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SI* (Modern Metric) 
Conversion Factors

APPROXIMATE CONVERSIONS TO SI UNITS
SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL

LENGTH
in inches 25.4 millimeters mm
ft feet 0.305 meters m
yd yards 0.914 meters m
mi miles 1.61 kilometers km

AREA
in2

2

square inches 654.2 square millimeters mm2

ft square feet 0.093 square meters m2

yd2 square yard 0.836 square meters m2

ac acres 0.405 hectares ha
mi2 square miles 2.59 square kilometers km2

VOLUME
fl oz fluid ounces 29.57 millimeters mL
gal gallons 3.785 meters L
ft3 cubic feet 0.028 meters m3

yd3 cubic yards 0.765 kilometers m3

NOTE: volumes greater than 1000 L shall be shown in m3

MASS
oz ounces 28.35 grams g
lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or “metric ton”) Mg (or “t”)

TEMPERATURE (exact degrees)
°F Fahrenheit 5 (F-32)/9 Celsius °C

or (F-32)/1.8
ILLUMINATION

fc foot-candies 10.76 lux lx
ft foot-Lamberts 3.426 candela/m2 cd/m2

FORCE and PRESSURE or STRESS
lbf poundforce 4.45 newtons N
lbf/in2 poundforce per square inch 6.89 kilopascals kPa

APPROXIMATE CONVERSIONS FROM SI UNITS
SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL

LENGTH
mm millimeters 0.039 inches in
m meters 3.28 feet ft
m meters 1.09 yards yd
km kilometers 0.621 miles mi

AREA
mm2 square millimeters 0.0016 square inches in2

m2 square meters 10.764 square feet ft2

m2 square meters 1.195 square yard yd2

ha hectares 2.47 acres mi
km2 square kilometers 0.386 square miles mi2

VOLUME
mL mililiters 0.034 fluid ounces fl oz
L liters 0.264 gallons gal
m3 cubic meters 35.314 cubic feet ft3

m3 cubic meters 1.307 cubic yards yd3

MASS
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or “t”) megagrams (or “metric ton”) 1.103 short tons (2000 lb) T

TEMPERATURE (exact degrees)
°C Celsius 1.8C+32 Fahrenheit °F

ILLUMINATION
lx lux 0.0929 foot-candies fc
cd/m2 candela/m2 0.2919 foot-Lamberts ft

FORCE and PRESSURE or STRESS
N newtons 0.225 poundforce lbf
kPa kilopascals 0.145 poundforce per square inch lbf/in2

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)
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Bridges are subjected to different types of loadings. 
Environmental factors, such as adverse weather 
conditions and infrequent natural hazards also can 

wear down a bridge. By knowing how these loads over 
time can affect a bridge as a whole and its components, 
bridge owners can make decisions on what actions need 
to be taken and when to repair or rehabilitate a bridge.  

Researchers have been studying how bridge components 
can provide intelligent information and even 
communicate information as needed to assist engineers. 
Bridge bearings appeared as logical components 
to explore this idea (figures 1a and 1b). They safely 
distribute the loads imposed on the bridge onto the 
bridge piers and foundations. Bridge bearings further 
accommodate bridge movements in response to bridge 
expansion or contraction brought about by thermal 
changes, and displacements and forces induced by wind 
and earthquakes (figure 1a).

But can bridge bearing designs be taken a step further? 
Can bridge bearing systems be designed to respond like a 
muscle when pressure or stresses are placed upon them?  

At the University of Nevada, Reno, researchers looked 
for answers to these very questions. They developed 
an adaptive material for bridge bearings that allows 
electricity to flow through, creating a magnetic field that 
can stiffen a controllable rubber in response to forces 
being exerted upon it. 

The self-sensing adaptive bearing (SSAB) system 
designed by University of Nevada, Reno researchers 
consists of several components (figure 1b). One 
component enables a bridge bearing system to stiffen as 
needed in response to forces being exerted on it.

Another component is using the bearing system’s 
materials to track, collect, and send data. The bridge 
bearing system uses sensors made of the same kind of 
controllable rubber as in rubber bearings. This rubber 
is called a magnetorheological elastomer (MRE). The 
sensors are built into the rubber bearings and are there 
to automate the changes in stiffness. The sensors 
also enable transportation engineers to set threshold 
warnings so that when a bridge reaches a predetermined 
level of a measured response quantity (e.g. displacement, 
acceleration), engineers can be alerted via text messages. 
Because of the sensors’ ability to collect data, they will 
show engineers the activities and stresses that a bridge 
experiences. The data collected by the sensors could help 
bridge engineers assess how unexpected loads cause 
damage or accelerate deterioration. More research will be 
needed to collect and assess this data and its usefulness.

Through this project, the researchers wanted to show that 
it was feasible to create and demonstrate a fail-safe, self-
sensing MRE-based adaptive bearing system that could 
be used to improve the performance of highway bridges.

Introduction

a b

Figures 1a and 1b. Researchers at the University of Nevada, 
Reno explored the possibility of creating a dynamic and 
responsive bridge bearing by modifying the passive 
elastomeric bearings (figure 1a) used today. They came up 
with an adaptive MRE bridge bearing (figure 1b). 
© University of Nevada, Reno
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PROJECT OVERVIEW 

University of Nevada, Reno 
researchers had two goals in mind 
for this research project: to design 
and make an adaptive bridge 
bearing system with a wireless 
self-sending capability and to test 
and validate the performance of 
this system under simulated wind 
and traffic loads.

To develop this self-sensing 
adaptive bearing (SSAB) system, 
the researchers conducted a 
multiphase study over 3 years. 
The researchers sought to develop 
a rudimentary SSAB system using 
MREs and sensors. In subsequent 
phases, the researchers refined 
the processes to improve the 
SSAB system they created. 

The overarching goal of this 
research was to create an 
SSAB system that can be 
incorporated into future bridges 
and implemented into existing 
bridges as repairs warrant. By 
incorporating this technology 
into existing and future bridges, 
transportation engineers hope to 
extend the life of bridges safely 
and reliably.

2
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The first phase of this project was to see if the 
researchers could develop a wireless sensor and 
bridge bearing system that uses the controllable 

MRE rubber. This kind of rubber consists of polymeric 
solids embedded with iron particles. MREs have two 
characteristics that encourage adaptability. One 
characteristic is piezoresistivity, which changes the 
material’s electrical properties in response to mechanical 
strain. This allows MREs to quickly measure displacement. 
The second characteristic is magnetoresistance, which 
realigns embedded iron particles within the polymer 
matrix in response to applied magnetic fields and changes 
the material’s physical properties (such as stiffness) in 
real-time.

In this first phase, the researchers looked at the feasibility 
of developing an MRE-based wireless sensor for highway 
bridge bearing systems through analysis and experiments. 
In an interdisciplinary collaboration among mechanical, 
civil, and electrical engineers, the team worked in several 
areas: developing a SSAB system, making MRE sensors, 

and designing and conducting initial analyses of their 
SSAB system.

Designing an MRE-Based 
Adaptive Bearing System
As one research team was working on developing MRE 
sensors, another team was designing a bridge bearing 
system with the MRE sensors as one of its components.
The researchers designed an initial adaptive bearing 
system based on the layout of a conventional bridge 
bearing system (figure 2). They replaced the rubber parts 
of a conventional bridge bearing system with MRE layers. 
The MRE layers consisted of polymeric solids embedded 
with iron particles, which enabled the layers to respond 
to mechanical strain. Through this characteristic, 
researchers would be able to measure physical loading. 
The MRE layers also exhibited magnetoresistance, which 
realigned embedded iron particles within the polymer 
matrix in response to magnetic fields and changed the 
material’s physical properties. 

Phase I: Making System Components
Figure 2. A prototype of the adaptive bridge bearing system. © University of Nevada, Reno
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Phases II and III: Testing, Testing, Testing

Once the researchers developed a prototype SSAB 
system, the second phase in the project was to 
refine the system’s components and determine 

how the system performs in everyday circumstances, 
such as how the system mitigates wind and traffic-
induced vibration and seismic events. 

The researchers tested and modified each major 
component of the bearing system to determine how 
to improve overall performance. For instance, the 
researchers sought to configure and optimize the low-
power microcontroller to prolong the life of the wireless 
sensing system if the system is running on a battery. 
The researchers did this by examining the relationship 
between power consumption and clock frequency or 
performance. They also manufactured the electromagnets 
for the bearings (figure 3).

The researchers studied how silicone-based and natural 
rubber MREs performed under shear and compression 
tests to gauge the effectiveness of the materials (figure 4).

The researchers also finalized the design of the adaptive 
bridge bearing. They constructed one-fourth of the scale 
of the actual bridge bearing so that they could test it 
in a laboratory setting. Their design featured eight coils 
and four stacks of MRE-steel shim layers sandwiched 
between electromagnets and loading plates. Each stack 
had 10 alternating layers of MRE and steel shims 
(figure 5).

With the design in place, the researchers needed to 
determine the best way to construct the bridge bearing. 
They conducted tests on the glue that would hold the 
MRE, steel layers, and coils together. They tested the 
bonding strength of three adhesives commonly used for 
bonding silicone and rubber materials. They also decided 
on what magnet wires and steel quality to use to achieve 
a high magnetic field for the coils.  

The researchers came to several conclusions in the next 
stage of research, which sought to characterize the 
mechanical properties of the silicone-based and natural 
rubber-based MREs to see how they performed under 

Figure 3. Bearings composed of MRE material sandwiched between electromagnet arrays adjust stiffness and dampening 
properties in response to strain. © University of Nevada, Reno

Electromagnets

8.375”

Loading Plate

 Closed-Loop Magnetic Field

Stack of MRE and Steel Shim Layers
16”



5
EXPLORATORY ADVANCED RESEARCH PROGRAM

large strains. They confirmed that the magnetorheological 
(MR) effect, which indicates material stiffness, can change 
based on the material used.

For silicone-based MRE samples, the MR effect reduces 
significantly at larger strains because the iron particles 
that make up the samples became more distant from 
each other, creating chain-like formations. However, the 
researchers concluded that silicone-based MREs might 
still be useful in lower strain applications. Meanwhile, 
adding carbon nanofibers to the silicone-based 
anisotropic MRE improved the performance of the MRE 

because of the desirable magnetic permeability of the 
carbon nanofibers.

For the natural rubber-based samples, the MR effect 
was improved primarily due to their isotropic material 
composition. Furthermore, these samples performed 
better under axial forces. However, it was observed that 
the MR effect reduced slightly during high frequency 
loadings such as those caused by traffic. While reduced 
MR effect may be perceived as reduced effectiveness 
of the bearing, it is in fact not concerning since the 
displacements are small at high frequencies.

Figure 4. A compression test apparatus includes (A) a 
load cell that measures compressive force; and (B) a 
linear variable differential transformer that converts 
linear motion within a sample to an electrical signal. 
© University of Nevada, Reno

MRE 
Sample

Figure 5. A sample of MRE material between the test 
apparatus ram and baseplate. An LVDT is a linear variable 
displacement transducer. It is a displacement sensor that 
measures deformations in the test specimen. 
© University of Nevada, Reno

Load 
Cell

LVDT
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Conclusions

The researchers determined through the three 
phases of the project that it was feasible and 
beneficial to use carbon nanofibers and an 

isotropic mix of iron, nanofiber, and rubber material to 
create the adaptive bridge bearing. Deploying these 
materials enables an adaptive bridge bearing to have the 
strength to withstand sustained loads. These materials 
also will allow one to collect data and respond in real-
time to pressures exerted on the bridge bearing.

The study’s finding is that the SSAB system advances 
intelligent bridge bearing technology.  Future research 
can go in multiple directions. One direction would entail 
seeing whether the bridge bearings can stiffen and 
release in response to the forces put upon them, just like 
a muscle. 

Another direction is to put the MRE material under larger 
strains, especially since initial findings determined that 
the magnetic field of the MRE material, which gives 
the bridge bearing the ability to respond to forces, took 
longer to activate under larger strains. This direction 
includes looking at how to improve the material design—   
the MRE material composition and the electromagnet 
design—so that the bearing system can perform as 
effectively under strains of 20 percent or higher that may 
be experienced during a seismic event.

Another direction is to conduct additional shear and 
compression tests on two materials, silicone MREs and 
natural rubber MREs, at laboratory scale. These tests 
can help determine whether mixing carbon nanofibers 
with silicone MRE can increase the bearing’s ability to 
respond to higher strains. It is noted that strains lower 
than 20 percent are considered small for bridge bearings. 
These findings will be beneficial in helping to decide 
whether silicone MRE is a good candidate for low-strain 
applications.

To complement the study on the materials that can 
be used in SSAB system, researchers can study how 
deformations and forces affect the conventional 
elastromeric steel-reinforced bearings used on bridges 
today, and use those findings to improve the design of 
MRE-based adaptive bearing systems. 

Additional future work includes refining the material 
properties of the bridge bearing system, conducting 
additional shear and compression tests, and studying 
simulated situations where researchers can see how the 
systems respond to controlling vibration-induced forces 
and deformations. Ultimately, the researchers would 
like to explore opportunities to bring this adaptive 
bridge bearing system to full scale, from the laboratory 
to the field. 
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