NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this document only because they are considered essential to the objective of the document.

QUALITY ASSURANCE STATEMENT

The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.

Cover photos

Left: DMask—an identity masking system—exchanges the driver’s head in naturalistic driving video data with a computer-generated avatar head that preserves key facial landmarks as well as information about head pose, facial expression, and direction of gaze. This gives researchers access to important facial cues while protecting the identity of volunteer drivers (see page 56). © SRI International.

Right: Two-dimensional light detection and ranging, or LIDAR, uses satellite-based lasers to provide accurate lane-level information about vehicle positioning in urban driving environments. Source: FHWA.
The Exploratory Advanced Research (EAR) Program addresses the need for longer term, higher risk research with the potential for transformative improvements to transportation systems. The EAR Program seeks to leverage expertise and advances in science and engineering to create breakthrough solutions to critical transportation issues.

Broad scientific participation and extensive coverage of advanced ideas and new technologies are secured by engaging stakeholders throughout the EAR Program’s processes—not only in identifying and scoping topics but also in ensuring the technical quality of sponsored research through expert panels and in communicating research results.

This catalog of results documents the output of that effort, a critical link in the chain of research, development, and deployment of new technology and practices necessary for the United States to have the best transportation system in the world for decades to come. The EAR Program focuses investments in areas where changes in science and engineering can dramatically lead toward making the highway system safer, more durable, and more efficient:

- Connected Highway and Vehicle System Concepts.
- Breakthrough Concepts in Materials Science.
- Human Behavior and Travel Choices.
- Technology for Assessing Performance.
The results of EAR Program-funded projects can lead to new fundamental insights into transportation-related issues as well as new research methods, models, or data. Such breakthroughs can accelerate applied research, new system concepts, or prototypes, including laboratory testing and limited field testing. The EAR Program does not fund projects through the commercialization or deployment stage. Rather, the research community must take up the results with the support of other funding sources. The Federal Highway Administration (FHWA) is committed to transitioning the results of EAR Program-funded projects and actively demonstrates results to audiences critical to continuing the research and development cycle. Through 12 solicitations, the EAR Program has awarded 101 projects (19 of which are ongoing) involving both government and academic researchers. These projects represent the investment of $99 million in FHWA funds and leverage $28 million in matching funds. The following pages contain summary descriptions of the results of selected, recently completed research investigations.
Contents

Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected Highway and Vehicle System Concepts</td>
<td>6</td>
</tr>
<tr>
<td>Truck Platooning and Connectivity</td>
<td>7</td>
</tr>
<tr>
<td>Heavy Truck Cooperative Adaptive Cruise Control</td>
<td>9</td>
</tr>
<tr>
<td>Partial Automation for Truck Platooning</td>
<td>10</td>
</tr>
<tr>
<td>Cooperative Adaptive Cruise Control (CACC) Human Factors Study</td>
<td>11</td>
</tr>
<tr>
<td>Advanced Vehicle Tracking Technologies: Sensing and Monitoring</td>
<td>13</td>
</tr>
<tr>
<td>Individual Vehicles in Traffic Flow</td>
<td></td>
</tr>
<tr>
<td>Using Cooperative Adaptive Cruise Control to Form High-Performance Vehicle Systems</td>
<td>14</td>
</tr>
<tr>
<td>Simulations of Connected Vehicle (CV) Technologies</td>
<td>16</td>
</tr>
<tr>
<td>Building a Hardware-in-the-Loop Simulation Testbed</td>
<td>18</td>
</tr>
<tr>
<td>Assistive Technologies for Visually Impaired Persons</td>
<td>20</td>
</tr>
<tr>
<td>Intersection Control for Autonomous Vehicles</td>
<td>23</td>
</tr>
<tr>
<td>Advanced Traffic Signal Control Algorithms</td>
<td>24</td>
</tr>
<tr>
<td>Advanced Freeway Merge Assistance: Harnessing the Potential of Connected Vehicles</td>
<td>25</td>
</tr>
<tr>
<td>Next-Generation Vehicle Positioning in GPS-Degraded Environments</td>
<td>26</td>
</tr>
<tr>
<td>Innovative Approaches for Next-Generation Vehicle Positioning</td>
<td>27</td>
</tr>
<tr>
<td>Development of Enhanced Safety Systems Based on GPS/INU System</td>
<td>28</td>
</tr>
<tr>
<td>Development and Evaluation of Selected Mobility Applications for VII</td>
<td>29</td>
</tr>
<tr>
<td>Layered Object Recognition System for Pedestrian Collision Sensing</td>
<td>30</td>
</tr>
<tr>
<td>Breakthrough Concepts in Materials Science</td>
<td>31</td>
</tr>
<tr>
<td>Novel Alternative Cementitious Materials for Development</td>
<td></td>
</tr>
<tr>
<td>of the Next Generation of Sustainable Transportation Infrastructure</td>
<td></td>
</tr>
<tr>
<td>Nanoscale Approaches for Inhibiting Corrosion: Green Advanced Coatings for Application on Steel Structures and Bridges</td>
<td>32</td>
</tr>
<tr>
<td>Inorganic Polymers: Novel Ordinary Portland Cement-Free Binders for Transportation Infrastructure</td>
<td>33</td>
</tr>
<tr>
<td>Novel Development of Bio-Based Binder for Sustainable Construction</td>
<td>35</td>
</tr>
<tr>
<td>Mechanisms of Hydration and Setting of Ordinary Portland Cement in Simple and Complex Systems</td>
<td>37</td>
</tr>
<tr>
<td>Paving the Way for Greener Highways: Extending Concrete’s Service Life through Multiscale Crack Control</td>
<td>39</td>
</tr>
<tr>
<td>Greatly Increased Use of Fly Ash in Hydraulic Cement Concrete for Pavement Layers and Transportation Structures</td>
<td>41</td>
</tr>
<tr>
<td>High-Performance Stress-Relaxing Cementitious Composites for Crack-Free Pavements and Transportation Structures</td>
<td>42</td>
</tr>
<tr>
<td>Human Behavior and Travel Choices</td>
<td>43</td>
</tr>
<tr>
<td>Comparative Effectiveness of Alternative Smartphone-Based Nudges to Reduce Cellphone Use While Driving</td>
<td></td>
</tr>
</tbody>
</table>
InterchangeSE: A Federated Multimodal Simulation Environment for Studying Interactions Between Different Modes of Travel 44
Freight Data Development and Enhancement to Support National Freight Transportation Analysis, Modeling, and Forecasting Practices 45
Behavioral-Based (or Agent-Based) National Freight Demand Modeling 45
Developing Connected Simulation to Study Interactions Between Drivers, Pedestrians, and Bicyclists 46
Knowledge Discovery in Massive Transportation Datasets 47
Applications of Knowledge Discovery in Massive Transportation Data: The Development of a Transportation Research Informatics Platform (TRIP) 48
High-Performance Data Fusion for Transportation Safety Analytics 49
Video Analytics Research Projects 49
Machine Learning for Automated Analysis of Large Volumes of Highway Video 51
Automated Feature Extraction Projects 52
Automated Identity-Masking Projects 55
Multimodal Connectivity Options for a Future, Seamless, Transportation System 57
Agent-Based Approach for Integrated Driver and Traveler Behavior Modeling 58
Evolutionary Agent System for Transportation Outlook (VASTO) 59
Design of a Completely New Approach for a National Household-Based, Long-Distance Travel Survey Instrument 61
Making Driving Simulators More Useful for Behavioral Research 62
Behavioral Sciences Approach to Testing, Validating, and Establishing Best Practices for Alternative Highway Revenue Collection 63
Impact of Automated Transit and Pedestrian/Bicycling Facilities on Urban Travel Patterns 64
Megaregional Travel 65
Driver Behavior in Traffic 66
Modeling the Urban Continuum in an Integrated Framework: Location Choice, Activity-Travel Behavior, and Dynamic Traffic Patterns 68

Technology for Assessing Performance
Development of Structural Carbon Nanotube-Based Sensing Composites for Rehabilitation of Deteriorating and Fatigue-Damaged Steel Bridges 69
Virtual Nondestructive Evaluation Laboratory for Highway Structures 70
Self-Sensing Adaptive Material for a New Generation of Multifunctional Bridge-Bearing Systems 71
Cooperating Camera Platforms for Ultra-High-Resolution Traffic Surveillance and Autonomous Event Detection 72
Contents (cont.)

Remote, Wireless Camera Systems for Environmental Monitoring of Transportation Corridors 73
Assessing the Structural Health of America’s Highway Bridges: Effective Wireless Sensor Systems to Monitor Structural Health and Detect Damage 75
Ultra Low-Power Wireless Sensing System 77
Multipurpose Wireless Sensors for Asset Management and Health Monitoring of Structures 78
A Remote, Self-Sustained System for Monitoring Water Quality Near Highways 79
Nanoscale Sensors for Structural Health 80
Flexible Skin, Areal Shear Stress, and Pressure-Sensing System for Experimental Bridge Scour Research 82
Development of Stiffness-Measuring Device for Pad Foot Roller Compaction 83

Creating Productive Roadways: Developing an Advanced Energy Production, Storage, and Distribution System 84

Results from Research Associateship Program
Cost-Benefit Analysis of Connected and Automated Vehicle Operations 86
Introduction

From an origin in the Department of Agriculture’s Office of Public Road Inquiry over 120 yr ago, the FHWA has been committed to shepherding innovations from theory to application. Over the past decade, the FHWA EAR Program has focused on early-stage, higher risk research where the Federal government can demonstrate the potential of new ideas for improving the safety, reliability, and condition of the Nation’s roadways. Examples include the following:

- Early vehicle aerodynamic and traffic modeling and physical testing of technology to control truck spacing in two- and three-truck platoons that showed potential to reduce fuel use.
- The characterization and modeling of new materials that can supplement and substitute the use of portland cement, providing more choices for building and reconstructing the structures and pavements that connect people across the United States.
- The application of experimental economics to daily travel, combined with the development of agent-based models, can result in improved travel time reliability at a system level.
- New sensor systems that monitor conditions on and off the roadway, from identifying cracks in structures before they are visible to aiding the movement of wildlife under and over roadways.

With the rapid change of communications, machine learning, automation, and other technologies, having a program that leverages cutting-edge concepts to make travel safer, easier, and more cost effective is increasingly important.

Kelly Regal, Ph.D.
Associate Administrator for Research, Development, and Technology
Federal Highway Administration
Connected Highway and Vehicle System Concepts

Research projects in this focus area emphasize long-term needs for reaching critical safety and mobility goals by developing theory for and assessing the feasibility of systems that leapfrog current technological approaches for linking infrastructure with future vehicle- and personal mobility technology. While people may update mobile devices every 2 yr, the average age of private motor vehicles is now over 10 yr. Roadway signals, infrastructure sensors, truck trailers, and other elements of the highway system have even longer lifecycles before being replaced.

Accordingly, new systems need to work with existing equipment while anticipating future technologies. Connected highway and vehicle system research needs to consider the open nature of transportation and legacy components and processes as well as the distributed nature of asset ownership and operations.

Truck Platooning and Connectivity

Fuel costs make the movement of freight over long distances an increasingly costly venture. Even small improvements in highway efficiency could reduce the costs per mile significantly, so new technologies and strategies that foster such efficiency would be economically beneficial. One such approach is incorporating CACC into Class 8 tractor-trailers, the kind typically used in freight transportation. CACC consists of radar, Global Positioning System (GPS) applications, video cameras, and data exchange operating within a dedicated short-range communication (DSRC) system. It allows multivehicle “platoons” of trucks to communicate with each other so they can automatically adjust engine and brake usage to maintain speed and separation distance. The EAR Program funded two research projects that explored the use of CACC in freight trucks.

IMPACT: By using platooning algorithms with CACC devices for these two projects, researchers demonstrated fuel savings at highway speeds. They also concluded that CACC could improve traffic flow once deployment of the technology achieves sufficient market penetration in freight trucks. In addition to cutting fuel costs, this greater efficiency could curtail emissions and reduce the workload for both drivers and vehicles. It would enhance the adaptive cruise control currently available in many tractor-trailers.
PROJECT: Heavy Truck Cooperative Adaptive Cruise Control

INSTITUTIONS: Auburn University, American Transportation Research Institute, Meritor, Inc., Peloton Technology, and Peterbilt Truck

COMPLETED: 2019

OBJECTIVE: To quantify the system performance of CACC in a two-truck platoon and evaluate the potential fuel savings that could be achieved by implementing the technology.

RESULTS: This team’s research analyzed the business case, vehicle aerodynamics, and traffic modeling for CACC-equipped truck platoons by conducting on-road tests with two-truck platoons at the Transportation Research Center, Inc., track in Ohio. With CACC controlling the distance between the two trucks, the research showed peak fuel savings of 5 percent for the lead truck, 10 percent for the trailing truck, and 7 percent at peak for the platoon. When the trailing truck stayed 50 ft behind the lead truck (a more realistic distance based on surveys that assessed driver comfort), the trailing truck saved more than 10 percent in fuel. Fleets that average more than 500 mi per trip would yield the highest return on investment in CACC. Researchers found that private and large, over-the-roadline truck fleets would most likely adopt CACC first. Market penetration in truck platoons would need to reach 60 percent to improve overall traffic flow along specific routes.

CACC incorporates video cameras, a DSRC system for intervehicle data exchange, and GPS. © n.d. Auburn University, College of Engineering.
PROJECT: Partial Automation for Truck Platooning
INSTITUTIONS: University of California, Berkeley, Partners for Advanced Transportation Technology, Cambridge Systematics, and Volvo Technologies of America
COMPLETED: 2018
OBJECTIVE: To develop and implement the technology for a three-truck platooning system using vehicle-to-vehicle communications and radar/vision-based sensors.

RESULTS: University of California, Berkeley researchers tested CACC in three-truck platoons that were operated in real California highway traffic. The driver of the lead truck operated it either manually or with partially automated adaptive cruise control, while the two trailing trucks featured fully automated CACC. Signals from a DSRC system operated at 5.9 GHz synchronized the platoon using a “constant time gap” strategy that separated the trucks proportionally based on their actual speed. The technology made it possible for the third truck to “see” the lead truck and for the platoon to respond in near-zero time to maintain the specified gaps between trucks. In addition to testing how the trucks in the platoon interacted with each other, researchers gauged how they responded to other vehicles changing lanes and getting between two trucks in the platoon. When that happened, the system automatically designated a new lead vehicle for the platoon, and it adjusted the following gap and strategy.
PROJECT: Cooperative Adaptive Cruise Control (CACC) Human Factors Study
INSTITUTIONS: Leidos, Inc.
COMPLETED: 2017
OBJECTIVE: To examine how using a CACC affected drivers’ workload, propensity to distraction, level of physiological arousal, ability to avoid a crash, merging abilities, and trust in the system through four experiments.
RESOURCES: Summary report of all four experiments at https://www.fhwa.dot.gov/publications/research/safety/17025/index.cfm.
RESULTS: The results of experiment 1 and experiment 3 suggest that CACC could provide a substantial safety benefit as long as a salient alarm is triggered when the driver needs to intervene. Such an alarm is advisable even if CACC is implemented with full braking authority because the driver might want to steer rather than brake in some crash-imminent circumstances.
Experiment 2 results strongly suggest that CACC should be accompanied with merge or steering assist to allow drivers to comfortably and safely merge into the smaller gaps between vehicles. Although most drivers in experiment 3 eventually learned how to adjust their speed to merge into smaller gaps, the learning curve included more collisions than would be desirable.

Experiment 4 results suggest that drivers’ preferences for following distance (gap) do not affect driver performance relative to an automated gap. Drivers adjust their performance appropriately for the actual gap, and designers do not need to be concerned about individual gap preferences related to driving performance.

Experiments 1, 3, and 4 assessed driver workload with and without CACC. In all three experiments, CACC was perceived to reduce driver workload.

The research suggests that CACC can reduce driver workload while enhancing safety. However, CACC is only one of many vehicle automation technologies in development or early deployment. The role of the driver will be in flux for years to come as putative safety and convenience automation technologies proliferate. Human factors research will need to focus on the ever-changing role of the driver and the resulting effects on the performance of these driver-vehicle systems

IMPACT: CACC has the potential to improve traffic flow, increase driver confidence, and make shorter vehicle-following distances possible. These experiments help understand how drivers interact with CACC, advancing its transition to real-world deployment.

INSTITUTIONS: Honeywell Corporation, University of Minnesota, and Time Domain Holdings

COMPLETED: 2017

OBJECTIVE: To develop a traffic-monitoring system that can recognize and track individual vehicles rather than aggregated vehicle patterns, without relying on vehicle-based technology that provides information about location or movement.

RESULTS: Researchers developed an Advanced Vehicle Tracking System (AVTS) that uses ultrawide band (UWB) radar to identify and track individual vehicles as they move through traffic. The system consists of four-radar units, a tracking computer, software that recognizes vehicle targets, and a user interface display. The four radars in each unit are arranged as rectangles, with each one capable of receiving its own reflected UWB signal and the signals of the other three. The radars in each unit fire sequentially as vehicles pass, transmitting a combined 200 scans/s to a tracking computer and the software, which is called a vehicle recognition engine. The software identifies each vehicle by size, direction, and speed as a unique track on the user display, and it shares key information with adjacent radar rectangles as vehicles move through the AVTS. Initial testing showed that the radar units, which are housed in weatherproof enclosures, are most effective when mounted on poles 20 ft high and with an antenna angle of 15 degrees.

IMPACT: The AVTS enhances the collection of complex traffic data by focusing on individual vehicles rather than aggregated vehicle patterns, and it does not rely on vehicle-based technology. The UWB radar at the core of the system offers a potential solution to the shortcomings of three other vehicle-sensing technologies—inductive loop detectors, microwave radar sensors, and video imaging systems.
PROJECT: Using Cooperative Adaptive Cruise Control to Form High-Performance Vehicle Systems

INSTITUTIONS: University of California, Berkeley, California Partners for Advanced Transportation Technology and Technical University of Delft, Netherlands

COMPLETED: 2017

OBJECTIVE: To overcome the key technical challenges to implementing cooperative adaptive cruise control, clearing the way for operational field tests that will be needed to enable commercialization of the technology.

RESULTS: To bridge gaps in knowledge about cooperative adaptive cruise control (CACC), researchers for this project identified various operational concepts, developed simulation models to test those concepts, and analyzed the results to inform future vehicle experiments. The concepts encompassed multiple strategies for operating CACC platoons. Created with a new program called Microscopic Open Traffic (MOTUS) and the commercially available
Aimsun system, the team’s simulation models represented different real-world road conditions (urban, rural, highways, and arterial) and rates of traffic. Researchers at both the University of California at Berkeley and the Technical University of Delft in the Netherlands used the simulation models to assess how various ways of deploying CACC impacted traffic flow and fuel consumption. The flow assessments included increases achieved in traffic capacity per highway lane, reductions in traffic disturbances, and savings in travel times along arterial roadways. Splitting the simulation tests between the two university teams enabled them to validate each other’s work. Researchers also tested their simulation models at FHWA’s Saxton Transportation Operations Laboratory in McLean, VA.

IMPACT: Researchers used data from this project and two generations of tests at California Partners for Advanced Transportation Technology to verify the feasibility of various CACC strategies. Their work also expanded understanding of how drivers choose to use CACC and clarified the safety implications of the technology. Their simulations advanced efforts to test and evaluate CACC on the road, the next step toward deploying the technology in the real world. FHWA test vehicles simulate a “platoon” of vehicles using cooperative adaptive cruise control.
Simulations of Connected Vehicle (CV) Technologies

CV technologies that make it possible for vehicles and roadway infrastructure like traffic signals to “talk” to each other can enhance safety, improve mobility, shorten travel time, and reduce the environmental impact of traffic. To achieve those goals, the engineers who are developing CV applications need a reliable, standardized way to test the technologies in various simulated conditions. These software simulations consider vehicle speed, traffic volume, road conditions, signal timing, and other details at every stage of traffic flow. They also show how a change to any one simulated element affects the other elements in the scenario. To foster further study of CV technologies, the EAR Program funded two research projects that incorporated actual vehicle performance data into modeling and simulation platforms.

IMPACT: The insights gained from these in-the-loop simulations will enhance the ability of traffic engineers to accurately and quickly model complex traffic environments. This realistic modeling in turn will foster the development of CV applications and their future deployment in real traffic.
PROJECT: New Approaches for Testing Connected Highway and Vehicle Systems

INSTITUTIONS: Texas A&M University Transportation Institute (TTI), Battelle Memorial Institute, and Siemens Corporation

COMPLETED: 2017

OBJECTIVE: To develop a simulation environment that incorporates data from a connected vehicle and signals in a roadway network into a simulation.

RESULTS: Researchers demonstrated a simulation platform called Connected Vehicle Assessment Simulation (CONVAS) that merges features of the VISSIM traffic simulation software with features of ns-3, an open-source wireless communications simulation. CONVAS integrates data from actual operating roadway elements at a TTI highway test facility and the Connected Vehicle Testbed at the Turner–Fairbank Highway Research Center (TFHRC). Novel “hardware-in-the-loop” features of the platform send this data into a simulation model. CONVAS then shows how real and simulated elements like vehicle speed, traffic volume, road conditions, and signal timing interact in real time. The platform can model interactions for many CV scenarios, including a disruption in the wireless communications needed to keep the various elements in the CV environment talking to each other.
Remote Highway and Vehicle System Concepts

PROJECT: Building a Hardware-in-the-Loop Simulation Testbed
INSTITUTIONS: University of Michigan and University of Minnesota
COMPLETED: 2017
OBJECTIVE: To develop a hardware-in-the-loop system that simulates a vehicle engine in the lab for various connected and autonomous vehicles (CAV) operation scenarios and precisely measures the fuel consumption, and to use sophisticated measuring devices in the lab.

RESULTS: For CV technologies to fulfill their potential, engineers must be able to run simulations that can realistically measure vehicle fuel economy and emissions. Researchers for this project developed a hardware-in-the-loop system that uses a real engine in the lab, which is exactly the same type as the engine used in the CAV at TFHRC, and the traffic simulation software VISSIM to achieve that goal. There are four key parts in the system—a gas engine, a hydrostatic dynamometer, VISSIM, and a laboratory-housed hardware testbed. The dynamometer controls the engine’s load and output to a powertrain model, while the software transmits the road and traffic conditions and the vehicle-specific performance data that researchers select. The data is sent over the Internet to the hardware testbed, which precisely measures actual emissions and fuel consumption. This in-the-loop simulation system is a simpler and less costly form of analysis than equipping multiple test vehicles with large precision measurement devices.

RESOURCES:
IMPACT: The research demonstrated the potential of hardware-in-the-loop for cooperative driving automation making it faster and safer to test physical components in complex scenarios. Hardware-in-the-loop now is integrated in the CARMA platform used by FHWA, academic institutions, and private-sector researchers.

The in-lab testbed ensures that the engine has the same load as the engine running in the field-test CAV with an onboard unit (OBU) under various operation scenarios. The engine’s emission and fuel consumption are precisely measured by the lab’s powerful devices. Source: FHWA.
Assistive Technologies for Visually Impaired Persons

For roughly 2 million American adults with impaired vision, independent travel and active interactions with the surrounding environment present significant daily challenges. The EAR Program funded three research projects to examine new technology to:

- Help visually impaired persons identify important objects, movements, and text information in the environment.
- Develop solutions to help visually impaired people find their way through indoor and outdoor environments.
- Extend navigation guidance for visually impaired travelers in areas where GPS data is not reliable.

COMPLETED: 2016

RESOURCES:

IMPACT: These projects demonstrated the potential for advances in mobile sensors, computing, and communications to aid people that are blind or have visual impairments with outdoor and indoor navigation and wayfinding. Since the completion of the projects, there has been continued investment increasing the technological maturity and the range of environments—from airport concourses to signalized pedestrian crossings—where travelers can benefit.
PROJECT: Intelligent Situation Awareness and Navigation Aid for Visually Impaired Persons

INSTITUTION: City College of the City University of New York

COMPLETED: 2016

OBJECTIVE: To develop technologies that detect and track stationary and moving objects, read signs, and monitor movement to support wayfinding and navigation of visually impaired people through indoor and outdoor environments.

RESULTS: Researchers for this project focused on exploring and developing awareness and navigation technologies that can recognize stationary objects; read and recognize important text and signage; and detect, track, and represent moving objects and other dynamic changes. The system includes a wearable device with integrated sensors, such as cameras, three-dimensional orientation sensors and pedometers, and a unit that will provide auditory and tactile guidance. Ultimately, this system will provide the user with a navigation map, register landmarks on the map, and generate a verbal description or tactile feedback for blind users to obtain a global perception of their environment.
Connected Highway and Vehicle System Concepts

PROJECT: Navigation Guidance for People with Vision Impairment

INSTITUTION: TRX Systems, Inc.

COMPLETED: 2016

OBJECTIVE: To develop navigational technologies that will localize, track, and plan a route for visually impaired users anywhere, including areas without access to GPS information.

RESULTS: Key elements of this research include developing a navigational aid that can localize and track the location of a blind person anywhere, including indoors or in urban areas where GPS data is not available or not reliable; planning and adaptively updating a route that allows a visually impaired person to get to a destination; providing guidance through tactile information instead of relying solely on auditory instructions; using computer vision techniques to find stairs, elevators, hallways, and doors to help with navigation; and verifying that the user has reached the correct destination.

PROJECT: Extended Event Horizon Navigation and Wayfinding for Blind and Visually Impaired Pedestrians in Unstructured Environments

INSTITUTION: Auburn University

OBJECTIVE: To develop a navigation system that can fill the gaps where GPS data is not sufficient and present information to visually impaired users when it is needed, whether they are indoors or outdoors.

RESULTS: Researchers for this project demonstrated the utility of a specialized pedestrian navigation device that integrates GPS, inertial measurement units, visual odometry, and stored and updated map data to accurately capture the movements of a pedestrian user in environments such as parks, airports, intersections, and general pedestrian zones. Where GPS is not available, the inertial measurement and odometry units can continue to provide accurate positioning and navigation information. The device communicates with the user through a system that combines vibration and tactile sensations with an iPhone app to indicate path and navigation information.
PROJECT: Intersection Control for Autonomous Vehicles

INSTITUTION: University of Texas at Austin

COMPLETED: 2013

OBJECTIVE: To develop, test, and evaluate (in simulation with a full-sized robotic vehicle) traffic-control algorithms for autonomous intersection management (AIM) and autonomous vehicles.

RESOURCES: Research reports and simulation videos at http://www.cs.utexas.edu/~aim/.

RESULTS: The project team demonstrated that AIM, in conjunction with autonomous vehicles communicating with each other and with roadside equipment, can dramatically improve intersection efficiency, reduce traffic delays, and alleviate traffic congestion. The research team developed and tested traffic control algorithms for autonomous vehicles and evaluated them first in simulation only and then in simulation integrated with a full-size robotic vehicle. Among several important project innovations are the following:

• Parameters for an autonomous vehicle to safely cross an intersection in an AIM system.
• A setpoint-scheduling algorithm to control arrival time, velocity, and position of an autonomous vehicle by sending control parameters to its brake and throttle actuators.
• Prioritization schemes to allocate intersection access and keep traffic moving.
• A preemptive, fail-safe protocol to prevent collisions when mechanical failures occur.

IMPACT: As automated vehicles come onto the market, results from this project have the potential to provide a safe system for improving traffic flow and dramatically reducing fuel use and mobile-source emissions at intersections.
PROJECT: Advanced Traffic Signal Control Algorithms

INSTITUTIONS: California Department of Transportation; California PATH, University of California, Berkeley; Center for Environmental Research and Technology, University of California, Riverside; and BMW Group

COMPLETED: 2013

OBJECTIVE: To develop advanced signal control strategies based on connected vehicle data; that is, real-time information on a vehicle’s location, speed, and characteristics, as well as communication to the signal control infrastructure.

RESULTS: The research team developed and tested several signal control applications, including strategies to minimize the occurrence of red-light running. The team’s prediction algorithm for DARE (dynamic all-red extension when a high probability of collision exists) achieved a correct detection and activation rate over 95 percent. Strategies to reduce arrival flow during the yellow interval, which influences red-light running in coordinated arterials, were also effective. To minimize fuel consumption, the team developed an in-vehicle speed advisory system that achieved fuel savings of over 13 percent in field tests. The team also proposed new methods for estimating common arterial measures of effectiveness for different penetration rates of connected vehicles. In one example, the team found that to accurately estimate intersection queue length in lighter traffic conditions, 80 percent of vehicles need to have connectivity, but in oversaturated conditions, only 10 percent need to be equipped. This finding indicates that connective traffic control strategies may be possible in the most congested networks before connected vehicles are ubiquitous.

IMPACT: The project results show great potential to advance real-time signal control strategies in some cases, with low levels of new technology adoption. Improved efficiency will reduce travel time, frequency and length of stops, fuel consumption, and harmful emissions.
PROJECT: Advanced Freeway Merge Assistance: Harnessing the Potential of Connected Vehicles

INSTITUTION: University of Virginia Center for Transportation Studies

COMPLETED: 2012

OBJECTIVE: To develop and evaluate candidate freeway merge-assistance systems that might improve the efficiency and safety of freeway merges in a connected vehicle environment.

RESULTS: The project team developed four algorithms that use connected-vehicle data to improve freeway merging strategies: lane-level variable speed limit, lane-changing advisory, gap-responsive on-ramp signal, and merging control. The team evaluated the algorithms within a connected vehicle simulation environment that simulates both vehicle movement and communications. The lane-level variable speed limit approach, lane-changing advisory, and gap-responsive on-ramp signal algorithms did not produce statistically significant improvement, although they showed potential. The merge-control algorithm, however, generated statistically significant benefits in average speed (23.6 percent increase), travel time (11.5 percent decrease), delays (17.9 percent decrease), and miles traveled (2.4 percent increase) within the connected vehicle environment. A sensitivity analysis of market penetration rates revealed that significant system improvements occur when 50 percent or more vehicles have connective capabilities.

IMPACT: These results will help transportation agencies understand the value of connected vehicle technology as it emerges and may eventually lead to freeway merge areas with greater capacity and fewer crashes.
PROJECT: Next-Generation Vehicle Positioning in GPS-Degraded Environments for Vehicle Safety and Automation Systems

INSTITUTIONS: Auburn University, Kapsch TrafficCom, Pennsylvania State University, and Stanford Research Institute

COMPLETED: 2012

OBJECTIVE: To provide ubiquitous, precise positioning in regard to vehicle safety and automation in the presence of GPS degradation.

RESOURCES: Final report, presentations, and video at http://www.eng.auburn.edu/~dmbevly/FHWA_AU_EAR2/.

RESULTS: The project team developed an integrated vehicle positioning system in which subsystems with complementary strengths are fused to provide precise positioning data in environments where one or more of the subsystems could fail. The subsystems assessed were GPS; inertial navigation systems (INS); camera and light detection and ranging (LIDAR) lane departure warning systems; a dedicated, short-range communications, distance-estimation system; visual odometry; and a road fingerprinting system. The accuracy and robustness of integrated systems were evaluated in test track and roadway scenarios under various weather conditions and at various speeds. The subsystems helped to improve lane-level accuracy. In live tests, GPS/INS integration provided improved results over standalone GPS, particularly in heavy foliage and urban canyon environments, and the full system of sensors performed best overall.

IMPACT: New algorithms, data fusion techniques, and ways of handling GPS data discovered in the project can support major improvements in vehicle positioning performance. Data fusion techniques can produce low-cost, precise positioning, allowing for a range of safety and mobility applications that currently would require high-cost equipment.
Connected Highway and Vehicle System Concepts

PROJECT: Innovative Approaches for Next-Generation Vehicle Positioning

INSTITUTION: University of California, Riverside

COMPLETED: 2012

OBJECTIVE: To investigate and test a range of approaches that could provide lane-level positioning accuracy in diverse driving environments.

RESULTS: No single positioning technology can meet the requirements for lane-level positioning across diverse driving environments—each has performance limitations. Researchers for this project explored the most promising technologies for improving the accuracy, availability, and reliability of vehicle positioning by augmenting Global Navigation Satellite System/INS technology. After evaluating the performance of aiding technologies (i.e., LIDAR, radar, computer vision, and DSRC), the research team developed and tested prototype systems that integrate a variety of sensors. The team found that LIDAR and radar technology integrate with the quickest processing and response, while terrestrial radio navigation and DSRC methods require more time. Radio and DSRC-based methods show great promise because implementation costs are relatively low but require further development to improve accuracy. The performance of vision-based aiding improves with increased sensor cost; however, implementation requires the development of onboard feature mapping.

IMPACT: This project’s theoretical and experimentally demonstrated results will facilitate continued rapid advancement in vehicle positioning technology, providing opportunities for new safety, mobility, and eco-drive applications.
PROJECT: Development of Enhanced Safety Systems Based on GPS/INU System

INSTITUTIONS: Ohio State University, University of Virginia, and GNSS Solutions, LLC

COMPLETED: 2012

OBJECTIVE: To test emerging navigation technologies in a simulation environment that could lead to better assessment of future navigation technology and improved methods for roadway design.

RESULTS: The project team developed an integrated simulation platform to evaluate the impact of emerging vehicle positioning and communications technologies that provide level positioning at less than 3.9 inches and allow connected vehicles and infrastructure to monitor and share safety related information. To estimate how system errors, communication delays, and communication interruptions affect the timing of warnings, driver perceptions/reactions, networkwide delays, and safety, the team simulated warning scenarios for eight sensor system combinations. The team found that error- and delay-free driver warnings reduced the number of conflicts in the range of 28 percent to 50 percent. The project compared different positioning approaches for overall accuracy and for providing the fewest false and missing warnings.

IMPACT: Use of the integrated simulation environment to assess connected vehicle technologies and improve roadway design can reduce the risk of crashes, prevent travel delays, and reduce fuel consumption as new systems are implemented.
Connected Highway and Vehicle System Concepts

PROJECT: Development and Evaluation of Selected Mobility Applications for VII

INSTITUTIONS: California PATH, University of California, Berkeley; and California Department of Transportation

COMPLETED: 2011

OBJECTIVE: To develop new strategies to reduce bottlenecks, minimize congestion, and maximize throughput by utilizing the capabilities of intelligent vehicles and highway infrastructure.

RESULTS: The project team modeled, tested, and demonstrated prototype wireless communication systems to improve traffic flow by calculating and communicating variable speed limits (VSLs) to drivers, achieve higher effective lane capacities using CACC, and reduce fuel consumption and increase truck-only lane capacity with automated platoons. Their work demonstrated the following:

- **Variable Speed Limits**—In simulation and live tests on I-80, the researchers broadcast speeds calculated to prevent traffic flow breakdowns, with promising results. VSLs show significant potential to prevent traffic delays.

- **Cooperative Adaptive Cruise Control**—Study results show that CACC could substantially increase highway capacity when it reaches moderate to high market penetration. Retrofitting non-CACC vehicles with inexpensive “here I am” radios could accelerate achievement of these capacity benefits.

- **Automated Truck Platoon Control**—A wireless communications system successfully coordinated a platoon of three tractor-trailer trucks traveling at 53 mi/h and in varied joining and splitting maneuvers. Fuel savings were estimated at 10 to 14 percent for the following trucks.

IMPACT: New connected vehicle and highway systems can lead to substantial safety, operational, and environmental benefits.
Layered Object Recognition System for Pedestrian Collision Sensing

Sarnoff Corporation and AutoLiv Electronics America

2009

To develop a real-time, in-vehicle, vision-only system to detect pedestrians and determine potential collisions with high accuracy and minimal false alarms.

The project team developed an in-vehicle, stereo, vision-based system that detects, recognizes, and tracks pedestrians in its field of view. The system uses contextual information to reduce false alarms and light-enhancing techniques to improve low-visibility detection. Evaluated on publicly available datasets, the system matched or exceeded the performance of leading pedestrian detectors, tracking pedestrians at vehicle speeds of up to 30 mi/h and distances up to 115 ft away under good visibility conditions and up to 82 ft away under reduced visibility, with a 90-percent overall positive detection rate. The researchers recommend further development to upgrade performance. The feasibility of commercial implementation is high since the system uses low-cost components.

Twilight hours are the most dangerous time for pedestrians. Existing detection systems, however, have limited effectiveness in low-light conditions. New approaches introduced in this study provide superior results in twilight.
Advances in instrumentation allow for measuring materials used to construct the U.S. highway system at time and length scales previously unknown, leading to new insights into fundamental knowledge. Combined with new methods for multiscale material modeling, research in this focus area can potentially improve the reliability of materials for highway structures and pavements.

PROJECT: Novel Alternative Cementitious Materials for Development of the Next Generation of Sustainable Transportation Infrastructure

INSTITUTIONS: Georgia Institute of Technology, Oklahoma State University, Tourney Consulting Group, and U.S. Army Corps of Engineers

COMPLETED: 2019

OBJECTIVE: To increase access to alternative cementitious materials (ACMs) as potential replacements for ordinary portland cement (OPC) to achieve significant sustainability improvements and to take advantage of the special setting and durability properties of ACMs.

RESOURCES: Fact sheet at https://www.fhwa.dot.gov/publications/research/ear/18031/.

RESULTS: Researchers for this three-phase project studied various ACMs as potential substitutes for OPC to extend the life of concrete in pavement and bridges. The researchers reviewed relevant literature, visited sites to evaluate the long-term performance of ACMs, and interviewed producers and users of the materials before conducting their own tests of ACMs. Using OPC as a control measure, the researchers first looked at nine ACMs—three calcium sulfoaluminate (CSA), one polymer-modified CSA, two calcium aluminate (CA), one portland/CA/calcium sulfate ternary blend, one chemically activated Class C fly ash (AA1), and one magnesium phosphate (MP) binder. For the second phase of work, they narrowed the focus to two CSA cements, two CA cements, and AA1 based on the promise they showed for...
use in transportation infrastructure. Tests of those five ACMs within concrete gauged their ability to resist physical abrasion, progressive alkali silica reactivity deterioration, and other threats. Phase 3 of the project featured more corrosion tests, extended lab testing, long-term field exposure studies, and forensic analysis of well-aged ACM-based pavements.

IMPACT: ACMs expand the options available to designers, owners, and contractors of concrete-based transportation infrastructure. They require less energy to create than portland cement and generate less carbon dioxide, resulting in significant sustainability improvements, and they may be particularly valuable in concrete exposed to extreme environments. This research provides insights that can be used to recommend test methods for ACMs and preliminary specifications for their use.

PROJECT: Nanoscale Approaches for Inhibiting Corrosion: Green Advanced Coatings for Application on Steel Structures and Bridges

INSTITUTION: City College of New York

COMPLETED: 2018

OBJECTIVE: To slow the deterioration of steel infrastructure with safer, corrosion-resistant coatings and to develop a model to help bridge owners set optimal rehabilitation schedules for steel bridges.

RESULTS: High maintenance and rehabilitation costs are the motivation for research into new types of steel coatings that inhibit corrosion, resist scratching, and reduce environmental risk. This particular project focused on creating a nanotechnology-based coating that meets those requirements at a lower lifecycle cost while also being easy to apply, fast to dry, and resistant to ultraviolet rays. The first phase of work incorporated nanomaterials into two novel coating systems—a polyaniline (PANI) epoxy system with added carbon black and a nanoclay-enhanced calcium sulfonate alkyd (CSA) system. Researchers compared different concentrations of these coatings with zinc-rich epoxy primer coatings, which have been common since the 1960s. The PANI-epoxy system performed better than the nanoclay-enhanced CSA system in corrosion tests, but the latter material had stronger adhesion, dried more quickly, and was more resistant to scratching. Phase 2 encompassed tests of two alternative additives for the CSA-based system, accelerated testing and weathering studies of the PANI and CSA systems, and a 16-mo study of the PANI system and the CSA system that performed best.

IMPACT: Nano-enhanced, corrosion-resistant, and environmentally friendly coatings for steel could help extend bridge service life and keep the driving public safe. By providing insights into the use of nanomaterials in steel coatings, this project advanced the lifecycle management of steel bridges. Data from the research was used to estimate the lifetime deterioration of structural components. The research results could have applications for many steel structures besides bridges.

PROJECT: Inorganic Polymers: Novel Ordinary Portland Cement-Free Binders for Transportation Infrastructure

INSTITUTIONS: University of California, Los Angeles; University of California, Santa Barbara; University of Texas, Austin; and Boral Materials

COMPLETED: 2018

OBJECTIVE: To determine how inorganic polymer binders made from fly ash react with certain chemical solutions and improve understanding of how those reactions affect binder performance and production.

RESULTS: Various researchers are striving to develop concrete that uses less energy in its manufacture and costs less. This team focused its efforts on “cement-free” inorganic polymer binders (IPBs) that could “glue” the raw materials in concrete together. They examined fly ash, a byproduct from coal-fired power plants, as a potential alternative to ordinary portland cement, the traditional binder in concrete. To study how fly ash reacts when introduced into certain chemical solutions, researchers developed a molecular design
strategy. First, they analyzed the compositional and physical parameters of fly ash to identify the desired characteristics for producing IPBs. Next, the team used solid- and liquid-phase nuclear magnetic resonance, vertical scanning interferometry, and molecular simulations to examine at the atomic scale the molecular processes and products that result when cement-free binders react under typical conditions. Among other insights, researchers learned how chemical species formed in the solutions. In the last phase of research, the team used an embedded material properties database to study the evolution of IPBs throughout a reaction.

IMPACT: This project contributed to the understanding of how cement-free binders made from fly ash may perform in highway infrastructure. Researchers developed tools and methodologies that could improve the ability to manufacture IPBs and help the construction industry integrate industrial byproducts into building materials.

PROJECT: Novel Development of Bio-Based Binder for Sustainable Construction

INSTITUTIONS: Washington State University and Pavement Preservation Systems

COMPLETED: 2018

OBJECTIVE: To produce a bio-based substance that is comparable or superior in performance to petroleum-based asphalt binders for use in constructing roads and other similar projects.

Researchers created a rotary reactor to simulate the production of the hot-mix bio-binder through mixing aggregates with bioasphalt. © 2017 Department of Civil and Environmental Engineering, Washington State University.

RESULTS: Researchers for this project mixed waste cooking oil with lignin, a byproduct of the paper pulping process, to create a bio-based asphalt binder. To develop the binder, the researchers first mixed the waste cooking oil with maleic anhydride at 365°F and used iodine as a catalyst. This initiated a chemical reaction in the oil to boost its molecular weight, a process known as polymerization. Next, the team put the lignin through chemical processes to create an epoxy. Because it is more stable at high temperatures, the lignin-derived epoxy makes roads built with the bio-based asphalt binder more resistant to rutting, well-worn depressions, and grooves. Researchers then preblended the polymerized waste cooking oil and lignin, and they mixed that substance with asphalt aggregates in a hot drum to create a “bioasphalt.” After curing the mixture for 2 hr, they packed the bioasphalt in a gyratory compactor. The goal of the research was to create a substance that provides as much or more resistance to fatigue, rutting, thermal cracking, and moisture as petroleum-based asphalt.

IMPACT: Successfully producing a bio-based asphalt binder that equals or exceeds the performance of traditional asphalt could reduce the reliance on petrochemicals in road networks. The results of this project could contribute to future research into bioasphalt, including its ability to withstand various traffic loads and weather conditions based on the degrees of the binder’s polymerization.
PROJECT: Mechanisms of Hydration and Setting of Ordinary Portland Cement in Simple and Complex Systems

INSTITUTIONS: Princeton University; National Institute of Standards and Technology (NIST); Oklahoma State University; Rice University; University of California, Santa Barbara; and W.R. Grace and Company

COMPLETED: 2017

OBJECTIVE: To develop advanced hydration models that will improve the setting, strength, and durability of concrete and provide guidance on a pavement’s expected performance based on the composition of cement, supplementary cementitious materials, admixtures, and temperature.

RESULTS: Researchers combined experimental measurement techniques with computer modeling to observe, measure, and model the hydration process in cement at scale. The team conducted the research in two phases, with the first focused on the mechanisms of cement hydration and the second on the impact of organic admixtures. The researchers used experimental techniques like vertical scanning interferometry, tomography-assisted chemical correlation, and nuclear magnetic resonance spectroscopy to identify mechanisms to include in their models. Using these techniques, the researchers obtained data to verify model predictions and validate models at nano-, micro-, and macroscopic length scales. They also discovered breakthrough techniques that allowed them to obtain even more information about reaction rates. The studies enabled them to identify which chemical reactions occur at the early ages of cement, where they occur within the

Researchers conducted x-ray nano-computed tomography and nano-x-ray fluorescent imaging using the Beamline 26 x-ray nanoprobe at Argonne National Laboratory in Illinois. © Argonne National Laboratory, managed and operated by UChicago Argonne, LLC, for the U.S. Department of Energy.
cement, at what rate, and how they can be modified to make concrete more sustainable and durable. These insights will help improve the hydration reaction simulation and modeling programs being developed at NIST and other institutions. The data has resulted in published technical papers that have helped refine the modeling efforts being advanced at NIST, including the hydration reactions in a microstructures project (https://www.nist.gov/programs-projects/hydration-reactions-microstructures-project) and the Virtual Cement and Concrete Testing Laboratory software (https://www.nist.gov/services-resources/software/vcctl-software).

IMPACT: By creating a tool to observe cement at its material length scales, this project helped advance the control of hydration in cement. Researchers applied their knowledge from the project toward improving NIST’s HydratiCA model for simulating hydration and toward developing SimBNG, a boundary nucleation and growth model. FHWA will make the research available by technique, mineral, additive, and other key words for future experimentation.

PROJECT: Paving the Way for Greener Highways: Extending Concrete’s Service Life through Multiscale Crack Control

INSTITUTION: University of California, Berkeley

COMPLETED: 2015

OBJECTIVE: To extend the service life of reinforced concrete structures by limiting the spread of cracks, and to reduce the environmental impact of concrete by incorporating recycled waste materials.

RESULTS: The research team demonstrated the effectiveness, environmental benefit, and cost savings of an approach called deterioration reduction through micro and macro crack control (DRMC) that significantly slows the deterioration of highways, bridges, and other major concrete structures while reducing the environmental costs of concrete construction. The first component of the
Breakthrough Concepts in Materials Science

DRMC research—hybrid fiber-reinforced concrete (HyFRC)—evaluated the use of a mix of water-soluble polymer microfibers (0.312 inches) and hooked-end steel macro fibers (1.170 inch) to limit the development and spread of cracks, which reduce concrete’s strength and speed up its deterioration. Compared with conventional concrete, HyFRC showed significant improvement in corrosion control due mainly to suppression of spreading cracks. The second component of DRMC tested a “green” variant of HyFRC that uses fly ash—a waste product of burning coal to generate electricity—to replace 50 percent of the portland cement in concrete. In addition, the green HyFRC uses recycled concrete aggregate, which is commonly sent to landfills, to replace natural stone and gravel used in concrete. Tests showed that the green DRMC approach achieved both goals—enhanced corrosion resistance and conservation of natural resources.

IMPACT: Achieving significant crack and corrosion resistance in concrete that incorporates recycled waste material represents an economical and effective next-generation approach to major infrastructure construction projects, leading to increased service life expectancy and reduced environmental impact.
PROJECT: Greatly Increased Use of Fly Ash in Hydraulic Cement Concrete for Pavement Layers and Transportation Structures

INSTITUTIONS: Purdue University, Auburn University, NIST, National Ready Mixed Concrete Association, and FHWA’s Chemistry and Concrete Laboratories

COMPLETED: 2012

OBJECTIVE: To improve understanding of infrastructure materials, specifically, how to use higher amounts of fly ash in concrete and obtain the performance needed for long-lasting concrete highway pavements and structures.

RESULTS: Large-scale experiments demonstrated that high-volume fly ash (HVFA) concrete can be produced to have setting times and early-age compressive strength development comparable to conventional portland cement concrete. In experiments with HVFA replacement volumes of 40 percent and 60 percent, researchers found that lower water-to-cementitious materials ratios and internal curing (adding pre-wetted, lightweight aggregates that release water to the matrix after time of set) improved early-age strength and reduced early-age cracking. Other project studies examined materials compatibility, prediction methods for property development, improved freezing and scaling durability, and activation energy values of cementitious materials. Technology transfer activities in the project will guide agencies and contractors in using HVFA in concrete mixtures.

IMPACT: The performance data and best practices developed in this project can lead to significantly increased use of fly ash in concrete mixtures, resulting in transportation infrastructure with a smaller carbon footprint, lower embodied energy, and improved long-term performance.
PROJECT: High-Performance Stress-Relaxing Cementitious Composites for Crack-Free Pavements and Transportation Structures

INSTITUTION: Texas A&M University Texas Transportation Institute

COMPLETED: 2011

OBJECTIVE: To achieve a durable concrete with enhanced viscoelastic properties and high resistance to cracking through the utilization of nano inclusions.

RESOURCES:

RESULTS: Investigators performed a comprehensive review of previous work using carbon nanoflaments (CNFs) and tubes (CNTs) in cementitious materials to improve their mechanical properties and behaviors and conducted a detailed study of the common method of incorporating CNFs. They developed a novel thermodynamic-based dispersion quantification method to measure the effect of geometry-dependent clustering on CNF dispersion in cement paste. They also developed a new method for improving and stabilizing CNF dispersion in cement paste using silica fume to significantly improve CNF dispersion in a hardened cementitious matrix. Finally, experimental investigation of the effect of CNFs on the mechanical behavior and properties of hardened cement paste showed that CNFs can increase flexural strength and reduce shrinkage cracking. The researchers produced an advanced hardened cement paste that is strong and resists shrinkage cracking quite well under certain levels of restraint. Next steps could include additional exploratory advanced research.

IMPACT: Use of new materials such as CNTs can lead to increased durability of pavements and structures as well as to multifunctional materials such as self-sensing pavements.
New mobile sensors and computers are creating radical new tools for understanding how individuals and groups of people behave in structured experiments and natural, everyday life. With advances in automation, there also are new demands for understanding how people interact with machines. The EAR Program has supported research in this focus area, mining data to create new methods of assessing long-distance passenger travel, freight data, and safety surrogate measures. The EAR Program also is taking advantage of advances in machine learning to increase the automated coding of naturalistic driving data. Harnessing technological advancements for innovation can result in more effective safety countermeasures, roadway designs, and system investments that reflect the future needs of the transit of people and goods.

PROJECT: Comparative Effectiveness of Alternative Smartphone-Based Nudges to Reduce Cellphone Use While Driving
INSTITUTION: University of Pennsylvania and the Children’s Hospital of Philadelphia
COMPLETED: 2021
OBJECTIVE: To examine the issue of distracted driving by applying behavioral economics concepts and novel smartphone technology.
RESULTS: Two field experiments tested scalable smartphone-based “nudge” strategies to reduce cellphone use while driving. The first randomized trial tested the effect of policies requiring smartphones to have a “car mode,” akin to “airplane mode,” and enhancements for uptake and sustained use via potential auto insurance incentives. Specifically, the researchers looked at the effect of “opt-out” versus “opt-in” deployment of a smartphone “car mode” setting that blocks cellphone use while driving, with and without financial incentives. The second randomized trial compared the effects of social, individual, and team-based incentives by employers that could be scaled to reduce cellphone use while driving.

IMPACT: The data derived from these scalable smartphone and incentive strategies may help develop public safety programs for reducing dangerous distracted driving behaviors.

PROJECT: InterchangeSE: A Federated Multimodal Simulation Environment for Studying Interactions Between Different Modes of Travel

INSTITUTION: Iowa State University

COMPLETED: 2021

OBJECTIVE: To design, develop, and demonstrate a simulation in a real-time environment where a variety of traffic and roadway situations can be created, run, and studied.

RESULTS: Using multimodal simulation technology called InterchangeSE, the researchers examined interactions among several transportation stakeholders (i.e., bicyclist, driver, and pedestrian) representing different decision perspectives in various traffic/roadway situations. Using a client-server network architecture, InterchangeSE connected physical and simulated driving agents (i.e., bicyclist and automobile driver) to a traffic simulator application. The physical participants interacted with each other using a variety of displays including multiple computer monitors, head-mounted virtual reality displays, and augmented reality displays. Driving parameters from the physical participants, such as position and heading, were network synchronized with traffic (i.e., vehicles and pedestrians) and computed by the traffic simulator. The computed traffic was relayed back to the physical driving participants, who saw them on their screens and adjusted driving responses accordingly, all in real time.

IMPACT: This research will help ensure the safe and reliable introduction of new technologies, such as cooperative driving automation, into the U.S. highway system by allowing more complex and realistic experiments.
Human Behavior and Travel Choices

PROJECT: Freight Data Development and Enhancement to Support National Freight Transportation Analysis, Modeling, and Forecasting Practices

INSTITUTION: Research Systems Group, Inc., University of Washington, and the University of Toronto

COMPLETED: 2021

OBJECTIVE: To develop a coherent and holistic freight modeling framework for tracking vehicles and shipments and for surveying all relevant freight agents (e.g., producers, shippers, logistics providers, carriers, wholesalers, retailers, end-consumers) with considerable time and geographical coverage (national, regional/urban, and rural areas).

RESULTS: The research team gathered and integrated available data to develop a national freight model estimation. This research provided the modeling-framework foundation for next generation behavioral and agent-based predictive tools. These tools will be capable of modeling complex interactions that underlie logistics and transport choices and can be applied at various geographic levels.

IMPACT: This study will allow decisionmakers to understand better the factors that influence freight movement on scales ranging from interurban commercial deliveries to regional and national infrastructure needs.

PROJECT: Behavioral-Based (or Agent-Based) National Freight Demand Modeling

INSTITUTION: Massachusetts Institute of Technology

COMPLETED: 2020

OBJECTIVE: To demonstrate novel approaches for the development of a national-level, disaggregated, behavioral-based, and multimodal freight demand modeling tool.

RESULTS: This study built on the national freight model that examines the national movement of goods in the United States. The research team evaluated the use of innovative communication technologies to collect high-resolution and high-frequency data that accurately describe the behavior of choices that underpin freight movement. The researchers developed freight logistics survey methods that use smartphones, tablets, Global Positioning System loggers, radio frequency identification, mobile sensing, and wireless communication technologies to collect data that accurately describe what freight transportation agents do while minimizing the burden of data reporting and protecting sensitive business information. The researchers validated and enhanced this trove of observed behavioral data through in-person and web- or tablet-based recall surveys to reveal underlying decisionmaking and choice among multiple logistics and route variables. The initial results from applying the national freight model in this study demonstrated that the model produces reasonable estimates of the business relationships and transport logistics required to move goods in the United States.

IMPACT: The results of this study significantly enhance transportation managers’ ability to anticipate and plan freight movement capacity, operation, and infrastructure investment.

PROJECT: Developing Connected Simulation to Study Interactions Between Drivers, Pedestrians, and Bicyclists

INSTITUTION: University of Iowa

COMPLETED: 2020

OBJECTIVE: To transform simulation technology to enable studies of how the expectations, anticipations, and responses of all road users are influenced by futuristic vehicle technologies, new infrastructure designs, and each other.

RESULTS: Connected simulation technology offers enormous potential to study interactions between drivers, pedestrians, and bicyclists and assess the impact of new technologies on safety and mobility. This project researched the development of an innovative mixed-mode connected driving, pedestrian, and
bicycling simulator system. This work incorporated graphical avatars into the simulation that represented the live movements of drivers, bicyclists, and pedestrians and the development of new methods of scenario control and data analysis appropriate for multiparticipant simulation research. The experiments examined the interactions between drivers, bicyclists, and pedestrians.

IMPACT: This research will help ensure the safe and reliable introduction of new technologies, such as cooperative driving automation, into the U.S. highway system by allowing more complex and realistic experiments.

Knowledge Discovery in Massive Transportation Datasets

The ability to extract and analyze safety-related information from vast datasets about driver behavior, vehicle performance, traffic patterns, weather, and infrastructure could help reduce crashes on the Nation’s highways. These datasets include FHWA’s Highway Safety Information System (HSIS), which features data on accident, roadway, and traffic variables; the naturalistic driving study (NDS), a resource from the second Strategic Highway Research Program (SHRP 2) that describes more than 3,400 drivers and vehicles involved in roughly 36,000 events; and a related SHRP 2 roadway information database (RID), which details NDS trips on the most frequently traveled roadway sections. Open-source technology that can process these massive transportation datasets is needed to enhance knowledge discovery. The EAR Program backed two projects designed to develop such technology.

IMPACT: The first project will enable researchers to leverage decades of information in existing transportation datasets, work with data sources not typically considered in the safety domain and broaden their understanding of safety countermeasures. The platform the researchers developed also could have applications in operations and maintenance if the necessary datasets are added to it. Tools developed through the second project will be refined for use with similar data-rich traffic information resources.
PROJECT: Applications of Knowledge Discovery in Massive Transportation Data: The Development of a Transportation Research Informatics Platform (TRIP)

INSTITUTION: CUBRC

COMPLETED: 2018

OBJECTIVE: To manage massive amounts of transportation data and provide researchers with an efficient way to conduct analytics with big data.

RESULTS: Researchers at CUBRC developed a tool called the Transportation Research Informatics Platform (TRIP). Built on a Linux operating system, TRIP features open-source tools that consume, transform, align, and store massive amounts of traffic data that users can mine for patterns related to traffic safety. The platform’s versatile dashboard makes it possible to visualize streaming data and historical information. This information includes State road crashes, traffic volumes, and roadway characteristics from the HSIS; roadway geometrics from the RID; data on historical crashes, traffic volumes, weather, traffic laws, safety campaigns, and work zones; weather data and roadway surface conditions from the Clarus Initiative; and weather information like precipitation, temperature, and wind speed from the Iowa Environmental Mesonet. CUBRC tested TRIP with sample datasets from the Seattle region.

IMPACT: The research demonstrated the potential of advanced methods for working with diverse and unstructured data. Since the project ended, additional government funding continues to advance the maturity of open, flexible data tools for developing actionable information for increasing transportation safety and mobility.
Human Behavior and Travel Choices

PROJECT: High Performance Data Fusion for Transportation Safety Analytics

INSTITUTION: Palo Alto Research Center, Inc.

COMPLETED: 2018

OBJECTIVE: To combine and analyze data from large datasets in the transportation domain, including datasets containing sensitive personal and business information.

RESULTS: Researchers at the Palo Alto Research Center, Inc. (PARC) developed automated, machine-learning methods to extract, clean, and restructure traffic-related data from disparate sources. They used video, radar, and still photography information gathered from Chicago intersections. This new approach, an improvement upon slower, manual methods for handling such data, can reveal safety issues that might not be apparent from examining traditional datasets. When the SHRP 2 NDS became available, PARC started developing a video analysis tool. Being tested now, this tool processes snippets of video and can return the location on the video matching the snippet.

IMPACT: The research demonstrated the potential of advanced methods for working with diverse and unstructured data. Since the project ended, additional government funding has continued to advance the maturity of open, flexible data tools for developing actionable information for increasing transportation safety and mobility.

Video Analytics Research Projects

The NDS conducted by the SHRP 2 of the Transportation Research Board collected 1.2 million hr of video from more than 3,400 volunteer drivers and

Interactive feedback on the examples proposed by PARC’s automated machine-learning method for agile video queries. © Palo Alto Research Center, Inc.
their vehicles traveling on U.S. highways over 2 yr. This is one of the largest and richest resources for transportation safety researchers.

Each vehicle was equipped with an interface to collect data from the vehicle’s onboard systems, video cameras, GPS, and other systems that combined to generate more than 2 petabytes of data. The EAR Program funded six separate research projects that addressed separate aspects of video analytics, aiming to help researchers manage and extract accurate information from the large and complex SHRP 2 data set.

RESOURCES:

PROJECT: Machine Learning for Automated Analysis of Large Volumes of Highway Video
INSTITUTION: Carnegie Mellon University
COMPLETED: 2016
OBJECTIVE: To develop a prototype tool that uses computer vision and machine-learning algorithms to identify and extract useful information about roadway features from data gathered from forward-looking, vehicle-mounted cameras.

A typical challenging situation for overlapping objects (left vehicles) and occluded objects (right vehicle) in an urban environment. © Carnegie Mellon University.
RESULTS: Researchers evaluated analytical solutions to challenges such as identifying multiple roadway features (car and truck detection), differentiating among scene context elements (vegetation, sky, and roadway shoulder), and identifying traffic signs and status of traffic signals. The researchers also developed a simple graphical user interface that enables even novice users to effectively employ appropriate algorithms to a range of analytical tasks.

IMPACT: This research demonstrates the effectiveness of applying appropriate machine-learning techniques to large, diverse data sets and opens avenues for active learning to address challenges such as traffic congestion control, driver behavior training, and road safety.

Automated Feature Extraction Projects

The EAR Program sponsored three research projects designed to advance efficient and cost-effective methods and tools to analyze the large amounts of video-related safety data generated by studies such as the SHRP 2 NDS. These projects focused on the driver and the interior of vehicles involved. Each project brings different technical strengths and approaches and applies the approaches to different features of interest for highway safety. These projects are briefly summarized below.

PROJECT: **DCode: A Comprehensive, Automated Coding System for Driver Behavior Analysis**

INSTITUTION: SRI International

COMPLETED: 2016

OBJECTIVE: To develop a comprehensive, automatic system to assist in coding of features in the SHRP 2 NDS data set that are relevant to traffic and roadway safety researchers.

The DCode System will extract driver behavior features and recognize various actions. It will also track contextual features. © SRI International.
RESULTS: Researchers for this project developed software to code contextual features such as passengers, radio, navigation, and conditions outside the vehicle. The software extracts core and intermediate features to code driver behavior features (e.g., hand position and facial expression) and to track driver attention (emotional, cognitive, and physiological state). The project identified areas for future research, such as image stabilization and improved techniques to extract contextual features when the environment is not ideal, such as when seat belts are not brightly colored and difficult to detect.

IMPACT: This project demonstrates the effectiveness of a coding system that makes it possible to identify and evaluate the actions and behaviors of drivers, as well as the context in which they are performed.

PROJECT: DB-SAM: CMU Driver Situational Awareness System

INSTITUTION: Carnegie Mellon University

COMPLETED: 2016

OBJECTIVE: To develop an automated, real-time method for analyzing key facial landmarks to determine if a driver is fatigued or distracted.

RESULTS: DB-SAM uses Active Appearance Models to analyze facial images and Active Shape Models to analyze facial outlines by tracking a variety of physical and biological landmarks in videos. This analysis is used to estimate driver distraction or fatigue. Researchers also evaluated methods to analyze hand position to determine if drivers have their hands on the steering wheel or are holding a cell phone to their ear.

IMPACT: This project demonstrates the potential for using real-time video analytics to estimate if a driver is in good condition to operate a vehicle.
Regions of interest, including the driver’s face, hands, and front view, are monitored by the system. © Regents of the University of Wisconsin–Madison.

PROJECT: Quantifying Driver Distraction and Engagement Using Video Analytics

INSTITUTION: University of Wisconsin-Madison

COMPLETED: 2016

OBJECTIVE: To develop an open software system and graphical user interface that will enable automated feature extraction and behavior characterization using naturalistic driving video.

RESULTS: This research team evaluated automated feature extraction and behavior characterization systems to estimate driver distraction and engagement, as well as road state. In this system, algorithms segment video into regions of interest that include the driver’s head, face, and upper body; steering wheel; and roadway. The software tracks facial landmarks to estimate head pose, tracks eye and mouth movement to help estimate gaze, and monitors hand activity to determine if a driver’s hands are on the steering wheel. The software also evaluates features of road state (e.g., traffic signal detection, day or night, in traffic or alone on the road). This information is used to help understand driver engagement.

IMPACT: This research represents an important advance toward development of a reliable, automated, video coding system that can be used with naturalistic or driving-simulator video to help understand and prevent driver distraction.
Automated Identity-Masking Projects

The EAR Program supported two research projects designed to investigate automated identity masking that preserves underlying information about the driver’s expression (e.g., head pose, mouth, and eye movement) while protecting privacy and precluding personal identification. The following pages provide a brief summary of these two projects.

PROJECT: Automation of Video Feature Extraction for Road Safety—Automated Identity-Masking

INSTITUTIONS: Carnegie Mellon University and University of Pittsburgh

COMPLETED: 2016

OBJECTIVE: To develop an automated, facial-masking technique to prevent personal identification without eliminating facial behavior.

RESULTS: The research team for this project developed automated masking techniques that protect personal identity while allowing future researchers to analyze facial behavior as a tool to help evaluate driving characteristics through study of naturalistic driving videos. The central concept employed in this research is facial action transfer, which clones a facial action (e.g., forming a smile) from one person within a video to another person. This process preserves the changing subtle facial movements from the person being de-identified. The process is nonreversible, ensuring that driver identity is protected. Researchers have developed an automatic graphical user interface that can output de-identified video.

IMPACT: This project demonstrates the effectiveness of an automated system for de-identifying individuals in naturalistic driving videos, greatly expanding the utility of these videos in driver safety and behavior studies.

PROJECT: DMask: A Reliable, Identity-Masking System for Driver Safety Video Data

INSTITUTION: SRI International

COMPLETED: 2016

OBJECTIVE: To develop an automated facial-masking technique to prevent personal identification without eliminating distinctive aspects of driver expression.

RESULTS: This research involved exchanging the driver’s head in SHRP 2 video data with a computer-generated avatar head. The system preserves key facial landmarks as well as information about head pose, facial expression, direction of gaze, and the state of the eyes and mouth. This information about facial motion is automatically and accurately mapped to the avatar face, giving researchers access to important facial cues while protecting individual identity. A manual-assist feature allows users to manually correct mis-mapping of the eyes, nose, and mouth.

IMPACT: This project helps broaden the research value of data collected in naturalistic driving videos, by retaining often subtle but relevant facial movements while protecting the identity of volunteer drivers.

A driver’s identity is protected using an avatar to replace their face in all frames. ©SRI International.
PROJECT: Multimodal Connectivity Options for a Future, Seamless, Transportation System

INSTITUTION: University of Southern California

COMPLETED: 2014

OBJECTIVE: To harness emerging technologies to develop a new type of decentralized transportation system based on a market for unused transportation capacity.

RESULTS: The research team explored how to bring unused transportation capacity (i.e., empty seats in vehicles already making certain types of trips) to a novel market that is able to match riders and drivers, negotiate a fair price for transport, and efficiently adjust routes so as to preserve benefits for all users. The research team explored computational and algorithmic issues related to pricing and route allocation in dynamic ridesharing systems, and developed important innovations that have been documented in several academic publications. Building on their basic research, the team developed open-source simulation software that can perform ride matching, routing, and auction pricing. The research team also conducted a workshop on car sharing and dynamic ridesharing to discuss the state of practice and knowledge in this area.

IMPACT: Understanding and simulating the market mechanisms and dynamics of shared-ride transportation based on small financial transactions will support continued growth and innovation in this rapidly evolving transportation market. The open-source software is freely available so that it can serve as a platform for further research in this area.
Human Behavior and Travel Choices

PROJECT: Agent-Based Approach for Integrated Driver and Traveler Behavior Modeling

INSTITUTION: University of Maryland

COMPLETED: 2014

OBJECTIVE: To develop a theoretical framework for agent-based driver and traveler behavior modeling.

RESULTS: The research team developed a theoretical framework for agent-based driver and traveler behavior modeling. The team evaluated traditional and emerging data collection methods for ABMS in transportation, evaluated alternative implementation platforms for ABMS applications in transportation, and developed an agent-based model of en-route and pre-trip route, departure time, and mode choices. The model considers five key ABMS components: (1) agent characteristics; (2) agent behavior rules; (3) observable agent behavior; (4) agent experience; and (5) attributes of the environment. A key factor of the integrated model is a learning process that allows cumulative agent experiences to lead to changes in certain agent preferences and subsequent decisions. The research team demonstrated the concept in the Washington, DC—Baltimore region, where additional data was collected for agent-behavior estimation and validation. The model was used to evaluate traffic and regional demand impacts of Maryland’s Inter-County Connector project and the I-270 multimodal corridor traffic management strategies.

IMPACT: The results from this project will help researchers understand future travel demands, improve transportation system management and travel reliability, and provide valuable investment insight for maintaining urban transport systems and services in the Washington, DC–Baltimore region. More broadly, the model demonstrates the potential of ABMS for improved forecasting accuracy, improved understanding of driver and traveler behavior, and modeling of transportation systems management concepts and insights for capital investment.
PROJECT: Evolutionary Agent System for Transportation Outlook (VASTO)

INSTITUTIONS: University of Arizona and George Mason University

COMPLETED: 2014

OBJECTIVE: To use agent-based modeling and simulation to examine driver behavior and interactions between travelers, vehicles, and traffic management centers.

RESULTS: The research team used computational and algorithmic advances in other areas as an opportunity to improve existing transportation analysis capabilities. The team developed a theoretically sound, behaviorally robust, and computationally efficient transportation-analysis modeling system that seamlessly integrates the concepts of agent-based modeling with existing and emerging simulation tools. The team delivered a set of comprehensive modeling tools and a revolutionary system for a multiagent modeling system framework. The system incorporates innovative agent-based modeling concepts to replicate agents such as drivers and traffic management centers. This research project provides fundamental knowledge on how agent-based modeling and simulation can be useful for transportation system analysis and has developed open-source computer programs for other researchers to use.

IMPACT: This research transforms the understanding and modeling of the interactions among heterogeneous agents that represent various groups of a transportation system. It advances the ability to realistically mimic various behaviors in a computer-simulated transportation network and examine their impacts. It will ultimately aid decisionmaking on transportation investments and contribute to effective management strategies, leading to a safer, more efficient transportation system.
PROJECT: Machine Learning for Automated Analysis of Large Volumes of Highway Video

INSTITUTION: Carnegie Mellon University/National Robotics Engineering Center

COMPLETED: 2014

OBJECTIVE: To automate feature extraction from the very large quantities of video data produced by the SHRP 2’s NDS.

RESULTS: Feature extraction from highway video has traditionally been an essentially manual process. Technicians scroll through the video files, noting where features of interest are identified; however, the data collected by the SHRP 2 project totals over 1 million hr of video, rendering manual feature extraction unfeasible. In this project, the research team developed a multipurpose software framework for the analysis of very large volumes of video data and demonstrated several feature-detection and classification algorithms for archived on road video datasets. The research team built on previous experience using machine learning and image processing to detect vehicles and navigate urban and off-road environments. This resulted in the development of powerful and flexible methods for analyzing very large amounts of video data collected on roads and highways. Combined with largescale image processing techniques, the ultimate goal is for researchers to automatically search through enormous datasets, such as the SHRP 2 NDS data, and identify features of interest to safety researchers. This work also identified possible approaches to feature extraction from comparatively poor-quality video data.

IMPACT: This project demonstrates the effectiveness of advanced machine-learning techniques applied to large, diverse datasets. The research lays the groundwork for future development of a comprehensive library of data processing and analysis tools and will ultimately make it easier and faster to study and extract information from large-scale datasets.
PROJECT: Design of a Completely New Approach for a National Household-Based, Long-Distance Travel Survey Instrument

INSTITUTIONS: Batelle, The Urban Institute, and University of Maryland

COMPLETED: 2013

OBJECTIVE: To identify and assess novel, innovative techniques and methods that can yield improved estimates in future, FHWA, long-distance household travel surveys.

RESULTS: Researchers for this project investigated alternative ways to capture long-distance travel behavior in an accurate, scientifically rigorous, and cost-effective manner. The research team developed and tested new smartphone and social media applications to passively detect when a survey participant had taken a long-distance trip and then prompt that individual for trip-related information through an online survey. These applications were successfully tested in a pilot study involving over 250 individuals. The research team also developed and tested a series of postprocessing methods (based on machine-learning techniques) that estimate trip purpose for long-distance travel as a function of available travel survey data and other supplementary data. This approach could ultimately impact the design of future long-distance travel surveys by reducing the burden placed on collecting data directly from respondents through questionnaires.

IMPACT: This project led to several key recommendations for an efficient, scientific design, implementation, and processing of the next nationally representative travel survey that specifically addresses long-distance travel behavior.
Human Behavior and Travel Choices

PROJECT: Making Driving Simulators More Useful for Behavioral Research

INSTITUTIONS: University of Iowa/National Advanced Driving Simulator; University of Wisconsin; Western Transport Institute, Montana State University; Battelle; Entropy Control, Inc.; and William H. Levison Associates

COMPLETED: 2013

OBJECTIVE: To develop a mathematical transformation that will allow scientists and engineers to better predict the behavior of drivers in real environments based on the results of experiments conducted in driving simulators.

Actual road data (red points) used in response comparisons for a roundabout scenario. Source: FHWA.

RESULTS: The research team identified highway design needs and matched them to specific characteristics of driving simulators (e.g., motion, field of view, speed, and steering torque) and developed and demonstrated tools to characterize how closely responses to simulator characteristics match real-world driving outcomes. In experiments conducted on four different simulator platforms, the researchers compared driver judgment of simulator fidelity and performance in virtual roadway scenarios and found little effect of motion and a moderate effect of visual complexity. The results show that using a high-fidelity simulator with attention to accurately rendering the visual complexity of the roadway will lead drivers in the simulator to drive at speeds quite comparable to those observed on actual roadways.
Human Behavior and Travel Choices

IMPACT: Models developed in this project will enable the driving safety research community and highway designers to predict real-world driving behavior more accurately from behavior in driving simulators and to integrate the results from different simulators more readily. The models also will better indicate to researchers when experiments require high-fidelity simulation and when lower fidelity approaches are adequate, thereby saving time and funding on future studies.

PROJECT: Behavioral Sciences Approach to Testing, Validating, and Establishing Best Practices for Alternative Highway Revenue Collection

INSTITUTIONS: University of Central Florida and Georgia State University

COMPLETED: 2013

OBJECTIVE: To understand drivers’ behavioral choices between tolled and “free” routes and choices of departure time by estimating risk attitudes, accuracy of risk perception, and discount rate.

RESULTS: To improve understanding of when and why drivers choose a tolled facility, the research team used experimental economics with a population of local drivers and students participating in (1) stylized lotteries to reveal risk attitudes; (2) driving simulators to reveal risk attitudes and travel time perceptions; and (3) GPS-recorded actual driving choices. More than 550 drivers with residence and workplace connected by both a toll and a “free” route participated in Orlando, Florida, and Atlanta, Georgia. They responded to varying road prices in actual driving and simulations to assess their risk attitudes and travel time biases in response to monetary incentives. In another experiment, 210 college students participated in driving simulations of route choices to test whether their behavior could predict field driver behavior. The study concluded that risk attitudes are comparable across tasks and regions as well as for college students versus field drivers. The researchers found evidence of risk aversion as captured both by sensitivity overvalues of route choices and by pessimism over likelihoods of congestion.
IMPACT: Currently, revenue projections for priced roadways are based on methods with limited accuracy, which can result in projects with lower-than-expected revenue. The results of this research confirm the importance of accurately incorporating risk attitudes in policy analysis and impact assessment of congestion pricing. The use of less costly subject pools and instruments to gather behavioral data as demonstrated in the project can increase opportunities to investigate driver choices and incorporate more accurate data when determining potential revenue.

PROJECT: Impact of Automated Transit and Pedestrian/Bicycling Facilities on Urban Travel Patterns

INSTITUTIONS: University of Michigan and University of Illinois at Chicago

COMPLETED: 2013

OBJECTIVE: To evaluate whether innovative pedestrian, bicycle, and transit facilities and services will attract travelers and decrease passenger-car travel.

RESULTS: Researchers in this project found that high-frequency shuttle service between a neighborhood and a regional rail transit system with available capacity can have a significant effect on choice of travel mode. The researchers conducted a household survey in four metropolitan Chicago communities to assess whether community shuttle service, bike lanes, walkway improvements, and other amenities would increase use of rail transit. In each neighborhood, they queried 150 residents who lived within 1.5 mi of a rail transit station and worked within 3 mi of a station on their current travel patterns and mode preferences under the hypothetical improvements. Simulations using a combination agent-based/activity-based model predicted that neighborhood shuttle service combined with bike lanes would decrease car use from 36 percent to 22 percent and increase rail transit use from 50 percent to 67 percent. Predicted shifts to rail were higher in lower density communities with lower rail use.
Human Behavior and Travel Choices

IMPACT: The project’s results support the value of continued research into automating high-frequency shuttle services to help reduce traffic congestion, fuel consumption, and greenhouse gas emissions.

PROJECT: Megaregional Travel

INSTITUTIONS: University of Maryland, National Center for Smart Growth; ECONorthwest; Parsons Brinckerhoff; LEAM Group, University of Illinois at Urbana/Champaign; and David Simmonds Consultancy

COMPLETED: 2013

OBJECTIVE: To develop methods and tools that support planning for the Nation’s megaregions, integrating multiple disciplines, travel modes, and geographic levels.

Case study at http://www.fhwa.dot.gov/planning/megaregions/reports/.

RESULTS: Megaregions, large agglomerations of metropolitan areas, represent a development pattern spreading across the world and a new planning geography. In this project, researchers developed and demonstrated the megaregion market analysis framework, which contains a market analysis and analytic tools. The market analysis focuses on defining the megaregion’s boundaries, identifying issues it must address, and describing its characteristics. The analytic tools—an economic model linked with a travel demand model components recommended for megaregion analysis. © University of Maryland.
model—enable analysis of the intricate effects of economic changes on a megaregion’s economy and transportation system. Applying this framework, the project defined the Chesapeake megaregion and used existing models and data to identify its issues and characteristics. The market analysis illustrates the need to broaden the planning perspective beyond local and metropolitan areas.

IMPACT: This project provides the framework and tools for policymakers to understand issues such as freight and the economy on a megaregional scale and demonstrates that analytic tools can be developed with available data and at reasonable cost for megaregional analysis.

PROJECT: Driver Behavior in Traffic

INSTITUTIONS: Virginia Polytechnic Institute and State University, PTV America, and Virginia Center for Transportation Innovation and Research

COMPLETED: 2012

OBJECTIVE: To characterize driver behavior using naturalistic driving data and agent-based modeling techniques for development of effective strategies to improve transportation safety and operations.

RESOURCES: Fact sheet at https://www.fhwa.dot.gov/publications/research/ear/10070/10070.pdf

RESULTS: This research provides a foundation for agent-based modeling of driver behavior based on naturalistic data through an integrated framework for safety and operation analysis. Lateral vehicle action was simulated in a microscopic traffic-behavior modeling environment, bringing new insights to the modeling of driver-maneuvering behavior during safety-critical events. Agents developed and evaluated in the VISSIM simulation platform revealed a close resemblance to real-driver data. The project team improved car-following models through development of a hybrid model for greater accuracy and flexibility and through the addition of the new “passing and hook-following” thresholds. They used the
model to simulate vehicle actions in safety-critical events, developed agent-based simulation components integrated with the VISSIM simulation package through its driver model, and developed and implemented a robust activation mechanism for agent-based simulation based on discriminant analysis. The investigators also identified key future research issues: adaptability of agents in real time and human-factors issues related to warning individual drivers about changes in their driving behavior that might lead to safety-critical events.

IMPACT: New behavioral models are necessary to predict the safe and efficient use of new, connected-vehicle and roadside technology. This project demonstrates the ability of agent-based models based on naturalistic driving studies to create new and improved behavioral models.
Human Behavior and Travel Choices

PROJECT: Modeling the Urban Continuum in an Integrated Framework: Location Choice, Activity-Travel Behavior, and Dynamic Traffic Patterns

INSTITUTIONS: Arizona State University, University of Arizona, and University of Washington

COMPLETED: 2012

OBJECTIVE: To develop a conceptual framework, integrated prototype, and computational tools for modeling interactions between the built environment and multimodal transportation systems and for modeling urban systems across simulated land use, travel demand, and traffic flow.

RESULTS: SimTRAVEL, developed in this project, is an integrated modeling system that advances land-use and transportation microsimulation by providing seamless modeling of longer term choices about location (home, work and school) and shorter term choices of activity, travel mode, and route. SimTRAVEL integrates the use of UrbanSim (a land-use model), OpenAMOS (an activity-based microsimulation model), PopGen (a state-of-the-art synthetic population generator), and DynusT/MALTA (a dynamic, traffic-assignment and microsimulation model) within a behaviorally robust framework. The integrated systems have been fully implemented in a user-friendly software environment with powerful graphical user interfaces and visualization dashboards. Open-source software architecture with multithreading and parallel-computing capabilities speeds the simulations. SimTRAVEL was successfully tested and validated on a 500,000 population subregion of Maricopa County, Arizona.

IMPACT: The innovations in this modeling software, which is freely available to the modeling community, are expected to have a major impact on transportation planning for sustainable futures.
Technology for Assessing Performance

Advances in science and technology are providing new approaches in signal processing and data management. Sensors are continuing to increase in number, with many becoming disposable or recyclable and being embedded in almost everything sold. Advances in energy scavenging, batteries, and efficient spectrum use can increase in orders of magnitude the amount of processing that can take place at the source and the amount that can be transmitted for post hoc analysis. At the same time, computational models are becoming more complex and realistic, providing even more data than captured in the physical world. The EAR Program is supporting research in this focus area that demonstrates the potential of new approaches that can support transportation decisionmakers in finding meaning among increasing noise—from determining where damage is occurring on structures before it is visible to inspectors to improving the quality of new construction through intelligent compaction.

PROJECT: Development of Structural Carbon Nanotube-Based Sensing Composites for Rehabilitation of Deteriorating and Fatigue-Damaged Steel Bridges

INSTITUTION: University of Delaware

COMPLETED: 2020

OBJECTIVE: To develop a structural sensing composite layer for concrete structures that can provide distributed monitoring capability.

RESULTS: During the first phase of the project, the research team developed and refined methods for manufacturing and applying adhesive-backed carbon nanotube- (CNT) glass fiber reinforced plastic (GFRP) composites to steel and insulating the conductive properties of the CNT network against the substrate. Next, the researchers gauged the composite’s response to realistic environmental conditions on large-scale beam specimens, developing a calibration scheme for real bridges and designing hardware and software components for a field-ready wireless monitoring system that would use this composite technology. They used laboratory validation testing to evaluate how CNT-GFRP composites performed in situations mimicking field installations on steel bridges, such as exposure to wide temperature variations and high cycle fatigue. Testing included
large-scale experiments on prototype steel bridge members with fatigue-prone defects and simulated section loss and evaluation of off-the-shelf components to minimize costs for an effective monitoring system.

IMPACT: If the technology can be applied successfully in real-life situations, CNT-GNRP composites have the potential to extend the lifespan of steel bridges. The data gathered from using the technology with structural health monitoring systems may enable engineers to assess the performance of bridge repairs and provide guidance on how best to retrofit existing bridges and design new ones.

PROJECT: Virtual Nondestructive Evaluation Laboratory for Highway Structures

INSTITUTION: Drexel University

COMPLETED: 2020

OBJECTIVE: To develop an online laboratory where inspectors and engineers can try out diagnostic tools with the latest in advanced technology to study and examine the condition of virtual bridges.

RESULTS: To create this laboratory, researchers collected data on real-life bridges. That data included high-resolution scans of bridges during different seasons as well as the results and observations about the bridges’ condition as gathered through nondestructive evaluation (NDE) testing tools and sensor technologies. The researchers used these data, plus data supplied by FHWA on other related research efforts on bridge condition assessment, to develop two virtual components. The first component consisted of data visualization tools that would allow laboratory users to explore and interact with the collected data on the real-life bridges, including the high-resolution scans and the data garnered through NDE testing tools and sensor technologies.

IMPACT: This online laboratory will allow researchers, engineers, and inspectors to test and optimize emerging technologies and tools for assessing bridge conditions.
PROJECT: Self-Sensing Adaptive Material for a New Generation of Multifunctional Bridge-Bearing Systems

INSTITUTION: University of Nevada, Reno

COMPLETED: 2017

OBJECTIVE: To develop self-sensing adaptive bridge bearing systems capable of sensing and redistributing traffic or environmental loads.

RESULTS: Part of a three-phase study to identify material composition and develop systems responsive to loadings experienced by bridges, this research examined the value of magnetorheological elastomers (MREs) as a smart material for self-sensing adaptive bridge bearings (SSABs). MREs are polymeric solids embedded with iron particles. Their beneficial characteristics include piezoresistivity and magnetoresistance; the incorporation of MREs into SSABs makes it possible to measure structural loading continually and transmit that information to a monitoring system. The first two phases of research involved a series of groundbreaking investigations that demonstrated the feasibility of using MREs in highway bridge isolation bearings. Through a methodological design process, the bearings were developed to accommodate large strain and force demands. Experimental evaluations during these two phases showed that adaptive features of the bearings in terms of real-time control of apparent shear stiffness were attainable. However, further investigation was deemed necessary to develop material compositions to realize higher magnetorheological (MR) effects. The third phase focused on furthering MRE materials development under large strains to improve the MR effects. It characterized the mechanical properties of silicone-based and natural rubber-based MREs to improve MR effects under large strains.
Technology for Assessing Performance

IMPACT: The vibrations caused by wind and traffic are a significant factor in bridge performance, and conventional passive bearings, due to their predetermined stiffness, are limited in their ability to suppress such vibrations and readjust. This research showed that MREs incorporated within SSABs add stability to adaptive mechanical properties while withstanding realistic forces. The electrical properties of the layers also can be adjusted to measure changes in electrical resistance and correlate that to bearing forces.

PROJECT: Cooperating Camera Platforms for Ultra-High-Resolution Traffic Surveillance and Autonomous Event Detection

INSTITUTION: University of Maryland

COMPLETED: 2015

OBJECTIVE: To provide continuous, high-resolution, real-time simultaneous monitoring, tracking, and analysis of multiple transportation events or characteristics.

RESULTS: The cameras that traditionally monitor transportation incidents, infrastructure, and congestion often require human monitoring and produce low-resolution video. Researchers for this project developed a high-resolution system that can monitor and analyze multiple incidents or characteristics at once and in real time. The cameras are synchronized, and their pan, tilt, and zoom features enhance the detection of any issues in the highway network. The cameras “talk” to each other every 50 milliseconds about what they are seeing so the system as a whole can track potentially fast-moving vehicles. The reach of the high-resolution imagery for highway infrastructure is up to 5 mi. The precisely calibrated camera lenses and high-performance gimbals also provide accurate video of vehicles at long distances. The system transmits footage wirelessly to remote operation centers and to

Real-time video feature extraction (top), and cameras that can cooperate using precise and fast electronic pan, tilt, and zoom gimbals for event detection (bottom). © University of Maryland.
other network locations at up to 1 gigabit/s, as traffic events dictate. The team designed and developed a testbed at the University of Maryland campus and on a local state highway.

IMPACT: The camera system developed in this project offers great promise for improved monitoring of transportation infrastructure. It will enhance the quality of the video feeds, the speed in which they are delivered to observers, and the perspectives and information they provide. The high-bandwidth communications network will make it possible for personnel in an operations center to immediately detect events and for emergency responders in the field to get situational updates instantaneously. The testbed at the University of Maryland can be used for subsequent research into high-resolution traffic cameras.

PROJECT: Remote, Wireless Camera Systems for Environmental Monitoring of Transportation Corridors

INSTITUTION: University of California, Davis’ Road Ecology Center

COMPLETED: 2017

OBJECTIVE: To develop wireless wildlife camera technology that advances the state of the practice in investigating wildlife movement near highways, and to create an online interface and database to manage images from camera traps.

University of California, Davis. n.d. “Questions and Answers from Both Advanced Camera Systems Webinars” (web page). https://wildlifeobserver.net/files/resources/ChatboxQuestions_Answers_Webinars1_2_0.pdf.
RESULTS: The researchers demonstrated the potential for creating affordable, accessible remote camera systems for transportation agencies to continuously monitor and study wildlife movements in traffic corridors. The approach they developed can use commercially available wildlife cameras that have wireless or cellular connections to servers and can be incorporated into existing traffic camera infrastructure. Using a web interface, the system receives image files directly from remote wireless cameras, or transportation agency personnel can upload batches of images manually. Uploaded images are automatically organized into a database using details like date and time, geographic location, and user information. Users can manually add animal type, gender, age, observed activity, direction traveled, and any other characteristics to each image file. In the next and current phase of the project, researchers are exploring the use of software to automatically flag images with no animals and identify common wildlife species. State transportation agencies can use the Wildlife Observer Network, available at https://wildlifeobserver.net, to collect, manage, analyze, and share images. The website includes training materials and webinars produced by the research team. Agencies in California, Colorado, South Dakota, and Utah helped field test the system.

IMPACT: FHWA and seven other Federal agencies will use the technology developed for this project as part of a broader plan to promote ecosystem-based environmental mitigation by integrating plans and data across agencies. The innovations will help agencies acquire wildlife movement data more easily and safely and at less cost than deploying staff periodically to collect images from static wildlife cameras mounted near highways.

The ability to monitor the condition of bridges and other civil infrastructure systems is of primary interest to all infrastructure owners and operators. The development of advanced structural monitoring methods can facilitate the early detection of possible structural damage deterioration, with the goal to extend the lifespan of structures and increase their safety. Timely information gathered from such technologies undoubtedly will help transportation agencies in the corrective and urgent decisionmaking process. The development of wireless networks has eliminated the need for performing the arduous task of stringing connecting cables. The EAR Program supported two research projects—battery-powered wireless sensors and wireless sensors that operate without batteries—aimed at developing cost-effective structure health monitoring.

IMPACT: The wireless sensor systems that researchers developed can efficiently collect and transmit data to bridge owners so they can monitor structural health and compare conditions against reliable baseline data on an ongoing basis. The ability to deploy the systems and collect measurements rapidly will enhance bridge testing and condition assessments.

PROJECT: Ultra Low-Power Wireless Sensing System

INSTITUTIONS: Michigan State University, Washington University in St. Louis, and the University of Southern California

COMPLETED: 2018

OBJECTIVES: To advance the practical application of structural health monitoring methodologies for bridges by developing self-powered sensor technology, and to investigate novel damage prognosis methods and effective sensor implementation strategies.

RESULTS: This team of researchers explored the benefits of self-powered piezoelectric floating gate (PFG) sensors. These materials can convert mechanical energy, such as strains and vibrations, into electrical energy. The generated electrical signals, which are
Technology for Assessing Performance

directly proportional to the mechanical excitation, also are used to power all electronics in the sensing system. The researchers’ models integrated finite element, experimental testing, and statistical and artificial intelligence. The information delivered by the piezoelectric transducer is stored in these gates. The gates record the duration of strain/voltage events when the amplitudes of the input signals, generated by the piezoelectric transducer, exceed certain predetermined thresholds. The output of the sensor is presented in the form of a histogram in which each gate denotes the cumulative time of the events at a specific, predetermined strain level. Prototypes of the PFG sensor and telemetry box were deployed on the Mackinac Bridge for fatigue-prone monitoring of structure components.

PROJECT: Multipurpose Wireless Sensors for Asset Management and Health Monitoring of Structures

INSTITUTIONS: Drexel University and Smartsensys

COMPLETED: 2018

OBJECTIVE: To transform reliable wired sensors, including displacement sensors, strain gauges, and accelerometers, into wireless devices to allow rapid bridge structural assessments.

RESULTS: The battery-powered wireless sensors developed in this project eliminated the need for long cables to connect sensors to data loggers, a
process that is costly and time-consuming. The wireless sensors can be deployed rapidly, and they establish baseline measurements when bridges are constructed. These measurements can be used later to assess potential bridge damage from floods, accidents, and other incidents. Field tests of the technology accurately measured factors like strain, displacement, and tilt of structural components. One field test on a multispan bridge that has experienced significant vibration showed that wireless strain and displacement gauges are as accurate as wired sensors. A second field test on a multispan steel bridge over the Delaware River used wireless accelerometers to extract and study vibration properties (mode shapes and frequencies) and calibrate a numerical model of the structure.

PROJECT: A Remote, Self-Sustained System for Monitoring Water Quality Near Highways

INSTITUTION: Montana State University

COMPLETED: 2015

OBJECTIVE: To develop an in situ water monitoring system that can provide real-time data and is powered by fuel cells that use biological activity of common stream bacteria to generate electricity.

RESULTS: Collecting water quality data from streams near highways can be difficult in hard-to-reach or remote locations. Conventional sample collection and laboratory analysis miss important information about pollution that occurs over short periods, such as highway spills or in the first flush of stormwater runoff from highways. In this project, researchers demonstrated the feasibility of using microbial fuel cells (MFC) as a reliable power source for onsite sampling instruments. The MFCs harvest power from electrochemical reactions driven by naturally occurring bacteria that oxidize magnesium, which is common in stream water. The MFCs generate electricity during periods of high biological activity.
and act as batteries to store and release energy as needed during periods of low biological activity. The system’s sensor array uses wireless open-source (TelosB) sensors attached to probes that provide information on water quality measures, including temperature, dissolved oxygen, chloride concentration, and pH level. Because energy generated by the MFCs fluctuates, researchers also developed a power management system that can release stable voltage over short periods to power in situ sensors. A 3-mo field test in a natural stream showed that the system can provide continuous monitoring of key water quality measures at a frequency of four to seven samples per day.

IMPACT: This project represents an important advance toward the goal of developing a network of real-time, self-powered, environmental monitoring stations that will reduce manpower and logistical costs while improving the reliability and accuracy of monitoring to protect and maintain water quality near highways.

PROJECT: Nanoscale Sensors for Structural Health
INSTITUTION: Georgia Institute of Technology
COMPLETED: 2013
OBJECTIVE: To develop and field-test the use of wireless, self-powered nanosensors and nanosensor arrays for real-time, autonomous strain and crack monitoring of steel bridges and other structures.
Technology for Assessing Performance

Project details at https://highways.dot.gov/research/projects/nanoscale-sensors-structural-health

RESULTS: The research team has developed several types of wireless, self-powered, low-cost antenna sensors that can monitor potentially dangerous cracks in steel bridges. To reduce the costs of large-quantity production, multiple sensors are printed with inkjet printers and nanoscale conductive inks onto a thin, flexible film that can be applied to fatigue-prone areas of a bridge. The sensors create a network that can detect and measure multiple small cracks in proximity and their propagation. Powered by solar cells or energy captured from the signals of a wireless reader, the antenna sensor systems have great potential for low-cost, large-scale monitoring of transportation structures.

IMPACT: The research results demonstrate the potential for designing low-cost, advanced, strain-sensing systems that can improve the efficiency of maintenance and repair for steel bridges, provide substantial savings in operations, and increase safety.
Technology for Assessing Performance

PROJECT: Flexible Skin, Areal Shear Stress, and Pressure-Sensing System for Experimental Bridge Scour Research

INSTITUTIONS: National Aeronautics and Space Administration Jet Propulsion Lab and FHWA's J. Sterling Jones Hydraulics Research Laboratory

COMPLETED: 2011

OBJECTIVE: To advance technology for measuring and understanding the complex flow fields and boundary shear stresses and pressure fields associated with bridge pier scour.

RESULTS: In this project, NASA Jet Propulsion Laboratory investigators conducted research on an integrated, flexible-skin, areal shear- and pressure-sensor system in a miniaturized array that measures changes in shear stress and pressure associated with scour-hole formation. The sensor elements were intended to measure shear forces in the range of 0.05 to 6 Pa and variations in pressure in the range of 0 to ±100 Pa, with a sampling rate of more than 500 data points/s. Such a system will help researchers understand erosive flow mechanisms related to turbulence structures, together with local flow convergence and contractions around the fronts and flanks of piers or between piles of complex pier configurations. Direct measurements of shear forces are essential to validated computational fluid dynamic models.

IMPACT: Scour is the predominant cause of failure in bridges over water. The ability to capture shear stress and pressure data will significantly aid small-scale scour experiments in bridge scour research.

The flexible (skin) sensing system is based on an elastically mounted, floating plate concept. A single pressure sensor was inserted in the middle of this array. The optical encoder of each shear force sensor is encapsulated so the assembled sensor can be immersed in water. Source: FHWA.
Technology for Assessing Performance

PROJECT: Development of Stiffness-Measuring Device for Pad Foot Roller Compaction

INSTITUTIONS: Colorado School of Mines, with Caterpillar Inc., BOMAG, and the Colorado Department of Transportation

COMPLETED: 2011

OBJECTIVE: To develop a methodology to achieve continuous, real-time sensing of soil properties during static compaction with a pad foot roller.

RESULTS: Measurement of soil stiffness during compaction of foundations for highway structures is critical to ensuring that design-life specifications are met. In this study, investigators developed a conceptual framework for determining pad-soil contact force and displacement (and thus soil stiffness) from sensors built into the pads and roller, constructed a prototype measurement system, and devised a wireless data acquisition system to enable field-scale testing. They successfully measured plastic and elastic soil deformation during compaction using laser-based distance sensors and pad-strain-based techniques. Laboratory and field testing confirmed the predicted strain field changes. Some elements of the model need further refinement to ensure repeatable and accurate measurement across various soil conditions.

IMPACT: Intelligent compaction allows 100 percent quality control in real time. More comprehensive, accelerated measurement of compaction could improve long-term performance of roadway base courses and extend pavement life.

Strain gauges, installed within selected pads that are welded to the drum, are wired to a signal processing box that transmits data wirelessly to a computer in the cab. Source: FHWA.
Advances in harvesting and embedding energy are allowing for placement of sensors and control technology where it previously would have been impractical and for increased reliability where current systems are subject to disruption from extreme events. Research in this area combined with new approaches to sensing, assessment, and control will allow for improved resilience of the highway system.

PROJECT: Creating Productive Roadways: Developing an Advanced Energy Production, Storage, and Distribution System

INSTITUTION: University of Nebraska-Lincoln

COMPLETED: 2014

OBJECTIVE: To use existing roadway and right-of-way infrastructure to produce, store, and distribute stable and renewable electric power.

RESOURCES:

RESULTS: The project investigators demonstrated the feasibility and effectiveness of a Roadway Wind/Solar Hybrid Power Generation and Distribution System (RHPS). Reliable, renewable power generation within the roadway and right-of-way infrastructure can significantly reduce the cost of operating and maintaining highway systems. Excess power generation can be a source of revenue to further offset operating costs. Moreover, reliable and renewable power can provide important backup to keep critical roadway safety and control systems operating during periods of local or regional power failure. The main element of the RHPS is the energy-plus roadway traffic signal light (EPRTL), which includes a wind and solar power system installed on a traffic pole. Key components of the RHPS are:

- Wind turbines and solar panels mounted on the poles of existing traffic signals and street lights.
- High-efficiency, low-cost, electronic power converters, controls, and communication boards.
- Power management algorithms and software to coordinate operation of various EPRTL elements and allow the RHPS to operate in a grid-connected configuration.

IMPACT: The RHPS represents a significant advance toward development of roadway structures that use renewable sources to produce more energy than they consume. The RHPS will provide stable, reliable power to ensure that critical transportation system components operate safely and continuously during local or widespread power outages.
The Federal Highway Administration (FHWA) participates in the National Research Council (NRC) Research Associateship Program (RAP) with other sponsoring Federal laboratories and approved research organizations. RAP provides high-skilled, promising postdoctoral and senior scientists and engineers with opportunities to research problems that are compatible with the interests of sponsoring laboratories. To supplement the expertise of the permanent staff, FHWA, through the EAR Program, uses the RAP to invite researchers with appropriate backgrounds to investigate specific problems on a short-term basis across a range of topics and disciplines. The associates have researched a variety of topics, such as nanoadditives for concrete and asphalt, alternative intersection and interchange design, and cost-benefit analysis of connected and automated vehicle operations.

For more details on the projects or to view a copy of the most recent version of the EAR Program’s Research Associates Program booklet, please visit our publication web page at https://www.fhwa.dot.gov/publications/lists/advancedresearch/pubs.cfm.
GETTING INVOLVED WITH THE EAR PROGRAM

To take advantage of a broad variety of scientific and engineering discoveries, the EAR Program involves both traditional stakeholders (State department of transportation researchers, University Transportation Center researchers, and Transportation Research Board committee and panel members) and nontraditional stakeholders (investigators from private industry, related disciplines in academia, and research programs in other countries) throughout the research process. The program has awarded 101 research projects on 57 different topics between 2007 and 2021. The research awards include work by multidisciplinary teams at 80 academic institutions, 57 private companies, 13 State and local agencies, 10 Federal laboratories, and 10 foreign institutions.

LEARN MORE

For more information, see the EAR Program website at http://highways.dot.gov/research/exploratory-advanced-research. The site features information on research solicitations, updates on ongoing research, links to published materials, summaries of past EAR Program events, and details on upcoming events.
EARN PROGRAM RESULTS

As a proponent of applying ideas across traditional research fields to stimulate new problem-solving approaches, the EARN Program strives to develop partnerships with the public and private sector. The program bridges basic research (e.g., academic work funded by National Science Foundation grants) and applied research (e.g., studies funded by State departments of transportation). In addition to sponsoring EARN Program projects that advance the development of highway infrastructure and operations, the EARN Program is committed to promoting cross-fertilization with other technical fields, furthering promising lines of research, and deepening vital research capacity.