. Multiple Visit and Personal 

Business tours are related to the number of adults in the household, while multiple Commute 

tours are related to the number of workers in the household. In this model, the recall bias is only 

(marginally) significant for the Commute purpose, as there may have been a nonresponse bias 

against people reporting the same long-distance Commute multiple times. 

Duration of Stay 

The duration of stay model predicts which of the following four categories each tour falls into: 

 0 nights away (day tour, the base alternative with utility 0). 

 1–2 nights away. 

 3–6 nights away. 

 7+ nights away. 

This aspect of the tour is modeled because it may influence the amount of distance that can be 

traveled and/or the mode used (e.g., day tours will tend either to be short distance, or to go by air 

for medium distances, and are rarely for longer-distance ranges over 1,500 miles one way). (Note 

that in the MDCEV version of the tour-generation/scheduling model, the tour duration will also 

be determined by each household’s long-distance tour time budget, and will therefore be part of 

that model.) 
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Table 68: Household-Day Tour-Generation Model—Second Tour in the Day 

Tour Purpose Commute Business Visit F&R Leisure Pers. Bus. 

 Coeff. T-stat Coeff. T-stat Coeff. T-stat Coeff. T-stat Coeff. T-stat 

Base alt. is no tour in the day 

Constant -7.935 -14.5 -12.31 -6.0 -8.997 -8.5 -10.07 -7.6 -5.99 -6.4 

Same purpose as first 
tour 

3.751 9.6 3.930 11.3 1.473 10.2 2.20 12.3 1.487 10.5 

Mode/dest LogSum 0-
50 miles 

  -0.0579 -0.9 -0.0519 -0.9   -0.0742 -1.7 

Mode/dest no options 
0-50 miles 

  -0.621 -0.9 -0.764 -1.1   -0.859 -1.7 

Mode/dest LogSum 
50-150 miles 

  0.259 1.9     0.0637 0.7 

Mode/dest LogSum 
over 150 miles 

    0.3507 2.8     

HH no of adults     0.175 2.2   0.272 3.6 

HH no. of workers 0.356 1.5         

Log (income)   0.169 1.1   0.327 2.9   

Missing income data   2.10 1.2   3.556 2.6   

No. of days before 
survey 

-0.0235 -1.9         

Statistics 

No. of tours (% of 
HH-days) 

28 0.08% 127 0.38% 212 0.64% 199 0.60% 214 0.64% 

Observations 33,318          

Rho-squared (0 
coeff.) 

0.926          

Rho-squared 
(constants) 

0.093          
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The results of this model in Table 69 show that even for the tour purposes that tend to have the 

longest distances and durations (Visit and Leisure, over 40% of tours are day tours, only 6–8% of 

tours stay away from home for seven nights or more. Some results shown in Table 69 are 

detailed below: 

 Those with higher incomes tend to make longer tours away from home for all purposes, 

but particularly for Business and Leisure. 

 Larger households tend to make shorter tours for Business, Visits, and Leisure. 

 Those with a head of household age 65 or over tend to make fewer 1–2 night stays for all 

discretionary purposes, but make more 3–6 and 7+ night tours, presumably because they 

are not as constrained by weekday work schedules. 

 Those with head of household age under 35 tend to make more 1–2 and 3–6 night tours. 

 Those living in higher-density zones (based on the logarithm of jobs plus households per 

square mile), tend to make longer tours for all purposes except commuting. This may 

because they do not have to make as many long-distance day tours because they already 

have adequate opportunities within 50 miles, so they tend more to make the longer tours. 

 The discretionary purposes tend to be of shorter duration in the winter months (January 

through March), with the exception of Leisure tours, which may be more likely to be 7+ 

nights in the winter. 

 Visit and Leisure tours are more likely to be 3–6 nights in the summer months (June 

through August), and all purposes are more likely to be 7+ nights away in the summer. 

 During the holiday months (November through December), Leisure tours tend to be 

somewhat shorter in duration, but visit friends/relatives tours tend to be longer, with 

positive effects on both 3–6 and 7+ nights. 
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Table 69: Tour Duration of Stay Models 

Tour Purpose Commute 
 

Business 
 

Visit F&R 
 

Leisure 
 

Pers. Bus. 
 

 Coeff. T-stat Coeff. T-stat Coeff. T-stat Coeff. T-stat Coeff. T-stat 

Base alternative is day tour (0-nights) 

Alt = 1-2 nights 

Constant -2.01 -27.1 -5.15 -10.8 0.0366 0.9 -4.05 -14.5 -3.42 -8.9 

HH size   -0.038 -2.0 -0.0503 -4.4     

Log(income)   0.393 9.3   0.277 11.0 0.165 4.7 

Missing income   4.59 9.4   2.99 10.4 1.77 4.5 

HH head age 65+     -0.39 -8.4 -0.361 -8.1 -0.29 -4.4 

HH head age<35     0.338 8.8 0.173 4.6 0.477 7.6 

Log(res+emp density)       0.0904 10.0 0.0989 7.8 

Jan-Mar     -0.0831 -2.2 -0.108 -2.8 -0.333 -5.6 

Nov-Dec       -0.234 -5.5 -0.224 -3.3 

Alt = 3-6 nights 

Constant -6.91 -3.9 -6.89 -11.9 -2.12 -6.7 -6.77 -20.1 -4.52 -7.8 

HH size   -0.0922 -3.9 -0.139 -8.7 -0.0595 -4.6   

Log(income) 4.79 2.6 5.73 9.4 1.02 3.1 4.65 13.2 1.84 3.1 

Missing income 0.404 2.5 0.483 9.2 0.0888 3.1 0.418 13.5 0.149 2.9 

HH head age 65+     0.135 2.5   0.238 2.7 

HH head age<35     0.182 3.4   0.341 3.4 

Log(res+emp density)   0.0648 4.2 0.0695 6.6 0.179 16.5 0.142 7.6 

June-Aug     0.295 6.1 0.614 15.1   

Jan-Mar     -0.171 -3 -0.135 -2.5 -0.487 -5.2 

Nov-Dec     0.379 7.6 -0.176 -2.9 -0.306 -2.9 

Alt = 7+ nights 

Constant -3.99 -19 -8.83 -9 -2.46 -18.4 -9.4 -20.9 -6.76 -7.4 

HH size   -0.0936 -2.3 -0.195 -7.8 -0.0752 -4.3   

Log(income)   5.96 5.8   6.75 14.6 3.26 3.5 

Missing income   0.494 5.5   0.596 14.6 0.281 3.4 
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Tour Purpose Commute 
 

Business 
 

Visit F&R 
 

Leisure 
 

Pers. Bus. 
 

HH head age 65+     0.3 4.1 0.243 3.9 0.378 3 

HH head age<35     -0.213 -2.4     

Log(res+emp density)   0.146 5.6 0.134 8.6 0.169 12.5 0.0817 2.8 

June-Aug 1.13 3.5 0.302 2.8 0.562 8.4 0.661 12.2 0.295 2.7 

Jan-Mar       0.353 5.5   

Nov-Dec     0.359 4.8 -0.25 -3.0   

Statistics 

Total Observations 1933 % 9899 % 21922 % 26748 % 12235 % 

Away 0 nights 1543 79.8 5528 55.8 9005 41.1 12838 48.0 8228 67.2 

Away 1-2 nights 207 10.7 2423 24.5 8025 36.6 7352 27.5 2631 21.5 

Away3-6 nights 143 7.4 1498 15.1 3561 16.2 4234 15.8 989 8.1 

Away 7+ nights 40 2.1 450 4.5 1331 6.1 2324 8.7 387 3.2 

Rho-squared(0 coeff) 0.504  0.22  0.148  0.147  0.354  

Rho-square(constants) 0.007  0.013  0.014  0.024  0.015  
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Party Size 

The party-size model predicts the number of members (including nonhousehold participants) in 

the travel party. The base alternative is one person traveling alone, while the other alternatives 

are 2, 3, or 4+ persons for Commute and Business, and 2, 3, 4, 5, or 6+ persons for the other 

purposes. These differences exist because Commute and Business tours were rarely observed to 

have a party size greater than four. 

The model results, shown in Table 70, indicate the following: 

 By far, the largest positive effect, applied to all alternatives, is when the party size is 

equal to the household size, indicating that many tours are made by all household 

members. This effect is smallest for Commute and Business, but it is still significant. 

 Most purposes (except Business) have a counteracting negative effect when the 

household size equals the number of adults. This variable only has an effect when the 

household has children (otherwise it is identical to the previous variable), so it indicates 

that households with children are not as likely to have the adults travel without the 

children. 

 A higher income tends to result in tours with smaller party size for Business and 

Commute, but has no effect on the other purposes. 

 The more workers in the household, the smaller the party size for all purposes except 

Commute. This may be because one or more of the workers has to stay home and work. 

 In general, higher car ownership tends to increase party size for most purposes—

presumably because the marginal travel cost per person is lowest by car—but this effect 

does not appear to hold for the Business and Commute purpose. 

 For Business and Leisure, tours of longer duration away from home tend to have larger 

party sizes, but the opposite appears true for Visit and Personal Business tours. 

 Tours in the summer months tend to have larger party sizes for all discretionary purposes.
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Table 70: Tour-Party-Size Models 

Purpose Commute 
 

Business 
 

Visit F&R 
 

Leisure 
 

Pers.Bus. 
 

 Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 

All alternatives (base is Party size = 0) 

Party size = household size 0.127 2.39 0.594 24.40 1.870 118.03 1.390 103.90 1.100 54.79 

Party size = household adults -0.115 -2.36   -0.580 -28.70 -0.319 -17.49 -0.142 -6.07 

Alternative - party size = 2 

Constant 3.380 5.26 2.290 6.11 0.859 19.47 1.070 10.07 -0.086 -0.70 

Workers / Household size 0.941 8.25 -0.281 -4.78 -0.668 -15.09 -0.288 -5.62 -0.477 -8.59 

Log (Income) -0.549 -9.50 -0.232 -7.49       

Missing income data -5.810 -8.93 -2.650 -7.46       

HH has 1 vehicle   -0.697 -4.17   0.360 3.50 0.824 6.77 

HH has 2 vehicles 0.385 3.31 -0.857 -5.25   0.261 2.56 0.688 5.64 

HH has 3+ vehicles 1.040 9.25 -0.801 -4.89   0.457 4.46 0.805 6.59 

1 to 2 nights away   0.479 8.97 -0.240 -4.98 0.163 4.28   

3 to 6 nights away   0.351 5.28 -0.526 -8.97   -0.145 -1.95 

7 or more nights away   0.535 4.74 -0.586 -7.12   -0.372 -3.05 

Missing duration data     -0.738 -16.75 -0.409 -10.05 -0.465 -9.43 

Spring (Apr-Jun) -0.470 -3.22 0.116 2.31   -0.098 -2.77   

Summer (Jul-Sep) -0.434 -3.03       0.285 5.67 

Fall (Oct-Dec)   0.125 2.64 0.157 4.05 -0.234 -5.24 0.191 3.99 

Missing month data -0.380 -4.77 -0.297 -5.82     -0.259 -4.44 

Alternative - party size = 3 

Constant 2.880 2.29 4.730 7.87 0.075 1.32 0.697 11.16 -0.194 -2.68 

Workers / Household size     -1.010 -16.52 -0.411 -6.58 -0.545 -7.37 

Log (Income) 
-0.456 -3.90 -0.559 -

10.94 
      

Missing income data 
-6.070 -4.38 -6.520 -

11.11 
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Purpose Commute 
 

Business 
 

Visit F&R 
 

Leisure 
 

Pers.Bus. 
 

 Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 

HH has 1 vehicle -2.200 -5.83 -1.060 -4.06       

HH has 2 vehicles -1.370 -5.47 -0.758 -3.05   -0.191 -3.78 0.410 6.02 

HH has 3+ vehicles -1.100 -4.37 -0.845 -3.37   -0.227 -4.19 0.277 3.78 

1 to 2 nights away   0.569 6.40 -0.181 -3.18     

3 to 6 nights away   0.436 3.87 -0.623 -8.55     

7 or more nights away   0.509 2.57 -0.801 -7.36 -0.205 -2.90 -0.669 -3.76 

Missing duration data 
    -0.827 -13.71 -0.403 -8.58 -0.664 -

10.40 

Spring (Apr-Jun)         -0.274 -4.61 

Summer (Jul-Sep)   -0.345 -3.82 0.162 3.37 0.173 4.31 0.203 3.30 

Fall (Oct-Dec)   -0.204 -2.43 0.349 6.83 -0.228 -4.24   

Missing month data   -0.721 -7.76 0.283 3.94   -0.370 -4.57 

Alternative - party size = 4  

Constant 
12.400 13.62 4.120 7.77 0.000 0.01 0.343 2.28 -0.807 -

10.24 

Workers / Household size   -0.246 -2.31 -1.260 -18.40 -0.699 -10.96 -0.516 -5.99 

Log (Income) 
-1.380 -16.55 -0.549 -

11.17 
      

Missing income data 
-15.500 -16.31 -6.610 -

11.64 
      

HH has 1 vehicle -1.340 -6.77     0.316 2.13 0.261 3.11 

HH has 2 vehicles -1.960 -10.94 -0.390 -4.22   0.473 3.27 0.417 6.59 

HH has 3+ vehicles -2.980 -12.44 -0.467 -4.78   0.396 2.72   

1 to 2 nights away   0.563 6.51 -0.284 -4.86 0.157 3.39 0.209 3.06 

3 to 6 nights away   0.790 8.12 -0.689 -9.07 0.144 2.96   

7 or more nights away   0.880 5.38 -0.941 -8.11   -0.652 -3.22 

Missing duration data 
    -1.000 -15.44 -0.549 -10.25 -0.881 -

13.53 

Spring (Apr-Jun) 1.240 2.90     -0.097 -1.88   

Summer (Jul-Sep) 1.640 4.23 0.151 2.04 0.207 4.09 0.203 4.47 0.510 7.60 
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Purpose Commute 
 

Business 
 

Visit F&R 
 

Leisure 
 

Pers.Bus. 
 

 Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 

Fall (Oct-Dec) 2.280 6.31   0.428 8.01 -0.343 -5.78 0.132 1.89 

Missing month data 
1.130 3.43 -1.010 -

10.16 
0.339 4.31 -0.358 -5.04   

Alternative - party size = 5 

Constant 
        -0.300 -4.27 0.250 3.90 -1.560 -

13.39 

Workers / Household size         -1.640 -18.62 -1.260 -15.79 -1.200 -9.70 

Log (Income)               

Missing income data               

HH has 1 vehicle           -0.331 -4.57   

HH has 2 vehicles             0.452 4.12 

HH has 3+ vehicles             0.477 4.08 

1 to 2 nights away         -0.254 -3.55 0.144 2.32 0.430 4.49 

3 to 6 nights away         -0.687 -7.17 0.238 3.60   

7 or more nights away         -0.934 -6.22 0.166 1.95   

Missing duration data         -1.070 -12.69 -0.543 -8.39 -0.559 -6.34 

Spring (Apr-Jun)               

Summer (Jul-Sep)         0.232 3.58 0.362 7.20 0.653 7.17 

Fall (Oct-Dec)         0.272 3.97 -0.280 -4.14 0.303 3.11 

Missing month data         0.278 2.58     

Alternative - party size = 6+ 

Constant         -0.490 -5.99 0.349 5.58 -1.040 -9.99 

Workers / Household size 
        -2.170 -19.34 -1.100 -14.25 -1.150 -

10.39 

Log (Income)               

Missing income data               

HH has 1 vehicle               

HH has 2 vehicles             0.491 4.68 

HH has 3+ vehicles             0.750 6.96 
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Purpose Commute 
 

Business 
 

Visit F&R 
 

Leisure 
 

Pers.Bus. 
 

 Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 

1 to 2 nights away         -0.448 -5.11 0.109 1.79 0.358 4.01 

3 to 6 nights away         -0.912 -7.76 -0.190 -2.56 0.262 2.01 

7 or more nights away         -1.040 -5.75 0.264 3.32   

Missing duration data 
        -1.310 -12.27 -0.807 -10.85 -1.180 -

10.00 

Spring (Apr-Jun)               

Summer (Jul-Sep)         0.364 4.45 0.290 5.47   

Fall (Oct-Dec)         0.447 5.26 -0.229 -3.38 -0.231 -2.57 

Missing month data         0.393 2.77 -0.229 -2.23 0.348 2.62 

Statistics 

Total observations 8905  18985  31763  37097  19166  

Adjusted rho-square 0.56  0.34  0.30  0.22  0.21  
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Destination and Mode Choice 

After all of the national-level network zone-to-zone data were created and processed by all 

modes, the mode/destination choice models that had previously been estimated on the data from 

the California statewide model mode zones and networks and data from the 2013 California 

statewide survey were re-estimated using the national-level zones and network data and the 

combined data from the four long-distance surveys listed earlier. These models, using less-

detailed spatial data (roughly 4,500 zones for the entire United States vs. 5,700 zones just for 

California) have thus far not provided satisfactory estimates of time and cost coefficients, values 

of time, and other parameters. While work is continuing on refining those models, and on 

estimating CNL versions of those models, the approach used for the initial model application 

was simply to apply the mode/destination choice models estimated on the California statewide 

model data, while rescaling them and calibrating them to match the choice shares in the larger 

survey dataset. Table 71 gives the mode shares and distance-band distribution of the tours in the 

larger dataset, by tour purpose. Scale factors were applied to the utilities from the previous 

models, and additional mode-specific calibration constants and distance calibration terms, in 

order to match the observed shares fairly closely when the models are applied to the four-state 

estimation dataset. This work will be refined as the calibration and validation of the model 

system goes forward, as discussed in Chapter 6. 

Table 71: Mode-Choice and Distance-Band Distribution by Tour Purpose 

Distance-band Auto Bus Rail Air 

Business 

50-150 miles (1-way) 60.3% 0.4% 1.2% 0.2% 

150-350 miles (1-way) 16.5% 0.2% 0.6% 1.2% 

350+ miles (1-way) 4.7% 0.2% 0.1% 14.4% 

Commute 

50-150 miles (1-way) 80.9% 1.1% 9.8% 0.0% 

150-350 miles (1-way) 5.3% 0.4% 0.2% 0.0% 

350+ miles (1-way) 1.1% 0.0% 0.0% 1.3% 

Visiting friends and relatives  

50-150 miles (1-way) 59.6% 0.4% 0.5% 0.1% 

150-350 miles (1-way) 22.8% 0.2% 0.3% 0.3% 

350+ miles (1-way) 8.5% 0.1% 0.1% 7.2% 

Leisure 

50-150 miles (1-way) 63.0% 1.7% 0.5% 0.1% 

150-350 miles (1-way) 21.3% 0.8% 0.1% 0.2% 

350+ miles (1-way) 6.9% 0.2% 0.1% 5.0% 

Personal business 

50-150 miles (1-way) 71.0% 1.1% 0.8% 0.0% 

150-350 miles (1-way) 18.2% 0.6% 0.2% 0.2% 

350+ miles (1-way) 4.9% 0.2% 0.0% 2.7% 
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Software Performance 

The initial implementation, using the modified disaggregate structure of Figure 47, was 

programmed in Delphi Pascal, which is an efficient language similar to C++. Running on a 

desktop computer and using only a single processor and about 4 GB of RAM, the application 

simulates long-distance tours for one representative day in all 12 months of the year for the full 

synthetic population of 107 million households in a run time of 45 minutes. That run is shown as 

Run 1 in Table 72. (This run produced about 75 million individual tour records, with an average 

expansion factor of about 30, or about 2.42 billion tours when expanded.) Therefore, run time 

does not appear to be a limiting factor with the current structure, although it may become so if 

more complex model components or structures are added into the system. 

One way to expedite the simulation is to subsample households. For example, Run 2 in Table 72 

uses a 1 in 10 random sample of households (simulating about 10.65 million individual 

household records, but about the same number of expanded households), which reduces the run 

time to approximately eight minutes. Run 3, using a 1 in 100 subsample (1.06 million households 

records) takes roughly four minutes to run. A potential problem with the subsampling approach 

is that there will be fewer O-D pairs that are represented in the forecast. The bottom of the Table 

72 shows that when a 1 in 100 sample is used, only 459,000 zone pairs are represented on the 

output tour records, or an average of only about 100 different destinations for each of 

approximately 4,500 origin zones. This is only about one tenth of the number of zone pairs that 

are covered when the full synthetic population is used. 
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Table 72: Statistics from Example Model Application Runs 

Example Run 1 2 3 4 5 

Sampling rate Full 1 in 10 1 in 100 1 in 100 1 in 10 

Months simulated 12 12 12 12 12 

Day simulated/month 1 1 1 All All 

Households simulated 106,419,862 10,641,986 1,064,198 1,064,198 10,641,986 

Expanded households 112,589,291 112,588,010 112,548,700 112,548,700 112,588,010 

Tour records output 75,229,535 7,521,817 752,488 22,875,293 228,799,586 

Expanded tour records out 2,421,098,862 2,420,381,460 2,422,324,200 2,420,152,600 2,41,349,490 

Tour records output/HH 0.71 0.71 0.71 21.50 21.50 

Expanded tours per HH 21.50 21.50 21.52 21.50 21.51 

Unique tour O-D zone 
pairs 

4,094,744 1,705,799 459,045 2,710,514 5,647,454 

Run time 45 minutes 8 minutes 4 minutes 12 minutes 95 minutes 

An efficient way of generating more tours and more spatial variation is to run the tour-generation 

model separately for each day of each simulated month, rather than just running it for one 

representative day in each month and expanding the tours to represent the entire month. This 

means that the tour-generation model is run 365 times for each simulated household, once for 

each day of the year. Run 4 is identical to Run 3, except that it uses the approach of running the 

tour-generation model for each day of each month. Compared to Run 3, the number of tour 

records generated is about 30 times larger (22.9 million tour records), and the number of 

different O-D pairs represented is about six times larger (2.7 million distinct O-D zone pairs). 

The run time only increases from 4 to about 12 minutes. Finally, Run 5 uses this approach with a 

1 in 10 sample of households, producing 228.8 million output tour records, and covering 5.65 

million different O-D pairs (about 1,250 different destination zones for each of the 4,500 origin 

zones. The run time is approximately 95 minutes, which is lower than expected for a 

microsimulation of long-distance travel in the United States. 

One could also use the approach of Runs 4 and 5 with the full synthetic sample. At that point, 

however, the program would be generating over 2 billion individual tour records, and would take 

approximately 10 times as long as Run 1, or 15 hours. Not only would an output file with over 2 

billion records be difficult to work with in analyzing the results, but it would require over 100 

GB of disk space. It is also not clear that simulating 2.2 billion tours would provide drastically 

different expanded output versus simulating over 220 million tours, which is already a large 

number. There are also programming options to store and access the output tour records more 

efficiently using binary file formats, although that would make the output more difficult to use 

for general users as opposed to using a standard text-based output format. 

In the near future, the model application code will be translated into C#, which is a more 

common modern language. C# allows relatively simple programming of multithreading across 

multiple processors, which will help to minimize run time, and also allows efficient management 

of memory to use larger amounts of RAM when available. A GUI can also be programmed to 

make use of the model system fairly simple for novice users.
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CHAPTER 6.  PERFORMANCE METRICS 

For the demonstration of the national long-distance passenger travel demand forecasting model, 

a sample of performance metrics have been developed to show what types of data may be 

derived and how these may be interpreted for planning studies. These results are not based on a 

calibrated or validated model and do not, therefore, represent model output and should not be 

interpreted as accurate or final results. 

The demonstration model was run initially to simulate travel for the month of October 2010; a 

sample of model results has been produced. The simulation model can also produce outputs for 

every month in the year, which can then be aggregated to produce annual results. The annual 

scheduling models described in Chapter 3 will simulate tours across the entire year in a more 

simultaneous manner, rather than simulating each month separately. 

6.1    Travel Metrics 

Modes 

Modal performance metrics support a wide variety of planning activities and are used to evaluate 

modal investments. These can be produced by state, region, corridor, or zone and provide 

consistent evaluations of modal investments across the United States. Mode shares for person-

tours and person-miles traveled are presented in Table 73. The auto mode has the highest mode 

share for both person-tours and person-miles traveled, but also tends to have more and shorter 

distance tours, resulting in a reduction in mode share for person-miles traveled. As expected, the 

person-miles traveled for the air mode increase significantly over the person-tours mode share 

for air. Bus and rail person-miles traveled mode shares also increase over person-tours mode 

shares for these modes, but to a lesser degree than air. 

Table 73: Person-Tours and Person-Miles Traveled by Mode for October 

Mode Person-Tours Tour Shares 
Person-Miles 

Traveled 
PMT Shares 

Auto 162,942,200 89.3% 110,656,651,400 78.5% 

Bus 2,548,200 1.4% 2,366,378,800 1.7% 

Rail 3,031,800 1.7% 2,532,631,800 1.8% 

Air 14,030,600 7.7% 25,391,824,100 18.0% 

Table 74 presents cost, travel time, and tours by mode as a function of distance, tours, and 

households, respectively. These metrics allow a more direct comparison across modes of cost, 

time, and travel. Average cost per mile metrics show that air is the most expensive mode, 

approximately three times as expensive as rail and five times as expensive as auto. This cost is a 

tradeoff with average travel time by mode, so air has the fastest travel times per tour. (Air, rail, 

and bus times do not include access and egress times to/from the station or airport, or the time in 

the airport or station waiting for the first departure, but they do include an estimate of transfer 

time for routes). Bus and rail tend to be competitive for longer tours, so their travel times per tour 

are longer than either auto or air. Travel times are reported as tours, so auto tours average 360 
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minutes (6 hours), or three hours each way. In October 2010, households took an average of 1.45 

tours by auto; only 1 in 8 households took an air tour; only 1 in 33 households took a rail tour; 

and only 1 in 50 households took at bus tour. 

Table 74: Average Cost, Travel Time, and Tours by Mode for October 

Mode 
Average Cost 

per Mile 

Average Time 
per Tour 
(minutes) 

Average Tours 
per Household 

Auto $0.15 360 1.45 

Bus $0.16 581 0.02 

Rail $0.26 523 0.03 

Air $0.76 192 0.12 

Tour Purpose 

The purpose of activities undertaken on a long-distance tour is a significant driver for travel 

behavior and is therefore important when trying to understand the source of long-distance travel 

on the national scale. Table 75 presents the person-tours and person-miles traveled for October. 

In October, personal business was the largest portion of travel, with significant person-tours for 

visiting friends and relatives and leisure/vacation purposes. Leisure/vacation and employer’s 

business tours are longer tours, evidenced by the increase in person-miles traveled shares for 

these purposes, and personal business tours tend to be shorter tours. 

Table 75: Person-Tours and Person-Miles Traveled by Purpose for October 

Tour Purpose Person-Tours 
Tour 

Shares 
Person-Miles 

Traveled 
PMT Shares 

Personal Business 73,420,400 40.2% 44,028,726,500 31.2% 

Visit Friends and 
Relatives 

39,906,300 21.9% 27,913,280,400 19.8% 

Leisure/Vacation 37,534,800 20.6% 37,469,228,800 26.6% 

Commute 11,931,900 6.5% 9,865,204,400 7.0% 

Employer's Business 19,759,400 10.8% 21,671,046,000 15.4% 

Table 76 presents cost, travel time, and tours by mode as a function of distance, tours, and 

households, respectively. Average cost per mile metrics show that employer’s business is the 

most expensive purpose, but only slightly higher than personal business. Leisure/vacation is the 

lowest cost per mile, possibly because these tours tend to be longer and travelers may be cost 

conscious for this type of discretionary travel. This cost is a tradeoff with average travel time by 

mode, so air has the fastest travel times per tour. 
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Table 76: Average Cost, Travel Time, and Tours by Purpose for October 

Tour Purpose 
Average Cost 

per Mile 
Average Time per 

Tour (minutes) 
Average Tours per 

Household 

Personal Business $0.29 338 0.65 

Visit Friends and 
Relatives 

$0.23 388 0.35 

Leisure/Vacation $0.20 367 0.33 

Commute $0.22 312 0.11 

Employer's Business $0.34 345 0.18 

Destinations 

Destinations are an important aspect of national long-distance travel. These are represented in 

this context by regions established by the US Census Bureau,
15

 as shown in Figure 48. The 

simulation data output from the long-distance model is available to aggregate in many ways, so 

these regions are just one example of how destinations can be aggregated for reporting. 

Figure 48: Regions in the US Census 

 

                                                 

15
 The Census Bureau refers to these regions as Divisions, with larger aggregations of these Division as Regions. 
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Figure 49 shows the total person-tours in October, by region. In this example, the South Atlantic 

region has the highest travel demand for long-distance travel and New England has the lowest 

travel demand. This travel demand may vary by month, but it is also likely affected by a 

combination of density of attractions and population. 

Figure 49: Total Person-Tours in October, by Region 

 

Table 77 presents an O-D matrix of person-tours in October to and from each region across the 

United States. This matrix demonstrates that the vast majority of long-distance travel in the 

United States is within a single region, with the Pacific region retaining the highest percentage of 

long-distance travel (94%) and the East-South Central region retaining the least (50%). 

Table 77: Region-to-Region Distribution of Person-Tours in October 

Home 
Destination 

Region 

New 
England 

Mid-
Atlantic 

East-
North 

Central 

West-
North 

Central 

South 
Atlantic 

East-
South 

Central 

West-
South 

Central 
Mountain Pacific 

New England 57% 39% 1% 0% 4% 0% 0% 0% 0% 

Mid-Atlantic 13% 62% 7% 0% 17% 1% 0% 0% 0% 

East-North 
Central 

0% 5% 77% 7% 4% 6% 0% 0% 0% 

West-North 
Central 

0% 0% 19% 68% 1% 3% 6% 2% 0% 

South Atlantic 1% 10% 3% 0% 78% 7% 1% 0% 0% 

East-South 
Central 

0% 1% 15% 3% 23% 50% 8% 0% 0% 

West-South 
Central 

0% 0% 1% 5% 1% 7% 84% 2% 0% 

Mountain 0% 0% 0% 3% 0% 0% 4% 73% 20% 

Pacific 0% 0% 0% 0% 0% 0% 0% 6% 94% 
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Travel Time 

Travel times for long-distance passenger travel offer a means to understand accessibility of 

households across the United States. In areas where there are ample opportunities for Business 

and Leisure activities, one would expect travel times per tour to be less than in areas where there 

are fewer opportunities nearby for these activities. Figure 50 presents the travel time per tour by 

origin zone and demonstrates that shorter travel times per tour are associated with higher-density 

areas and more opportunities for activities, and longer travel times per tour are associated with 

lower-density areas and fewer opportunities for activities. As expected, total travel time per 

person, presented in Figure 51, also shows similar trends. That is, individuals living in areas 

where there are more opportunities for activities spend relatively less time making long-distance 

tours.  

Figure 50: Travel Time per Tour by Origin NUMA 
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Figure 51: Travel Time per Person by Origin NUMA 

 

Table 78 presents the average travel time from region to region in October. Some O-D pairs do 

not have any person-tours represented and therefore have no travel times in this table (e.g., 

Pacific region to New England region). While there is some correlation between higher travel 

demand and lower travel times, there are also some destinations that have a higher demand with 

relatively long travel times. For example, the Mid-Atlantic region is closer to New England, but 

has a higher demand to the South Atlantic region. (Note that this example simulation was 

performed for just one day, on a 1 in 100 subsample of households. A more extensive simulation 

that simulated more days and covered more O-D pairs, as discussed earlier, avoids the issue of 

zero tours in some cells.) 
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Table 78: Average Travel Time from Region to Region in October 

 
New 

England 
Mid-

Atlantic 

East-
North 

Central 

West-
North 

Central 

South 
Atlantic 

East-
South 

Central 

West-
South 

Central 
Mountain Pacific 

New England 226 347 630 473 360 426 
 

  

Mid-Atlantic 335 262 525 727 391 813 447   

East-North 
Central 

647 477 329 507 621 522 648 332 671 

West-North 
Central 

459 1401 491 364 506 635 531 768 
 

South Atlantic 469 393 618 823 321 499 686   

East-South 
Central 

1009 871 498 591 471 326 522 451 666 

West-South 
Central 

539 460 763 567 643 524 352 509 573 

Mountain  514 546 661 524 
 

603 353 478 

Pacific    545   435 442 266 

Demographics 

Households that are larger or smaller in size tend to travel less in terms of overall travel and 

distance, as shown in Figure 52. The largest difference in travel metrics is seen in one-person 

households. 

Figure 52: Long-Distance Travel Metrics in October, by Household Size (Average Tours 

per Household) 
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Figure 53: Long-Distance Travel Metrics in October, by Household Size (Average Person 

Miles Traveled per Household) 

 

6.2    Environmental, Economic, Livability, Safety Metrics 

The majority of environmental, economic, livability, and safety metrics require an additional 

method or model that processes the travel outputs from the long-distance passenger travel 

demand model. These additional methods have not been deployed for this demonstration project, 

but they include air quality models, economic impact, benefit-cost analyses, safety models, and 

health impact models. 

Distribution of Miles Traveled 

One travel metric that provides insight into these additional metrics is the distribution of person-

miles traveled by mode. Figure 54 through Figure 57 present the distribution of person-miles 

traveled in October for auto, air, rail, and bus, respectively. The number of households traveling 

by rail and bus modes peak at a distance of approximately 200 miles, and the number of 

households traveling by air modes peak at a distance of approximately 400 miles. This is in 

contrast to the number of households traveling by auto, which peaks at the minimum distance of 

approximately 100 miles. These person-miles traveled represent a household’s travel over one 

full month and could include multiple tours and/or multiple travelers making the same tour. 
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Figure 54: Distribution of Person-Miles Traveled in October, by Auto 

 

Figure 55: Distribution of Person-Miles Traveled in October, by Air 
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Figure 56: Distribution of Person-Miles Traveled in October, by Rail 

 

Figure 57: Distribution of Person-Miles Traveled in October, by Bus 

 

Party Size 

There are more tours per household undertaken by single travelers, as shown in Figure 52, but 

parties of two or four travelers covered more miles than single travelers in October. 
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Cost 

Cost is a useful means to understand the economics of travel demand and the potential for 

pricing policies to be effective. Figure 58 presents the average tour cost per mile by origin state. 

The higher costs per mile are in the Northeast (although Vermont, New Hampshire and 

Pennsylvania are lower cost) and in California. 

Figure 58: Average Tour Cost per Mile, by Origin NUMA 

 

6.3    Equity Metrics 

The equity of public expenditures on transportation investments is an increasing concern for 

public agencies. There is a high correlation between aspects of travel and household income, so 

this is a useful metric to understand equity of a particular investment. Table 79 shows an increase 
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in average tours per household with higher-income groups; this has a logarithmic relationship. 

The average person-miles traveled per household also increases with household income; this 

relationship is linear. The average cost per mile also increases with household income, although 

it is relatively flat for low- and medium-income households before it increases. Average travel 

time per tour decreases with household income, although only for households with more than 

$80,000 in annual household income. 

Table 79: Long-Distance Travel Metrics in October, by Household Income 

Average 
Household 

Income 

Average Tours 
per Household 

Average Person-
Miles Traveled 
per Household 

Average Cost per 
Mile 

Average Travel 
Time per Tour 

(minutes) 

$0-14,999 0.93 905 $0.18 358 

$15,000-24,999 1.23 945 $0.17 363 

$25,000-34,999 1.4 1,008 $0.19 357 

$35,000-44,999 1.51 1,005 $0.19 351 

$45,000-59,999 1.67 1,239 $0.24 361 

$60,000-99,999 1.85 1,368 $0.24 361 

$100,000-149.999 2.11 1,734 $0.35 346 

$150,000 and over 2.23 1,812 $0.40 323 
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CHAPTER 7.  DATA RECOMMENDATIONS 

This chapter describes the types of data that—under the ideal conditions—would be available to 

support a national Long-Distance Passenger Travel Demand Modeling Framework. The main 

types of data considered here include the following: 

 Long-distance travel survey data (for model estimation and calibration). 

 Sociodemographic data (for creation of synthetic population and long-term modeling). 

 Land-use and employment data (for use as attraction variables in model estimation and 

application). 

 Mode-specific network-based data (for use as impedance variables in model estimation 

and application). 

 Aggregate demand and flow data (for model validation). 

For each type of data, the existing data sources considered for model estimation and the type of 

information currently available are discussed. Also discussed are limitations of existing data (if 

any) and the type of data that would be available in the ideal situation. In addition, ideal data are 

compared to existing data, and, when relevant, recommendations are provided for obtaining data 

that is closer to the ideal. 

7.1    Long-Distance Travel Survey Data 

Existing Datasets and Their Limitations (If Any) 

Currently, the most significant data limitation is the lack of survey data on actual long-distance 

tours and trips, which would be used for estimating the models that are recommended for the 

long-distance framework. Table 80 provides a comparison between the key characteristics of 

existing long-distance travel survey datasets and an ideal dataset. The table indicates that an ideal 

data source would sample residents of every state and region in the United States, and would 

record one full year of long-distance travel for each household, so that detailed models of 

scheduling and seasonality could be estimated. It would also include sufficient geographic detail, 

at the Census Tract level, or finer, so that details on accessibility and attractiveness of various 

destinations and LOS by competing modes can be used as explanatory factors in modeling. In 

addition, it would include sufficient temporal detail to model the peak periods of travel, in terms 

of periods of the day and week, and specific weeks and months of the year. 

Currently, the 1995 ATS is the only domestic survey that contains the first two of these key 

attributes (geographic and temporal coverage), but it does not contain the last two (geographic 

and temporal detail). The more-recent CHTS long-distance data provide adequate spatial detail 

and nearly adequate temporal detail, but these data are only for residents of one state, and only 

for an 8-week retrospective period. None of the available surveys listed in Table 80 meet all key 

criteria. 
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Table 80: A Comparison between an Ideal Dataset and Existing Datasets 

Characteristic Ideal dataset 

Existing datasets 

1995 ATS 2001 NHTS 2003 Ohio 
2004/2009 
Michigan 

2010 
Colorado 

2012 California 

Geographic 
coverage/sample area 

Entire US Entire US Entire US Entire state Entire state 

NFRMPO, 
DRCOG, 

PPACG, and 
PACOG MPO 

regions 

Entire state 

Temporal coverage/tour 
reporting period  

Entire year Entire year 4 weeks 

Phase I and II: 2 
weeks, 

Phase III: 4 
weeks 

3 months 2 weeks 8 weeks 

Geographical resolution 
of travel data 

Census Tract 
or finer 

Metropolitan 
area/state 

Metropolitan 
area/state 

Latitude and 
longitude 

Latitude and 
longitude 

Latitude and 
longitude 

Latitude and 
longitude 

Temporal resolution of 
travel data 

Date and 
nearest hour 

Quarter Date 
Departure/arrival 

date and time 
Departure/arrival 
day of the week 

Date 
Departure date 

and time 

Temporal 
immediacy/range of trip 
recall period  

Real time 
(GPS) or very 
recent recall 

Approximately 
3 months 

4+ weeks 

Phase I and II: 
2+ weeks, 

Phase III: 4+ 
weeks 

3+ months 2+ weeks 8+ weeks 
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Characteristic Ideal dataset 

Existing datasets 

1995 ATS 2001 NHTS 2003 Ohio 
2004/2009 
Michigan 

2010 
Colorado 

2012 California 

One-way trip length 
All trips of 50+ 

miles 
All trips of 
100+ miles 

All trips of 50+ 
miles 

All trips of 50+ 
miles 

All trips of 100+ 
miles 

All trips of 
50+ miles 

All trips of 50+ 
miles 

Tours reported for… 
Entire 

household 
Entire 

household 
Entire 

household 
Entire 

household 
Entire 

household 
Entire 

household 
1 

person/household 
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Table 80 (cont.): A Comparison between an Ideal Dataset and Existing Datasets 

Key characteristic 
Ideal 

dataset 

Existing datasets 

1995 ATS 2001 NHTS 
2001-2003 

Ohio 
2004/2009 
Michigan 

2010 
Colorado 

2012 California 

Selected tour details: 
 Purpose, 
 Main mode, 
 Access/egress mode/stations, 
 Length of stay, 
 Party size and composition, 
 And, intermediate destinations 

 

 

 

 

 

 

 

 

 

 
Mode only 

 
Limited 

 

 

 

 
Mode only 

 
Limited 

 

 
Excl. commute 

 
X 

 (Phase III only) 

 
X 

 

 

 
X 
X 
X 
X 

 

 

 
Mode only 

 
Limited 

X 

 

 

 
X 
X 

Limited 

X 

Selected sociodemographic details: 
 HH size and composition, 
 Household/person income, 
 Car ownership 
 Age, 
 Employment status, 
 And, Usual work location 
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Another key characteristic of the existing long-distance surveys that is of concern is temporal 

immediacy/trip recall period. Except for the 2003 Ohio Phase III survey, all of the long-distance 

household surveys in Table 80 are retrospective, with recall periods ranging from 2 weeks to 

more than 3 months. In general, a long-distance survey with a relatively long recall period is 

likely to underrepresent “short” long-distance trips and underestimate overall trip rates. This 

relationship between the temporal immediacy of trip reporting and trip rates is also indicated by 

Figure 59, which presents trip rates by purposes and retrospective weeks for the CHTS data. The 

figure shows that a longer recall period results in a smaller trip rate, regardless of trip purposes. 

Figure 59: Average Tours per HH-Week by Purpose and Retrospective Week (Data 

Source: 2012 CHTS) 

 

Table 80 also shows that none of the existing household surveys collect detailed tour information 

that are necessary to fully capture individuals’ long-distance travel behavior. However, almost all 

the surveys collect tour information for the entire household along with relevant household- and 

person-level sociodemographics. 

There was a small sample survey conducted for research purposes in 2013 that contains much of 

the recommendations for data collection in this study. This is a 12-month, long-distance travel 

survey of 1,200 participants. The Longitudinal Study of Overnight Travel (LSOT) was 

conducted monthly online between February 2013 and January 2014. The goal was to measure 

planned and executed overnight trips for all purposes by individuals over age 24 years. While 

each monthly survey focused on planned and completed overnight trips, the introductory survey 

data, asked about participation in long-distance trips of all types. Respondents described how 
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often they make a trip for work or leisure/personal reasons that is: 1) overnight; 2) includes air 

travel; 3) includes intercity train travel (e.g., Amtrak); 4) includes intercity bus travel (e.g., 

Greyhound, Megabus); and 5) includes an international destination. This survey could be 

evaluated to understand survey procedures, attrition, or other data challenges with collecting data 

over a 12-month period. 

Recommendations 

The research team recommends that the Federal government conduct a new long-distance travel 

survey that meets the criteria described in Table 80. Such a survey is most likely to be successful 

using passive data collection from respondents’ smartphones. Although survey technology using 

smartphones is under development, it has not yet been used for a major household travel survey 

in the United States.  There are a number of reasons why it may be particularly useful and 

feasible for surveys of long-distance travel. 

 Because long-distance trips are of long duration and not as frequent as shorter trips, the 

respondent’s phone does not need to be monitored and tracked for location continuously, 

as it would be for an urban trip diary survey that collects all trips and activities. For 

example, it may be adequate to check the phone’s location just once every few hours to 

see if it has reached a new location that is more than 50 miles from the home location or 

the previous long-distance stop location. (This discussion assumes that the respondent has 

installed a survey application on her or his phone that has access to the phone’s location 

services—GPS, cell, and possibly wireless—whenever the phone is turned on, and has 

given permission to monitor her or his location. Because there is not a need to know 

about local trips within 50 miles of their home, data points within that range do not need 

to be recorded, which might ease respondents’ privacy concerns, and reduce the need for 

data storage. 

 Whenever respondents reach a (new) long-distance trip destination, the survey 

application can automatically prompt them to answer a number of related questions, 

regarding travel purpose, party size, mode of travel, and other key questions. Questions 

related to location, date and time of travel, and duration of stay are not as critical, because 

that information is recorded automatically from the phone location trace data. (When the 

person is observed in the course of a long-distance tour, the application could 

automatically switch to monitor the location somewhat more often than otherwise.) 

Questions regarding each long-distance trip (identified back to the respondent by place 

and time information) can be “queued” and the respondent prompted periodically until 

the questions are answered. (The application could also check for the motion of the phone 

before asking questions, so as not to prompt respondents to answer questions when it 

appears that they may be driving.) 

 Respondents are not likely to forget to bring their phones on long-distance trips, and are 

likely to have battery power for at least some of the time at their destination location. 

Thus, two of the most common reasons for missing trips in an urban passive GPS 

survey—leaving the phone/device at home or running out of battery life—would not be 

as large of an issue for long-distance surveys. 
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 With a passive data collection strategy like this, participating in the survey for an entire 

year does not entail as much respondent burden as with a diary-based or retrospective 

recall-based survey of an entire year (such as 1995 ATS). It may be an issue that many 

respondents will replace or lose their smartphone within the period of one year, but that 

would simply require that respondents install the same survey application on their new 

phones. It is also important to note that only some of the models in this framework (i.e., 

the scheduling models for nonbusiness travel) require a full year’s worth of data from 

each respondent. This means that the data provided by respondents who do not participate 

for one full year will still be useful for modeling several aspects of long-distance travel. 

 It would be possible to ask each adult in the household to install the same survey 

application once a household is recruited to participate, helping to ameliorate the issue of 

missed trips that are made separately from other household members. The survey 

application could be intelligent enough to recognize when two or more phones from the 

same household are taking part in the same trip, and to ask questions about that trip of 

only one of the participants. 

 Since 56% of adults in the United States own a smartphone (Pew Center, 2013), it would 

be possible to provide a small subsample of such respondents with a smartphone in order 

to take part in the survey. (The ability to make calls using the phone can be disabled in 

order to reduce the cost of providing the phone.) Smartphone ownership is increasing 

rapidly over time, so this will be less of an issue in the future, but it will nevertheless still 

be important to include nonowners in order to avoid obtaining a biased sample 

(especially as there is likely to be a correlation between smartphone ownership and the 

propensity to make long-distance trips). 

 It would be important to also recruit a subsample of university students living away from 

home (either in on- or off-campus housing). University students tend to generate many 

long-distance trips on their visits to parents and relatives, and they are typically 

underrepresented in most household travel surveys. Once permission is obtained, it can 

be cost effective to recruit students through university e-mail systems. 

 Another special population that may be worth sampling separately are frequent business 

travelers, who may be difficult to recruit through standard methods because they are less 

likely to be at home. Such travelers could possibly be recruited via their employers (i.e., 

contacting a sample of companies that generate such travel). 

It would also be important to recruit a sample of international visitors to the United States as they 

both make domestic long-distance trips within and have distinct travel preferences (e.g., mode 

choices) from United States residents. The smartphone-based approach may be less feasible for 

an international visitor sample due to the difficulty of recruiting them and the possibility of high 

costs of using their phones. A simpler option may be to interview such respondents at airports 

when they are departing, asking them relevant questions about trips made while visiting the 

United States. It is expected that an application of this type could be developed and implemented 

successfully within the next two or three years, providing long-distance data at the same or less 

cost as past long-distance surveys. As with household travel surveys of any type, there could still 

be a significant cost to recruit the sample to take part in the survey. 
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A large national survey of this type would allow re-estimation of all of the types of models 

proposed in our long-distance model framework. A sample size of at least 50,000 households 

seems necessary to cover the variety of demographics and accessibility across the entire country. 

This would be comparable to the size of the NHTS base sample and the recent California 

statewide household travel survey. 

7.2    Sociodemographic Data 

Existing Datasets and Their Limitations (If Any) 

This section focuses on sociodemographic data that were required to generate synthetic 

population for all 50 states and the District of Columbia. For this project, a synthetic-population-

generation exercise was undertaken at the Census Tract level. While it would have been 

preferable to perform the synthetic-population-generation process at the most disaggregate level 

of spatial resolution for which data are available (such as Census block group), such an effort 

would have involved generating synthetic population for over 210,000 Census block groups 

instead of over 70,000 Census Tracts, increasing model run time considerably. Thus, considering 

the tradeoff between gain in prediction accuracy and increase in computational time, applying a 

Census Tract-level spatial resolution to synthesize national population was determined to be a 

reasonable compromise. 

Open-source software, PopGen, was used in this project to generate population in permanent 

households and noninstitutionalized group quarters. For this portion of the process, 2011 ACS 5-

year estimates summary file and PUMS file were used. The ACS datasets provided a rich source 

of information that allowed the research team to identify a set of largely uncorrelated 

dimensions/control variables that are generally considered key determinants of long-distance 

travel demand and would adequately capture the heterogeneity of the population. 

By using current population synthesis methodologies, and software such as PopGen, it is already 

possible and quite efficient to create a full, representative base-year population for the entire 

United States at the Census Tract level. However, a method to create a similar synthetic 

population for a forecast year has not yet been determined, although population evolution is 

presented as a possibility in the next section. 

Recommendations 

PopGen can create a synthetic population for a future year if forecasts of the key 

sociodemographic variables are available at a reasonable geographic level. For the entire 

country, however, it is not likely that forecasts will be available for every key variable for every 

state, and what forecasts are available may only be available at county or state level, rather than 

the Census Tract level. It could therefore be challenging to satisfactorily compile forecasts of all 

of the input variables. 

An alternative to this method would be to develop a “demographic evolution model” to begin 

with the base-year population and evolve each household over time to simulate events such as 

births, deaths, marriages, divorces, children “leaving the nest,” workers entering and leaving the 

workforce, and people moving to other locations (perhaps including foreign immigration and 
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emigration). A variety of such models have been developed (Kazimi, 1994), (Sundararajan, 

2003), and (Transportation Research Board, 2014 (forthcoming)) in the past, although none of 

them are yet used regularly in a transportation planning context in the United States. 

The most challenging part of developing such a model is to predict net migration between 

different areas of the country, and what types of households will most likely move between what 

types of new locations. The purely demographic transitions (e.g., births, deaths, household 

formation, etc.) can be observed from panel datasets, such as the Panel Survey on Income 

Dynamics (University of Michigan, 2013). There are less data available on migration, however. 

Although the Census has a great deal of data on net in-migration rates and out-migration rates for 

different geographies, it does not provide much detail regarding where people have moved from. 

However, it may be possible to use such marginal data to estimate a full migration origin-

destination matrix, using similar matrix estimation methods as are used to approximate trip O-D 

matrices in transportation planning. 

One additional issue are the data available on international visitors. It may be possible to obtain 

reasonably accurate data on the number of visitors from different countries who are arriving at 

different airports during each season of the year. For example, such data are available in an 

extended, nonpublic version of the DB1B air ticket database that may be made available for 

federally funded research projects. However, it is not likely that one can obtain reliable 

sociodemographic data, such as household income or household size, for foreign visitors. For 

this reason, any models estimated to represent the long-distance travel behavior of foreign 

visitors while in the United States should avoid including variables that require such 

sociodemographic details. 

7.3    Land-Use and Employment Data 

Existing Datasets and Their Limitations (If Any) 

Census Tracts were also used as the spatial units for summarizing land-use and employment 

data. National-scale surveys and data collection efforts listed in Chapter 3 were good sources of 

land-use data. The research team was able to assemble the relevant land-use information from 

these sources with relatively modest efforts. On the other hand, the LEHD database, which is the 

primary source of employment data for the current study, has several limitations: 

 Massachusetts is yet to join the LEHD program. Thus, employment data are not available 

for this state. 

 No employment data are available for uniformed military personnel, self-employed 

individuals, sole proprietors, railroad workers, and workers who are exempt from the 

Federal/state unemployment insurance laws. Areas (specifically small geographical 

areas) with a relatively high concentration of these excluded groups of workers may 

require careful consideration. 

 Employers with multiple work sites/offices are not required by law to report actual work 

location of employees (the only exception is Minnesota). As a result, the LEHD data may 

contain inaccurate work location information and show employees located only at 

primary employer addresses. 
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 The data are subject to noise infusion by the Census Bureau to meet disclosure avoidance 

requirements, so values in the data are perturbed from actual values. 

Employment data available from the BLS QCEW dataset was used for Massachusetts. This 

source provided data at a coarser county-level geographical resolution. 

Recommendations 

As indicated previously, the data already available at the national level support the typical type 

of land-use attraction variables used in most travel demand models. The Census and ACS data 

provide information on numbers of households and persons and key population distributions, 

while the LEHD data provide suitable attraction employment for various categories—even 

providing 3- or 4-digit NAICS classifications for certain types of employment that are geared 

toward serving tourists and visitors. There are also data available on the amount of land area in 

public parks, including national, state, and local parks. While one could imagine more direct 

measures of attraction for some types of nonresidential visitors (e.g., number of hotel/motel 

beds), the related measures of employment are a good proxy for this, and are consistent across 

the country. As a result, no specific recommendations have been included for improving this type 

of data, other than to continually refine the coverage, accuracy, and consistency of the LEHD 

employment data over time. 

For forecasts of future-year land use and employment, it may not be a simple matter to provide 

forecasts of all input variables for the entire country. While some regions and/or states will have 

detailed population and employment forecasts, others may not. As a result, the process for 

generating future-year land-use scenario data may require the following: 

 Start from any national-level forecasts that are available. For example, the Census Bureau 

provides 2015–2060 national population projections (U.S. Census Bureau, 2012), while 

the BLS produces 2010–2020 national employment projections by industry (U.S. Bureau 

of Labor Statistics, 2013). 

 Possibly adjust those forecasts with more-detailed regional forecasts for key states and 

metropolitan areas that may be of interest. 

 Apply scenario-based variations or assumptions to test the effects on long-distance travel 

of specific types of future land-use development patterns in different parts of the United 

States. 

7.4    Network-Based Data 

Existing Datasets and Their Limitations (If Any) 

In the current project, network data attributes (i.e., travel time, cost, and distance) were used as 

impedance variables to estimate joint mode and destination choice models, described in Chapter 

4. Datasets that cover the entire country (or the contiguous part of the country) were used in the 

model application described in Chapter 5. Several sources were used to assemble the following 

mode-specific network data attributes. 
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 Highway Network. The NHPN is a relatively sparse road network. Thus, the travel 

distance matrix generated from this network likely includes some entries that deviate 

considerably from the actual travel distance between a particular O-D pair. In addition, 

(relative to state/regional travel demand models) it was necessary to create relatively long 

connectors to connect zonal centroids with the nearest network links, which were 

typically either arterials or interstates. This network simplification is also likely to 

introduce significant error in travel distance calculation. For the travel-time matrix, 

although the research-team-applied average operating speeds varied by roadway 

functional class,
16

 the adopted speeds do not necessarily reflect actual network travel 

conditions. Further, there is currently no national-level database that provides toll and 

other travel cost-related information. 

 Rail Network. Amtrak’s GTFS data were used to build the rail network. These data for a 

typical week were used to create a national dataset of station-to-station (and subsequently 

a TAZ-to-TAZ) O-D matrices for the number of trains serving a particular O-D pair over 

a period of one week (i.e., frequency per week), the average journey time (including 

transfers), the number of transfers, and the average journey distance. No national-level 

database exists on rail fare. The only fare information that is available in the public 

domain is through “Buy Ticket” service on Amtrak’s website. 

 Air Network. Airline on-time performance data (on-time data hereafter) and airline 

origin and destination survey (DB1B) were used to build the air network. These data, 

available from the BTS, were used to create a national dataset of the number of flights 

serving a particular O-D pair over a period of one week (i.e., frequency per week); on-

time performance (in percentage) across the flights serving a particular O-D pair over a 

period of one week; the average flight duration (including transfers) in minutes; the 

average passenger-weighted fare by season for a particular O-D pair; the number of 

passengers, by season, for trips between the airports; and the average coupon-mileage. 

Merging on-time data with DB1B data is not straightforward and requires significant data 

processing effort/making a number of assumptions. For example, on-time data do not 

indicate whether or not a direct flight is nonstop or contains one or more stops. Thus, 

linking LOS information (e.g., frequency, flight duration, etc.) from on-time data with 

demand data from DB1B database—which does not include flight information—requires 

careful consideration. 

 Bus Network. In addition to the limitations of the existing datasets discussed previously, 

this is currently no national-level database available for the long-distance bus network. 

Recommendations 

For the air and rail modes, there are considerable existing data available that can be assembled 

into networks, albeit with a significant amount of data processing required. For rail, it may be 

useful to add the few non-Amtrak long-distance routes into the network (e.g., the train from 

Albuquerque to Santa Fe in New Mexico). For the long-distance bus network, additional work is 

                                                 
16

 In this study, midpoints of anticipated operating speeds by roadway functional class, published in “NCHRP 

Report 504 Design Speed, Operating Speed, and Posted Speed Practices” were used. 
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required to code the available routes, frequencies, and fares. This work is made challenging by 

the fact that this market is so dynamic, with companies going out of business and new companies 

starting business quite frequently. Work in this area should continue and could be concentrated 

in the Northeast Corridor and in California, where these services are most competitive. The long-

distance road network could be further improved in terms of the number of different roads 

included and the amount of detail for each road link. It is likely that more-detailed networks will 

also be needed for research on the freight side, so the research team recommends that such 

efforts be supported by Federal projects where possible. 

Additional data that might be useful in some contexts are data on local road network level of 

service and local transit services. For example, if one wanted to use this model framework to also 

predict which mode of access and egress people use to get to and from airports for air travel, then 

it would require more-detailed data on local travel options and service levels, as well as details 

on parking cost and availability at the airport. This would be an expensive, and perhaps 

infeasible, process to create such a detailed local network database for the entire country. 

However, it may be possible to use the national long-distance travel model as a starting point for 

a model that adds additional network detail in a specific region or corridor in order to obtain 

more-detailed forecasts for that region. 

7.5    Model Validation Data 

Existing Datasets and Their Limitations (If Any) 

Long-Distance Trip Origin-Destination Movements by Mode 

This is to validate the main output of the long-distance model, which will be in the form of O-D 

trip tables by long-distance mode. For the air and rail modes, the model outputs can be compared 

to observed passenger demand in each season—from the DB1B ticket data for air, and from 

Amtrak ridership statistics for rail. For the Amtrak system, station-level boardings and alightings 

are published, and Amtrak has been willing to share confidential O-D data for use in other 

research studies. The O-D movements for bus will be more difficult to validate on a national 

level, but there may be some ridership statistics for comparison for certain routes in the 

Northeast Corridor and in California (from Amtrak/Caltrans), where much of the bus demand is 

located. 

For auto travel, obtaining O-D data is somewhat more problematic. Although there are trip O-D 

tables for many specific regions, and link counts and screenline counts, nearly all of those data 

sources include both short- and long-distance trips; as a result, these data would not be 

comparable to matrices, including only long-distance car trips. This gap in the available data can 

be partially filled by aggregate trip-tables available from cellphone network providers, based on 

cellphone records from millions of customers. Although privacy issues prevent such firms from 

releasing any individual-level data or any sociodemographic information about the travelers, they 

can identify each person’s home location and work location (if applicable), and can provide 

aggregate trip tables for any zone system provided by the data purchaser, with the trips broken 

down into type—home-based work, home-based other, work-based other, and other non-home-

based. Further, these firms can distinguish between trips made by residents of a particular region 

or corridor from those made by nonresidents. 
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Aggregate cellphone data (and aggregate GPS or Bluetooth data) data have been used for this 

specific purpose in several recent long-distance corridor studies, and could be used to validate 

the auto O-D flows from a long-distance model for several selected key corridors around the 

nation, even if not for every O-D pair. NCHRP is underway with a project (Transportation 

Research Board, 2013) that is assessing the usefulness of aggregate cell phone data for purposes 

such as this and preparing guidelines as to how it should be used. Also, it is likely that the 

accuracy and availability of such aggregate cellphone-based data will increase over time. 

This type of data might also be used in model operation to develop rules on what proportion of 

auto trips on the roads are short- versus long-distance trips, as a function of geography 

(urbanization levels of the origin and destination), and the time period of the day, week, and year 

(weekdays, Friday evenings, weekends, holidays, etc.). Such a function would permit estimation 

of the “background” level of short-distance trips on the network so that the predicted long-

distance auto trips can be added for route assignment and congestion analysis. (This is a process 

analogous to preloading commercial vehicle traffic and through-trips on the highway network in 

an urban travel model. Commercial vehicles would also need to be preloaded in a long-distance 

model). 

Highway Speeds and Travel Times by Highway Segment and Time of Day/Week/Year 

These data are important, both for model inputs (so that the model is using realistic travel times 

for auto trips) and model output. Even if the outputs of the model are not used explicitly for 

traffic assignment at the national level, one would expect the highest levels of congestion to 

occur in corridors and time periods for which the most long-distance auto trips are predicted. 

This is particularly true for weekend and holiday travel, and for key highway corridors that are 

mostly outside of urban areas and have the smallest proportion of local traffic. 

Fortunately, although FHWA has not made the dataset publicly available, it is possible to obtain 

permission to use the National Performance Management Research Data Set (NPMRDS).
17

 This 

dataset provides travel time data for segments of every interstate highway and other key 

highways and arterials in the entire country, for five-minute time period “bins” (e.g., 5:00 a.m. to 

5:05 a.m., 5:05 a.m. to 5:10 a.m., etc.) continuously through time. The data are based on 

NAVTEQ/Nokia probe vehicle observations, with separate averages for heavy-goods vehicles 

and passenger vehicles. Because the length of each highway segment is known, the average 

speed on the segment can also be imputed from the travel time data. These data will be ideal for 

identifying weekly and seasonal congestion patterns on interstates and in other key long-distance 

corridors around the country; these data will also be useful for comparing against model 

outputs—in the form of modeled link speeds if the long-distance model includes assignment. 

Highway Link Volumes by Highway Segment and Time of Day/Week/Year 

Neither the aggregate cell phone data nor the NPMRDS data can provide accurate measures of 

hourly flow volumes on particular links, as their sample sizes are not large enough to provide 
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 National Performance Management Research Data Set (NPMRDS)  

http://connectdot.connectsolutions.com/p42seglc752/
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reliable estimates. These data are available in the Highway Performance Management System 

(HPMS) at the FHWA (Federal Highway Administration, n.d.). The HPMS is a national-level 

highway information system that includes data on the extent, condition, performance, use, and 

operating characteristics of the nation's highways. These data are available in shape files with 

average annual daily traffic (AADT), facility type, high-occupancy-vehicle lanes, tolls charged, 

and percent of traffic that are trucks as attributes. The NHPN is a geospatial network with a 

linear referencing system that links it to the HPMS. 

Recommendations 

In summary, the scarcity of observed data on long-distance auto trips is steadily being remedied 

by the availability of various types of aggregate passive datasets (from cell phones and GPS 

probe vehicles), in addition to the automated flow and speed data that are collected on many of 

the major highway links in the nation. FHWA should encourage and fund the use of these data in 

establishing reliable evidence and modeling of long-distance travel patterns. 

7.6    Summary 

The most critical need for modeling long-distance travel behavior at the level of detail 

recommended in this model framework is obtaining more complete survey data on households’ 

actual long-distance travel characteristics. This report provides recommendations geared toward 

a smartphone-based survey methodology. Such a methodology would have a low respondent 

burden and could provide the necessary spatial and temporal detail for models, and it is possible 

that a substantial proportion of the respondents would provide data for one full year. There is 

also the need to consider special subpopulations in designing such a survey approach, including 

households without smartphones, university students living away from home, frequent business 

travelers, and foreign visitors from outside the United States. 

For the current year, the existing data sources and methods for creating a synthetic population for 

the country are adequate for this report’s purposes, as are the data for representing long-distance 

travel attractions, including employment in specific sectors, households, open/space parks, and 

universities. The most pressing question remains how to forecast these important input data for 

future years. On the population side, the most promising approach may be to use household 

“evolution” models that start with a base-year population and evolve it over time. Further 

research in this area is recommended. 

The current data sources for air and rail network services (e.g., routes, frequencies, fares, etc.) 

are quite extensive and adequate for the level of modeling recommended in this report, although 

some complex data processing is involved in extracting the needed information. The existing 

representation of a national-level road network exists, but greater detail and coverage would be 

useful, and the research team recommends adding such detail in future Federal research projects. 

A national network representation for long-distance bus services does not currently exist, and it 

is recommended that the creation of such a network be the goal of related Federal projects. 

Data exist to validate base-year model results, including the NPMRDS and HPMS data available 

at the national level, and O-D matrix data that can be created from aggregate cellphone records 

by providers. The availability and accuracy of such data is increasing steadily over time. 
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CHAPTER 8.  SUMMARY AND IMPLEMENTATION PHASE 

8.1    Summary 

The development of the Long-Distance Passenger Travel Demand Modeling Framework 

included research into new methods for estimating long-distance passenger model components 

(Chapter 4) and implementation of selected methods to produce long-distance passenger travel 

demand on a national scale (Chapter5). The parallel paths allowed research to include methods 

that—while perhaps not immediately implementable—should be considered for future efforts. In 

the case of the MDCEV tour generation, scheduling, and participation models, the research 

methods are implementable and will be compared to the selected models during the 

implementation phase. 

The disaggregate tour-based modeling structure was selected for the framework based on 

technical advantages this structure has over a more aggregate, trip-based structure: 

 Tracks individual households’ travel behavior (not averages). 

 Connects long-distance travel choices for one full year. 

 Allows for greater spatial and temporal detail. 

 Allows greater household/person attribute detail. 

 Integrates mode choice, destination choice, and Tour Generation and Scheduling with 

causal effects in both directions. 

In addition, the structure is more intuitive and understandable to nontechnical audiences, 

providing more credibility to the results. Some of the challenges in the research phase have been 

based on limitations in available data for model estimation. The focus of this initial research was 

on developing a framework that could be re-estimated with more robust and comprehensive data 

sources when these data are collected. These data sources were described in Chapter 7. 

The extension of the project to include an implementation phase has benefited the research phase 

in several ways. The development of the modal networks and level of service was a more robust 

effort than would have been necessary or possible for the research phase. These national modal 

networks have been developed with a more refined zone system that supports long-distance 

passenger travel, and additional data sources for bus and rail modes were obtained to improve the 

travel time, distance, and cost matrix development for these modes. The model estimation of the 

destination and mode-choice models benefited from a merged long-distance passenger travel 

survey dataset (four states) instead of a single-state dataset. This allowed the destination and 

mode-choice models to reflect travel behavior from the western, central, and eastern parts of the 

United States, instead of solely focusing on one part of the country. 

8.2    Implementation Phase 

The implementation phase is focused on moving the research into practice and providing a model 

that can be used by state and Federal agencies interested in long-distance passenger travel. The 
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current research has produced a long-distance passenger travel demand model framework, with 

models estimated from available data, recommendations for future data collection, and a 

demonstration of the implementation framework. This third phase would produce a working 

model for a base year, adding trip assignment models, and would be calibrated and validated to 

available national data sources. This phase would also include sensitivity testing. This testing 

would provide assurances that the calibrated and validated models produce reasonable results 

under a select set of policy scenarios. This phase would also include additional software 

development to ensure stability and reasonable performance for the application software beyond 

the original demonstration software in the research phase. 

The current research estimated models based on long-distance surveys collected from several 

states (Ohio, Wisconsin, California, and New York) because these states offered promising 

sample sizes for the destination and mode-choice models. Since there is no comprehensive, 

detailed survey in the recent past that can support all model estimation, the resulting long-

distance passenger travel models will require additional calibration and validation efforts to 

ensure reasonable estimates of long-distance passenger travel. Fortunately, there are recent O-D 

trip tables developed by FHWA (with CDM Smith and RSG) that can be used for this purpose. 

The 2001 NHTS could also be used for calibration of individual model components. 

The following tasks and subtasks of the next phase are itemized and briefly described. This is 

intended as a broad overview of the work expected in this phase. 

Task 12: Build the Model for the Base Year 

Enhance the Networks 

This task is complete and has been described in this memo in Section 2.3 of this report. During 

the calibration phase, there will be some minor manual adjustments to the networks and zone 

systems to correct anomalies identified in the underlying national datasets. 

Calibrate Model Components 

Model calibration is the process of applying the estimated models, comparing the results to 

observed values, and adjusting either the model specification or the alternative-specific 

constants. The process is complicated by the fact that the various model components in the long-

distance passenger travel demand model are not isolated: long-term decisions influence how and, 

to a certain extent, where people travel; lower-level decisions also can affect the higher-level 

choices through the LogSum, an explanatory variable in the higher-level choice models. As a 

result, a change in the share of one model is likely to influence the outcome of other models. 

Therefore, the general approach is to calibrate model components in the order in which they are 

applied, which generally means that the higher-level models are calibrated before the lower-level 

models. In addition, the calibration process will be applied in an iterative manner in order to 

incorporate all the interactions between models until the model, performing as a system, 

converges to a stable set of parameter values for all of the model components. 

The MDCEV tour generation, scheduling, and participation models will be implemented during 

this task. These results will be compared to those from the logit-tour-frequency models in order 

to determine tradeoffs in terms of processing time and capabilities for implementation purposes. 
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The preferred approach will be selected and used in the calibration and validation of the final 

model. Calibration of all models will consider use of the combined four-state household survey 

dataset (California, Ohio, New York, and Wisconsin) and the 2001 NHTS. These will be 

compared to understand similarities and differences between the larger 4–8 week sample from 

the four-state merged dataset and the smaller one-day sample from the national survey. The party 

size and destination and mode-choice models will also be calibrated with these datasets. 

One key aspect of the calibration will be to use the most reasonable values of time for all 

purposes and to match observed mode shares and distance distributions as closely as possible. 

Work conducted to date indicates that it may be beneficial to segment each tour purpose into 

“short” and “long” long-distance tours—for example, 50–150 miles versus over 150 miles. This 

is because most of the tours are in this shorter 50–150 mile band, and these tend to reveal quite 

different choice behavior and tradeoffs as compared to the longer-distance tours, which can be 

up to 3,000 miles. This type of purpose/distance segmentation was used for the mode/destination 

choice models for the California Statewide Long-Distance Model, and seemed to work quite well 

in model application. 

Develop Highway-Assignment Model 

The highway-assignment model will be developed using the daily calibrated trip table for the 

auto mode and the highway network developed for the project. This assignment will require 

estimation of background traffic to represent congestion on the national highway system. This 

background traffic will be estimated by subtracting long-distance volumes from the HPMS 

volumes to produce short-distance passenger volumes, which will be combined with truck traffic. 

The average daily long-distance passenger trip tables will be assigned—using TransCAD—with 

the background traffic in order to produce average daily volumes on the highway system. 

Performance metrics from this system will be produced to evaluate the impact of long-distance 

travel separate from the background traffic. These performance metrics include vehicle miles 

traveled by region and state and average speeds and volumes by facility type and area type. 

Validate Model System 

The long-distance passenger travel demand models will be compared to observed sources to 

determine the reliability of the base-year (2010) estimates. There are several sources of observed 

data: 

 National origin-destination trip tables by mode developed by FHWA. 

 Traffic link volumes in the HPMS data. 

 Airport-to-airport air passenger O-D counts from the DB1B 10% ticket database. 

 Station-to-station rail passenger counts from the Amtrak proprietary data. 

 External traffic surveys performed for large urban regions, where the through traffic are 

all long-distance trips and can be compared against the model’s prediction of similar 

through-trips. 



 

216 

In this case, observed data have been developed from multiple sources and will be compared as 

the best source available, with the understanding that both the observed and modeled data have a 

margin of error. System performance will be determined for each mode according to the 

available data (e.g., air or rail passenger miles traveled, rural freeway vehicle miles traveled, 

etc.). 

Conduct Sensitivity Tests 

A series of sensitivity tests will be developed to demonstrate how the long-distance passenger 

travel demand modeling system can compare potential future alternatives or test policies of 

interest. A set of potential policy and alternatives of interest was provided in the Objectives 

Memorandum (October 2011). A set of six sensitivity tests will be conducted; potential tests 

include: 

 Modal alternatives for rail; 

 Modal alternatives for air; 

 Pricing—system tolling; 

 Economy—employment and incomes increase/decrease; 

 Environmental—gas tax increase; and 

 Safety—reduce freeway speeds. 

The results from these sensitivity tests will be evaluated for reasonableness and elasticities 

produced by variations to the base-year inputs will be compared against demand elasticities 

reported elsewhere in the literature. 

Task 13: Enhance Application Software Performance 

Software enhancements will be used to enhance the demonstration software for use by state and 

Federal agencies, as follows: 

 Improve run times with software engineering. 

 Conduct tests to ensure stability. 

 Compile and deliver for use. 

Task 14: Develop User’s Guide and Final Report 

A user’s guide will be developed to document the use of the software and a final report will be 

developed to combine the various technical memoranda developed over the course of the project 

and document the final models included in the long-distance passenger travel demand modeling 

system. This final report will include a summary of the design and research phases of the project 

and details from the implementation phase. 
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Schedule and Deliverables 

Work on the network enhancements has already been completed; the remaining work will be 

performed in the implementation phase, which runs through June 30, 2015. The following 

products for the base year (2010) can be expected from the implementation phase: 

 Aggregated annual and daily-trip tables, by mode. 

 Loaded daily highway networks. 

 Long-distance passenger travel demand models complete with input and output data and 

a user’s guide. 

 Final Report for the three phases of the project, documenting the design, research, and 

implementation of the model. 
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