Keeping Up: Non-traditional Traffic Monitoring Development

October 31st 2018

Laura Schewel CEO, StreetLight Data laura.schewel@streetlightdata.com

Agenda for Today's Seminar

- Introduction to StreetLight Volume:2017 AADT Estimates
- II. Quick Demo
- III. Data Sources
- IV. Questions?

Introducing StreetLight Volume: 2017 AADT Estimates

StreetLight Volume: 2017 AADT – What Is It?

We Believe Our New AADT Estimates Are the Best Alternative to Temporary and Modeled AADT

- No staff in harm's way
- Cost-effective

Ę

- Available in minutes
- 365 days of real-world data
- As accurate to more accurate than temporary/modeled counts

- Staff in field in harms way
- Expensive
- Time-intensive data collection and processing
- 2 to 7 days of real-world data

These Are the Results of Our Validation Work

StreetLight 2017 AADT for Test Data compared to Permanent Counter AADT. R2 is 0.96. No outliers were removed.

The Results from Our National Validation Tests

Key Results from National Validation Test –Absolute Error

Key Results from National Validation Test – RMSE

AADT Range	# of Segment s	Target Abs. Error	StreetLight Algorithm Mean Abs. Error	Delta to Target (positive means "better than target")	AADT Range	# of segment s	Target RMSE as % of Average AADT	StreetLight Algorithm's RMSE as % Average AADT	Delta to Target (positive means "better than target")
50,000+	795	12%	12.7%	-1%	50,000+	795	20%	15.8%	4%
25,000- 49,999	386	16%	15.7%	0%	25,000- 49,999	386	25%	20.8%	4%
10,000 - 24,999	509	20%	20.6%	-1%	10,000 - 24,999	509	28%	31.4%	-3%
5,000- 9,999	350	20%	23.5%	-4%	5,000- 9,999	350	39%	31.5%	7%
0 - 4.999	564	Not available - too few in comparison	43.3%	NA	2500 - 4,999	270	44%	36.1%	8%
.,		paper. See Table 1b.		INA	0 - 2,499	294	68%	58.8%	9%

Quick Demo – How to Derive AADT in StreetLight InSight

Data Sources

We Use Six Unique Data Sources for Our StreetLight Volume: 2017 AADT Estimates

Ę

Our Big Data Resources: Location-Based Services and Navigation-GPS Data

Our Big Data Resources: Location-Based Services and Navigation-GPS Data

Navigation-GPS Data: Created by Connected Trucks & Cars

Ē

Spatial Precision	~5 meters
Frequency of Data Pings	Regularly; every 1 sec – 1 min
Type of Trip	Differentiates personal and commercial trips – ideal for truck studies
Sample Size	Penetration rate varies by region – but much smaller than LBS. ~1% - 4% for personal, 12% trucks.

Location-Based Services (LBS) Data: **Created by Smart Phone Apps Spatial Precision** ~5 meters - 25 meters Frequency of Data Variable: usually triggered by location change Pings Type of Trip Personal ~23% of US and CA adult Sample Size population (~65M devices in our database)

We Used Two Different Contextual Data Sources to Account for Roadway and Environmental Factors

A Look into Open Street Maps: Salt Lake City, UT & Surroundings

A Look into Weather Data: Precipitation & Temperature in Salt Lake City, UT

US Census Data – Our Third Contextual Resource – Was Used for Normalization of LBS Trips

Ē

Our Data Resources from 2,000+ Permanent Count Locations Were Critical to Algorithm Development

Locations and AADT Distribution of the 2,605 Permanent Counters

State	# of Counters	State	# of Counters	
AZ	232	NY	144	
FL	243	NH	65	
GA	181	OH	146	
ID	116	OK	68	
IN	90	СА	272	
IA	147	PA	90	
MA 193		UT	108	
MN	84	VT	82	
MT	97	WA	175	
MT AAI	97 DT Range	WA # of Co	175 ounters	
MT AAI	97 DT Range 50,000+	WA # of Co 79	175 ounters	
MT AAI	97 DT Range 50,000+ 25,000- 49,999	WA # of Co 79 38	175 ounters 95 36	
MT AAI	97 DT Range 50,000+ 25,000- 49,999 0,000 - 24,999	WA # of Co 79 38 50	175 ounters 95 86 99	
MT AAI	97 DT Range 50,000+ 25,000- 49,999 0,000 - 24,999 5,000 - 9,999	WA # of Co 79 38 50 39	175 ounters 95 36 99 50	
MT AAI	97 DT Range 50,000+ 25,000-49,999 0,000 - 24,999 5,000 - 9,999 2500 - 4,999	WA # of Co 79 38 50 38 27	175 ounters 95 36 09 50 70	

Full Circle: Our 2017 AADT Estimates Are Better than Temporary and Modeled AADT Counts

- No staff in harm's way
- Cost-effective

Ē

- Available in minutes
- 365 days of real-world data
- As accurate to more accurate than temporary/modeled counts

- Staff in field in harms way
- Expensive
- Time-intensive data collection and processing
- 2 to 7 days of real-world data

Big Data Can Do More Than Just Replace: <u>The Wheel of Putting Big Data to Work</u>

Ì

Questions?

Goal #1: Develop Estimates that Are Better Than Temporary Counts

Goal #2: Develop Estimates that Are Better Than Counts Derived from Expansion Models

Source – Figure 9.8 in Travel Model Improvement Program, "Travel Model Validation and Reasonableness Checking Manual Second Edition." September 24, 2010.

Algorithm Development

_

Our Second Step: Selecting the Algorithm

We Selected the Random Forest Algorithm for Our 2017 AADT Estimates Model

 More accurate:
Better at handling unusual roads

Ē

Final Result:
We built a 12-feature
Random Forest model

